WorldWideScience

Sample records for habitat ecology

  1. Habitat Ecology Visual Surveys of Demersal Fishes and Habitats off California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Since 1992, the Habitat Ecology team has been conducting fishery independent, visual surveys of demersal fishes and associated habitats in deep water (20 to 900...

  2. Effects of Changes in Lugu Lake Water Quality on Schizothorax Yunnansis Ecological Habitat Based on HABITAT Model

    Science.gov (United States)

    Huang, Wei; Mynnet, Arthur

    Schizothorax Yunnansis is an unique fish species only existing in Lugu Lake, which is located in the southwestern China. The simulation and research on Schizothorax Yunnansis habitat environment have a vital significance to protect this rare fish. With the development of the tourism industry, there bring more pressure on the environmental protection. The living environment of Schizothorax Yunnansis is destroyed seriously because the water quality is suffering the sustaining pollution of domestic sewage from the peripheral villages. This paper analyzes the relationship between water quality change and Schizothorax Yunnansis ecological habitat and evalutes Schizothorax Yunnansis's ecological habitat impact based on HABITAT model. The results show that when the TP concentration in Lugu Lake does not exceed Schizothorax Yunnansis's survival threshold, Schizothorax Yunnansis can get more nutrients and the suitable habitat area for itself is increased. Conversely, it can lead to TP toxicity in the Schizothorax Yunnansis and even death. Therefore, unsuitable habitat area for Schizothorax Yunnansis is increased. It can be seen from the results that HABITAT model can assist in ecological impact assessment studies by translating results of hydrological, water quality models into effects on the natural environment and human society.

  3. Ecological periodic tables for bentkhic macrofauna and nekton usage in estuarine habitats

    Science.gov (United States)

    In his presidential address to the British Ecological Society, T.R.E. Southwood (1977: Habitat, the templet for ecological strategies? Journal of Animal Ecology 46: 337-365; http://www.jstor.org/stable/3817) compared the situation in ecology to that in chemistry before the devel...

  4. Prioritizing Urban Habitats for Connectivity Conservation: Integrating Centrality and Ecological Metrics.

    Science.gov (United States)

    Poodat, Fatemeh; Arrowsmith, Colin; Fraser, David; Gordon, Ascelin

    2015-09-01

    Connectivity among fragmented areas of habitat has long been acknowledged as important for the viability of biological conservation, especially within highly modified landscapes. Identifying important habitat patches in ecological connectivity is a priority for many conservation strategies, and the application of 'graph theory' has been shown to provide useful information on connectivity. Despite the large number of metrics for connectivity derived from graph theory, only a small number have been compared in terms of the importance they assign to nodes in a network. This paper presents a study that aims to define a new set of metrics and compares these with traditional graph-based metrics, used in the prioritization of habitat patches for ecological connectivity. The metrics measured consist of "topological" metrics, "ecological metrics," and "integrated metrics," Integrated metrics are a combination of topological and ecological metrics. Eight metrics were applied to the habitat network for the fat-tailed dunnart within Greater Melbourne, Australia. A non-directional network was developed in which nodes were linked to adjacent nodes. These links were then weighted by the effective distance between patches. By applying each of the eight metrics for the study network, nodes were ranked according to their contribution to the overall network connectivity. The structured comparison revealed the similarity and differences in the way the habitat for the fat-tailed dunnart was ranked based on different classes of metrics. Due to the differences in the way the metrics operate, a suitable metric should be chosen that best meets the objectives established by the decision maker.

  5. Ecological variables governing habitat suitability and the distribution ...

    African Journals Online (AJOL)

    governed by soil particle size distribution), in combination with the cover provided by trees, as the two ecological factors that best explained habitat suitability for Juliana's golden mole at the three localities. An IndVal analysis failed to identify ...

  6. Investigating Targets of Avian Habitat Management to Eliminate an Ecological Trap

    Directory of Open Access Journals (Sweden)

    Bruce A. Robertson

    2012-12-01

    trees. Both sexes preferred standing dead perch trees (snags and these preferences were most obvious in harvested forest where snags are rarer. Because previous research shows that snag density is linked to habitat preference and spruce/fir trees are preferred nest substrate, my results suggest these two habitat components are focal habitat selection cues. I suggest alternative and complementary strategies for eliminating the ecological trap for Olive-sided Flycatchers including: (1 reduced retention and creation of snags, (2 avoiding selective harvest in spruce, fir, and larch stands, (3 avoiding retention of these tree species, and (4 selecting only even-aged canopy height trees for retention so as to reduce perch availability for female flycatchers. Because these strategies also have potential to negatively impact habitat suitability for other forest species or even create new ecological traps, we urge caution in the application of our management recommendations.

  7. Constructing Ecological Networks Based on Habitat Quality Assessment: A Case Study of Changzhou, China

    Science.gov (United States)

    Gao, Yu; Ma, Lei; Liu, Jiaxun; Zhuang, Zhuzhou; Huang, Qiuhao; Li, Manchun

    2017-01-01

    Fragmentation and reduced continuity of habitat patches threaten the environment and biodiversity. Recently, ecological networks are increasingly attracting the attention of researchers as they provide fundamental frameworks for environmental protection. This study suggests a set of procedures to construct an ecological network. First, we proposed a method to construct a landscape resistance surface based on the assessment of habitat quality. Second, to analyze the effect of the resistance surface on corridor simulations, we used three methods to construct resistance surfaces: (1) the method proposed in this paper, (2) the entropy coefficient method, and (3) the expert scoring method. Then, we integrated habitat patches and resistance surfaces to identify potential corridors using graph theory. These procedures were tested in Changzhou, China. Comparing the outputs of using different resistance surfaces demonstrated that: (1) different landscape resistance surfaces contribute to how corridors are identified, but only slightly affect the assessment of the importance of habitat patches and potential corridors; (2) the resistance surface, which is constructed based on habitat quality, is more applicable to corridor simulations; and (3) the assessment of the importance of habitat patches is fundamental for ecological network optimization in the conservation of critical habitat patches and corridors. PMID:28393879

  8. Fire ecology of Montana forest habitat types east of the Continental Divide

    Science.gov (United States)

    William C. Fischer; Bruce D. Clayton

    1983-01-01

    Provides information on fire as an ecological factor for forest habitat types occurring east of the Continental Divide in Montana. Identifies "Fire Groups" of habitat types based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.

  9. Book review: Aquatic insect ecology: 1. Biology and habitat

    OpenAIRE

    Arnett, Ross H.

    2010-01-01

    Book Review: A comprehensive treatment of the ecology of aquatic insects in one place is needed for both students and researchers. Professor Ward is doing this in two volumes. The first volume covers the biology and habitats, as indicated in the subtitle, of the 13 insect orders that are either entirely aquatic at some stage, or those with some members aquatic at some stage. The second volume will be devoted entirely to the feeding ecology of these aquatic species.

  10. Genomics meets applied ecology : Characterizing habitat quality for sloths in a tropical agro-ecosystem

    NARCIS (Netherlands)

    Fountain, Emily D; Kang, Jung Koo; Tempel, Douglas J; Palsbøll, Per J; Pauli, Jonathan N; Peery, M Zachariah

    Understanding how habitat quality in heterogeneous landscapes governs the distribution and fitness of individuals is a fundamental aspect of ecology. While mean individual fitness is generally considered a key to assessing habitat quality, a comprehensive understanding of habitat quality in

  11. Data Collection and Simulation of Ecological Habitat and Recreational Habitat in the Shenandoah River, Virginia

    Science.gov (United States)

    Krstolic, Jennifer L.

    2015-01-01

    This report presents updates to methods, describes additional data collected, documents modeling results, and discusses implications from an updated habitat-flow model that can be used to predict ecological habitat for fish and recreational habitat for canoeing on the main stem Shenandoah River in Virginia. Given a 76-percent increase in population predictions for 2040 over 1995 records, increased water-withdrawal scenarios were evaluated to determine the effects on habitat and recreation in the Shenandoah River. Projected water demands for 2040 vary by watershed: the North Fork Shenandoah River shows a 55.9-percent increase, the South Fork Shenandoah River shows a 46.5-percent increase, and the main stem Shenandoah River shows a 52-percent increase; most localities are projected to approach the total permitted surface-water and groundwater withdrawals values by 2040, and a few localities are projected to exceed these values.

  12. Impacts of habitat loss and fragmentation on the activity budget, ranging ecology and habitat use of Bale monkeys (Chlorocebus djamdjamensis) in the southern Ethiopian Highlands.

    Science.gov (United States)

    Mekonnen, Addisu; Fashing, Peter J; Bekele, Afework; Hernandez-Aguilar, R Adriana; Rueness, Eli K; Nguyen, Nga; Stenseth, Nils Chr

    2017-07-01

    Understanding the extent to which primates in forest fragments can adjust behaviorally and ecologically to changes caused by deforestation is essential to designing conservation management plans. During a 12-month period, we studied the effects of habitat loss and degradation on the Ethiopian endemic, bamboo specialist, Bale monkey (Chlorocebus djamdjamensis) by comparing its habitat quality, activity budget, ranging ecology and habitat use in continuous forest and two fragments. We found that habitat loss and fragmentation resulted in major differences in vegetation composition and structure between forest types. We also found that Bale monkeys in continuous forest spent more time feeding and traveling and less time resting and socializing than monkeys in fragments. Bale monkeys in continuous forest also had higher movement rates (m/hr) than monkeys in fragments. Bale monkeys in continuous forest used exclusively bamboo and mixed bamboo forest habitats while conspecifics in fragments used a greater variety of habitats including human use areas (i.e., matrix). Our findings suggest that Bale monkeys in fragments use an energy minimization strategy to cope with the lower availability of the species' primary food species, bamboo (Arundinaria alpina). We contend that Bale monkeys may retain some of the ancestral ecological flexibility assumed to be characteristic of the genus Chlorocebus, within which all extant species except Bale monkeys are regarded as ecological generalists. Our results suggest that, like other bamboo eating primates (e.g., the bamboo lemurs of Madagascar), Bale monkeys can cope with a certain threshold of habitat destruction. However, the long-term conservation prospects for Bale monkeys in fragments remain unclear and will require further monitoring to be properly evaluated. © 2017 Wiley Periodicals, Inc.

  13. Global Habitat Suitability and Ecological Niche Separation in the Phylum Placozoa.

    Directory of Open Access Journals (Sweden)

    Omid Paknia

    Full Text Available The enigmatic placozoans, which hold a key position in the metazoan Tree of Life, have attracted substantial attention in many areas of biological and biomedical research. While placozoans have become an emerging model system, their ecology and particularly biogeography remain widely unknown. In this study, we use modelling approaches to explore habitat preferences, and distribution pattern of the placozoans phylum. We provide hypotheses for discrete ecological niche separation between genetic placozoan lineages, which may also help to understand biogeography patterns in other small marine invertebrates. We, here, used maximum entropy modelling to predict placozoan distribution using 20 environmental grids of 9.2 km2 resolution. In addition, we used recently developed metrics of niche overlap to compare habitat suitability models of three genetic clades. The predicted distributions range from 55°N to 44°S and are restricted to regions of intermediate to warm sea surface temperatures. High concentrations of salinity and low nutrient concentrations appear as secondary factors. Tests of niche equivalency reveal the largest differences between placozoan clades I and III. Interestingly, the genetically well-separated clades I and V appear to be ecologically very similar. Our habitat suitability models predict a wider latitudinal distribution for placozoans, than currently described, especially in the northern hemisphere. With respect to biogeography modelling, placozoans show patterns somewhere between higher metazoan taxa and marine microorganisms, with the first group usually showing complex biogeographies and the second usually showing "no biogeography."

  14. Global ecological success of Thalassoma fishes in extreme coral reef habitats

    KAUST Repository

    Fulton, Christopher J.

    2016-12-20

    Phenotypic adaptations can allow organisms to relax abiotic selection and facilitate their ecological success in challenging habitats, yet we have relatively little data for the prevalence of this phenomenon at macroecological scales. Using data on the relative abundance of coral reef wrasses and parrotfishes (f. Labridae) spread across three ocean basins and the Red Sea, we reveal the consistent global dominance of extreme wave-swept habitats by fishes in the genus Thalassoma, with abundances up to 15 times higher than any other labrid. A key locomotor modification-a winged pectoral fin that facilitates efficient underwater flight in high-flow environments-is likely to have underpinned this global success, as numerical dominance by Thalassoma was contingent upon the presence of high-intensity wave energy. The ecological success of the most abundant species also varied with species richness and the presence of congeneric competitors. While several fish taxa have independently evolved winged pectoral fins, Thalassoma appears to have combined efficient high-speed swimming (to relax abiotic selection) with trophic versatility (to maximize exploitation of rich resources) to exploit and dominate extreme coral reef habitats around the world.

  15. Global ecological success of Thalassoma fishes in extreme coral reef habitats.

    Science.gov (United States)

    Fulton, Christopher J; Wainwright, Peter C; Hoey, Andrew S; Bellwood, David R

    2017-01-01

    Phenotypic adaptations can allow organisms to relax abiotic selection and facilitate their ecological success in challenging habitats, yet we have relatively little data for the prevalence of this phenomenon at macroecological scales. Using data on the relative abundance of coral reef wrasses and parrotfishes (f. Labridae) spread across three ocean basins and the Red Sea, we reveal the consistent global dominance of extreme wave-swept habitats by fishes in the genus Thalassoma , with abundances up to 15 times higher than any other labrid. A key locomotor modification-a winged pectoral fin that facilitates efficient underwater flight in high-flow environments-is likely to have underpinned this global success, as numerical dominance by Thalassoma was contingent upon the presence of high-intensity wave energy. The ecological success of the most abundant species also varied with species richness and the presence of congeneric competitors. While several fish taxa have independently evolved winged pectoral fins, Thalassoma appears to have combined efficient high-speed swimming (to relax abiotic selection) with trophic versatility (to maximize exploitation of rich resources) to exploit and dominate extreme coral reef habitats around the world.

  16. Global ecological success of Thalassoma fishes in extreme coral reef habitats

    KAUST Repository

    Fulton, Christopher J.; Wainwright, Peter C.; Hoey, Andrew; Bellwood, David R.

    2016-01-01

    Phenotypic adaptations can allow organisms to relax abiotic selection and facilitate their ecological success in challenging habitats, yet we have relatively little data for the prevalence of this phenomenon at macroecological scales. Using data on the relative abundance of coral reef wrasses and parrotfishes (f. Labridae) spread across three ocean basins and the Red Sea, we reveal the consistent global dominance of extreme wave-swept habitats by fishes in the genus Thalassoma, with abundances up to 15 times higher than any other labrid. A key locomotor modification-a winged pectoral fin that facilitates efficient underwater flight in high-flow environments-is likely to have underpinned this global success, as numerical dominance by Thalassoma was contingent upon the presence of high-intensity wave energy. The ecological success of the most abundant species also varied with species richness and the presence of congeneric competitors. While several fish taxa have independently evolved winged pectoral fins, Thalassoma appears to have combined efficient high-speed swimming (to relax abiotic selection) with trophic versatility (to maximize exploitation of rich resources) to exploit and dominate extreme coral reef habitats around the world.

  17. Testing the Role of Habitat Isolation among Ecologically Divergent Gall Wasp Populations

    Directory of Open Access Journals (Sweden)

    Scott P. Egan

    2012-01-01

    Full Text Available Habitat isolation occurs when habitat preferences lower the probability of mating between individuals associated with differing habitats. While a potential barrier to gene flow during ecological speciation, the effect of habitat isolation on reproductive isolation has rarely been directly tested. Herein, we first estimated habitat preference for each of six populations of the gall wasp Belonocnema treatae inhabiting either Quercus virginiana or Q. geminata. We then estimated the importance of habitat isolation in generating reproductive isolation between B. treatae populations that were host specific to either Q. virginiana or Q. geminata by measuring mate preference in the presence and absence of the respective host plants. All populations exhibited host preference for their native plant, and assortative mating increased significantly in the presence of the respective host plants. This host-plant-mediated assortative mating demonstrates that habitat isolation likely plays an important role in promoting reproductive isolation among populations of this host-specific gall former.

  18. Habitat suitability and ecological niches of different plankton functional types in the global ocean

    Science.gov (United States)

    Vogt, Meike; Brun, Philipp; Payne, Mark R.; O'Brien, Colleen J.; Bednaršek, Nina; Buitenhuis, Erik T.; Doney, Scott C.; Leblanc, Karine; Le Quéré, Corinne; Luo, Yawei; Moriarty, Róisín; O'Brien, Todd D.; Schiebel, Ralf; Swan, Chantal

    2013-04-01

    Marine plankton play a central role in the biogeochemical cycling of important elements such as carbon, nitrogen, and sulphur. While our knowledge about marine ecosystem structure and functioning is still scarce and episodic, several recent observational studies confirm that marine ecosystems have been changing due to recent climate change, overfishing, and coastal eutrophication. In order to better understand marine ecosystem dynamics, the MAREDAT initiative has recently collected abundance and biomass data for 5 autotrophic (diatoms, Phaeocystis, coccolithophores, nitrogen fixers, picophytoplankton), and 6 heterotrophic plankton functional types (PFTs; bacteria, micro-, meso- and macrozooplankton, foraminifera and pteropods). Species distribution models (SDMs) are statistical tools that can be used to derive information about species habitats in space and time. They have been used extensively for a wide range of ecological applications in terrestrial ecosystems, but here we present the first global application in the marine realm, which was made possible by the MAREDAT data synthesis effort. We use a maximum entropy SDM to simulate global habitat suitability, habitat extent and ecological niches for different PFTs in the modern ocean. Present habitat suitability is derived from presence-only MAREDAT data and the observed annual and monthly mean levels of physiologically relevant variables such as SST, nutrient concentration or photosynthetic active radiation received in the mixed layer. This information can then be used to derive ecological niches for different species or taxa within each PFT, and to compare the ecological niches of different PFTs. While these results still need verification because data was not available for all ocean regions for all PFTs, they can give a first indication what present and future plankton habitats may look like, and what consequences we may have to expect for future marine ecosystem functioning and service provision in a warmer

  19. River habitat assessment for ecological restoration of Wei River Basin, China.

    Science.gov (United States)

    Yang, Tao; Wang, Shuo; Li, Xiaoping; Wu, Ting; Li, Li; Chen, Jia

    2018-04-11

    As an important composition component of river ecosystems, river habitats must undergo quality assessment to potentially provide scientific basis for river ecological restoration. Substrate composition, habitat complexity, bank erosion degree, river meandering degree, human activity intensity, vegetation buffer width, water quality, and water condition were determined as indicators for river habitat assessment. The comprehensive habitat quality index (CHQI) was established for the Wei River Basin. In addition, the indicator values were determined on the basis of a field investigation at 12 national hydrological stations distributed across the Wei, Jing, and Beiluo Rivers. The analytic hierarchy process was used to determine the indicator weights and thus distinguish the relative importance of the assessment indicator system. Results indicated that the average CHQIs for the Wei, Jing, and Beiluo Rivers were 0.417, 0.508, and 0.304, respectively. The river habitat quality for the three rivers was well. As for the whole river basin, the river habitat quality for 25% of the cross section was very well, the other 25% was well, and the 50% remaining was in critical state. The river habitat quality of the Jing River was better than that of the Wei and Beiluo Rivers.

  20. Definition of sampling units begets conclusions in ecology: the case of habitats for plant communities

    Directory of Open Access Journals (Sweden)

    Martin A. Mörsdorf

    2015-03-01

    Full Text Available In ecology, expert knowledge on habitat characteristics is often used to define sampling units such as study sites. Ecologists are especially prone to such approaches when prior sampling frames are not accessible. Here we ask to what extent can different approaches to the definition of sampling units influence the conclusions that are drawn from an ecological study? We do this by comparing a formal versus a subjective definition of sampling units within a study design which is based on well-articulated objectives and proper methodology. Both approaches are applied to tundra plant communities in mesic and snowbed habitats. For the formal approach, sampling units were first defined for each habitat in concave terrain of suitable slope using GIS. In the field, these units were only accepted as the targeted habitats if additional criteria for vegetation cover were fulfilled. For the subjective approach, sampling units were defined visually in the field, based on typical plant communities of mesic and snowbed habitats. For each approach, we collected information about plant community characteristics within a total of 11 mesic and seven snowbed units distributed between two herding districts of contrasting reindeer density. Results from the two approaches differed significantly in several plant community characteristics in both mesic and snowbed habitats. Furthermore, differences between the two approaches were not consistent because their magnitude and direction differed both between the two habitats and the two reindeer herding districts. Consequently, we could draw different conclusions on how plant diversity and relative abundance of functional groups are differentiated between the two habitats depending on the approach used. We therefore challenge ecologists to formalize the expert knowledge applied to define sampling units through a set of well-articulated rules, rather than applying it subjectively. We see this as instrumental for progress in

  1. Definition of sampling units begets conclusions in ecology: the case of habitats for plant communities.

    Science.gov (United States)

    Mörsdorf, Martin A; Ravolainen, Virve T; Støvern, Leif Einar; Yoccoz, Nigel G; Jónsdóttir, Ingibjörg Svala; Bråthen, Kari Anne

    2015-01-01

    In ecology, expert knowledge on habitat characteristics is often used to define sampling units such as study sites. Ecologists are especially prone to such approaches when prior sampling frames are not accessible. Here we ask to what extent can different approaches to the definition of sampling units influence the conclusions that are drawn from an ecological study? We do this by comparing a formal versus a subjective definition of sampling units within a study design which is based on well-articulated objectives and proper methodology. Both approaches are applied to tundra plant communities in mesic and snowbed habitats. For the formal approach, sampling units were first defined for each habitat in concave terrain of suitable slope using GIS. In the field, these units were only accepted as the targeted habitats if additional criteria for vegetation cover were fulfilled. For the subjective approach, sampling units were defined visually in the field, based on typical plant communities of mesic and snowbed habitats. For each approach, we collected information about plant community characteristics within a total of 11 mesic and seven snowbed units distributed between two herding districts of contrasting reindeer density. Results from the two approaches differed significantly in several plant community characteristics in both mesic and snowbed habitats. Furthermore, differences between the two approaches were not consistent because their magnitude and direction differed both between the two habitats and the two reindeer herding districts. Consequently, we could draw different conclusions on how plant diversity and relative abundance of functional groups are differentiated between the two habitats depending on the approach used. We therefore challenge ecologists to formalize the expert knowledge applied to define sampling units through a set of well-articulated rules, rather than applying it subjectively. We see this as instrumental for progress in ecology as only rules

  2. Habitat characterization of the Tortugas Ecological Reserve south using photographic and quadrat methods

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We supply habitat characterization data along a single randomly oriented transect at each of 16 sampling stations in the Tortugas South Ecological Reserve. This...

  3. Habitat characterization of the Tortugas Ecological Reserve south using photographic and quadrat methods.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We supply habitat characterization data along a single randomly oriented transect at each of 16 sampling stations in the Tortugas South Ecological Reserve. This...

  4. Using body mass dynamics to examine long-term habitat shifts of arctic-molting geese: Evidence for ecological change

    Science.gov (United States)

    Lewis, Tyler L.; Flint, Paul L.; Derksen, Dirk V.; Schmutz, Joel A.; Taylor, Eric J.; Bollinger, Karen S.

    2011-01-01

    From 1976 onward, molting brant geese (Branta bernicla) within the Teshekpuk Lake Special Area, Alaska, shifted from inland, freshwater lakes toward coastal wetlands. Two hypotheses explained this redistribution: (1) ecological change: redistribution of molting brant reflects improvements in coastal foraging habitats, which have undergone a succession toward salt-tolerant plants due to increased coastal erosion and saltwater intrusion as induced by climate change or (2) interspecific competition: greater white-fronted geese (Anser albifrons) populations increased 12-fold at inland lakes, limiting food availability and forcing brant into coastal habitats. Both hypotheses presume that brant redistributions were driven by food availability; thus, body mass dynamics may provide insight into the relevance of these hypotheses. We compared body mass dynamics of molting brant across decades (1978, 1987–1992, 2005–2007) and, during 2005–2007, across habitats (coastal vs. inland). Brant lost body mass during molt in all three decades. At inland habitats, rates of mass loss progressively decreased by decade despite the increased number of greater white-fronted geese. These results do not support an interspecific competition hypothesis, instead suggesting that ecological change enhanced foraging habitats for brant. During 2005–2007, rates of mass loss did not vary by habitat. Thus, while habitats have improved from earlier decades, our results cannot distinguish between ecological changes at inland versus coastal habitats. However, we speculate that coastal forage quality has improved beyond that of inland habitats and that the body mass benefits of these higher quality foods are offset by the disproportionate number of brant now molting coastally.

  5. The ecological and evolutionary consequences of noise-induced acoustic habitat loss

    Science.gov (United States)

    Tennessen, Jennifer Beissinger

    Anthropogenic threats are facilitating rapid environmental change and exerting novel pressures on the integrity of ecological patterns and processes. Currently, habitat loss is the leading factor contributing to global biodiversity loss. Noise created by human activities is nearly ubiquitous in terrestrial and marine systems, and causes acoustic habitat loss by interfering with species' abilities to freely send and receive critical acoustic biological information. My dissertation investigates how novel sounds from human activities affect ecological and evolutionary processes in space and time in marine and terrestrial systems, and how species may cope with this emerging novel pressure. Using species from both marine and terrestrial systems, I present results from a theoretical investigation, and four acoustic playback experiments combining laboratory studies and field trials, that reveal a range of eco-evolutionary consequences of noiseinduced acoustic habitat loss. First, I use sound propagation modeling to assess how marine shipping noise reduces communication space between mother-calf pairs of North Atlantic right whales (Eubalaena glacialis ), an important unit of an endangered species. I show that shipping noise poses significant challenges for mother-calf pairs, but that vocal compensation strategies can substantially improve communication space. Next, in a series of acoustic playback experiments I show that road traffic noise impairs breeding migration behavior and physiology of wood frogs (Lithobates sylvaticus ). This work reveals the first evidence that traffic noise elicits a physiological stress response and suppresses production of antimicrobial peptides (a component of the innate immune response) in anurans. Further, wood frogs from populations with a history of inhabiting noisy sites mounted reduced physiological stress responses to continuous traffic noise exposure. This research using wood frogs suggests that chronic traffic noise exposure has

  6. Central-place foraging and ecological effects of an invasive predator across multiple habitats.

    Science.gov (United States)

    Benkwitt, Cassandra E

    2016-10-01

    Cross-habitat foraging movements of predators can have widespread implications for predator and prey populations, community structure, nutrient transfer, and ecosystem function. Although central-place foraging models and other aspects of optimal foraging theory focus on individual predator behavior, they also provide useful frameworks for understanding the effects of predators on prey populations across multiple habitats. However, few studies have examined both the foraging behavior and ecological effects of nonnative predators across multiple habitats, and none has tested whether nonnative predators deplete prey in a manner predicted by these foraging models. I conducted behavioral observations of invasive lionfish (Pterois volitans) to determine whether they exhibit foraging movements similar to other central-place consumers. Then, I used a manipulative field experiment to test whether their effects on prey populations are consistent with three qualitative predictions from optimal foraging models. Specifically, I predicted that the effects of invasive lionfish on native prey will (1) occur at central sites first and then in surrounding habitats, (2) decrease with increasing distance away from their shelter site, and (3) extend to greater distances when prey patches are spaced closer together. Approximately 40% of lionfish exhibited short-term crepuscular foraging movements into surrounding habitats from the coral patch reefs where they shelter during daylight hours. Over the course of 7 weeks, lionfish depleted native fish populations on the coral patch reefs where they reside, and subsequently on small structures in the surrounding habitat. However, their effects did not decrease with increasing distance from the central shelter site and the influence of patch spacing was opposite the prediction. Instead, lionfish always had the greatest effects in areas with the highest prey densities. The differences between the predicted and observed effects of lionfish

  7. Ecological value of submerged breakwaters for habitat enhancement on a residential scale.

    Science.gov (United States)

    Scyphers, Steven B; Powers, Sean P; Heck, Kenneth L

    2015-02-01

    Estuarine shorelines have been degraded since humans arrived in the coastal zone. In recent history, a major cause of habitat degradation has been the armoring of shorelines with vertical walls to protect property from erosive wave energy; however, a lack of practical alternatives that maintain or enhance ecological function has limited the options of waterfront residents and coastal zone managers. We experimentally investigated the habitat value of two configurations of submerged breakwaters constructed along an eroding shoreline in northwest Mobile Bay, AL (USA). Breakwaters comprised of bagged oyster shell or Reef Ball™ concrete domes were built by a community-based restoration effort. Post-deployment monitoring found that: bagged oyster breakwaters supported much higher densities of live ribbed mussels than Reef Ball breakwaters; both breakwater configurations supported increased species richness of juvenile and smaller fishes compared to controls; and that larger fishes did not appear to be affected by breakwater presence. Our study demonstrates that ecologically degraded shorelines can be augmented with small-scale breakwaters at reasonable cost and that these complex structures can serve as habitat for filter-feeding bivalves, mobile invertebrates, and young fishes. Understanding the degree to which these structures mitigate erosive wave energy and protect uplands will require a longer time frame than our 2-year-long study.

  8. Biodiversity and Habitat Markets—Policy, Economic, and Ecological implications of Market-Based Conservation

    Science.gov (United States)

    Pindilli, Emily J.; Casey, Frank

    2015-10-26

    This report is a primer on market-like and market-based mechanisms designed to conserve biodiversity and habitat. The types of markets and market-based approaches that were implemented or are emerging to benefit biodiversity and habitat in the United States are examined. The central approaches considered in this report include payments for ecosystem services, conservation banks, habitat exchanges, and eco-labels. Based on literature reviews and input from experts and practitioners, the report characterizes each market-based approach including policy context and structure; the theoretical basis for applying market-based approaches; the ecological effectiveness of practices and tools for measuring performance; and the future outlook for biodiversity and habitat markets. This report draws from previous research and serves as a summary of pertinent information associated with biodiversity and habitat markets while providing references to materials that go into greater detail on specific topics.

  9. Habitat selection by female northern pintails wintering in the Grassland Ecological Area, California

    Science.gov (United States)

    Fleskes, Joseph P.; Gilmer, David S.; Jarvis, Robert L.

    2004-01-01

    To determine relative importance of habitats available in the Grassland Ecological Area (GEA) to wintering female northern pintails, Anas acuta, we studied habitat use relative to availability (i.e., habitat selection) in the GEA during September through March, 1991-94 for 196 Hatch-Year (HY) and 221 After-Hatch-Year (AHY) female pintails that were radio tagged during August-early October in the GEA (n = 239), other San Joaquin Valley areas (n = 132), or other Central Valley areas (n = 46). Habitat availability and use varied among seasons and years, but pintails always selected shallow and, except on hunting days, open habitats. Swamp timothy, Heleochloa schoenoides, marsh was the most available, used, and selected habitat. Watergrass, Echinochloa crusgalli, marsh in the GEA was used less than available at night in contrast to previous studies in other SJV areas. Preferred late-winter habitats were apparently lacking in the GEA, at least relative to in the Sacramento Valley and Delta where most pintails moved to in December each year. Impacts on pintails of the increasing practice of managing marshes for increased emergent vegetation to attract other species should be monitored. Shallow, open habitats that produce seeds and invertebrates available to pintails in late winter would help maintain pintail abundance in the GEA.

  10. The population ecology of despotism. Concessions and migration between central and peripheral habitats.

    Science.gov (United States)

    Bell, Adrian Viliami; Winterhalder, Bruce

    2014-03-01

    Since despotism is a common evolutionary development in human history, we seek to understand the conditions under which it can originate, persist, and affect population trajectories. We describe a general system of population ecology equations representing the Ideal Free and Despotic Distributions for one and two habitats, one of which contains a despotic class that controls the distribution of resources. Using analytical and numerical solutions we derive the optimal concession strategy by despots with and without subordinate migration to an alternative habitat. We show that low concessions exponentially increase the time it takes for the despotic habitat to fill, and we discuss the trade-offs despots and subordinates confront at various levels of exploitation. Contrary to previous hypotheses, higher levels of despotism do not necessarily cause faster migration to alternative habitats. We further show how, during colonization, divergent population trajectories may arise if despotic systems experience Allee-type economies of scale.

  11. Ecological periodic tables for nekton and benthic macrofaunal community usage of estuarine habitats Slides

    Science.gov (United States)

    Ecological periodic tables for nekton and benthic macrofaunal community usage of estuarine habitats Steven P. Ferraro, U.S. Environmental Protection Agency, Newport, OR Background/Questions/Methods The chemical periodic table, the Linnaean system of classification, and the Her...

  12. Anthropogenic habitat disturbance and ecological divergence between incipient species of the malaria mosquito Anopheles gambiae.

    Science.gov (United States)

    Kamdem, Colince; Tene Fossog, Billy; Simard, Frédéric; Etouna, Joachim; Ndo, Cyrille; Kengne, Pierre; Boussès, Philippe; Etoa, François-Xavier; Awono-Ambene, Parfait; Fontenille, Didier; Antonio-Nkondjio, Christophe; Besansky, Nora J; Costantini, Carlo

    2012-01-01

    Anthropogenic habitat disturbance is a prime cause in the current trend of the Earth's reduction in biodiversity. Here we show that the human footprint on the Central African rainforest, which is resulting in deforestation and growth of densely populated urban agglomerates, is associated to ecological divergence and cryptic speciation leading to adaptive radiation within the major malaria mosquito Anopheles gambiae. In southern Cameroon, the frequency of two molecular forms--M and S--among which reproductive isolation is strong but still incomplete, was correlated to an index of urbanisation extracted from remotely sensed data, expressed as the proportion of built-up surface in each sampling unit. The two forms markedly segregated along an urbanisation gradient forming a bimodal cline of ∼6-km width: the S form was exclusive to the rural habitat, whereas only the M form was present in the core of densely urbanised settings, co-occurring at times in the same polluted larval habitats of the southern house mosquito Culex quinquefasciatus--a species association that was not historically recorded before. Our results indicate that when humans create novel habitats and ecological heterogeneities, they can provide evolutionary opportunities for rapid adaptive niche shifts associated with lineage divergence, whose consequences upon malaria transmission might be significant.

  13. A modern landscape ecology of Black-tailed Godwits: habitat selection in southwest Friesland, The Netherlands

    OpenAIRE

    Groen, N.M.; Kentie, R.; de Goeij, P.; Verheijen, B.; Hooijmeijer, J.C.E.W.; Piersma, T.

    2012-01-01

    For a long time, agricultural areas had considerable ornithological value, an ecological richness which in The Netherlands was epitomised by the term 'meadow birds'. However, over the last half century, agricultural intensification has negatively affected the quality of meadow bird habitats. Here we provide a quantitative characterization of agricultural habitats and their use by Black-tailed Godwits Limosa I. limosa in the south-western part of the province of Friesland, The Netherlands, in ...

  14. Diversity and ecological structure of vibrios in benthic and pelagic habitats along a latitudinal gradient in the Southwest Atlantic Ocean.

    Science.gov (United States)

    Chimetto Tonon, Luciane A; Silva, Bruno Sergio de O; Moreira, Ana Paula B; Valle, Cecilia; Alves, Nelson; Cavalcanti, Giselle; Garcia, Gizele; Lopes, Rubens M; Francini-Filho, Ronaldo B; de Moura, Rodrigo L; Thompson, Cristiane C; Thompson, Fabiano L

    2015-01-01

    We analyzed the diversity and population structure of the 775 Vibrio isolates from different locations of the southwestern Atlantic Ocean (SAO), including St. Peter and St. Paul Archipelago (SPSPA), Abrolhos Bank (AB) and the St. Sebastian region (SS), between 2005 and 2010. In this study, 195 novel isolates, obtained from seawater and major benthic organisms (rhodoliths and corals), were compared with a collection of 580 isolates previously characterized (available at www.taxvibrio.lncc.br). The isolates were distributed in 8 major habitat spectra according to AdaptML analysis on the basis of pyrH phylogenetic reconstruction and ecological information, such as isolation source (i.e., corals: Madracis decactis, Mussismilia braziliensis, M. hispida, Phyllogorgia dilatata, Scolymia wellsi; zoanthids: Palythoa caribaeorum, P. variabilis and Zoanthus solanderi; fireworm: Hermodice carunculata; rhodolith; water and sediment) and sampling site regions (SPSPA, AB and SS). Ecologically distinct groups were discerned through AdaptML, which finds phylogenetic groups that are significantly different in their spectra of habitat preferences. Some habitat spectra suggested ecological specialization, with habitat spectra 2, 3, and 4 corresponding to specialization on SPSPA, AB, and SS, respectively. This match between habitat and location may reflect a minor exchange of Vibrio populations between geographically isolated benthic systems. Moreover, we found several widespread Vibrio species predominantly from water column, and different populations of a single Vibrio species from H. carunculata in ecologically distinct groups (H-1 and H-8 respectively). On the other hand, AdaptML detected phylogenetic groups that are found in both the benthos and in open water. The ecological grouping observed suggests dispersal and connectivity between the benthic and pelagic systems in AB. This study is a first attempt to characterize the biogeographic distribution of vibrios in both seawater and

  15. Genomics meets applied ecology: Characterizing habitat quality for sloths in a tropical agroecosystem.

    Science.gov (United States)

    Fountain, Emily D; Kang, Jung Koo; Tempel, Douglas J; Palsbøll, Per J; Pauli, Jonathan N; Zachariah Peery, M

    2018-01-01

    Understanding how habitat quality in heterogeneous landscapes governs the distribution and fitness of individuals is a fundamental aspect of ecology. While mean individual fitness is generally considered a key to assessing habitat quality, a comprehensive understanding of habitat quality in heterogeneous landscapes requires estimates of dispersal rates among habitat types. The increasing accessibility of genomic approaches, combined with field-based demographic methods, provides novel opportunities for incorporating dispersal estimation into assessments of habitat quality. In this study, we integrated genomic kinship approaches with field-based estimates of fitness components and approximate Bayesian computation (ABC) procedures to estimate habitat-specific dispersal rates and characterize habitat quality in two-toed sloths (Choloepus hoffmanni) occurring in a Costa Rican agricultural ecosystem. Field-based observations indicated that birth and survival rates were similar in a sparsely shaded cacao farm and adjacent cattle pasture-forest mosaic. Sloth density was threefold higher in pasture compared with cacao, whereas home range size and overlap were greater in cacao compared with pasture. Dispersal rates were similar between the two habitats, as estimated using ABC procedures applied to the spatial distribution of pairs of related individuals identified using 3,431 single nucleotide polymorphism and 11 microsatellite locus genotypes. Our results indicate that crops produced under a sparse overstorey can, in some cases, constitute lower-quality habitat than pasture-forest mosaics for sloths, perhaps because of differences in food resources or predator communities. Finally, our study demonstrates that integrating field-based demographic approaches with genomic methods can provide a powerful means for characterizing habitat quality for animal populations occurring in heterogeneous landscapes. © 2017 John Wiley & Sons Ltd.

  16. Bacteria dialog with Santa Rosalia: Are aggregations of cosmopolitan bacteria mainly explained by habitat filtering or by ecological interactions?

    Science.gov (United States)

    Pascual-García, Alberto; Tamames, Javier; Bastolla, Ugo

    2014-12-04

    Since the landmark Santa Rosalia paper by Hutchinson, niche theory addresses the determinants of biodiversity in terms of both environmental and biological aspects. Disentangling the role of habitat filtering and interactions with other species is critical for understanding microbial ecology. Macroscopic biogeography explores hypothetical ecological interactions through the analysis of species associations. These methods have started to be incorporated into microbial ecology relatively recently, due to the inherent experimental difficulties and the coarse grained nature of the data. Here we investigate the influence of environmental preferences and ecological interactions in the tendency of bacterial taxa to either aggregate or segregate, using a comprehensive dataset of bacterial taxa observed in a wide variety of environments. We assess significance of taxa associations through a null model that takes into account habitat preferences and the global distribution of taxa across samples. The analysis of these associations reveals a surprisingly large number of significant aggregations between taxa, with a marked community structure and a strong propensity to aggregate for cosmopolitan taxa. Due to the coarse grained nature of our data we cannot conclusively reject the hypothesis that many of these aggregations are due to environmental preferences that the null model fails to reproduce. Nevertheless, some observations are better explained by ecological interactions than by habitat filtering. In particular, most pairs of aggregating taxa co-occur in very different environments, which makes it unlikely that these associations are due to habitat preferences, and many are formed by cosmopolitan taxa without well defined habitat preferences. Moreover, known cooperative interactions are retrieved as aggregating pairs of taxa. As observed in similar studies, we also found that phylogenetically related taxa are much more prone to aggregate than to segregate, an observation

  17. 1988 Seagrass and Mangrove Habitats of the Salt River Bay National Historical Park and Ecological Preserve

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Habitat maps were created as part of a larger ecological assessment conducted by NOAA's National Ocean Service (NOS), Biogeography Branch, for Salt River Bay...

  18. 1992 Seagrass and Mangrove Habitats of the Salt River Bay National Historical Park and Ecological Preserve

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Habitat maps were created as part of a larger ecological assessment conducted by NOAA's National Ocean Service (NOS), Biogeography Branch, for Salt River Bay...

  19. 2000 Seagrass and Mangrove Habitats of the Salt River Bay National Historical Park and Ecological Preserve

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Habitat maps were created as part of a larger ecological assessment conducted by NOAA's National Ocean Service (NOS), Biogeography Branch, for Salt River Bay...

  20. Benthic Habitat-Based Framework for Ecological Production Functions: Case Study for Utilization by Estuarine Birds in a Northeast Pacific Estuary

    Science.gov (United States)

    Habitat-based frameworks have been proposed for developing Ecological Production Functions (EPFs) to describe the spatial distribution of ecosystem services. As proof of concept, we generated EPFs that compared bird use patterns among intertidal benthic habitats for Yaquina estu...

  1. Definition of sampling units begets conclusions in ecology: the case of habitats for plant communities

    OpenAIRE

    M?rsdorf, Martin A.; Ravolainen, Virve T.; St?vern, Leif Einar; Yoccoz, Nigel G.; J?nsd?ttir, Ingibj?rg Svala; Br?then, Kari Anne

    2015-01-01

    In ecology, expert knowledge on habitat characteristics is often used to define sampling units such as study sites. Ecologists are especially prone to such approaches when prior sampling frames are not accessible. Here we ask to what extent can different approaches to the definition of sampling units influence the conclusions that are drawn from an ecological study? We do this by comparing a formal versus a subjective definition of sampling units within a study design which is ...

  2. A modern landscape ecology of Black-tailed Godwits : Habitat selection in southwest Friesland, The Netherlands

    NARCIS (Netherlands)

    Groen, Niko M.; Kentie, Rosemarie; de Goeij, Petra; Verheijen, Bram; Piersma, Theunis; Hooijmeijer, Jos C.E.W.

    2012-01-01

    For a long time, agricultural areas had considerable ornithological value, an ecological richness which in The Netherlands was epitomised by the term 'meadow birds'. However, over the last half century, agricultural intensification has negatively affected the quality of meadow bird habitats. Here we

  3. A modern landscape ecology of Black-tailed Godwits: habitat selection in southwest Friesland, The Netherlands

    NARCIS (Netherlands)

    Groen, N.M.; Kentie, R.; de Goeij, P.; Verheijen, B.; Hooijmeijer, J.C.E.W.; Piersma, T.

    2012-01-01

    For a long time, agricultural areas had considerable ornithological value, an ecological richness which in The Netherlands was epitomised by the term 'meadow birds'. However, over the last half century, agricultural intensification has negatively affected the quality of meadow bird habitats. Here we

  4. Modeling of Iranian Cheetah Habitat using Ecological Niche Factor Analysis (Case Study: Dare Anjir Wildlife Refuge

    Directory of Open Access Journals (Sweden)

    N. Zamani

    2016-03-01

    Full Text Available Evaluation of habitat sustainability indexes is essential in wildlife management and conservation of rare species. Suitable habitats are required in wildlife managements and conservation also, they increase reproduction and survival rate of species. In this study in order to mapping habitat sustainability and recognizing habitat requirements of Iranian Cheetah (Acinonyx jubatus venaticus, field data from Dare Anjir  wildlife refuge were collected since autumn 2009 until summer 2011. Ecological Niche Factor Analysis approach has been used to develop habitat suitability model. In this method primary maps of  habitat variables including elevation, slope, aspect, vegetation cover, distance from water sources and environmental monitoring stations have been produced by Idrisi and Biomapper software and imported in Biomapper. The output scores obtained from the analysis showed that Iranian cheetah tends to mountain areas where has more topographical features for camouflage in order to hunting, and northern aspects which have more humidity, denser vegetation cover and more preys . Our result showed that the Iranian cheetah has medium niche width and prefer marginal habitats.

  5. Diversity and ecological structure of vibrios in benthic and pelagic habitats along a latitudinal gradient in the Southwest Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Luciane A. Chimetto Tonon

    2015-02-01

    Full Text Available We analyzed the diversity and population structure of the 775 Vibrio isolates from different locations of the southwestern Atlantic Ocean (SAO, including St. Peter and St. Paul Archipelago (SPSPA, Abrolhos Bank (AB and the St. Sebastian region (SS, between 2005 and 2010. In this study, 195 novel isolates, obtained from seawater and major benthic organisms (rhodoliths and corals, were compared with a collection of 580 isolates previously characterized (available at www.taxvibrio.lncc.br. The isolates were distributed in 8 major habitat spectra according to AdaptML analysis on the basis of pyrH phylogenetic reconstruction and ecological information, such as isolation source (i.e., corals: Madracis decactis, Mussismilia braziliensis, M. hispida, Phyllogorgia dilatata, Scolymia wellsi; zoanthids: Palythoa caribaeorum, P. variabilis and Zoanthus solanderi; fireworm: Hermodice carunculata; rhodolith; water and sediment and sampling site regions (SPSPA, AB and SS. Ecologically distinct groups were discerned through AdaptML, which finds phylogenetic groups that are significantly different in their spectra of habitat preferences. Some habitat spectra suggested ecological specialization, with habitat spectra 2, 3, and 4 corresponding to specialization on SPSPA, AB, and SS, respectively. This match between habitat and location may reflect a minor exchange of Vibrio populations between geographically isolated benthic systems. Moreover, we found several widespread Vibrio species predominantly from water column, and different populations of a single Vibrio species from H. carunculata in ecologically distinct groups (H-1 and H-8 respectively. On the other hand, AdaptML detected phylogenetic groups that are found in both the benthos and in open water. The ecological grouping observed suggests dispersal and connectivity between the benthic and pelagic systems in AB. This study is a first attempt to characterize the biogeographic distribution of vibrios in both

  6. Ecology and sampling techniques of an understudied subterranean habitat: the Milieu Souterrain Superficiel (MSS).

    Science.gov (United States)

    Mammola, Stefano; Giachino, Pier Mauro; Piano, Elena; Jones, Alexandra; Barberis, Marcel; Badino, Giovanni; Isaia, Marco

    2016-12-01

    The term Milieu Souterrain Superficiel (MSS) has been used since the early 1980s in subterranean biology to categorize an array of different hypogean habitats. In general terms, a MSS habitat represents the underground network of empty air-filled voids and cracks developing within multiple layers of rock fragments. Its origins can be diverse and is generally covered by topsoil. The MSS habitat is often connected both with the deep hypogean domain-caves and deep rock cracks-and the superficial soil horizon. A MSS is usually characterized by peculiar microclimatic conditions, and it can harbor specialized hypogean, endogean, and surface-dwelling species. In light of the many interpretations given by different authors, we reviewed 235 papers regarding the MSS in order to provide a state-of-the-art description of these habitats and facilitate their study. We have briefly described the different types of MSS mentioned in the scientific literature (alluvial, bedrock, colluvial, volcanic, and other types) and synthesized the advances in the study of the physical and ecological factors affecting this habitat-i.e., microclimate, energy flows, animal communities, and trophic interactions. We finally described and reviewed the available sampling methods used to investigate MSS fauna.

  7. 1970's Seagrass and Mangrove Habitats of the Salt River Bay National Historical Park and Ecological Preserve

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Habitat maps were created as part of a larger ecological assessment conducted by NOAA's National Ocean Service (NOS), Biogeography Branch, for Salt River Bay...

  8. Ecological opportunities, habitat, and past climatic fluctuations influenced the diversification of modern turtles.

    Science.gov (United States)

    Rodrigues, João Fabrício Mota; Diniz-Filho, José Alexandre Felizola

    2016-08-01

    Habitat may be viewed as an important life history component potentially related to diversification patterns. However, differences in diversification rates between aquatic and terrestrial realms are still poorly explored. Testudines is a group distributed worldwide that lives in aquatic and terrestrial environments, but until now no-one has evaluated the diversification history of the group as a whole. We aim here to investigate the diversification history of turtles and to test if habitat influenced speciation rate in these animals. We reconstructed the phylogeny of the modern species of chelonians and estimated node divergence dates using molecular markers and a Bayesian approach. Then, we used Bayesian Analyses of Macroevolutionary Mixtures to evaluate the diversification history of turtles and evaluate the effect of habitat on this pattern. Our reconstructed phylogeny covered 300 species (87% of the total diversity of the group). We found that the emydid subfamily Deirochelyinae, which forms the turtle hotspot in south-eastern United States, had an increase in its speciation rate, and that Galapagos tortoises had similar increases. Current speciation rates are lower in terrestrial turtles, contradicting studies supporting the idea terrestrial animals diversify more than aquatic species. Our results suggest that habitat, ecological opportunities, island invasions, and climatic factors are important drivers of diversification in modern turtles and reinforce the importance of habitat as a diversification driver. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Deepwater Program: Lophelia II, continuing ecological research on deep-sea corals and deep-reef habitats in the Gulf of Mexico

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Ross, Steve W.; Kellogg, Christina A.; Morrison, Cheryl L.; Nizinski, Martha S.; Prouty, Nancy G.; Bourque, Jill R.; Galkiewicz, Julie P.; Gray, Michael A.; Springmann, Marcus J.; Coykendall, D. Katharine; Miller, Andrew; Rhode, Mike; Quattrini, Andrea; Ames, Cheryl L.; Brooke, Sandra D.; McClain Counts, Jennifer; Roark, E. Brendan; Buster, Noreen A.; Phillips, Ryan M.; Frometa, Janessy

    2017-12-11

    The deep sea is a rich environment composed of diverse habitat types. While deep-sea coral habitats have been discovered within each ocean basin, knowledge about the ecology of these habitats and associated inhabitants continues to grow. This report presents information and results from the Lophelia II project that examined deep-sea coral habitats in the Gulf of Mexico. The Lophelia II project focused on Lophelia pertusa habitats along the continental slope, at depths ranging from 300 to 1,000 meters. The chapters are authored by several scientists from the U.S. Geological Survey, National Oceanic and Atmospheric Administration, University of North Carolina Wilmington, and Florida State University who examined the community ecology (from microbes to fishes), deep-sea coral age, growth, and reproduction, and population connectivity of deep-sea corals and inhabitants. Data from these studies are presented in the chapters and appendixes of the report as well as in journal publications. This study was conducted by the Ecosystems Mission Area of the U.S. Geological Survey to meet information needs identified by the Bureau of Ocean Energy Management.

  10. Dung beetle community and functions along a habitat-disturbance gradient in the Amazon: a rapid assessment of ecological functions associated to biodiversity.

    Directory of Open Access Journals (Sweden)

    Rodrigo F Braga

    Full Text Available Although there is increasing interest in the effects of habitat disturbance on community attributes and the potential consequences for ecosystem functioning, objective approaches linking biodiversity loss to functional loss are uncommon. The objectives of this study were to implement simultaneous assessment of community attributes (richness, abundance and biomass, each calculated for total-beetle assemblages as well as small- and large-beetle assemblages and three ecological functions of dung beetles (dung removal, soil perturbation and secondary seed dispersal, to compare the effects of habitat disturbance on both sets of response variables, and their relations. We studied dung beetle community attributes and functions in five land-use systems representing a disturbance gradient in the Brazilian Amazon: primary forest, secondary forest, agroforestry, agriculture and pasture. All response variables were affected negatively by the intensification of habitat disturbance regimes, but community attributes and ecological functions did not follow the same pattern of decline. A hierarchical partitioning analysis showed that, although all community attributes had a significant effect on the three ecological functions (except the abundance of small beetles on all three ecological functions and the biomass of small beetles on secondary dispersal of large seed mimics, species richness and abundance of large beetles were the community attributes with the highest explanatory value. Our results show the importance of measuring ecological function empirically instead of deducing it from community metrics.

  11. On a dhole trail: examining ecological and anthropogenic correlates of dhole habitat occupancy in the Western ghats of India.

    Directory of Open Access Journals (Sweden)

    Arjun Srivathsa

    Full Text Available Although they play a critical role in shaping ecological communities, many threatened predator species are data-deficient. The Dhole Cuon alpinus is one such rare canid with a global population thought to be <2500 wild individuals. We assessed habitat occupancy patterns of dholes in the Western Ghats of Karnataka, India, to understand ecological and anthropogenic determinants of their distribution and habitat-use. We conducted spatially replicated detection/non-detection surveys of dhole signs along forest trails at two appropriate scales: the entire landscape and a single wildlife reserve. Landscape-scale habitat occupancy was assessed across 38,728 km(2 surveying 206 grid cells of 188-km(2 each. Finer scale habitat-use within 935 km2 Bandipur Reserve was studied surveying 92 grid cells of 13-km(2 km each. We analyzed the resulting data of dhole signs using likelihood-based habitat occupancy models. The models explicitly addressed the problematic issue of imperfect detection of dhole signs during field surveys as well as potential spatial auto-correlation between sign detections made on adjacent trail segments. We show that traditional 'presence versus absence' analyses underestimated dhole habitat occupancy by 60% or 8682 km2 [naïve = 0.27; ψL(SE  = 0.68 (0.08] in the landscape. Addressing imperfect sign detections by estimating detection probabilities [p(t(L (SE = 0.12 (0.11] was critical for reliable estimation. Similar underestimation occurred while estimating habitat-use probability at reserve-scale [naïve = 0.39; Ψs(SE = 0.71 (0.06]. At landscape scale, relative abundance of principal ungulate prey primarily influenced dhole habitat occupancy. Habitat-use within a reserve, however, was predominantly and negatively influenced by anthropogenic disturbance. Our results are the first rigorous assessment of dhole occupancy at multiple spatial scales with potential conservation value. The approach used in this study has potential

  12. 2000 Seagrass and Mangrove Habitats of the Salt River Bay National Historical Park and Ecological Preserve, St. Croix, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Habitat maps were created as part of a larger ecological assessment conducted by NOAA's National Ocean Service (NOS), Biogeography Program, for Salt River Bay...

  13. 1992 Seagrass and Mangrove Habitats of the Salt River Bay National Historical Park and Ecological Preserve, St Croix, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Habitat maps were created as part of a larger ecological assessment conducted by NOAA's National Ocean Service (NOS), Biogeography Program, for Salt River Bay...

  14. 1988 Seagrass and Mangrove Habitats of the Salt River Bay National Historical Park and Ecological Preserve, St. Croix, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Habitat maps were created as part of a larger ecological assessment conducted by NOAA's National Ocean Service (NOS), Biogeography Program, for Salt River Bay...

  15. Land cover and vegetation data from an ecological survey of "key habitat" landscapes in England, 1992-1993

    Science.gov (United States)

    Wood, Claire M.; Bunce, Robert G. H.; Norton, Lisa R.; Smart, Simon M.; Barr, Colin J.

    2018-05-01

    Since 1978, a series of national surveys (Countryside Survey, CS) have been carried out by the Centre for Ecology and Hydrology (CEH) (formerly the Institute of Terrestrial Ecology, ITE) to gather data on the natural environment in Great Britain (GB). As the sampling framework for these surveys is not optimised to yield data on rarer or more localised habitats, a survey was commissioned by the then Department of the Environment (DOE, now the Department for Environment, Food and Rural Affairs, DEFRA) in the 1990s to carry out additional survey work in English landscapes which contained semi-natural habitats that were perceived to be under threat, or which represented areas of concern to the ministry. The landscapes were lowland heath, chalk and limestone (calcareous) grasslands, coasts and uplands. The information recorded allowed an assessment of the extent and quality of a range of habitats defined during the project, which can now be translated into standard UK broad and priority habitat classes. The survey, known as the "Key Habitat Survey", followed a design which was a series of gridded, stratified, randomly selected 1 km squares taken as representative of each of the four landscape types in England, determined from statistical land classification and geological data ("spatial masks"). The definitions of the landscapes are given in the descriptions of the spatial masks, along with definitions of the surveyed habitats. A total of 213 of the 1 km2 square sample sites were surveyed in the summers of 1992 and 1993, with information being collected on vegetation species, land cover, landscape features and land use, applying standardised repeatable methods. The database contributes additional information and value to the long-term monitoring data gathered by the Countryside Survey and provides a valuable baseline against which future ecological changes may be compared, offering the potential for a repeat survey. The data were analysed and described in a series of

  16. Land cover and vegetation data from an ecological survey of "key habitat" landscapes in England, 1992–1993

    Directory of Open Access Journals (Sweden)

    C. M. Wood

    2018-05-01

    Full Text Available Since 1978, a series of national surveys (Countryside Survey, CS have been carried out by the Centre for Ecology and Hydrology (CEH (formerly the Institute of Terrestrial Ecology, ITE to gather data on the natural environment in Great Britain (GB. As the sampling framework for these surveys is not optimised to yield data on rarer or more localised habitats, a survey was commissioned by the then Department of the Environment (DOE, now the Department for Environment, Food and Rural Affairs, DEFRA in the 1990s to carry out additional survey work in English landscapes which contained semi-natural habitats that were perceived to be under threat, or which represented areas of concern to the ministry. The landscapes were lowland heath, chalk and limestone (calcareous grasslands, coasts and uplands. The information recorded allowed an assessment of the extent and quality of a range of habitats defined during the project, which can now be translated into standard UK broad and priority habitat classes. The survey, known as the "Key Habitat Survey", followed a design which was a series of gridded, stratified, randomly selected 1 km squares taken as representative of each of the four landscape types in England, determined from statistical land classification and geological data ("spatial masks". The definitions of the landscapes are given in the descriptions of the spatial masks, along with definitions of the surveyed habitats. A total of 213 of the 1 km2 square sample sites were surveyed in the summers of 1992 and 1993, with information being collected on vegetation species, land cover, landscape features and land use, applying standardised repeatable methods. The database contributes additional information and value to the long-term monitoring data gathered by the Countryside Survey and provides a valuable baseline against which future ecological changes may be compared, offering the potential for a repeat survey. The data were analysed and described

  17. Identifying habitat patches and potential ecological corridors for remnant Asiatic black bear (Ursus thibetanus japonicus) populations in Japan

    NARCIS (Netherlands)

    Doko, T.; Fukui, H.; Kooiman, A.; Toxopeus, A.G.; Ichinose, T.; Chen, W.; Skidmore, A.K.

    2011-01-01

    The Japanese National Biodiversity Strategy 2010 calls for the creation of ecological networks as a biodiversity conservation policy. However, there is an obvious lack of information on the spatial distribution of many species and a lack of scientific methods for examining habitat requirements to

  18. 1970's Seagrass and Mangrove Habitats of the Salt River Bay National Historical Park and Ecological Preserve, St. Croix, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Habitat maps were created as part of a larger ecological assessment conducted by NOAA's National Ocean Service (NOS), Biogeography Program, for Salt River Bay...

  19. A general framework for predicting delayed responses of ecological communities to habitat loss.

    Science.gov (United States)

    Chen, Youhua; Shen, Tsung-Jen

    2017-04-20

    Although biodiversity crisis at different spatial scales has been well recognised, the phenomena of extinction debt and immigration credit at a crossing-scale context are, at best, unclear. Based on two community patterns, regional species abundance distribution (SAD) and spatial abundance distribution (SAAD), Kitzes and Harte (2015) presented a macroecological framework for predicting post-disturbance delayed extinction patterns in the entire ecological community. In this study, we further expand this basic framework to predict diverse time-lagged effects of habitat destruction on local communities. Specifically, our generalisation of KH's model could address the questions that could not be answered previously: (1) How many species are subjected to delayed extinction in a local community when habitat is destructed in other areas? (2) How do rare or endemic species contribute to extinction debt or immigration credit of the local community? (3) How will species differ between two local areas? From the demonstrations using two SAD models (single-parameter lognormal and logseries), the predicted patterns of the debt, credit, and change in the fraction of unique species can vary, but with consistencies and depending on several factors. The general framework deepens the understanding of the theoretical effects of habitat loss on community dynamic patterns in local samples.

  20. Ecological value of coastal habitats for commercially and ecologically important species

    NARCIS (Netherlands)

    Seitz, R.D.; Wennhage, H.; Bergstrom, U.; Lipcius, R.M.; Ysebaert, T.

    2014-01-01

    Many exploited fish and macroinvertebrates that utilize the coastal zone have declined, and the causes of these declines, apart from overfishing, remain largely unresolved. Degradation of essential habitats has resulted in habitats that are no longer adequate to fulfil nursery, feeding, or

  1. Hydrology and density feedbacks control the ecology of intermediate hosts of schistosomiasis across habitats in seasonal climates.

    Science.gov (United States)

    Perez-Saez, Javier; Mande, Theophile; Ceperley, Natalie; Bertuzzo, Enrico; Mari, Lorenzo; Gatto, Marino; Rinaldo, Andrea

    2016-06-07

    We report about field and theoretical studies on the ecology of the aquatic snails (Bulinus spp. and Biomphalaria pfeifferi) that serve as obligate intermediate hosts in the complex life cycle of the parasites causing human schistosomiasis. Snail abundance fosters disease transmission, and thus the dynamics of snail populations are critically important for schistosomiasis modeling and control. Here, we single out hydrological drivers and density dependence (or lack of it) of ecological growth rates of local snail populations by contrasting novel ecological and environmental data with various models of host demography. Specifically, we study various natural and man-made habitats across Burkina Faso's highly seasonal climatic zones. Demographic models are ranked through formal model comparison and structural risk minimization. The latter allows us to evaluate the suitability of population models while clarifying the relevant covariates that explain empirical observations of snail abundance under the actual climatic forcings experienced by the various field sites. Our results link quantitatively hydrological drivers to distinct population dynamics through specific density feedbacks, and show that statistical methods based on model averaging provide reliable snail abundance projections. The consistency of our ranking results suggests the use of ad hoc models of snail demography depending on habitat type (e.g., natural vs. man-made) and hydrological characteristics (e.g., ephemeral vs. permanent). Implications for risk mapping and space-time allocation of control measures in schistosomiasis-endemic contexts are discussed.

  2. Kettle Holes in the Agrarian Landscape: Isolated and Ecological Unique Habitats for Carabid Beetles (Col.: Carabidae and Spiders (Arach.: Araneae

    Directory of Open Access Journals (Sweden)

    Platen Ralph

    2016-11-01

    Full Text Available Kettle holes are small depressional wetlands and because of the high variability of site factors they are potential hotspots of biodiversity in the monotone arable land. We investigated eight kettle holes and two agrarian reference biotopes for carabid beetles and spiders. The animals were captured with pitfall traps from May to August 2005, along with surveys of the soil and vegetation. We asked whether each kettle hole has specific ecological properties which match with characteristic carabid beetle and spider coenoses and whether they represent isolated biotopes. Differences in the composition of ecological and functional groups of carabid beetles and spiders between the plots were tested with an ANOVA. The impact of the soil variables and vegetation structure on the distribution of species was analyzed with a Redundancy Analysis. The assemblage similarities between the kettle hole plots were calculated by the Wainstein-Index. Ecological groups and habitat preferences of carabid beetles had maximal expressions in seven different kettle holes whereas most of the ecological characteristics of the spiders had maximal expression in only two kettle holes. High assemblage similarity values of carabid beetle coenoses were observed only in a few cases whereas very similar spider coenoses were found between nearly all of the kettle holes. For carabid beetles, kettle holes represent much more isolated habitats than that for spiders. We concluded that kettle holes have specific ecological qualities which match with different ecological properties of carabid beetles and spiders and that isolation effects affect carabid beetles more than spiders.

  3. Riparian and aquatic habitats of the Pacific Northwest and southeast Alaska: ecology, management history, and potential management strategies.

    Science.gov (United States)

    Fred H. Everest; Gordon H. Reeves

    2007-01-01

    Management of riparian habitats is controversial because land use policies have historically emphasized economic values (e.g., timber production) at the expense of ecological and social values. Attempting to manage these valuable resources to attain the greatest combination of benefits has created a long-term controversy that continues to the present. Our analysis...

  4. Establishment of a National ecological network to conserve biodiversity. Pros and cons of ecological corridors Establishment of a National ecological network to conserve biodiversity. Pros and cons of ecological corridors

    Directory of Open Access Journals (Sweden)

    Laurent Bergès, Philip Roche and Catherine Avon

    2011-03-01

    Full Text Available Ecological corridors are a fundamental element in the National ecological network approved by the Grenelle environmental agreement in order to reduce ecosystem damage caused by fragmentation of the natural habitat zones of species. How can their effectiveness be evaluated? This article sums up current knowledge on their pros and cons.Fragmentation of natural habitats is considered one of the main causes of biodiversity loss. One of the proposed solutions to limit the effects of fragmentation is to restore ecological connectivity by creating ecological corridors between zones containing natural habitats. The concept remains controversial among scientists, but now serves as the basis for one of the operational projects of the Grenelle environmental agreements in the form of the National ecological network. After examining the ecological concepts justifying the political goal and presenting the various ecological roles of corridors, we briefly discuss their overall advantages and disadvantages. Then, we look closely at the methodological difficulties in detecting a corridor effect. Finally, we recommend a close partnership between research and policy to design biodiversity monitoring and evaluation systems in the different land-management plans.

  5. Lichens as indicators of the ecological conditions of the habitat

    Energy Technology Data Exchange (ETDEWEB)

    Rydzak, J

    1968-01-01

    The susceptibility of lichens to changes in the urban environment make them good indicators of the intensity of air pollution. Studies covering a number of large and small towns, mostly in Europe and some over an extended time, explored the toxic influence of air pollution on 12 species on lichens. A comparison after 18 years with the lichen flora of Lublin, Poland found the lichen population impoverished. The toxic hypothesis, which blames increased coal consumption and automobile use, is inadequate to explain the condition. The drought hypothesis, which postulates that the occurrence and distribution of individual species is the result of a complex of numerous macro- and microclimatic, edaphic, geographical, historical, and other factors, gives a uniform view of the problem and stimulates investigations of the ecology of lichens in their natural habitat as well as in towns. 40 references, 12 figures, 3 tables.

  6. Floristic and ecological characterization of habitat types on an inselberg in Minas Gerais, southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Luiza F. A. de Paula

    Full Text Available ABSTRACT Inselbergs are granitic or gneissic rock outcrops, distributed mainly in tropical and subtropical regions. They are considered terrestrial islands because of their strong spatial and ecological isolation, thus harboring a set of distinct plant communities that differ from the surrounding matrix. In Brazil, inselbergs scattered in the Atlantic Forest contain unusually high levels of plant species richness and endemism. This study aimed to inventory species of vascular plants and to describe the main habitat types found on an inselberg located in the state of Minas Gerais, in southeastern Brazil. A total of 89 species of vascular plants were recorded (belonging to 37 families, of which six were new to science. The richest family was Bromeliaceae (10 spp., followed by Cyperaceae (seven spp., Orchidaceae and Poaceae (six spp. each. Life forms were distributed in different proportions between habitats, which suggested distinct microenvironments on the inselberg. In general, habitats under similar environmental stress shared common species and life-form proportions. We argue that floristic inventories are still necessary for the development of conservation strategies and management of the unique vegetation on inselbergs in Brazil.

  7. Ecological response of a multi-purpose river development project using macro-invertebrates richness and fish habitat value

    International Nuclear Information System (INIS)

    Pellaud, M.

    2007-05-01

    SYNERGIE project optimizer taking into account all the project poles. The system of interest is composed of a buffering reservoir of ca. 1 km 2 , a run-off-the- river dam, a hydro power-plant, and an artificial river ensuring longitudinal continuum. The primary part of the work consisted in an extensive literature review on system understanding, anthropic alterations and quality assessment / prediction tool available. The approach consisted of two levels (1) the general ecological considerations to be followed at the project reservoir scale and (2) the measure of the downstream ecological response through modeling. General ecological considerations at the reservoir scale were the implementation of an artificial river ensuring longitudinal connectivity, implementation of artificial ecotonal boosters and the allocation of a sanctuary zone with limited public access. The downstream measure of ecological integrity was based on the choice of three taxonomic groups of macroinvertebrates and four ecological guilds (groups) of fish. Mayflies (Ephemeroptera), stoneflies (Plecoptera) and caddisflies (Trichoptera) richness were predicted using simple hydrological and morphological covariates (i.e. substrate, current speed,...) coupled to system specific faunistic surveys. Bank, riffle, pool and midstream fish guilds habitat values were determined using existing methods. By using the simulation results of river development project scenarios as inputs, the ecological response (i.e. the measure of ecological integrity) was computed following the assumptions that high predicted macro-invertebrate richness and high guilds habitat values were linked to a high ecological integrity. An emphasis on the hydro peaking effect in relation with river morphology was performed on macroinvertebrates. They were found to respond well to hydrological and morphological changes induced by river development projects while the approach by fish habitat value encountered limitations in its applicability. Four

  8. The actual relevance of ecological corridors in nature conservation

    Directory of Open Access Journals (Sweden)

    Ćurčić Nina B.

    2013-01-01

    Full Text Available The paper considers theoretical and applied foundations of the concept of the ecological corridors in nature conservation. Their relevance comes from recent ecological phenomenon of habitat fragmentation which is rapidly increasing during last decades. Habitat fragmentation is one of the main threats to richness and diversity of wildlife. Ecological corridors can mitigate the loss and fragmentation of habitat. Corridors perform as “bridges” between habitats for species and they provide a flow of the natural or even anthropogenic caused disturbances. In this paper we will present the meaning and significance of ecological corridors in nature conservation, as well as types of ecological corridors and their ecological benefits. Methodological and practical approaches in nature protection system in Serbia are included. [Projekat Ministarstva nauke Republike Srbije, br. 47007 i br. 176008

  9. Diversity, occurrence and feeding traits of caddisfly larvae as indicators for ecological integrity of river-floodplain habitats along a connectivity gradient

    NARCIS (Netherlands)

    Van den Brink, F.W.B.; Van der Velde, G.; Wijnhoven, S.

    2013-01-01

    In order to assess ecological values of Lower Rhine and Meuse floodplain habitats we studied the spatial and seasonal variation in diversity, species assemblages and feeding traits of caddisfly larvae in water bodies over the lateral connectivity gradient: eupotamon: main and secondary channels:

  10. Ecological interdependences between fish fauna and habitat structures of the Elbe river; Oekologische Zusammenhaenge zwischen Fischgemeinschafts- und Lebensraumstrukturen der Elbe

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, R. [Institut fuer Hydrobiologie und Fischereiwissenschaft - Elbelabor, Universitaet Hamburg, Hamburg (Germany); Buslovich, R.; Gerkens, M. [and others

    2000-07-01

    Fluvial fishes are good indicators of the habitat quality in river systems. However, no quantitative data about the relationships between the ecomorphology of the Elbe River and its fish community were available. Therefore, fish ecological assessments or predictions of the development of the fish populations were not possible. Since March 1997, a project financed by the Federal Ministry of Education, Science, Research and Technology focuses on mathematical modelling of the habitat used of all life history stages of the fish fauna. The results of the project shall support decisions in the framework of changing ecomorphology in the Elbe River. (orig.)

  11. Habitat specialization through germination cueing

    DEFF Research Database (Denmark)

    Ten Brink, Dirk-Jan; Hendriksma, Harmen; Bruun, Hans Henrik

    2013-01-01

    This study examined the adaptive association between seed germination ecology and specialization to either forest or open habitats across a range of evolutionary lineages of seed plants, in order to test the hypotheses that (1) species' specialization to open vs. shaded habitats is consistently...

  12. An ecological classification of Central European marcomoths: habitat associations and conservation status returned from life history attributes

    Czech Academy of Sciences Publication Activity Database

    Pavlíková, A.; Konvička, Martin

    2012-01-01

    Roč. 16, č. 2 (2012), s. 187-206 ISSN 1366-638X R&D Projects: GA ČR GAP505/10/2167; GA MŽP SP/2D3/62/08; GA MŠk LC06073 Institutional research plan: CEZ:AV0Z50070508 Keywords : conservation * distribution ranges * habitat components Subject RIV: EH - Ecology, Behaviour Impact factor: 1.801, year: 2012 http://www.springerlink.com/content/r73622084m24r2x1/

  13. Spatial Heterogeneity of Habitat Suitability for Rift Valley Fever Occurrence in Tanzania: An Ecological Niche Modelling Approach

    Science.gov (United States)

    Sindato, Calvin; Stevens, Kim B.; Karimuribo, Esron D.; Mboera, Leonard E. G.; Paweska, Janusz T.; Pfeiffer, Dirk U.

    2016-01-01

    Background Despite the long history of Rift Valley fever (RVF) in Tanzania, extent of its suitable habitat in the country remains unclear. In this study we investigated potential effects of temperature, precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild animals, protected areas and forest on the habitat suitability for RVF occurrence in Tanzania. Materials and Methods Presence-only records of 193 RVF outbreak locations from 1930 to 2007 together with potential predictor variables were used to model and map the suitable habitats for RVF occurrence using ecological niche modelling. Ground-truthing of the model outputs was conducted by comparing the levels of RVF virus specific antibodies in cattle, sheep and goats sampled from locations in Tanzania that presented different predicted habitat suitability values. Principal Findings Habitat suitability values for RVF occurrence were higher in the northern and central-eastern regions of Tanzania than the rest of the regions in the country. Soil type and precipitation of the wettest quarter contributed equally to habitat suitability (32.4% each), followed by livestock density (25.9%) and rainfall pattern (9.3%). Ground-truthing of model outputs revealed that the odds of an animal being seropositive for RVFV when sampled from areas predicted to be most suitable for RVF occurrence were twice the odds of an animal sampled from areas least suitable for RVF occurrence (95% CI: 1.43, 2.76, p < 0.001). Conclusion/Significance The regions in the northern and central-eastern Tanzania were more suitable for RVF occurrence than the rest of the regions in the country. The modelled suitable habitat is characterised by impermeable soils, moderate precipitation in the wettest quarter, high livestock density and a bimodal rainfall pattern. The findings of this study should provide guidance for the design of appropriate RVF surveillance, prevention and control strategies which target areas with

  14. Instream Physical Habitat Modelling Types

    DEFF Research Database (Denmark)

    Conallin, John; Boegh, Eva; Krogsgaard, Jørgen

    2010-01-01

    The introduction of the EU Water Framework Directive (WFD) is providing member state water resource managers with significant challenges in relation to meeting the deadline for 'Good Ecological Status' by 2015. Overall, instream physical habitat modelling approaches have advantages and disadvanta......The introduction of the EU Water Framework Directive (WFD) is providing member state water resource managers with significant challenges in relation to meeting the deadline for 'Good Ecological Status' by 2015. Overall, instream physical habitat modelling approaches have advantages...... suit their situations. This paper analyses the potential of different methods available for water managers to assess hydrological and geomorphological impacts on the habitats of stream biota, as requested by the WFD. The review considers both conventional and new advanced research-based instream...... physical habitat models. In parametric and non-parametric regression models, model assumptions are often not satisfied and the models are difficult to transfer to other regions. Research-based methods such as the artificial neural networks and individual-based modelling have promising potential as water...

  15. Assessing three fish species ecological status in Colorado River, Grand Canyon based on physical habitat and population models.

    Science.gov (United States)

    Yao, Weiwei; Chen, Yuansheng

    2018-04-01

    Colorado River is a unique ecosystem and provides important ecological services such as habitat for fish species as well as water power energy supplies. River management for this ecosystem requires assessment and decision support tools for fish which involves protecting, restoring as well as forecasting of future conditions. In this paper, a habitat and population model was developed and used to determine the levels of fish habitat suitability and population density in Colorado River between Lees Ferry and Lake Mead. The short term target fish populations are also predicted based on native fish recovery strategy. This model has been developed by combining hydrodynamics, heat transfer and sediment transport models with a habitat suitability index model and then coupling with habitat model into life stage population model. The fish were divided into four life stages according to the fish length. Three most abundant and typical native and non-native fish were selected as target species, which are rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta) and flannelmouth sucker (Catostomus latipinnis). Flow velocity, water depth, water temperature and substrates were used as the suitability indicators in habitat model and overall suitability index (OSI) as well as weight usable area (WUA) was used as an indicator in population model. A comparison was made between simulated fish population alteration and surveyed fish number fluctuation during 2000 to 2009. The application of this habitat and population model indicates that this model can be accurate present habitat situation and targets fish population dynamics of in the study areas. The analysis also indicates the flannelmouth sucker population will steadily increase while the rainbow trout will decrease based on the native fish recovery scheme. Copyright © 2018. Published by Elsevier Inc.

  16. Contrasting patterns of survival and dispersal in multiple habitats reveal an ecological trap in a food-caching bird.

    Science.gov (United States)

    Norris, D Ryan; Flockhart, D T Tyler; Strickland, Dan

    2013-11-01

    A comprehensive understanding of how natural and anthropogenic variation in habitat influences populations requires long-term information on how such variation affects survival and dispersal throughout the annual cycle. Gray jays Perisoreus canadensis are widespread boreal resident passerines that use cached food to survive over the winter and to begin breeding during the late winter. Using multistate capture-recapture analysis, we examined apparent survival and dispersal in relation to habitat quality in a gray jay population over 34 years (1977-2010). Prior evidence suggests that natural variation in habitat quality is driven by the proportion of conifers on territories because of their superior ability to preserve cached food. Although neither adults (>1 year) nor juveniles (conifer territories, both age classes were less likely to leave high-conifer territories and, when they did move, were more likely to disperse to high-conifer territories. In contrast, survival rates were lower on territories that were adjacent to a major highway compared to territories that did not border the highway but there was no evidence for directional dispersal towards or away from highway territories. Our results support the notion that natural variation in habitat quality is driven by the proportion of coniferous trees on territories and provide the first evidence that high-mortality highway habitats can act as an equal-preference ecological trap for birds. Reproductive success, as shown in a previous study, but not survival, is sensitive to natural variation in habitat quality, suggesting that gray jays, despite living in harsh winter conditions, likely favor the allocation of limited resources towards self-maintenance over reproduction.

  17. Selecting a Conservation Surrogate Species for Small Fragmented Habitats Using Ecological Niche Modelling

    Directory of Open Access Journals (Sweden)

    K. Anne-Isola Nekaris

    2015-01-01

    Full Text Available Flagship species are traditionally large, charismatic animals used to rally conservation efforts. Accepted flagship definitions suggest they need only fulfil a strategic role, unlike umbrella species that are used to shelter cohabitant taxa. The criteria used to select both flagship and umbrella species may not stand up in the face of dramatic forest loss, where remaining fragments may only contain species that do not suit either set of criteria. The Cinderella species concept covers aesthetically pleasing and overlooked species that fulfil the criteria of flagships or umbrellas. Such species are also more likely to occur in fragmented habitats. We tested Cinderella criteria on mammals in the fragmented forests of the Sri Lankan Wet Zone. We selected taxa that fulfilled both strategic and ecological roles. We created a shortlist of ten species, and from a survey of local perceptions highlighted two finalists. We tested these for umbrella characteristics against the original shortlist, utilizing Maximum Entropy (MaxEnt modelling, and analysed distribution overlap using ArcGIS. The criteria highlighted Loris tardigradus tardigradus and Prionailurus viverrinus as finalists, with the former having highest flagship potential. We suggest Cinderella species can be effective conservation surrogates especially in habitats where traditional flagship species have been extirpated.

  18. Ecological response of a multi-purpose river development project using macro-invertebrates richness and fish habitat value[Dissertation 3807

    Energy Technology Data Exchange (ETDEWEB)

    Pellaud, M.

    2007-05-15

    ) general SYNERGIE project optimizer taking into account all the project poles. The system of interest is composed of a buffering reservoir of ca. 1 km{sup 2}, a run-off-the- river dam, a hydro power-plant, and an artificial river ensuring longitudinal continuum. The primary part of the work consisted in an extensive literature review on system understanding, anthropic alterations and quality assessment / prediction tool available. The approach consisted of two levels (1) the general ecological considerations to be followed at the project reservoir scale and (2) the measure of the downstream ecological response through modeling. General ecological considerations at the reservoir scale were the implementation of an artificial river ensuring longitudinal connectivity, implementation of artificial ecotonal boosters and the allocation of a sanctuary zone with limited public access. The downstream measure of ecological integrity was based on the choice of three taxonomic groups of macroinvertebrates and four ecological guilds (groups) of fish. Mayflies (Ephemeroptera), stoneflies (Plecoptera) and caddisflies (Trichoptera) richness were predicted using simple hydrological and morphological covariates (i.e. substrate, current speed,...) coupled to system specific faunistic surveys. Bank, riffle, pool and midstream fish guilds habitat values were determined using existing methods. By using the simulation results of river development project scenarios as inputs, the ecological response (i.e. the measure of ecological integrity) was computed following the assumptions that high predicted macro-invertebrate richness and high guilds habitat values were linked to a high ecological integrity. An emphasis on the hydro peaking effect in relation with river morphology was performed on macroinvertebrates. They were found to respond well to hydrological and morphological changes induced by river development projects while the approach by fish habitat value encountered limitations in its

  19. The importance of ambient sound level to characterise anuran habitat.

    Directory of Open Access Journals (Sweden)

    Sandra Goutte

    Full Text Available Habitat characterisation is a pivotal step of any animal ecology study. The choice of variables used to describe habitats is crucial and need to be relevant to the ecology and behaviour of the species, in order to reflect biologically meaningful distribution patterns. In many species, acoustic communication is critical to individuals' interactions, and it is expected that ambient acoustic conditions impact their local distribution. Yet, classic animal ecology rarely integrates an acoustic dimension in habitat descriptions. Here we show that ambient sound pressure level (SPL is a strong predictor of calling site selection in acoustically active frog species. In comparison to six other habitat-related variables (i.e. air and water temperature, depth, width and slope of the stream, substrate, SPL had the most important explanatory power in microhabitat selection for the 34 sampled species. Ambient noise was particularly useful in differentiating two stream-associated guilds: torrents and calmer streams dwelling species. Guild definitions were strongly supported by SPL, whereas slope, which is commonly used in stream-associated habitat, had a weak explanatory power. Moreover, slope measures are non-standardized across studies and are difficult to assess at small scale. We argue that including an acoustic descriptor will improve habitat-species analyses for many acoustically active taxa. SPL integrates habitat topology and temporal information (such as weather and hour of the day, for example and is a simple and precise measure. We suggest that habitat description in animal ecology should include an acoustic measure such as noise level because it may explain previously misunderstood distribution patterns.

  20. Photosynthetic response of the floating-leaved macrophyte Nymphoides peltata to a temporary terrestrial habitat and its implications for ecological recovery of Lakeside zones

    Directory of Open Access Journals (Sweden)

    Yu H.

    2014-01-01

    Full Text Available For the ecological recovery of lakeside zones in shallow eutrophic lakes, choosing suitable aquatic macrophytes which could adapt to the temporary terrestrial habitat due to water level change is very important. In the present study, an experimental approach was carried out to explore the photosynthetic response of the typical floating-leaved aquatic plant Nymphoides peltata (N. peltata to varying environmental factors. N. peltata grown under aquatic and terrestrial habitats showed similar photosynthesis-irradiance response patterns. The investigation of diurnal changes in gas exchange revealed that the net photosynthetic rate (PN and water-use efficiency (WUE of the N. peltata grown in the terrestrial habitat were 68% and 94% higher, respectively, than those in the aquatic habitat at nine in the morning. N. peltata grown in the terrestrial habitat had approximately 51% less stomatal density and a 77% smaller stomatal aperture area compared with those grown in aquatic habitats. The above results indicated that N. peltata could be well-acclimated to the terrestrial habitat by developing a series of photosynthetic acclimation features. Our study may provide an important reference for restoration in lakeside zones of shallow eutrophic lakes.

  1. The challenges of long-term ecological research in springs in the northern and southern Alps: indicator groups, habitat diversity, and medium-term change

    Directory of Open Access Journals (Sweden)

    Sofia WIEDENBRUG

    2011-09-01

    Full Text Available After extensive exploratory investigations into crenic habitats at the beginning of the 1990s, a number of springs were selected and long-term ecological research programmes independently initiated in the Berchtesgaden National Park (north-eastern Alps, Bavaria and the Adamello-Brenta Nature Park (south-eastern Alps, Trentino. Following more than a decade of standardized work, this paper presents a selection of results from both sides of the Alps, with a focus on zoobenthos in Bavaria and on pro- and eukaryotic algae in Trentino. In order to test the assumption that permanent springs are particularly suitable habitats for long-term ecological research, the following topics are addressed: (1 taxonomic diversity and relationships between diversity and spring typology; (2 transverse gradients in crenic habitats, hygrophilous terrestrial invertebrates and xerotolerant algae; (3 possibilities of documenting changes in species composition over decadal time scales ("medium-term" based on emergence traps, benthos, and benthic algae. The data obtained show that: (1 crenic habitats support particularly high biological diversity (but a thorough documentation of insect diversity is impossible without emergence studies; (2 helocrenes are the most species-rich habitats, for both invertebrates and diatoms; (3 dynamic (unstable and occasionally-impacted springs show identifiable signs of medium-term change, whilst particularly complex and stable crenic habitats seem to be controlled by internal processes. Our results suggest that: (1 the meiofauna is likely to react directly to environmental change, while emergers and the hygrophilous terrestrial fauna are indirectly affected, and (2 diatoms react both to direct effects of environmental change, e.g. discharge and hydrochemistry, and to indirect effects on the surroundings of the spring. Based on our results, long-term research strategies are discussed. For long-term studies, we propose a focus on meiofauna and

  2. Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats.

    Science.gov (United States)

    Brittingham, Margaret C; Maloney, Kelly O; Farag, Aïda M; Harper, David D; Bowen, Zachary H

    2014-10-07

    Technological advances in hydraulic fracturing and horizontal drilling have led to the exploration and exploitation of shale oil and gas both nationally and internationally. Extensive development of shale resources has occurred within the United States over the past decade, yet full build out is not expected to occur for years. Moreover, countries across the globe have large shale resources and are beginning to explore extraction of these resources. Extraction of shale resources is a multistep process that includes site identification, well pad and infrastructure development, well drilling, high-volume hydraulic fracturing and production; each with its own propensity to affect associated ecosystems. Some potential effects, for example from well pad, road and pipeline development, will likely be similar to other anthropogenic activities like conventional gas drilling, land clearing, exurban and agricultural development and surface mining (e.g., habitat fragmentation and sedimentation). Therefore, we can use the large body of literature available on the ecological effects of these activities to estimate potential effects from shale development on nearby ecosystems. However, other effects, such as accidental release of wastewaters, are novel to the shale gas extraction process making it harder to predict potential outcomes. Here, we review current knowledge of the effects of high-volume hydraulic fracturing coupled with horizontal drilling on terrestrial and aquatic ecosystems in the contiguous United States, an area that includes 20 shale plays many of which have experienced extensive development over the past decade. We conclude that species and habitats most at risk are ones where there is an extensive overlap between a species range or habitat type and one of the shale plays (leading to high vulnerability) coupled with intrinsic characteristics such as limited range, small population size, specialized habitat requirements, and high sensitivity to disturbance

  3. Ecological Flow Assessment to Improve the Spawning Habitat for the Four Major Species of Carp of the Yangtze River: A Study on Habitat Suitability Based on Ultrasonic Telemetry

    Directory of Open Access Journals (Sweden)

    Lixiong Yu

    2018-05-01

    Full Text Available Four major species of Chinese carp, namely black carp (Mylopharyngodon piceus, grass carp (Ctenopharyngodon idellus, silver carp (Hypophthalmichthys molitrix and bighead carp (Hypophthalmichthys nobilis, are important economic freshwater fish varieties in China. They primarily inhabit and breed in the Yangtze River. Unfortunately, the construction and operation of the Gezhouba Dam and the Three Gorges Dam have dramatically changed the hydrodynamic conditions in the middle reaches of the Yangtze River, leading to a sharp decline in the reproduction rates of these carp. The egg abundance of the four species of carp downstream from the Three Gorges Dam reached 8.35 billion in 1965, but abundance during 2005–2012 was only 0.25 billion. One of the main reasons was that the hydrodynamic conditions of the spawning ground could not meet the four species’ breeding requirements. However, due to the limitations of traditional detection tools, the spawning characteristics of these four species of carp were still unclear. In this study, the ultrasonic telemetry and a three–dimensional hydrodynamic model were utilized to build the habitat suitability index (HSI curves for the four species of carp. The habitat suitability model was then built based on HSI curves to assess spawning habitat quantity under different flow conditions. Finally, the habitat suitability model in the Yidu spawning ground was validated using 32 groups of sampling data in 2015 and 2017. The statistical results showed that the most suitable velocity ranged from 0.78 m/s to 0.93 m/s. The most suitable water depth ranged from 14.56 m to 16.35 m, and the most suitable Froude number ranged from 0.049 to 0.129. The habitat suitability model simulation results indicated that when the discharge was between 15,000 m3/s and 21,300 m3/s, the weighted usable area (WUA values in both the Yidu and Zhicheng spawning grounds would remain at a high level. The validation results showed that most

  4. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats of the Lower Columbia River, 2007–2010

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Storch, Adam; Skalski, J. R.; Bryson, Amanda J.; Mallette, Christine; Borde, Amy B.; Van Dyke, E.; Sobocinski, Kathryn L.; Sather, Nichole K.; Teel, David; Dawley, Earl M.; Ploskey, Gene R.; Jones, Tucker A.; Zimmerman, Shon A.; Kuligowski, D. R.

    2011-03-01

    The TFM study was designed to investigate the ecology and early life history of juvenile salmonids within shallow (<5 m) tidal freshwater habitats of the LCRE. We started collecting field data in June 2007. Since then, monthly sampling has occurred in the vicinity of the Sandy River delta (rkm 192–208) and at other sites and times in lower river reaches of tidal freshwater (rkm 110 to 141). This report provides a comprehensive synthesis of data covering the field period from June 2007 through April 2010.

  5. Threatened and endangered subspecies with vulnerable ecological traits also have high susceptibility to sea level rise and habitat fragmentation.

    Directory of Open Access Journals (Sweden)

    Allison M Benscoter

    Full Text Available The presence of multiple interacting threats to biodiversity and the increasing rate of species extinction make it critical to prioritize management efforts on species and communities that maximize conservation success. We implemented a multi-step approach that coupled vulnerability assessments evaluating threats to Florida taxa such as climate change, sea-level rise, and habitat fragmentation with in-depth literature surveys of taxon-specific ecological traits. The vulnerability, adaptive capacity, and ecological traits of 12 threatened and endangered subspecies were compared to non-listed subspecies of the same parent species. Overall, the threatened and endangered subspecies showed high vulnerability and low adaptive capacity, in particular to sea level rise and habitat fragmentation. They also exhibited larger home ranges and greater dispersal limitation compared to non-endangered subspecies, which may inhibit their ability to track changing climate in fragmented landscapes. There was evidence for lower reproductive capacity in some of the threatened or endangered taxa, but not for most. Taxa located in the Florida Keys or in other low coastal areas were most vulnerable to sea level rise, and also showed low levels of adaptive capacity, indicating they may have a lower probability of conservation success. Our analysis of at-risk subspecies and closely related non-endangered subspecies demonstrates that ecological traits help to explain observed differences in vulnerability and adaptive capacity. This study points to the importance of assessing the relative contributions of multiple threats and evaluating conservation value at the species (or subspecies level when resources are limited and several factors affect conservation success.

  6. Manor gardens: Harbors of local natural habitats?

    Czech Academy of Sciences Publication Activity Database

    Šantrůčková, M.; Demková, K.; Dostálek, J.; Frantík, Tomáš

    2017-01-01

    Roč. 205, JAN 2017 (2017), s. 16-22 ISSN 0006-3207 Institutional support: RVO:67985939 Keywords : park * human impact * habitat network Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 4.022, year: 2016

  7. Habitat specialization through germination cueing: a comparative study of herbs from forests and open habitats.

    Science.gov (United States)

    Ten Brink, Dirk-Jan; Hendriksma, Harmen Pieter; Bruun, Hans Henrik

    2013-02-01

    This study examined the adaptive association between seed germination ecology and specialization to either forest or open habitats across a range of evolutionary lineages of seed plants, in order to test the hypotheses that (1) species' specialization to open vs. shaded habitats is consistently accompanied by specialization in their regeneration niche; and (2) species are thereby adapted to utilize different windows of opportunity in time (season) and space (habitat). Seed germination response to temperature, light and stratification was tested for 17 congeneric pairs, each consisting of one forest species and one open-habitat species. A factorial design was used with temperature levels and diurnal temperature variation (10 °C constant, 15-5 °C fluctuating, 20 °C constant, 25-15 °C fluctuating), and two light levels (light and darkness) and a cold stratification treatment. The congeneric species pair design took phylogenetic dependence into account. Species from open habitats germinated better at high temperatures, whereas forest species performed equally well at low and high temperatures. Forest species tended to germinate only after a period of cold stratification that could break dormancy, while species from open habitats generally germinated without cold stratification. The empirically derived germination strategies correspond quite well with establishment opportunities for forest and open-habitat plant species in nature. Annual changes in temperature and light regime in temperate forest delimit windows of opportunity for germination and establishment. Germination strategies of forest plants are adaptations to utilize such narrow windows in time. Conversely, lack of fit between germination ecology and environment may explain why species of open habitats generally fail to establish in forests. Germination strategy should be considered an important mechanism for habitat specialization in temperate herbs to forest habitats. The findings strongly suggest that

  8. Terrestrial Ecology Guide.

    Science.gov (United States)

    Morrison, James W., Ed.; Hall, James A., Ed.

    This collection of study units focuses on the study of the ecology of land habitats. Considered are such topics as map reading, field techniques, forest ecosystem, birds, insects, small mammals, soils, plant ecology, preparation of terrariums, air pollution, photography, and essentials of an environmental studies program. Each unit contains…

  9. Two-dimensional physical habitat modeling of effects of habitat structures on urban stream restoration

    Directory of Open Access Journals (Sweden)

    Dongkyun Im

    2011-12-01

    Full Text Available River corridors, even if highly modified or degraded, still provide important habitats for numerous biological species, and carry high aesthetic and economic values. One of the keys to urban stream restoration is recovery and maintenance of ecological flows sufficient to sustain aquatic ecosystems. In this study, the Hongje Stream in the Seoul metropolitan area of Korea was selected for evaluating a physically-based habitat with and without habitat structures. The potential value of the aquatic habitat was evaluated by a weighted usable area (WUA using River2D, a two-dimensional hydraulic model. The habitat suitability for Zacco platypus in the Hongje Stream was simulated with and without habitat structures. The computed WUA values for the boulder, spur dike, and riffle increased by about 2%, 7%, and 131%, respectively, after their construction. Also, the three habitat structures, especially the riffle, can contribute to increasing hydraulic heterogeneity and enhancing habitat diversity.

  10. Integrated Ecological River Health Assessments, Based on Water Chemistry, Physical Habitat Quality and Biological Integrity

    Directory of Open Access Journals (Sweden)

    Ji Yoon Kim

    2015-11-01

    Full Text Available This study evaluated integrative river ecosystem health using stressor-based models of physical habitat health, chemical water health, and biological health of fish and identified multiple-stressor indicators influencing the ecosystem health. Integrated health responses (IHRs, based on star-plot approach, were calculated from qualitative habitat evaluation index (QHEI, nutrient pollution index (NPI, and index of biological integrity (IBI in four different longitudinal regions (Groups I–IV. For the calculations of IHRs values, multi-metric QHEI, NPI, and IBI models were developed and their criteria for the diagnosis of the health were determined. The longitudinal patterns of the river were analyzed by a self-organizing map (SOM model and the key major stressors in the river were identified by principal component analysis (PCA. Our model scores of integrated health responses (IHRs suggested that mid-stream and downstream regions were impaired, and the key stressors were closely associated with nutrient enrichment (N and P and organic matter pollutions from domestic wastewater disposal plants and urban sewage. This modeling approach of IHRs may be used as an effective tool for evaluations of integrative ecological river health..

  11. The hormetic zone: an ecological and evolutionary perspective based upon habitat characteristics and fitness selection.

    Science.gov (United States)

    Parsons, P A

    2001-12-01

    Fitness varies nonlinearly with environmental variables such as temperature, water availability, and nutrition, with maximum fitness at intermediate levels between more stressful extremes. For environmental agents that are highly toxic at exposures that substantially exceed background levels, fitness is maximized at concentrations near zero--a phenomenon often referred to as hormesis. Two main components are suggested: (1) background hormesis, which derives from the direct adaptation of organisms to their habitats; and (2) stress-derived hormonesis, which derives from metabolic reserves that are maintained as an adaptation to environmental stresses through evolutionary time. These reserves provide protection from lesser correlated stresses. This article discusses illustrative examples, including ethanol and ionizing radiation, aimed at placing hormesis into an ecological and evolutionary context. A unifying approach comes from fitness-stress continua that underlie responses to abiotic variables, whereby selection for maximum metabolic efficiency and hence fitness in adaptation to habitats in nature underlies hormetic zones. Within this reductionist model, more specific metabolic mechanisms to explain hormesis are beginning to emerge, depending upon the agent and the taxon in question. Some limited research possibilities based upon this evolutionary perspective are indicated.

  12. Roadside verges as habitats for endangered lizard-orchids (Himantoglossum spp.): Ecological traps or refuges?

    Science.gov (United States)

    Fekete, Réka; Nagy, Timea; Bódis, Judit; Biró, Éva; Löki, Viktor; Süveges, Kristóf; Takács, Attila; Tökölyi, Jácint; Molnár V, Attila

    2017-12-31

    Alterations in traditional land use practices have led to severe declines in the area of semi-natural grasslands, thereby seriously threatening plant and animal species dependent on these habitats. Small anthropogenic managed habitats, like roadsides can act as refuges and might play an important role in conserving these species. Colonization of roadside verges by endangered lizard orchids (Himantoglossum spp.) has long been known, but few studies have systematically explored the suitability of roadside habitats for these orchids and the impact of roads on them. In this paper we present results of targeted surveys of three lizard orchid taxa on roadsides from eight European countries. During these surveys we searched for lizard orchids inhabiting roadside verges and recorded their distance from road, aspects of the roadside environment, as well as vegetative and reproductive characteristics of individual plants. We found large numbers of lizard orchids on roadside verges. Distance from roads was not uniformly distributed: orchids occurred more closely to roads than expected by chance. This suggests that regular management of roadsides (e.g. mowing) might enhance colonization and survival of lizard orchids. On the other hand, we also found that close proximity to roads negatively affects reproductive success, suggesting that the immediate vicinity of roads might act as an ecological trap (i.e. favorable in terms of colonization and survival but unfavorable in terms of reproduction). Nonetheless, the fact that significant and viable populations are maintained at roadsides suggests that traditionally managed roadside verges may allow long-term persistence of lizard orchid populations and may serve as refuges in a landscape context. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A heteroskedastic error covariance matrix estimator using a first-order conditional autoregressive Markov simulation for deriving asympotical efficient estimates from ecological sampled Anopheles arabiensis aquatic habitat covariates

    Directory of Open Access Journals (Sweden)

    Githure John I

    2009-09-01

    Full Text Available Abstract Background Autoregressive regression coefficients for Anopheles arabiensis aquatic habitat models are usually assessed using global error techniques and are reported as error covariance matrices. A global statistic, however, will summarize error estimates from multiple habitat locations. This makes it difficult to identify where there are clusters of An. arabiensis aquatic habitats of acceptable prediction. It is therefore useful to conduct some form of spatial error analysis to detect clusters of An. arabiensis aquatic habitats based on uncertainty residuals from individual sampled habitats. In this research, a method of error estimation for spatial simulation models was demonstrated using autocorrelation indices and eigenfunction spatial filters to distinguish among the effects of parameter uncertainty on a stochastic simulation of ecological sampled Anopheles aquatic habitat covariates. A test for diagnostic checking error residuals in an An. arabiensis aquatic habitat model may enable intervention efforts targeting productive habitats clusters, based on larval/pupal productivity, by using the asymptotic distribution of parameter estimates from a residual autocovariance matrix. The models considered in this research extends a normal regression analysis previously considered in the literature. Methods Field and remote-sampled data were collected during July 2006 to December 2007 in Karima rice-village complex in Mwea, Kenya. SAS 9.1.4® was used to explore univariate statistics, correlations, distributions, and to generate global autocorrelation statistics from the ecological sampled datasets. A local autocorrelation index was also generated using spatial covariance parameters (i.e., Moran's Indices in a SAS/GIS® database. The Moran's statistic was decomposed into orthogonal and uncorrelated synthetic map pattern components using a Poisson model with a gamma-distributed mean (i.e. negative binomial regression. The eigenfunction

  14. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes.

    Directory of Open Access Journals (Sweden)

    Eliningaya J Kweka

    Full Text Available Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya.A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60% and An.arabiensis (18.34%, the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024 and An. arabiensis (P = 0.002 larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001, grass cover (P≤0.001, while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001. The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001 when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002. When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines.These findings suggest that implementation of effective larval control programme should be targeted with larval

  15. Hydrologic and water-quality rehabilitation of environments for suitable fish habitat

    Science.gov (United States)

    Zhao, C. S.; Yang, S. T.; Xiang, H.; Liu, C. M.; Zhang, H. T.; Yang, Z. L.; Zhang, Y.; Sun, Y.; Mitrovic, S. M.; Yu, Q.; Lim, R. P.

    2015-11-01

    Aquatic ecological rehabilitation is attracting increasing public and research attention, but without knowledge of the responses of aquatic species to their habitats the success of habitat restoration is uncertain. Thus efficient study of species response to habitat, through which to prioritize the habitat factors influencing aquatic ecosystems, is highly important. However many current models have too high requirement for assemblage information and have great bias in results due to consideration of only the species' attribute of presence/absence, abundance or biomass, thus hindering the wider utility of these models. This paper, using fish as a case, presents a framework for identification of high-priority habitat factors based on the responses of aquatic species to their habitats, using presence/absence, abundance and biomass data. This framework consists of four newly developed sub-models aiming to determine weightings for the evaluation of species' contributions to their communities, to quantitatively calculate an integrated habitat suitability index for multi-species based on habitat factors, to assess the suitable probability of habitat factors and to assess the rehabilitation priority of habitat factors. The framework closely links hydrologic, physical and chemical habitat factors to fish assemblage attributes drawn from monitoring datasets on hydrology, water quality and fish assemblages at a total of 144 sites, where 5084 fish were sampled and tested. Breakpoint identification techniques based on curvature in cumulated dominance along with a newly developed weighting calculation model based on theory of mass systems were used to help identify the dominant fish, based on which the presence and abundance of multiple fish were normalized to estimate the integrated habitat suitability index along gradients of various factors, based on their variation with principal habitat factors. Then, the appropriate probability of every principal habitat factor was

  16. Tidal Creek Sentinel Habitat Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ecological Research, Assessment and Prediction's Tidal Creeks: Sentinel Habitat Database was developed to support the National Oceanic and Atmospheric...

  17. Ground beetle habitat templets and riverbank integrity

    OpenAIRE

    Van Looy, Kris; Vanacker, Stijn; Jochems, Hans; De Blust, Geert; Dufrêne, M

    2006-01-01

    The habitat templet approach was used in a scale-sensitive bioindicator assessment for the ecological integrity of riverbanks and for specific responses to river management. Ground beetle habitat templets were derived from a catchment scale sampling, integrating the overall variety of bank types. This coarse-filter analysis was integrated in the reach scale fine-filtering approaches of community responses to habitat integrity and river management impacts. Higher species diversity was associat...

  18. Habitat connectivity and fragmented nuthatch populations in agricultural landscapes

    OpenAIRE

    Langevelde, van, F.

    1999-01-01

    In agricultural landscapes, the habitat of many species is subject to fragmentation. When the habitat of a species is fragmented and the distances between patches of habitat are large relative to the movement distances of the species, it can be expected that the degree of habitat connectivity affects processes at population and individual level. In this thesis, I report on a study of effects of habitat fragmentation and opportunities to mitigate these effects by planning ecological n...

  19. Population status, distribution and habitat association of waterbuck ...

    African Journals Online (AJOL)

    As part of ecological studies of larger mammals in Chebera Churchura National Park, southwestern Ethiopia, population, distribution and habitat association of the waterbuck, Kobus ellipsiprymnus ellipsiprymnus were studied during wet and dry seasons of 2013–2014. Representative transects across the main habitat types ...

  20. Three-dimensional habitat structure and landscape genetics: a step forward in estimating functional connectivity.

    Science.gov (United States)

    Milanesi, P; Holderegger, R; Bollmann, K; Gugerli, F; Zellweger, F

    2017-02-01

    Estimating connectivity among fragmented habitat patches is crucial for evaluating the functionality of ecological networks. However, current estimates of landscape resistance to animal movement and dispersal lack landscape-level data on local habitat structure. Here, we used a landscape genetics approach to show that high-fidelity habitat structure maps derived from Light Detection and Ranging (LiDAR) data critically improve functional connectivity estimates compared to conventional land cover data. We related pairwise genetic distances of 128 Capercaillie (Tetrao urogallus) genotypes to least-cost path distances at multiple scales derived from land cover data. Resulting β values of linear mixed effects models ranged from 0.372 to 0.495, while those derived from LiDAR ranged from 0.558 to 0.758. The identification and conservation of functional ecological networks suffering from habitat fragmentation and homogenization will thus benefit from the growing availability of detailed and contiguous data on three-dimensional habitat structure and associated habitat quality. © 2016 by the Ecological Society of America.

  1. ENERGETIC EXTREMES IN REEF FISH OCCUPYING HARSH HABITATS

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2009-01-01

    document how relatively small changes in fin morphology has afforded some coral reef fish taxa with exceptional locomotor performance and energetic efficiency, and how this key attribute may have played a key role in the evolution and ecology of several diverse Indo-Pacific reef fish families. Using......-finned counterparts. We discuss how such differences in locomotor efficiency are pivotal to the habitat-use of these fishes, and how eco-energetic models may be used to provide new insights into spatial variations in fish demography and ecology among coral reef habitat zones....

  2. Valuation of ecological resources

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.J.; Bilyard, G.R.; Link, S.O.; Ricci, P.F.; Seely, H.E.; Ulibarri, C.A.; Westerdahl, H.E.

    1995-04-01

    Ecological resources are resources that have functional value to ecosystems. Frequently, these functions are overlooked in terms of the value they provide to humans. Environmental economics is in search of an appropriate analysis framework for such resources. In such a framework, it is essential to distinguish between two related subsets of information: (1) ecological processes that have intrinsic value to natural ecosystems; and (2) ecological functions that are values by humans. The present study addresses these concerns by identifying a habitat that is being displaced by development, and by measuring the human and ecological values associated with the ecological resources in that habitat. It is also essential to determine which functions are mutually exclusive and which are, in effect, complementary or products of joint production. The authors apply several resource valuation tools, including contingent valuation methodology (CVM), travel cost methodology (TCM), and hedonic damage-pricing (HDP). One way to derive upper-limit values for more difficult-to-value functions is through the use of human analogs, because human-engineered systems are relatively inefficient at supplying the desired services when compared with natural systems. Where data on the relative efficiencies of natural systems and human analogs exist, it is possible to adjust the costs of providing the human analog by the relative efficiency of the natural system to obtain a more realistic value of the function under consideration. The authors demonstrate this approach in an environmental economic case study of the environmental services rendered by shrub-steppe habitats of Benton County, Washington State.

  3. The development of water quality methods within ecological ...

    African Journals Online (AJOL)

    The development of water quality methods within ecological Reserve ... Water Act (NWA, No 36 of 1998), the ecological Reserve is defined as the quality and quantity ... provide ecologically important flow-related habitat, or geomorphological ...

  4. beta-diversity and species accumulation in antarctic coastal benthos: influence of habitat, distance and productivity on ecological connectivity.

    Directory of Open Access Journals (Sweden)

    Simon F Thrush

    Full Text Available High Antarctic coastal marine environments are comparatively pristine with strong environmental gradients, which make them important places to investigate biodiversity relationships. Defining how different environmental features contribute to shifts in beta-diversity is especially important as these shifts reflect both spatio-temporal variations in species richness and the degree of ecological separation between local and regional species pools. We used complementary techniques (species accumulation models, multivariate variance partitioning and generalized linear models to assess how the roles of productivity, bio-physical habitat heterogeneity and connectivity change with spatial scales from metres to 100's of km. Our results demonstrated that the relative importance of specific processes influencing species accumulation and beta-diversity changed with increasing spatial scale, and that patterns were never driven by only one factor. Bio-physical habitat heterogeneity had a strong influence on beta-diversity at scales 40 km. Our analysis supports the emphasis on the analysis of diversity relationships across multiple spatial scales and highlights the unequal connectivity of individual sites to the regional species pool. This has important implications for resilience to habitat loss and community homogenisation, especially for Antarctic benthic communities where rates of recovery from disturbance are slow, there is a high ratio of poor-dispersing and brooding species, and high biogenic habitat heterogeneity and spatio-temporal variability in primary production make the system vulnerable to disturbance. Consequently, large areas need to be included within marine protected areas for effective management and conservation of these special ecosystems in the face of increasing anthropogenic disturbance.

  5. beta-diversity and species accumulation in antarctic coastal benthos: influence of habitat, distance and productivity on ecological connectivity.

    Science.gov (United States)

    Thrush, Simon F; Hewitt, Judi E; Cummings, Vonda J; Norkko, Alf; Chiantore, Mariachiara

    2010-07-30

    High Antarctic coastal marine environments are comparatively pristine with strong environmental gradients, which make them important places to investigate biodiversity relationships. Defining how different environmental features contribute to shifts in beta-diversity is especially important as these shifts reflect both spatio-temporal variations in species richness and the degree of ecological separation between local and regional species pools. We used complementary techniques (species accumulation models, multivariate variance partitioning and generalized linear models) to assess how the roles of productivity, bio-physical habitat heterogeneity and connectivity change with spatial scales from metres to 100's of km. Our results demonstrated that the relative importance of specific processes influencing species accumulation and beta-diversity changed with increasing spatial scale, and that patterns were never driven by only one factor. Bio-physical habitat heterogeneity had a strong influence on beta-diversity at scales 40 km. Our analysis supports the emphasis on the analysis of diversity relationships across multiple spatial scales and highlights the unequal connectivity of individual sites to the regional species pool. This has important implications for resilience to habitat loss and community homogenisation, especially for Antarctic benthic communities where rates of recovery from disturbance are slow, there is a high ratio of poor-dispersing and brooding species, and high biogenic habitat heterogeneity and spatio-temporal variability in primary production make the system vulnerable to disturbance. Consequently, large areas need to be included within marine protected areas for effective management and conservation of these special ecosystems in the face of increasing anthropogenic disturbance.

  6. Habitat y ecología de la pobreza

    Directory of Open Access Journals (Sweden)

    Antonio Eduardo Daher Hechem

    2016-05-01

    Full Text Available No existe solo una geografía de la pobreza, también una ecología de la pobreza. La pobreza se ha urbanizado proporcionalmente más que la población, y la ecología de la pobreza ha conformado ecosistemas metropolitanos marcados por la adaptación para sobrevivir. En ellos, la degradación social se correlaciona con la degradación ambiental. El artículo trata de la ecología humana, la ecología de la pobreza y el hábitat de los pobres. No casualmente entre los primeros modelos urbanos están los basados en la “ecología humana”, sosteniendo que la segregación social es también ecológica. Y actualmente la vivienda y los servicios básicos, mayoritariamente urbanos, son variables relevantes en la medición de la pobreza multidimensional. En la ecología de la pobreza, la especie humana, la más protegida legalmente, resulta habitualmente la más depredada por su propia especie, como recurso sobreexplotado o subutilizado, fluctuando entre mercancía y cesantía. Los pobres, segregados y exiliados extramuros de la ciudad, habitan en áreas de riesgo ecológico, con densidades y promiscuidades patológicas, en relaciones ecosistémicas críticas social y ambientalmente. Son lugares estigmatizados y poblaciones discriminadas que sobreviven en condiciones suburbanas, peor aún, infraurbanas e infrahumanas. 

  7. What is dental ecology?

    Science.gov (United States)

    Cuozzo, Frank P; Sauther, Michelle L

    2012-06-01

    Teeth have long been used as indicators of primate ecology. Early work focused on the links between dental morphology, diet, and behavior, with more recent years emphasizing dental wear, microstructure, development, and biogeochemistry, to understand primate ecology. Our study of Lemur catta at the Beza Mahafaly Special Reserve, Madagascar, has revealed an unusual pattern of severe tooth wear and frequent tooth loss, primarily the result of consuming a fallback food for which these primates are not dentally adapted. Interpreting these data was only possible by combining our areas of expertise (dental anatomy [FC] and primate ecology [MS]). By integrating theoretical, methodological, and applied aspects of both areas of research, we adopted the term "dental ecology"-defined as the broad study of how teeth respond to the environment. Specifically, we view dental ecology as an interpretive framework using teeth as a vehicle for understanding an organism's ecology, which builds upon earlier work, but creates a new synthesis of anatomy and ecology that is only possible with detailed knowledge of living primates. This framework includes (1) identifying patterns of dental pathology and tooth use-wear, within the context of feeding ecology, behavior, habitat variation, and anthropogenic change, (2) assessing ways in which dental development and biogeochemical signals can reflect habitat, environmental change and/or stress, and (3) how dental microstructure and macro-morphology are adapted to, and reflect feeding ecology. Here we define dental ecology, provide a short summary of the development of this perspective, and place our new work into this context. Copyright © 2012 Wiley Periodicals, Inc.

  8. Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird

    OpenAIRE

    Hollander, Franck A.; Van Dyck, Hans; San Martin, Gilles; Titeux, Nicolas

    2015-01-01

    In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius ...

  9. The ecological impacts of marine debris

    NARCIS (Netherlands)

    Rochman, Chelsea M.; Browne, Mark Anthony; Underwood, A.J.; Franeker, Van Jan A.; Thompson, Richard C.; Amaral-Zettler, Linda A.

    2016-01-01

    Anthropogenic debris contaminates marine habitats globally, leading to several perceived ecological impacts. Here, we critically and systematically review the literature regarding impacts of debris from several scientific fields to understand the weight of evidence regarding the ecological

  10. Factors Influencing Expanded Use of Urban Marine Habitats by Foraging Wading Birds

    Science.gov (United States)

    Urban marine habitats are often utilized by wildlife for foraging and other activities despite surrounding anthropogenic impact or disturbance. However little is known of the ecological factors that determine habitat value of these and other remnant natural habitats. We examine...

  11. Application of network methods for understanding evolutionary dynamics in discrete habitats.

    Science.gov (United States)

    Greenbaum, Gili; Fefferman, Nina H

    2017-06-01

    In populations occupying discrete habitat patches, gene flow between habitat patches may form an intricate population structure. In such structures, the evolutionary dynamics resulting from interaction of gene-flow patterns with other evolutionary forces may be exceedingly complex. Several models describing gene flow between discrete habitat patches have been presented in the population-genetics literature; however, these models have usually addressed relatively simple settings of habitable patches and have stopped short of providing general methodologies for addressing nontrivial gene-flow patterns. In the last decades, network theory - a branch of discrete mathematics concerned with complex interactions between discrete elements - has been applied to address several problems in population genetics by modelling gene flow between habitat patches using networks. Here, we present the idea and concepts of modelling complex gene flows in discrete habitats using networks. Our goal is to raise awareness to existing network theory applications in molecular ecology studies, as well as to outline the current and potential contribution of network methods to the understanding of evolutionary dynamics in discrete habitats. We review the main branches of network theory that have been, or that we believe potentially could be, applied to population genetics and molecular ecology research. We address applications to theoretical modelling and to empirical population-genetic studies, and we highlight future directions for extending the integration of network science with molecular ecology. © 2017 John Wiley & Sons Ltd.

  12. 78 FR 38897 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Arctostaphylos...

    Science.gov (United States)

    2013-06-28

    ... habitat within the Presidio; and (3) restoring the natural ecological interactions of the species with its... ecological interactions of the species with its habitat or areas with additional management that may be...-0067; 4500030114] RIN 1018-AY63 Endangered and Threatened Wildlife and Plants; Designation of Critical...

  13. Ecological periodic tables for estuarine habitats

    Science.gov (United States)

    Southwood (1977; J Anim Ecol 46: 337-365) compared the situation in ecology to that in chemistry before the development of the periodic table when each fact, for example, the solubility or reactivity of a chemical element, had to be discovered independently and remembered in isol...

  14. Introduction of geospatial perspective to the ecology of fish-habitat relationships in Indonesian coral reefs: A remote sensing approach

    Science.gov (United States)

    Sawayama, Shuhei; Nurdin, Nurjannah; Akbar AS, Muhammad; Sakamoto, Shingo X.; Komatsu, Teruhisa

    2015-06-01

    Coral reef ecosystems worldwide are now being harmed by various stresses accompanying the degradation of fish habitats and thus knowledge of fish-habitat relationships is urgently required. Because conventional research methods were not practical for this purpose due to the lack of a geospatial perspective, we attempted to develop a research method integrating visual fish observation with a seabed habitat map and to expand knowledge to a two-dimensional scale. WorldView-2 satellite imagery of Spermonde Archipelago, Indonesia obtained in September 2012 was analyzed and classified into four typical substrates: live coral, dead coral, seagrass and sand. Overall classification accuracy of this map was 81.3% and considered precise enough for subsequent analyses. Three sub-areas (CC: continuous coral reef, BC: boundary of coral reef and FC: few live coral zone) around reef slopes were extracted from the map. Visual transect surveys for several fish species were conducted within each sub-area in June 2013. As a result, Mean density (Ind. / 300 m2) of Chaetodon octofasciatus, known as an obligate feeder of corals, was significantly higher at BC than at the others (p < 0.05), implying that this species' density is strongly influenced by spatial configuration of its habitat, like the "edge effect." This indicates that future conservation procedures for coral reef fishes should consider not only coral cover but also its spatial configuration. The present study also indicates that the introduction of a geospatial perspective derived from remote sensing has great potential to progress conventional ecological studies on coral reef fishes.

  15. Effects of trophic ecology and habitat use on maternal transfer of contaminants in four species of young of the year lamniform sharks.

    Science.gov (United States)

    Lyons, Kady; Carlisle, Aaron; Preti, Antonella; Mull, Christopher; Blasius, Mary; O'Sullivan, John; Winkler, Chuck; Lowe, Christopher G

    2013-09-01

    Organic contaminant and total mercury concentrations were compared in four species of lamniform sharks over several age classes to examine bioaccumulation patterns and gain insights into trophic ecology. Contaminants found in young of the year (YOY) sharks were assumed to be derived from maternal sources and used as a proxy to investigate factors that influence maternal offloading processes. YOY white (Carcharodon carcharias) and mako (Isurus oxyrinchus) sharks had comparable and significantly higher concentrations of PCBs, DDTs, pesticides, and mercury than YOY thresher (Alopias vulpinus) or salmon (Lamna ditropis) sharks. A significant positive relationship was found between YOY contaminant loads and maternal trophic position, suggesting that trophic ecology is one factor that plays an important role in maternal offloading. Differences in organic contaminant signatures and contaminant concentration magnitudes among species corroborated what is known about species habitat use and may be used to provide insights into the feeding ecology of these animals. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Trapping Triatominae in Silvatic Habitats

    Directory of Open Access Journals (Sweden)

    Noireau François

    2002-01-01

    Full Text Available Large-scale trials of a trapping system designed to collect silvatic Triatominae are reported. Live-baited adhesive traps were tested in various ecosystems and different triatomine habitats (arboreal and terrestrial. The trials were always successful, with a rate of positive habitats generally over 20% and reaching 48.4% for palm trees of the Amazon basin. Eleven species of Triatominae belonging to the three genera of public health importance (Triatoma, Rhodnius and Panstrongylus were captured. This trapping system provides an effective way to detect the presence of triatomines in terrestrial and arboreal silvatic habitats and represents a promising tool for ecological studies. Various lines of research are contemplated to improve the performance of this trapping system.

  17. OYSTER GROUNDS, A SUPERIOR HABITAT FOR SMALL, SEDIMENT-DWELLING INVERTEBRATES

    Science.gov (United States)

    As part of a programmatic effort to determine estuarine habitat values for ecological risk assessments, quantitative field studies of small, sediment-dwelling invertebrates were conducted in Willapa Bay, WA in July 1998 and Tillamook Bay, OR in July 1999. The six habitats includ...

  18. Microbial ecology of extreme environments: Antarctic dry valley yeasts and growth in substrate-limited habitats

    Science.gov (United States)

    Vishniac, H. S.

    1982-01-01

    The success of the Antarctic Dry Valley yeasts presumeably results from adaptations to multiple stresses, to low temperatures and substrate-limitation as well as prolonged resting periods enforced by low water availability. Previous investigations have suggested that the crucial stress is substrate limitation. Specific adaptations may be pinpointed by comparing the physiology of the Cryptococcus vishniacii complex, the yeasts of the Tyrol Valley, with their congeners from other habitats. Progress was made in methods of isolation and definition of ecological niches, in the design of experiments in competition for limited substrate, and in establishing the relationships of the Cryptococcus vishniacii complex with other yeasts. In the course of investigating relationships, a new method for 25SrRNA homology was developed. For the first time it appears that 25SrRNA homology may reflect parallel or convergent evolution.

  19. Ecological mechanisms linking protected areas to surrounding lands.

    Science.gov (United States)

    Hansen, Andrew J; DeFries, Ruth

    2007-06-01

    Land use is expanding and intensifying in the unprotected lands surrounding many of the world's protected areas. The influence of this land use change on ecological processes is poorly understood. The goal of this paper is to draw on ecological theory to provide a synthetic framework for understanding how land use change around protected areas may alter ecological processes and biodiversity within protected areas and to provide a basis for identifying scientifically based management alternatives. We first present a conceptual model of protected areas embedded within larger ecosystems that often include surrounding human land use. Drawing on case studies in this Invited Feature, we then explore a comprehensive set of ecological mechanisms by which land use on surrounding lands may influence ecological processes and biodiversity within reserves. These mechanisms involve changes in ecosystem size, with implications for minimum dynamic area, species-area effect, and trophic structure; altered flows of materials and disturbances into and out of reserves; effects on crucial habitats for seasonal and migration movements and population source/sink dynamics; and exposure to humans through hunting, poaching, exotics species, and disease. These ecological mechanisms provide a basis for assessing the vulnerability of protected areas to land use. They also suggest criteria for designing regional management to sustain protected areas in the context of surrounding human land use. These design criteria include maximizing the area of functional habitats, identifying and maintaining ecological process zones, maintaining key migration and source habitats, and managing human proximity and edge effects.

  20. Multi-scale habitat selection modeling: A review and outlook

    Science.gov (United States)

    Kevin McGarigal; Ho Yi Wan; Kathy A. Zeller; Brad C. Timm; Samuel A. Cushman

    2016-01-01

    Scale is the lens that focuses ecological relationships. Organisms select habitat at multiple hierarchical levels and at different spatial and/or temporal scales within each level. Failure to properly address scale dependence can result in incorrect inferences in multi-scale habitat selection modeling studies.

  1. Long-term feeding ecology and habitat use in harbour porpoises Phocoena phocoena from Scandinavian waters inferred from trace elements and stable isotopes

    Directory of Open Access Journals (Sweden)

    Gobert Sylvie

    2007-01-01

    Full Text Available Abstract Background We investigated the feeding ecology and habitat use of 32 harbour porpoises by-caught in 4 localities along the Scandinavian coast from the North Sea to the Barents Sea using time-integrative markers: stable isotopes (δ13C, δ15N and trace elements (Zn, Cu, Fe, Se, total Hg and Cd, in relation to habitat characteristics (bathymetry and geographic position (latitude. Results Among the trace elements analysed, only Cd, with an oceanic specific food origin, was found to be useful as an ecological tracer. All other trace elements studied were not useful, most likely because of physiological regulation and/or few specific sources in the food web. The δ13C, δ15N signatures and Cd levels were highly correlated with each other, as well as with local bathymetry and geographic position (latitude. Variation in the isotopic ratios indicated a shift in harbour porpoise's feeding habits from pelagic prey species in deep northern waters to more coastal and/or demersal prey in the relatively shallow North Sea and Skagerrak waters. This result is consistent with stomach content analyses found in the literature. This shift was associated with a northward Cd-enrichment which provides further support to the Cd 'anomaly' previously reported in polar waters and suggests that porpoises in deep northern waters include Cd-contaminated prey in their diet, such as oceanic cephalopods. Conclusion As stable isotopes and Cd provide information in the medium and the long term respectively, the spatial variation found, shows that harbour porpoises experience different ecological regimes during the year along the Scandinavian coasts, adapting their feeding habits to local oceanographic conditions, without performing extensive migration.

  2. Long-term feeding ecology and habitat use in harbour porpoises Phocoena phocoena from Scandinavian waters inferred from trace elements and stable isotopes.

    Science.gov (United States)

    Fontaine, Michaël C; Tolley, Krystal A; Siebert, Ursula; Gobert, Sylvie; Lepoint, Gilles; Bouquegneau, Jean-Marie; Das, Krishna

    2007-01-17

    We investigated the feeding ecology and habitat use of 32 harbour porpoises by-caught in 4 localities along the Scandinavian coast from the North Sea to the Barents Sea using time-integrative markers: stable isotopes (delta13C, delta15N) and trace elements (Zn, Cu, Fe, Se, total Hg and Cd), in relation to habitat characteristics (bathymetry) and geographic position (latitude). Among the trace elements analysed, only Cd, with an oceanic specific food origin, was found to be useful as an ecological tracer. All other trace elements studied were not useful, most likely because of physiological regulation and/or few specific sources in the food web. The delta13C, delta15N signatures and Cd levels were highly correlated with each other, as well as with local bathymetry and geographic position (latitude). Variation in the isotopic ratios indicated a shift in harbour porpoise's feeding habits from pelagic prey species in deep northern waters to more coastal and/or demersal prey in the relatively shallow North Sea and Skagerrak waters. This result is consistent with stomach content analyses found in the literature. This shift was associated with a northward Cd-enrichment which provides further support to the Cd 'anomaly' previously reported in polar waters and suggests that porpoises in deep northern waters include Cd-contaminated prey in their diet, such as oceanic cephalopods. As stable isotopes and Cd provide information in the medium and the long term respectively, the spatial variation found, shows that harbour porpoises experience different ecological regimes during the year along the Scandinavian coasts, adapting their feeding habits to local oceanographic conditions, without performing extensive migration.

  3. Framework for ecological risk assessment

    International Nuclear Information System (INIS)

    Rodier, D.; Norton, S.

    1992-02-01

    Increased interest in ecological issues such as global climate change, habitat loss, acid deposition, reduced biological diversity, and the ecological impacts of pesticides and toxic chemicals prompts this U.S. Environmental Protection Agency (EPA) report, A Framework for Ecological Risk Assessment ('Framework Report'). The report describes basic elements, or a framework, for evaluating scientific information on the adverse effects of physical and chemical stressors on the environment. The framework offers starting principles and a simple structure as guidance for current ecological risk assessments and as a foundation for future EPA proposals for risk assessment guidelines

  4. Ecological periodic tables for benthic macrofaunal usage of estuarine habitats

    Science.gov (United States)

    Southwood (1977: Journal of Animal Ecology 46: 337-365), in his presidential address to the British Ecological Society, compared the situation in ecology to that in chemistry before the development of the chemical periodic table when each fact, for example, the solubility or reac...

  5. Seasonal habitat associations of the wolverine in central Idaho

    Science.gov (United States)

    Jeffrey P. Copeland; James M. Peek; Craig R. Groves; Wayne E. Melquist; Kevin S. Mckelvey; Gregory W. McDaniel; Clinton D. Long; Charles E. Harris

    2007-01-01

    Although understanding habitat relationships remains fundamental to guiding wildlife management, these basic prerequisites remain vague and largely unstudied for the wolverine. Currently, a study of wolverine ecology conducted in Montana, USA, in the 1970s is the sole source of information on habitat requirements of wolverines in the conterminous United States. The...

  6. Habitat Re-Creation (Ecological Restoration) as a Strategy for Conserving Insect Communities in Highly Fragmented Landscapes.

    Science.gov (United States)

    Shuey, John A

    2013-12-05

    Because of their vast diversity, measured by both numbers of species as well as life history traits, insects defy comprehensive conservation planning. Thus, almost all insect conservation efforts target individual species. However, serious insect conservation requires goals that are set at the faunal level and conservation success requires strategies that conserve intact communities. This task is complicated in agricultural landscapes by high levels of habitat fragmentation and isolation. In many regions, once widespread insect communities are now functionally trapped on islands of ecosystem remnants and subject to a variety of stressors associated with isolation, small population sizes and artificial population fragmentation. In fragmented landscapes ecological restoration can be an effective strategy for reducing localized insect extinction rates, but insects are seldom included in restoration design criteria. It is possible to incorporate a few simple conservation criteria into restoration designs that enhance impacts to entire insect communities. Restoration can be used as a strategy to address fragmentation threats to isolated insect communities if insect communities are incorporated at the onset of restoration planning. Fully incorporating insect communities into restoration designs may increase the cost of restoration two- to three-fold, but the benefits to biodiversity conservation and the ecological services provided by intact insect communities justify the cost.

  7. Market Squid Ecology Dataset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains ecological information collected on the major adult spawning and juvenile habitats of market squid off California and the US Pacific Northwest....

  8. Habitat Fragmentation and Native Bees: a Premature Verdict?

    Directory of Open Access Journals (Sweden)

    James H. Cane

    2001-06-01

    Full Text Available Few studies directly address the consequences of habitat fragmentation for communities of pollinating insects, particularly for the key pollinator group, bees (Hymenoptera: Apiformes. Bees typically live in habitats where nesting substrates and bloom are patchily distributed and spatially dissociated. Bee studies have all defined habitat fragments as remnant patches of floral hosts or forests, overlooking the nesting needs of bees. Several authors conclude that habitat fragmentation is broadly deleterious, but their own data show that some native species proliferate in sampled fragments. Other studies report greater densities and comparable diversities of native bees at flowers in some fragment size classes relative to undisrupted habitats, but find dramatic shifts in species composition. Insightful studies of habitat fragmentation and bees will consider fragmentation, alteration, and loss of nesting habitats, not just patches of forage plants, as well as the permeability of the surrounding matrix to interpatch movement. Inasmuch as the floral associations and nesting habits of bees are often attributes of species or subgenera, ecological interpretations hinge on authoritative identifications. Study designs must accommodate statistical problems associated with bee community samples, especially non-normal data and frequent zero values. The spatial scale of fragmentation must be appreciated: bees of medium body size can regularly fly 1-2 km from nest site to forage patch. Overall, evidence for prolonged persistence of substantial diversity and abundances of native bee communities in habitat fragments of modest size promises practical solutions for maintaining bee populations. Provided that reserve selection, design, and management can address the foraging and nesting needs of bees, networks of even small reserves may hold hope for sustaining considerable pollinator diversity and the ecological services pollinators provide.

  9. The Amazing Ecology of Terrestrial Isopods

    Science.gov (United States)

    Dobson, Christopher; Postema, Dan

    2014-01-01

    Ecology is the study of how organisms interact with their environment, and the best place to see these interactions is outside in natural habitats. Pillbugs (roly-polies) provide an excellent opportunity for students to learn ecological concepts through inquiry. Because of their fascinating behaviors, pillbugs are ideal organisms to introduce…

  10. Ecological periodic tables for US Pacific Northwest estuarine habitats

    Science.gov (United States)

    In his presidential address to the British Ecological Society, T.R.E. Southwood (1977; J Anim Ecol (1977), 46: 337-365) compared the situation in ecology to that in chemistry before the development of the periodic table when each fact, for example, the solubility or reactivity of...

  11. Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sobocinski, Kathryn; Johnson, Gary; Sather, Nichole [Pacific Northwest National Laboratory

    2008-03-17

    This document is the first annual report for the study titled 'Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River'. Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program. The goal of the 2007-2009 Tidal Freshwater Monitoring Study is to answer the following questions: In what types of habitats within the tidal freshwater area of the lower Columbia River and estuary (LCRE; Figure 1) are yearling and subyearling salmonids found, when are they present, and under what environmental conditions?1 And, what is the ecological importance2 of shallow (0-5 m) tidal freshwater habitats to the recovery of Upper Columbia River spring Chinook salmon and steelhead and Snake River fall Chinook salmon? Research in 2007 focused mainly on the first question, with fish stock identification data providing some indication of Chinook salmon presence at the variety of habitat types sampled. The objectives and sub-objectives for the 2007 study were as follows: (1) Habitat and Fish Community Characteristics-Provide basic data on habitat and fish community characteristics for yearling and subyearling salmonids at selected sites in the tidal freshwater reach in the vicinity of the Sandy River delta. (1a) Characterize vegetation assemblage percent cover, conventional water quality, substrate composition, and beach slope at each of six sampling sites in various tidal freshwater habitat types. (1b

  12. Early life history and habitat ecology of estuarine fishes: responses to natural and human induced change

    Directory of Open Access Journals (Sweden)

    Kenneth Able

    2015-12-01

    Full Text Available Our understanding of the early life history of fishes and their habitats has proceeded from basic natural history to ecology, but we often need to return to natural history to address deficiencies in conceptual and quantitative models of ecosystems. This understanding is further limited by the complex life history of fishes and the lack of appreciation of shifting baselines in estuaries. These inadequacies are especially evident when we try to address the effects of human influences, e.g. fishing, urbanization, and climate change. Often our baselines are inadequate or inaccurate. Our work has detected these along the coasts of the U.S. in extensive time series of larval fish ingress into estuaries, studies of the effects of urbanization, and responses to catastrophes such as the BP oil spill. Long-term monitoring, especially, continues to provide critical insights

  13. Evolution and adaptation of marine annelids in interstitial and cave habitats

    DEFF Research Database (Denmark)

    Martinez Garcia, Alejandro

    relatives in cave subterranean ecological refugia. Active colonization and ecological speciation to particular cave niches has been alternatively suggested, but the evaluation of that scenario is obscured by the dominance of crustaceans in anchialine habitats, ecologically similar out and inside caves....... The main goal of this thesis is to explore the evolutionary processes behind colonization and adaptation to submarine cave ecosystems in the Atlantic Ocean using annelids as a model, mainly when they involved ancestrally interstitial forms. In order to do that, we studied selected lineages of annelids...... with cave and interstitial representatives, mainly the families Protodrilidae, Nerillidae, Saccocirridae and Scalibregmatidae. The studies combined the characterization of ancestral and cave habitats, with morphological investigations and phylogenetic analyses founded on extensive taxon coverage...

  14. Seascape ecology in Posidonia oceanica seagrass meadows: Linking structure and ecological processes for management

    OpenAIRE

    Abadie, Arnaud; Pace, Matthew; Gobert, Sylvie; Borg, Joseph

    2018-01-01

    Seagrass meadows constitute marine habitats in shallow water temperate and tropical coastal areas worldwide that have a high ecological and economic importance. Amongst the 60 or so seagrass species, the endemic Mediterranean species Posidonia oceanica forms meadows that are arguably the most important shallow water coastal habitat in the region but which are subjected to high anthropogenic pressures. Because of the relatively large size of the plant, the meadows formed by this seagrass have ...

  15. Habitat Evaluation Procedures Report; Graves Property - Yakama Nation.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul; Muse, Anthony

    2008-02-01

    A habitat evaluation procedures (HEP) analysis was conducted on the Graves property (140 acres) in June 2007 to determine the number of habitat units to credit Bonneville Power Administration (BPA) for providing funds to acquire the property as partial mitigation for habitat losses associated with construction of McNary Dam. HEP surveys also documented the general ecological condition of the property. The Graves property was significantly damaged from past/present livestock grazing practices. Baseline HEP surveys generated 284.28 habitat units (HUs) or 2.03 HUs per acre. Of these, 275.50 HUs were associated with the shrubsteppe/grassland cover type while 8.78 HUs were tied to the riparian shrub cover type.

  16. Chapter 5: Application of state-and-transition models to evaluate wildlife habitat

    Science.gov (United States)

    Anita T. Morzillo; Pamela Comeleo; Blair Csuti; Stephanie Lee

    2014-01-01

    Wildlife habitat analysis often is a central focus of natural resources management and policy. State-and-transition models (STMs) allow for simulation of landscape level ecological processes, and for managers to test “what if” scenarios of how those processes may affect wildlife habitat. This chapter describes the methods used to link STM output to wildlife habitat to...

  17. Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird.

    Science.gov (United States)

    Hollander, Franck A; Van Dyck, Hans; San Martin, Gilles; Titeux, Nicolas

    2015-01-01

    In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio) that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments.

  18. Variation in the response of an Arctic top predator experiencing habitat loss: feeding and reproductive ecology of two polar bear populations.

    Science.gov (United States)

    Rode, Karyn D; Regehr, Eric V; Douglas, David C; Durner, George; Derocher, Andrew E; Thiemann, Gregory W; Budge, Suzanne M

    2014-01-01

    Polar bears (Ursus maritimus) have experienced substantial changes in the seasonal availability of sea ice habitat in parts of their range, including the Beaufort, Chukchi, and Bering Seas. In this study, we compared the body size, condition, and recruitment of polar bears captured in the Chukchi and Bering Seas (CS) between two periods (1986-1994 and 2008-2011) when declines in sea ice habitat occurred. In addition, we compared metrics for the CS population 2008-2011 with those of the adjacent southern Beaufort Sea (SB) population where loss in sea ice habitat has been associated with declines in body condition, size, recruitment, and survival. We evaluated how variation in body condition and recruitment were related to feeding ecology. Comparing habitat conditions between populations, there were twice as many reduced ice days over continental shelf waters per year during 2008-2011 in the SB than in the CS. CS polar bears were larger and in better condition, and appeared to have higher reproduction than SB bears. Although SB and CS bears had similar diets, twice as many bears were fasting in spring in the SB than in the CS. Between 1986-1994 and 2008-2011, body size, condition, and recruitment indices in the CS were not reduced despite a 44-day increase in the number of reduced ice days. Bears in the CS exhibited large body size, good body condition, and high indices of recruitment compared to most other populations measured to date. Higher biological productivity and prey availability in the CS relative to the SB, and a shorter recent history of reduced sea ice habitat, may explain the maintenance of condition and recruitment of CS bears. Geographic differences in the response of polar bears to climate change are relevant to range-wide forecasts for this and other ice-dependent species. © 2013 John Wiley & Sons Ltd.

  19. Variation in the response of an Arctic top predator experiencing habitat loss: Feeding and reproductive ecology of two polar bear populations

    Science.gov (United States)

    Rode, Karyn D.; Regehr, Eric V.; Douglas, David C.; Durner, George M.; Derocher, Andrew E.; Thiemann, Gregory W.; Budge, Suzanne M.

    2014-01-01

    Polar bears (Ursus maritimus) have experienced substantial changes in the seasonal availability of sea ice habitat in parts of their range, including the Beaufort, Chukchi, and Bering Seas. In this study, we compared the body size, condition, and recruitment of polar bears captured in the Chukchi and Bering Seas (CS) between two periods (1986–1994 and 2008–2011) when declines in sea ice habitat occurred. In addition, we compared metrics for the CS population 2008–2011 with those of the adjacent southern Beaufort Sea (SB) population where loss in sea ice habitat has been associated with declines in body condition, size, recruitment, and survival. We evaluated how variation in body condition and recruitment were related to feeding ecology. Comparing habitat conditions between populations, there were twice as many reduced ice days over continental shelf waters per year during 2008–2011 in the SB than in the CS. CS polar bears were larger and in better condition, and appeared to have higher reproduction than SB bears. Although SB and CS bears had similar diets, twice as many bears were fasting in spring in the SB than in the CS. Between 1986–1994 and 2008–2011, body size, condition, and recruitment indices in the CS were not reduced despite a 44-day increase in the number of reduced ice days. Bears in the CS exhibited large body size, good body condition, and high indices of recruitment compared to most other populations measured to date. Higher biological productivity and prey availability in the CS relative to the SB, and a shorter recent history of reduced sea ice habitat, may explain the maintenance of condition and recruitment of CS bears. Geographic differences in the response of polar bears to climate change are relevant to range-wide forecasts for this and other ice-dependent species.

  20. Genetic divergence across habitats in the widespread coral Seriatopora hystrix and its associated Symbiodinium.

    Directory of Open Access Journals (Sweden)

    Pim Bongaerts

    2010-05-01

    Full Text Available Coral reefs are hotspots of biodiversity, yet processes of diversification in these ecosystems are poorly understood. The environmental heterogeneity of coral reef environments could be an important contributor to diversification, however, evidence supporting ecological speciation in corals is sparse. Here, we present data from a widespread coral species that reveals a strong association of host and symbiont lineages with specific habitats, consistent with distinct, sympatric gene pools that are maintained through ecologically-based selection.Populations of a common brooding coral, Seriatopora hystrix, were sampled from three adjacent reef habitats (spanning a approximately 30 m depth range at three locations on the Great Barrier Reef (n = 336. The populations were assessed for genetic structure using a combination of mitochondrial (putative control region and nuclear (three microsatellites markers for the coral host, and the ITS2 region of the ribosomal DNA for the algal symbionts (Symbiodinium. Our results show concordant genetic partitioning of both the coral host and its symbionts across the different habitats, independent of sampling location.This study demonstrates that coral populations and their associated symbionts can be highly structured across habitats on a single reef. Coral populations from adjacent habitats were found to be genetically isolated from each other, whereas genetic similarity was maintained across similar habitat types at different locations. The most parsimonious explanation for the observed genetic partitioning across habitats is that adaptation to the local environment has caused ecological divergence of distinct genetic groups within S. hystrix.

  1. SRS ECOLOGY ENVIRONMENTAL INFORMATION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    Wike, L; Doug Martin, D; Eric Nelson, E; Nancy Halverson, N; John Mayer, J; Michael Paller, M; Rodney Riley, R; Michael Serrato, M

    2006-03-01

    The SRS Ecology Environmental Information Document (EEID) provides a source of information on the ecology of Savannah River Site (SRS). The SRS is a U.S. Department of Energy (DOE)--owned property on the upper Atlantic Coastal Plain of South Carolina, centered approximately 40 kilometers (25 miles) southeast of Augusta, Georgia. The entire site was designated a National Environmental Research Park in 1972 by the Atomic Energy Commission, the predecessor of DOE. This document summarizes and synthesizes ecological research and monitoring conducted on the three main types of ecosystems found at SRS: terrestrial, wetland and aquatic. It also summarizes the available information on the threatened and endangered species found on the Savannah River Site. SRS is located along the Savannah River and encompasses an area of 80,267 hectares (310 square miles) in three South Carolina counties. It contains diverse habitats, flora, and fauna. Habitats include upland terrestrial areas, wetlands, streams, reservoirs, and the adjacent Savannah River. These diverse habitats support a variety of plants and animals, including many commercially or recreationally valuable species and several rare, threatened, or endangered species. Soils are the basic terrestrial resource, influencing the development of terrestrial biological communities. Many different soils exist on the SRS, from hydric to well-drained, and from sand to clay. In general, SRS soils are predominantly well-drained loamy sands.

  2. Landscape ecological planning: Integrating land use and wildlife conservation for biomass crops

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, A.

    1995-12-31

    What do a mussel shoat, a zoo, and a biomass plantation have in common? Each can benefit from ecology-based landscape planning. This paper provides examples of landscape ecological planning from some diverse projects the author has worked on, and discusses how processes employed and lessons learned from these projects are being used to help answer questions about the effects of biomass plantings (hardwood tree crops and native grasses) on wildlife habitat. Biomass environmental research is being designed to assess how plantings of different acreage, composition and landscape context affect wildlife habitat value, and is addressing the cumulative effect on wildlife habitat of establishing multiple biomass plantations across the landscape. Through landscape ecological planning, answers gleaned from research can also help guide biomass planting site selection and harvest strategies to improve habitat for native wildlife species within the context of economically viable plantation management - thereby integrating the needs of people with those of the environment.

  3. Do oxygen isotope values in collagen reflect the ecology and physiology of neotropical mammals?

    Directory of Open Access Journals (Sweden)

    Brooke eCrowley

    2015-11-01

    Full Text Available Stable isotope data provide insight into the foraging ecology of animals. Traditionally, carbon and nitrogen isotope values have been used to infer dietary and habitat preferences. Oxygen isotopes are used less frequently but may complement the ecological information provided by carbon and nitrogen, particularly in densely forested or arid environments. Additionally, because oxygen is preserved in both bioapatite and collagen, it is useful for paleoecological studies. To investigate the suitability of oxygen isotopes for complementing and building on ecological applications of carbon and nitrogen isotopes, we analyze all three isotopes in bone collagen for nearly identical assemblages of Costa Rican mammals in two ecologically distinct habitats - a evergreen rainforest and a seasonal dry forest. We assess the degree to which differences in habitat, activity pattern, diet, arboreality, and thermoregulation are revealed by each of the isotope systems. Our results highlight the potential of oxygen isotopes in modern and paleoecological contexts. In addition to reflecting habitat type, oxygen isotope values in collagen distinguish species on the basis of vertical habitat stratification and drinking behavior. Within a locality, individuals with low oxygen isotope values likely track meteoric water, whereas those with elevated values most likely consume evaporatively-enriched plant tissues, such as canopy leaves. These patterns will be useful in reconstructing paleoenvironments and interpreting ecological differences among taxa both extant and extinct.

  4. GPS-tracking and colony observations reveal variation in offshore habitat use and foraging ecology of breeding Sandwich Terns

    Science.gov (United States)

    Fijn, R. C.; de Jong, J.; Courtens, W.; Verstraete, H.; Stienen, E. W. M.; Poot, M. J. M.

    2017-09-01

    Breeding success of seabirds critically depends on their foraging success offshore. However, studies combining at-sea tracking and visual provisioning observations are scarce, especially for smaller species of seabirds. This study is the first in which breeding Sandwich Terns were tracked with GPS-loggers to collect detailed data on foraging habitat use in four breeding seasons. The maximum home range of individual Sandwich Terns comprised approximately 1900 km2 and the average foraging range was 27 km. Trip durations were on average 135 min with average trip lengths of 67 km. Actual foraging behaviour comprised 35% of the time budget of a foraging trip. Substantial year-to-year variation was found in habitat use and trip variables, yet with the exception of 2012, home range size remained similar between years. Food availability, chick age and environmental conditions are proposed as the main driving factors between inter- and intra-annual variations in trip variables. Our multi-method approach also provided geo-referenced information on prey presence and we conclude that future combining of colony observations and GPS-loggers deployments can potentially provide a near complete insight into the feeding ecology of breeding Sandwich Terns, including the behaviour of birds at sea.

  5. The indicative map of the pan-European ecological network in Western Europe : technical background report

    OpenAIRE

    Jongman, R.H.G.; Bouwma, I.M.; Doorn, van, A.M.

    2006-01-01

    The Pan European Ecological Network for Western Europe is the third project in developing the Pan European Ecological Network The objective of the Pan-European Ecological Network is to develop a vision for a coherent network of high value areas for biodiversity, as internationally and nationally protected areas in combination with other suitable habitat areas for long term favourable conservation of Europe’s key ecosystems, habitats and species

  6. Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird.

    Directory of Open Access Journals (Sweden)

    Franck A Hollander

    Full Text Available In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments.

  7. Road–side herbaceous vegetation: life history groups and habitat preferences

    Czech Academy of Sciences Publication Activity Database

    Šerá, Božena

    2010-01-01

    Roč. 58, č. 1 (2010), s. 69-79 ISSN 1505-2249 R&D Projects: GA MŠk(CZ) OC 350.002 Institutional research plan: CEZ:AV0Z60870520 Keywords : road-side vegetation * road ecology * life form * life history * habitat preference * alien species Subject RIV: EH - Ecology, Behaviour Impact factor: 0.542, year: 2010

  8. Ecological relations between fish assemblages and their habitats in the Elbe River (ELFI). Final report; Oekologische Zusammenhaenge zwischen Fischgemeinschafts- und Lebensraumstrukturen der Elbe (ELFI). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Nellen, W.; Kausch, H.; Thiel, R.; Ginter, R. (eds.)

    2002-12-01

    In the framework of the joint project, extensive data were obtained with regard to ecomorphology and hydro-dynamics of fish habitats, species diversity, age structure, abundance, habitat quality, habitat use, larval drift, migrations, growth, health status and population genetics of the fish fauna of the middle Elbe River. The data were stored in data banks and were used as basis to assess the middle Elbe River, to formulate a fish-ecological guiding view, and to develop predictive habitat models for different life stages of indicatory fish species. The data and results of the joint project will be stored in fish data banks of the ARGE Elbe and of the Federal Institute of Hydrology. The information is useful for the development of decision support systems. (orig.) [German] Im Rahmen des Verbundprojekts wurden umfangreiche Daten zu Oekomorphologie und Hydrodynamik von Fischhabitaten, zu Artendiversitaet, Altersstruktur, Abundanz, Habitatqualitaet und -nutzung, Larvendrift, Wanderungen, Wachstum, Gesundheitsstatus und Populationsgenetik der Fischfauna in der Mittelelbe erhoben und in Datenbanken abgelegt. Darauf aufbauend wurde die Mittelelbe fischoekologisch bewertet, ein fischoekologisches Leitbild formuliert und prognosefaehige Habitatmodelle fuer verschiedene Lebensstadien von Indikatorfischarten entwickelt. Die Daten und Ergebnisse des Verbundprojekts fliessen in die Fischdatenbanken der ARGE Elbe und der Bundesanstalt fuer Gewaesserkunde ein und stehen fuer die Entwicklung von DSS (Decision Support Systems) zur Verfuegung. (orig.)

  9. How Facilitation May Interfere with Ecological Speciation

    Directory of Open Access Journals (Sweden)

    P. Liancourt

    2012-01-01

    Full Text Available Compared to the vast literature linking competitive interactions and speciation, attempts to understand the role of facilitation for evolutionary diversification remain scarce. Yet, community ecologists now recognize the importance of positive interactions within plant communities. Here, we examine how facilitation may interfere with the mechanisms of ecological speciation. We argue that facilitation is likely to (1 maintain gene flow among incipient species by enabling cooccurrence of adapted and maladapted forms in marginal habitats and (2 increase fitness of introgressed forms and limit reinforcement in secondary contact zones. Alternatively, we present how facilitation may favour colonization of marginal habitats and thus enhance local adaptation and ecological speciation. Therefore, facilitation may impede or pave the way for ecological speciation. Using a simple spatially and genetically explicit modelling framework, we illustrate and propose some first testable ideas about how, when, and where facilitation may act as a cohesive force for ecological speciation. These hypotheses and the modelling framework proposed should stimulate further empirical and theoretical research examining the role of both competitive and positive interactions in the formation of incipient species.

  10. Anthropogenic areas as incidental substitutes for original habitat.

    Science.gov (United States)

    Martínez-Abraín, Alejandro; Jiménez, Juan

    2016-06-01

    One speaks of ecological substitutes when an introduced species performs, to some extent, the ecosystem function of an extirpated native species. We suggest that a similar case exists for habitats. Species evolve within ecosystems, but habitats can be destroyed or modified by natural and human-made causes. Sometimes habitat alteration forces animals to move to or remain in a suboptimal habitat type. In that case, the habitat is considered a refuge, and the species is called a refugee. Typically refugee species have lower population growth rates than in their original habitats. Human action may lead to the unintended generation of artificial or semiartificial habitat types that functionally resemble the essential features of the original habitat and thus allow a population growth rate of the same magnitude or higher than in the original habitat. We call such areas substitution habitats and define them as human-made habitats within the focal species range that by chance are partial substitutes for the species' original habitat. We call species occupying a substitution habitat adopted species. These are 2 new terms in conservation biology. Examples of substitution habitats are dams for European otters, wheat and rice fields for many steppeland and aquatic birds, and urban areas for storks, falcons, and swifts. Although substitution habitats can bring about increased resilience against the agents of global change, the conservation of original habitat types remains a conservation priority. © 2016 Society for Conservation Biology.

  11. Ecological aspects of parasitology

    National Research Council Canada - National Science Library

    Kennedy, Clive Russell

    1976-01-01

    ... of these habitats that enable them to cope with and overcome these difficulties. The third section is concerned with population ecology, and emphasises that although individual parasites have to face and overcome particular problems, parasitism is essentially a dynamic relationship between two species populations.

  12. Habitat-specific morphological variation among threespine sticklebacks (Gasterosteus aculeatus within a drainage basin.

    Directory of Open Access Journals (Sweden)

    Mike M Webster

    Full Text Available Habitat-specific morphological variation, often corresponding to resource specialization, is well documented in freshwater fishes. In this study we used landmark based morphometric analyses to investigate morphological variation among threespine sticklebacks (Gasterosteus aculeatus L. from four interconnected habitat types within a single lowland drainage basin in eastern England. These included the upper and lower reaches of the river, the estuary, a connected ditch network and a coastal salt marsh. We found significant habitat-specific differences in morphology, with three axes of variation describing differences in orbit diameter, body depth, caudal peduncle shape and pectoral fin positioning as well as variation in relative dorsal and pelvic spine size. Interestingly, the ditch system, an artificial and heavily managed habitat, is populated by sticklebacks with a characteristic morphology, suggesting that human management of habitats can in some circumstances lead to morphological variation among the animals that inhabit them. We discuss the mechanisms that conceivably underlie the observed morphological variation and the further work necessary to identify them. Finally, we consider the implications of habitat-specific body shape variation for the behavioural ecology of this ecologically generalist species.

  13. Habitat-Specific Morphological Variation among Threespine Sticklebacks (Gasterosteus aculeatus) within a Drainage Basin

    Science.gov (United States)

    Webster, Mike M.; Atton, Nicola; Hart, Paul J. B.; Ward, Ashley J. W.

    2011-01-01

    Habitat-specific morphological variation, often corresponding to resource specialization, is well documented in freshwater fishes. In this study we used landmark based morphometric analyses to investigate morphological variation among threespine sticklebacks (Gasterosteus aculeatus L.) from four interconnected habitat types within a single lowland drainage basin in eastern England. These included the upper and lower reaches of the river, the estuary, a connected ditch network and a coastal salt marsh. We found significant habitat-specific differences in morphology, with three axes of variation describing differences in orbit diameter, body depth, caudal peduncle shape and pectoral fin positioning as well as variation in relative dorsal and pelvic spine size. Interestingly, the ditch system, an artificial and heavily managed habitat, is populated by sticklebacks with a characteristic morphology, suggesting that human management of habitats can in some circumstances lead to morphological variation among the animals that inhabit them. We discuss the mechanisms that conceivably underlie the observed morphological variation and the further work necessary to identify them. Finally, we consider the implications of habitat-specific body shape variation for the behavioural ecology of this ecologically generalist species. PMID:21698269

  14. Our use, misuse, and abandonment of a concept: Whither habitat?

    Science.gov (United States)

    Kirk, David Anthony; Park, Allysia C; Smith, Adam C; Howes, Briar J; Prouse, Brigid K; Kyssa, Naschelly G; Fairhurst, Elizabeth N; Prior, Kent A

    2018-04-01

    The foundational concept of habitat lies at the very root of the entire science of ecology, but inaccurate use of the term compromises scientific rigor and communication among scientists and nonscientists. In 1997, Hall, Krausman & Morrison showed that 'habitat' was used correctly in only 55% of articles. We ask whether use of the term has been more accurate since their plea for standardization and whether use varies across the broader range of journals and taxa in the contemporary literature (1998-2012). We searched contemporary literature for 'habitat' and habitat-related terms, ranking usage as either correct or incorrect, following a simplified version of Hall et al.'s definitions. We used generalized linear models to compare use of the term in contemporary literature with the papers reviewed by Hall et al. and to test the effects of taxa, journal impact in the contemporary articles and effects due to authors that cited Hall et al. Use of the term 'habitat' has not improved; it was still only used correctly about 55% of the time in the contemporary data. Proportionately more correct uses occurred in articles that focused on animals compared to ones that included plants, and papers that cited Hall et al. did use the term correctly more often. However, journal impact had no effect. Some habitat terms are more likely to be misused than others, notably 'habitat type', usually used to refer to vegetation type, and 'suitable habitat' or 'unsuitable habitat', which are either redundant or nonsensical by definition. Inaccurate and inconsistent use of the term can lead to (1) misinterpretation of scientific findings; (2) inefficient use of conservation resources; (3) ineffective identification and prioritization of protected areas; (4) limited comparability among studies; and (5) miscommunication of science-based findings. Correct usage would improve communication with scientists and nonscientists, thereby benefiting conservation efforts, and ecology as a science.

  15. Freshwater ecosystems and resilience of Pacific salmon: Habitat Management based on natural variability

    Science.gov (United States)

    Bisson, P.A.; Dunham, J.B.; Reeves, G.H.

    2009-01-01

    In spite of numerous habitat restoration programs in fresh waters with an aggregate annual funding of millions of dollars, many populations of Pacific salmon remain significantly imperiled. Habitat restoration strategies that address limited environmental attributes and partial salmon life-history requirements or approaches that attempt to force aquatic habitat to conform to idealized but ecologically unsustainable conditions may partly explain this lack of response. Natural watershed processes generate highly variable environmental conditions and population responses, i.e., multiple life histories, that are often not considered in restoration. Examples from several locations underscore the importance of natural variability to the resilience of Pacific salmon. The implication is that habitat restoration efforts will be more likely to foster salmon resilience if they consider processes that generate and maintain natural variability in fresh water. We identify three specific criteria for management based on natural variability: the capacity of aquatic habitat to recover from disturbance, a range of habitats distributed across stream networks through time sufficient to fulfill the requirements of diverse salmon life histories, and ecological connectivity. In light of these considerations, we discuss current threats to habitat resilience and describe how regulatory and restoration approaches can be modified to better incorporate natural variability. ?? 2009 by the author(s).

  16. Freshwater Ecosystems and Resilience of Pacific Salmon: Habitat Management Based on Natural Variability

    Directory of Open Access Journals (Sweden)

    Peter A. Bisson

    2009-06-01

    Full Text Available In spite of numerous habitat restoration programs in fresh waters with an aggregate annual funding of millions of dollars, many populations of Pacific salmon remain significantly imperiled. Habitat restoration strategies that address limited environmental attributes and partial salmon life-history requirements or approaches that attempt to force aquatic habitat to conform to idealized but ecologically unsustainable conditions may partly explain this lack of response. Natural watershed processes generate highly variable environmental conditions and population responses, i.e., multiple life histories, that are often not considered in restoration. Examples from several locations underscore the importance of natural variability to the resilience of Pacific salmon. The implication is that habitat restoration efforts will be more likely to foster salmon resilience if they consider processes that generate and maintain natural variability in fresh water. We identify three specific criteria for management based on natural variability: the capacity of aquatic habitat to recover from disturbance, a range of habitats distributed across stream networks through time sufficient to fulfill the requirements of diverse salmon life histories, and ecological connectivity. In light of these considerations, we discuss current threats to habitat resilience and describe how regulatory and restoration approaches can be modified to better incorporate natural variability.

  17. The significance of the Danube ecological corridor in the proceedings of implementing ecological networks in Serbia

    Directory of Open Access Journals (Sweden)

    Filipović Dejan

    2015-01-01

    Full Text Available With the modern processes for exploiting land people have altered the original appearance of areas and created cultural environments. The remaining natural environments, whether protected or not, take up a relatively small portion of space and represent isolated islands which in itself can not be sufficient for the preservation of biodiversity or for the fulfillment of national, regional or international goals and commitments related to their preservation. In order to secure the preservation of biodiversity, the strengthening of integrity and the natural processes, such as animal migrations, succession of vegetation and evolution processes, the communication between natural habitats is imperative. Ecological corridors, as integral elements of ecological networks, ensure the preservation of vital ecological interactions by providing a connection between different habitats or areas. Depending on a range of factors, from the fulfillment of demands of different species to the connecting of regions, corridors of local, sub-regional, regional and international importance are identified. The Danube ecological corridor is one of the most significant corridors of international importance which encompasses a large number of habitats which are part of the natural watercourse of the corridor. There are numerous protected areas in the Danube coastal area on Serbia's territory which present themselves as central areas for forming the ecological network, such as: Gornje Podunavlje, Karađorđevo, Fruška Gora, Titelski Breg hill, Kovalski rit marsh, Dunavski loess bluffs, the Sava mouth, Labudovo okno, Deliblato sands, Đerdap and Mala Vrbica. The diverse and mosaic vegetation of the floodplain, as well as the consistency of the protected areas within the Danube corridor have a direct influence on the quality and functionality of this corridor. The goal of this paper is to show the significance of the Danube ecological corridor in the process of implementing

  18. Assessing habitat connectivity for ground-dwelling animals in an urban environment.

    Science.gov (United States)

    Braaker, S; Moretti, M; Boesch, R; Ghazoul, J; Obrist, M K; Bontadina, F

    To ensure viable species populations in fragmented landscapes, individuals must be able to move between suitable habitat patches. Despite the increased interest in biodiversity assessment in urban environments, the ecological relevance of habitat connectivity in highly fragmented landscapes remains largely unknown. The first step to understanding the role of habitat connectivity in urban ecology is the challenging task of assessing connectivity in the complex patchwork of contrasting habitats that is found in cities. We developed a data-based framework, minimizing the use of subjective assumptions, to assess habitat connectivity that consists of the following sequential steps: (1) identification of habitat preference based on empirical habitat-use data; (2) derivation of habitat resistance surfaces evaluating various transformation functions; (3) modeling of different connectivity maps with electrical circuit theory (Circuitscape), a method considering all possible pathways across the landscape simultaneously; and (4) identification of the best connectivity map with information-theoretic model selection. We applied this analytical framework to assess habitat connectivity for the European hedgehog Erinaceus europaeus, a model species for ground-dwelling animals, in the city of Zurich, Switzerland, using GPS track points from 40 individuals. The best model revealed spatially explicit connectivity “pinch points,” as well as multiple habitat connections. Cross-validation indicated the general validity of the selected connectivity model. The results show that both habitat connectivity and habitat quality affect the movement of urban hedgehogs (relative importance of the two variables was 19.2% and 80.8%, respectively), and are thus both relevant for predicting urban animal movements. Our study demonstrates that even in the complex habitat patchwork of cities, habitat connectivity plays a major role for ground-dwelling animal movement. Data-based habitat connectivity

  19. Habitat damage, marine reserves, and the value of spatial management

    KAUST Repository

    Moeller, Holly V.

    2013-07-01

    The biological benefits of marine reserves have garnered favor in the conservation community, but "no-take" reserve implementation is complicated by the economic interests of fishery stakeholders. There are now a number of studies examining the conditions under which marine reserves can provide both economic and ecological benefits. A potentially important reality of fishing that these studies overlook is that fishing can damage the habitat of the target stock. Here, we construct an equilibrium bioeconomic model that incorporates this habitat damage and show that the designation of marine reserves, coupled with the implementation of a tax on fishing effort, becomes both biologically and economically favorable as habitat sensitivity increases. We also study the effects of varied degrees of spatial control on fisheries management. Together, our results provide further evidence for the potential monetary and biological value of spatial management, and the possibility of a mutually beneficial resolution to the fisherman-conservationist marine reserve designation dilemma. © 2013 by the Ecological Society of America.

  20. Ecological aspects of the casque-headed frog Aparasphenodon brunoi (Anura, Hylidae in a Restinga habitat in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Daniel Oliveira Mesquita

    2004-09-01

    Full Text Available We describe some aspects of the ecology of Aparasphenodon brunoi, a species associated with bromeliads. We comment on the relationships of this species with bromeliad size, microhabitat use, diet and sexual dimorphism. This study was conducted on a Restinga habitat near Presidente Kennedy, state of Espírito Santo, southeastern coast of Brazil. When the animals were found inside the bromeliads, we measure bromeliad and head size of frogs. We analyzed stomach contents and determined the sex and reproductive condition. We found 17 individuals (58.6% in bromeliad leafs, six (20.7% in Cactaceae, three (10.3% in liana and three (10.3% on trunks. The correlation between head measurements and bromeliad size were high, indicating that animals apparently use bromeliads based on their size, which could be related to the minimization of water loss. The most common prey items were beetles, ants, and insect larvae, suggesting that the species is relatively generalist in prey consumption. Aparasphenodon brunoi showed significant sexual size and shape dimorphism with females having larger bodies than males (size and females having tibia, eye diameter and SVL larger than males (shape, but larger sample size and more detailed ecological and life history data are needed to elucidate the factors that have led to sexual size dimorphism.

  1. Structural complexity, movement bias, and metapopulation extinction risk in dendritic ecological networks

    Science.gov (United States)

    Campbell Grant, Evan H.

    2011-01-01

    Spatial complexity in metacommunities can be separated into 3 main components: size (i.e., number of habitat patches), spatial arrangement of habitat patches (network topology), and diversity of habitat patch types. Much attention has been paid to lattice-type networks, such as patch-based metapopulations, but interest in understanding ecological networks of alternative geometries is building. Dendritic ecological networks (DENs) include some increasingly threatened ecological systems, such as caves and streams. The restrictive architecture of dendritic ecological networks might have overriding implications for species persistence. I used a modeling approach to investigate how number and spatial arrangement of habitat patches influence metapopulation extinction risk in 2 DENs of different size and topology. Metapopulation persistence was higher in larger networks, but this relationship was mediated by network topology and the dispersal pathways used to navigate the network. Larger networks, especially those with greater topological complexity, generally had lower extinction risk than smaller and less-complex networks, but dispersal bias and magnitude affected the shape of this relationship. Applying these general results to real systems will require empirical data on the movement behavior of organisms and will improve our understanding of the implications of network complexity on population and community patterns and processes.

  2. Ecology and social system of northern gibbons living in cold seasonal forests.

    Science.gov (United States)

    Guan, Zhen-Hua; Ma, Chang-Yong; Fei, Han-Lan; Huang, Bei; Ning, Wen-He; Ni, Qing-Yong; Jiang, Xue-Long; Fan, Peng-Fei

    2018-07-18

    Gibbons in China represent the northernmost margin of present day gibbon species distribution (around N25°). Compared to tropical habitats, northern gibbon habitats are characterized by low temperatures and remarkable seasonal variation in fruit abundance. How gibbons adapt to their cold and seasonal habitats and what ecological factors affect their sociality are key questions for understanding their ecology and social system evolution, the elucidation of which will contribute to the conservation of these special populations/species. According to preliminary short-term studies, northern gibbons consume more leaves and use larger home ranges than tropical gibbons. Interestingly, some Nomascus groups consist of more than one adult female. However, these preliminary results are not well understood or incorporated into current socio-ecological theories regarding gibbon species. To better understand northern gibbons, our team has systematically studied three habituated groups of Nomascus concolor, three groups of N. nasutus, and two habituated groups of Hoolock tianxing since 2002. In this paper, we stress the challenges facing gibbons living in northern habitats and summarize their behavioral adaptations to their harsh environments. We also describe the northern gibbon social system and discuss the potential relationships between their ecology and sociality. Finally, we highlight future research questions related to northern gibbons in China.

  3. Ecology and social system of northern gibbons living in cold seasonal forests

    Directory of Open Access Journals (Sweden)

    Zhen-Hua Guan

    2018-07-01

    Full Text Available Gibbons in China represent the northernmost margin of present day gibbon species distribution (around N25°. Compared to tropical habitats, northern gibbon habitats are characterized by low temperatures and remarkable seasonal variation in fruit abundance. How gibbons adapt to their cold and seasonal habitats and what ecological factors affect their sociality are key questions for understanding their ecology and social system evolution, the elucidation of which will contribute to the conservation of these special populations/species. According to preliminary short-term studies, northern gibbons consume more leaves and use larger home ranges than tropical gibbons. Interestingly, some Nomascus groups consist of more than one adult female. However, these preliminary results are not well understood or incorporated into current socio-ecological theories regarding gibbon species. To better understand northern gibbons, our team has systematically studied three habituated groups of Nomascus concolor, three groups of N. nasutus, and two habituated groups of Hoolock tianxing since 2002. In this paper, we stress the challenges facing gibbons living in northern habitats and summarize their behavioral adaptations to their harsh environments. We also describe the northern gibbon social system and discuss the potential relationships between their ecology and sociality. Finally, we highlight future research questions related to northern gibbons in China.

  4. Spatial assessment of landscape ecological connectivity in different urban gradient.

    Science.gov (United States)

    Park, Sohyun

    2015-07-01

    Urbanization has resulted in remnant natural patches within cities that often have no connectivity among themselves and to natural reserves outside the urban area. Protecting ecological connectivity in fragmented urban areas is becoming crucial in maintaining urban biodiversity and securing critical habitat levels and configurations under continual development pressures. Nevertheless, few studies have been undertaken for urban landscapes. This study aims to assess ecological connectivity for a group of species that represent the urban desert landscape in the Phoenix metropolitan area and to compare the connectivity values along the different urban gradient. A GIS-based landscape connectivity model which relies upon ecological connectivity index (ECI) was developed and applied to this region. A GIS-based concentric buffering technique was employed to delineate conceptual boundaries for urban, suburban, and rural zones. The research findings demonstrated that urban habitats and potential habitat patches would be significantly influenced by future urban development. Particularly, the largest loss of higher connectivity would likely to be anticipated in the "in-between areas" where urban, suburban, and rural zones overlap one another. The connectivity maps would be useful to provide spatial identification regarding connectivity patterns and vulnerability for urban and suburban activities in this area. This study provides planners and landscape architects with a spatial guidance to minimize ecological fragmentation, which ultimately leads to urban landscape sustainability. This study suggests that conventional planning practices which disregard the ecological processes in urban landscapes need to integrate landscape ecology into planning and design strategies.

  5. Mapping anuran habitat suitability to estimate effects of grassland and wetland conservation programs

    Science.gov (United States)

    Mushet, David M.; Euliss, Ned H.; Stockwell, Craig A.

    2012-01-01

    The conversion of the Northern Great Plains of North America to a landscape favoring agricultural commodity production has negatively impacted wildlife habitats. To offset impacts, conservation programs have been implemented by the U.S. Department of Agriculture and other agencies to restore grassland and wetland habitat components. To evaluate effects of these efforts on anuran habitats, we used call survey data and environmental data in ecological niche factor analyses implemented through the program Biomapper to quantify habitat suitability for five anuran species within a 196 km2 study area. Our amphibian call surveys identified Northern Leopard Frogs (Lithobates pipiens), Wood Frogs (Lithobates sylvaticus), Boreal Chorus Frogs (Pseudacris maculata), Great Plains Toads (Anaxyrus cognatus), and Woodhouse’s Toads (Anaxyrus woodhousii) occurring within the study area. Habitat suitability maps developed for each species revealed differing patterns of suitable habitat among species. The most significant findings of our mapping effort were 1) the influence of deep-water overwintering wetlands on suitable habitat for all species encountered except the Boreal Chorus Frog; 2) the lack of overlap between areas of core habitat for both the Northern Leopard Frog and Wood Frog compared to the core habitat for both toad species; and 3) the importance of conservation programs in providing grassland components of Northern Leopard Frog and Wood Frog habitat. The differences in habitats suitable for the five species we studied in the Northern Great Plains, i.e., their ecological niches, highlight the importance of utilizing an ecosystem based approach that considers the varying needs of multiple species in the development of amphibian conservation and management plans.

  6. River Cetaceans and Habitat Change: Generalist Resilience or Specialist Vulnerability?

    Directory of Open Access Journals (Sweden)

    Brian D. Smith

    2012-01-01

    Full Text Available River dolphins are among the world’s most threatened mammals, and indeed the baiji (Lipotes vexillifer, a species endemic to China's Yangtze River, is likely extinct. Exploitation for products such as meat, oil, and skins has been a lesser feature in the population histories of river dolphins compared to most large mammals. Habitat factors are therefore of particular interest and concern. In this paper we attempt to describe the population-level responses of river dolphins to habitat transformation. We find circumstantial but compelling evidence supporting the view that, at a local scale, river dolphins are opportunists (generalists capable of adapting to a wide range of habitat conditions while, at a river basin scale, they are more appropriately viewed as vulnerable specialists. The same evidence implies that the distributional responses of river dolphins to basinwide ecological change can be informative about their extinction risk, while their local behaviour patterns may provide important insights about critical ecological attributes. Empirical studies are needed on the ecology of river cetaceans, both to inform conservation efforts on behalf of these threatened animals and to help address broader concerns related to biodiversity conservation and the sustainability of human use in several of the world's largest river systems.

  7. DIDSON ultrasonic video data - Untrawlable Habitat Strategic Initiative

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NWFSC FRAM Marine Habitat Ecology Team is involved in many aspects of the UHSI program but has focused on the application of DIDSON imaging sonars to aid in...

  8. Life stage and species identity affect whether habitat subsidies enhance or simply redistribute consumer biomass.

    Science.gov (United States)

    Keller, Danielle A; Gittman, Rachel K; Bouchillon, Rachel K; Fodrie, F Joel

    2017-10-01

    Quantifying the response of mobile consumers to changes in habitat availability is essential for determining the degree to which population-level productivity is habitat limited rather than regulated by other, potentially density-independent factors. Over landscape scales, this can be explored by monitoring changes in density and foraging as habitat availability varies. As habitat availability increases, densities may: (1) decrease (unit-area production decreases; weak habitat limitation); (2) remain stable (unit-area production remains stable; habitat limitation) or (3) increase (unit-area production increases; strong habitat limitation). We tested the response of mobile estuarine consumers over 5 months to changes in habitat availability in situ by comparing densities and feeding rates on artificial reefs that were or were not adjacent to neighbouring artificial reefs or nearby natural reefs. Using either constructed or natural reefs to manipulate habitat availability, we documented threefold density decreases among juvenile stone crabs as habitat increased (i.e. weak habitat imitation). However, for adult stone crabs, density remained stable across treatments, demonstrating that habitat limitation presents a bottleneck in this species' later life history. Oyster toadfish densities also did not change with increasing habitat availability (i.e. habitat limitation), but densities of other cryptic fishes decreased as habitat availability increased (i.e. weak limitation). Feeding and abundance data suggested that some mobile fishes experience habitat limitation, or, potentially in one case, strong limitation across our habitat manipulations. These findings of significant, community-level habitat limitation provide insight into how global declines in structurally complex estuarine habitats may have reduced the fishery production of coastal ecosystems. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  9. Ecological indicators of Tuber aestivum habitats in temperate European beech forests

    Czech Academy of Sciences Publication Activity Database

    Moser, B.; Büntgen, Ulf; Molinier, V.; Peter, M.; Sproll, L.; Stobbe, U.; Tegel, W.; Egli, S.

    2017-01-01

    Roč. 29, oct (2017), s. 59-66 ISSN 1754-5048 R&D Projects: GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : Burgundy truffle * Carpinus betulus forest * Ecological indicator values * Fagus sylvatica forest * Potential distribution of Tuber aestivum * Truffle ecology Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 3.219, year: 2016

  10. Ubiquity of Polynucleobacter necessarius subspecies asymbioticus results from ecological diversification

    Science.gov (United States)

    Jezbera, Jan; Jezberová, Jitka; Brandt, Ulrike; Hahn, Martin W

    2011-01-01

    The subspecies Polynucleobacter necessarius asymbioticus (> 99% 16S rRNA similarity) has a cosmopolitan distribution and a ubiquitous occurrence in lentic freshwater habitats. We tested if the observed ubiquity of these free-living planktonic freshwater bacteria results from a euryoecious (generalist) adaptation of P. n. asymbioticus strains, or from ecological diversification within the subspecies. We developed a reverse line blot hybridization assay enabling the cultivation-independent detection of 13 groups within the subspecies in environmental samples. A set of 121 lentic freshwater habitats, spanning a broad variety of habitat types (e.g. pH levels ranging from 3.8 to 8.5) was investigated for the presence of these 13 P. n. asymbioticus groups. Statistical analyses of the reverse line blot hybridization detections revealed pronounced differences in habitat preferences of several of the groups. Their preferences differed regarding pH, conductivity, dissolved organic carbon and oxygen concentration of habitats. For some groups, differences in environmental preferences resulted even in complete niche separation between them. The revealed differences in habitat preferences suggest that the previously reported ubiquity of P. n. asymbioticus results from ecological diversification within the taxon and not from generalist adaptation of strains. PMID:21208356

  11. Habitat use in south-west European skinks (genus Chalcides

    Directory of Open Access Journals (Sweden)

    Daniel Escoriza

    2018-01-01

    Full Text Available Background Congeneric species of reptiles frequently exhibit partitioning in terms of their use of habitats or trophic resources in order to reduce competition. In this study, we investigated habitat use by two species of European skinks: Chalcides bedriagai and Chalcides striatus, based on 49 records from southern France, Spain, and Portugal. Methods We measured three levels of niche descriptors: macroscale (climate, topography, and substrate, mesoscale (plant associations, and microscale (vegetation cover and shelters. We assessed the associations between these environmental descriptors and the occurrence of the skinks. Results Our results showed that the two species occupied opposite extremes of the ecological gradient i.e., C. bedriagai in semi-arid environments and C. striatus in temperate-oceanic environments, but there was broad ecological overlap in transitional climates at all of the habitat scales examined. This overlap was demonstrated by the presence of syntopy in geographically distant sites with different environmental characteristics. Discussion The morphological differences between the two species, and possibly their different use of microhabitats, might favor this mesoscale overlap between congeneric species, which is relatively unusual in Mediterranean lizards.

  12. Edge Effects and Ecological Traps: Effects on Shrubland Birds in Missouri

    Science.gov (United States)

    April A. Woodward; Alix D. Fink; Frank R. Thompson III

    2001-01-01

    The effect of habitat edge on avian nesting success has been the focus of considerable debate. We studied relationships between habitat edges, locations of nests, and predation. We tested the ecological trap hypothesis for 5 shrubland bird species in the Missouri Ozarks. We compared habitat selection and daily nest predation rates among 3 distance-to-edge categories....

  13. PROFILE: Integrated Management to Create New Breeding Habitat for Dalmatian Pelicans (Pelecanus crispus) in Greece

    Science.gov (United States)

    Pyrovetsi

    1997-09-01

    / An integrated management plan to create favorable nesting habitat for the world-endangered Dalmatian pelicans, was tested at Kerkini irrigation reservoir, a Ramsar wetland. The lake is the major wintering site of Dalmatian pelicans in Europe, where the species lives year-round without breeding. The rise of water level at the reservoir during spring (exceeding 5 m) has an impact on the whole system, including several birds, which lose their nesting habitat. Although the integrity of the wetland demands ecological restoration with changes in its hydrologic regime, local socioeconomic conditions allow only habitat level interventions. During the planning phase of the management plan, both the ecological and social context of the interventions were considered. Monitoring of all pelican habitats and populations provided the scientific basis, while a socioecological survey on knowledge/attitudes of local fishermen toward wetland identified conflicts with specific resources and planned management. To gain public support, a broad information/education program was implemented. The education program for fishermen was based on the findings of the socioecological survey. The in situ management involved experimental construction of floating rafts, platforms over water, dredged-spoil islands, and platforms at various sites of the wetland. Monitoring of the managed habitats showed that most waterbirds used them for resting and roosting. Common terns nested on the rafts, cormorants on the platforms, and Dalmatian pelicans on the man-made island. Under the prevailing hydrologic and weather conditions, islands seem to be the most suitable habitat for pelican nesting. It is concluded that wildlife habitat management should integrate the ecological component, related to the needs of the species and ecosystem, with the social one, expressed by cooperation and involvement of the local community.KEY WORDS: Integrated management; Pelican; Nesting habitat; Habitat management; Reservoir

  14. Linking effects of anthropogenic debris to ecological impacts

    Science.gov (United States)

    Browne, Mark Anthony; Underwood, A. J.; Chapman, M. G.; Williams, Rob; Thompson, Richard C.; van Franeker, Jan A.

    2015-01-01

    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that link effects of debris across lower levels of biological organization to disease and mortality, and (ii) debris is considered non-hazardous by policy-makers, possibly because individuals can be injured or removed from populations and assemblages without ecological impacts. We reviewed the mechanisms that link effects of debris across lower levels of biological organization to assemblages and populations. Using plastic, we show microplastics reduce the ‘health’, feeding, growth and survival of ecosystem engineers. Larger debris alters assemblages because fishing-gear and tyres kill animals and damage habitat-forming plants, and because floating bottles facilitate recruitment and survival of novel taxa. Where ecological linkages are not known, we show how to establish hypothetical links by synthesizing studies to assess the likelihood of impacts. We also consider how population models examine ecological linkages and guide management of ecological impacts. We show that by focusing on linkages to ecological impacts rather than the presence of debris and its sublethal impacts, we could reduce threats posed by debris. PMID:25904661

  15. Regional prediction of basin-scale brown trout habitat suitability

    Directory of Open Access Journals (Sweden)

    S. Ceola

    2014-09-01

    Full Text Available In this study we propose a novel method for the estimation of ecological indices describing the habitat suitability of brown trout (Salmo trutta. Traditional hydrological tools are coupled with an innovative regional geostatistical technique, aiming at the prediction of the brown trout habitat suitability index where partial or totally ungauged conditions occur. Several methods for the assessment of ecological indices are already proposed in the scientific literature, but the possibility of exploiting a geostatistical prediction model, such as Topological Kriging, has never been investigated before. In order to develop a regional habitat suitability model we use the habitat suitability curve, obtained from measured data of brown trout adult individuals collected in several river basins across the USA. The Top-kriging prediction model is then employed to assess the spatial correlation between upstream and downstream habitat suitability indices. The study area is the Metauro River basin, located in the central part of Italy (Marche region, for which both water depth and streamflow data were collected. The present analysis focuses on discharge values corresponding to the 0.1-, 0.5-, 0.9-empirical quantiles derived from flow-duration curves available for seven gauging stations located within the study area, for which three different suitability indices (i.e. ψ10, ψ50 and ψ90 are evaluated. The results of this preliminary analysis are encouraging showing Nash-Sutcliffe efficiencies equal to 0.52, 0.65, and 0.69, respectively.

  16. Regional prediction of basin-scale brown trout habitat suitability

    Science.gov (United States)

    Ceola, S.; Pugliese, A.

    2014-09-01

    In this study we propose a novel method for the estimation of ecological indices describing the habitat suitability of brown trout (Salmo trutta). Traditional hydrological tools are coupled with an innovative regional geostatistical technique, aiming at the prediction of the brown trout habitat suitability index where partial or totally ungauged conditions occur. Several methods for the assessment of ecological indices are already proposed in the scientific literature, but the possibility of exploiting a geostatistical prediction model, such as Topological Kriging, has never been investigated before. In order to develop a regional habitat suitability model we use the habitat suitability curve, obtained from measured data of brown trout adult individuals collected in several river basins across the USA. The Top-kriging prediction model is then employed to assess the spatial correlation between upstream and downstream habitat suitability indices. The study area is the Metauro River basin, located in the central part of Italy (Marche region), for which both water depth and streamflow data were collected. The present analysis focuses on discharge values corresponding to the 0.1-, 0.5-, 0.9-empirical quantiles derived from flow-duration curves available for seven gauging stations located within the study area, for which three different suitability indices (i.e. ψ10, ψ50 and ψ90) are evaluated. The results of this preliminary analysis are encouraging showing Nash-Sutcliffe efficiencies equal to 0.52, 0.65, and 0.69, respectively.

  17. Measurement of the Ecological Integrity of Cerrado Streams Using Biological Metrics and the Index of Habitat Integrity

    Directory of Open Access Journals (Sweden)

    Deusiano Florêncio dos Reis

    2017-01-01

    Full Text Available Generally, aquatic communities reflect the effects of anthropogenic changes such as deforestation or organic pollution. The Cerrado stands among the most threatened ecosystems by human activities in Brazil. In order to evaluate the ecological integrity of the streams in a preserved watershed in the Northern Cerrado biome corresponding to a mosaic of ecosystems in transition to the Amazonia biome in Brazil, biological metrics related to diversity, structure, and sensitivity of aquatic macroinvertebrates were calculated. Sampling included collections along stretches of 200 m of nine streams and measurements of abiotic variables (temperature, electrical conductivity, pH, total dissolved solids, dissolved oxygen, and discharge and the Index of Habitat Integrity (HII. The values of the abiotic variables and the HII indicated that most of the streams have good ecological integrity, due to high oxygen levels and low concentrations of dissolved solids and electric conductivity. Two streams showed altered HII scores mainly related to small dams for recreational and domestic use, use of Cerrado natural pasture for cattle raising, and spot deforestation in bathing areas. However, this finding is not reflected in the biological metrics that were used. Considering all nine streams, only two showed satisfactory ecological quality (measured by Biological Monitoring Working Party (BMWP, total richness, and EPT (Ephemeroptera, Plecoptera, and Trichoptera richness, only one of which had a low HII score. These results indicate that punctual measures of abiotic parameters do not reveal the long-term impacts of anthropic activities in these streams, including related fire management of pasture that annually alters the vegetation matrix and may act as a disturbance for the macroinvertebrate communities. Due to this, biomonitoring of low order streams in Cerrado ecosystems of the Northern Central Brazil by different biotic metrics and also physical attributes of the

  18. The Relationship between Habitat Loss and Fragmentation during Urbanization: An Empirical Evaluation from 16 World Cities.

    Directory of Open Access Journals (Sweden)

    Zhifeng Liu

    Full Text Available Urbanization results in habitat loss and habitat fragmentation concurrently, both influencing biodiversity and ecological processes. To evaluate these impacts, it is important to understand the relationships between habitat loss and habitat fragmentation per se (HLHF during urbanization. The objectives of this study were two-fold: 1 to quantify the different forms of the HLHF relationship during urbanization using multiple landscape metrics, and 2 to test the validity of the HLHF relations reported in the literature. Our analysis was based on a long-term urbanization dataset (1800-2000 of 16 large cities from around the world. Habitat area was represented as the percentage of non-built-up area in the landscape, while habitat fragmentation was measured using several landscape metrics. Our results show that the relationship between habitat loss and habitat fragmentation during urbanization is commonly monotonic-linear, exponential, or logarithmic, indicating that the degree of habitat fragmentation per se increases with habitat loss in general. We compared our results with 14 hypothesized HLHF relationships based on simulated landscapes found in the literature, and found that four of them were consistent with those of urbanization, whereas the other ten were not. Also, we identified six new HLHF relationships when fragmentation was measured by total core area, normalized total core area, patch density, edge density and landscape shape index, respectively. In addition, our study demonstrated that the "space-for-time" approach, frequently used in ecology and geography, generated specious HLHF relationships, suggesting that this approach is largely inappropriate for analyses of urban landscapes that are highly heterogeneous in space and unusually contingent in dynamics. Our results show both generalities and idiosyncrasies of the HLHF relationship, providing new insights for assessing ecological effects of urbanization.

  19. Distribution, habitat and adaptability of the genus Tapirus.

    Science.gov (United States)

    García, Manolo J; Medici, Emília Patrícia; Naranjo, Eduardo J; Novarino, Wilson; Leonardo, Raquel S

    2012-12-01

    In this manuscript, as a starting point, the ancient and current distribution of the genus Tapirus are summarized, from its origins, apparently in Europe, to current ranges. Subsequently, original and current tapir habitats are described, as well as changes in ancient habitats. As the manuscript goes on, we examine the ways in which tapir species interact with their habitats and the main aspects of habitat use, spatial ecology and adaptability. Having reviewed the historic and current distribution of tapirs, as well as their use and selection of habitats, we introduce the concept of adaptability, considering that some of the tapir physiological characteristics and behavioral strategies can reduce the negative impact of habitat alteration and climate change. Finally, we provide recommendations for future research priorities. The conservation community is still missing important pieces of information for the effective conservation of tapirs and their remaining habitats in Central and South America and Southeast Asia. Reconstructing how tapir species reached their current distribution ranges, interpreting how they interact with their habitats and gathering information regarding the strategies they use to cope with habitat changes will increase our understanding about these animals and contribute to the development of conservation strategies. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  20. Linking occurrence and fitness to persistence: Habitat-based approach for endangered Greater Sage-Grouse

    Science.gov (United States)

    Aldridge, Cameron L.; Boyce, Mark S.

    2007-01-01

    Detailed empirical models predicting both species occurrence and fitness across a landscape are necessary to understand processes related to population persistence. Failure to consider both occurrence and fitness may result in incorrect assessments of habitat importance leading to inappropriate management strategies. We took a two-stage approach to identifying critical nesting and brood-rearing habitat for the endangered Greater Sage-Grouse (Centrocercus urophasianus) in Alberta at a landscape scale. First, we used logistic regression to develop spatial models predicting the relative probability of use (occurrence) for Sage-Grouse nests and broods. Secondly, we used Cox proportional hazards survival models to identify the most risky habitats across the landscape. We combined these two approaches to identify Sage-Grouse habitats that pose minimal risk of failure (source habitats) and attractive sink habitats that pose increased risk (ecological traps). Our models showed that Sage-Grouse select for heterogeneous patches of moderate sagebrush cover (quadratic relationship) and avoid anthropogenic edge habitat for nesting. Nests were more successful in heterogeneous habitats, but nest success was independent of anthropogenic features. Similarly, broods selected heterogeneous high-productivity habitats with sagebrush while avoiding human developments, cultivated cropland, and high densities of oil wells. Chick mortalities tended to occur in proximity to oil and gas developments and along riparian habitats. For nests and broods, respectively, approximately 10% and 5% of the study area was considered source habitat, whereas 19% and 15% of habitat was attractive sink habitat. Limited source habitats appear to be the main reason for poor nest success (39%) and low chick survival (12%). Our habitat models identify areas of protection priority and areas that require immediate management attention to enhance recruitment to secure the viability of this population. This novel

  1. Habitat use of Hipparchia semele (Lepidoptera) in its artifical stronghold: necessity of the resource-based habitat view in restoration of disturbed sites

    Czech Academy of Sciences Publication Activity Database

    Tropek, Robert; Čížek, Oldřich; Kadlec, T.; Klečka, Jan

    2017-01-01

    Roč. 65, č. 3 (2017), s. 385-399 ISSN 1505-2249 R&D Projects: GA ČR GAP504/12/2525; GA ČR GAP505/10/2167; GA ČR(CZ) GP14-10035P Institutional support: RVO:60077344 Keywords : bidiversity conservation * butterflies * habitat use Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 0.639, year: 2016 http://www.bioone.org/doi/full/10.3161/15052249PJE2017.65.3.006

  2. RBCA-based approaches to ecological risk assessment for TPH-contaminated areas

    International Nuclear Information System (INIS)

    Hummell, R.; Vedagiri, U.

    1995-01-01

    The RBCA guidelines proposed by ASTM form an evaluation and decision-making framework for sites potentially contaminated by petroleum releases. They present a three-tiered approach of decreasing conservatism and increasing site-specificity that primarily evaluates risks to human health. While RBCA includes consideration of environmental impacts, there are no specific recommendations on how this is to be achieved. A RBCA-based ecological risk assessment approach was developed for TPH-contaminated areas in Alaska. The approach presents a habitat-based selection process for surrogate chemicals and indicator chemicals of ecological relevance, evaluation of ecotoxicity, derivation of matrix-specific Tier 1 RBSLs (including soils) and determination of Tier 2 and 3 SSTLS. Chemicals are considered by class, aquatic (freshwater and saltwater) and terrestrial habitats are evaluated independently, and chemical concentrations are screened in all media of concern (air, soil, water, sediment). Data needs and decision points specific to ecological receptors are identified for each tier of the approach. Other aspects of the approach include consideration of contaminant migration pathways and habitats that are typical of Arctic conditions. Areas where ecological and human risk concerns may overlap are identified

  3. Habitat functionality for the ecosystem service of pest control: reproduction and feeding sites of pests and natural enemies

    NARCIS (Netherlands)

    Bianchi, F.J.J.A.; Schellhorn, N.A.; Cunningham, S.A.

    2013-01-01

    1 Landscape management for enhanced natural pest control requires knowledge of the ecological function of the habitats present in the landscape mosaic. However, little is known about which habitat types in agricultural landscapes function as reproduction habitats for arthropod pests and predators

  4. Habitat loss and gain: Influence on habitat attractiveness for estuarine fish communities

    Science.gov (United States)

    Amorim, Eva; Ramos, Sandra; Elliott, Michael; Franco, Anita; Bordalo, Adriano A.

    2017-10-01

    Habitat structure and complexity influence the structuring and functioning of fish communities. Habitat changes are one of the main pressures affecting estuarine systems worldwide, yet the degree and rate of change and its impact on fish communities is still poorly understood. In order to quantify historical modifications in habitat structure, an ecohydrological classification system using physiotopes, i.e. units with homogenous abiotic characteristics, was developed for the lower Lima estuary (NW Portugal). Field data, aerial imagery, historical maps and interpolation methods were used to map input variables, including bathymetry, substratum (hard/soft), sediment composition, hydrodynamics (current velocity) and vegetation coverage. Physiotopes were then mapped for the years of 1933 and 2013 and the areas lost and gained over the 80 years were quantified. The implications of changes for the benthic and demersal fish communities using the lower estuary were estimated using the attractiveness to those communities of each physiotope, while considering the main estuarine habitat functions for fish, namely spawning, nursery, feeding and refuge areas and migratory routes. The lower estuary was highly affected due to urbanisation and development and, following a port/harbour expansion, its boundary moved seaward causing an increase in total area. Modifications led to the loss of most of its sandy and saltmarsh intertidal physiotopes, which were replaced by deeper subtidal physiotopes. The most attractive physiotopes for fish (defined as the way in which they supported the fish ecological features) decreased in area while less attractive ones increased, producing an overall lower attractiveness of the studied area in 2013 compared to 1933. The implications of habitat alterations for the fish using the estuary include potential changes in the nursery carrying capacity and the functioning of the fish community. The study also highlighted the poor knowledge of the impacts of

  5. Book Reviews Concepts of Ecosystem Ecology

    African Journals Online (AJOL)

    and emergent properties), and scientific method in ecology. ... this science: particularly the interface of habitat dynamics ... characteristic trophic structure and material cycles, six separate .... tion in using parts of it for extra readings in my senior.

  6. Stream habitat or water quality - what influences stronger fish and macrozoobenthos biodiversity?

    Czech Academy of Sciences Publication Activity Database

    Adámek, Z.; Jurajda, Pavel

    2001-01-01

    Roč. 1, č. 3 (2001), s. 305-311 ISSN 1642-3593. [Ecohydrology as a tool for restoration of physically degraded fish habitats. Warsaw, 11.06.2001-13.06.2001] Institutional research plan: CEZ:AV0Z6093917 Keywords : stream ecology * water quality * fish communities Subject RIV: EH - Ecology, Behaviour

  7. Social monogamy vs. polyandry: ecological factors associated with sex roles in two closely related birds within the same habitat.

    Science.gov (United States)

    Goymann, W; Makomba, M; Urasa, F; Schwabl, I

    2015-07-01

    Why mainly males compete and females take a larger share in parental care remains an exciting question in evolutionary biology. Role-reversed species are of particular interest, because such 'exceptions' help to test the rule. Using mating systems theory as a framework, we compared the reproductive ecology of the two most contrasting coucals with regard to sexual dimorphism and parental care: the black coucal with male-only care and the biparental white-browed coucal. Both species occur in the same lush habitat and face similar ecological conditions, but drastically differ in mating system and sexual dimorphism. Black coucals were migratory and occurred at high breeding densities. With females being obligatory polyandrous and almost twice as heavy as males, black coucals belong to the most extreme vertebrates with reversed sexual dimorphism. Higher variance in reproductive success in fiercely competing females suggests that sexual selection is stronger in females than in males. In contrast, resident white-browed coucals bred at low densities and invariably in pairs. They were almost monomorphic and the variance in reproductive success was similar between the sexes. Black coucals were more likely to lose nests than white-browed coucals, probably facilitating female emancipation of parental care in black coucals. We propose that a combination of high food abundance, high population density, high degree of nest loss and male bias in the adult sex ratio represent ecological conditions that facilitate role reversal and polyandry in coucals and terrestrial vertebrates in general. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  8. Ecological Monitoring and Compliance Program 2007 Report

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Dennis; Anderson, David; Derek, Hall; Greger, Paul; Ostler, W. Kent

    2008-03-01

    In accordance with U.S. Department of Energy (DOE) Order 450.1, 'Environmental Protection Program', the Office of the Assistant Manager for Environmental Management of the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) requires ecological monitoring and biological compliance support for activities and programs conducted at the Nevada Test Site (NTS). National Security Technologies, LLC (NSTec), Ecological Services has implemented the Ecological Monitoring and Compliance (EMAC) Program to provide this support. EMAC is designed to ensure compliance with applicable laws and regulations, delineate and define NTS ecosystems, and provide ecological information that can be used to predict and evaluate the potential impacts of proposed projects and programs on those ecosystems. This report summarizes the EMAC activities conducted by NSTec during calendar year 2007. Monitoring tasks during 2007 included eight program areas: (a) biological surveys, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) biological monitoring at the Nonproliferation Test and Evaluation Complex (NPTEC). The following sections of this report describe work performed under these eight areas.

  9. Movement is the glue connecting home ranges and habitat selection.

    Science.gov (United States)

    Van Moorter, Bram; Rolandsen, Christer M; Basille, Mathieu; Gaillard, Jean-Michel

    2016-01-01

    selection). Our findings show how patterns of geographic and environmental space use correspond to the two sides of a coin, linked by movement responses of individuals to environmental heterogeneity. By demonstrating the potential to assess the consequences of altering RT or TtoR (e.g. through human disturbance or climatic changes) on home range size and habitat selection, our work sets the basis for new theoretical and methodological advances in movement ecology. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  10. Habitat evaluation for outbreak of Yangtze voles (Microtus fortis) and management implications.

    Science.gov (United States)

    Xu, Zhenggang; Zhao, Yunlin; Li, Bo; Zhang, Meiwen; Shen, Guo; Wang, Yong

    2015-05-01

    Rodent pests severely damage agricultural crops. Outbreak risk models of rodent pests often do not include sufficient information regarding geographic variation. Habitat plays an important role in rodent-pest outbreak risk, and more information about the relationship between habitat and crop protection is urgently needed. The goal of the present study was to provide an outbreak risk map for the Dongting Lake region and to understand the relationship between rodent-pest outbreak variation and habitat distribution. The main rodent pests in the Dongting Lake region are Yangtze voles (Microtus fortis). These pests cause massive damage in outbreak years, most notably in 2007. Habitat evaluation and ecological details were obtained by analyzing the correlation between habitat suitability and outbreak risk, as indicated by population density and historical events. For the source-sink population, 96.18% of Yangtze vole disaster regions were covered by a 10-km buffer zone of suitable habitat in 2007. Historical outbreak frequency and peak population density were significantly correlated with the proportion of land covered by suitable habitat (r = 0.68, P = 0.04 and r = 0.76, P = 0.03, respectively). The Yangtze vole population tends to migrate approximately 10 km in outbreak years. Here, we propose a practical method for habitat evaluation that can be used to create integrated pest management plans for rodent pests when combined with basic information on the biology, ecology and behavior of the target species. © 2014 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  11. A multi-scale qualitative approach to assess the impact of urbanization on natural habitats and their connectivity

    Energy Technology Data Exchange (ETDEWEB)

    Scolozzi, Rocco, E-mail: rocco.scolozzi@fmach.it [Sustainable Agro-ecosystems and Bioresources Department, IASMA Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all& #x27; Adige, (Italy); Geneletti, Davide, E-mail: geneletti@ing.unitn.it [Department of Civil and Environmental Engineering, University of Trento, Trento (Italy)

    2012-09-15

    Habitat loss and fragmentation are often concurrent to land conversion and urbanization. Simple application of GIS-based landscape pattern indicators may be not sufficient to support meaningful biodiversity impact assessment. A review of the literature reveals that habitat definition and habitat fragmentation are frequently inadequately considered in environmental assessment, notwithstanding the increasing number of tools and approaches reported in the landscape ecology literature. This paper presents an approach for assessing impacts on habitats on a local scale, where availability of species data is often limited, developed for an alpine valley in northern Italy. The perspective of the methodology is multiple scale and species-oriented, and provides both qualitative and quantitative definitions of impact significance. A qualitative decision model is used to assess ecological values in order to support land-use decisions at the local level. Building on recent studies in the same region, the methodology integrates various approaches, such as landscape graphs, object-oriented rule-based habitat assessment and expert knowledge. The results provide insights into future habitat loss and fragmentation caused by land-use changes, and aim at supporting decision-making in planning and suggesting possible ecological compensation. - Highlights: Black-Right-Pointing-Pointer Many environmental assessments inadequately consider habitat loss and fragmentation. Black-Right-Pointing-Pointer Species-perspective for defining habitat quality and connectivity is claimed. Black-Right-Pointing-Pointer Species-based tools are difficult to be applied with limited availability of data. Black-Right-Pointing-Pointer We propose a species-oriented and multiple scale-based qualitative approach. Black-Right-Pointing-Pointer Advantages include being species-oriented and providing value-based information.

  12. A multi-scale qualitative approach to assess the impact of urbanization on natural habitats and their connectivity

    International Nuclear Information System (INIS)

    Scolozzi, Rocco; Geneletti, Davide

    2012-01-01

    Habitat loss and fragmentation are often concurrent to land conversion and urbanization. Simple application of GIS-based landscape pattern indicators may be not sufficient to support meaningful biodiversity impact assessment. A review of the literature reveals that habitat definition and habitat fragmentation are frequently inadequately considered in environmental assessment, notwithstanding the increasing number of tools and approaches reported in the landscape ecology literature. This paper presents an approach for assessing impacts on habitats on a local scale, where availability of species data is often limited, developed for an alpine valley in northern Italy. The perspective of the methodology is multiple scale and species-oriented, and provides both qualitative and quantitative definitions of impact significance. A qualitative decision model is used to assess ecological values in order to support land-use decisions at the local level. Building on recent studies in the same region, the methodology integrates various approaches, such as landscape graphs, object-oriented rule-based habitat assessment and expert knowledge. The results provide insights into future habitat loss and fragmentation caused by land-use changes, and aim at supporting decision-making in planning and suggesting possible ecological compensation. - Highlights: ► Many environmental assessments inadequately consider habitat loss and fragmentation. ► Species-perspective for defining habitat quality and connectivity is claimed. ► Species-based tools are difficult to be applied with limited availability of data. ► We propose a species-oriented and multiple scale-based qualitative approach. ► Advantages include being species-oriented and providing value-based information.

  13. Habitat Requirements and Foraging Ecology of the Madagascar Fish-Eagle

    OpenAIRE

    Berkelman, James

    1997-01-01

    With a population estimate of 99 pairs, the Madagascar fish-eagle (Haliaeetus vociferoides) is one of the rarest birds of prey in the world. I investigated the ecological requirements of the Madagascar fish-eagle in 1994 and 1995 to help determine management action to prevent its extinction. I investigated fish-eagle foraging ecology in 1996 to determine its prey preference and whether fish abundance and availabi...

  14. Functional morphology of the bovid astragalus in relation to habitat: controlling phylogenetic signal in ecomorphology.

    Science.gov (United States)

    Barr, W Andrew

    2014-11-01

    Bovid astragali are one of the most commonly preserved bones in the fossil record. Accordingly, astragali are an important target for studies seeking to predict the habitat preferences of fossil bovids based on bony anatomy. However, previous work has not tested functional hypotheses linking astragalar morphology with habitat while controlling for body size and phylogenetic signal. This article presents a functional framework relating the morphology of the bovid astragalus to habitat-specific locomotor ecology and tests four hypotheses emanating from this framework. Highly cursorial bovids living in structurally open habitats are hypothesized to differ from their less cursorial closed-habitat dwelling relatives in having (1) relatively short astragali to maintain rotational speed throughout the camming motion of the rotating astragalus, (2) a greater range of angular excursion at the hock, (3) relatively larger joint surface areas, and (4) a more pronounced "spline-and-groove" morphology promoting lateral joint stability. A diverse sample of 181 astragali from 50 extant species was scanned using a Next Engine laser scanner. Species were assigned to one of four habitat categories based on the published ecological literature. A series of 11 linear measurements and three joint surface areas were measured on each astragalus. A geometric mean body size proxy was used to size-correct the measurement data. Phylogenetic generalized least squares (PGLS) was used to test for differences between habitat categories while controlling for body size differences and phylogenetic signal. Statistically significant PGLS results support Hypotheses 1 and 2 (which are not mutually exclusive) as well as Hypothesis 3. No support was found for Hypothesis 4. These findings confirm that the morphology of the bovid astragalus is related to habitat-specific locomotor ecology, and that this relationship is statistically significant after controlling for body size and phylogeny. Thus, this study

  15. Disentangling the phylogenetic and ecological components of spider phenotypic variation.

    Science.gov (United States)

    Gonçalves-Souza, Thiago; Diniz-Filho, José Alexandre Felizola; Romero, Gustavo Quevedo

    2014-01-01

    An understanding of how the degree of phylogenetic relatedness influences the ecological similarity among species is crucial to inferring the mechanisms governing the assembly of communities. We evaluated the relative importance of spider phylogenetic relationships and ecological niche (plant morphological variables) to the variation in spider body size and shape by comparing spiders at different scales: (i) between bromeliads and dicot plants (i.e., habitat scale) and (ii) among bromeliads with distinct architectural features (i.e., microhabitat scale). We partitioned the interspecific variation in body size and shape into phylogenetic (that express trait values as expected by phylogenetic relationships among species) and ecological components (that express trait values independent of phylogenetic relationships). At the habitat scale, bromeliad spiders were larger and flatter than spiders associated with the surrounding dicots. At this scale, plant morphology sorted out close related spiders. Our results showed that spider flatness is phylogenetically clustered at the habitat scale, whereas it is phylogenetically overdispersed at the microhabitat scale, although phylogenic signal is present in both scales. Taken together, these results suggest that whereas at the habitat scale selective colonization affect spider body size and shape, at fine scales both selective colonization and adaptive evolution determine spider body shape. By partitioning the phylogenetic and ecological components of phenotypic variation, we were able to disentangle the evolutionary history of distinct spider traits and show that plant architecture plays a role in the evolution of spider body size and shape. We also discussed the relevance in considering multiple scales when studying phylogenetic community structure.

  16. Prioritizing tropical habitats for long-distance migratory songbirds: an assessment of habitat quality at a stopover site in Colombia

    Directory of Open Access Journals (Sweden)

    Nicholas J. Bayly

    2016-12-01

    Full Text Available Long-distance migratory birds are declining globally and migration has been identified as the primary source of mortality in this group. Despite this, our lack of knowledge of habitat use and quality at stopovers, i.e., sites where the energy for migration is accumulated, remains a barrier to designing appropriate conservation measures, especially in tropical regions. There is therefore an urgent need to assess stopover habitat quality and concurrently identify efficient and cost-effective methods for doing so. Given that fuel deposition rates directly influence stopover duration, departure fuel load, and subsequent speed of migration, they are expected to provide a direct measure of habitat quality and have the advantage of being measurable through body-mass changes. Here, we examined seven potential indicators of quality, including body-mass change, for two ecologically distinct Neotropical migratory landbirds on stopover in shade-coffee plantations and tropical humid premontane forest during spring migration in Colombia: (1 rate of body-mass change; (2 foraging rate; (3 recapture rate; (4 density; (5 flock size; (6 age and sex ratios; and (7 body-mass distribution. We found higher rates of mass change in premontane forest than in shade-coffee in Tennessee Warbler Oreothlypis peregrina, a difference that was mirrored in higher densities and body masses in forest. In Gray-cheeked Thrush Catharus minimus, a lack of recaptures in shade-coffee and higher densities in forest, also suggested that forest provided superior fueling conditions. For a reliable assessment of habitat quality, we therefore recommend using a suite of indicators, taking into account each species' ecology and methodological considerations. Our results also imply that birds stopping over in lower quality habitats may spend a longer time migrating and require more stopovers, potentially leading to important carryover effects on reproductive fitness. Evaluating habitat quality is

  17. Panthers and Forests in South Florida: an Ecological Perspective

    Directory of Open Access Journals (Sweden)

    E. Jane Comiskey

    2002-06-01

    Full Text Available The endangered Florida panther (Puma concolor coryi survives in an area of pronounced habitat diversity in southern Florida, occupying extensive home ranges that encompass a mosaic of habitats. Twenty-one years of daytime monitoring via radiotelemetry have provided substantial but incomplete information about panther ecology, mainly because this method fails to capture movement and habitat use between dusk and dawn, when panthers are most active. Broad characterizations of panther habitat suitability have nonetheless been derived from telemetry-based habitat selection studies, focusing narrowly on forests where daytime resting sites are often located. The resulting forest-centered view of panthers attributed their restricted distribution and absence of population growth in the mid-1990s to a scarcity of unfragmented forest for expansion. However, the panther population has doubled since the beginning of genetic restoration in 1995, increasing five-fold in public areas described as unsuitable based on forest criteria. Although the forest-centered view no longer explains panther distribution, it continues to shape management decisions and habitat conservation policies. The assumptions and limitations of this view therefore merit critical examination. We analyze the role of forests in the ecology of the Florida panther. To address the absence of nighttime telemetry data, we use innovative telemetry mapping techniques and incorporate information from field observations indicating habitat use during active hours (e.g., tracks, scats, urine markers, and kill sites. We consider daytime telemetry data in the context of panther home ranges and breeding units. We analyze home range size in relation to the amount of forest within each range, concluding that percent forest cover is a poor predictor of size. We apply fractal analysis techniques to characterize the relative density of forest cover associated with daytime locations and interpret the results in

  18. Assessing Ecological Impacts According to Land Use Change

    Science.gov (United States)

    Jeong, S.; Lee, D. K.; Jeong, W.; Jeong, S. G.; Jin, Y.

    2015-12-01

    Land use patterns have changed by human activities, and it has affected the structure and dynamics of ecosystems. In particular, the conversion of forests into other land use has caused environmental degradation and loss of biodiversity. The evaluation of species and their habitat can be preferentially considered to prevent or minimize the adverse effects of land use change. The objective of study is identifying the impacts of environmental conditions on forest ecosystems by comparing ecological changes with time series spatial data. Species distribution models were developed for diverse species with presence data and time-series environmental variables, which allowed comparison of the habitat suitability and connectivity. Habitat suitability and connectivity were used to estimate impacts of forest ecosystems due to land use change. Our result suggested that the size and degree of ecological impacts are were different depending on the properties of land use change. The elements and species were greatly affected by the land use change according to the results. This study suggested that a methodology for measuring the interference of land use change in species habitat and connectivity. Furthermore, it will help to conserve and manage forest by identifying priority conservation areas with influence factor and scale.

  19. Ecology of Anopheles spp. in Central Lombok Regency

    Directory of Open Access Journals (Sweden)

    Majematang Mading

    2014-06-01

    Full Text Available Malaria remains a public health problem in West Nusa Tenggara Province. Central Lombok District is one of the areas with high case of malaria. Annual Malaria Incidence (AMI was increased from 5.9 ‰ in 2006, 6.7‰ up to 8.1‰ in 2008. The objective of the study is to describe the ecological condition of Anopheles spp. through observation, measurement of environmental variables, larvae and adult collection. This research was an observational research with cross-sectional study. The population of this study is all mosquitos and breeding habitats of Anopheles spp. that exist in the research location. Ecological observations carried out on anopheles breeding habitats including acidity, salinity, shaded places and aquatic biota. Air temperature and humidity measured at the adult mosquitoes trapping sites. The result showed that pH values of water is around 9.00, salinity in the breeding habitats around 14 ppm, and water biota (i.e. moss, grass, shrimps, fishes, tadpoles and crabs surrounded by bushes with larvae density 0,1-28,8 each dipping. The air measurement at the time was between 23°-27° Celsius and 65%-84% humidity. This research concludes that ecology and environmental conditions were supporting the development of larvae and adult mosquito of Anopheles spp.

  20. Do habitat measurements in the vicinity of Atlantic salmon (Salmo salar) parr matter?

    Czech Academy of Sciences Publication Activity Database

    Mocq, Julien; St-Hilaire, A.; Cunjak, R. A.

    2018-01-01

    Roč. 25, č. 1 (2018), s. 22-30 ISSN 0969-997X Institutional support: RVO:60077344 Keywords : fuzzy logic * habitat measurement methods * habitat model Subject RIV: EH - Ecology, Behaviour OBOR OECD: Marine biology, freshwater biology, limnology Impact factor: 1.327, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/fme.12262/full

  1. Macro-habitat preferences by the African manatee and crocodiles – ecological and conservation implications

    Directory of Open Access Journals (Sweden)

    L. Luiselli

    2012-07-01

    Full Text Available African manatees (Trichechus senegalensis and crocodiles are threatened species in parts of their range. In West Africa, crocodiles may constitute the main predators for manatees apart from humans. Here, we explore the macro-habitat selection of manatees and two species of crocodiles (West African crocodiles Crocodylus suchus and dwarf crocodile Osteolaemus tetraspis in the Niger Delta (Nigeria, testing the hypotheses that (i manatees may avoid crocodiles in order to minimize risks of predation, and (ii the two crocodile species do compete. The study was carried out between 1994 and 2010 with a suite of different field techniques. We observed that the main macro-habitat types were freshwater rivers and coastal lagoons for manatees, mangroves for West African crocodiles, and rivers and creeks for dwarf crocodiles, with (i the three species differing significantly in terms of their macro-habitat type selection, and (ii significant seasonal influence on habitat selection of each species. Null models for niche overlap showed a significantly lower overlap in macro-habitat type use between manatee and crocodiles, whereas the two crocodiles were relatively similar. Null model analyses did not indicate any competitive interactions between crocodiles. On the other hand, manatees avoided macro-habitats where crocodiles, and especially West African crocodiles, are abundant.

  2. Restricted cross-scale habitat selection by American beavers.

    Science.gov (United States)

    Francis, Robert A; Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming

    2017-12-01

    Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection.

  3. Examining alternative landscape metrics in ecological forest planning: a case for capercaillie in Catalonia

    OpenAIRE

    Palahi, M.; Pukkala, T.; Pascual, L.; Trasobares, A.

    2004-01-01

    This study examined the performance of four different landscape metrics in a landscape ecological forest planning situation in Catalonia: (1) proportion of suitable habitat (non-spatial) (%H); (2) spatial autocorrelation; (3) the proportion of habitat-habitat boundary of the total compartment boundary (H-H) and (4) the proportion of habitat-non-habitat boundary (H-nonH). They were analysed in a case study problem that aimed at the maintenance and improvement of capercaillie habitats in two si...

  4. Linking effects of anthropogenic debris to ecological impacts.

    Science.gov (United States)

    Browne, Mark Anthony; Underwood, A J; Chapman, M G; Williams, Rob; Thompson, Richard C; van Franeker, Jan A

    2015-05-22

    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that link effects of debris across lower levels of biological organization to disease and mortality, and (ii) debris is considered non-hazardous by policy-makers, possibly because individuals can be injured or removed from populations and assemblages without ecological impacts. We reviewed the mechanisms that link effects of debris across lower levels of biological organization to assemblages and populations. Using plastic, we show microplastics reduce the 'health', feeding, growth and survival of ecosystem engineers. Larger debris alters assemblages because fishing-gear and tyres kill animals and damage habitat-forming plants, and because floating bottles facilitate recruitment and survival of novel taxa. Where ecological linkages are not known, we show how to establish hypothetical links by synthesizing studies to assess the likelihood of impacts. We also consider how population models examine ecological linkages and guide management of ecological impacts. We show that by focusing on linkages to ecological impacts rather than the presence of debris and its sublethal impacts, we could reduce threats posed by debris. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Evaluating the Applicability of Phi Coefficient in Indicating Habitat Preferences of Forest Soil Fauna Based on a Single Field Study in Subtropical China.

    Science.gov (United States)

    Cui, Yang; Wang, Silong; Yan, Shaokui

    2016-01-01

    Phi coefficient directly depends on the frequencies of occurrence of organisms and has been widely used in vegetation ecology to analyse the associations of organisms with site groups, providing a characterization of ecological preference, but its application in soil ecology remains rare. Based on a single field experiment, this study assessed the applicability of phi coefficient in indicating the habitat preferences of soil fauna, through comparing phi coefficient-induced results with those of ordination methods in charactering soil fauna-habitat(factors) relationships. Eight different habitats of soil fauna were implemented by reciprocal transfer of defaunated soil cores between two types of subtropical forests. Canonical correlation analysis (CCorA) showed that ecological patterns of fauna-habitat relationships and inter-fauna taxa relationships expressed, respectively, by phi coefficients and predicted abundances calculated from partial redundancy analysis (RDA), were extremely similar, and a highly significant relationship between the two datasets was observed (Pillai's trace statistic = 1.998, P = 0.007). In addition, highly positive correlations between phi coefficients and predicted abundances for Acari, Collembola, Nematode and Hemiptera were observed using linear regression analysis. Quantitative relationships between habitat preferences and soil chemical variables were also obtained by linear regression, which were analogous to the results displayed in a partial RDA biplot. Our results suggest that phi coefficient could be applicable on a local scale in evaluating habitat preferences of soil fauna at coarse taxonomic levels, and that the phi coefficient-induced information, such as ecological preferences and the associated quantitative relationships with habitat factors, will be largely complementary to the results of ordination methods. The application of phi coefficient in soil ecology may extend our knowledge about habitat preferences and distribution

  6. Assessing the Role of Free-Roaming Horses in a Social-Ecological System

    Science.gov (United States)

    Bhattacharyya, Jonaki; Murphy, Stephen D.

    2015-08-01

    Management actions concerning free-roaming horses attract controversy in many areas. In the Chilcotin region of British Columbia, Canada, social and cultural values influence debates about management of free-roaming horses and perceptions of their ecological impacts. A dearth of current, empirical research on the role and impacts of horses in local ecosystems results in management decisions being informed largely by studies from other ecoregions and locations, which may not accurately represent local ecological, social, cultural, and economic influences. We initiated the first socio-ecological study of horse sub-populations, their grazing habitat, and past management approaches affecting current conditions in the ?Elegesi Qayuse Wild Horse Preserve in Xeni Gwet'in (Tsilhqot'in) First Nations' territory. This exploratory study used mixed methods including a review of literature and unpublished data, assessment of vegetation in core grazing habitat, and exploration of local ecological and cultural knowledge and perceptions. Plant community composition and abundance in core grazing habitat of the Wild Horse Preserve are consistent with a structurally sound ecosystem. Socio-cultural factors are important for managers to consider in effective decision-making concerning horse populations.

  7. Nest-site habitat of cavity-nesting birds at the San Joaquin Experimental Range

    Science.gov (United States)

    Kathryn L. Purcell; Jared. Verner

    2008-01-01

    Detailed information about the nesting habitats of birds, including those needed for successful nesting, can provide a better understanding of the ecological factors that permit coexistence of different species and may aid in conservation efforts. From 1989 through 1994, we studied the nesting habitat of secondary cavity-nesting birds in oak woodlands at the San...

  8. Discovery of anaerobic lithoheterotrophic haloarchaea, ubiquitous in hypersaline habitats

    NARCIS (Netherlands)

    Sorokin, D.Y.; Messina, E.; Smedile, F; Roman, P.; Sinninghe Damsté, J.S.; Ciordia, S.; Mena, M.C.; Ferrer, M.; Golyshin, P.N.; Kublanov, I.V.; Samarov, N.I.; Toshchakov, S.V.; La Cono, V.; Yakimov, M.M.

    2017-01-01

    Hypersaline anoxic habitats harbour numerous novel uncultured archaea whose metabolic and ecological roles remain to be elucidated. Until recently, it was believed that energy generation via dissimilatory reduction of sulfur compounds is not functional at salt saturation conditions. Recent discovery

  9. A global analysis of bird plumage patterns reveals no association between habitat and camouflage

    Directory of Open Access Journals (Sweden)

    Marius Somveille

    2016-11-01

    Full Text Available Evidence suggests that animal patterns (motifs function in camouflage. Irregular mottled patterns can facilitate concealment when stationary in cluttered habitats, whereas regular patterns typically prevent capture during movement in open habitats. Bird plumage patterns have predominantly converged on just four types—mottled (irregular, scales, bars and spots (regular—and habitat could be driving convergent evolution in avian patterning. Based on sensory ecology, we therefore predict that irregular patterns would be associated with visually noisy closed habitats and that regular patterns would be associated with open habitats. Regular patterns have also been shown to function in communication for sexually competing males to stand-out and attract females, so we predict that male breeding plumage patterns evolved in both open and closed habitats. Here, taking phylogenetic relatedness into account, we investigate ecological selection for bird plumage patterns across the class Aves. We surveyed plumage patterns in 80% of all avian species worldwide. Of these, 2,756 bird species have regular and irregular plumage patterns as well as habitat information. In this subset, we tested whether adult breeding/non-breeding plumages in each sex, and juvenile plumages, were associated with the habitat types found within the species’ geographical distributions. We found no evidence for an association between habitat and plumage patterns across the world’s birds and little phylogenetic signal. We also found that species with regular and irregular plumage patterns were distributed randomly across the world’s eco-regions without being affected by habitat type. These results indicate that at the global spatial and taxonomic scale, habitat does not predict convergent evolution in bird plumage patterns, contrary to the camouflage hypothesis.

  10. A global analysis of bird plumage patterns reveals no association between habitat and camouflage.

    Science.gov (United States)

    Somveille, Marius; Marshall, Kate L A; Gluckman, Thanh-Lan

    2016-01-01

    Evidence suggests that animal patterns (motifs) function in camouflage. Irregular mottled patterns can facilitate concealment when stationary in cluttered habitats, whereas regular patterns typically prevent capture during movement in open habitats. Bird plumage patterns have predominantly converged on just four types-mottled (irregular), scales, bars and spots (regular)-and habitat could be driving convergent evolution in avian patterning. Based on sensory ecology, we therefore predict that irregular patterns would be associated with visually noisy closed habitats and that regular patterns would be associated with open habitats. Regular patterns have also been shown to function in communication for sexually competing males to stand-out and attract females, so we predict that male breeding plumage patterns evolved in both open and closed habitats. Here, taking phylogenetic relatedness into account, we investigate ecological selection for bird plumage patterns across the class Aves. We surveyed plumage patterns in 80% of all avian species worldwide. Of these, 2,756 bird species have regular and irregular plumage patterns as well as habitat information. In this subset, we tested whether adult breeding/non-breeding plumages in each sex, and juvenile plumages, were associated with the habitat types found within the species' geographical distributions. We found no evidence for an association between habitat and plumage patterns across the world's birds and little phylogenetic signal. We also found that species with regular and irregular plumage patterns were distributed randomly across the world's eco-regions without being affected by habitat type. These results indicate that at the global spatial and taxonomic scale, habitat does not predict convergent evolution in bird plumage patterns, contrary to the camouflage hypothesis.

  11. Nesting ecology of Townsend's warblers in relation to habitat characteristics in a mature boreal forest

    Science.gov (United States)

    Matsuoka, S.M.; Handel, Colleen M.; Roby, D.D.

    1997-01-01

    We investigated the nesting ecology of Townsend's Warblers (Dendroica townsendi) from 1993-1995 in an unfragmented boreal forest along the lower slopes of the Chugach Mountains in southcentral Alaska. We examined habitat characteristics of nest sites in relation to factors influencing reproductive success. Almost all territory-holding males (98%, n = 40) were successful in acquiring mates. Nest success was 54% (n = 24 nests), with nest survivorship greater during incubation (87%) than during the nestling period (62%). Most nesting failure (80%) was attributable to predation, which occurred primarily during the nestling period. Fifty-five percent of nests containing nestling were infested with the larvae of bird blow-flies (Protocalliphora braueri and P. spenceri), obligatory blood-feeding parasites. The combined effects of Protocalliphora infestation and inclement weather apparently resulted in nestling mortality in 4 of the 24 nests. Nests that escaped predation were placed in white spruce with larger diameter than those lost to predation: nests that escaped blow-fly parasitism were located higher in nest trees and in areas with lower densities of woody shrubs than those that were infested. The availability of potential nest sites with these key features may be important in determining reproductive success in Townsend's Warblers.

  12. Relationships between vital rates and ecological traits in an avian community.

    Science.gov (United States)

    Bellier, Edwige; Kéry, Marc; Schaub, Michael

    2018-03-30

    Comparative studies about the relationships between vital rates and ecological traits at the community level are conspicuously lacking for most taxa because estimating vital rates requires detailed demographic data. Identifying relationships between vital rates and ecological traits could help to better understand ecological and evolutionary demographic mechanisms that lead to interspecific differences in vital rates. We use novel dynamic N-mixture models for counts to achieve this for a whole avian community comprising 53 passerine species, while simultaneously accounting for density dependence and environmental stochasticity in recruitment and survival and, importantly, correcting our inferences for imperfect detection. Demographic stochasticity is taken into account in the form of the binomial and Poisson distributions describing survival events and number of recruits. We then explore relationships between estimated demographic parameters (i.e., vital rates) and ecological traits related to migration patterns, diet, habitat and nesting location of each species. The relative importance of recruitment and adult survival as contributors to population growth varied greatly among species, and interspecific differences in vital rates partly reflected differences in ecological traits. Migratory mode was associated with interspecific differences in population growth and density dependence. Resident species had higher population growth rates than long- and short-distance migrants. We found no relationships between diet and population growth rate. Habitat differences were associated with different growth rates: alpine, wetland and farmland species had lower population growth rates than forest species. Differences in population growth rates among nesting locations showed that breeding habitat is essential for population dynamics. Our study reveals relationships between ecological traits and contributions of vital rates to population growth and suggests ways in which

  13. Investigating ecological speciation in non-model organisms

    DEFF Research Database (Denmark)

    Foote, Andrew David

    2012-01-01

    Background: Studies of ecological speciation tend to focus on a few model biological systems. In contrast, few studies on non-model organisms have been able to infer ecological speciation as the underlying mechanism of evolutionary divergence. Questions: What are the pitfalls in studying ecological...... speciation in non-model organisms that lead to this bias? What alternative approaches might redress the balance? Organism: Genetically differentiated types of the killer whale (Orcinus orca) exhibiting differences in prey preference, habitat use, morphology, and behaviour. Methods: Review of the literature...... on killer whale evolutionary ecology in search of any difficulty in demonstrating causal links between variation in phenotype, ecology, and reproductive isolation in this non-model organism. Results: At present, we do not have enough evidence to conclude that adaptive phenotype traits linked to ecological...

  14. Rock armour for birds and their prey: ecological enhancement of coastal engineering

    OpenAIRE

    Naylor, Larissa A.; MacArthur, Mairi; Hampshire, Stephanie; Bostock, Kieran; Coombes, Martin A.; Hansom, Jim; Byrne, Rowan; Folland, Tristan

    2017-01-01

    The authors present key design, construction and ecological enhancement criteria for sustainable coastal defence structures at Hartlepool, UK, a high-energy wave climate. Such ‘ecologically favourable’ coastal defences fulfil the habitats directive and key engineering and cost criteria. Bird, rocky intertidal ecological and biogeomorphological data underpin recommendations for ‘passive’ enhancement mitigation to maximise ecological potential involving rock armour material choice (partially en...

  15. [Construction and optimization of ecological network for nature reserves in Fujian Province, China].

    Science.gov (United States)

    Gu, Fan; Huang, Yi Xiong; Chen, Chuan Ming; Cheng, Dong Liang; Guo, Jia Lei

    2017-03-18

    The nature reserve is very important to biodiversity maintenance. However, due to the urbanization, the nature reserve has been fragmented with reduction in area, leading to the loss of species diversity. Establishing ecological network can effectively connect the fragmented habitats and plays an important role in species conversation. In this paper, based on deciding habitat patches and the landscape cost surface in ArcGIS, a minimum cumulative resistance model was used to simulate the potential ecological network of Fujian provincial nature reserves. The connectivity and importance of network were analyzed and evaluated based on comparison of connectivity indices (including the integral index of connectivity and probability of connectivity) and gravity model both before and after the potential ecological network construction. The optimum ecological network optimization measures were proposed. The result demonstrated that woodlands, grasslands and wetlands together made up the important part of the nature reserve ecological network. The habitats with large area had a higher degree of importance in the network. After constructing the network, the connectivity level was significantly improved. Although interaction strength between different patches va-ried greatly, the corridors between patches with large interaction were very important. The research could provide scientific reference and basis for nature protection and planning in Fujian Province.

  16. The changing ecology of Narragansett Bay as told by habitat

    Science.gov (United States)

    Narragansett Bay has changed in many ways over millennia due to natural and human forces, and the rate of this change increased greatly after European colonization. We evaluated distributions of three stressors and four habitats in eight subdivisions of the Bay for aspects of ec...

  17. Tamarix as habitat for birds: Implications for riparian restoration in the Southwestern United States

    Science.gov (United States)

    Sogge, M.K.; Sferra, S.J.; Paxton, E.H.

    2008-01-01

    Exotic vegetation has become a major habitat component in many ecosystems around the world, sometimes dramatically changing the vegetation community structure and composition. In the southwestern United States, riparian ecosystems are undergoing major changes in part due to the establishment and spread of the exotic Tamarix (saltcedar, tamarisk). There are concerns about the suitability of Tamarix as habitat for birds. Although Tamarix habitats tend to support fewer species and individuals than native habitats, Arizona Breeding Bird Atlas data and Birds of North America accounts show that 49 species use Tamarix as breeding habitat. Importantly, the relative use of Tamarix and its quality as habitat vary substantially by geographic location and bird species. Few studies have examined how breeding in Tamarix actually affects bird survivorship and productivity; recent research on Southwestern Willow Flycatchers has found no negative effects from breeding in Tamarix habitats. Therefore, the ecological benefits and costs of Tamarix control are difficult to predict and are likely to be species specific and site specific. Given the likelihood that high-quality native riparian vegetation will not develop at all Tamarix control sites, restoration projects that remove Tamarix but do not assure replacement by high-quality native habitat have the potential to reduce the net riparian habitat value for some local or regional bird populations. Therefore, an assessment of potential negative impacts is important in deciding if exotic control should be conducted. In addition, measurable project objectives, appropriate control and restoration techniques, and robust monitoring are all critical to effective restoration planning and execution. ?? 2008 Society for Ecological Restoration International.

  18. Effects of fragmentation on the spatial ecology of the California Kingsnake (Lampropeltis californiae)

    Science.gov (United States)

    Anguiano, Michael P.; Diffendorfer, James E.

    2015-01-01

    We investigated the spatial ecology of the California Kingsnake (Lampropeltis californiae) in unfragmented and fragmented habitat with varying patch sizes and degrees of exposure to urban edges. We radiotracked 34 Kingsnakes for up to 3 yr across four site types: interior areas of unfragmented ecological reserves, the urbanized edge of these reserves, large habitat fragments, and small habitat fragments. There was no relationship between California Kingsnake movements and the degree of exposure to urban edges and fragmentation. Home range size and movement patterns of Kingsnakes on edges and fragments resembled those in unfragmented sites. Average home-range size on each site type was smaller than the smallest fragment in which snakes were tracked. The persistence of California Kingsnakes in fragmented landscapes may be related directly to their small spatial movement patterns, home-range overlap, and ability to use urban edge habitat.

  19. A Bayesian method for assessing multiscalespecies-habitat relationships

    Science.gov (United States)

    Stuber, Erica F.; Gruber, Lutz F.; Fontaine, Joseph J.

    2017-01-01

    ContextScientists face several theoretical and methodological challenges in appropriately describing fundamental wildlife-habitat relationships in models. The spatial scales of habitat relationships are often unknown, and are expected to follow a multi-scale hierarchy. Typical frequentist or information theoretic approaches often suffer under collinearity in multi-scale studies, fail to converge when models are complex or represent an intractable computational burden when candidate model sets are large.ObjectivesOur objective was to implement an automated, Bayesian method for inference on the spatial scales of habitat variables that best predict animal abundance.MethodsWe introduce Bayesian latent indicator scale selection (BLISS), a Bayesian method to select spatial scales of predictors using latent scale indicator variables that are estimated with reversible-jump Markov chain Monte Carlo sampling. BLISS does not suffer from collinearity, and substantially reduces computation time of studies. We present a simulation study to validate our method and apply our method to a case-study of land cover predictors for ring-necked pheasant (Phasianus colchicus) abundance in Nebraska, USA.ResultsOur method returns accurate descriptions of the explanatory power of multiple spatial scales, and unbiased and precise parameter estimates under commonly encountered data limitations including spatial scale autocorrelation, effect size, and sample size. BLISS outperforms commonly used model selection methods including stepwise and AIC, and reduces runtime by 90%.ConclusionsGiven the pervasiveness of scale-dependency in ecology, and the implications of mismatches between the scales of analyses and ecological processes, identifying the spatial scales over which species are integrating habitat information is an important step in understanding species-habitat relationships. BLISS is a widely applicable method for identifying important spatial scales, propagating scale uncertainty, and

  20. The ecological atlas. 3. rev. ed.

    International Nuclear Information System (INIS)

    Seager, J.

    1993-01-01

    ''The ecological atlas'' translates expert knowledge in a way that makes it accessable to the general public. In 37 double sided maps in four colours it gives information about the health of our planet and the quality of human life. Under 8 different angles: (the earth's habitat, food and drinking water, housing, energy, industry, armament, consumer needs and 'green politics'). ''The ecological atlas'' describes the effects of worldwide ecological effects: climatic disasters, the greenhouse effect, the hole in the ozone layer, destruction of the tropical rainforests, the effects of extensive farming and increasing urbanization. Pages of comprehensive commentaries complement the maps and aid understanding of their problem areas. (orig./DG) [de

  1. Habitat Evaluation Procedures Report; Carl Property - Yakama Nation.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul; Muse, Anthony

    2008-02-01

    A baseline habitat evaluation procedures (HEP) analysis was conducted on the Carl property (160 acres) in June 2007 to determine the number of habitat units to credit Bonneville Power Administration (BPA) for providing funds to acquire the property as partial mitigation for habitat losses associated with construction of McNary Dam. HEP surveys also helped assess the general ecological condition of the property. The Carl property appeared damaged from livestock grazing and exhibited a high percentage of invasive forbs. Exotic grasses, while present, did not comprise a large percentage of the available cover in most areas. Cover types were primarily grassland/shrubsteppe with a limited emergent vegetation component. Baseline HEP surveys generated 356.11 HUs or 2.2 HUs per acre. Habitat units were associated with the following HEP models: California quail (47.69 HUs), western meadowlark (114.78 HUs), mallard (131.93 HUs), Canada goose (60.34 HUs), and mink (1.38 HUs).

  2. Mosquito (Diptera: Culicidae) grouping based on larval habitat characteristics in high mountain ecosystems of Antioquia, Colombia.

    Science.gov (United States)

    Rosero-García, Doris; Rúa-Uribe, Guillermo; Correa, Margarita M; Conn, Jan E; Uribe-Soto, Sandra

    2018-06-01

    Information about mosquito ecology in the high mountain ecosystems of the Neotropical region is sparse. In general, few genera and species have been reported in these ecosystems and there is no information available on habitats and the mosquitoes occupying them. In the present study, specimens collected from NW Colombia in HME were grouped using larval habitat data via an Operational Taxonomic Unit (OTU) determination. A total of 719 mosquitoes was analyzed belonging to 44 OTUs. The analysis considered habitat features and clustered the specimens into six groups from A-F. Five of these included species from different genera, suggesting common habitat requirements. Group E with four genera, seven subgenera, and six species occupied the highest areas (above 3,000 m), whereas three groups (B, D, F) were detected at lower altitudes (1,960-2,002 m). Bromeliads were the most common larval habitat, with 47% (335/719) of the specimens; five genera, six subgenera, and eight species were identified and classified into 66% (29/44) of the OTUs. This work showed some similarities to the habitat requirements and provides a grouping system that constitutes an important baseline for the classification of mosquito fauna from high mountain ecosystems according to altitude and larval habitat. © 2018 The Society for Vector Ecology.

  3. Naturalization of European plants on other continents: the role of donor habitats

    Czech Academy of Sciences Publication Activity Database

    Kalusová, V.; Chytrý, M.; van Kleunen, M.; Mucina, L.; Dawson, W.; Essl, F.; Kreft, H.; Pergl, Jan; Weigelt, P.; Winter, M.; Pyšek, Petr

    2017-01-01

    Roč. 114, č. 52 (2017), s. 13756-13761 ISSN 0027-8424 R&D Projects: GA ČR GB14-36079G Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : plant invasions * donor habitats * Europe Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 9.661, year: 2016

  4. 78 FR 41549 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Northern...

    Science.gov (United States)

    2013-07-10

    ... on the existing community ecology that affects the status of these gartersnakes within their range... scientific community, industry, or any other interested parties concerning this proposed rule. We... modification of critical habitat. Under the first prong of the Act's definition of critical habitat, areas...

  5. Combining catchment and instream modelling to assess physical habitat quality

    DEFF Research Database (Denmark)

    Olsen, Martin

    Study objectives After the implementation of EU's Water Framework Directive (WFD) in Denmark ecological impacts from groundwater exploitation on surface waters has to receive additional consideration. Small streams in particular are susceptible to changes in run-off but have only recieved little...... attention in past studies of run-off impact on the quality of stream physical habitats. This study combined catchment and instream models with instream habitat observations to assess the ecological impacts from groundwater exploitation on a small stream. The main objectives of this study was; • to assess...... which factors are controlling the run-off conditions in stream Ledreborg and to what degree • to assess the run-off reference condition of stream Ledreborg where intensive groundwater abstraction has taken place in 67 years using a simple rainfall-run-off-model • to assess how stream run-off affect...

  6. Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Sobocinski, Kathryn L.; Johnson, Gary E.; Sather, Nichole K.; Storch, Adam; Jones, Tucker A.; Mallette, Christine; Dawley, Earl M.; Skalski, John R.; Teel, David; Moran, Paul

    2008-03-18

    This document is the first annual report for the study titled “Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River.” Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council’s Columbia Basin Fish and Wildlife Program.

  7. Dispersal Ecology Informs Design of Large-Scale Wildlife Corridors.

    Science.gov (United States)

    Benz, Robin A; Boyce, Mark S; Thurfjell, Henrik; Paton, Dale G; Musiani, Marco; Dormann, Carsten F; Ciuti, Simone

    Landscape connectivity describes how the movement of animals relates to landscape structure. The way in which movement among populations is affected by environmental conditions is important for predicting the effects of habitat fragmentation, and for defining conservation corridors. One approach has been to map resistance surfaces to characterize how environmental variables affect animal movement, and to use these surfaces to model connectivity. However, current connectivity modelling typically uses information on species location or habitat preference rather than movement, which unfortunately may not capture dispersal limitations. Here we emphasize the importance of implementing dispersal ecology into landscape connectivity, i.e., observing patterns of habitat selection by dispersers during different phases of new areas' colonization to infer habitat connectivity. Disperser animals undertake a complex sequence of movements concatenated over time and strictly dependent on species ecology. Using satellite telemetry, we investigated the movement ecology of 54 young male elk Cervus elaphus, which commonly disperse, to design a corridor network across the Northern Rocky Mountains. Winter residency period is often followed by a spring-summer movement phase, when young elk migrate with mothers' groups to summering areas, and by a further dispersal bout performed alone to a novel summer area. After another summer residency phase, dispersers usually undertake a final autumnal movement to reach novel wintering areas. We used resource selection functions to identify winter and summer habitats selected by elk during residency phases. We then extracted movements undertaken during spring to move from winter to summer areas, and during autumn to move from summer to winter areas, and modelled them using step selection functions. We built friction surfaces, merged the different movement phases, and eventually mapped least-cost corridors. We showed an application of this tool by

  8. Homogenization of Large-Scale Movement Models in Ecology

    Science.gov (United States)

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  9. Primate dental ecology: How teeth respond to the environment.

    Science.gov (United States)

    Cuozzo, Frank P; Ungar, Peter S; Sauther, Michelle L

    2012-06-01

    Teeth are central for the study of ecology, as teeth are at the direct interface between an organism and its environment. Recent years have witnessed a rapid growth in the use of teeth to understand a broad range of topics in living and fossil primate biology. This in part reflects new techniques for assessing ways in which teeth respond to, and interact with, an organism's environment. Long-term studies of wild primate populations that integrate dental analyses have also provided a new context for understanding primate interactions with their environments. These new techniques and long-term field studies have allowed the development of a new perspective-dental ecology. We define dental ecology as the broad study of how teeth respond to, or interact with, the environment. This includes identifying patterns of dental pathology and tooth use-wear, as they reflect feeding ecology, behavior, and habitat variation, including areas impacted by anthropogenic disturbance, and how dental development can reflect environmental change and/or stress. The dental ecology approach, built on collaboration between dental experts and ecologists, holds the potential to provide an important theoretical and practical framework for inferring ecology and behavior of fossil forms, for assessing environmental change in living populations, and for understanding ways in which habitat impacts primate growth and development. This symposium issue brings together experts on dental morphology, growth and development, tooth wear and health, primate ecology, and paleontology, to explore the broad application of dental ecology to questions of how living and fossil primates interact with their environments. Copyright © 2012 Wiley Periodicals, Inc.

  10. Putting the "Ecology" into Environmental Flows: Ecological Dynamics and Demographic Modelling

    Science.gov (United States)

    Shenton, Will; Bond, Nicholas R.; Yen, Jian D. L.; Mac Nally, Ralph

    2012-07-01

    There have been significant diversions of water from rivers and streams around the world; natural flow regimes have been perturbed by dams, barriers and excessive extractions. Many aspects of the ecological `health' of riverine systems have declined due to changes in water flows, which has stimulated the development of thinking about the maintenance and restoration of these systems, which we refer to as environmental flow methodologies (EFMs). Most existing EFMs cannot deliver information on the population viability of species because they: (1) use habitat suitability as a proxy for population status; (2) use historical time series (usually of short duration) to forecast future conditions and flow sequences; (3) cannot, or do not, handle extreme flow events associated with climate variability; and (4) assume process stationarity for flow sequences, which means the past sequences are treated as good indicators of the future. These assumptions undermine the capacity of EFMs to properly represent risks associated with different flow management options; assumption (4) is untenable given most climate-change predictions. We discuss these concerns and advocate the use of demographic modelling as a more appropriate tool for linking population dynamics to flow regime change. A `meta-species' approach to demographic modelling is discussed as a useful step from habitat based models towards modelling strategies grounded in ecological theory when limited data are available on flow-demographic relationships. Data requirements of demographic models will undoubtedly expose gaps in existing knowledge, but, in so doing, will strengthen future efforts to link changes in river flows with their ecological consequences.

  11. Putting the "ecology" into environmental flows: ecological dynamics and demographic modelling.

    Science.gov (United States)

    Shenton, Will; Bond, Nicholas R; Yen, Jian D L; Mac Nally, Ralph

    2012-07-01

    There have been significant diversions of water from rivers and streams around the world; natural flow regimes have been perturbed by dams, barriers and excessive extractions. Many aspects of the ecological 'health' of riverine systems have declined due to changes in water flows, which has stimulated the development of thinking about the maintenance and restoration of these systems, which we refer to as environmental flow methodologies (EFMs). Most existing EFMs cannot deliver information on the population viability of species because they: (1) use habitat suitability as a proxy for population status; (2) use historical time series (usually of short duration) to forecast future conditions and flow sequences; (3) cannot, or do not, handle extreme flow events associated with climate variability; and (4) assume process stationarity for flow sequences, which means the past sequences are treated as good indicators of the future. These assumptions undermine the capacity of EFMs to properly represent risks associated with different flow management options; assumption (4) is untenable given most climate-change predictions. We discuss these concerns and advocate the use of demographic modelling as a more appropriate tool for linking population dynamics to flow regime change. A 'meta-species' approach to demographic modelling is discussed as a useful step from habitat based models towards modelling strategies grounded in ecological theory when limited data are available on flow-demographic relationships. Data requirements of demographic models will undoubtedly expose gaps in existing knowledge, but, in so doing, will strengthen future efforts to link changes in river flows with their ecological consequences.

  12. Habitat and Recreational Fishing Opportunity in Tampa Bay: Linking Ecological and Ecosystem Services to Human Beneficiaries

    Science.gov (United States)

    Estimating value of estuarine habitat to human beneficiaries requires that we understand how habitat alteration impacts function through both production and delivery of ecosystem goods and services (EGS). Here we expand on the habitat valuation technique of Bell (1997) with an es...

  13. Patterns of Limnohabitans Microdiversity across a Large Set of Freshwater Habitats as Revealed by Reverse Line Blot Hybridization

    Science.gov (United States)

    Jezbera, Jan; Jezberová, Jitka; Kasalický, Vojtěch; Šimek, Karel; Hahn, Martin W.

    2013-01-01

    Among abundant freshwater Betaproteobacteria, only few groups are considered to be of central ecological importance. One of them is the well-studied genus Limnohabitans and mainly its R-BT subcluster, investigated previously mainly by fluorescence in situ hybridization methods. We designed, based on sequences from a large Limnohabitans culture collection, 18 RLBH (Reverse Line Blot Hybridization) probes specific for different groups within the genus Limnohabitans by targeting diagnostic sequences on their 16 S–23 S rRNA ITS regions. The developed probes covered in sum 92% of the available isolates. This set of probes was applied to environmental DNA originating from 161 different European standing freshwater habitats to reveal the microdiversity (intra-genus) patterns of the Limnohabitans genus along a pH gradient. Investigated habitats differed in various physicochemical parameters, and represented a very broad range of standing freshwater habitats. The Limnohabitans microdiversity, assessed as number of RLBH-defined groups detected, increased significantly along the gradient of rising pH of habitats. 14 out of 18 probes returned detection signals that allowed predictions on the distribution of distinct Limnohabitans groups. Most probe-defined Limnohabitans groups showed preferences for alkaline habitats, one for acidic, and some seemed to lack preferences. Complete niche-separation was indicated for some of the probe-targeted groups. Moreover, bimodal distributions observed for some groups of Limnohabitans, suggested further niche separation between genotypes within the same probe-defined group. Statistical analyses suggested that different environmental parameters such as pH, conductivity, oxygen and altitude influenced the distribution of distinct groups. The results of our study do not support the hypothesis that the wide ecological distribution of Limnohabitans bacteria in standing freshwater habitats results from generalist adaptations of these bacteria

  14. Patterns of Limnohabitans microdiversity across a large set of freshwater habitats as revealed by Reverse Line Blot Hybridization.

    Directory of Open Access Journals (Sweden)

    Jan Jezbera

    Full Text Available Among abundant freshwater Betaproteobacteria, only few groups are considered to be of central ecological importance. One of them is the well-studied genus Limnohabitans and mainly its R-BT subcluster, investigated previously mainly by fluorescence in situ hybridization methods. We designed, based on sequences from a large Limnohabitans culture collection, 18 RLBH (Reverse Line Blot Hybridization probes specific for different groups within the genus Limnohabitans by targeting diagnostic sequences on their 16 S-23 S rRNA ITS regions. The developed probes covered in sum 92% of the available isolates. This set of probes was applied to environmental DNA originating from 161 different European standing freshwater habitats to reveal the microdiversity (intra-genus patterns of the Limnohabitans genus along a pH gradient. Investigated habitats differed in various physicochemical parameters, and represented a very broad range of standing freshwater habitats. The Limnohabitans microdiversity, assessed as number of RLBH-defined groups detected, increased significantly along the gradient of rising pH of habitats. 14 out of 18 probes returned detection signals that allowed predictions on the distribution of distinct Limnohabitans groups. Most probe-defined Limnohabitans groups showed preferences for alkaline habitats, one for acidic, and some seemed to lack preferences. Complete niche-separation was indicated for some of the probe-targeted groups. Moreover, bimodal distributions observed for some groups of Limnohabitans, suggested further niche separation between genotypes within the same probe-defined group. Statistical analyses suggested that different environmental parameters such as pH, conductivity, oxygen and altitude influenced the distribution of distinct groups. The results of our study do not support the hypothesis that the wide ecological distribution of Limnohabitans bacteria in standing freshwater habitats results from generalist adaptations of

  15. Encroachment of oriental bittersweet into Pitcher’s thistle habitat

    Science.gov (United States)

    Leicht-Young, Stacey A.; Pavlovic, Noel B.

    2012-01-01

    Common invasive species and rare endemic species can grow and interact at the ecotone between forested and non-forested dune habitats. To investigate these interactions, a comparison of the proximity and community associates of a sympatric invasive (Celastrus orbiculatus; oriental bittersweet) and native (C. scandens; American bittersweet) liana species to federally threatened Cirsium pitcheri (Pitcher's thistle) in the dunes habitats of Lake Michigan was conducted. Overall, the density of the invasive liana species was significantly greater in proximity to C. pitcheri than the native species. On the basis of composition, the three focal species occurred in both foredune and blowout habitats. The plant communities associated with the three focal species overlapped in ordination space, but there were significant differences in composition. The ability of C. orbiculatus to rapidly grow and change the ecological dynamics of invasion sites adds an additional threat to the successional habitats of C. pitcheri.

  16. Space Use and Habitat Selection by Resident and Transient Coyotes (Canis latrans.

    Directory of Open Access Journals (Sweden)

    Joseph W Hinton

    Full Text Available Little information exists on coyote (Canis latrans space use and habitat selection in the southeastern United States and most studies conducted in the Southeast have been carried out within small study areas (e.g., ≤1,000 km2. Therefore, studying the placement, size, and habitat composition of coyote home ranges over broad geographic areas could provide relevant insights regarding how coyote populations adjust to regionally varying ecological conditions. Despite an increasing number of studies of coyote ecology, few studies have assessed the role of transiency as a life-history strategy among coyotes. During 2009-2011, we used GPS radio-telemetry to study coyote space use and habitat selection on the Albemarle Peninsula of northeastern North Carolina. We quantified space use and 2nd- and 3rd-order habitat selection for resident and transient coyotes to describe space use patterns in a predominantly agricultural landscape. The upper limit of coyote home-range size was approximately 47 km2 and coyotes exhibiting shifting patterns of space use of areas >65 km2 were transients. Transients exhibited localized space use patterns for short durations prior to establishing home ranges, which we defined as "biding" areas. Resident and transient coyotes demonstrated similar habitat selection, notably selection of agricultural over forested habitats. However, transients exhibited stronger selection for roads than resident coyotes. Although transient coyotes are less likely to contribute reproductively to their population, transiency may be an important life history trait that facilitates metapopulation dynamics through dispersal and the eventual replacement of breeding residents lost to mortality.

  17. Space use and habitat selection by resident and transient coyotes (Canis latrans)

    Science.gov (United States)

    Hinton, Joseph W; van Manen, Frank T.; Chamberlain, Michael J

    2015-01-01

    Little information exists on coyote (Canis latrans) space use and habitat selection in the southeastern United States and most studies conducted in the Southeast have been carried out within small study areas (e.g., ≤1,000 km2). Therefore, studying the placement, size, and habitat composition of coyote home ranges over broad geographic areas could provide relevant insights regarding how coyote populations adjust to regionally varying ecological conditions. Despite an increasing number of studies of coyote ecology, few studies have assessed the role of transiency as a life-history strategy among coyotes. During 2009–2011, we used GPS radio-telemetry to study coyote space use and habitat selection on the Albemarle Peninsula of northeastern North Carolina. We quantified space use and 2nd- and 3rd-order habitat selection for resident and transient coyotes to describe space use patterns in a predominantly agricultural landscape. The upper limit of coyote home-range size was approximately 47 km2 and coyotes exhibiting shifting patterns of space use of areas >65 km2 were transients. Transients exhibited localized space use patterns for short durations prior to establishing home ranges, which we defined as “biding” areas. Resident and transient coyotes demonstrated similar habitat selection, notably selection of agricultural over forested habitats. However, transients exhibited stronger selection for roads than resident coyotes. Although transient coyotes are less likely to contribute reproductively to their population, transiency may be an important life history trait that facilitates metapopulation dynamics through dispersal and the eventual replacement of breeding residents lost to mortality.

  18. Reverse Ecology: from systems to environments and back.

    Science.gov (United States)

    Levy, Roie; Borenstein, Elhanan

    2012-01-01

    The structure of complex biological systems reflects not only their function but also the environments in which they evolved and are adapted to. Reverse Ecology-an emerging new frontier in Evolutionary Systems Biology-aims to extract this information and to obtain novel insights into an organism's ecology. The Reverse Ecology framework facilitates the translation of high-throughput genomic data into large-scale ecological data, and has the potential to transform ecology into a high-throughput field. In this chapter, we describe some of the pioneering work in Reverse Ecology, demonstrating how system-level analysis of complex biological networks can be used to predict the natural habitats of poorly characterized microbial species, their interactions with other species, and universal patterns governing the adaptation of organisms to their environments. We further present several studies that applied Reverse Ecology to elucidate various aspects of microbial ecology, and lay out exciting future directions and potential future applications in biotechnology, biomedicine, and ecological engineering.

  19. Ecological interactions and the distribution, abundance, and diversity of sponges.

    Science.gov (United States)

    Wulff, Janie

    2012-01-01

    Although abiotic factors may be important first-order filters dictating which sponge species can thrive at a particular site, ecological interactions can play substantial roles influencing distribution and abundance, and thus diversity. Ecological interactions can modify the influences of abiotic factors both by further constraining distribution and abundance due to competitive or predatory interactions and by expanding habitat distribution or abundance due to beneficial interactions that ameliorate otherwise limiting circumstances. It is likely that the importance of ecological interactions has been greatly underestimated because they tend to only be revealed by experiments and time-series observations in the field. Experiments have revealed opportunistic predation to be a primary enforcer of sponge distribution boundaries that coincide with habitat boundaries in several systems. Within habitats, by contrast, dramatic effects of predators on sponge populations seem to occur primarily in cases of unusually high recruitment rates or unusually low mortality rates for the predators, which are often specialists on the sponge species affected. Competitive interactions have been demonstrated to diminish populations or exclude sponge species from a habitat in only a few cases. Cases in which competitive interactions have appeared obvious have often turned out to be neutral or even beneficial interactions when observed over time. Especially striking in this regard are sponge-sponge interactions in dense sponge-dominated communities, which may promote the continued coexistence of all participating species. Mutualistic symbioses of sponges with other animals, plants, or macroalgae have been demonstrated to increase abundance, habitat distribution, and diversity of all participants. Symbiotic microbes can enhance sponge distribution and abundance but also render their hosts more vulnerable to environmental changes. And while photosynthetic symbionts can boost growth and

  20. Delineating priority habitat areas for the conservation of Andean bears in northern Ecuador

    Science.gov (United States)

    Peralvo, M.F.; Cuesta, F.; Van Manen, F.

    2005-01-01

    We sought to identify priority areas for the conservation of Andean bear (Tremarctos ornatus) habitat in the northern portion of the eastern Andean cordillera in Ecuador. The study area included pa??ramo and montane forest habitats within the Antisana and Cayambe-Coca ecological reserves, and unprotected areas north of these reserves with elevations ranging from 1,800 to 4,300 m. We collected data on bear occurrence along 53 transects during 2000-01 in the Oyacachi River basin, an area of indigenous communities within the Cayambe-Coca Ecological Reserve. We used those data and a set of 7 environmental variables to predict suitability of Andean bear habitat using Mahalanobis distance, a multivariate measure of dissimilarity. The Mahalanobis distance values were classified into 5 classes of habitat suitability and generalized to a resolution of 1,650-m ?? 1,650-m grid cells. Clusters of grid cells with high suitability values were delineated from the generalized model and denned as important habitat areas (IHAs) for conservation. The IHAs were ranked using a weighted index that included factors of elevation range, influence from disturbed areas, and current conservation status. We identified 12 IHAs, which were mainly associated with pa??ramo and cloud forest habitats; 2 of these areas have high conservation priorities because they are outside existing reserves and close to areas of human pressure. The distribution of the IHAs highlighted the role of human land use as the main source of fragmentation of Andean bear habitat in this region, emphasizing the importance of preserving habitat connectivity to allow the seasonal movements among habitat types that we documented for this species. Furthermore, the existence of areas with high habitat suitability close to areas of intense human use indicates the importance of bear-human conflict management as a critical Andean bear conservation strategy. We suggest that a promising conservation opportunity for this species is

  1. Ecological and engineering importance of the Bet el Ras beach ...

    African Journals Online (AJOL)

    From the results of the survey made, it is clear that the sandstone is ecologically and environmentally important such that its total removal will lead to loss of a habitat as well as enhance coastal erosion and sediment input in the littoral zone thereby impacting on the ecology of the associated flora and fauna. Since none of ...

  2. Geographic distributions and ecology of ornamental Curcuma (Zingiberaceae) in Northeastern Thailand.

    Science.gov (United States)

    Khumkratok, Sutthira; Boongtiang, Kriangsuk; Chutichudet, Prasit; Pramaul, Pairot

    2012-10-01

    The genus Curcuma is a very important economic plant. Members of this genus were used as food, medicine and ornament plants. The objectives of this study were to examine the geographic distributions and ecological conditions in the natural habitats of Curcuma in Northeastern Thailand. Species diversity was examined using the line transect method. Ecological conditions of the species were examined using a sampling plot of 20 x 20 m. A total of five species were found including Curcuma angustifolia Roxb., C. alismatifolia Gagnep., C. gracillima Gagnep., C. parviflora Wall. and C. rhabdota. These species were in an altitudinal range between 290 m and 831 m above sea level. Four species (C. angustifolia, C. alismatifolia, C. gracillima and C. rhabdota) were distributed in open gaps in dry dipterocarp forest. One species, C. parviflora was found in the contact zone between dry dipterocarp and bamboo (Gigantochloa sp.) forest. C. rhabdota was found only in a habitat with high humidity and shading along the Thailand-Lao PDR border. Significant ecological conditions of the natural habitats of these Curcuma species were identified. Altitude is the most important factor when determining the geographic distributions of these Curcuma species in Northeastern Thailand.

  3. Community structure of spiders in coastal habitats of a Mediterranean delta region (Nestos Delta, NE Greece

    Directory of Open Access Journals (Sweden)

    S. Buchholz

    2009-01-01

    Full Text Available (pp 101-115Habitat zonation and ecology of spider assemblages have been poorly studied in Mediterranean ecosystems. A first analysis of spider assemblages in coastal habitats in the east Mediterranean area is presented. The study area is the 250 km² Nestos Delta, located in East Macedonia in the North-East of Greece. Spiders were caught in pitfall traps at 17 sites from the beginning of April to the end of June 2004. Nonparametric estimators were used to determine species richness and alpha diversity. Ordination analysis (redundancy analysis indicated four clearly separable spider species groups (salt meadows, dunes, mea-dows and floodplain forests, along a soil salinity and moisture gradient. Based on these results we discuss the habitat preferences of these spiders and include the first ecological data on several species.

  4. Strong links between metal contamination, habitat modification and estuarine larval fish distributions

    Energy Technology Data Exchange (ETDEWEB)

    McKinley, Andrew C., E-mail: andrew.mckinley@hotmail.com [Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052 (Australia); Miskiewicz, Anthony [Environment and Recreation, Wollongong City Council, 41 Burelli Street, Wollongong, New South Wales 2500 (Australia); Taylor, Matthew D.; Johnston, Emma L. [Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052 (Australia)

    2011-06-15

    Changes to larval fish assemblages may have far reaching ecological impacts. Correlations between habitat modification, contamination and marine larval fish communities have rarely been assessed in situ. We investigated links between the large-scale distribution of stressors and larval fish assemblages in estuarine environments. Larval fish communities were sampled using a benthic sled within the inner and outer zones of three heavily modified and three relatively unmodified estuaries. Larval abundances were significantly greater in modified estuaries, and there were trends towards greater diversity in these systems. Differences in larval community composition were strongly related to sediment metal levels and reduced seagrass cover. The differences observed were driven by two abundant species, Paedogobius kimurai and Ambassis jacksoniensis, which occurred in large numbers almost exclusively in highly contaminated and pristine locations respectively. These findings suggest that contamination and habitat alteration manifest in substantial differences in the composition of estuarine larval fish assemblages. - Highlights: > We examine contamination/habitat modification impacts on larval fish. > Larvae communities differ between modified/unmodified estuaries. > Larvae are more abundant/diverse in modified areas. > Trends are strongly related to sediment metals/seagrass cover. > Larval impacts have wider ecological importance. - We describe strong links between sediment metals contamination, habitat modification and substantial differences in the composition of the estuarine larval fish assemblage.

  5. Gastropod diversity, distribution and abundance in habitats with and ...

    African Journals Online (AJOL)

    Water chemistry did differ between fish landing sites and undisturbed habitats at some sampling times, indicating that differences due to human impact do exist, but these are dependent on periods of calm weather. The study shows that anthropogenic disturbances cause ecological changes that can be exploited by some ...

  6. Characterization of habitat preferences for selected wildlife species in encinal savannas of the Southwest [Poster

    Science.gov (United States)

    Wendy D. Jones; Carlton M. Jones; Peter F. Ffolliott; Gerald J. Gottfried

    2005-01-01

    The encinal savannas of the sub-mogollon southwestern United States are important for livestock grazing and wildlife habitat. Little data have been collected on the ecology of these Sierra Madrean types of woodland land areas, which makes management difficult. Obtaining information such as habitat preferences for selected wildlife species and livestock can be an...

  7. The ecological value of constructed wetlands for treating urban runoff.

    Science.gov (United States)

    Pankratz, S; Young, T; Cuevas-Arellano-, H; Kumar, R; Ambrose, R F; Suffet, I H

    2007-01-01

    The Sweetwater Authority's urban runoff diversion system (URDS) comprises constructed wetlands on a hillside between the town of Spring Valley and the Sweetwater Reservoir, California, USA. The URDS were designed to divert dry-weather and first-flush urban runoff flows from the Sweetwater reservoir. However, these constructed wetlands have developed into ecologically valuable habitat. This paper evaluates the following ecological questions related to the URDS: (1) the natural development of the species present and their growth pattern; (2) the biodiversity and pollutant stress on the plants and invertebrates; and (3) the question of habitat provided for endangered species. The URDS wetlands are comprised primarily of rush (Scirpus spp.) and cattails (Typha spp.). This vegetative cover ranged from 39-78% of the area of the individual wetland ponds. Current analyses of plant tissues and wetland sediment indicates the importance of sediment sorption for metals and plant uptake of nutrients. Analyses of URDS water following runoff events show the URDS wetlands do reduce the amount of nutrients and metals in the water column. Invertebrate surveys of the wetland ponds revealed lower habitat quality and environmental stress compared to unpolluted natural habitat. The value of the wetlands as wildlife habitat is constrained by low plant biodiversity and pollution stress from the runoff. Since the primary Sweetwater Authority goal is to maintain good water quality for drinking, any secondary utilization of URDS habitat by species (endangered or otherwise) is deemed an added benefit.

  8. Fish Community Composition and Habitat Use in the Eg-Uur River System, Mongolia

    Directory of Open Access Journals (Sweden)

    Norman Mercado-Silva

    2008-06-01

    Full Text Available Mongolian rivers and their fi sh communities have suffered severe impacts from anthropogenic activities. However, the remoteness of some systems has allowed for the conservation of unique fi sh faunas, including robust populations of Hucho taimen . Conservation of H. taimen requires understanding the composition and ecology of other fi shes in the community. Using multiple sampling techniques, direct observation, and existing literature, we assessed the composition, relative abundance, and ecological attributes of fi shes in the Eg-Uur watershed (Selenge basin. We collected 6 of 12 species known in the watershed. Phoxinus cf. phoxinus and Lota lota were the most and least abundant species, respectively. We failed to detect H. taimen , indicating low abundance or unknown habitat requirements for juveniles. We compared the effectiveness of different sampling techniques (with electro fi shing producing the highest species richness, constructed length-weight relationships for four species , and identi fi ed ecological attributes (i.e., trophic guild, preferred habitat for resident fi shes.

  9. Using circuit theory to model connectivity in ecology, evolution, and conservation.

    Science.gov (United States)

    McRae, Brad H; Dickson, Brett G; Keitt, Timothy H; Shah, Viral B

    2008-10-01

    Connectivity among populations and habitats is important for a wide range of ecological processes. Understanding, preserving, and restoring connectivity in complex landscapes requires connectivity models and metrics that are reliable, efficient, and process based. We introduce a new class of ecological connectivity models based in electrical circuit theory. Although they have been applied in other disciplines, circuit-theoretic connectivity models are new to ecology. They offer distinct advantages over common analytic connectivity models, including a theoretical basis in random walk theory and an ability to evaluate contributions of multiple dispersal pathways. Resistance, current, and voltage calculated across graphs or raster grids can be related to ecological processes (such as individual movement and gene flow) that occur across large population networks or landscapes. Efficient algorithms can quickly solve networks with millions of nodes, or landscapes with millions of raster cells. Here we review basic circuit theory, discuss relationships between circuit and random walk theories, and describe applications in ecology, evolution, and conservation. We provide examples of how circuit models can be used to predict movement patterns and fates of random walkers in complex landscapes and to identify important habitat patches and movement corridors for conservation planning.

  10. The role of habitat filtering in the leaf economics spectrum and plant susceptibility to pathogen infection

    Science.gov (United States)

    Welsh, Miranda E; Cronin, James P.; Mitchell, Charles E.

    2016-01-01

    1.The Leaf Economics Spectrum (LES) describes global covariation in the traits of plant leaves. The LES is thought to arise from biophysical constraints and habitat filtering (ecological selection against unfit trait combinations along environmental gradients). However, the role of habitat filtering in generating the LES has not been tested experimentally.

  11. Linking hydrologic, physical and chemical habitat environments for the potential assessment of fish community rehabilitation in a developing city

    Science.gov (United States)

    Zhao, C. S.; Yang, S. T.; Liu, C. M.; Dou, T. W.; Yang, Z. L.; Yang, Z. Y.; Liu, X. L.; Xiang, H.; Nie, S. Y.; Zhang, J. L.; Mitrovic, S. M.; Yu, Q.; Lim, R. P.

    2015-04-01

    Aquatic ecological rehabilitation is increasingly attracting considerable public and research attention. An effective method that requires less data and expertise would help in the assessment of rehabilitation potential and in the monitoring of rehabilitation activities as complicated theories and excessive data requirements on assemblage information make many current assessment models expensive and limit their wide use. This paper presents an assessment model for restoration potential which successfully links hydrologic, physical and chemical habitat factors to fish assemblage attributes drawn from monitoring datasets on hydrology, water quality and fish assemblages at a total of 144 sites, where 5084 fish were sampled and tested. In this model three newly developed sub-models, integrated habitat index (IHSI), integrated ecological niche breadth (INB) and integrated ecological niche overlap (INO), are established to study spatial heterogeneity of the restoration potential of fish assemblages based on gradient methods of habitat suitability index and ecological niche models. To reduce uncertainties in the model, as many fish species as possible, including important native fish, were selected as dominant species with monitoring occurring over several seasons to comprehensively select key habitat factors. Furthermore, a detrended correspondence analysis (DCA) was employed prior to a canonical correspondence analysis (CCA) of the data to avoid the "arc effect" in the selection of key habitat factors. Application of the model to data collected at Jinan City, China proved effective reveals that three lower potential regions that should be targeted in future aquatic ecosystem rehabilitation programs. They were well validated by the distribution of two habitat parameters: river width and transparency. River width positively influenced and transparency negatively influenced fish assemblages. The model can be applied for monitoring the effects of fish assemblage restoration

  12. Shaken but not stirred: Multiscale habitat suitability modeling of sympatric marten species (Martes martes and Martes foina) in the northern Iberian Peninsula

    Science.gov (United States)

    Maria Vergara; Samuel A. Cushman; Fermin Urra; Aritz Ruiz-Gonzalez

    2016-01-01

    Multispecies and multiscale habitat suitability models (HSM) are important to identify the environmental variables and scales influencing habitat selection and facilitate the comparison of closely related species with different ecological requirements. Objectives This study explores the multiscale relationships of habitat suitability for the pine (Martes...

  13. Fatty acid composition indicating diverse habitat use in coral reef fishes in the Malaysian South China Sea.

    Science.gov (United States)

    Arai, Takaomi; Amalina, Razikin; Bachok, Zainudin

    2015-02-22

    In order to understand feeding ecology and habitat use of coral reef fish, fatty acid composition was examined in five coral reef fishes, Thalassoma lunare, Lutjanus lutjanus, Abudefduf bengalensis, Scarus rivulatus and Scolopsis affinis collected in the Bidong Island of Malaysian South China Sea. Proportions of saturated fatty acids (SAFA) ranged 57.2% 74.2%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA) ranged from 21.4% to 39.0% and the proportion of polyunsaturated fatty acids (PUFA) was the lowest ranged from 2.8% to 14.1%. Each fatty acid composition differed among fishes, suggesting diverse feeding ecology, habitat use and migration during the fishes' life history in the coral reef habitats. Diets of the coral fish species might vary among species in spite of that each species are living sympatrically. Differences in fatty acid profiles might not just be considered with respect to the diets, but might be based on the habitat and migration.

  14. Wave exposure as a predictor of benthic habitat distribution on high energy temperate reefs

    Directory of Open Access Journals (Sweden)

    Alex eRattray

    2015-02-01

    Full Text Available The new found ability to measure physical attributes of the marine environment at high resolution across broad spatial scales has driven the rapid evolution of benthic habitat mapping as a field in its own right. Improvement of the resolution and ecological validity of seafloor habitat distribution models has, for the most part, paralleled developments in new generations of acoustic survey tools such as multibeam echosounders. While sonar methods have been well demonstrated to provide useful proxies of the relatively static geophysical patterns that reflect distribution of benthic species and assemblages, the spatially and temporally variable influence of hydrodynamic energy on habitat distribution have been less well studied. Here we investigate the role of wave exposure on patterns of distribution of near-shore benthic habitats. A high resolution spectral wave model was developed for a 624 km2 site along Cape Otway, a major coastal feature of western Victoria, Australia. Comparison of habitat classifications implemented using the Random Forests algorithm established that significantly more accurate estimations of habitat distribution were obtained by including a fine-scale numerical wave model, extended to the seabed using linear wave theory, than by using depth and seafloor morphology information alone. Variable importance measures and map interpretation indicated that the spatial variation in wave induced bottom orbital velocity was most influential in discriminating habitat the classes containing canopy forming kelp Ecklonia radiata, a foundation kelp species that affects biodiversity and ecological functioning on shallow reefs across temperate Australasia. We demonstrate that hydrodynamic models reflecting key environmental drivers on wave exposed coastlines are important in accurately defining distributions of benthic habitats.

  15. Motivating conservation: Learning to care for other species in a local ecological community

    Science.gov (United States)

    Laflamme, Michael

    Large-scale, sustainable biodiversity conservation must motivate action by local communities. I united theories and practices in biology and psychology to study the process by which people are motivated to care for other species, and to what extent caring results in helping. Participants (N = 1200), age 8--22, interacted with native fish and aquatic insects in their habitats during 21 field experiences through Lake County, Montana educational institutions. Native fish were chosen because they are familiar to local people, yet different from people in their morphology, biomechanics, and habitat. In Phase I, two activity models for conservation emerged: the Habitat approach linked concepts in ecology, reciprocation, and a moral orientation toward justice, while the Behavior approach linked concepts in behavior, kin selection, and a moral orientation toward caring. These two approaches were compared in Phase II through seven sets of experiences that varied only in point of view: toward the habitat or toward behavior. I found that through sustained contact between people and local fish in their habitats, in the field and in cold-water aquaria, people empathized with fish more than with habitats. They perceived fish states by interpreting their behavior, and created meaning by focusing on fish social interactions with their habitat, with other fish, and with people. They used the information gained from empathy to identify ongoing conservation needs and to design conservation plans. Attention to behavior increased perception of human impacts on fish; perception of relatedness with fish; similarity with the physiology, behavior, minds and lives of fish; desire for non-material benefits in return for helping fish; and cohesion within participant groups. These perceptions varied with age and gender. For example, women and children emphasized values of non-material returns for time invested. This study recommends a behavioral-ecology approach for motivating conservation and

  16. Stream habitat structure influences macroinvertebrate response to pesticides

    International Nuclear Information System (INIS)

    Rasmussen, Jes Jessen; Wiberg-Larsen, Peter; Baattrup-Pedersen, Annette; Friberg, Nikolai; Kronvang, Brian

    2012-01-01

    Agricultural pesticides continue to impair surface water ecosystems, although there are few assessments of interactions with other modifications such as fine sediment and physical alteration for flood drainage. We, therefore, surveyed pesticide contamination and macroinvertebrates in 14 streams along a gradient of expected pesticide exposure using a paired-reach approach to differentiate effects between physically modified and less modified sites. Apparent pesticides effects on the relative abundance of SPEcies At Risk (SPEAR) were increased at sites with degraded habitats primarily due to the absence of species with specific preferences for hard substrates. Our findings highlight the importance of physical habitat degradation in the assessment and mitigation of pesticide risk in agricultural streams. - Highlights: ► %SPEAR abundance significantly decreased with increasing TU (D. magna). ► %SPEAR abundance was significantly lower when soft sediment was dominant. ► Species specific habitat preferences influenced the total effect of pesticides. ► This study has strong implications for future stream management and risk assessment. - Ecological impacts of pesticides on stream macroinvertebrates are influenced by the heterogeneity and physical structure of micro-habitats.

  17. Echinoid associations with coral habitats differ with taxon in the deep sea and the influence of other echinoids, depth, and fishing history on their distribution

    Science.gov (United States)

    Stevenson, Angela; Davies, Jaime S.; Williams, Alan; Althaus, Franziska; Rowden, Ashley A.; Bowden, David A.; Clark, Malcolm R.; Mitchell, Fraser J. G.

    2018-03-01

    Patterns of habitat use by animals and knowledge of the environmental factors affecting these spatial patterns are important for understanding the structure and dynamics of ecological communities. Both aspects are poorly known for deep-sea habitats. The present study investigates echinoid distributions within cold water coral (CWC) habitats on continental margins off France, Australia, and New Zealand. It further examines the influence of habitat-related variables that might help explain the observed distribution of echinoid taxa. Six echinoid taxa were examined from video and photographic transects to reveal taxon-specific distribution patterns and habitat-related influences. The Echinoidea were found in all habitats studied, but tended to aggregate in architecturally complex habitats associated with living cold-water corals. However, a taxon-specific investigation found that such associations were largely an artefact of the dominant taxa observed in a specific region. Despite the food and shelter resources offered to echinoids by matrix-forming coral habitats, not all taxa were associated with these habitats, and some had a random association with the habitats examined, while others displayed non-random associations. Echinoid distribution was correlated with several variables; the presence of other echinoids, depth, and fishing history were the most influential factors. This study indicates that image data can be a useful tool to detect trends in echinoid habitat associations. It also suggests that refinement of the methods, in particular with studies conducted at a more precise taxon and habitat scale, would facilitate better quantitative analyses of habitat associations and paint a more realistic picture of a population's ecology. Most deep-sea ecological studies to date have been conducted at a relatively coarse taxonomic and habitat resolution, and lack sufficient resolution to provide useful information for the conservation of vulnerable deep-sea habitats.

  18. Epigenetic Differentiation of Natural Populations of Lilium bosniacum Associated with Contrasting Habitat Conditions

    OpenAIRE

    Zoldoš, Vlatka; Biruš, Ivan; Muratović, Edina; Šatović, Zlatko; Vojta, Aleksandar; Robin, Odile; Pustahija, Fatima; Bogunić, Faruk; Vičić Bočkor, Vedrana; Siljak-Yakovlev, Sonja

    2018-01-01

    Abstract Epigenetic variation in natural populations with contrasting habitats might be an important element, in addition to the genetic variation, in plant adaptation to environmental stress. Here, we assessed genetic, epigenetic, and cytogenetic structure of the three Lilium bosniacum populations growing on distinct habitats. One population was growing under habitual ecological conditions for this species and the other two were growing under stress associated with high altitude and serpenti...

  19. Concurrent assessment of fish and habitat in warmwater streams in Wyoming

    Science.gov (United States)

    Quist, M.C.; Hubert, W.A.; Rahel, F.J.

    2006-01-01

    Fisheries research and management in North America have focused largely on sport fishes, but native non-game fishes have attracted increased attention due to their declines. The Warmwater Stream Assessment (WSA) was developed to evaluate simultaneously both fish and habitat in Wyoming streams by a process that includes three major components: (1) stream-reach selection and accumulation of existing information, (2) fish and habitat sampling and (3) summarisation and evaluation of fish and habitat information. Fish are sampled by electric fishing or seining and habitat is measured at reach and channel-unit (i.e. pool, run, riffle, side channel, or backwater) scales. Fish and habitat data are subsequently summarised using a data-matrix approach. Hierarchical decision trees are used to assess critical habitat requirements for each fish species expected or found in the reach. Combined measurements of available habitat and the ecology of individual species contribute to the evaluation of the observed fish assemblage. The WSA incorporates knowledge of the fish assemblage and habitat features to enable inferences of factors likely influencing both the fish assemblage and their habitat. The WSA was developed for warmwater streams in Wyoming, but its philosophy, process and conceptual basis may be applied to environmental assessments in other geographical areas. ?? 2006 Blackwell Publishing Ltd.

  20. Ecological drivers and habitat associations of estuarine bivalves

    OpenAIRE

    McKeon, C. Seabird; Tunberg, Bj?rn G.; Johnston, Cora A.; Barshis, Daniel J.

    2015-01-01

    Community composition of the infaunal bivalve fauna of the St. Lucie Estuary and southern Indian River Lagoon, eastern Florida was sampled quarterly for 10 years as part of a long-term benthic monitoring program. A total of 38,514 bivalves of 137 taxa were collected and identified. We utilized this data, along with sediment samples and environmental measurements gathered concurrently, to assess the community composition, distribution, and ecological drivers of the infaunal bivalves of this es...

  1. Nitrogen Limitation and Slow Drying Induce Desiccation Tolerance in Conjugating Green Algae (Zygnematophyceae, Streptophyta) from Polar Habitats

    Czech Academy of Sciences Publication Activity Database

    Pichrtová, Martina; Kulichová, J.; Holzinger, A.

    2014-01-01

    Roč. 9, č. 11 (2014), č. článku e113137. E-ISSN 1932-6203 Institutional support: RVO:67985939 Keywords : Biological soil crust * High-alpine habitat * land plants Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 3.234, year: 2014

  2. Assessment and management of dead-wood habitat

    Science.gov (United States)

    Hagar, Joan

    2007-01-01

    The Bureau of Land Management (BLM) is in the process of revising its resource management plans for six districts in western and southern Oregon as the result of the settlement of a lawsuit brought by the American Forest Resource Council. A range of management alternatives is being considered and evaluated including at least one that will minimize reserves on O&C lands. In order to develop the bases for evaluating management alternatives, the agency needs to derive a reasonable range of objectives for key issues and resources. Dead-wood habitat for wildlife has been identified as a key resource for which decision-making tools and techniques need to be refined and clarified. Under the Northwest Forest Plan, reserves were to play an important role in providing habitat for species associated with dead wood (U.S. Department of Agriculture Forest Service and U.S. Department of the Interior Bureau of Land Management, 1994). Thus, the BLM needs to: 1) address the question of how dead wood will be provided if reserves are not included as a management strategy in the revised Resource Management Plan, and 2) be able to evaluate the effects of alternative land management approaches. Dead wood has become an increasingly important conservation issue in managed forests, as awareness of its function in providing wildlife habitat and in basic ecological processes has dramatically increased over the last several decades (Laudenslayer et al., 2002). A major concern of forest managers is providing dead wood habitat for terrestrial wildlife. Wildlife in Pacific Northwest forests have evolved with disturbances that create large amounts of dead wood; so, it is not surprising that many species are closely associated with standing (snags) or down, dead wood. In general, the occurrence or abundance of one-quarter to one-third of forest-dwelling vertebrate wildlife species, is strongly associated with availability of suitable dead-wood habitat (Bunnell et al., 1999; Rose et al., 2001). In

  3. Increasing connectivity between metapopulation ecology and landscape ecology.

    Science.gov (United States)

    Howell, Paige E; Muths, Erin; Hossack, Blake R; Sigafus, Brent H; Chandler, Richard B

    2018-05-01

    Metapopulation ecology and landscape ecology aim to understand how spatial structure influences ecological processes, yet these disciplines address the problem using fundamentally different modeling approaches. Metapopulation models describe how the spatial distribution of patches affects colonization and extinction, but often do not account for the heterogeneity in the landscape between patches. Models in landscape ecology use detailed descriptions of landscape structure, but often without considering colonization and extinction dynamics. We present a novel spatially explicit modeling framework for narrowing the divide between these disciplines to advance understanding of the effects of landscape structure on metapopulation dynamics. Unlike previous efforts, this framework allows for statistical inference on landscape resistance to colonization using empirical data. We demonstrate the approach using 11 yr of data on a threatened amphibian in a desert ecosystem. Occupancy data for Lithobates chiricahuensis (Chiricahua leopard frog) were collected on the Buenos Aires National Wildlife Refuge (BANWR), Arizona, USA from 2007 to 2017 following a reintroduction in 2003. Results indicated that colonization dynamics were influenced by both patch characteristics and landscape structure. Landscape resistance increased with increasing elevation and distance to the nearest streambed. Colonization rate was also influenced by patch quality, with semi-permanent and permanent ponds contributing substantially more to the colonization of neighboring ponds relative to intermittent ponds. Ponds that only hold water intermittently also had the highest extinction rate. Our modeling framework can be widely applied to understand metapopulation dynamics in complex landscapes, particularly in systems in which the environment between habitat patches influences the colonization process. © 2018 by the Ecological Society of America.

  4. Temporal ecology in the Anthropocene.

    Science.gov (United States)

    Wolkovich, E M; Cook, B I; McLauchlan, K K; Davies, T J

    2014-11-01

    Two fundamental axes - space and time - shape ecological systems. Over the last 30 years spatial ecology has developed as an integrative, multidisciplinary science that has improved our understanding of the ecological consequences of habitat fragmentation and loss. We argue that accelerating climate change - the effective manipulation of time by humans - has generated a current need to build an equivalent framework for temporal ecology. Climate change has at once pressed ecologists to understand and predict ecological dynamics in non-stationary environments, while also challenged fundamental assumptions of many concepts, models and approaches. However, similarities between space and time, especially related issues of scaling, provide an outline for improving ecological models and forecasting of temporal dynamics, while the unique attributes of time, particularly its emphasis on events and its singular direction, highlight where new approaches are needed. We emphasise how a renewed, interdisciplinary focus on time would coalesce related concepts, help develop new theories and methods and guide further data collection. The next challenge will be to unite predictive frameworks from spatial and temporal ecology to build robust forecasts of when and where environmental change will pose the largest threats to species and ecosystems, as well as identifying the best opportunities for conservation. © 2014 John Wiley & Sons Ltd/CNRS.

  5. Linking effects of anthropogenic debris to ecological impacts

    NARCIS (Netherlands)

    Browne, M.A.; Underwood, A.J.; Chapman, M.G.; Williams, R.; Thompson, R.C.; Franeker, van J.A.

    2015-01-01

    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that

  6. The soil and plant determinants of community structures of the dominant actinobacteria in Marion Island terrestrial habitats, Sub-Antarctica

    CSIR Research Space (South Africa)

    Sanyika, TW

    2012-08-01

    Full Text Available Marion Island is a Sub-Antarctic island made up of distinct ecological habitats based on soil physiochemical, plant cover and physical characteristics. The microbial diversity and ecological determinants in this harsh Sub-Antarctic environment...

  7. Habitat associations of juvenile fish at Ningaloo Reef, Western Australia: the importance of coral and algae.

    Directory of Open Access Journals (Sweden)

    Shaun K Wilson

    2010-12-01

    Full Text Available Habitat specificity plays a pivotal role in forming community patterns in coral reef fishes, yet considerable uncertainty remains as to the extent of this selectivity, particularly among newly settled recruits. Here we quantified habitat specificity of juvenile coral reef fish at three ecological levels; algal meadows vs. coral reefs, live vs. dead coral and among different coral morphologies. In total, 6979 individuals from 11 families and 56 species were censused along Ningaloo Reef, Western Australia. Juvenile fishes exhibited divergence in habitat use and specialization among species and at all study scales. Despite the close proximity of coral reef and algal meadows (10's of metres 25 species were unique to coral reef habitats, and seven to algal meadows. Of the seven unique to algal meadows, several species are known to occupy coral reef habitat as adults, suggesting possible ontogenetic shifts in habitat use. Selectivity between live and dead coral was found to be species-specific. In particular, juvenile scarids were found predominantly on the skeletons of dead coral whereas many damsel and butterfly fishes were closely associated with live coral habitat. Among the coral dependent species, coral morphology played a key role in juvenile distribution. Corymbose corals supported a disproportionate number of coral species and individuals relative to their availability, whereas less complex shapes (i.e. massive & encrusting were rarely used by juvenile fish. Habitat specialisation by juvenile species of ecological and fisheries importance, for a variety of habitat types, argues strongly for the careful conservation and management of multiple habitat types within marine parks, and indicates that the current emphasis on planning conservation using representative habitat areas is warranted. Furthermore, the close association of many juvenile fish with corals susceptible to climate change related disturbances suggests that identifying and

  8. The domestication and evolutionary ecology of apples

    NARCIS (Netherlands)

    Cornille, A.; Giraud, T.; Smulders, M.J.M.; Roldán-Ruiz, I.; Gladieux, P.

    2014-01-01

    The cultivated apple is a major fruit crop in temperate zones. Its wild relatives, distributed across temperate Eurasia and growing in diverse habitats, represent potentially useful sources of diversity for apple breeding. We review here the most recent findings on the genetics and ecology of apple

  9. Ecological drivers of shark distributions along a tropical coastline.

    Directory of Open Access Journals (Sweden)

    Peter M Yates

    Full Text Available As coastal species experience increasing anthropogenic pressures there is a growing need to characterise the ecological drivers of their abundance and habitat use, and understand how they may respond to changes in their environment. Accordingly, fishery-independent surveys were undertaken to investigate shark abundance along approximately 400 km of the tropical east coast of Australia. Generalised linear models were used to identify ecological drivers of the abundance of immature blacktip Carcharhinus tilstoni/Carcharhinus limbatus, pigeye Carcharhinus amboinensis, and scalloped hammerhead Sphyrna lewini sharks. Results indicated general and species-specific patterns in abundance that were characterised by a range of abiotic and biotic variables. Relationships with turbidity and salinity were similar across multiple species, highlighting the importance of these variables in the functioning of communal shark nurseries. In particular, turbid environments were especially important for all species at typical oceanic salinities. Mangrove proximity, depth, and water temperature were also important; however, their influence varied between species. Ecological drivers may promote spatial diversity in habitat use along environmentally heterogeneous coastlines and may therefore have important implications for population resilience.

  10. Ecological drivers of shark distributions along a tropical coastline.

    Science.gov (United States)

    Yates, Peter M; Heupel, Michelle R; Tobin, Andrew J; Simpfendorfer, Colin A

    2015-01-01

    As coastal species experience increasing anthropogenic pressures there is a growing need to characterise the ecological drivers of their abundance and habitat use, and understand how they may respond to changes in their environment. Accordingly, fishery-independent surveys were undertaken to investigate shark abundance along approximately 400 km of the tropical east coast of Australia. Generalised linear models were used to identify ecological drivers of the abundance of immature blacktip Carcharhinus tilstoni/Carcharhinus limbatus, pigeye Carcharhinus amboinensis, and scalloped hammerhead Sphyrna lewini sharks. Results indicated general and species-specific patterns in abundance that were characterised by a range of abiotic and biotic variables. Relationships with turbidity and salinity were similar across multiple species, highlighting the importance of these variables in the functioning of communal shark nurseries. In particular, turbid environments were especially important for all species at typical oceanic salinities. Mangrove proximity, depth, and water temperature were also important; however, their influence varied between species. Ecological drivers may promote spatial diversity in habitat use along environmentally heterogeneous coastlines and may therefore have important implications for population resilience.

  11. Application of spatial models to the stopover ecology of trans-Gulf migrants

    Science.gov (United States)

    Theodore R. Simons; Scott M. Pearson; Frank R. Moore

    2000-01-01

    Studies at migratory stopover sites along the northern coast of the Gulf of Mexico are providing an understanding of how weather, habitat, and energetic factors combine to shape the stopover ecology of trans-Gulf migrants. We are coupling this understanding with analyses of landscape-level patterns of habitat availability by using spatially explicit models to simulate...

  12. The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus

    Science.gov (United States)

    Vitt, Laurie J.; Caldwell, Janalee P.; Zani, Peter A.; Titus, Tom A.

    1997-01-01

    We compared morphology of two geographically close populations of the tropical lizard Tropidurus hispidus to test the hypothesis that habitat structure influences the evolution of morphology and ecology at the population level. T. hispidus isolated on a rock outcrop surrounded by tropical forest use rock crevices for refuge and appear dorsoventrally compressed compared with those in open savanna. A principal components analysis revealed that the populations were differentially distributed along an axis representing primarily three components of shape: body width, body height, and hind-leg length. Morphological divergence was supported by a principal components analysis of size-free morphological variables. Mitochondrial DNA sequences of ATPase 6 indicate that these populations are closely related relative to other T. hispidus, the rock outcrop morphology and ecology are derived within T. hispidus, and morphological and ecological divergence has occurred more rapidly than genetic divergence. This suggests that natural selection can rapidly adjust morphology and ecology in response to a recent history of exposure to habitats differing in structure, a result heretofore implied from comparative studies among lizard species. PMID:9108063

  13. The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus.

    Science.gov (United States)

    Vitt, L J; Caldwell, J P; Zani, P A; Titus, T A

    1997-04-15

    We compared morphology of two geographically close populations of the tropical lizard Tropidurus hispidus to test the hypothesis that habitat structure influences the evolution of morphology and ecology at the population level. T. hispidus isolated on a rock outcrop surrounded by tropical forest use rock crevices for refuge and appear dorsoventrally compressed compared with those in open savanna. A principal components analysis revealed that the populations were differentially distributed along an axis representing primarily three components of shape: body width, body height, and hind-leg length. Morphological divergence was supported by a principal components analysis of size-free morphological variables. Mitochondrial DNA sequences of ATPase 6 indicate that these populations are closely related relative to other T. hispidus, the rock outcrop morphology and ecology are derived within T. hispidus, and morphological and ecological divergence has occurred more rapidly than genetic divergence. This suggests that natural selection can rapidly adjust morphology and ecology in response to a recent history of exposure to habitats differing in structure, a result heretofore implied from comparative studies among lizard species.

  14. Biodiversity in intertidal rock pools: informing engineering criteria for artificial habitat enhancement in the built environment.

    Science.gov (United States)

    Firth, Louise B; Schofield, Meredith; White, Freya J; Skov, Martin W; Hawkins, Stephen J

    2014-12-01

    Coastal defence structures are proliferating to counter rising and stormier seas. With increasing concern about the ecological value of built environments, efforts are being made to create novel habitat to increase biodiversity. Rock pools are infrequent on artificial structures. We compared biodiversity patterns between rock pools and emergent rock and assessed the role of pool depth and substratum incline in determining patterns of biodiversity. Rock pools were more taxon rich than emergent substrata. Patterns varied with depth and incline with algal groups being more positively associated with shallow than deeper habitats. Substratum incline had little influence on colonising epibiota, with the exception of canopy algae in deeper habitats where vertical surfaces supported greater taxon richness than horizontal surfaces. The creation of artificial rock pools in built environments will have a positive effect on biodiversity. Building pools of varying depths and inclines and shore heights will provide a range of habitats, increase environmental heterogeneity, therefore creating more possible ecological niches, promoting local biodiversity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Population ecology and habitat preferences of juvenile flounder Platichthys flesus (Actinopterygii: Pleuronectidae) in a temperate estuary

    Science.gov (United States)

    Souza, Allan T.; Dias, Ester; Nogueira, Ana; Campos, Joana; Marques, João C.; Martins, Irene

    2013-05-01

    The European flounder Platichthys flesus is a widely distributed epibenthic species and an important component of demersal fish assemblages in the European Atlantic coastal waters. In Portuguese estuaries, this species reaches high densities, especially in Minho estuary (NW Iberian Peninsula, Europe), potentially playing an important role in the system's ecology. In this context, the population structure, production and the habitat use of juvenile P. flesus were investigated. Sampling took place monthly, from February 2009 until July 2010 along the entire estuarine gradient (5 sampling stations distributed in the first 29 km from the river mouth, with S1 located near the river mouth, S2 inside a salt marsh, S3 in a salinity transition zone, while S4 and S5 were located in the upper estuary). Flounder's density varied significantly among sampling stations and seasons (two-way PERMANOVA: p PERMANOVA: p < 0.001), with larger fishes being found in S1 during the autumn (168.50 ± 59.50 mm) and the smallest in S4 during the spring (33.80 ± 3.12 mm). Size classes associated differently with environmental variables, with larger juveniles being more abundant in the downstream areas of the estuary, whereas smaller juveniles were related to higher water temperatures, suggesting a habitat segregation of P. flesus of different sizes. The fish condition of P. flesus in Minho estuary was higher than in other systems, probably due to the dominance of juveniles on the population. Also, the densities found in this estuary were up to 32 times higher than in other locations, suggesting that Minho estuary is an important nursery area for the species. The estimated secondary production of P. flesus was lower than previous studies acknowledged in the system (0.037 g.WWm- 2.year- 1), indicating that the production estimates of this species in estuaries can vary considerably depending on of several factors such as the sampling year and strategy, population and fish size.

  16. Predicting micro thermal habitat of lizards in a dynamic thermal environment

    NARCIS (Netherlands)

    Fei, T.; Skidmore, A.K.; Venus, V.; Wang, T.; Toxopeus, A.G.; Bian, B.M.; Liu, Y.

    2012-01-01

    Understanding behavioural thermoregulation and its consequences is a central topic in ecology. In this study, a spatial explicit model was developed to simulate the movement and thermal habitat use of lizards in a controlled environment. The model incorporates a lizard's transient body temperatures

  17. Distribution of Mysidium integrum (Tattersall) (Crustacea-mysidacea) in Venezuelan coral habitats

    NARCIS (Netherlands)

    Zoppi de Roa, Evelyn; Pedro Alonso, G.

    1997-01-01

    ZOPPI DE ROA, EVELYN & PEDRO ALONSO G.: Distribution of Mysidium integrum (Tattersall) (Crustacea: Mysidacea) in Venezuelan coral habitats. Studies Nat. Hist. Caribbean Region 73, Amsterdam 1997: 55-62. This paper reports the occurrence, distribution and some ecological aspects of mysids in six

  18. Hydrodynamic and Ecological Assessment of Nearshore Restoration: A Modeling Study

    International Nuclear Information System (INIS)

    Yang, Zhaoqing; Sobocinski, Kathryn L.; Heatwole, Danelle W.; Khangaonkar, Tarang; Thom, Ronald M.; Fuller, Roger

    2010-01-01

    Along the Pacific Northwest coast, much of the estuarine habitat has been diked over the last century for agricultural land use, residential and commercial development, and transportation corridors. As a result, many of the ecological processes and functions have been disrupted. To protect coastal habitats that are vital to aquatic species, many restoration projects are currently underway to restore the estuarine and coastal ecosystems through dike breaches, setbacks, and removals. Information on physical processes and hydrodynamic conditions are critical for the assessment of the success of restoration actions. Restoration of a 160- acre property at the mouth of the Stillaguamish River in Puget Sound has been proposed. The goal is to restore native tidal habitats and estuary-scale ecological processes by removing the dike. In this study, a three-dimensional hydrodynamic model was developed for the Stillaguamish River estuary to simulate estuarine processes. The model was calibrated to observed tide, current, and salinity data for existing conditions and applied to simulate the hydrodynamic responses to two restoration alternatives. Responses were evaluated at the scale of the restoration footprint. Model data was combined with biophysical data to predict habitat responses at the site. Results showed that the proposed dike removal would result in desired tidal flushing and conditions that would support four habitat types on the restoration footprint. At the estuary scale, restoration would substantially increase the proportion of area flushed with freshwater (< 5 ppt) at flood tide. Potential implications of predicted changes in salinity and flow dynamics are discussed relative to the distribution of tidal marsh habitat.

  19. Living in the branches: population dynamics and ecological processes in dendritic networks

    Science.gov (United States)

    Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.

    2007-01-01

    Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.

  20. Innovative study methods for the Mediterranean coralligenous habitats

    Directory of Open Access Journals (Sweden)

    P.A. Zapata-Ramírez

    2013-11-01

    Full Text Available Coralligenous habitats are of special interest in the Mediterranean Sea because they represent one of the most important biodiversity ‘hot-spots’ and are considered of great relevance for fisheries activities in the region. Despite their importance, however, there are missing consensual methodologies for their monitoring and, despite some attempts, no environmental or ecological quality indices have been established yet. This situation could be related to the difficulties associated with their exploration and their spatial heterogeneity. These habitats are in urgent need of efficient standard monitoring and management protocols programmes to develop an effective network for their conservation. Here we reviewed the available methodologies and robotics tools used to evaluate and monitor benthic habitats, highlighting the importance of defining rapid cost-effective sampling and analyses approaches and architectures for future monitoring of changes in coralligenous habitats based on current technological developments. We identified still images acquisitions as the most effective data gathering system. Stereo photogrammetry, photomosaic elaboration and three-dimensional (3D modelling may largely improve the data analysis and therefore the quality status assessment of the coralligenous habitats. The advantage and efficiency of different approaches and methods, and whether they should be applied and standardised for further monitoring activities, were discussed.

  1. Use of functional traits to assess changes in stream fish assemblages across a habitat gradient

    Directory of Open Access Journals (Sweden)

    Mariela Domiciano Ribeiro

    Full Text Available Abstract Functional traits are important for understanding the links between species occurrence and environmental conditions. Identifying these links makes it possible to predict changes in species composition within communities under specific environmental conditions. We used functional traits related to habitat use and trophic ecology in order to assess the changes in fish community composition between streams with varying habitat structure. The relationship between the species traits and habitat characteristics was analyzed using an RLQ ordination analysis. Although species were widely distributed in habitats with different structures, physical conditions did favor some species based on their functional characteristics. Eight functional traits were found to be associated with stream habitat structure, allowing us to identify traits that may predict the susceptibility of fish species to physical habitat degradation.

  2. Strong links between metal contamination, habitat modification and estuarine larval fish distributions

    International Nuclear Information System (INIS)

    McKinley, Andrew C.; Miskiewicz, Anthony; Taylor, Matthew D.; Johnston, Emma L.

    2011-01-01

    Changes to larval fish assemblages may have far reaching ecological impacts. Correlations between habitat modification, contamination and marine larval fish communities have rarely been assessed in situ. We investigated links between the large-scale distribution of stressors and larval fish assemblages in estuarine environments. Larval fish communities were sampled using a benthic sled within the inner and outer zones of three heavily modified and three relatively unmodified estuaries. Larval abundances were significantly greater in modified estuaries, and there were trends towards greater diversity in these systems. Differences in larval community composition were strongly related to sediment metal levels and reduced seagrass cover. The differences observed were driven by two abundant species, Paedogobius kimurai and Ambassis jacksoniensis, which occurred in large numbers almost exclusively in highly contaminated and pristine locations respectively. These findings suggest that contamination and habitat alteration manifest in substantial differences in the composition of estuarine larval fish assemblages. - Highlights: → We examine contamination/habitat modification impacts on larval fish. → Larvae communities differ between modified/unmodified estuaries. → Larvae are more abundant/diverse in modified areas. → Trends are strongly related to sediment metals/seagrass cover. → Larval impacts have wider ecological importance. - We describe strong links between sediment metals contamination, habitat modification and substantial differences in the composition of the estuarine larval fish assemblage.

  3. Ecology and distribution of Lycopodiaceae Mirbel in Malaysia

    NARCIS (Netherlands)

    Rusea, G.; Claysius, K.; Runi, S.; Joanes, U.; Haja Maideen, K.M.; Latiff, A.

    2009-01-01

    This paper is the first account to discuss the distribution, ecology and habitats of the Lycopodiaceae in Malaysia. Lycopodiaceae are widely distributed throughout Malaysia with respect to altitudes and environmental conditions but most abundantly found in hill forest and lower montane forest,

  4. Using expert opinion to evaluate a habitat effectiveness model for elk in western Oregon and Washington.

    Science.gov (United States)

    Richard S. Holthausen; Michael J. Wisdom; John Pierce; Daniel K. Edwards; Mary M. Rowland

    1994-01-01

    We used expert opinion to evaluate the predictive reliability of a habitat effectiveness model for elk in western Oregon and Washington. Twenty-five experts in elk ecology were asked to rate habitat quality for 16 example landscapes. Rankings and ratings of 21 experts were significantly correlated with model output. Expert opinion and model predictions differed for 4...

  5. An ecological study of Bithynia snails, the first intermediate host of Opisthorchis viverrini in northeast Thailand.

    Science.gov (United States)

    Wang, Yi-Chen; Ho, Richard Cheng Yong; Feng, Chen-Chieh; Namsanor, Jutamas; Sithithaworn, Paiboon

    2015-01-01

    Infection with the food-borne trematodiasis, liver fluke Opisthorchis viverrini, is a major public health concern in Southeast Asia. While epidemiology and parasitic incidence in humans are well studied, ecological information on the O. viverrini intermediate hosts remains limited. This study aimed to investigate the factors affecting the distribution and abundance of the first intermediate host, Bithynia siamensis goniomphalos snails. Water quality and snails were sampled in 31 sites in Muang District, Khon Kaen Province, Thailand from June 2012 to January 2013 to characterize the B.s. goniomphalos snail habitats. Species relative abundance and Shannon's diversity and evenness indices were employed to describe snail compositions and diversities across different habitat types. Statistical analyses were conducted to examine the extent to which the water quality variables and species interactions account for the relative abundance of B.s. goniomphalos snails. The results showed that the freshwater habitats of ponds, streams and rice paddies possessed significantly different abiotic water qualities, with water temperature and pH showing distinct statistical differences (P<0.05). Different habitats had different snail diversity and species evenness, with high B.s. goniomphalos snail abundance at rice paddy habitats. The differences in snail abundance might be due to the distinct sets of abiotic water qualities associated with each habitat types. The relative abundance of B.s. goniomphalos snails was found to be negatively correlated with that of Filopaludina martensi martensi snails (r=-0.46, P<0.05), underscoring the possible influence of species interaction on B.s. goniomphalos snail population. Field work observations revealed that rice planting seasons and irrigation could regulate snail population dynamics at rice paddy habitats. This study provides new ecological insights into the factors affecting Bithynia snail distribution and abundance. It bridges the

  6. Visual motion detection and habitat preference in Anolis lizards.

    Science.gov (United States)

    Steinberg, David S; Leal, Manuel

    2016-11-01

    The perception of visual stimuli has been a major area of inquiry in sensory ecology, and much of this work has focused on coloration. However, for visually oriented organisms, the process of visual motion detection is often equally crucial to survival and reproduction. Despite the importance of motion detection to many organisms' daily activities, the degree of interspecific variation in the perception of visual motion remains largely unexplored. Furthermore, the factors driving this potential variation (e.g., ecology or evolutionary history) along with the effects of such variation on behavior are unknown. We used a behavioral assay under laboratory conditions to quantify the visual motion detection systems of three species of Puerto Rican Anolis lizard that prefer distinct structural habitat types. We then compared our results to data previously collected for anoles from Cuba, Puerto Rico, and Central America. Our findings indicate that general visual motion detection parameters are similar across species, regardless of habitat preference or evolutionary history. We argue that these conserved sensory properties may drive the evolution of visual communication behavior in this clade.

  7. The problem of spatial fit in social-ecological systems: detecting mismatches between ecological connectivity and land management in an urban region

    Directory of Open Access Journals (Sweden)

    Arvid Bergsten

    2014-12-01

    Full Text Available The problem of institutional fit in social-ecological systems has been empirically documented and conceptually discussed for decades, yet there is a shortage of approaches to systematically and quantitatively examine the level of fit. We address this gap, focusing on spatial fit in an urban and peri-urban regional landscape. Such landscapes typically exhibit significant fragmentation of remnant habitats, which can limit critical species dispersal. This may have detrimental effects on species persistence and ecosystem functioning if land use is planned without consideration of the spatial patterns of fragmentation. Managing habitat fragmentation is particularly challenging when the scale of fragmentation reaches beyond the control of single managers, thereby requiring different actors to coordinate their activities to address the problem at the appropriate scale. We present a research approach that maps patterns of collaborations between actors who manage different parts of a landscape, and then relates these patterns to structures of ecological connectivity. We applied our approach to evaluate the fit between a collaborative wetland management network comprising all 26 municipalities in the Stockholm County in Sweden and an ecologically defined network of dispersed but ecologically interconnected wetlands. Many wetlands in this landscape are either intersected by the boundary between two or more municipalities, or are located close to such boundaries, which implies a degree of ecological interconnectedness and a need for intermunicipal coordination related to wetland management across boundaries. We first estimated the level of ecological connectivity between wetlands in neighboring municipalities, and then used this estimate to elaborate the level of social-ecological fit vis-à-vis intermunicipal collaboration. We found that the level of fit was generally weak. Also, we identified critical misalignments of ecological connectivity and

  8. Behavior Ecology of the Javan Green Peafowl (Pavo muticus muticus Linnaeus 1758 in Baluran and Alas Purwo National Park, East Java

    Directory of Open Access Journals (Sweden)

    JARWADI BUDI HERNOWO

    2011-12-01

    Full Text Available The javan green peafowl (Pavo muticus muticus is a endangered bird species. They have big pressure to the population and the habitat. The fact that the birds are still exist on their local distribution. Behavior ecology of javan green peafowl is dealing with activities, mechanism and strategies of the birds in relation to their environment. The aimed of the study is to obtain data and information of ecological adaptation strategies through the behavior activities, mechanism and strategies of javan green peafowl in-relation to their habitat types. Ad libitum sampling method was used on continuous recording every peafowl activities in relation with duration, frequencies mechanism and strategy were influenced by habitat type's condition. Chi-squre test was used for statistical analysis to know different behavior has influenced by habitat types. The result shown that the javan green peafowl habitat typse has significant influenced on duration of the activities but not at the activities pattern. The walking during the feeding. select shading places or luxuriant trees close to feeding site, choosing tall trees or emergent trees close to open area as roost site, open area also road as display or dancing area, open area which grow shrubs as nesting site are javan green peafowl ecological behavior strategies. The mechanism and strategies of javan green peafowl behavior ecology are related to avoid from disturbance and to adapt their habitat type's conditions.

  9. Behavior Ecology of the Javan Green Peafowl (Pavo muticus muticus Linnaeus 1758 in Baluran and Alas Purwo National Park, East Java

    Directory of Open Access Journals (Sweden)

    JARWADI BUDI HERNOWO

    2011-12-01

    Full Text Available The javan green peafowl (Pavo muticus muticus is a endangered bird species. They have big pressure to the population and the habitat. The fact that the birds are still exist on their local distribution. Behavior ecology of javan green peafowl is dealing with activities, mechanism and strategies of the birds in relation to their environment. The aimed of the study is to obtain data and information of ecological adaptation strategies through the behavior activities, mechanism and strategies of javan green peafowl in-relation to their habitat types. Ad libitum sampling method was used on continuous recording every peafowl activities in relation with duration, frequencies mechanism and strategy were influenced by habitat type’s condition. Chi-squre test was used for statistical analysis to know different behavior has influenced by habitat types. The result shown that the javan green peafowl habitat typse has significant influenced on duration of the activities but not at the activities pattern. The walking during the feeding, select shading places or luxuriant trees close to feeding site, choosing tall trees or emergent trees close to open area as roost site, open area also road as display or dancing area, open area which grow shrubs as nesting site are javan green peafowl ecological behavior strategies. The mechanism and strategies of javan green peafowl behavior ecology are related to avoid from disturbance and to adapt their habitat type’s conditions.

  10. Mosquito Vector Diversity across Habitats in Central Thailand Endemic for Dengue and Other Arthropod-Borne Diseases

    Science.gov (United States)

    Thongsripong, Panpim; Green, Amy; Kittayapong, Pattamaporn; Kapan, Durrell; Wilcox, Bruce; Bennett, Shannon

    2013-01-01

    Recent years have seen the greatest ecological disturbances of our times, with global human expansion, species and habitat loss, climate change, and the emergence of new and previously-known infectious diseases. Biodiversity loss affects infectious disease risk by disrupting normal relationships between hosts and pathogens. Mosquito-borne pathogens respond to changing dynamics on multiple transmission levels and appear to increase in disturbed systems, yet current knowledge of mosquito diversity and the relative abundance of vectors as a function of habitat change is limited. We characterize mosquito communities across habitats with differing levels of anthropogenic ecological disturbance in central Thailand. During the 2008 rainy season, adult mosquito collections from 24 sites, representing 6 habitat types ranging from forest to urban, yielded 62,126 intact female mosquitoes (83,325 total mosquitoes) that were assigned to 109 taxa. Female mosquito abundance was highest in rice fields and lowest in forests. Diversity indices and rarefied species richness estimates indicate the mosquito fauna was more diverse in rural and less diverse in rice field habitats, while extrapolated estimates of true richness (Chao1 and ACE) indicated higher diversity in the forest and fragmented forest habitats and lower diversity in the urban. Culex sp. (Vishnui subgroup) was the most common taxon found overall and the most frequent in fragmented forest, rice field, rural, and suburban habitats. The distributions of species of medical importance differed significantly across habitat types and were always lowest in the intact, forest habitat. The relative abundance of key vector species, Aedes aegypti and Culex quinquefasciatus, was negatively correlated with diversity, suggesting that direct species interactions and/or habitat-mediated factors differentially affecting invasive disease vectors may be important mechanisms linking biodiversity loss to human health. Our results are an

  11. Revised Methods for Characterizing Stream Habitat in the National Water-Quality Assessment Program

    Science.gov (United States)

    Fitzpatrick, Faith A.; Waite, Ian R.; D'Arconte, Patricia J.; Meador, Michael R.; Maupin, Molly A.; Gurtz, Martin E.

    1998-01-01

    Stream habitat is characterized in the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. The goal of stream habitat characterization is to relate habitat to other physical, chemical, and biological factors that describe water-quality conditions. To accomplish this goal, environmental settings are described at sites selected for water-quality assessment. In addition, spatial and temporal patterns in habitat are examined at local, regional, and national scales. This habitat protocol contains updated methods for evaluating habitat in NAWQA Study Units. Revisions are based on lessons learned after 6 years of applying the original NAWQA habitat protocol to NAWQA Study Unit ecological surveys. Similar to the original protocol, these revised methods for evaluating stream habitat are based on a spatially hierarchical framework that incorporates habitat data at basin, segment, reach, and microhabitat scales. This framework provides a basis for national consistency in collection techniques while allowing flexibility in habitat assessment within individual Study Units. Procedures are described for collecting habitat data at basin and segment scales; these procedures include use of geographic information system data bases, topographic maps, and aerial photographs. Data collected at the reach scale include channel, bank, and riparian characteristics.

  12. Colonization of subterranean habitats by spiders in Central Europe

    Czech Academy of Sciences Publication Activity Database

    Růžička, Vlastimil; Šmilauer, P.; Mlejnek, R.

    2013-01-01

    Roč. 42, č. 2 (2013), s. 133-140 ISSN 0392-6672 Grant - others:GA JU(CZ) GAJU 04-142/2010/P Institutional support: RVO:60077344 Keywords : superficial and deep subterranean habitats * caves * spider s Subject RIV: EH - Ecology, Behaviour Impact factor: 1.275, year: 2013 http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=1288&context=ijs

  13. Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change

    Science.gov (United States)

    Davis, Jenny; Pavlova, Alexandra; Thompson, Ross; Sunnucks, Paul

    2013-01-01

    Refugia have been suggested as priority sites for conservation under climate change because of their ability to facilitate survival of biota under adverse conditions. Here, we review the likely role of refugial habitats in conserving freshwater biota in arid Australian aquatic systems where the major long-term climatic influence has been aridification. We introduce a conceptual model that characterizes evolutionary refugia and ecological refuges based on our review of the attributes of aquatic habitats and freshwater taxa (fishes and aquatic invertebrates) in arid Australia. We also identify methods of recognizing likely future refugia and approaches to assessing the vulnerability of arid-adapted freshwater biota to a warming and drying climate. Evolutionary refugia in arid areas are characterized as permanent, groundwater-dependent habitats (subterranean aquifers and springs) supporting vicariant relicts and short-range endemics. Ecological refuges can vary across space and time, depending on the dispersal abilities of aquatic taxa and the geographical proximity and hydrological connectivity of aquatic habitats. The most important are the perennial waterbodies (both groundwater and surface water fed) that support obligate aquatic organisms. These species will persist where suitable habitats are available and dispersal pathways are maintained. For very mobile species (invertebrates with an aerial dispersal phase) evolutionary refugia may also act as ecological refuges. Evolutionary refugia are likely future refugia because their water source (groundwater) is decoupled from local precipitation. However, their biota is extremely vulnerable to changes in local conditions because population extinction risks cannot be abated by the dispersal of individuals from other sites. Conservation planning must incorporate a high level of protection for aquifers that support refugial sites. Ecological refuges are vulnerable to changes in regional climate because they have little

  14. Intercohort density dependence drives brown trout habitat selection

    Science.gov (United States)

    Ayllón, Daniel; Nicola, Graciela G.; Parra, Irene; Elvira, Benigno; Almodóvar, Ana

    2013-01-01

    Habitat selection can be viewed as an emergent property of the quality and availability of habitat but also of the number of individuals and the way they compete for its use. Consequently, habitat selection can change across years due to fluctuating resources or to changes in population numbers. However, habitat selection predictive models often do not account for ecological dynamics, especially density dependent processes. In stage-structured population, the strength of density dependent interactions between individuals of different age classes can exert a profound influence on population trajectories and evolutionary processes. In this study, we aimed to assess the effects of fluctuating densities of both older and younger competing life stages on the habitat selection patterns (described as univariate and multivariate resource selection functions) of young-of-the-year, juvenile and adult brown trout Salmo trutta. We observed all age classes were selective in habitat choice but changed their selection patterns across years consistently with variations in the densities of older but not of younger age classes. Trout of an age increased selectivity for positions highly selected by older individuals when their density decreased, but this pattern did not hold when the density of younger age classes varied. It suggests that younger individuals are dominated by older ones but can expand their range of selected habitats when density of competitors decreases, while older trout do not seem to consider the density of younger individuals when distributing themselves even though they can negatively affect their final performance. Since these results may entail critical implications for conservation and management practices based on habitat selection models, further research should involve a wider range of river typologies and/or longer time frames to fully understand the patterns of and the mechanisms underlying the operation of density dependence on brown trout habitat

  15. The pitfalls of short-range endemism: high vulnerability to ecological and landscape traps

    Directory of Open Access Journals (Sweden)

    Leanda D. Mason

    2018-05-01

    Full Text Available Ecological traps attract biota to low-quality habitats. Landscape traps are zones caught in a vortex of spiralling degradation. Here, we demonstrate how short-range endemic (SRE traits may make such taxa vulnerable to ecological and landscape traps. Three SRE species of mygalomorph spider were used in this study: Idiommata blackwalli, Idiosoma sigillatum and an undescribed Aganippe sp. Mygalomorphs can be long-lived (>43 years and select sites for permanent burrows in their early dispersal phase. Spiderlings from two species, I. blackwalli (n = 20 and Aganippe sp. (n = 50, demonstrated choice for microhabitats under experimental conditions, that correspond to where adults typically occur in situ. An invasive veldt grass microhabitat was selected almost exclusively by spiderlings of I. sigillatum. At present, habitat dominated by veldt grass in Perth, Western Australia, has lower prey diversity and abundance than undisturbed habitats and therefore may act as an ecological trap for this species. Furthermore, as a homogenising force, veldt grass can spread to form a landscape trap in naturally heterogeneous ecosystems. Selection of specialised microhabitats of SREs may explain high extinction rates in old, stable landscapes undergoing (human-induced rapid change.

  16. Diversity Partitioning of Wild Bee Assemblages (Hymenoptera: Apoidea, Apiformes and Species Preferences for Three Types of Refuge Habitats in an Agricultural Landscape in Poland

    Directory of Open Access Journals (Sweden)

    Banaszak Józef

    2014-09-01

    Full Text Available Abstract Patterns in bee assemblages consisting of 52 core (most abundant species in farmland in the Wielkopolska region of W Poland were analysed. The entomological material was assessed during earlier research in 1978-1993 from 18 plots in three habitat types: shelterbelts, roadsides and forest patches. At the scale of the refuge habitat size analysed here, an increase in area only slightly enhanced bee species richness. The bee assemblage structures of roadsides and forest patches differ significantly, but their indicator species do not form any well-defined ecological groups. In non-linear forest patches, the bee community structure was more homogeneous than on roadsides. These two habitat types differed significantly in their species composition. Nine significant indicator species were found, but they did not share any ecological characteristics. Three factors were found to affect significantly the responses of individual bee species in the agricultural landscape: the degree of isolation of the refuge habitat, the edge ratio, and roadsides as a refuge habitat type. A large part of the regional diversity is due to the heterogeneity of habitats within the landscape. Habitat area has little influence on the diversity of wild bees, at least within the size range analysed here. We concluded from this study that, regardless of the habitat type, the density of bees from the summer phenological period is affected by the number of food plant species. Point forest patches are habitats where summer species from the genus Andrena and the cleptoparasitic genera Nomada and Sphecodes achieve their highest abundances. Roadsides negatively affected abundances of wild bees and there were no characteristic species for this type of habitat. We hypothesised that this might be related to the specific ecological part played by this type of habitat.

  17. Spatial genetic structure in natural populations of Phragmites australis in a mosaic of saline habitats in the Yellow River Delta, China.

    Directory of Open Access Journals (Sweden)

    Lexuan Gao

    Full Text Available Determination of spatial genetic structure (SGS in natural populations is important for both theoretical aspects of evolutionary genetics and their application in species conservation and ecological restoration. In this study, we examined genetic diversity within and among the natural populations of a cosmopolitan grass Phragmites australis (common reed in the Yellow River Delta (YRD, China, where a mosaic of habitat patches varying in soil salinity was detected. We demonstrated that, despite their close geographic proximity, the common reed populations in the YRD significantly diverged at six microsatellite loci, exhibiting a strong association of genetic variation with habitat heterogeneity. Genetic distances among populations were best explained as a function of environmental difference, rather than geographical distance. Although the level of genetic divergence among populations was relatively low (F'(ST =0.073, weak but significant genetic differentiation, as well as the concordance between ecological and genetic landscapes, suggests spatial structuring of genotypes in relation to patchy habitats. These findings not only provided insights into the population dynamics of common reed in changing environments, but also demonstrated the feasibility of using habitat patches in a mosaic landscape as test systems to identify appropriate genetic sources for ecological restoration.

  18. Fatty acid composition indicating diverse habitat use in coral reef fishes in the Malaysian South China Sea

    Directory of Open Access Journals (Sweden)

    Takaomi Arai

    2015-01-01

    Full Text Available BACKGROUND: In order to understand feeding ecology and habitat use of coral reef fish, fatty acid composition was examined in five coral reef fishes, Thalassoma lunare, Lutjanus lutjanus, Abudefduf bengalensis, Scarus rivulatus and Scolopsis affinis collected in the Bidong Island of Malaysian South China Sea. RESULTS: Proportions of saturated fatty acids (SAFA ranged 57.2% 74.2%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA ranged from 21.4% to 39.0% and the proportion of polyunsaturated fatty acids (PUFA was the lowest ranged from 2.8% to 14.1%. Each fatty acid composition differed among fishes, suggesting diverse feeding ecology, habitat use and migration during the fishes' life history in the coral reef habitats. CONCLUSIONS: Diets of the coral fish species might vary among species in spite of that each species are living sympatrically. Differences in fatty acid profiles might not just be considered with respect to the diets, but might be based on the habitat and migration.

  19. Habitat heterogeneity as the key determinant of the abundance and habitat preference of prey species of tiger in the Chitwan National Park, Nepal

    Czech Academy of Sciences Publication Activity Database

    Bhattarai, Bishnu Prasad; Kindlmann, Pavel

    2012-01-01

    Roč. 57, č. 1 (2012), s. 89-97 ISSN 0001-7051 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60870520 Keywords : Ungulates * Prey * Heterogeneity * Habitat selection * Abundance * Preference * Resource selection Subject RIV: EH - Ecology, Behaviour Impact factor: 0.949, year: 2012

  20. Density-dependent habitat selection and performance by a large mobile reef fish.

    Science.gov (United States)

    Lindberg, William J; Frazer, Thomas K; Portier, Kenneth M; Vose, Frederic; Loftin, James; Murie, Debra J; Mason, Doran M; Nagy, Brian; Hart, Mary K

    2006-04-01

    Many exploited reef fish are vulnerable to overfishing because they concentrate over hard-bottom patchy habitats. How mobile reef fish use patchy habitat, and the potential consequences on demographic parameters, must be known for spatially explicit population dynamics modeling, for discriminating essential fish habitat (EFH), and for effectively planning conservation measures (e.g., marine protected areas, stock enhancement, and artificial reefs). Gag, Mycteroperca microlepis, is an ecologically and economically important warm-temperate grouper in the southeastern United States, with behavioral and life history traits conducive to large-scale field experiments. The Suwannee Regional Reef System (SRRS) was built of standard habitat units (SHUs) in 1991-1993 to manipulate and control habitat patchiness and intrinsic habitat quality, and thereby test predictions from habitat selection theory. Colonization of the SRRS by gag over the first six years showed significant interactions of SHU size, spacing, and reef age; with trajectories modeled using a quadratic function for closely spaced SHUs (25 m) and a linear model for widely spaced SHUs (225 m), with larger SHUs (16 standardized cubes) accumulating significantly more gag faster than smaller 4-cube SHUs (mean = 72.5 gag/16-cube SHU at 225-m spacing by year 6, compared to 24.2 gag/4-cube SHU for same spacing and reef age). Residency times (mean = 9.8 mo), indicative of choice and measured by ultrasonic telemetry (1995-1998), showed significant interaction of SHU size and spacing consistent with colonization trajectories. Average relative weight (W(r)) and incremental growth were greater on smaller than larger SHUs (mean W(r) = 104.2 vs. 97.7; incremental growth differed by 15%), contrary to patterns of abundance and residency. Experimental manipulation of shelter on a subset of SRRS sites (2000-2001) confirmed our hypothesis that shelter limits local densities of gag, which, in turn, regulates their growth and

  1. Wood anatomy of Argyroxiphium (Asteraceae): adaptive radiation and ecological correlations

    International Nuclear Information System (INIS)

    Carlquist, S.

    1997-01-01

    Wood anatomy shows close correlation with ecology: A. kauense, A. sandwicense (stem), and A. virescens, which occur in dry localities, show xeromorphic wood patterns. The most mesomorphic woods are those of the bog species A. grayanum and root wood of A. sandwicense. The wood of A. caliginis is xeromorphic, despite the bog habitat of the species, a fact explainable if A. caliginis is a recent entrant into the bog habitat Libriform wall thickness appears correlated with habit. Quantitative features of stem woods of Argyroxiphium are comparable to woods ranging from desert to moist montane forest areas in California. The similarities to woods from each Californian habitat are correlative to the relative moisture availability of the respective Hawaiian habitats of the Argyroxiphium species. (author)

  2. Beyond habitat structure: Landscape heterogeneity explains the monito del monte (Dromiciops gliroides) occurrence and behavior at habitats dominated by exotic trees.

    Science.gov (United States)

    Salazar, Daniela A; Fontúrbel, Francisco E

    2016-09-01

    Habitat structure determines species occurrence and behavior. However, human activities are altering natural habitat structure, potentially hampering native species due to the loss of nesting cavities, shelter or movement pathways. The South American temperate rainforest is experiencing an accelerated loss and degradation, compromising the persistence of many native species, and particularly of the monito del monte (Dromiciops gliroides Thomas, 1894), an arboreal marsupial that plays a key role as seed disperser. Aiming to compare 2 contrasting habitats (a native forest and a transformed habitat composed of abandoned Eucalyptus plantations and native understory vegetation), we assessed D. gliroides' occurrence using camera traps and measured several structural features (e.g. shrub and bamboo cover, deadwood presence, moss abundance) at 100 camera locations. Complementarily, we used radio telemetry to assess its spatial ecology, aiming to depict a more complete scenario. Moss abundance was the only significant variable explaining D. gliroides occurrence between habitats, and no structural variable explained its occurrence at the transformed habitat. There were no differences in home range, core area or inter-individual overlapping. In the transformed habitats, tracked individuals used native and Eucalyptus-associated vegetation types according to their abundance. Diurnal locations (and, hence, nesting sites) were located exclusively in native vegetation. The landscape heterogeneity resulting from the vicinity of native and Eucalyptus-associated vegetation likely explains D. gliroides occurrence better than the habitat structure itself, as it may be use Eucalyptus-associated vegetation for feeding purposes but depend on native vegetation for nesting. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  3. Ecological Mapping for the Preventive Conservation of Prehistoric Mural Paintings in Rock Habitats: the Site of Filiano (Basilicata, Italy

    Directory of Open Access Journals (Sweden)

    Giulia Caneva

    2017-06-01

    Full Text Available Biodeterioration phenomena are of great relevance in rock settlements, due to favourable environmental conditions, such as the infiltration of rainwaters, condensation phenomena and abundance of salts and organic nutrients. Rinaldi’s rock shelter in Filiano, which is located in a natural forest of mixed oaks is of great value due to the important traces of prehistoric paintings. It is an emblematic case of the delicate balance, achieved throughout the centuries, between the environment and artwork. During the plurimillenarian history of the site, a portion of the ceiling that covered the shelter collapsed, leaving signs that are still visible today, together with traces of blackening left by the fires of ancient settlements. Several of the biodeteriogens typical of rocky habitats have already been detected and include algae, cyanobacteria, mosses, lichens, vascular plants and fungi, which form macroscopic communities.Each community has an ecological preference and the mapping of their distribution is a suitable tool for understanding variations in the environmental factors that most affect them. Relating ecological data to the taxonomical characterization of the species and to the spatial distribution of each community, a site map of the humidity and of the nutrients was obtained. Among the various communities, microcolonial fungi (MCF, which appear as little black spots, here, represent the most critical risk factor, due to their low water needs. An evaluation of the biological risk for the possible future attack of such a biological community was made, suggesting indirect mitigation measures, through modification of the microclimatic and local ventilation conditions.

  4. Multi-objective Operation Chart Optimization for Aquatic Species Habitat Conservation of Cascaded Hydropower System on Yuan River, Southwestern China

    Science.gov (United States)

    Wen, X.; Lei, X.; Fang, G.; Huang, X.

    2017-12-01

    Extensive cascading hydropower exploitation in southwestern China has been the subject of debate and conflict in recent years. Introducing limited ecological curves, a novel approach for derivation of hydropower-ecological joint operation chart of cascaded hydropower system was proposed, aiming to optimize the general hydropower and ecological benefits, and to alleviate the ecological deterioration in specific flood/dry conditions. The physical habitat simulation model is proposed initially to simulate the relationship between streamflow and physical habitat of target fish species and to determine the optimal ecological flow range of representative reach. The ecological—hydropower joint optimization model is established to produce the multi-objective operation chart of cascaded hydropower system. Finally, the limited ecological guiding curves were generated and added into the operation chart. The JS-MDS cascaded hydropower system on the Yuan River in southwestern China is employed as the research area. As the result, the proposed guiding curves could increase the hydropower production amount by 1.72% and 5.99% and optimize ecological conservation degree by 0.27% and 1.13% for JS and MDS Reservoir, respectively. Meanwhile, the ecological deterioration rate also sees a decrease from 6.11% to 1.11% for JS Reservoir and 26.67% to 3.89% for MDS Reservoir.

  5. Estimating the magnitude of morphoscapes: how to measure the morphological component of biodiversity in relation to habitats using geometric morphometrics

    Science.gov (United States)

    Fontaneto, Diego; Panisi, Martina; Mandrioli, Mauro; Montardi, Dario; Pavesi, Maurizio; Cardini, Andrea

    2017-08-01

    Ecological indicators are currently developed to account for the different facets of loss of biological diversity due to direct or indirect effects of human activities. Most ecological indicators include species richness as a metric. Others, such as functional traits and phylogenetic diversity, account for differences in species, even when species richness is the same. Here, we describe and apply a different indicator, called morphoscape dimension, accounting for morphological variability across habitats in a geographical region. We use the case of ground beetles (Coleoptera: Carabidae) in four different habitats in the Po Plain in Northern Italy to exemplify how to quantify the magnitude of the morphological space (i.e. the dimension of the morphoscape) occupied by the species in each habitat using geometric morphometrics. To this aim, we employed a variety of metrics of morphological disparity related to univariate size, and more complex multivariate shape and form. Our `proof of concept' suggests that metrics assessing size and form might largely tend to simply mirror the information provided by species richness, whereas shape morphoscape disparity may be able to account for non-trivial differences in species traits amongst habitats. This is indicated by the woodland morphoscape being on average bigger than that of crops, the most species-rich habitat, despite having almost 20% less species. We conclude suggesting that the analysis of morphoscape dimension has the potential to become a new additional and complimentary tool in the hands of conservation biologists and ecologists to explore and quantify habitat complexity and inform decisions on management and conservation based on a wide set of ecological indicators.

  6. Eelgrass habitat near Liberty Bay: Chapter 5

    Science.gov (United States)

    Dinicola, Richard S.; Takesue, Renee K.

    2015-01-01

    Seagrasses are a widespread type of marine flowering plants that grow in nearshore intertidal and subtidal zones. Seagrass beds are ecologically important because they affect physical, biological, and chemical characteristics of nearshore habitat, and they are sensitive to changes in coastal water quality (Stevenson and others, 1993; Koch, 2001; Martinez-Crego and others, 2008). Zostera marina, commonly known as eelgrass, is protected by a no-net-loss policy in Washington State where it may be used as spawning habitat by herring, a key prey species for salmon, seabirds, and marine mammals (Bargmann, 1998). Eelgrass forms broad meadows in shallow embayments or narrow fringes on open shorelines (Berry and others, 2003). Anthropogenic activities that increase turbidity, nutrient loading, and physical disturbance at the coast can result in dramatic seagrass decline (Ralph and others, 2006).

  7. Ecological periodic tables: in principle and practice (in OIKOS)

    Science.gov (United States)

    “Science is organized knowledge.” Immanuel Kant (1724–1804) Ecological periodic tables are an information organizing system with categorical habitat types as elements and predictably recurring (periodic) properties of a target biotic community, such as its relative species rich...

  8. Impact of prolonged storm activity on the Ecological Status of intertidal benthic habitats within oyster (Crassostrea gigas) trestle cultivation sites.

    Science.gov (United States)

    O'Carroll, Jack P J; Quinn, Christina; Forde, James; Patterson, Adrian; O'Beirn, Francis X; Kennedy, Robert

    2016-09-15

    The Ecological Status (ES; sensu the Water Framework Directive) of intertidal benthic communities within six oyster trestle cultivation sites was found to be negatively impacted along the access routes to trestles in a 2013 study. All cultivation sites occur within Natura 2000 sites. The current study revisited four of the 2013 cultivation sites in February 2014 one month after the storm activity of winter 2013/14 to test if the compaction effect along access routes persisted after the storms. Three levels of the fixed factor treatment were sampled; immediately below the trestles, along the access route and 300m away from any anthropogenic activity. The compaction effect at the Access treatment persisted in spite of the major storm activity. The current study showed the IQI to be effective for assessing the impacts of aquaculture and highlights the IQI as a tool for monitoring Conservation Status of intertidal communities under the Habitats Directive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Life on the rocks: habitat use drives morphological and performance evolution in lizards.

    Science.gov (United States)

    Goodman, Brett A; Miles, Donald B; Schwarzkopf, Lin

    2008-12-01

    As a group, lizards occupy a vast array of habitats worldwide, yet there remain relatively few cases where habitat use (ecology), morphology, and thus, performance, are clearly related. The best known examples include: increased limb length in response to increased arboreal perch diameter in anoles and increased limb length in response to increased habitat openness for some skinks. Rocky habitats impose strong natural selection on specific morphological characteristics, which differs from that imposed on terrestrial species, because moving about on inclined substrates of irregular sizes and shapes constrains locomotor performance in predictable ways. We quantified habitat use, morphology, and performance of 19 species of lizards (family Scincidae, subfamily Lygosominae) from 23 populations in tropical Australia. These species use habitats with considerable variation in rock availability. Comparative phylogenetic analyses revealed that occupation of rock-dominated habitats correlated with the evolution of increased limb length, compared to species from forest habitats that predominantly occupied leaf litter. Moreover, increased limb length directly affected performance, with species from rocky habitats having greater sprinting, climbing, and clinging ability than their relatives from less rocky habitats. Thus, we found that the degree of rock use is correlated with both morphological and performance evolution in this group of tropical lizards.

  10. Effect of land use and climate on the diversity of moth guilds with different habitat specialization

    Czech Academy of Sciences Publication Activity Database

    Kadlec, T.; Kotela, M. A. A. M.; Novák, I.; Konvička, Martin; Jarošík, Vojtěch

    2009-01-01

    Roč. 10, č. 2 (2009), s. 152-158 ISSN 1585-8553 R&D Projects: GA MŠk LC06073; GA ČR GD206/08/H049 Institutional research plan: CEZ:AV0Z50070508; CEZ:AV0Z60050516 Keywords : climate change * habitat specialization * landscape ecology Subject RIV: EH - Ecology, Behaviour Impact factor: 0.792, year: 2009

  11. [Effects of habitat fragmentation on nesting site selection of red-crowned crane].

    Science.gov (United States)

    Wan, Dongmei; Gao, Wei; Wang, Qiuyu; Wang, Haitao; Liu, Mingyu

    2002-05-01

    During April and May of 1985, 1995 and 1998, red-crowned crane's nesting and variation of breeding population quantities in Shuangtaihekou National Natural Reserve in Liaoning, and also the habitat fragmentation there were investigated. Associated with previous data of the reserve, red-crowned crane's nesting habitat had been seriously fragmentated into 91 patches from one integrated reed wetland. The area of the smallest patch was 0.37 km2, and the minimum distance of two nests was 304 m. Compared with records of previous data, the minimum area of nesting habitat reduced by 0.72 km2. However, the breeding population quantities of red-crowned crane had maintained at about 30 pairs for a long period. The red-crowned crane adapted to the changed environment by the ecological adaptation strategy of reducing area of nesting habitat.

  12. Using dynamic Brownian bridge movement modelling to measure temporal patterns of habitat selection.

    Science.gov (United States)

    Byrne, Michael E; Clint McCoy, J; Hinton, Joseph W; Chamberlain, Michael J; Collier, Bret A

    2014-09-01

    . Additionally, the ability to link such patterns to behaviour may aid in the development of mechanistic models of habitat selection. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  13. Snow Leopard: Ecology and Conservation Issues in India

    Indian Academy of Sciences (India)

    Owing to their secretive nature and inaccessible habitat,little is known about its ecology and distribution. Due toits endangered status and high aesthetic value, the snow leopardis considered as an 'umbrella species' for wildlife conservationin the Indian Himalayas. This article summarizes thecurrent knowledge on snow ...

  14. Bird-community responses to habitat creation in a long-term, large-scale natural experiment.

    Science.gov (United States)

    Whytock, Robin C; Fuentes-Montemayor, Elisa; Watts, Kevin; Barbosa De Andrade, Patanjaly; Whytock, Rory T; French, Paul; Macgregor, Nicholas A; Park, Kirsty J

    2018-04-01

    Ecosystem function and resilience are compromised when habitats become fragmented due to land-use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape-scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post-agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10-160 years with ≥80% canopy cover and in landscapes with 0-17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local- and landscape-scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape

  15. Transgenerational stress-adaption: an opportunity for ecological epigenetics.

    Science.gov (United States)

    Weinhold, Arne

    2018-01-01

    In the recent years, there has been considerable interest to investigate the adaptive transgenerational plasticity of plants and how a "stress memory" can be transmitted to the following generation. Although, increasing evidence suggests that transgenerational adaptive responses have widespread ecological relevance, the underlying epigenetic processes have rarely been elucidated. On the other hand, model plant species have been deeply investigated in their genome-wide methylation landscape without connecting this to the ecological reality of the plant. What we need is the combination of an ecological understanding which plant species would benefit from transgenerational epigenetic stress-adaption in their natural habitat, combined with a deeper molecular analysis of non-model organisms. Only such interdisciplinary linkage in an ecological epigenetic study could unravel the full potential that epigenetics could play for the transgenerational stress-adaption of plants.

  16. Adaptive breeding habitat selection: Is it for the birds?

    Science.gov (United States)

    Chalfoun, Anna D.; Schmidt, Kenneth A.

    2012-01-01

    The question of why animals choose particular habitats has important implications for understanding behavioral evolution and distribution of organisms in the wild and for delineating between habitats of different quality for conservation and management. Habitats chosen by animals can influence fitness outcomes via the costs (e.g., predation risk) and benefits (e.g., food availability) of habitat use. Habitat preferences should therefore be under selection to favor those that confer fitness advantages (Clark and Shutler 1999). Indeed, prevailing theory suggests that the habitat preferences of animals should be adaptive, such that fitness is higher in preferred habitats (Hildén 1965, Southwood 1977, Martin 1998). However, studies have often identified apparent mismatches between observed habitat preferences and fitness outcomes across a wide variety of taxa (Valladares and Lawton 1991, Mayhew 1997, Kolbe and Janzen 2002, Arlt and Pärt 2007, Mägi et al. 2009). Certainly, one limitation of studies may be that assessment of “fitness” is typically constrained to fitness surrogates such as nest success rather than lifetime reproductive success or classic Fisherian fitness (Endler 1986). Nevertheless, important habitat choices such as nest sites influence the probability that temporarily sedentary, dependent young are discovered by enemies such as predators and parasites. We therefore expect, on average, to see congruence between evolved habitat preferences and relevant components of fitness (e.g., nest success). Here, we (1) review the prevalence of apparent mismatches between avian breeding-habitat preferences and fitness outcomes using nest-site selection as a focus; (2) describe several potential mechanisms for such mismatches, including anthropogenic, methodological, and ecological–evolutionary; and (3) suggest a framework for understanding the contexts in which habitat preferences represent adaptive decisions, with a primary focus on ecological information

  17. Ecological risks of DOE's programmatic environmental restoration alternatives

    International Nuclear Information System (INIS)

    1994-06-01

    This report assesses the ecological risks of the Department of Energy's (DOE) Environmental Restoration Program. The assessment is programmatic in that it is directed at evaluation of the broad programmatic alternatives outlined in the DOE Implementation Plan. It attempts to (1) characterize the ecological resources present on DOE facilities, (2) describe the occurrence and importance of ecologically significant contamination at major DOE facilities, (3) evaluate the adverse ecological impacts of habitat disturbance caused by remedial activities, and (4) determine whether one or another of the programmatic alternatives is clearly ecologically superior to the others. The assessment focuses on six representative facilities: the Idaho National Engineering Laboratory (INEL); the Fernald Environmental Management Project (FEMP); the Oak Ridge Reservation (ORR), including the Oak Ridge National Laboratory (ORNL), Y-12 plant, and K-25 plant; the Rocky Flats Plant; the Hanford Reservation; and the Portsmouth Gaseous Diffusion Plant

  18. Interfacing models of wildlife habitat and human development to predict the future distribution of puma habitat

    Science.gov (United States)

    Burdett, Christopher L.; Crooks, Kevin R.; Theobald, David M.; Wilson, Kenneth R.; Boydston, Erin E.; Lyren, Lisa A.; Fisher, Robert N.; Vickers, T. Winston; Morrison, Scott A.; Boyce, Walter M.

    2010-01-01

    The impact of human land uses on ecological systems typically differ relative to how extensively natural conditions are modified. Exurban development is intermediate-intensity residential development that often occurs in natural landscapes. Most species-habitat models do not evaluate the effects of such intermediate levels of human development and even fewer predict how future development patterns might affect the amount and configuration of habitat. We addressed these deficiencies by interfacing a habitat model with a spatially-explicit housing-density model to study the effect of human land uses on the habitat of pumas (Puma concolor) in southern California. We studied the response of pumas to natural and anthropogenic features within their home ranges and how mortality risk varied across a gradient of human development. We also used our housing-density model to estimate past and future housing densities and model the distribution of puma habitat in 1970, 2000, and 2030. The natural landscape for pumas in our study area consisted of riparian areas, oak woodlands, and open, conifer forests embedded in a chaparral matrix. Pumas rarely incorporated suburban or urban development into their home ranges, which is consistent with the hypothesis that the behavioral decisions of individuals can be collectively manifested as population-limiting factors at broader spatial scales. Pumas incorporated rural and exurban development into their home ranges, apparently perceiving these areas as modified, rather than non-habitat. Overall, pumas used exurban areas less than expected and showed a neutral response to rural areas. However, individual pumas that selected for or showed a neutral response to exurban areas had a higher risk of mortality than pumas that selected against exurban habitat. Exurban areas are likely hotspots for puma-human conflict in southern California. Approximately 10% of our study area will transform from exurban, rural, or undeveloped areas to suburban or

  19. Hierarchical structure of ecological and non-ecological processes of differentiation shaped ongoing gastropod radiation in the Malawi Basin.

    Science.gov (United States)

    Van Bocxlaer, Bert

    2017-09-13

    Ecological processes, non-ecological processes or a combination of both may cause reproductive isolation and speciation, but their specific roles and potentially complex interactions in evolutionary radiations remain poorly understood, which defines a central knowledge gap at the interface of microevolution and macroevolution. Here I examine genome scans in combination with phenotypic and environmental data to disentangle how ecological and non-ecological processes contributed to population differentiation and speciation in an ongoing radiation of Lanistes gastropods from the Malawi Basin. I found a remarkable hierarchical structure of differentiation mechanisms in space and time: neutral and mutation-order processes are older and occur mainly between regions, whereas more recent adaptive processes are the main driver of genetic differentiation and reproductive isolation within regions. The strongest differentiation occurs between habitats and between regions, i.e. when ecological and non-ecological processes act synergistically. The structured occurrence of these processes based on the specific geographical setting and ecological opportunities strongly influenced the potential for evolutionary radiation. The results highlight the importance of interactions between various mechanisms of differentiation in evolutionary radiations, and suggest that non-ecological processes are important in adaptive radiations, including those of cichlids. Insight into such interactions is critical to understanding large-scale patterns of organismal diversity. © 2017 The Author(s).

  20. Response of a tropical tree to non-timber forest products harvest and reduction in habitat size

    Science.gov (United States)

    Kouagou, M’Mouyohoun; Natta, Armand K.; Gado, Choukouratou

    2017-01-01

    Non-timber forest products (NTFPs) are widely harvested by local people for their livelihood. Harvest often takes place in human disturbed ecosystems. However, our understanding of NTFPs harvesting impacts in fragmented habitats is limited. We assessed the impacts of fruit harvest, and reduction in habitat size on the population structures of Pentadesma butyracea Sabine (Clusiaceae) across two contrasting ecological regions (dry vs. moist) in Benin. In each region, we selected three populations for each of the three fruit harvesting intensities (low, medium and high). Harvesting intensities were estimated as the proportion of fruits harvested per population. Pentadesma butyracea is found in gallery forests along rivers and streams. We used the width of gallery forests as a measure of habitat size. We found negative effects of fruit harvest on seedling and adult density but no significant effect on population size class distribution in both ecological regions. The lack of significant effect of fruit harvest on population structure may be explained by the ability of P. butyracea to compensate for the negative effect of fruit harvesting by increasing clonal reproduction. Our results suggest that using tree density and population structure to assess the ecological impacts of harvesting clonal plants should be done with caution. PMID:28850624

  1. Response of a tropical tree to non-timber forest products harvest and reduction in habitat size.

    Directory of Open Access Journals (Sweden)

    Orou G Gaoue

    Full Text Available Non-timber forest products (NTFPs are widely harvested by local people for their livelihood. Harvest often takes place in human disturbed ecosystems. However, our understanding of NTFPs harvesting impacts in fragmented habitats is limited. We assessed the impacts of fruit harvest, and reduction in habitat size on the population structures of Pentadesma butyracea Sabine (Clusiaceae across two contrasting ecological regions (dry vs. moist in Benin. In each region, we selected three populations for each of the three fruit harvesting intensities (low, medium and high. Harvesting intensities were estimated as the proportion of fruits harvested per population. Pentadesma butyracea is found in gallery forests along rivers and streams. We used the width of gallery forests as a measure of habitat size. We found negative effects of fruit harvest on seedling and adult density but no significant effect on population size class distribution in both ecological regions. The lack of significant effect of fruit harvest on population structure may be explained by the ability of P. butyracea to compensate for the negative effect of fruit harvesting by increasing clonal reproduction. Our results suggest that using tree density and population structure to assess the ecological impacts of harvesting clonal plants should be done with caution.

  2. Ecological consistency across space: a synthesis of the ecological aspects of Dromiciops gliroides in Argentina and Chile.

    Science.gov (United States)

    Fontúrbel, Francisco E; Franco, Marcela; Rodríguez-Cabal, Mariano A; Rivarola, M Daniela; Amico, Guillermo C

    2012-11-01

    Dromiciops gliroides is an arboreal marsupial found in the temperate forests of South America (36-43 °S). This species is the sole extant representative of the order Microbiotheria, and is a key seed disperser of many native plant species, including the keystone mistletoe Tristerix corymbosus. Here, we synthesized the current knowledge on the ecological aspects of this species, and compared the available information from Argentina and Chile. Population density (23 ± 2 (mean ± SE) individual/ha) and home range (1.6 ± 0.6 ha) appear to be relatively similar across a marked ecological gradient in the mainland, but lower densities (7 ± 2 individual/ha) and smaller home ranges (0.26 ± 0.04 ha) were detected at island sites. We detected regional variation in body condition in Chile, but there were no significant differences across a wider E-W gradient. Movement patterns fit a random walk model; such behavior might have important consequences in shaping plant's spatial patterns. Although our data suggest that D. gliroides is more tolerant to habitat disturbance than previously thought, its incapability to disperse across non-forested areas suggests that the rapid rate of habitat loss and fragmentation that characterizes southern temperate forests likely poses a serious threat to this species. These ecological similarities are surprising given that forests studied receive dramatically different rainfall and correspond to distinct forest types. The evidence synthetized here dispels some of the myths about this species but also stresses the need for more comprehensive ecological studies across its distribution range.

  3. Ecological and Social Dimensions of Ecosystem Restoration in the Nordic Countries

    Directory of Open Access Journals (Sweden)

    Dagmar Hagen

    2013-12-01

    Full Text Available An international overview of the extent and type of ecological restoration can offer new perspectives for understanding, planning, and implementation. The Nordic countries, with a great range of natural conditions but historically similar social and political structures, provide an opportunity to compare restoration approaches and efforts across borders. The aim of this study was to explore variation in ecological restoration using the Nordic countries as an example. We used recent national assessments and expert evaluations of ecological restoration. Restoration efforts differed among countries: forest and peatland restoration was most common in Finland, freshwater restoration was most common in Sweden, restoration of natural heathlands and grasslands was most common in Iceland, restoration of natural and semi-cultural heathlands was most common in Norway, and restoration of cultural ecosystems, mainly abandoned agricultural land, was most common in Denmark. Ecological restoration currently does not occur on the Faroe Islands. Economic incentives influence ecological restoration and depend on laws and policies in each country. Our analyses suggest that habitat types determine the methods of ecological restoration, whereas socio-economic drivers are more important for the decisions concerning the timing and location of restoration. To improve the understanding, planning, and implementation of ecological restoration, we advocate increased cooperation and knowledge sharing across disciplines and among countries, both in the Nordic countries and internationally. An obvious advantage of such cooperation is that a wider range of experiences from different habitats and different socio-economic conditions becomes available and thus provides a more solid basis for developing practical solutions for restoration methods and policies.

  4. Population ecology of free-roaming cats and interference competition by coyotes in urban parks.

    Science.gov (United States)

    Gehrt, Stanley D; Wilson, Evan C; Brown, Justin L; Anchor, Chris

    2013-01-01

    Free-roaming cats are a common element of urban landscapes worldwide, often causing controversy regarding their impacts on ecological systems and public health. We monitored cats within natural habitat fragments in the Chicago metropolitan area to characterize population demographics, disease prevalence, movement patterns and habitat selection, in addition to assessing the possible influence of coyotes on cats. The population was dominated by adults of both sexes, and 24% of adults were in reproductive condition. Annual survival rate was relatively high (S=0.70, SE=0.10), with vehicles and predation the primary causes of death. Size of annual home range varied by sex, but not reproductive status or body weight. We observed partitioning of the landscape by cats and coyotes, with little interspecific overlap between core areas of activity. Coyotes selected for natural habitats whereas cats selected for developed areas such as residences. Free-roaming cats were in better condition than we predicted, but their use of natural habitat fragments, and presumably their ecological impact, appeared to be limited by coyotes through intraguild competition.

  5. Population ecology of free-roaming cats and interference competition by coyotes in urban parks.

    Directory of Open Access Journals (Sweden)

    Stanley D Gehrt

    Full Text Available Free-roaming cats are a common element of urban landscapes worldwide, often causing controversy regarding their impacts on ecological systems and public health. We monitored cats within natural habitat fragments in the Chicago metropolitan area to characterize population demographics, disease prevalence, movement patterns and habitat selection, in addition to assessing the possible influence of coyotes on cats. The population was dominated by adults of both sexes, and 24% of adults were in reproductive condition. Annual survival rate was relatively high (S=0.70, SE=0.10, with vehicles and predation the primary causes of death. Size of annual home range varied by sex, but not reproductive status or body weight. We observed partitioning of the landscape by cats and coyotes, with little interspecific overlap between core areas of activity. Coyotes selected for natural habitats whereas cats selected for developed areas such as residences. Free-roaming cats were in better condition than we predicted, but their use of natural habitat fragments, and presumably their ecological impact, appeared to be limited by coyotes through intraguild competition.

  6. EU habitats of interest: an insight into Atlantic and Mediterranean beach and foredunes

    NARCIS (Netherlands)

    Feola, S.; Carranza, M.L.; Schaminee, J.H.J.; Acosta, A.T.R.; Janssen, J.A.M.

    2011-01-01

    Abstract We compared the Atlantic and Mediterranean beach and foredune habitats of European interest, focusing on floristic, structural and ecological features. We selected two representative sites of Atlantic (The Netherlands) and Mediterranean (Italy) coastal dunes. From a georeferenced vegetation

  7. Radiation hormesis: an ecological and energetic perspective.

    Science.gov (United States)

    Parsons, P A

    2001-09-01

    Organisms in natural habitats are exposed to an array of environmental stresses, which all have energetic costs. Under this ecological scenario, hormesis for ionizing radiation becomes an evolutionary expectation at exposures substantially exceeding background. This conclusion implies that some relaxation of radiation protection criteria is worthy of serious consideration. Copyright 2001 Harcourt Publishers Ltd.

  8. Microbial ecology of extreme environments: Antarctic yeasts and growth in substrate-limited habitats

    Science.gov (United States)

    Vishniac, H. S.

    1984-01-01

    An extreme environment is by definition one with a depauperate biota. While the Ross Desert is by no means homogeneous, the most exposed and arid habitats, soils in the unglaciated high valleys, do indeed contain a very sparse biota of low diversity. So sparse that the natives could easily be outnumbered by airborne exogenous microbes. Native biota must be capable of overwintering as well as growing in the high valley summer. Tourists may undergo a few divisions before contributing their enzymes and, ultimately, elements to the soil - or may die before landing. The simplest way to demonstrate the indigenicity of a particular microbe is therefore to establish unique distribution; occurrence only in the habitat in question precludes foreign origin.

  9. Evidence of weak habitat specialisation in microscopic animals.

    Directory of Open Access Journals (Sweden)

    Diego Fontaneto

    Full Text Available Macroecology and biogeography of microscopic organisms (any living organism smaller than 2 mm are quickly developing into fruitful research areas. Microscopic organisms also offer the potential for testing predictions and models derived from observations on larger organisms due to the feasibility of performing lab and mesocosm experiments. However, more empirical knowledge on the similarities and differences between micro- and macro-organisms is needed to ascertain how much of the results obtained from the former can be generalised to the latter. One potential misconception, based mostly on anedoctal evidence rather than explicit tests, is that microscopic organisms may have wider ecological tolerance and a lower degree of habitat specialisation than large organisms. Here we explicitly test this hypothesis within the framework of metacommunity theory, by studying host specificify in the assemblages of bdelloid rotifers (animals about 350 µm in body length living in different species of lichens in Sweden. Using several regression-based and ANOVA analyses and controlling for both spatial structure and the kind of substrate the lichen grow over (bark vs rock, we found evidence of significant but weak species-specific associations between bdelloids and lichens, a wide overlap in species composition between lichens, and wide ecological tolerance for most bdelloid species. This confirms that microscopic organisms such as bdelloids have a lower degree of habitat specialisation than larger organisms, although this happens in a complex scenario of ecological processes, where source-sink dynamics and geographic distances seem to have no effect on species composition at the analysed scale.

  10. Impact of intertidal oyster trestle cultivation on the Ecological Status of benthic habitats.

    Science.gov (United States)

    Forde, James; O'Beirn, Francis X; O'Carroll, Jack Pj; Patterson, Adrian; Kennedy, Robert

    2015-06-15

    A considerable number of Ireland's shellfish production areas co-occur with or are adjacent to Natura 2000 sites which are protected under European legislation. To investigate the general interaction between trestle oyster cultivation and the surrounding intertidal environment, six sites were selected within designated Natura 2000 sites. At each trestle site three Treatment areas were sampled. One Treatment area corresponded to potential impacts associated with cultivation activities occurring at trestle structures (designated the Trestle Treatment) while one Treatment area corresponded to potential impacts due to cultivation activities occurring along access routes (the Access Treatment). An area not subject to any known anthropogenic activity was used as a control (the Control Treatment). Potential impacts associated with Trestle Treatment areas included changes in sediment total organic matter (TOM) levels underneath trestles due to the bio-deposition of faecal/pseudofaecal material while the predominant impact associated with Access Treatment areas was compaction of sediments due to heavy vehicle traffic. In this study, macrobenthic communities at the sites were highly variable and exhibited low levels of diversity which prevented the detection of general effects of cultivation activity on community structure, diversity and secondary production. To overcome this variability, the Infaunal Quality Index (IQI) was used to assess impacts on Ecological Status (ES) of benthic communities (sensu Water Framework Directive). Relative to Control and Trestle Treatment areas, activities occurring at Access Treatment areas had a significant negative impact on ES. This study highlights the potential of the IQI for the management of aquaculture activity and provides validation for the use of the IQI in Irish intertidal environments. This study also highlights the IQI as a potential tool for assessing the conservation status of designated habitats in Natura 2000 sites

  11. Black-footed ferrets and Siberian polecats as ecological surrogates and ecological equivalents

    Science.gov (United States)

    Biggins, D.E.; Hanebury, L.R.; Miller, B.J.; Powell, R.A.

    2011-01-01

    Ecologically equivalent species serve similar functions in different communities, and an ecological surrogate species can be used as a substitute for an equivalent species in a community. Siberian polecats (Mustela eversmanii) and black-footed ferrets (M. nigripes) have long been considered ecological equivalents. Polecats also have been used as investigational surrogates for black-footed ferrets, yet the similarities and differences between the 2 species are poorly understood. We contrasted activity patterns of radiotagged polecats and ferrets released onto ferret habitat. Ferrets tended to be nocturnal and most active after midnight. Polecats were not highly selective for any period of the day or night. Ferrets and polecats moved most during brightly moonlit nights. The diel activity pattern of ferrets was consistent with avoidance of coyotes (Canis latrans) and diurnal birds of prey. Similarly, polecat activity was consistent with avoidance of red foxes (Vulpes vulpes) in their natural range. Intraguild predation (including interference competition) is inferred as a selective force influencing behaviors of these mustelines. Examination of our data suggests that black-footed ferrets and Siberian polecats might be ecological equivalents but are not perfect surrogates. Nonetheless, polecats as surrogates for black-footed ferrets have provided critical insight needed, especially related to predation, to improve the success of ferret reintroductions. ?? 2011 American Society of Mammalogists.

  12. Ecological investigations at the Pantex Plant Site, 1992

    International Nuclear Information System (INIS)

    Cushing, C.E.; Mazaika, R.R.; Phillips, R.C.

    1993-09-01

    In 1992, Pantex requested that Pacific Northwest Laboratory (PNL) conduct a series of ecological surveys to provide baseline information for designing detailed ecological studies on the various ecosystems present at the Pantex plant site near Amarillo, Texas. To this end, PNL scientist and technicians visited the site at different times to conduct investigations and collect samples: July 6--13: birds, small mammals, general habitat assessment; August 10--14: wetland vegetation, birds, small mammals, Playa invertebrates; and September 7--11: birds, small mammals. This report presents the results of these three surveys

  13. Can we enhance amphibians' habitat restoration in the post-mining areas?

    Science.gov (United States)

    Klimaszewski, Krzysztof; Pacholik, Ewa; Snopek, Adam

    2016-09-01

    The study was aimed to evaluate the selected improvements of nature restoration in a depleted gravel pit. The study site consisted of four water reservoirs of different shapes and sizes, flooded after the gravel extraction ended. Ecological succession monitoring, conducted by the Warsaw University of Life Sciences students associated in the Student Scientific Association of Animal Sciences Faculty since the completion of mining, have focused on amphibians. A twofold approach upheld amphibian species population dynamics, as well as selected habitat elements. The restoration practices dedicated to habitat conditions enhancing have been proved to be definitely effective and useful for similar sites.

  14. Ecological Monitoring and Compliance Program 2008 Report

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Dennis J.; Anderson, David C.; Hall, Derek B.; Greger, Paul D.; Ostler, W. Kent

    2009-04-30

    The Ecological Monitoring and Compliance Program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2008. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC).

  15. Dos and Don’ts for butterflies of the Habitats Directive of the European Union

    Directory of Open Access Journals (Sweden)

    Chris van Swaay

    2012-03-01

    Full Text Available Twenty-nine butterfly species are listed on the Annexes of the Habitats Directive. To assist everyone who wants or needs to take action for one of these species, we compiled an overview of the habitat requirements and ecology of each species, as well as information on their conservation status in Europe. This was taken from the recent Red List and their main biogeographical regions (taken from the first reporting on Article 17 of the Directive. Most important are the Dos and Don`ts, which summarize in a few bullet points what to do and what to avoid in order to protect and conserve these butterflies and their habitats.

  16. Cities may save some threatened species but not their ecological functions

    Directory of Open Access Journals (Sweden)

    Álvaro Luna

    2018-06-01

    Full Text Available Background Urbanization is one of the main causes of biodiversity loss worldwide. Wildlife responses to urbanization, however, are greatly variable and, paradoxically, some threatened species may achieve much larger populations in urban than in natural habitats. Urban conservation hotspots may therefore help some species avoid regional or even global extinctions, but not conserve their often overlooked ecological functions in the wild. We aim to draw attention to this issue using two species of globally threatened parrots occurring in the Dominican Republic: the Hispaniolan amazon (Amazona ventralis and the Hispaniolan parakeet (Psittacara chloropterus. Methods We conducted a large-scale roadside survey in June 2017 across the country to estimate the relative abundance of parrots in natural habitats, rural habitats, and cities. We combined this with informal interviews with local people to collect information on past and current human impacts on parrot populations. We also looked for foraging parrots to assess their potential role as seed dispersers, an ecological function that has been overlooked until very recently. Results Relative abundances of both parrot species were negligible in rural areas and very low in natural habitats. They were generally between one and two orders of magnitude lower than that of congeneric species inhabiting other Neotropical ecosystems. Relative abundances were six times higher in cities than in natural habitats in the case of the Hispaniolan parakeet and three times higher in the case of the Hispaniolan amazon. People indicated hunting for a source food and to mitigate crop damage as causes of parrot population declines, and a vigorous illegal trade for parrots (131 individuals recorded, 75% of them poached very recently, mostly obtained from protected areas where the last small wild populations remain. We observed parrots foraging on 19 plant species from 11 families, dispersing the fruits of 14 species by

  17. The energetic consequences of habitat structure for forest stream salmonids.

    Science.gov (United States)

    Naman, Sean M; Rosenfeld, Jordan S; Kiffney, Peter M; Richardson, John S

    2018-05-08

    1.Increasing habitat availability (i.e. habitat suitable for occupancy) is often assumed to elevate the abundance or production of mobile consumers; however, this relationship is often nonlinear (threshold or unimodal). Identifying the mechanisms underlying these nonlinearities is essential for predicting the ecological impacts of habitat change, yet the functional forms and ultimate causation of consumer-habitat relationships are often poorly understood. 2.Nonlinear effects of habitat on animal abundance may manifest through physical constraints on foraging that restrict consumers from accessing their resources. Subsequent spatial incongruence between consumers and resources should lead to unimodal or saturating effects of habitat availability on consumer production if increasing the area of habitat suitable for consumer occupancy comes at the expense of habitats that generate resources. However, the shape of this relationship could be sensitive to cross-ecosystem prey subsidies, which may be unrelated to recipient habitat structure and result in more linear habitat effects on consumer production. 3.We investigated habitat-productivity relationships for juveniles of stream-rearing Pacific salmon and trout (Oncorhynchus spp.), which typically forage in low-velocity pool habitats, while their prey (drifting benthic invertebrates) are produced upstream in high-velocity riffles. However, juvenile salmonids also consume subsidies of terrestrial invertebrates that may be independent of pool-riffle structure. 4.We measured salmonid biomass production in 13 experimental enclosures each containing a downstream pool and upstream riffle, spanning a gradient of relative pool area (14-80% pool). Increasing pool relative to riffle habitat area decreased prey abundance, leading to a nonlinear saturating effect on fish production. We then used bioenergetics model simulations to examine how the relationship between pool area and salmonid biomass is affected by varying levels of

  18. Effect of habitat characteristics on mesocarnivore occurrence in urban environment in the Central Europe

    Czech Academy of Sciences Publication Activity Database

    Červinka, J.; Drahníková, L.; Kreisinger, J.; Šálek, Martin

    2014-01-01

    Roč. 17, č. 4 (2014), s. 893-909 ISSN 1083-8155 Institutional support: RVO:68081766 Keywords : Carnivores * occurrence * Habitat characteristics * GIS * Urban environment * Central Europe Subject RIV: EH - Ecology, Behaviour Impact factor: 2.685, year: 2014

  19. Sex- and habitat-specific movement of an omnivorous semi-terrestrial crab controls habitat connectivity and subsidies: a multi-parameter approach.

    Science.gov (United States)

    Hübner, Lena; Pennings, Steven C; Zimmer, Martin

    2015-08-01

    differed significantly between sexes, but habitat effects were greater than sex effects. By combining multiple measures of feeding ecology, we demonstrate that Armases exhibits sex-specific habitat choice and food preference. By using both coastal forest and saltmarsh habitats, but feeding predominantly in the latter, they possibly act as a key biotic vector of spatial subsidies across habitat borders. The degree of contributing to fluxes of matter, nutrients and energy, however, depends on their sex, indicating that changes in population structure would likely have profound effects on ecosystem connectivity and functioning.

  20. The potential role of habitat-forming seaweeds in modeling benthic ecosystem properties

    Science.gov (United States)

    Bustamante, María; Tajadura, Javier; Díez, Isabel; Saiz-Salinas, José Ignacio

    2017-12-01

    Canopy-forming seaweeds provide specific habitats with key ecological properties and are facing severe declines worldwide with unforeseeable consequences for ecosystem processes. Investigating the loss of such natural habitats in order to develop management strategies for conservation is a major challenge in marine ecological research. This study investigated the shallow rocky bottoms of the southern Bay of Biscay at two sampling times with a view to identifying the effect of canopy seaweed availability on the taxonomic and functional properties of invertebrate multivariate structure, abundance, density, diversity and evenness. The multivariate taxonomic and functional structure of assemblages changed significantly according to canopy availability in terms of taxa and functional groups abundance, but no substantial change was observed in composition. Biogenic habitat simplification resulted in a decrease in total invertebrate abundance and in taxonomic and functional density and diversity, whilst no effects were observed in taxonomic and functional evenness. Loss of canopy involved an impoverishment of the whole community particularly for epiphytic colonial sessile suspension-feeders, but it also extended to non-epiphytic forms. Our results emphasize the importance of canopy decline as a major driver of changes in benthic ecosystem properties and highlight that biogenic space provided by canopy is a limiting resource for the development of rocky subtidal invertebrates.

  1. To kill, stay or flee: the effects of lions and landscape factors on habitat and kill site selection of cheetahs in South Africa.

    Directory of Open Access Journals (Sweden)

    Susana Rostro-García

    Full Text Available Understanding how animals utilize available space is important for their conservation, as it provides insight into the ecological needs of the species, including those related to habitat, prey and inter and intraspecific interactions. We used 28 months of radio telemetry data and information from 200 kill locations to assess habitat selection at the 3rd order (selection of habitats within home ranges and 4th order (selection of kill sites within the habitats used of a reintroduced population of cheetahs Acinonyx jubatus in Phinda Private Game Reserve, South Africa. Along with landscape characteristics, we investigated if lion Panthera leo presence affected habitat selection of cheetahs. Our results indicated that cheetah habitat selection was driven by a trade-off between resource acquisition and lion avoidance, and the balance of this trade-off varied with scale: more open habitats with high prey densities were positively selected within home ranges, whereas more closed habitats with low prey densities were positively selected for kill sites. We also showed that habitat selection, feeding ecology, and avoidance of lions differed depending on the sex and reproductive status of cheetahs. The results highlight the importance of scale when investigating a species' habitat selection. We conclude that the adaptability of cheetahs, together with the habitat heterogeneity found within Phinda, explained their success in this small fenced reserve. The results provide information for the conservation and management of this threatened species, especially with regards to reintroduction efforts in South Africa.

  2. To Kill, Stay or Flee: The Effects of Lions and Landscape Factors on Habitat and Kill Site Selection of Cheetahs in South Africa

    Science.gov (United States)

    Rostro-García, Susana; Kamler, Jan F.; Hunter, Luke T. B.

    2015-01-01

    Understanding how animals utilize available space is important for their conservation, as it provides insight into the ecological needs of the species, including those related to habitat, prey and inter and intraspecific interactions. We used 28 months of radio telemetry data and information from 200 kill locations to assess habitat selection at the 3rd order (selection of habitats within home ranges) and 4th order (selection of kill sites within the habitats used) of a reintroduced population of cheetahs Acinonyx jubatus in Phinda Private Game Reserve, South Africa. Along with landscape characteristics, we investigated if lion Panthera leo presence affected habitat selection of cheetahs. Our results indicated that cheetah habitat selection was driven by a trade-off between resource acquisition and lion avoidance, and the balance of this trade-off varied with scale: more open habitats with high prey densities were positively selected within home ranges, whereas more closed habitats with low prey densities were positively selected for kill sites. We also showed that habitat selection, feeding ecology, and avoidance of lions differed depending on the sex and reproductive status of cheetahs. The results highlight the importance of scale when investigating a species’ habitat selection. We conclude that the adaptability of cheetahs, together with the habitat heterogeneity found within Phinda, explained their success in this small fenced reserve. The results provide information for the conservation and management of this threatened species, especially with regards to reintroduction efforts in South Africa. PMID:25693067

  3. To kill, stay or flee: the effects of lions and landscape factors on habitat and kill site selection of cheetahs in South Africa.

    Science.gov (United States)

    Rostro-García, Susana; Kamler, Jan F; Hunter, Luke T B

    2015-01-01

    Understanding how animals utilize available space is important for their conservation, as it provides insight into the ecological needs of the species, including those related to habitat, prey and inter and intraspecific interactions. We used 28 months of radio telemetry data and information from 200 kill locations to assess habitat selection at the 3rd order (selection of habitats within home ranges) and 4th order (selection of kill sites within the habitats used) of a reintroduced population of cheetahs Acinonyx jubatus in Phinda Private Game Reserve, South Africa. Along with landscape characteristics, we investigated if lion Panthera leo presence affected habitat selection of cheetahs. Our results indicated that cheetah habitat selection was driven by a trade-off between resource acquisition and lion avoidance, and the balance of this trade-off varied with scale: more open habitats with high prey densities were positively selected within home ranges, whereas more closed habitats with low prey densities were positively selected for kill sites. We also showed that habitat selection, feeding ecology, and avoidance of lions differed depending on the sex and reproductive status of cheetahs. The results highlight the importance of scale when investigating a species' habitat selection. We conclude that the adaptability of cheetahs, together with the habitat heterogeneity found within Phinda, explained their success in this small fenced reserve. The results provide information for the conservation and management of this threatened species, especially with regards to reintroduction efforts in South Africa.

  4. The influence of food abundance, food dispersion and habitat structure on territory selection and size of an Afrotropical terrestrial insectivore

    Science.gov (United States)

    Stanley, Thomas R.; Newmark, William D.

    2015-01-01

    Most tropical insectivorous birds, unlike their temperate counterparts, hold and defend a feeding and breeding territory year-around. However, our understanding of ecological factors influencing territory selection and size in tropical insectivores is limited. Here we examine three prominent hypotheses relating food abundance, food dispersion (spatial arrangement of food items), and habitat structure to territoriality in the Usambara Thrush Turdus roehli. We first compared leaf-litter macro-invertebrate abundance and dispersion, and habitat structure between territories and random sites. We then examined the relation between these same ecological factors and territory size. Invertebrate abundance and dispersion were sparsely and evenly distributed across our study system and did not vary between territories and random sites. In contrast, habitat structure did vary between territories and random sites indicating the Usambara Thrush selects territories with open understorey and closed overstorey habitat. Invertebrate abundance and dispersion within territories of the Usambara Thrush were not associated with habitat structure. We believe the most likely explanation for the Usambara Thrush’s preference for open understorey and closed overstorey habitat relates to foraging behavior. Using information-theoretic model selection we found that invertebrate abundance was the highest-ranked predictor of territory size and was inversely related, consistent with food value theory of territoriality.

  5. Phylogeny and micro-habitats utilized by lizards determine the composition of their endoparasites in the semiarid Caatinga of Northeast Brazil.

    Science.gov (United States)

    Brito, S V; Corso, G; Almeida, A M; Ferreira, F S; Almeida, W O; Anjos, L A; Mesquita, D O; Vasconcellos, A

    2014-11-01

    Trophic networks can have architectonic configurations influenced by historical and ecological factors. The objective of this study was to analyze the architecture of networks between lizards, their endoparasites, diet, and micro-habitat, aiming to understand which factors exert an influence on the composition of the species of parasites. All networks showed a compartmentalized pattern. There was a positive relation between diet and the diversity of endoparasites. Our analyses also demonstrated that phylogeny and the use of micro-habitat influenced the composition of species of endoparasites and diet pattern of lizards. The principal factor that explained the modularity of the network was the foraging strategy, with segregation between the "active foragers" and "sit-and-wait" lizards. Our analyses also demonstrated that historical (phylogeny) and ecological factors (use of micro-habitat by the lizards) influenced the composition of parasite communities. These results corroborate other studies with ectoparasites, which indicate phylogeny and micro-habitat as determinants in the composition of parasitic fauna. The influence of phylogeny can be the result of coevolution between parasites and lizards in the Caatinga, and the influence of micro-habitat should be a result of adaptations of species of parasites to occupy the same categories of micro-habitats as hosts, thus favoring contagion.

  6. Influence of ecological variation across Pistacia altantica on fruit oil content

    Directory of Open Access Journals (Sweden)

    Yousefi Bayzid

    2016-12-01

    Full Text Available In the western and central parts of Iran, there are more than eight million female trees of Pistacia atlantica Desf. with approximately 20,000 tons of fruit oil production ability. In order to evaluate the influence of select ecological characteristics, fruit samples of seven P. atlantica habitats in Kurdistan (Iran were collected in late October over two years (2013-14. Fruit oil was extracted using soxhlet extraction. The results showed a relatively small variation in oil content in fruit across plants of P. atlantica. The fruit oil content ranged from 25.4% to 28.4%, with a mean of 27.3%. Most habitats belonged to temperate and semi-arid regions, with higher longitude and altitude but less latitude and slope, higher soil electrical conductivity, total neutralizing value, organic carbon and clay, medium yearly rainfall, evaporation and sunny hours and also trees with medium ages such as Borban and Kashtar producing higher fruit oil yield than those that belonged to cool and semi-humid regions. Cluster analysis classified habitats into four distinct groups at 50% similarity; four habitats belonging to forest areas were located in the first, Borban and Kashtar in the second and third and Abdolmomen, with the coldest climate and the oldest trees, was in the fourth group. The results of principal component analysis (PCA revealed that habitats with low fruit oil showed extreme values of PC1 and PC2 but ones with high fruit oil were located mainly in the central zones of the bi plot, which suggest that habitats with medium ecological conditions produce higher fruit oil.

  7. Interaction between Allee effects caused by organism-environment feedback and by other ecological mechanisms.

    Directory of Open Access Journals (Sweden)

    Lijuan Qin

    Full Text Available Understanding Allee effect has crucial importance for ecological conservation and management because it is strongly related to population extinction. Due to various ecological mechanisms accounting for Allee effect, it is necessary to study the influence of multiple Allee effects on the dynamics and persistence of population. We here focus on organism-environment feedback which can incur strong, weak, and fatal Allee effect (AE-by-OEF, and further examine their interaction with the Allee effects caused by other ecological mechanisms (AE-by-OM. The results show that multiple Allee effects largely increase the extinction risk of population either due to the enlargement of Allee threshold or the change of inherent characteristic of Allee effect, and such an increase will be enhanced dramatically with increasing the strength of individual Allee effects. Our simulations explicitly considering spatial structure also demonstrate that local interaction among habitat patches can greatly mitigate such superimposed Allee effects as well as individual Allee effect. This implies that spatially structurized habitat could play an important role in ecological conservation and management.

  8. Interaction between Allee effects caused by organism-environment feedback and by other ecological mechanisms.

    Science.gov (United States)

    Qin, Lijuan; Zhang, Feng; Wang, Wanxiong; Song, Weixin

    2017-01-01

    Understanding Allee effect has crucial importance for ecological conservation and management because it is strongly related to population extinction. Due to various ecological mechanisms accounting for Allee effect, it is necessary to study the influence of multiple Allee effects on the dynamics and persistence of population. We here focus on organism-environment feedback which can incur strong, weak, and fatal Allee effect (AE-by-OEF), and further examine their interaction with the Allee effects caused by other ecological mechanisms (AE-by-OM). The results show that multiple Allee effects largely increase the extinction risk of population either due to the enlargement of Allee threshold or the change of inherent characteristic of Allee effect, and such an increase will be enhanced dramatically with increasing the strength of individual Allee effects. Our simulations explicitly considering spatial structure also demonstrate that local interaction among habitat patches can greatly mitigate such superimposed Allee effects as well as individual Allee effect. This implies that spatially structurized habitat could play an important role in ecological conservation and management.

  9. Status, ecology, and conservation of the southwestern willow flycatcher

    Science.gov (United States)

    Deborah M. Finch; Scott H. Stoleson

    2000-01-01

    This publication was prepared in response to a need expressed by southwestern agencies and organizations for a comprehensive assessment of the population status, history, biology, ecology, habitats, threats, and conservation of the southwestern willow flycatcher (Empidonax traillii extimus). The southwestern willow flycatcher was federally listed as...

  10. Assessing the Habitat Suitability of Dam Reservoirs: A Quantitative Model and Case Study of the Hantan River Dam, South Korea

    Directory of Open Access Journals (Sweden)

    Hyeongsik Kang

    2016-11-01

    Full Text Available The main objective of this study was to investigate ecologically healthy regions near a dam reservoir. This study developed a model for assessing habitat suitability as a proxy for the ecological value of reservoirs. Three main factors comprising nine assessment variables were selected and classified as having a habitat suitability (HS between 0 and 1: (1 geomorphic factors of altitude, slope steepness, and slope aspect; (2 vegetation factors of forest physiognomy, vegetation type, and tree age; and (3 ecological factors of land cover, ecological quality index, and environmental conservation value assessment. The spatial distribution of the nine HS indices was determined using geographic information systems and combined into one HS index value to determine ecologically healthy regions. The assessment model was applied to areas surrounding the Hantan River Dam, South Korea. To verify the model, wildlife location data from the national ecosystem survey of the Ministry of Environment were used. Areas with an HS index between 0.73 and 1 were found to contain 72% of observed wildlife locations. Ecologically healthy areas were identified by adding the indices of each variable. The methods shown here will be useful for establishing ecological restoration plans for dam reservoirs in South Korea.

  11. Modelling climate change impacts on stream habitat conditions

    DEFF Research Database (Denmark)

    Boegh, Eva; Conallin, John; Karthikeyan, Matheswaran

    Impact from groundwater abstraction on freshwater resources and ecosystems is an issue of sincere concern in Denmark and many other countries worldwide. In addition, climate change projections add complexity to the existing conflict between water demands to satisfy human needs and water demands...... required to conserve streams as biologically diverse and healthy ecosystems. Solutions to this intensifying conflict require a holistic approach whereby stream biota is related to their physical environment at catchment scale, as also demanded by the EU Water Framework Directive. In the present study......, climate impacts on stream ecological conditions were quantified by combining a heat and mass stream flow with a habitat suitability modelling approach. Habitat suitability indices were developed for stream velocity, water depth, water temperature and substrate. Generally, water depth was found...

  12. Habitat requirements of the long-tailed ground squirrel (Spermophilus undulatus) in the southern Altai

    Czech Academy of Sciences Publication Activity Database

    Řičánková, V.; Fric, Zdeněk; Chlachula, J.; Šťastná, P.; Faltýnková, A.; Zemek, František

    2006-01-01

    Roč. 270, - (2006), s. 1-8 ISSN 0952-8369 Institutional research plan: CEZ:AV0Z60870520 Keywords : Spermophilus undulatus * Altai mountains * habitat selection * predation risk * grazing Subject RIV: EH - Ecology, Behaviour Impact factor: 1.413, year: 2006

  13. Ecological risks of DOE`s programmatic environmental restoration alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report assesses the ecological risks of the Department of Energy`s (DOE) Environmental Restoration Program. The assessment is programmatic in that it is directed at evaluation of the broad programmatic alternatives outlined in the DOE Implementation Plan. It attempts to (1) characterize the ecological resources present on DOE facilities, (2) describe the occurrence and importance of ecologically significant contamination at major DOE facilities, (3) evaluate the adverse ecological impacts of habitat disturbance caused by remedial activities, and (4) determine whether one or another of the programmatic alternatives is clearly ecologically superior to the others. The assessment focuses on six representative facilities: the Idaho National Engineering Laboratory (INEL); the Fernald Environmental Management Project (FEMP); the Oak Ridge Reservation (ORR), including the Oak Ridge National Laboratory (ORNL), Y-12 plant, and K-25 plant; the Rocky Flats Plant; the Hanford Reservation; and the Portsmouth Gaseous Diffusion Plant.

  14. Does size matter? An investigation of habitat use across a carnivore assemblage in the Serengeti, Tanzania.

    Science.gov (United States)

    Durant, Sarah M; Craft, Meggan E; Foley, Charles; Hampson, Katie; Lobora, Alex L; Msuha, Maurus; Eblate, Ernest; Bukombe, John; McHetto, John; Pettorelli, Nathalie

    2010-09-01

    1. This study utilizes a unique data set covering over 19 000 georeferenced records of species presence collected between 1993 and 2008, to explore the distribution and habitat selectivity of an assemblage of 26 carnivore species in the Serengeti-Ngorongoro landscape in northern Tanzania. 2. Two species, the large-spotted genet and the bushy-tailed mongoose, were documented for the first time within this landscape. Ecological Niche Factor Analysis (ENFA) was used to examine habitat selectivity for 18 of the 26 carnivore species for which there is sufficient data. Eleven ecogeographical variables (EGVs), such as altitude and habitat type, were used for these analyses. 3. The ENFA demonstrated that species differed in their habitat selectivity, and supported the limited ecological information already available for these species, such as the golden jackals' preference for grassland and the leopards' preference for river valleys. 4. Two aggregate scores, marginality and tolerance, are generated by the ENFA, and describe each species' habitat selectivity in relation to the suite of EGVs. These scores were used to test the hypothesis that smaller species are expected to be more selective than larger species [Science, 1989, 243, 1145]. Two predictions were tested: Marginality should decrease with body mass; and tolerance should increase with body mass. Our study provided no evidence for either prediction. 5. Our results not only support previous analyses of carnivore diet breadth, but also represent a novel approach to the investigation of habitat selection across species assemblages. Our method provides a powerful tool to explore similar questions in other systems and for other taxa.

  15. Microbial ecology of Thailand tsunami and non-tsunami affected terrestrials.

    Science.gov (United States)

    Somboonna, Naraporn; Wilantho, Alisa; Jankaew, Kruawun; Assawamakin, Anunchai; Sangsrakru, Duangjai; Tangphatsornruang, Sithichoke; Tongsima, Sissades

    2014-01-01

    The effects of tsunamis on microbial ecologies have been ill-defined, especially in Phang Nga province, Thailand. This ecosystem was catastrophically impacted by the 2004 Indian Ocean tsunami as well as the 600 year-old tsunami in Phra Thong island, Phang Nga province. No study has been conducted to elucidate their effects on microbial ecology. This study represents the first to elucidate their effects on microbial ecology. We utilized metagenomics with 16S and 18S rDNA-barcoded pyrosequencing to obtain prokaryotic and eukaryotic profiles for this terrestrial site, tsunami affected (S1), as well as a parallel unaffected terrestrial site, non-tsunami affected (S2). S1 demonstrated unique microbial community patterns than S2. The dendrogram constructed using the prokaryotic profiles supported the unique S1 microbial communities. S1 contained more proportions of archaea and bacteria domains, specifically species belonging to Bacteroidetes became more frequent, in replacing of the other typical floras like Proteobacteria, Acidobacteria and Basidiomycota. Pathogenic microbes, including Acinetobacter haemolyticus, Flavobacterium spp. and Photobacterium spp., were also found frequently in S1. Furthermore, different metabolic potentials highlighted this microbial community change could impact the functional ecology of the site. Moreover, the habitat prediction based on percent of species indicators for marine, brackish, freshwater and terrestrial niches pointed the S1 to largely comprise marine habitat indicating-species.

  16. Artificial persons against nature: environmental governmentality, economic corporations, and ecological ethics.

    Science.gov (United States)

    Northcott, Michael S

    2012-02-01

    Despite the 194 nation-state signatories to the global Convention on Biological Diversity, the conservation effort is failing to halt an ongoing spiral of decline in most habitats and ecological communities on land and ocean. Environmental ethicists argue that the failure to halt the unsustainable predation on the ecosystems that sustain industrial civilization is indicative of a moral as well as a scientific crisis. Principal ethical interventions in ecology include the ascription of value to species and ecosystems, wilderness ethics, and ecological virtue. Ecological virtue ethics identifies agency, character, institutions, and practices as crucial to moral formation and outcomes. However, the dominant role of the economic corporation in ecological destruction subverts a virtues approach. Corporations as fictive persons will not learn ecological virtue absent of legal and regulatory reform and the ecological education of business leaders and owners. © 2012 New York Academy of Sciences.

  17. [Ecology suitability study of Ephedra intermedia].

    Science.gov (United States)

    Ma, Xiao-Hui; Lu, You-Yuan; Huang, De-Dong; Zhu, Tian-Tian; Lv, Pei-Lin; Jin, Ling

    2017-06-01

    The study aims at predicting ecological suitability of Ephedra intermedia in China by using maximum entropy Maxent model combined with GIS, and finding the main ecological factors affecting the distribution of E. intermedia suitability in appropriate growth area. Thirty-eight collected samples of E. intermedia and E. intermedia and 116 distribution information from CVH information using ArcGIS technology were analyzed. MaxEnt model was applied to forecast the E. intermedia in our country's ecology. E. intermedia MaxEnt ROC curve model training data and testing data sets the AUC value was 0.986 and 0.958, respectively, which were greater than 0.9, tending to be 1.The calculated E. intermedia habitat suitability by the model showed a high accuracy and credibility, which indicated that MaxEnt model could well predict the potential distribution area of E. intermedia in China. Copyright© by the Chinese Pharmaceutical Association.

  18. Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats.

    Science.gov (United States)

    Martino, Maria Elena; Bayjanov, Jumamurat R; Caffrey, Brian E; Wels, Michiel; Joncour, Pauline; Hughes, Sandrine; Gillet, Benjamin; Kleerebezem, Michiel; van Hijum, Sacha A F T; Leulier, François

    2016-12-01

    The ability of bacteria to adapt to diverse environmental conditions is well-known. The process of bacterial adaptation to a niche has been linked to large changes in the genome content, showing that many bacterial genomes reflect the constraints imposed by their habitat. However, some highly versatile bacteria are found in diverse habitats that almost share nothing in common. Lactobacillus plantarum is a lactic acid bacterium that is found in a large variety of habitat. With the aim of unravelling the link between evolution and ecological versatility of L. plantarum, we analysed the genomes of 54 L. plantarum strains isolated from different environments. Comparative genome analysis identified a high level of genomic diversity and plasticity among the strains analysed. Phylogenomic and functional divergence studies coupled with gene-trait matching analyses revealed a mixed distribution of the strains, which was uncoupled from their environmental origin. Our findings revealed the absence of specific genomic signatures marking adaptations of L. plantarum towards the diverse habitats it is associated with. This suggests fundamentally similar trends of genome evolution in L. plantarum, which occur in a manner that is apparently uncoupled from ecological constraint and reflects the nomadic lifestyle of this species. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Interaction between birds and macrofauna within food webs of six intertidal habitats of the Wadden Sea.

    Science.gov (United States)

    Horn, Sabine; de la Vega, Camille; Asmus, Ragnhild; Schwemmer, Philipp; Enners, Leonie; Garthe, Stefan; Binder, Kirsten; Asmus, Harald

    2017-01-01

    The determination of food web structures using Ecological Network Analysis (ENA) is a helpful tool to get insight into complex ecosystem processes. The intertidal area of the Wadden Sea is structured into diverse habitat types which differ in their ecological functioning. In the present study, six different intertidal habitats (i.e. cockle field, razor clam field, mud flat, mussel bank, sand flat and seagrass meadow) were analyzed using ENA to determine similarities and characteristic differences in the food web structure of the systems. All six systems were well balanced between their degree of organization and their robustness. However, they differed in their detailed features. The cockle field and the mussel bank exhibited a strong dependency on external imports. The razor clam field appeared to be a rather small system with low energy transfer. In the mud flat microphytobenthos was used as a main food source and the system appeared to be sensitive to perturbations. Bird predation was the most pronounced in the sand flat and the seagrass meadow and led to an increase in energy transfer and parallel trophic cycles in these habitats. Habitat diversity appears to be an important trait for the Wadden Sea as each subsystem seems to have a specific role in the overall functioning of the entire ecosystem.

  20. Ecological profiles of wetland plant species in the northern Apennines (N. Italy

    Directory of Open Access Journals (Sweden)

    Marcello TOMASELLI

    2003-02-01

    less acidic habitats than in the Alps, probably due to the absence of ombrotrophic mires, and Viola palustris occurs mostly in neutro- basiphytic habitats. Some hypotheses to explain the ecological behaviour of this last species were proposed.

  1. To Kill, Stay or Flee: The Effects of Lions and Landscape Factors on Habitat and Kill Site Selection of Cheetahs in South Africa

    OpenAIRE

    Rostro-Garc?a, Susana; Kamler, Jan F.; Hunter, Luke T. B.

    2015-01-01

    Understanding how animals utilize available space is important for their conservation, as it provides insight into the ecological needs of the species, including those related to habitat, prey and inter and intraspecific interactions. We used 28 months of radio telemetry data and information from 200 kill locations to assess habitat selection at the 3rd order (selection of habitats within home ranges) and 4th order (selection of kill sites within the habitats used) of a reintroduced populatio...

  2. Ecological Restoration of Coastal Sage Scrub and Its Potential Role in Habitat Conservation Plans.

    Science.gov (United States)

    BOWLER

    2000-07-01

    Extensive acreage loss of coastal sage scrub (CSS), isolation of surviving stands, and the federal listing of several animal species with obligate relationships to this plant community, particularly the threatened California gnatcatcher (Polioptila californica), have led to attempts to create CSS to mitigate habitat lost to urban development and other causes. Many of these creations lie within habitat conservation plan (HCP) sites, and they could play a more prominent role by being repositories for plants taken from a single site having site-specific genetics. Among others, one technique that increases initial resemblance to natural stands uses digitized, to-scale photography, which has been ground-truthed to verify vascular plant associations, which appear as mosaics on a landscape. A combination of placing patches of salvaged, mature canopy plants within larger matrices of imprinted or container plant plots appears to significantly enhance immediate use by CSS obligate bird species, accelerate "spread" or expansion of CSS, and can also introduce many epiphytic taxa that otherwise would be slow or unable to occupy developing CSS creations. Reptile, amphibian, butterfly, and rodent diversity in a salvaged canopy restoration case study at the University of California, Irvine, showed CSS species foraging and inhabiting transplanted canopy patches. Using restoration techniques to expand existing CSS stands has more promise than creating isolated patches, and the creation of canopies resembling CSS mid-fire cycle stands is now common. Gnatcatchers and other birds use restorations for foraging and occasional nesting, and in some cases created stands along "biological corridors" appear to be useful to bird movement. Patches of transplanted sage scrub shrubs along habitat edges appear to break up linear edge effects. There are no data on which long-term survival, succession, or postfire behavior can be predicted for CSS restoration sites, and postfire community changes

  3. Application of stable isotopes in ecological research : it's all elemental

    International Nuclear Information System (INIS)

    Rogers, K.M.

    2005-01-01

    Stable isotopes have been used traditionally in the physical sciences, primarily in geochemistry, sedimentology, and oceanography. Increasingly, however, stable isotopes are also being used in the biological sciences. Application of stable isotopes in ecological studies can provide new and innovative ways of examining a host of topics of fundamental importance to biologists. These topics include, among others, feeding ecology and food webs, nutrient flow and assimilation, habitat use, migration patterns, and distribution and discrimination of species subpopulations. Furthermore, ecological research with isotopes can be applied at many levels (i.e. tissue and organ, whole animal, population, community, and ecosystem). (author). 38 refs., 2 figs

  4. Determination of the ecological connectivity between landscape patches obtained using the knowledge engineer (expert) classification technique

    Science.gov (United States)

    Selim, Serdar; Sonmez, Namik Kemal; Onur, Isin; Coslu, Mesut

    2017-10-01

    Connection of similar landscape patches with ecological corridors supports habitat quality of these patches, increases urban ecological quality, and constitutes an important living and expansion area for wild life. Furthermore, habitat connectivity provided by urban green areas is supporting biodiversity in urban areas. In this study, possible ecological connections between landscape patches, which were achieved by using Expert classification technique and modeled with probabilistic connection index. Firstly, the reflection responses of plants to various bands are used as data in hypotheses. One of the important features of this method is being able to use more than one image at the same time in the formation of the hypothesis. For this reason, before starting the application of the Expert classification, the base images are prepared. In addition to the main image, the hypothesis conditions were also created for each class with the NDVI image which is commonly used in the vegetation researches. Besides, the results of the previously conducted supervised classification were taken into account. We applied this classification method by using the raster imagery with user-defined variables. Hereupon, to provide ecological connections of the tree cover which was achieved from the classification, we used Probabilistic Connection (PC) index. The probabilistic connection model which is used for landscape planning and conservation studies via detecting and prioritization critical areas for ecological connection characterizes the possibility of direct connection between habitats. As a result we obtained over % 90 total accuracy in accuracy assessment analysis. We provided ecological connections with PC index and we created inter-connected green spaces system. Thus, we offered and implicated green infrastructure system model takes place in the agenda of recent years.

  5. Ecological Compliance Assessment Project: 1994 Summary report

    International Nuclear Information System (INIS)

    Brandt, C.A.

    1994-11-01

    The Ecological Compliance Assessment Project (ECAP) began full operation on March 1, 1994. The project is designed around a baseline environmental data concept that includes intensive biological field surveys of key areas of the Hanford Site where the majority of Site activities occur. These surveys are conducted at biologically appropriate times of year to ensure that the data gathered are current and accurate. The data are entered into the ECAP database, which serves as a reference for the evaluation of review requests coming in to the project. This methodology provided the basis for over 90 percent of the review requests received. Field surveys conducted under ECAP are performed to document occurrence information for species of concern and to obtain habitat descriptions. There are over 200 species of concern on the Hanford Site, including plants, birds, mammals, reptiles, amphibians, fish, and invertebrates. In addition, Washington State has designated mature sagebrush-steppe habitat as a Priority Habitat meriting special protective measures. Of the projects reviewed, 17 resulted or will result in impacts to species or habitats of concern on the Hanford Site. The greatest impact has been on big sagebrush habitat. Most of the impact has been or will be within the 600 Area of the Site

  6. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants

    Directory of Open Access Journals (Sweden)

    Alessandro Ossola

    2015-10-01

    Full Text Available Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i ant abundance and species richness would be higher in high-complexity urban habitats, (ii ant assemblages would differ between low- and high-complexity habitats and (iii ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size.

  7. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants

    Science.gov (United States)

    Nash, Michael A.; Christie, Fiona J.; Hahs, Amy K.; Livesley, Stephen J.

    2015-01-01

    Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size. PMID:26528416

  8. Ecological diversification associated with the benthic-to-pelagic transition by North American minnows.

    Science.gov (United States)

    Burress, E D; Holcomb, J M; Tan, M; Armbruster, J W

    2017-03-01

    Ecological opportunity is often regarded as a key factor that explains why diversity is unevenly distributed across life. Colonization of novel environments or adaptive zones may promote diversification. North American minnows exhibit an ancestral benthic-to-pelagic habitat shift that coincided with a burst in diversification. Here, we evaluate the phenotypic and ecological implications of this habitat shift by assessing craniofacial and dietary traits among 34 species and testing for morphology-diet covariation, convergence and adaptive optima. There were several instances of morphology-diet covariation such as correlations between mouth angle and the consumption of terrestrial insects and between relative gut length and the consumption of algae. After accounting for size and phylogenetic nonindependence, benthic species had longer heads, longer snouts, eyes positioned higher on their head, smaller mouth angles and longer digestive tracts than pelagic minnows. Benthic minnows also consumed more algae but less terrestrial insects, by volume, than pelagic minnows. Lastly, there were three distinct evolutionary regimes and more convergence in morphology and dietary characteristics than expected under a Brownian motion model of evolution. These findings indicate that colonization of the pelagic zone by minnows involved myriad phenotypic and dietary changes associated with exploitation of terrestrial subsidies. Thus, minnows exhibit phenotype-dietary covariation, an expansion of ecological roles and a burst in diversification rates in response to the ecological opportunity afforded by the colonization of a novel habitat. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  9. Prescribing habitat layouts: Analysis of optimal placement for landscape planning [Chapter 23

    Science.gov (United States)

    Curtis H. Flather; Michael Bevers; John Hof

    2002-01-01

    Physical restructuring of landscapes by humans is a prominent stress on ecological systems (Rapport et al. 1985). Landscape restructuring occurs primarily through land-use conversions or alteration of native habitats through natural resource management. A common faunal response to such land-use intensification is an increased dominance of opportunistic species leading...

  10. Flat and complex temperate reefs provide similar support for fish: Evidence for a unimodal species-habitat relationship.

    Directory of Open Access Journals (Sweden)

    Avery B Paxton

    Full Text Available Structural complexity, a form of habitat heterogeneity, influences the structure and function of ecological communities, generally supporting increased species density, richness, and diversity. Recent research, however, suggests the most complex habitats may not harbor the highest density of individuals and number of species, especially in areas with elevated human influence. Understanding nuances in relationships between habitat heterogeneity and ecological communities is warranted to guide habitat-focused conservation and management efforts. We conducted fish and structural habitat surveys of thirty warm-temperate reefs on the southeastern US continental shelf to quantify how structural complexity influences fish communities. We found that intermediate complexity maximizes fish abundance on natural and artificial reefs, as well as species richness on natural reefs, challenging the current paradigm that abundance and other fish community metrics increase with increasing complexity. Naturally occurring rocky reefs of flat and complex morphologies supported equivalent abundance, biomass, species richness, and community composition of fishes. For flat and complex morphologies of rocky reefs to receive equal consideration as essential fish habitat (EFH, special attention should be given to detecting pavement type rocky reefs because their ephemeral nature makes them difficult to detect with typical seafloor mapping methods. Artificial reefs of intermediate complexity also maximized fish abundance, but human-made structures composed of low-lying concrete and metal ships differed in community types, with less complex, concrete structures supporting lower numbers of fishes classified largely as demersal species and metal ships protruding into the water column harboring higher numbers of fishes, including more pelagic species. Results of this study are essential to the process of evaluating habitat function provided by different types and shapes of

  11. The Metacity: A Conceptual Framework for Integrating Ecology and Urban Design

    Directory of Open Access Journals (Sweden)

    S. T. A. Pickett

    2011-10-01

    Full Text Available We introduce the term metacity as a conceptual framework that can be shared by ecologists and designers and applied across the wide variety of urban habitats found around the world. While the term metacity was introduced by UN-HABITAT to designate hyper cities of over twenty million people, for us it is not limited to large urban agglomerations, but rather refers to the proliferation of new forms of urbanization, each with distinct ecological and social attributes. These various urban configurations when combined with new digital sensing, communication and social networking technologies constitute a virtual meta-infrastructure, present in all cities today. This new metacity has the potential to integrate new activist forms of ecological and urban design research and practice in making the transition from sanitary to sustainable city models globally. The city of Baltimore, Maryland will be used both as a site to illustrate these recent urban trends, and also as an example of the integration of ecology and urban design pursued by the two authors over the past seven years [1,2]. Metacity theory is drawn from both an architectural analysis of contemporary forms of urbanism, new forms of digital monitoring and communication technologies, as well as metapopulation and metacommunity theories in ecology. We seek to provide tools and lessons from our experiences for realizing an integrated metacity approach to achieving social sustainability and ecological resilience on an increasingly urbanized planet.

  12. Landscape scale ecology at the Porcupine Abyssal Plain

    Science.gov (United States)

    Ruhl, H.; Morris, K. J.; Bett, B. J.; Jones, D.; Huvenne, V. A. I.; Robert, K.; Gooday, A. J.; Durden, J. M.; Laguionie-Marchais, C.; Stefanoudis, P. V.; Benoist, N. M.; Paterson, G. L.; Wolff, G. A.; Milligan, R. J.; Bailey, D. M.

    2016-02-01

    The distribution and abundance of life on the seafloor is set to some extent by the supply of sinking particulate organic matter from overlying surface water. However, the habitat landscape of the seafloor can also exert important ecological influences at local scales. Community differences on the scales of centimeters upwards can arise from drivers including changes in seafloor sediments, slope, and lateral movement of particulate organic matter. Here we use photographic survey data covering an extent on the order of 100 km2 to examine relationships between megafauna density, biomass, diversity, and community composition, as well as food availability and habitat type across landscape scales. The surveyed area at the Porcupine Abyssal Plain has a maximum water depth of about 4850 m and includes a range of topographic features from slight undulations of the seafloor to exposed bedrock scarps on an abyssal hill rising more than 200 m above the surrounding plain. We first examine community descriptors across the entire area and then sequentially break the analytical units into smaller units including variants based on habitat types and spatial extent. We repeat the examination of seafloor community descriptors with finer and finer analytical unit scales, as well as for different habitat types, and changing levels of phytodetritus coverage. We then examine the scales at which diversity and community composition go from statistically indistinguishable between analytical units to significantly different and which factors best explain these observations. Lastly, we relate the results from this megafauna study to other recent spatial studies at the Porcupine Abyssal Plain, from foraminifera to fishes, to build a landscape view of the ecology of the area.

  13. On the form of species–area relationships in habitat islands and true islands

    DEFF Research Database (Denmark)

    Matthews, Thomas J.; Guilhaumon, François; Triantis, Kostas A.

    2016-01-01

    and c vary between different island types. Location: Global. Methods: We used an information theoretic approach to compare the fit of 20 ISAR models to 207 habitat island datasets. Model performance was ranked according to pre-set criteria, including metrics of generality and efficiency. We also fitted......, and was the highest ranked model overall. In general, the more complex models performed badly. Average z-values were significantly lower for habitat island datasets than for true islands, and were higher for mountaintop and urban habitat islands than for other habitat island types. Average c-values were significantly...... multimodel comparisons demonstrated the nonlinear implementation of the power model to be the best overall model and thus to be a sensible choice for general use. As the z-value of the log–log power model varied in relation to ecological and geographical properties of the study systems, caution should...

  14. Influence of seasonality and gestation on habitat selection by northern Mexican gartersnakes (Thamnophis eques megalops.

    Directory of Open Access Journals (Sweden)

    Tiffany A Sprague

    Full Text Available Species conservation requires a thorough understanding of habitat requirements. The northern Mexican gartersnake (Thamnophis eques megalops was listed as threatened under the U.S. Endangered Species Act in 2014. Natural resource managers are interested in understanding the ecology of this subspecies to guide management decisions and to determine what features are necessary for habitat creation and restoration. Our objective was to identify habitat selection of northern Mexican gartersnakes in a highly managed, constructed wetland hatchery. We deployed transmitters on 42 individual gartersnakes and documented use of habitat types and selection of specific habitat features. Habitat selection was similar between males and females and varied seasonally. During the active season (March-October, gartersnakes primarily selected wetland edge habitat with abundant cover. Gestating females selected similar locations but with less dense cover. During the inactive season (November-February, gartersnakes selected upland habitats, including rocky slopes with abundant vegetation. These results of this study can help inform management of the subspecies, particularly in human-influenced habitats. Conservation of this subspecies should incorporate a landscape-level approach that includes abundant wetland edge habitat with a mosaic of dense cover for protection and sparsely vegetated areas for basking connected to terrestrial uplands for overwintering.

  15. The impacts of Cenozoic climate and habitat changes on small mammal diversity of North America

    Science.gov (United States)

    Samuels, Joshua X.; Hopkins, Samantha S. B.

    2017-02-01

    Through the Cenozoic, paleoclimate records show general trends of global cooling and increased aridity, and environments in North America shifted from predominantly forests to more open habitats. Paleobotanical records indicate grasses were present on the continent in the Eocene; however, paleosol and phytolith studies indicate that open habitats did not arise until the late Eocene or even later in the Oligocene. Studies of large mammalian herbivores have documented changes in ecomorphology and community structure through time, revealing that shifts in mammalian morphology occurred millions of years after the environmental changes thought to have triggered them. Smaller mammals, like rodents and lagomorphs, should more closely track climate and habitat changes due to their shorter generation times and smaller ranges, but these animals have received much less study. To examine changes in smaller mammals through time, we have assembled and analyzed an ecomorphological database of all North American rodent and lagomorph species. Analyses of these data found that rodent and lagomorph community structure changed dramatically through the Cenozoic, and shifts in diversity and ecology correspond closely with the timing of habitat changes. Cenozoic rodent and lagomorph species diversity is strongly biased by sampling of localities, but sampling-corrected diversity reveals diversity dynamics that, after an initial density-dependent diversification in the Eocene, track habitat changes and the appearance of new ecological adaptations. As habitats became more open and arid through time, rodent and lagomorph crown heights increased while burrowing, jumping, and cursorial adaptations became more prevalent. Through time, open-habitat specialists were added during periods of diversification, while closed-habitat taxa were disproportionately lost in subsequent diversity declines. While shifts among rodents and lagomorphs parallel changes in ungulate communities, they started

  16. Associations of fish with various types of littoral habitats in reservoirs

    Czech Academy of Sciences Publication Activity Database

    Šmejkal, Marek; Prchalová, Marie; Čech, Martin; Vašek, Mojmír; Říha, Milan; Jůza, Tomáš; Blabolil, Petr; Kubečka, Jan

    2014-01-01

    Roč. 23, č. 3 (2014), s. 405-413 ISSN 0906-6691 R&D Projects: GA MŠk(CZ) EE2.3.20.0204; GA ČR(CZ) GPP505/12/P647 Institutional support: RVO:60077344 Keywords : habitat associations * gillnet * reservoir * structural complexity * slope steepness * community structure Subject RIV: EH - Ecology, Behaviour Impact factor: 1.701, year: 2014

  17. Build your own soil: exploring microfluidics to create microbial habitat structures

    Science.gov (United States)

    Aleklett, Kristin; Kiers, E Toby; Ohlsson, Pelle; Shimizu, Thomas S; Caldas, Victor EA; Hammer, Edith C

    2018-01-01

    Soil is likely the most complex ecosystem on earth. Despite the global importance and extraordinary diversity of soils, they have been notoriously challenging to study. We show how pioneering microfluidic techniques provide new ways of studying soil microbial ecology by allowing simulation and manipulation of chemical conditions and physical structures at the microscale in soil model habitats. PMID:29135971

  18. Habitat suitability models of mountain ungulates: identifying potential areas for conservation

    Czech Academy of Sciences Publication Activity Database

    Paudel, Prakash K.; Hais, M.; Kindlmann, Pavel

    2015-01-01

    Roč. 54, apr (2015), s. 37 ISSN 1021-5506 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk LC06073; GA ČR GB14-36098G Institutional support: RVO:67179843 Keywords : capricornis thar * habitat model * Midhills * Muntiacus muntjak * Naemorhedus goral * Nepal Subject RIV: EH - Ecology, Behaviour Impact factor: 0.885, year: 2015

  19. Trees of Laos and Vietnam: a field guide to 100 economically or ecologically important species

    OpenAIRE

    Sam, Hoang Van; Nanthavong, Khamseng; Keßler, P.J.A.

    2004-01-01

    This field guide to 100 economically or ecologically important tree species from Laos and Vietnam enables the user to identify the included taxa with user-friendly keys. It includes scientific names, botanical descriptions of families, genera, and species. Specific information on distribution, habitat, ecology, and uses has been compiled. All specimens examined have been listed.

  20. Functional profiling of cyanobacterial genomes and its role in ecological adaptations

    Directory of Open Access Journals (Sweden)

    Ratna Prabha

    2016-09-01

    Full Text Available With the availability of complete genome sequences of many cyanobacterial species, it is becoming feasible to study the broad prospective of the environmental adaptation and the overall changes at transcriptional and translational level in these organisms. In the evolutionary phase, niche-specific competitive forces have resulted in specific features of the cyanobacterial genomes. In this study, functional composition of the 84 different cyanobacterial genomes and their adaptations to different environments was examined by identifying the genomic composition for specific cellular processes, which reflect their genomic functional profile and ecological adaptation. It was identified that among cyanobacterial genomes, metabolic genes have major share over other categories and differentiation of genomic functional profile was observed for the species inhabiting different habitats. The cyanobacteria of freshwater and other habitats accumulate large number of poorly characterized genes. Strain specific functions were also reported in many cyanobacterial members, of which an important feature was the occurrence of phage-related sequences. From this study, it can be speculated that habitat is one of the major factors in giving the shape of functional composition of cyanobacterial genomes towards their ecological adaptations.

  1. Study on ecological conservation planning of Xianyue Park in Xiamen City, China

    Science.gov (United States)

    Xu, Naizhong; Xi, Rong; Ren, Tingyan; Zhao, Peng; Chuai, Zeyao

    2017-08-01

    The paper discusses the current situation and existing problems of ecological restoration and tourist infrastructure development of Xiamen Xianyue Park located in Xiamen Island, China. Issues of ecosystem restoration and landscape improvement, restoring habitats, and ecosystem management system are analyzed. Options of further optimization of the tourist-targeted infrastructure are proposed, which take into account the ecological system and landscape pattern optimization, promotion of ecotourism, and implementation of the ecological management system. The particular solution envisages the park zoning with three primary zones (ecological protection, ecological buffer, and general activity zones) and five secondary ones (scenic landscape, ecotourism, religious activity, buildings and structures, and entertainment zones). By integrating the ecological principles into other land use objectives, taking full advantage of the park ecological and cultural heritage, and improving its ecological management, it is expected to provide the ecological restoration of the park under study and optimize its contribution to the regional economic and social development.

  2. Intraspecific ecological niche divergence and reproductive shifts foster cytotype displacement and provide ecological opportunity to polyploids.

    Science.gov (United States)

    Karunarathne, Piyal; Schedler, Mara; Martínez, Eric J; Honfi, Ana I; Novichkova, Anastasiia; Hojsgaard, Diego

    2018-05-11

    maintain cytotype stability in core areas by displacing tetraploids, while broader ecological preferences and a shift from sexuality to apomixis favoured polyploid colonization in peripheral areas where diploids are displaced, and fostered the ecological opportunity for autotetraploids supporting range expansion to open southern habitats.

  3. Enemy-free space and habitat-specific host specialization in a butterfly.

    Science.gov (United States)

    Wiklund, Christer; Friberg, Magne

    2008-08-01

    The majority of herbivorous insects have relatively specialized food habits. This suggests that specialization has some advantage(s) over generalization. Traditionally, feeding specialization has been thought to be linked to digestive or other food-related physiological advantages, but recent theory suggests that generalist natural enemies of herbivorous insects can also provide a major selective pressure for restricted host plant range. The European swallowtail butterfly Papilio machaon utilizes various plants in the Apiaceae family as hosts, but is an ecological specialist being monophagous on Angelica archangelica in southern Sweden. This perennial monocarp grows in three seaside habitat types: (1) on the barren rocky shore in the absence of any surrounding vegetation, (2) on the rocky shore with some surrounding vegetation, and (3) on species-rich meadows. The rocky shore habitat harbors few invertebrate generalist predators, whereas a number of invertebrate predators abound in the meadowland habitat. Here, we test the importance of enemy-free space for feeding specialization in Papilio machaon by assessing survival of larvae placed by hand on A. archangelica in each of the three habitat types, and by assessing the habitat-specificity of adult female egg-laying behavior by recording the distribution of eggs laid by free-flying adult females among the three habitat types. Larval survival was substantially higher in the rocky shore habitat than in the meadowland and significantly higher on host plants without surrounding vegetation on the rocky shore. Eggs laid by free-flying females were found in all three habitat types, but were significantly more frequent in the rocky shore habitat, suggesting that females prefer to lay eggs in the habitat type where offspring survival is highest. These results show that larval survivorship on the same host plant species can be strongly habitat-specific, and suggest that enemy-free space is an underlying factor that drives

  4. [Identification of ecological corridors for Tibetan antelope and assessment of their human disturbances in the alpine desert of Qinghai-Tibet Plateau].

    Science.gov (United States)

    Zhuge, Hai-jin; Lin, Dan-qi; Li, Xiao-wen

    2015-08-01

    The alpine desert of Qinghai-Tibet Plateau (QTP) provides the largest habitats for those endangered ungulates (e.g., Tibetan antelope, Tibetan Kiang and wild yak) on the earth. However, human disturbance especially infrastructure constructions (e.g., railway & highway) has increasingly fragmented the habitats of those endangered ungulates by disturbing and interrupting their ecological corridors for their seasonal migration. Aiming at identifying the potential ecological corridors for Tibetan antelope, a GIS-based model-Linkage Mapper was used to model and detect the potential ecological corridors of Tibetan antelope based on the principle of least cost path. Three categories of ecological corridors, i. e., closed (inside reserves), linking (linking the reserves) and open (starting from reserve but ending outside) corridors were distinguished by their spatial interactions with existing major national nature reserves (i.e., Altun, Kekexili and Qiangtang NNRs) in the alpine desert of QTP, and their spatial patterns, conservation status associated with human disturbance were also examined. Although our research indicated a general ecological integration of both habitats and ecological corridors in the alpine desert ecosystem, increasing human disturbance should not be ignored, which particularly partially undermined the functioning of those ecological corridors linking the nature reserves. Considering disadvantages of prevailing separate administrative structure of nature reserve on the effective conservation of ecological corridors for those endangered ungulates, a coordinative conservation network among these major national nature reserves should be established to ensure the unified trans-boundary conservation efforts and to enhance its overall conservation efficacy by sharing information, knowledge and optimizing conservation resources.

  5. Home Range Characteristics and Habitat Selection by Daurian Hedgehogs ( Mesechinus dauuricus in Ikh Nart Nature Reserve, Mongolia

    Directory of Open Access Journals (Sweden)

    Mirka Zapletal

    2012-12-01

    Full Text Available We examined home range characteristics and habitat selection of Daurian hedgehogs in Ikh Nart Nature Reserve, Mongolia. Home ranges of hedgehogs varied from 113.15 ha to 2,171.97 ha, and were larger in early summer than late summer. Hedgehogs showed relative preference for rocky outcrops and low-density shrub habitats, and relative avoidance of high- density shrub areas. Habitat selection also changed between early and late summer, shifting to greater use of low-density shrub areas and decreased use of forb-dominated short grass. Our baseline data on home ranges and habitat selection expand understanding of hedgehog ecology and provide guidance for future management decisions in Ikh Nart Nature Reserve and elsewhere in Mongolia.

  6. Benthic indicators to use in Ecological Quality classification of Mediterranean soft bottom marine ecosystems, including a new Biotic Index

    Directory of Open Access Journals (Sweden)

    N. SIMBOURA

    2002-12-01

    Full Text Available A general scheme for approaching the objective of Ecological Quality Status (EcoQ classification of zoobenthic marine ecosystems is presented. A system based on soft bottom benthic indicator species and related habitat types is suggested to be used for testing the typological definition of a given water body in the Mediterranean. Benthic indices including the Shannon-Wiener diversity index and the species richness are re-evaluated for use in classification. Ranges of values and of ecological quality categories are given for the diversity and species richness in different habitat types. A new biotic index (BENTIX is proposed based on the relative percentages of three ecological groups of species grouped according to their sensitivity or tolerance to disturbance factors and weighted proportionately to obtain a formula rendering a five step numerical scale of ecological quality classification. Its advantage against former biotic indices lies in the fact that it reduces the number of the ecological groups involved which makes it simpler and easier in its use. The Bentix index proposed is tested and validated with data from Greek and western Mediterranean ecosystems and examples are presented. Indicator species associated with specific habitat types and pollution indicator species, scored according to their degree of tolerance to pollution, are listed in a table. The Bentix index is compared and evaluated against the indices of diversity and species richness for use in classification. The advantages of the BENTIX index as a classification tool for ECoQ include independence from habitat type, sample size and taxonomic effort, high discriminative power and simplicity in its use which make it a robust, simple and effective tool for application in the Mediterranean Sea.

  7. Engineered channel controls limiting spawning habitat rehabilitation success on regulated gravel-bed rivers

    Science.gov (United States)

    Brown, Rocko A.; Pasternack, Gregory B.

    2008-05-01

    In efforts to rehabilitate regulated rivers for ecological benefits, the flow regime has been one of the primary focal points of management strategies. However, channel engineering can impact channel geometry such that hydraulic and geomorphic responses to flow reregulation do not yield the sought for benefits. To illustrate and assess the impacts of structural channel controls and flow reregulation on channel processes and fish habitat quality in multiple life stages, a highly detailed digital elevation model was collected and analyzed for a river reach right below a dam using a suite of hydrologic, hydraulic, geomorphic, and ecological methods. Results showed that, despite flow reregulation to produce a scaled-down natural hydrograph, anthropogenic boundary controls have severely altered geomorphic processes associated with geomorphic self-sustainability and instream habitat availability in the case study. Given the similarity of this stream to many others, we concluded that the potential utility of natural flow regime reinstatement in regulated gravel-bed rivers is conditional on concomitant channel rehabilitation.

  8. Ecology of Syllidae (Annelida: Polychaeta from shallow rocky environments in the Cantabrian Sea (South Bay of Biscay

    Directory of Open Access Journals (Sweden)

    Alberto Serrano

    2006-12-01

    Full Text Available The syllids inhabiting 12 hard bottom macrobenthic habitats were studied. A total of 38 species belonging to 19 genera were identified. Differences in density, species richness, and diversity among habitats were analysed, as well as the relationships between these ecological parameters and depth range, slope and in-bay/out-bay gradient. The effect of environmental variables on syllid distribution was studied using canonical ordination. A high faunistic homogeneity has been found, since all biotopes were dominated by a low number of eurytopic species (Syllis armillaris, S. gracilis and S. variegata. Habitat complexity, determined by physical disturbance, is the main structuring factor in syllid populations. Biotopes with the highest structural complexity displayed a high number of companion species increasing ecological indices and denoting a well-structured habitat. On the other hand, communities such as in upper intertidal habitats, mainly controlled by physical environmental variables, showed a poorer syllid fauna, dominated by ubiquitious species and a few stenotopic species well-adapted to those environments. However, this is not the case in some other intertidal biotopes, such as in Corallina, whose tangled structure prevents drying and provides shelter from predation, allowing a richer and more diverse syllid fauna.

  9. Ecology of Dolichopodidae (Diptera) in a wetland habitat and their potential role as bioindicators

    Czech Academy of Sciences Publication Activity Database

    Gelbič, Ivan; Olejníček, Jiří

    2011-01-01

    Roč. 6, č. 1 (2011), s. 118-129 ISSN 1895-104X R&D Projects: GA AV ČR IBS6022201 Institutional research plan: CEZ:AV0Z50070508 Keywords : long-legged flies * ecology * conservation Subject RIV: EH - Ecology, Behaviour Impact factor: 1.000, year: 2011

  10. Key Questions in Marine Megafauna Movement Ecology

    KAUST Repository

    Hays, Graeme C.; Ferreira, Luciana C.; Sequeira, Ana M.M.; Meekan, Mark G.; Duarte, Carlos M.; Bailey, Helen; Bailleul, Fred; Bowen, W. Don; Caley, M. Julian; Costa, Daniel P.; Eguí luz, Victor M.; Fossette, Sabrina; Friedlaender, Ari S.; Gales, Nick; Gleiss, Adrian C.; Gunn, John; Harcourt, Rob; Hazen, Elliott L.; Heithaus, Michael R.; Heupel, Michelle; Holland, Kim; Horning, Markus; Jonsen, Ian; Kooyman, Gerald L.; Lowe, Christopher G.; Madsen, Peter T.; Marsh, Helene; Phillips, Richard A.; Righton, David; Ropert-Coudert, Yan; Sato, Katsufumi; Shaffer, Scott A.; Simpfendorfer, Colin A.; Sims, David W.; Skomal, Gregory; Takahashi, Akinori; Trathan, Philip N.; Wikelski, Martin; Womble, Jamie N.; Thums, Michele

    2016-01-01

    It is a golden age for animal movement studies and so an opportune time to assess priorities for future work. We assembled 40 experts to identify key questions in this field, focussing on marine megafauna, which include a broad range of birds, mammals, reptiles, and fish. Research on these taxa has both underpinned many of the recent technical developments and led to fundamental discoveries in the field. We show that the questions have broad applicability to other taxa, including terrestrial animals, flying insects, and swimming invertebrates, and, as such, this exercise provides a useful roadmap for targeted deployments and data syntheses that should advance the field of movement ecology. Technical advances make this an exciting time for animal movement studies, with a range of small, reliable data-loggers and transmitters that can record horizontal and vertical movements as well as aspects of physiology and reproductive biology.Forty experts identified key questions in the field of movement ecology.Questions have broad applicability across species, habitats, and spatial scales, and apply to animals in both marine and terrestrial habitats as well as both vertebrates and invertebrates, including birds, mammals, reptiles, fish, insects, and plankton. © 2016 Elsevier Ltd.

  11. Key Questions in Marine Megafauna Movement Ecology

    KAUST Repository

    Hays, Graeme C.

    2016-03-12

    It is a golden age for animal movement studies and so an opportune time to assess priorities for future work. We assembled 40 experts to identify key questions in this field, focussing on marine megafauna, which include a broad range of birds, mammals, reptiles, and fish. Research on these taxa has both underpinned many of the recent technical developments and led to fundamental discoveries in the field. We show that the questions have broad applicability to other taxa, including terrestrial animals, flying insects, and swimming invertebrates, and, as such, this exercise provides a useful roadmap for targeted deployments and data syntheses that should advance the field of movement ecology. Technical advances make this an exciting time for animal movement studies, with a range of small, reliable data-loggers and transmitters that can record horizontal and vertical movements as well as aspects of physiology and reproductive biology.Forty experts identified key questions in the field of movement ecology.Questions have broad applicability across species, habitats, and spatial scales, and apply to animals in both marine and terrestrial habitats as well as both vertebrates and invertebrates, including birds, mammals, reptiles, fish, insects, and plankton. © 2016 Elsevier Ltd.

  12. Habitat Scale Mapping of Fisheries Ecosystem Service Values in Estuaries

    Directory of Open Access Journals (Sweden)

    Timothy G. O'Higgins

    2010-12-01

    Full Text Available Little is known about the variability of ecosystem service values at spatial scales most relevant to local decision makers. Competing definitions of ecosystem services, the paucity of ecological and economic information, and the lack of standardization in methodology are major obstacles to applying the ecosystem-services approach at the estuary scale. We present a standardized method that combines habitat maps and habitat-faunal associations to estimate ecosystem service values for recreational and commercial fisheries in estuaries. Three case studies in estuaries on the U.S. west coast (Yaquina Bay, Oregon, east coast (Lagoon Pond, Massachusetts, and the Gulf of Mexico (Weeks Bay, Alabama are presented to illustrate our method's rigor and limitations using available data. The resulting spatially explicit maps of fisheries ecosystem service values show within and between estuary variations in the value of estuarine habitat types that can be used to make better informed resource-management decisions.

  13. Synthetic Microbial Ecology: Engineering Habitats for Modular Consortia.

    Science.gov (United States)

    Ben Said, Sami; Or, Dani

    2017-01-01

    The metabolic diversity present in microbial communities enables cooperation toward accomplishing more complex tasks than possible by a single organism. Members of a consortium communicate by exchanging metabolites or signals that allow them to coordinate their activity through division of labor. In contrast with monocultures, evidence suggests that microbial consortia self-organize to form spatial patterns, such as observed in biofilms or in soil aggregates, that enable them to respond to gradient, to improve resource interception and to exchange metabolites more effectively. Current biotechnological applications of microorganisms remain rudimentary, often relying on genetically engineered monocultures (e.g., pharmaceuticals) or mixed-cultures of partially known composition (e.g., wastewater treatment), yet the vast potential of "microbial ecological power" observed in most natural environments, remains largely underused. In line with the Unified Microbiome Initiative (UMI) which aims to "discover and advance tools to understand and harness the capabilities of Earth's microbial ecosystems," we propose in this concept paper to capitalize on ecological insights into the spatial and modular design of interlinked microbial consortia that would overcome limitations of natural systems and attempt to optimize the functionality of the members and the performance of the engineered consortium. The topology of the spatial connections linking the various members and the regulated fluxes of media between those modules, while representing a major engineering challenge, would allow the microbial species to interact. The modularity of such spatially linked microbial consortia (SLMC) could facilitate the design of scalable bioprocesses that can be incorporated as parts of a larger biochemical network. By reducing the need for a compatible growth environment for all species simultaneously, SLMC will dramatically expand the range of possible combinations of microorganisms and their

  14. Ecological and evolutionary processes at expanding range margins.

    Science.gov (United States)

    Thomas, C D; Bodsworth, E J; Wilson, R J; Simmons, A D; Davies, Z G; Musche, M; Conradt, L

    2001-05-31

    Many animals are regarded as relatively sedentary and specialized in marginal parts of their geographical distributions. They are expected to be slow at colonizing new habitats. Despite this, the cool margins of many species' distributions have expanded rapidly in association with recent climate warming. We examined four insect species that have expanded their geographical ranges in Britain over the past 20 years. Here we report that two butterfly species have increased the variety of habitat types that they can colonize, and that two bush cricket species show increased fractions of longer-winged (dispersive) individuals in recently founded populations. Both ecological and evolutionary processes are probably responsible for these changes. Increased habitat breadth and dispersal tendencies have resulted in about 3- to 15-fold increases in expansion rates, allowing these insects to cross habitat disjunctions that would have represented major or complete barriers to dispersal before the expansions started. The emergence of dispersive phenotypes will increase the speed at which species invade new environments, and probably underlies the responses of many species to both past and future climate change.

  15. Habitat Effects on the Breeding Performance of Three Forest-Dwelling Hawks.

    Science.gov (United States)

    Björklund, Heidi; Valkama, Jari; Tomppo, Erkki; Laaksonen, Toni

    2015-01-01

    Habitat loss causes population declines, but the mechanisms are rarely known. In the European Boreal Zone, loss of old forest due to intensive forestry is suspected to cause declines in forest-dwelling raptors by reducing their breeding performance. We studied the boreal breeding habitat and habitat-associated breeding performance of the northern goshawk (Accipiter gentilis), common buzzard (Buteo buteo) and European honey buzzard (Pernis apivorus). We combined long-term Finnish bird-of-prey data with multi-source national forest inventory data at various distances (100-4000 m) around the hawk nests. We found that breeding success of the goshawk was best explained by the habitat within a 2000-m radius around the nests; breeding was more successful with increasing proportions of old spruce forest and water, and decreasing proportions of young thinning forest. None of the habitat variables affected significantly the breeding success of the common buzzard or the honey buzzard, or the brood size of any of the species. The amount of old spruce forest decreased both around goshawk and common buzzard nests and throughout southern Finland in 1992-2010. In contrast, the area of young forest increased in southern Finland but not around hawk nests. We emphasize the importance of studying habitats at several spatial and temporal scales to determine the relevant species-specific scale and to detect environmental changes. Further effort is needed to reconcile the socioeconomic and ecological functions of forests and habitat requirements of old forest specialists.

  16. Habitat Effects on the Breeding Performance of Three Forest-Dwelling Hawks.

    Directory of Open Access Journals (Sweden)

    Heidi Björklund

    Full Text Available Habitat loss causes population declines, but the mechanisms are rarely known. In the European Boreal Zone, loss of old forest due to intensive forestry is suspected to cause declines in forest-dwelling raptors by reducing their breeding performance. We studied the boreal breeding habitat and habitat-associated breeding performance of the northern goshawk (Accipiter gentilis, common buzzard (Buteo buteo and European honey buzzard (Pernis apivorus. We combined long-term Finnish bird-of-prey data with multi-source national forest inventory data at various distances (100-4000 m around the hawk nests. We found that breeding success of the goshawk was best explained by the habitat within a 2000-m radius around the nests; breeding was more successful with increasing proportions of old spruce forest and water, and decreasing proportions of young thinning forest. None of the habitat variables affected significantly the breeding success of the common buzzard or the honey buzzard, or the brood size of any of the species. The amount of old spruce forest decreased both around goshawk and common buzzard nests and throughout southern Finland in 1992-2010. In contrast, the area of young forest increased in southern Finland but not around hawk nests. We emphasize the importance of studying habitats at several spatial and temporal scales to determine the relevant species-specific scale and to detect environmental changes. Further effort is needed to reconcile the socioeconomic and ecological functions of forests and habitat requirements of old forest specialists.

  17. Living in a caatinga-rocky field transitional habitat: ecological aspects of the whiptail lizard Cnemidophorus ocellifer (Teiidae in northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Vanderlaine A Menezes

    2011-02-01

    Full Text Available The ecology of the active forager lizard Cnemidophorus ocellifer (Spix, 1825 was studied to analyze food habits, thermal ecology and habitat use, in the Morro do Chapéu municipality (11º29'S, 41º07'W, state of Bahia, Brazil. Lizards (N = 34 were collected with rubber bands or with an air rifle and, for each individual, we recorded cloacal temperature (Tc, air temperature (Ta (1 cm above the substrate and substrate temperature (Ts (to nearest 0.2ºC. We registered the microhabitat used by each animal at the moment of first sight and measured its morphological variables (nearest 0.1 mm. In the laboratory, we registered the number of items of each prey category to the taxonomic level of Order, its dimensions and frequencies. Data showed that, numerically, the category most consumed was Isoptera (84.4%. Volumetrically, the diet was composed predominantly by Orthoptera (27.5% and Isoptera (21.5%. Prey items that occur aggregated in the environment (termites were important in the diet of C. ocellifer, a characteristic of active foragers. Males and females did not differ in the types of prey consumed. Cnemidophorus ocellifer had a mean Tc in activity of 37.6 ± 1.6ºC and the relationship between Tc and ambient temperatures (Ts and Ta was positive and significant (F2,28 = 4.814; R² = 0.256; p < 0.05. Most lizards were first sighted on leaf litter inside shrubs (45.5% and on leaf litter at shrub edge (42.4%. Cnemidophorus ocellifer had a relatively high mean Tc during activity, with Ts explaining most of the variation in lizard Tc.

  18. Hydro-power production and fish habitat suitability: Assessing impact and effectiveness of ecological flows at regional scale

    Science.gov (United States)

    Ceola, Serena; Pugliese, Alessio; Ventura, Matteo; Galeati, Giorgio; Montanari, Alberto; Castellarin, Attilio

    2018-06-01

    Anthropogenic activities along streams and rivers may be of major concern for fluvial ecosystems, e.g. abstraction and impoundment of surface water resources may profoundly alter natural streamflow regimes. An established approach aimed at preserving the behavior and distribution of fluvial species relies on the definition of ecological flows (e-flows) downstream of dams and diversion structures. E-flow prescriptions are usually set by basin authorities at regional scale, often without a proper assessment of their impact and effectiveness. On the contrary, we argue that e-flows should be identified on the basis of (i) regional and (ii) quantitative assessments. We focus on central Italy and evaluate the effects on habitat suitability of two near-threatened fish species (i.e. Barbel and Chub) and an existing hydro-power network when shifting from the current time-invariant e-flow policy to a tighter and seasonally-varying soon-to-be-enforced one. Our example clearly shows that: (a) quantitative regional scale assessments are viable even when streamflow observations are entirely missing at study sites; (b) aprioristic e-flows policies may impose releases that exceed natural streamflows for significantly long time intervals (weeks, or months); (c) unduly tightening e-flow policies may heavily impact regional hydro-power productivity (15% and 42% losses on annual and seasonal basis, respectively), yet resulting in either marginal or negligible improvements of fluvial ecosystem.

  19. The role of ecological factors in shaping bat cone opsin evolution.

    Science.gov (United States)

    Gutierrez, Eduardo de A; Schott, Ryan K; Preston, Matthew W; Loureiro, Lívia O; Lim, Burton K; Chang, Belinda S W

    2018-04-11

    Bats represent one of the largest and most striking nocturnal mammalian radiations, exhibiting many visual system specializations for performance in light-limited environments. Despite representing the greatest ecological diversity and species richness in Chiroptera, Neotropical lineages have been undersampled in molecular studies, limiting the potential for identifying signatures of selection on visual genes associated with differences in bat ecology. Here, we investigated how diverse ecological pressures mediate long-term shifts in selection upon long-wavelength ( Lws ) and short-wavelength ( Sws1 ) opsins, photosensitive cone pigments that form the basis of colour vision in most mammals, including bats. We used codon-based likelihood clade models to test whether ecological variables associated with reliance on visual information (e.g. echolocation ability and diet) or exposure to varying light environments (e.g. roosting behaviour and foraging habitat) mediated shifts in evolutionary rates in bat cone opsin genes. Using additional cone opsin sequences from newly sequenced eye transcriptomes of six Neotropical bat species, we found significant evidence for different ecological pressures influencing the evolution of the cone opsins. While Lws is evolving under significantly lower constraint in highly specialized high-duty cycle echolocating lineages, which have enhanced sonar ability to detect and track targets, variation in Sws1 constraint was significantly associated with foraging habitat, exhibiting elevated rates of evolution in species that forage among vegetation. This suggests that increased reliance on echolocation as well as the spectral environment experienced by foraging bats may differentially influence the evolution of different cone opsins. Our study demonstrates that different ecological variables may underlie contrasting evolutionary patterns in bat visual opsins, and highlights the suitability of clade models for testing ecological hypotheses of

  20. Modelling seasonal habitat suitability for wide-ranging species: Invasive wild pigs in northern Australia.

    Directory of Open Access Journals (Sweden)

    Jens G Froese

    Full Text Available Invasive wildlife often causes serious damage to the economy and agriculture as well as environmental, human and animal health. Habitat models can fill knowledge gaps about species distributions and assist planning to mitigate impacts. Yet, model accuracy and utility may be compromised by small study areas and limited integration of species ecology or temporal variability. Here we modelled seasonal habitat suitability for wild pigs, a widespread and harmful invader, in northern Australia. We developed a resource-based, spatially-explicit and regional-scale approach using Bayesian networks and spatial pattern suitability analysis. We integrated important ecological factors such as variability in environmental conditions, breeding requirements and home range movements. The habitat model was parameterized during a structured, iterative expert elicitation process and applied to a wet season and a dry season scenario. Model performance and uncertainty was evaluated against independent distributional data sets. Validation results showed that an expert-averaged model accurately predicted empirical wild pig presences in northern Australia for both seasonal scenarios. Model uncertainty was largely associated with different expert assumptions about wild pigs' resource-seeking home range movements. Habitat suitability varied considerably between seasons, retracting to resource-abundant rainforest, wetland and agricultural refuge areas during the dry season and expanding widely into surrounding grassland floodplains, savanna woodlands and coastal shrubs during the wet season. Overall, our model suggested that suitable wild pig habitat is less widely available in northern Australia than previously thought. Mapped results may be used to quantify impacts, assess risks, justify management investments and target control activities. Our methods are applicable to other wide-ranging species, especially in data-poor situations.

  1. Towards a resource-based habitat approach for spatial modelling of vector-borne disease risks.

    Science.gov (United States)

    Hartemink, Nienke; Vanwambeke, Sophie O; Purse, Bethan V; Gilbert, Marius; Van Dyck, Hans

    2015-11-01

    Given the veterinary and public health impact of vector-borne diseases, there is a clear need to assess the suitability of landscapes for the emergence and spread of these diseases. Current approaches for predicting disease risks neglect key features of the landscape as components of the functional habitat of vectors or hosts, and hence of the pathogen. Empirical-statistical methods do not explicitly incorporate biological mechanisms, whereas current mechanistic models are rarely spatially explicit; both methods ignore the way animals use the landscape (i.e. movement ecology). We argue that applying a functional concept for habitat, i.e. the resource-based habitat concept (RBHC), can solve these issues. The RBHC offers a framework to identify systematically the different ecological resources that are necessary for the completion of the transmission cycle and to relate these resources to (combinations of) landscape features and other environmental factors. The potential of the RBHC as a framework for identifying suitable habitats for vector-borne pathogens is explored and illustrated with the case of bluetongue virus, a midge-transmitted virus affecting ruminants. The concept facilitates the study of functional habitats of the interacting species (vectors as well as hosts) and provides new insight into spatial and temporal variation in transmission opportunities and exposure that ultimately determine disease risks. It may help to identify knowledge gaps and control options arising from changes in the spatial configuration of key resources across the landscape. The RBHC framework may act as a bridge between existing mechanistic and statistical modelling approaches. © 2014 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  2. Identification of landscape features influencing gene flow: How useful are habitat selection models?

    Science.gov (United States)

    Gretchen H. Roffler; Michael K. Schwartz; Kristine Pilgrim; Sandra L. Talbot; George K. Sage; Layne G. Adams; Gordon Luikart

    2016-01-01

    Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is...

  3. The importance of surrogate habitats in lowland river floodplains for fish community composition

    Czech Academy of Sciences Publication Activity Database

    Ryšavá-Nováková, Michaela; Ondračková, Markéta; Jurajda, Pavel

    2009-01-01

    Roč. 16, č. 6 (2009), s. 468-477 ISSN 0969-997X R&D Projects: GA MŠk LC522 Institutional research plan: CEZ:AV0Z60930519 Keywords : fish community * fish recruitment * flood * rehabilitation * substitute habitats Subject RIV: EH - Ecology, Behaviour Impact factor: 1.264, year: 2009

  4. The importance of incorporating functional habitats into conservation planning for highly mobile species in dynamic systems.

    Science.gov (United States)

    Webb, Matthew H; Terauds, Aleks; Tulloch, Ayesha; Bell, Phil; Stojanovic, Dejan; Heinsohn, Robert

    2017-10-01

    The distribution of mobile species in dynamic systems can vary greatly over time and space. Estimating their population size and geographic range can be problematic and affect the accuracy of conservation assessments. Scarce data on mobile species and the resources they need can also limit the type of analytical approaches available to derive such estimates. We quantified change in availability and use of key ecological resources required for breeding for a critically endangered nomadic habitat specialist, the Swift Parrot (Lathamus discolor). We compared estimates of occupied habitat derived from dynamic presence-background (i.e., presence-only data) climatic models with estimates derived from dynamic occupancy models that included a direct measure of food availability. We then compared estimates that incorporate fine-resolution spatial data on the availability of key ecological resources (i.e., functional habitats) with more common approaches that focus on broader climatic suitability or vegetation cover (due to the absence of fine-resolution data). The occupancy models produced significantly (P increase or decrease in the area of one functional habitat (foraging or nesting) did not necessarily correspond to an increase or decrease in the other. Thus, an increase in the extent of occupied area may not equate to improved habitat quality or function. We argue these patterns are typical for mobile resource specialists but often go unnoticed because of limited data over relevant spatial and temporal scales and lack of spatial data on the availability of key resources. Understanding changes in the relative availability of functional habitats is crucial to informing conservation planning and accurately assessing extinction risk for mobile resource specialists. © 2017 Society for Conservation Biology.

  5. Urban Ecology in Cape Town: South African Comparisons and Reflections

    Directory of Open Access Journals (Sweden)

    Sarel S. Cilliers

    2012-09-01

    Full Text Available Little urban ecological research has been done in South Africa. The papers in the Ecology and Society special feature Urban Ecological and Social-Ecological Research in the City of Cape Town make, therefore, an important contribution to the development of urban ecology locally and globally. Different approaches have been used in the study of urban ecology of different urban areas in South Africa. Cape Town is situated in a biodiversity hotspot and is the only South African city which includes a national park. As a result the urban ecological studies were mainly driven by urban nature conservation concerns. In other cities such as Durban, open space planning and environmental management were the major issues which focused ecological studies on urban areas whereas other studies of urban areas in the Eastern Cape and North-West provinces included private and public open spaces and man-made habitats. We reflect on the Cape Town studies in a South African context and highlight conservation of biodiversity, protection of ecosystem services, management of control measures, and the conflict between humans and nature. A brief synthesis has also been given of South African urban ecological research in general.

  6. Using the power of comparison to explain habitat use and migration strategies of shorebirds worldwide

    NARCIS (Netherlands)

    Piersma, Theunis; Bairlein, F.

    2007-01-01

    Shorebirds, or waders, form an ecologically (but not phylogenetically) homogenous group of birds that, despite this homogeneity, exhibits clear correlated contrasts in habitat use and migration distance between closely related species pairs. In addition, within species there is distinct variation in

  7. The movement ecology and dynamics of plant communities in fragmented landscapes.

    Science.gov (United States)

    Damschen, Ellen I; Brudvig, Lars A; Haddad, Nick M; Levey, Douglas J; Orrock, John L; Tewksbury, Joshua J

    2008-12-09

    A conceptual model of movement ecology has recently been advanced to explain all movement by considering the interaction of four elements: internal state, motion capacity, navigation capacities, and external factors. We modified this framework to generate predictions for species richness dynamics of fragmented plant communities and tested them in experimental landscapes across a 7-year time series. We found that two external factors, dispersal vectors and habitat features, affected species colonization and recolonization in habitat fragments and their effects varied and depended on motion capacity. Bird-dispersed species richness showed connectivity effects that reached an asymptote over time, but no edge effects, whereas wind-dispersed species richness showed steadily accumulating edge and connectivity effects, with no indication of an asymptote. Unassisted species also showed increasing differences caused by connectivity over time, whereas edges had no effect. Our limited use of proxies for movement ecology (e.g., dispersal mode as a proxy for motion capacity) resulted in moderate predictive power for communities and, in some cases, highlighted the importance of a more complete understanding of movement ecology for predicting how landscape conservation actions affect plant community dynamics.

  8. Estimating anthropogenic ecological water stress in the US great lakes region

    Science.gov (United States)

    Anthropocentric water resources management that prioritizes socio-economic growth can cause harmful ecological water stress by depriving aquatic ecosystems of the water needed to sustain habitats. It is important to better understand the impacts of water withdrawal by different economic sectors (e.g...

  9. Yes! There are resilient generalizations (or "laws") in ecology.

    Science.gov (United States)

    Linquist, Stefan; Gregory, T Ryan; Elliott, Tyler A; Saylor, Brent; Kremer, Stefan C; Cottenie, Karl

    2016-06-01

    ABSTRACT It is often argued that ecological communities admit of no useful generalizations or "laws" because these systems are especially prone to contingent historical events. Detractors respond that this argument assumes an overly stringent definition of laws of nature. Under a more relaxed conception, it is argued that ecological laws emerge at the level of communities and elsewhere. A brief review of this debate reveals an issue with deep philosophical roots that is unlikely to be resolved by a better understanding of generalizations in ecology. We therefore propose a strategy for transforming the conceptual question about the nature of ecological laws into a set of empirically tractable hypotheses about the relative re- silience of ecological generalizations across three dimensions: taxonomy, habitat type, and scale. These hypotheses are tested using a survey of 240 meta-analyses in ecology. Our central finding is that generalizations in community ecology are just as prevalent and as resilient as those in population or ecosystem ecology. These findings should help to establish community ecology as a generality-seeking science as opposed to a science of case studies. It also supports the capacity for ecologists, working at any of the three levels, to inform matters of public policy.

  10. On the methodology of feeding ecology in fish

    Directory of Open Access Journals (Sweden)

    Saikia Surjya Kumar

    2016-06-01

    Full Text Available Feeding ecology explains predator’s preference to some preys over others in their habitat and their competitions thereof. The subject, as a functional and applied biology, is highly neglected, and in case of fish, a uniform and consistent methodology is absent. The currently practiced methods are largely centred on mathematical indices and highly erroneous because of non-uniform outcomes. Therefore, it requires a relook into the subject to elucidate functional contributions and to make it more comparable and comprehensive science. In this article, approachable methodological strategies have been forwarded in three hierarchical steps, namely, food occurrence, feeding biology and interpretative ecology. All these steps involve wide ranges of techniques, within the scope of ecology but not limited to, and traverse from narrative to functional evolutionary ecology. The first step is an assumption-observation practice to assess food of fish, followed by feeding biology that links morphological, histological, cytological, bacteriological or enzymological correlations to preferred food in the environment. Interpretative ecology is the higher level of analysis in which the outcomes are tested and discussed against evolutionary theories. A description of possible pedagogics on the methods of feeding ecological studies has also been forwarded.

  11. Cost-effectiveness analysis of sandhill crane habitat management

    Science.gov (United States)

    Kessler, Andrew C.; Merchant, James W.; Shultz, Steven D.; Allen, Craig R.

    2013-01-01

    Invasive species often threaten native wildlife populations and strain the budgets of agencies charged with wildlife management. We demonstrate the potential of cost-effectiveness analysis to improve the efficiency and value of efforts to enhance sandhill crane (Grus canadensis) roosting habitat. We focus on the central Platte River in Nebraska (USA), a region of international ecological importance for migrating avian species including sandhill cranes. Cost-effectiveness analysis is a valuation process designed to compare alternative actions based on the cost of achieving a pre-determined objective. We estimated costs for removal of invasive vegetation using geographic information system simulations and calculated benefits as the increase in area of sandhill crane roosting habitat. We generated cost effectiveness values for removing invasive vegetation on 7 land parcels and for the entire central Platte River to compare the cost-effectiveness of management at specific sites and for the central Platte River landscape. Median cost effectiveness values for the 7 land parcels evaluated suggest that costs for creating 1 additional hectare of sandhill crane roosting habitat totaled US $1,595. By contrast, we found that creating an additional hectare of sandhill crane roosting habitat could cost as much as US $12,010 for some areas in the central Platte River, indicating substantial cost savings can be achieved by using a cost effectiveness analysis to target specific land parcels for management. Cost-effectiveness analysis, used in conjunction with geographic information systems, can provide decision-makers with a new tool for identifying the most economically efficient allocation of resources to achieve habitat management goals.

  12. From ground pools to treeholes: convergent evolution of habitat and phenotype in Aedes mosquitoes.

    Science.gov (United States)

    Soghigian, John; Andreadis, Theodore G; Livdahl, Todd P

    2017-12-19

    Invasive mosquito species are responsible for millions of vector-borne disease cases annually. The global invasive success of Aedes mosquitoes such as Aedes aegypti and Aedes albopictus has relied on the human transport of immature stages in container habitats. However, despite the importance of these mosquitoes and this ecological specialization to their widespread dispersal, evolution of habitat specialization in this group has remained largely unstudied. We use comparative methods to evaluate the evolution of habitat specialization and its potential influence on larval morphology, and evaluate whether container dwelling and invasiveness are monophyletic in Aedes. We show that habitat specialization has evolved repeatedly from ancestral ground pool usage to specialization in container habitats. Furthermore, we find that larval morphological scores are significantly associated with larval habitat when accounting for evolutionary relationships. We find that Ornstein-Uhleinbeck models with unique optima for each larval habitat type are preferred over several other models based predominantly on neutral processes, and that OU models can reliably simulate real morphological data. Our results demonstrate that multiple lineages of Aedes have convergently evolved a key trait associated with invasive success: the use of container habitats for immature stages. Moreover, our results demonstrate convergence in morphological characteristics as well, and suggest a role of adaptation to habitat specialization in driving phenotypic diversity in this mosquito lineage. Finally, our results highlight that the genus Aedes is not monophyletic.

  13. Ecosystem Services of Coastal Habitats and Fisheries: Multi-Scale Ecological and Economic Modeling

    Science.gov (United States)

    Critical habitats for fish and wildlife often are small patches in landscapes, e.g., aquatic vegetation beds, reefs, isolated ponds and wetlands, remnant old growth forests, etc, yet the same animal populations that depend on these patches for reproduction or survival can be exte...

  14. Marine fish community structure and habitat associations on the Canadian Beaufort shelf and slope

    Science.gov (United States)

    Majewski, Andrew R.; Atchison, Sheila; MacPhee, Shannon; Eert, Jane; Niemi, Andrea; Michel, Christine; Reist, James D.

    2017-03-01

    Marine fishes in the Canadian Beaufort Sea have complex interactions with habitats and prey, and occupy a pivotal position in the food web by transferring energy between lower- and upper-trophic levels, and also within and among habitats (e.g., benthic-pelagic coupling). The distributions, habitat associations, and community structure of most Beaufort Sea marine fishes, however, are unknown thus precluding effective regulatory management of emerging offshore industries in the region (e.g., hydrocarbon development, shipping, and fisheries). Between 2012 and 2014, Fisheries and Oceans Canada conducted the first baseline survey of offshore marine fishes, their habitats, and ecological relationships in the Canadian Beaufort Sea. Benthic trawling was conducted at 45 stations spanning 18-1001 m depths across shelf and slope habitats. Physical oceanographic variables (depth, salinity, temperature, oxygen), biological variables (benthic chlorophyll and integrated water-column chlorophyll) and sediment composition (grain size) were assessed as potential explanatory variables for fish community structure using a non-parametric statistical approach. Selected stations were re-sampled in 2013 and 2014 for a preliminary assessment of inter-annual variability in the fish community. Four distinct fish assemblages were delineated on the Canadian Beaufort Shelf and slope: 1) Nearshore-shelf: 50 and ≤200 m depths, 3) Upper-slope: ≥200 and ≤500 m depths, and 4) Lower-slope: ≥500 m depths. Depth was the environmental variable that best explained fish community structure, and each species assemblage was spatially associated with distinct aspects of the vertical water mass profile. Significant differences in the fish community from east to west were not detected, and the species composition of the assemblages on the Canadian Beaufort Shelf have not changed substantially over the past decade. This community analysis provides a framework for testing hypotheses regarding the trophic

  15. Modeling the ecological impacts of Flaming Gorge Dam operations

    International Nuclear Information System (INIS)

    Yin, S.C.L.; LaGory, K.E.; Hayse, J.W.; Hlohowskyj, I.; Van Lonkhuyzen, R.A.; Cho, H.E.

    1996-01-01

    Hydropower operations at Flaming Gorge Dam on the Green River in Utah, US, can produce rapid downstream changes in flow and stage during a day. These changes can, in turn, affect ecological resources below the dam, including riparian vegetation, trout, and endangered fish. Four hydropower operational scenarios featuring varying degrees of hydropower-induced flow fluctuation were evaluated with hydrologic models and multispectral aerial videography of the river. Year-round high fluctuations would support the least amount of stable spawning habitat for trout and nursery habitat for endangered fish, and would have the greatest potential for reducing growth and over winter survival of fish. Seasonally, adjusted moderate fluctuation and seasonally adjusted steady flow scenarios could increase food production and over winter survival and would provide the greatest amount of spawning and nursery habitat for fish. The year-round high fluctuation, seasonally adjusted high fluctuation, and seasonally adjusted moderate fluctuation scenarios would result in a 5% decrease in upper riparian zone habitat. the seasonally adjusted steady flow scenario would result in an 8% increase in upper riparian zone habitat. Lower riparian zone habitat would increase by about 17% for year-round and seasonally adjusted high fluctuating flow scenarios but decrease by about 24% and 69% for seasonally adjusted moderate fluctuating and steady flow scenarios, respectively

  16. Mining-caused changes to habitat structure affect amphibian and reptile population ecology more than metal pollution.

    Science.gov (United States)

    Sasaki, Kiyoshi; Lesbarrères, David; Watson, Glen; Litzgus, Jacqueline

    2015-12-01

    Emissions from smelting not only contaminate water and soil with metals, but also induce extensive forest dieback and changes in resource availability and microclimate. The relative effects of such co-occurring stressors are often unknown, but this information is imperative in developing targeted restoration strategies. We assessed the role and relative effects of structural alterations of terrestrial habitat and metal pollution caused by century-long smelting operations on amphibian and reptile communities by collecting environmental and time- and area-standardized multivariate abundance data along three spatially replicated impact gradients. Overall, species richness, diversity, and abundance declined progressively with increasing levels of metals (As, Cu, and Ni) and soil temperature (T(s)) and decreasing canopy cover, amount of coarse woody debris (CWD), and relative humidity (RH). The composite habitat variable (which included canopy cover, CWD, T(s), and RH) was more strongly associated with most response metrics than the composite metal variable (As, Cu, and Ni), and canopy cover alone explained 19-74% of the variance. Moreover, species that use terrestrial habitat for specific behaviors (e.g., hibernation, dispersal), especially forest-dependent species, were more severely affected than largely aquatic species. These results suggest that structural alterations of terrestrial habitat and concomitant changes in the resource availability and microclimate have stronger effects than metal pollution per se. Furthermore, much of the variation in response metrics was explained by the joint action of several environmental variables, implying synergistic effects (e.g., exacerbation of metal toxicity by elevated temperatures in sites with reduced canopy cover). We thus argue that the restoration of terrestrial habitat conditions is a key to successful recovery of herpetofauna communities in smelting-altered landscapes.

  17. When small changes matter: the role of cross-scale interactions between habitat and ecological connectivity in recovery.

    Science.gov (United States)

    Thrush, Simon F; Hewitt, Judi E; Lohrer, Andrew M; Chiaroni, Luca D

    2013-01-01

    Interaction between the diversity of local communities and the degree of connectivity between them has the potential to influence local recovery rates and thus profoundly affect community dynamics in the face of the cumulative impacts that occur across regions. Although such complex interactions have been modeled, field experiments in natural ecosystems to investigate the importance of interactions between local and regional processes are rare, especially so in coastal marine seafloor habitats subjected to many types of disturbance. We conducted a defaunation experiment at eight subtidal sites, incorporating manipulation of habitat structure, to test the relative importance of local habitat features and colonist supply in influencing macrobenthic community recovery rate. Our sites varied in community composition, habitat characteristics, and hydrodynamic conditions, and we conducted the experiment in two phases, exposing defaunated plots to colonists during periods of either high or low larval colonist supply. In both phases of the experiment, five months after disturbance, we were able to develop models that explained a large proportion of variation in community recovery rate between sites. Our results emphasize that the connectivity to the regional species pool influences recovery rate, and although local habitat effects were important, the strength of these effects was affected by broader-scale site characteristics and connectivity. Empirical evidence that cross-scale interactions are important in disturbance-recovery dynamics emphasizes the complex dynamics underlying seafloor community responses to cumulative disturbance.

  18. A social-ecological impact assessment for public lands management: application of a conceptual and methodological framework

    Directory of Open Access Journals (Sweden)

    Amanda L. Bentley Brymer

    2016-09-01

    Full Text Available According to the U.S. National Environmental Policy Act of 1969 (NEPA, federal action to manipulate habitat for species conservation requires an environmental impact statement, which should integrate natural, physical, economic, and social sciences in planning and decision making. Nonetheless, most impact assessments focus disproportionately on physical or ecological impacts rather than integrating ecological and socioeconomic components. We developed a participatory social-ecological impact assessment (SEIA that addresses the requirements of NEPA and integrates social and ecological concepts for impact assessments. We cooperated with the Bureau of Land Management in Idaho, USA on a project designed to restore habitat for the Greater Sage-Grouse (Centrocercus urophasianus. We employed questionnaires, workshop dialogue, and participatory mapping exercises with stakeholders to identify potential environmental changes and subsequent impacts expected to result from the removal of western juniper (Juniperus occidentalis. Via questionnaires and workshop dialogue, stakeholders identified 46 environmental changes and associated positive or negative impacts to people and communities in Owyhee County, Idaho. Results of the participatory mapping exercises showed that the spatial distribution of social, economic, and ecological values throughout Owyhee County are highly associated with the two main watersheds, wilderness areas, and the historic town of Silver City. Altogether, the SEIA process revealed that perceptions of project scale varied among participants, highlighting the need for specificity about spatial and temporal scales. Overall, the SEIA generated substantial information concerning potential impacts associated with habitat treatments for Greater Sage-Grouse. The SEIA is transferable to other land management and conservation contexts because it supports holistic understanding and framing of connections between humans and ecosystems. By applying

  19. Ecological correlates of seed survival after ingestion by Fallow Deer

    NARCIS (Netherlands)

    Mouissie, AM; Van der Veen, CEJ; Veen, GF; Van Diggelen, R

    1. The survival and retention of seeds was studied by feeding known quantities of seeds of 25 species to four captive Fallow Deer (Dama dama L.). To test for ecological correlates, plant species were selected to represent large variation in seed size, seed shape, seed longevity and habitat

  20. Habitat use, daily activity periods, and thermal ecology of Ameiva ameiva (Squamata: Teiidae) in a caatinga area of northeastern Brazil

    OpenAIRE

    Eliza M. X. Freire; Jaqueiuto S. Jorge; Leonardo B. Ribeiro; Raul F. D. Sales

    2011-01-01

    We studied the use of spatial, temporal, and thermal resources by the Neotropical lizard Ameiva ameiva during rainy and dry seasons in a caatinga (xerophilous open forests) environment in northeasternBrazil. Lizards used the vegetation habitats and microhabitats in the ground, but never were seen in the rocky habitat. Adults usually used the arboreal-shrubby habitat, whereas juveniles were sighted more often in the shrubby-herbaceous habitat. Ontogenetic differences in spatial use seem to be ...

  1. DNA barcodes for ecology, evolution, and conservation.

    Science.gov (United States)

    Kress, W John; García-Robledo, Carlos; Uriarte, Maria; Erickson, David L

    2015-01-01

    The use of DNA barcodes, which are short gene sequences taken from a standardized portion of the genome and used to identify species, is entering a new phase of application as more and more investigations employ these genetic markers to address questions relating to the ecology and evolution of natural systems. The suite of DNA barcode markers now applied to specific taxonomic groups of organisms are proving invaluable for understanding species boundaries, community ecology, functional trait evolution, trophic interactions, and the conservation of biodiversity. The application of next-generation sequencing (NGS) technology will greatly expand the versatility of DNA barcodes across the Tree of Life, habitats, and geographies as new methodologies are explored and developed. Published by Elsevier Ltd.

  2. Habitat Use and Spatial Variability of Hawkfishes with a Focus on Colour Polymorphism in Paracirrhites forsteri

    KAUST Repository

    Coker, Darren James

    2017-01-26

    Identifying relationships between fishes and their environment is an integral part of understanding coral reef ecosystems. However, this information is lacking for many species, particularly in understudied and remote regions. With coral reefs continuing to face environmental pressures, insight into abundance and distribution patterns along with resource use of fish communities will aid in advancing our ecological understanding and management processes. Based on ecological surveys of hawkfish assemblages (Family: Cirrhitidae) in the Red Sea, we reveal distinct patterns in the distribution and abundance across the continental shelf, wave exposure, and with depth, particularly in the four colour morphs of Paracirrhites forsteri. Distinct patterns were observed among hawkfishes, with higher abundance of all species recorded on reefs farther from shore and on wave exposed reef zones. Cirrhitus spilotoceps was only recorded on the exposed crest, but unlike the other species, did not associate with live coral colonies. Overall, the most abundant species was P. forsteri. This species exploited a variety of habitats but showed an affinity for complex habitats provided by live and dead coral colonies. No difference in habitat use was observed among the four colour morphs, but distinct patterns were apparent in distribution and abundance with depth. This study suggests that in addition to P. forsteri exhibiting diverse colour morphologies, these various morphotypes appear to have corresponding ecological differences in the Red Sea. To better understand this, further studies are needed to identify what these differences extend to and the mechanisms involved.

  3. Spatial Ecology of the American Crocodile in a Tropical Pacific Island in Central America.

    Science.gov (United States)

    Balaguera-Reina, Sergio A; Venegas-Anaya, Miryam; Sánchez, Andrés; Arbelaez, Italo; Lessios, Harilaos A; Densmore, Llewellyn D

    2016-01-01

    Conservation of large predators has long been a challenge for biologists due to the limited information we have about their ecology, generally low numbers in the wild, large home ranges and the continuous expansion of human settlements. The American crocodile (Crocodylus acutus) is a typical apex predator, that has suffered from all of these characteristic problems, especially the latter one. Humans have had a major impact on the recovery of this species throughout its range, even though most of the countries it inhabits have banned hunting. The last decade has made it clear that in order to implement sound conservation and management programs, we must increase our understanding of crocodile spatial ecology. However, in only two countries where American crocodiles have telemetry studies even been published. Herein we have characterized the spatial ecology of C. acutus on Coiba Island, Panama, by radio-tracking (VHF transmitters) 24 individuals between 2010 and 2013, to determine movement patterns, home range, and habitat use. We have then compared our findings with those of previous studies to develop the most comprehensive assessment of American crocodile spatial ecology to date. Females showed a higher average movement distance (AMD) than males; similarly, adults showed a higher AMD than sub-adults and juveniles. However, males exhibited larger home ranges than females, and concomitantly sub-adults had larger home ranges than juveniles, hatchlings, and adults. There was an obvious relationship between seasonal precipitation and AMD, with increased AMD in the dry and "low-wet" seasons, and reduced AMD during the "true" wet season. We found disaggregate distributions according to age groups throughout the 9 habitat types in the study area; adults and hatchlings inhabited fewer habitat types than juveniles and sub-adults. These sex- and age-group discrepancies in movement and habitat choice are likely due to the influences of reproductive biology and Coiba

  4. An Ecosystem-Based Approach to Habitat Restoration Projects with Emphasis on Salmonids in the Columbia River Estuary, 2003 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.; Thom, R.; Whiting, A. (Pacific Northwest National Laboratory)

    2003-11-01

    -listed salmon populations and native species using the CRE. The program's underlying principles are: (1) projects are founded on the best available ecological restoration science, implemented in an ecosystem context, and developed with the intent to restore relevant ecological processes; (2) projects incorporate adaptive management practices with testable hypotheses to track ecological responses to a given restoration effort; and (3) projects are implemented in a coordinated, open process and scientific results from monitoring and evaluation are communicated widely and readily accessible. With this goal and these principles in mind, we developed an approach for CRE habitat restoration. The intent of this document is to provide a scientific basis and implementation guidelines for a habitat restoration program designed to improve ecosystem functions and enhance juvenile salmonid survival in the CRE. The stepwise approach to CRE habitat restoration outlined is somewhat general and broad because the available scientific information is incomplete, e.g., juvenile salmon usage of various CRE wetland habitats. As new data become available, a more specific, detailed plan than was possible here can be produced as an outgrowth of this document. In conclusion, this document provides a scientific basis and implementation guidelines for a habitat restoration program designed to improve ecosystem functions and enhance juvenile salmonid survival in the CRE. As more experience is gained with CRE habitat restoration and scientific uncertainties are resolved, this document should be used as a basis for a detailed habitat restoration plan that specifically addresses (1) which habitat types offer the greatest ecological benefit to salmon, (2) the location of potential sites that if restored would likely provide these habitat types, and (3) how and when the restoration work should be done. This document supports the use of adaptive management so that all elements of salmonid habitat restoration

  5. SHALLOW HABITATS IN TWO RHODE ISLAND SYSTEMS: II. PATTERNS OF SIZE, STRUCTURE AND FUNCTIONAL GROUPS

    Science.gov (United States)

    We are examining habitats in small estuarine coves that may be important for the development of ecological indicators of integrity. We sampled nekton in Coggeshall Cove (shallow estuarine cove) in summer 1999 and 2000 and Ninigret Pond (coastal lagoon) in summer 2000. Coggeshall ...

  6. Spatial and temporal variations' of characidae habitat, case study in Abras de Mantequilla wetland, Ecuador

    NARCIS (Netherlands)

    Alvarez Mieles, M.G.; Corzo, G.; Irvine, K.; Mynett, A.E.

    2015-01-01

    A central component of predictive ecology in wetlands is the analysis of species distribution as a function of their biotic and abiotic environment. This analysis is normally used by decision-makers in biodiversity conservation, species monitoring and environmental planning, among others. Habitat

  7. Beaver dams maintain fish biodiversity by increasing habitat heterogeneity throughout a low-gradient stream network

    Science.gov (United States)

    Smith, Joseph M.; Mather, Martha E.

    2013-01-01

    Understanding the relationship between heterogeneity and biodiversity is an active focus of ecological research. Although habitat heterogeneity is conceptually linked to biodiversity, the amount and configuration of heterogeneity that maintains biodiversity within ecosystems is not well understood, especially for an entire stream network.

  8. Ecological Monitoring and Compliance Program 2009 Report

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J. Dennis; Anderson, David C.; Hall, Derek B.; Greger, Paul D.; Ostler, W. Kent

    2010-07-13

    The Ecological Monitoring and Compliance Program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada Test Site and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC, during calendar year 2009. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) monitoring of the Nonproliferation Test and Evaluation Complex. During 2009, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

  9. Using catenas for GIS-based mapping of NW Mediterranean littoral habitats

    Science.gov (United States)

    Mariani, Simone; Cefalì, Maria Elena; Terradas, Marc; Chappuis, Eglantine; Ballesteros, Enric

    2014-06-01

    Studies aimed at describing habitats and mapping their distributions are pivotal to implementing management plans and to effectively guide conservation measures. We developed a novel approach of data collection and entry (CAT-LIT) to establish a detailed cartography of the littoral habitats found along the Catalan coast (Spain). Field data were recorded using coded, two-digit hierarchical lists (e.g. Aa, Ab, etc.) of horizons found at each point along the coast, called catenas. The horizons were either dominated by species (on the rocky bottoms) or sediment types (on the beaches) and corresponded to LPRE, EUNIS and CORINE habitats. Catenas were transferred into a database and calculations about the extent of bottom types, habitats, and catenas themselves along the coast were carried out with GIS tools. In addition, habitat link richness was calculated and represented using network analysis programs. The application of CAT-LIT to the Catalan coast showed that the habitats dominated by the lichen Verrucaria amphibia and the flattened barnacle Euraphia depressa and those dominated by the barnacle Chthamalus spp. were almost ubiquitous. Those dominated by the red alga Corallina elongata, the mussel Mytilus galloprovincialis and the red alga Rissoella verruculosa were also common. Because of the frequency of their connections, those habitats formed a huge hub of links in the networks. By using catenas, the habitats can be viewed using GIS based programs keeping the catena as the main informational and ecological unit. The catenas allow maximum compactness when vertically distributed habitats are to be shown on a 2D map. The complete cartography and dataset on the spatial distribution of the littoral habitats from Catalonia is valuable for coastal management and conservation to study changes in the habitat distribution and relate such changes to anthropogenic pressures. Furthermore, the CAT-LIT can be easily adapted to shores of other seas and oceans to obtain accurate

  10. Habitat Complexity in Aquatic Microcosms Affects Processes Driven by Detritivores.

    Directory of Open Access Journals (Sweden)

    Lorea Flores

    Full Text Available Habitat complexity can influence predation rates (e.g. by providing refuge but other ecosystem processes and species interactions might also be modulated by the properties of habitat structure. Here, we focussed on how complexity of artificial habitat (plastic plants, in microcosms, influenced short-term processes driven by three aquatic detritivores. The effects of habitat complexity on leaf decomposition, production of fine organic matter and pH levels were explored by measuring complexity in three ways: 1. as the presence vs. absence of habitat structure; 2. as the amount of structure (3 or 4.5 g of plastic plants; and 3. as the spatial configuration of structures (measured as fractal dimension. The experiment also addressed potential interactions among the consumers by running all possible species combinations. In the experimental microcosms, habitat complexity influenced how species performed, especially when comparing structure present vs. structure absent. Treatments with structure showed higher fine particulate matter production and lower pH compared to treatments without structures and this was probably due to higher digestion and respiration when structures were present. When we explored the effects of the different complexity levels, we found that the amount of structure added explained more than the fractal dimension of the structures. We give a detailed overview of the experimental design, statistical models and R codes, because our statistical analysis can be applied to other study systems (and disciplines such as restoration ecology. We further make suggestions of how to optimise statistical power when artificially assembling, and analysing, 'habitat complexity' by not confounding complexity with the amount of structure added. In summary, this study highlights the importance of habitat complexity for energy flow and the maintenance of ecosystem processes in aquatic ecosystems.

  11. Biodiversity in the City: Fundamental Questions for Understanding the Ecology of Urban Green Spaces for Biodiversity Conservation

    Science.gov (United States)

    Christopher A. Lepczyk; Myla F. J. Aronson; Karl L. Evans; Mark A. Goddard; Susannah B. Lerman; J. Scott MacIvor

    2017-01-01

    As urban areas expand, understanding how ecological processes function in cities has become increasingly important for conserving biodiversity. Urban green spaces are critical habitats to support biodiversity, but we still have a limited understanding of their ecology and how they function to conserve biodiversity at local and landscape scales across multiple taxa....

  12. Testing mechanistic explanations for mammalian predator responses to habitat edges

    Czech Academy of Sciences Publication Activity Database

    Svobodová, J.; Kreisinger, J.; Šálek, Martin; Koubová, M.; Albrecht, Tomáš

    2011-01-01

    Roč. 57, č. 3 (2011), s. 467-474 ISSN 1612-4642 R&D Projects: GA MŠk 1P05OC078; GA ČR GA524/06/0687; GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60930519; CEZ:AV0Z60870520 Keywords : Edge effect * Habitat fragmentation * Mesopredators * Nest predation * Prey distribution Subject RIV: EH - Ecology, Behaviour Impact factor: 1.306, year: 2011

  13. Benthic and Landcover Characterization of Salt River Bay National Historical Park and Ecological Preserve

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Habitat maps were created as part of a larger ecological assessment conducted by NOAA's National Ocean Service (NOS), Biogeography Branch, for Salt River Bay...

  14. Habitat segregation and cryptic adaptation of species of Periophthalmus (Gobioidei: Gobiidae).

    Science.gov (United States)

    Polgar, G; Zaccara, S; Babbucci, M; Fonzi, F; Antognazza, C M; Ishak, N; Sulaiman, Z; Crosa, G

    2017-05-01

    A study was conducted on the habitat distribution of four sympatric species of Periophthalmus (the silver-lined mudskipper Periophthalmus argentilineatus, the slender mudskipper Periophthalmus gracilis, the kalolo mudskipper Periophthalmus kalolo and the Malacca mudskipper Periophthalmus malaccensis) from northern Sulawesi. Molecular phylogenetic reconstructions based on one mtDNA marker (16S) were used to validate the morphological taxa, identifying five molecular clades. Periophthalmus argentilineatus includes two molecular species, which are named Periophthalmus argentilineatus clades F and K. Multivariate direct gradient analysis show that these species form three distinct ecological guilds, with the two molecular species occurring in different guilds. Periophthalmus clade F is ecologically eurytypic; Periophthalmus clade K and P. kalolo are prevalent in ecosystems isolated by strong oceanic currents and at shorter distances from the sea; P. gracilis plus P. malaccensis are prevalent in ecosystems connected by shallow coastal waters, in vegetated habitats at larger distances from the sea. This indicates for the first time that mudskipper species exhibit a range of adaptations to semiterrestrialism not only within genera, but even within morphospecies, delineating a much more complex adaptive scenario than previously assumed. © 2017 The Fisheries Society of the British Isles.

  15. Feeding ecology of Rhabdosargus holubi (family Sparidae) in multiple vegetated refugia of selected warm temperate estuaries in South Africa

    Science.gov (United States)

    Nel, L.; Strydom, N. A.; Perissinotto, R.; Adams, J. B.; Lemley, D. A.

    2017-10-01

    Estuarine marine-dependent species, such as Rhabdosargus holubi, depend greatly on structured sheltered environments and important feeding areas provided by estuaries. In this study, we investigate the ecological feeding niches of the estuarine marine-dependent sparid, R. holubi, by using conventional stomach contents and stable isotope methods (δ13C and δ15N signatures). The study has been carried out in five temperate estuaries in order to understand how fish feed in multiple intertidal vegetated habitats. These habitats included the submerged seagrass, Zostera capensis, and both previously unexplored small intertidal cord grass, Spartina maritima, and the common reed, Phragmites australis. The diet varied amongst habitats, estuaries and fish sizes and data consistently confirmed their omnivorous diet relating to ontogenetic niche shifts. Stomach contents revealed the importance of benthic prey within both the S. maritima and P. australis habitats in the absence of large intertidal vegetation, available during low tides. Similarly, isotopic mixing models showed that R. holubi from these habitats have a greater isotopic niche compared to the Z. capensis habitat, due to their limited availability during the falling tide, suggesting migration between available habitats. Stable isotopes confirmed that R. holubi actively feeds on the epiphytic algae (especially diatoms) covering the leaves and stalks of plant matter, as supported by Bayesian mixing models. These findings add to the current knowledge regarding habitat partitioning in multiple aquatic vegetation types critical to fish ecology and the effective management and conservation of estuaries.

  16. ECOLOGICAL MONITORING AND COMPLIANCE PROGRAM CALENDAR YEAR 2005 REPORT

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA ECOLOGICAL SERVICES

    2006-03-01

    The Ecological Monitoring and Compliance program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program’s activities conducted by Bechtel Nevada (BN) during the Calendar Year 2005. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance, (3) ecosystem mapping and data management, (4) sensitive and protected/regulated species and unique habitat monitoring, (5) habitat restoration monitoring, and (6) biological monitoring at the Non-Proliferation Test and Evaluation Complex (NPTEC).

  17. Wigwam River juvenile bull trout and fish habitat monitoring program : 2001 data report

    International Nuclear Information System (INIS)

    Cope, R.S.; Morris, K.J.; Bisset, J.E.

    2002-01-01

    The Wigwam River juvenile bull trout and fish habitat monitoring program is a co-operative initiative of the British Columbia Ministry of Water, Land, and Air Protection and Bonneville Power Administration. The Wigwam River has been characterized as the single most important bull trout spawning stream in the Kootenay Region. This report provides a summary of results obtained during the second year (2001) of the juvenile bull trout enumeration and fish habitat assessment program. This project was commissioned in planning for fish habitat protection and forest development within the upper Wigwam River valley. The broad intent is to develop a better understanding of juvenile bull trout and Westslope cutthroat trout recruitment and the ongoing hydrologic and morphologic processes in the upper Wigwam River, especially as they relate to spawning and rearing habitat quality. Five permanent sampling sites were established August 2000 in the Wigwam river drainage (one site on Bighorn Creek and four sites on the mainstem Wigwam River). At each site, juvenile (0(sup+), 1(sup+) and 2(sup+) age classes) fish densities and stream habitat conditions were measured over two stream meander wavelengths. Bull trout represented 95.1% of the catch and the mean density of juvenile bull trout was estimated to be 20.7 fish/100m(sup 2) (range 0.9 to 24.0 fish/100m(sup 2)). This compares to 17.2 fish/100m(sup 2) (+20%) for the previous year. Fry (0(sup+)) dominated the catch and this was a direct result of juvenile bull trout ecology and habitat partitioning among life history stages. Site selection was biased towards sample sites which favored high bull trout fry capture success. Comparison of fry density estimates replicated across both the preliminary survey (1997) and the current study (Cope and Morris 2001) illustrate the stable nature of these high densities. Bull trout populations have been shown to be extremely susceptible to habitat degradation and over-harvest and are ecologically

  18. Spatial analyses of benthic habitats to define coral reef ecosystem regions and potential biogeographic boundaries along a latitudinal gradient.

    Directory of Open Access Journals (Sweden)

    Brian K Walker

    Full Text Available Marine organism diversity typically attenuates latitudinally from tropical to colder climate regimes. Since the distribution of many marine species relates to certain habitats and depth regimes, mapping data provide valuable information in the absence of detailed ecological data that can be used to identify and spatially quantify smaller scale (10 s km coral reef ecosystem regions and potential physical biogeographic barriers. This study focused on the southeast Florida coast due to a recognized, but understudied, tropical to subtropical biogeographic gradient. GIS spatial analyses were conducted on recent, accurate, shallow-water (0-30 m benthic habitat maps to identify and quantify specific regions along the coast that were statistically distinct in the number and amount of major benthic habitat types. Habitat type and width were measured for 209 evenly-spaced cross-shelf transects. Evaluation of groupings from a cluster analysis at 75% similarity yielded five distinct regions. The number of benthic habitats and their area, width, distance from shore, distance from each other, and LIDAR depths were calculated in GIS and examined to determine regional statistical differences. The number of benthic habitats decreased with increasing latitude from 9 in the south to 4 in the north and many of the habitat metrics statistically differed between regions. Three potential biogeographic barriers were found at the Boca, Hillsboro, and Biscayne boundaries, where specific shallow-water habitats were absent further north; Middle Reef, Inner Reef, and oceanic seagrass beds respectively. The Bahamas Fault Zone boundary was also noted where changes in coastal morphologies occurred that could relate to subtle ecological changes. The analyses defined regions on a smaller scale more appropriate to regional management decisions, hence strengthening marine conservation planning with an objective, scientific foundation for decision making. They provide a framework

  19. [Habitat factor analysis for Torreya grandis cv. Merrillii based on spatial information technology].

    Science.gov (United States)

    Wang, Xiao-ming; Wang, Ke; Ao, Wei-jiu; Deng, Jin-song; Han, Ning; Zhu, Xiao-yun

    2008-11-01

    Torreya grandis cv. Merrillii, a tertiary survival plant, is a rare tree species of significant economic value and expands rapidly in China. Its special habitat factor analysis has the potential value to provide guide information for its planting, management, and sustainable development, because the suitable growth conditions for this tree species are special and strict. In this paper, the special habitat factors for T. grandis cv. Merrillii in its core region, i.e., in seven villages of Zhuji City, Zhejiang Province were analyzed with Principal Component Analysis (PCA) and a series of data, such as IKONOS image, Digital Elevation Model (DEM), and field survey data supported by the spatial information technology. The results showed that T. grandis cv. Merrillii exhibited high selectivity of environmental factors such as elevation, slope, and aspect. 96.22% of T. grandis cv. Merrillii trees were located at the elevation from 300 to 600 m, 97.52% of them were found to present on the areas whose slope was less than 300, and 74.43% of them distributed on sunny and half-sunny slopes. The results of PCA analysis indicated that the main environmental factors affecting the habitat of T. grandis cv. Merrillii were moisture, heat, and soil nutrients, and moisture might be one of the most important ecological factors for T. grandis cv. Merrillii due to the unique biological and ecological characteristics of the tree species.

  20. A moving target--incorporating knowledge of the spatial ecology of fish into the assessment and management of freshwater fish populations.

    Science.gov (United States)

    Cooke, Steven J; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Power, Michael; Doka, Susan E; Dettmers, John M; Crook, David A; Lucas, Martyn C; Holbrook, Christopher M; Krueger, Charles C

    2016-04-01

    Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.

  1. Development of a relative risk model for evaluating ecological risk of water environment in the Haihe River Basin estuary area.

    Science.gov (United States)

    Chen, Qiuying; Liu, Jingling; Ho, Kin Chung; Yang, Zhifeng

    2012-03-15

    Ecological risk assessment for water environment is significant to water resource management of basin. Effective environmental management and systems restoration such as the Haihe River Basin require holistic understanding of the relative importance of various stressor-related impacts throughout the basin. As an effective technical tool for evaluating the ecological risk, relative risk model (RRM) was applied in regional scale successfully. In this study, the risk transfer from upstream of basin was considered and the RRM was developed through introducing the source-stressor-habitat exposure filter (SSH), the endpoint-habitat exposure filter (EH) and the stressor-endpoint effect filter (SE) to reflect the meaning of exposure and effect more explicit. Water environment which includes water quality, water quantity and aquatic ecosystems was selected as the assessment endpoints. We created a conceptual model which depicting potential and effect pathways from source to stressor to habitat to endpoint. The Haihe River Basin estuary (HRBE) was selected as the model case. The results showed that there were two low risk regions, one medium risk region and two high risk regions in the HRBE. The results also indicated that urbanization was the biggest source, the second was shipping and the third was industry, their risk scores are 5.65, 4.71 and 3.68 respectively. Furthermore, habitat destruction was the largest stressor with the risk scores (2.66), the second was oxygen consuming organic pollutants (1.75) and the third was pathogens (1.75). So these three stressors were the main influencing factors of the ecological pressure in the study area. For habitats, open waters (9.59) and intertidal mudflat were enduring the bigger pressure and should be taken considerable attention. Ecological service values damaged (30.54) and biodiversity decreased were facing the biggest risk pressure. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Contrasting trends in distribution of four major planktonic betaproteobacterial groups along a pH gradient of epilimnia of 72 freshwater habitats.

    Science.gov (United States)

    Jezbera, Jan; Jezberová, Jitka; Koll, Ulrike; Horňák, Karel; Šimek, Karel; Hahn, Martin W

    2012-08-01

    The distribution and abundance of Betaproteobacteria and three of its genera - Limnohabitans (R-BT065 lineage), Polynucleobacter (including subclusters Polynucleobacter necessarius and Polynucleobacter acidiphobus/Polynucleobacter difficilis), and Methylophilus - across the epilimnia of 72 limnologically diverse freshwater habitats were investigated using fluorescence in situ hybridization. Moreover, seasonal development of Betaproteobacteria subgroups along the longitudinal axis of a reservoir was followed. Betaproteobacteria comprised on average 29.1%, Polynucleobacter 11.6%, P. necessarius 10.1%, P. acidiphobus/difficilis 0.5%, Limnohabitans 8.9%, and Methylophilus 0.9% of total bacterioplankton cells in the investigated habitats. Polynucleobacter necessarius and Limnohabitans coexisted in the majority of habitats but showed contrasting abundance patterns along the pH gradient of habitats (pH, 3.8-8.5). The observed distribution patterns could theoretically be explained by different preferences for substrate sources, that is, substances of humic origin in acidic waters and algal-derived substances in alkaline waters. However, substrate utilization patterns observed in laboratory experiments indicate no coherent group-specific differences in substrate preferences. Interestingly, similar distribution patterns were revealed for Limnohabitans and P. acidiphobus/difficilis, suggesting similar ecological adaptations of these distantly related taxa. Our findings further emphasize that at least two taxa of freshwater Betaproteobacteria represent ecologically diversified groups. Investigations at higher phylogenetic resolution are required for obtaining further insights into their ecology. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Overlap and partitioning of the ecological and isotopic niches

    Science.gov (United States)

    Elizabeth A. Flaherty; Merav Ben-David

    2010-01-01

    Recently, it was proposed that stable isotope patterns can be used to quantify the width of the ecological niche of animals. However, the potential effects of habitat use on isotopic patterns of consumers have not been fully explored and consequently isotopic patterns may yield deceptive estimates of niche width. Here, we simulated four different scenarios of a...

  4. Intermittent Rivers and Biodiversity. Large scale analyses between hydrology and ecology in intermittent rivers

    OpenAIRE

    Blanchard, Q.

    2014-01-01

    Intermittent rivers are characterized by a temporary interruption of their flow which can manifest in a variety of ways, as much on a spatial scale as on a temporal one. This particular aspect of intermittent river hydrology gives rise to unique ecosystems, combining both aquatic and terrestrial habitats. Neglected for a long time by scientists and once considered biologically depauperate and ecologically unimportant, these fragile habitats are nowadays acknowledged for their rendered service...

  5. Changes in habitat availability for outmigrating juvenile salmon (Oncorhychus spp.) following estuary restoration

    Science.gov (United States)

    Ellings, Christopher S.; Davis, Melanie; Grossman, Eric E.; Hodgson, Sayre; Turner, Kelley L.; Woo PR, Isa; Nakai, Glynnis; Takekawa, Jean E.; Takekawa, John Y.

    2016-01-01

    The restoration of the Nisqually River Delta (Washington, U.S.A.) represents one of the largest efforts toward reestablishing the ecosystem function and resilience of modified habitat in the Puget Sound, particularly for anadromous salmonid species. The opportunity for outmigrating salmon to access and benefit from the expansion of available tidal habitat can be quantified by several physical attributes, which are related to the ecological and physiological responses of juvenile salmon. We monitored a variety of physical parameters to measure changes in opportunity potential from historic, pre-restoration, and post-restoration habitat conditions at several sites across the delta. These parameters included channel morphology, water quality, tidal elevation, and landscape connectivity. We conducted fish catch surveys across the delta to determine if salmon was utilizing restored estuary habitat. Overall major channel area increased 42% and major channel length increased 131% from pre- to post-restoration conditions. Furthermore, the results of our tidal inundation model indicated that major channels were accessible up to 75% of the time, as opposed to 30% pre-restoration. Outmigrating salmon utilized this newly accessible habitat as quickly as 1 year post-restoration. The presence of salmon in restored tidal channels confirmed rapid post-restoration increases in opportunity potential on the delta despite habitat quality differences between restored and reference sites.

  6. Sintopy of two Tropidurus lizard species (Squamata: Tropiduridae) in a rocky Cerrado habitat in Central Brazil

    OpenAIRE

    Faria,R. G.; Araujo,A. F. B.

    2004-01-01

    We studied the ecology of Tropidurus itambere and T. oreadicus that occur syntopically in rocky habitats of Cerrado vegetation in central Brazil during the dry season (April to September 2000). The two species are ecologically similar, but somewhat differentiated in vertical microhabitat use. The two species preferred rocky surface microhabitat. Both species demonstrated a unimodal activity pattern, with a peak between 10 and 15 h. Their diets were similar in composition and prey size. The mo...

  7. Sustaining Young Forest Communities: Ecology and Management of Early Successional Habitats in the Central Hardwood Region, USA

    Science.gov (United States)

    Cathryn H. Greenberg; Beverly S. Collins; Frank R. Thompson III

    2011-01-01

    There is a rising concern among natural resource scientists and managers about decline of the many plant and animal species associated with early ­successional habitats. There is no concise definition of early successional habitats. However, all have a well developed ground cover or shrub and young tree component, lack a closed, mature tree canopy, and are created or...

  8. The role of reserves and anthropogenic habitats for functional connectivity and resilience of ephemeral wetlands.

    Science.gov (United States)

    Uden, Daniel R; Hellman, Michelle L; Angeler, David G; Allen, Craig R

    Ecological reserves provide important wildlife habitat in many landscapes, and the functional connectivity of reserves and other suitable habitat patches is crucial for the persistence and resilience of spatially structured populations. To maintain or increase connectivity at spatial scales larger than individual patches, conservation actions may focus on creating and maintaining reserves and/or influencing management on non-reserves. Using a graph-theoretic approach, we assessed the functional connectivity and spatial distribution of wetlands in the Rainwater Basin of Nebraska, USA, an intensively cultivated agricultural matrix, at four assumed, but ecologically realistic, anuran dispersal distances. We compared connectivity in the current landscape to the historical landscape and putative future landscapes, and evaluated the importance of individual and aggregated reserve and non-reserve wetlands for maintaining connectivity. Connectivity was greatest in the historical landscape, where wetlands were also the most densely distributed. The construction of irrigation reuse pits for water storage has maintained connectivity in the current landscape by replacing destroyed wetlands, but these pits likely provide suboptimal habitat. Also, because there are fewer total wetlands (i.e., wetlands and irrigation reuse pits) in the current landscape than the historical landscape, and because the distribution of current wetlands is less clustered than that of historical wetlands, larger and longer dispersing, sometimes nonnative species may be favored over smaller, shorter dispersing species of conservation concern. Because of their relatively low number, wetland reserves do not affect connectivity as greatly as non-reserve wetlands or irrigation reuse pits; however, they likely provide the highest quality anuran habitat. To improve future levels of resilience in this wetland habitat network, management could focus on continuing to improve the conservation status of non

  9. The problems in the formation of the habitat of fisheries

    Directory of Open Access Journals (Sweden)

    Agarkov S. A.

    2017-09-01

    Full Text Available Habitat as a combination of political, economic, social and environmental conditions of human activity plays an important role in raising productivity and efficiency of the national economy. On the basis of actual data the essence of problems of formation and management of the fishery complex habitat has been revealed. The authors consider the working conditions of the crews of fishing vessels as an important component of habitat, the influence of climatic conditions and inadequate social infrastructure on turnover of out-migration from the northern regions, the low level of training that generally has a negative impact on results of the fishing industry activity. The state government fishery development programme does not contain measures to shape habitats: improving the quality of life of fishermen and their families, promoting social and environmental infrastructure. On the basis of researches some practical recommendations allowing solve the problems in formation and development of the fishery habitat have been proposed. There are the following recommendations: improving the working conditions of the crews of fishing vessels, economically advantageous working conditions for shipowners, efforts to combat poaching, training of highly qualified personnel, the development of programme of staff motivation and its interest in the work on the internal market, the development of social programmes for the protection of seafarers and their families. For successful implementation of all measures to increase the competitiveness of fisheries of Russia on the international market it is necessary to improve the quality and effectiveness of the system of fisheries complex management, including its socio-ecological-economic habitat

  10. Ecological release in lizard assemblages of neotropical savannas.

    Science.gov (United States)

    Mesquita, Daniel Oliveira; Colli, Guarino Rinaldi; Vitt, Laurie J

    2007-08-01

    We compare lizard assemblages of Cerrado and Amazonian savannas to test the ecological release hypothesis, which predicts that niche dimensions and abundance should be greater in species inhabiting isolated habitat patches with low species richness (Amazonian savannas and isolated Cerrado patches) when compared with nonisolated areas in central Cerrado with greater species richness. We calculated microhabitat and diet niche breadths with data from 14 isolated Cerrado patches and Amazon savanna areas and six central Cerrado populations. Morphological data were compared using average Euclidean distances, and lizard abundance was estimated using the number of lizards captured in pitfall traps over an extended time period. We found no evidence of ecological release with respect to microhabitat use, suggesting that historical factors are better microhabitat predictors than ecological factors. However, data from individual stomachs indicate that ecological release occurs in these areas for one species (Tropidurus) but not others (Ameiva ameiva, Anolis, Cnemidophorus, and Micrablepharus), suggesting that evolutionary lineages respond differently to environmental pressures, with tropidurids being more affected by ecological factors than polychrotids, teiids, and gymnophthalmids. We found no evidence that ecological release occurs in these areas using morphological data. Based on abundance data, our results indicate that the ecological release (density compensation) hypothesis is not supported: lizard species are not more abundant in isolated areas than in nonisolated areas. The ecology of species is highly conservative, varying little from assemblage to assemblage. Nevertheless, increases in niche breadth for some species indicate that ecological release occurs as well.

  11. A systematic review of ecological attributes that confer resilience to climate change in environmental restoration.

    Directory of Open Access Journals (Sweden)

    Britta L Timpane-Padgham

    Full Text Available Ecological restoration is widely practiced as a means of rehabilitating ecosystems and habitats that have been degraded or impaired through human use or other causes. Restoration practices now are confronted by climate change, which has the potential to influence long-term restoration outcomes. Concepts and attributes from the resilience literature can help improve restoration and monitoring efforts under changing climate conditions. We systematically examined the published literature on ecological resilience to identify biological, chemical, and physical attributes that confer resilience to climate change. We identified 45 attributes explicitly related to climate change and classified them as individual- (9, population- (6, community- (7, ecosystem- (7, or process-level attributes (16. Individual studies defined resilience as resistance to change or recovery from disturbance, and only a few studies explicitly included both concepts in their definition of resilience. We found that individual and population attributes generally are suited to species- or habitat-specific restoration actions and applicable at the population scale. Community attributes are better suited to habitat-specific restoration at the site scale, or system-wide restoration at the ecosystem scale. Ecosystem and process attributes vary considerably in their type and applicability. We summarize these relationships in a decision support table and provide three example applications to illustrate how these classifications can be used to prioritize climate change resilience attributes for specific restoration actions. We suggest that (1 including resilience as an explicit planning objective could increase the success of restoration projects, (2 considering the ecological context and focal scale of a restoration action is essential in choosing appropriate resilience attributes, and (3 certain ecological attributes, such as diversity and connectivity, are more commonly considered to

  12. Potential 'ecological traps' of restored landscapes: koalas Phascolarctos cinereus re-occupy a rehabilitated mine site.

    Science.gov (United States)

    Cristescu, Romane H; Banks, Peter B; Carrick, Frank N; Frère, Céline

    2013-01-01

    With progressively increasing anthropogenic habitat disturbances, restoration of impacted landscapes is becoming a critical element of biodiversity conservation. Evaluation of success in restoration ecology rarely includes faunal components, usually only encompassing abiotic and floral components of the ecosystems. Even when fauna is explicitly included, it is usually only species presence/absence criteria that are considered. If restoration is to have a positive outcome, however, populations in restored habitats should exhibit comparable survival and reproductive rates to populations found in undisturbed surroundings. If a species recolonises restored areas but later experiences decreased fitness, restored areas could become ecological sinks or traps. We investigated this possibility in a case study of koalas Phascolarctos cinereus occupying rehabilitated mining areas on North Stradbroke Island, Australia. Our holistic approach compared rehabilitated and undisturbed areas on the basis of their vegetation characteristics, of koalas' body condition, roosting trees, diet, as well as predator index. Koalas using rehabilitated areas appeared to be able to access an adequate supply of roosting and fodder trees, were in good condition and had high reproductive output. We did not find any significant differences in predator density between rehabilitated areas and undisturbed surroundings. The results presented in this study showed there was no evidence that the post-mining rehabilitated areas constitute ecological sinks or traps. However, to reach a definitive conclusion as to whether areas rehabilitated post-mining provide at least equivalent habitat to undisturbed locations, additional research could be undertaken to assess foliar nutrient/water/toxin differences and predation risk in rehabilitated areas compared with undisturbed areas. More generally, the evaluation of whether restoration successfully produces a functional ecological community should include criteria

  13. Potential 'ecological traps' of restored landscapes: koalas Phascolarctos cinereus re-occupy a rehabilitated mine site.

    Directory of Open Access Journals (Sweden)

    Romane H Cristescu

    Full Text Available With progressively increasing anthropogenic habitat disturbances, restoration of impacted landscapes is becoming a critical element of biodiversity conservation. Evaluation of success in restoration ecology rarely includes faunal components, usually only encompassing abiotic and floral components of the ecosystems. Even when fauna is explicitly included, it is usually only species presence/absence criteria that are considered. If restoration is to have a positive outcome, however, populations in restored habitats should exhibit comparable survival and reproductive rates to populations found in undisturbed surroundings. If a species recolonises restored areas but later experiences decreased fitness, restored areas could become ecological sinks or traps. We investigated this possibility in a case study of koalas Phascolarctos cinereus occupying rehabilitated mining areas on North Stradbroke Island, Australia. Our holistic approach compared rehabilitated and undisturbed areas on the basis of their vegetation characteristics, of koalas' body condition, roosting trees, diet, as well as predator index. Koalas using rehabilitated areas appeared to be able to access an adequate supply of roosting and fodder trees, were in good condition and had high reproductive output. We did not find any significant differences in predator density between rehabilitated areas and undisturbed surroundings. The results presented in this study showed there was no evidence that the post-mining rehabilitated areas constitute ecological sinks or traps. However, to reach a definitive conclusion as to whether areas rehabilitated post-mining provide at least equivalent habitat to undisturbed locations, additional research could be undertaken to assess foliar nutrient/water/toxin differences and predation risk in rehabilitated areas compared with undisturbed areas. More generally, the evaluation of whether restoration successfully produces a functional ecological community

  14. A systematic review of ecological attributes that confer resilience to climate change in environmental restoration.

    Science.gov (United States)

    Timpane-Padgham, Britta L; Beechie, Tim; Klinger, Terrie

    2017-01-01

    Ecological restoration is widely practiced as a means of rehabilitating ecosystems and habitats that have been degraded or impaired through human use or other causes. Restoration practices now are confronted by climate change, which has the potential to influence long-term restoration outcomes. Concepts and attributes from the resilience literature can help improve restoration and monitoring efforts under changing climate conditions. We systematically examined the published literature on ecological resilience to identify biological, chemical, and physical attributes that confer resilience to climate change. We identified 45 attributes explicitly related to climate change and classified them as individual- (9), population- (6), community- (7), ecosystem- (7), or process-level attributes (16). Individual studies defined resilience as resistance to change or recovery from disturbance, and only a few studies explicitly included both concepts in their definition of resilience. We found that individual and population attributes generally are suited to species- or habitat-specific restoration actions and applicable at the population scale. Community attributes are better suited to habitat-specific restoration at the site scale, or system-wide restoration at the ecosystem scale. Ecosystem and process attributes vary considerably in their type and applicability. We summarize these relationships in a decision support table and provide three example applications to illustrate how these classifications can be used to prioritize climate change resilience attributes for specific restoration actions. We suggest that (1) including resilience as an explicit planning objective could increase the success of restoration projects, (2) considering the ecological context and focal scale of a restoration action is essential in choosing appropriate resilience attributes, and (3) certain ecological attributes, such as diversity and connectivity, are more commonly considered to confer

  15. Incorporating the Spatial Road Disturbance Index (SPROADI in Ecological Impacts Assessment of Roads at Landscape Scale (Case study: Eastern Part of Isfahan Province

    Directory of Open Access Journals (Sweden)

    Sh. Nematollahi

    2017-06-01

    Full Text Available Development of roads can have deleterious effects on natural habitats containing species of conservation concern. Fragmentation of habitat into small, non-contiguous patches may result in dramatic population declines. Thus appropriate studies quantifying ecological impacts of roads at landscape scale are essential. In this study, the Spatial Road Disturbance Index (SPROADI was applied for the ecological impact assessment of the roads network in Eastern part of Isfahan Province, including Abassabad wildlife refuge and Siahkouh National park, which are among the most important habitats for Asiatic Cheetah (Acinonyx jubatus venaticus classified as Critically Endangered (CR on the IUCN Red List. This new landscape index uses three sub-indices including traffic intensity, vicinity impact and fragmentation grade to calculate the ecological impacts of roads network. Results obtained through quantifying the Spatial Road Disturbance Index showed that the degree of disturbance by roads network is between 0 and 54.53. Our results also revealed that 12 percent of Abassabad wildlife refuge and wide range of suitable habitats for Asiatic Cheetah were affected by roads network, which presents a conservation concern for this critically endangered species.

  16. Bioprospecting and indexing the microalgal diversity of different ecological habitats of India.

    Science.gov (United States)

    Ratha, Sachitra Kumar; Prasanna, Radha; Gupta, Vishal; Dhar, Dolly Wattal; Saxena, Anil Kumar

    2012-04-01

    Our study reports the collection, biodiversity analyses, isolation and identification of microalgae from different habitats of India. Cyanophyceae and Chlorophyceae were the most dominant algal groups recorded, with the highest number being recorded for non-heterocystous cyanobacteria (48), followed by 44 unicellular forms. Sagar Island, Sunderbans recorded the greatest number of algae, and unicellular/colonial green algae were present in all the samples. Shannon's Diversity Index was highest in Koikhali, Sunderbans, followed by Rushikulya River, Odisha. Selective enrichment, purification through serial dilution followed by plating and regular observations led to the isolation of sixteen strains. Identification was done by using microscopic observations, supported with standard monographs and classified as belonging to seven genera (Chlorella, Chlorococcum, Kirchneria, Scenedesmus, Chlamydomonas, Tetracystis and Ulothrix). 18S rDNA sequencing was undertaken for four strains. The set of sixteen strains were screened under standard cultural conditions for their growth kinetics and Chlorella sorokiniana MIC-G5, followed by Chlorella sp. MIC-G4 exhibited the highest growth rates. The strain Chlorococcum sp. MIC-G2 recorded highest chlorophyll, while MIC-G3 ranked highest for carbohydrates. The study aided in identifying the dominant microalgae in the diverse habitats and characterizing their growth rate and carbohydrate content, providing a valuable germplasm for further utilization in agriculture and industry.

  17. How do habitat filtering and niche conservatism affect community composition at different taxonomic resolutions?

    Science.gov (United States)

    Munoz, François; Ramesh, B R; Couteron, Pierre

    2014-08-01

    Understanding how local species assembly depends on the regional biogeographic and environmental context is a challenging task in community ecology. In spatially implicit neutral models, a single immigration parameter, I(k), represents the flux of immigrants from a regional pool that compete with local offspring for establishment in communities. This flux counterbalances the effect of local stochastic extinctions to maintain local species diversity. If some species within the regional pool are not adapted to the local environment (habitat filtering), the migrant flux is reduced beyond that of the neutral model, such that habitat filtering influences the value of I(k) in non-neutral situations. Here, we propose a novel model in which immigrants from the regional pool are filtered according to their habitat preferences and the local environment, while taxa potentially retain habitat preferences from their ancestors (niche conservatism). Using both analytical reasoning and simulations, we demonstrate that I(k) is expected to be constant when estimated based on the community composition at several taxonomic levels, not only under neutral assumptions, but also when habitat filtering occurs, unless there is substantial niche conservatism. In the latter case, I(k) is expected to decrease when estimated based on the composition at species to genus and family levels, thus allowing a signature of niche conservatism to be detected by simply comparing I(k) estimates across taxonomic levels. We applied this approach to three rain forest data sets from South India and Central America and found no significant signature of niche conservatism when I(k) was compared across taxonomic levels, except at the family level in South India. We further observed more limited immigration in South Indian forests, supporting the hypothesis of a greater impact of habitat filtering and heterogeneity there than in Central America. Our results highlight the relevance of studying variations of I

  18. Mathematical models of ecology and evolution

    DEFF Research Database (Denmark)

    Zhang, Lai

    2012-01-01

    -history processes: net-assimilation mechanism of 􀀀rule and net-reproduction mechanism of size dependence using a simple model comprising a size-structured consumer Daphina and an unstructured resource alge. It is found that in contrast to the former mechanism, the latter tends to destabilize population...... dynamics but as a trade-o promotes species survival by shortening juvenile delay between birth and the onset of reproduction. Paper II compares the size-spectrum and food-web representations of communities using two traits (body size and habitat location) based unstructured population model of Lotka......) based size-structured population model, that is, interference in foraging, maintenance, survival, and recruitment. Their impacts on the ecology and evolution of size-structured populations and communities are explored. Ecologically, interference aects population demographic properties either negatively...

  19. Evaluating carbon storage, timber harvest, and habitat possibilities for a Western Cascades (USA) forest landscape.

    Science.gov (United States)

    Kline, Jeffrey D; Harmon, Mark E; Spies, Thomas A; Morzillo, Anita T; Pabst, Robert J; McComb, Brenda C; Schnekenburger, Frank; Olsen, Keith A; Csuti, Blair; Vogeler, Jody C

    2016-10-01

    Forest policymakers and managers have long sought ways to evaluate the capability of forest landscapes to jointly produce timber, habitat, and other ecosystem services in response to forest management. Currently, carbon is of particular interest as policies for increasing carbon storage on federal lands are being proposed. However, a challenge in joint production analysis of forest management is adequately representing ecological conditions and processes that influence joint production relationships. We used simulation models of vegetation structure, forest sector carbon, and potential wildlife habitat to characterize landscape-level joint production possibilities for carbon storage, timber harvest, and habitat for seven wildlife species across a range of forest management regimes. We sought to (1) characterize the general relationships of production possibilities for combinations of carbon storage, timber, and habitat, and (2) identify management variables that most influence joint production relationships. Our 160 000-ha study landscape featured environmental conditions typical of forests in the Western Cascade Mountains of Oregon (USA). Our results indicate that managing forests for carbon storage involves trade-offs among timber harvest and habitat for focal wildlife species, depending on the disturbance interval and utilization intensity followed. Joint production possibilities for wildlife species varied in shape, ranging from competitive to complementary to compound, reflecting niche breadth and habitat component needs of species examined. Managing Pacific Northwest forests to store forest sector carbon can be roughly complementary with habitat for Northern Spotted Owl, Olive-sided Flycatcher, and red tree vole. However, managing forests to increase carbon storage potentially can be competitive with timber production and habitat for Pacific marten, Pileated Woodpecker, and Western Bluebird, depending on the disturbance interval and harvest intensity chosen

  20. Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity

    Science.gov (United States)

    Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.

    2014-01-01

    Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03–0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.

  1. The nonindigenous fish Perccottus glenii in the Tisza River drainage, Eastern Slovakia – I. part: history of invasion, habitat associations and genetic characteristics (results up to the year 2006)

    Czech Academy of Sciences Publication Activity Database

    Lusk, S.; Koščo, J.; Lusková, V.; Halačka, Karel; Mendel, Jan; Košúth, P.

    2017-01-01

    Roč. 8, č. 8 (2017), s. 127-143 ISSN 1212-1312 Institutional support: RVO:68081766 Keywords : invasive fishes * Odontobutidae * Perccottus glenii * dispersal * habitat * genetics Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology

  2. Coarse- and fine-scale patterns of distribution and habitat selection places an Amazonian floodplain curassow in double jeopardy

    Directory of Open Access Journals (Sweden)

    Gabriel A. Leite

    2018-05-01

    Full Text Available Patterns of habitat selection are influenced by local productivity, resource availability, and predation risk. Species have taken millions of years to hone the macro- and micro-habitats they occupy, but these may now overlap with contemporary human threats within natural species ranges. Wattled Curassow (Crax globulosa, an endemic galliform species of the western Amazon, is threatened by both hunting and habitat loss, and is restricted to white-water floodplain forests of major Amazonian rivers. In this study conducted along the Juruá River, Amazonas, Brazil, we quantified the ranging ecology and fine-scale patterns of habitat selection of the species. We estimated the home range size of C. globulosa using conventional VHF telemetry. To estimate patterns of habitat selection, we used geo-locations of day ranges to examine the extent and intensity of use across the floodplain, which were then compared to a high-resolution flood map of the study area. We captured two females and one male, which we monitored for 13 months between September 2014 and September 2015. Average home range size was 283 ha, based on the 95% aLoCoH estimator. Wattled Curassows selected areas of prolonged flood pulses (six to eight months/year and had a consistent tendency to be near open water, usually in close proximity to river banks and lakes, especially during the dry season. Amazonian floodplains are densely settled, and the small portions of floodplain habitat used by Wattled Curassows are both the most accessible to hunters and most vulnerable to deforestation. As a result, the geographic and ecological distribution of Wattled Curassows places them at much higher extinction risk at multiple spatial scales, highlighting the need to consider habitat preferences within their conservation strategy.

  3. Can Static Habitat Protection Encompass Critical Areas for Highly Mobile Marine Top Predators? Insights from Coastal East Africa.

    Directory of Open Access Journals (Sweden)

    Sergi Pérez-Jorge

    Full Text Available Along the East African coast, marine top predators are facing an increasing number of anthropogenic threats which requires the implementation of effective and urgent conservation measures to protect essential habitats. Understanding the role that habitat features play on the marine top predator' distribution and abundance is a crucial step to evaluate the suitability of an existing Marine Protected Area (MPA, originally designated for the protection of coral reefs. We developed species distribution models (SDM on the IUCN data deficient Indo-Pacific bottlenose dolphin (Tursiops aduncus in southern Kenya. We followed a comprehensive ecological modelling approach to study the environmental factors influencing the occurrence and abundance of dolphins while developing SDMs. Through the combination of ensemble prediction maps, we defined recurrent, occasional and unfavourable habitats for the species. Our results showed the influence of dynamic and static predictors on the dolphins' spatial ecology: dolphins may select shallow areas (5-30 m, close to the reefs (< 500 m and oceanic fronts (< 10 km and adjacent to the 100 m isobath (< 5 km. We also predicted a significantly higher occurrence and abundance of dolphins within the MPA. Recurrent and occasional habitats were identified on large percentages on the existing MPA (47% and 57% using presence-absence and abundance models respectively. However, the MPA does not adequately encompass all occasional and recurrent areas and within this context, we propose to extend the MPA to incorporate all of them which are likely key habitats for the highly mobile species. The results from this study provide two key conservation and management tools: (i an integrative habitat modelling approach to predict key marine habitats, and (ii the first study evaluating the effectiveness of an existing MPA for marine mammals in the Western Indian Ocean.

  4. Wildlife habitat management on college and university campuses

    Science.gov (United States)

    Bosci, Tierney; Warren, Paige S.; Harper, Rick W.; DeStefano, Stephen

    2018-01-01

    With the increasing involvement of higher education institutions in sustainability movements, it remains unclear to what extent college and university campuses address wildlife habitat. Many campuses encompass significant areas of green space with potential to support diverse wildlife taxa. However, sustainability rating systems generally emphasize efforts like recycling and energy conservation over green landscaping and grounds maintenance. We sought to examine the types of wildlife habitat projects occurring at schools across the United States and whether or not factors like school type (public or private), size (number of students), urban vs. rural setting, and funding played roles in the implementation of such initiatives. Using case studies compiled by the National Wildlife Federation’s Campus Ecology program, we documented wildlife habitat-related projects at 60 campuses. Ten management actions derived from nationwide guidelines were used to describe the projects carried out by these institutions, and we recorded data about cost, funding, and outreach and education methods. We explored potential relationships among management actions and with school characteristics. We extracted themes in project types, along with challenges and responses to those challenges. Native plant species selection and sustainable lawn maintenance and landscaping were the most common management actions among the 60 campuses. According to the case studies we examined, we found that factors like school type, size, and location did not affect the engagement of a campus in wildlife habitat initiatives, nor did they influence the project expenditures or funding received by a campus. Our results suggest that many wildlife habitat initiatives are feasible for higher education institutions and may be successfully implemented at relatively low costs through simple, but deliberate management actions.

  5. Facilitative ecological interactions between invasive species: Arundo donax stands as favorable habitat for cattle ticks (Acari: Ixodidae) along the U.S.-Mexico border.

    Science.gov (United States)

    Racelis, A E; Davey, R B; Goolsby, J A; Pérez de León, A A; Varner, K; Duhaime, R

    2012-03-01

    The cattle tick, Rhipicephalus (Boophilus) spp. is a key vector of protozoa that cause bovine babesiosis. Largely eradicated from most of the United States, the cattle tick continues to infest south Texas, and recent outbreaks in this area may signal a resurgence of cattle tick populations despite current management efforts. An improved understanding of the dynamic ecology of cattle fever ticks along the U.S.-Mexico border is required to devise strategies for sustainable eradication efforts. Management areas of the cattle tick overlap considerably with dense, wide infestations of the non-native, invasive grass known as giant reed (Arundo donax L.). Here we show that stands of giant reed are associated with abiotic and biotic conditions that are favorable to tick survival, especially when compared with other nearby habitats (open pastures of buffelgrass (Pennisetum ciliare) and closed canopy native forests). Overhead canopies in giant reed stands and native riparian forests reduce daily high temperature, which was the best abiotic predictor of oviposition by engorged females. In sites where temperatures were extreme, specifically open grasslands, fewer females laid eggs and the resulting egg masses were smaller. Pitfall trap collections of ground dwelling arthropods suggest a low potential for natural suppression of tick populations in giant reed stands. The finding that A. donax infestations present environmental conditions that facilitate the survival and persistence of cattle ticks, as well or better than native riparian habitats and open grasslands, represents an alarming complication for cattle fever tick management in the United States.

  6. Modelação bidimensional de habitats fluviais para espécies piscícolas. Aplicação do Modelo CasimirFish2D

    OpenAIRE

    Dias, Verónica Raquel Barroso

    2013-01-01

    Mestrado em Engenharia Florestal e dos Recursos Naturais - Instituto Superior de Agronomia Habitat degradation associated with river regulation, consequence increasing human demands on water resources, and result is changed richness and diversity fish species. Projects ecological habitat to improve becomes a priority for authorities in many countries. In the present study, a methodology based on the relationship between fish habitat and stream flows, is applied in order to determine imp...

  7. Effect of methodological and ecological approaches on heterogeneity of nest-site selection of a long-lived vulture.

    Directory of Open Access Journals (Sweden)

    Rubén Moreno-Opo

    Full Text Available The application of scientific-based conservation measures requires that sampling methodologies in studies modelling similar ecological aspects produce comparable results making easier their interpretation. We aimed to show how the choice of different methodological and ecological approaches can affect conclusions in nest-site selection studies along different Palearctic meta-populations of an indicator species. First, a multivariate analysis of the variables affecting nest-site selection in a breeding colony of cinereous vulture (Aegypius monachus in central Spain was performed. Then, a meta-analysis was applied to establish how methodological and habitat-type factors determine differences and similarities in the results obtained by previous studies that have modelled the forest breeding habitat of the species. Our results revealed patterns in nesting-habitat modelling by the cinereous vulture throughout its whole range: steep and south-facing slopes, great cover of large trees and distance to human activities were generally selected. The ratio and situation of the studied plots (nests/random, the use of plots vs. polygons as sampling units and the number of years of data set determined the variability explained by the model. Moreover, a greater size of the breeding colony implied that ecological and geomorphological variables at landscape level were more influential. Additionally, human activities affected in greater proportion to colonies situated in Mediterranean forests. For the first time, a meta-analysis regarding the factors determining nest-site selection heterogeneity for a single species at broad scale was achieved. It is essential to homogenize and coordinate experimental design in modelling the selection of species' ecological requirements in order to avoid that differences in results among studies would be due to methodological heterogeneity. This would optimize best conservation and management practices for habitats and species in

  8. Ecological implications of extreme events: footprints of the 2010 earthquake along the Chilean coast.

    Science.gov (United States)

    Jaramillo, Eduardo; Dugan, Jenifer E; Hubbard, David M; Melnick, Daniel; Manzano, Mario; Duarte, Cristian; Campos, Cesar; Sanchez, Roland

    2012-01-01

    Deciphering ecological effects of major catastrophic events such as earthquakes, tsunamis, volcanic eruptions, storms and fires, requires rapid interdisciplinary efforts often hampered by a lack of pre-event data. Using results of intertidal surveys conducted shortly before and immediately after Chile's 2010 M(w) 8.8 earthquake along the entire rupture zone (ca. 34-38°S), we provide the first quantification of earthquake and tsunami effects on sandy beach ecosystems. Our study incorporated anthropogenic coastal development as a key design factor. Ecological responses of beach ecosystems were strongly affected by the magnitude of land-level change. Subsidence along the northern rupture segment combined with tsunami-associated disturbance and drowned beaches. In contrast, along the co-seismically uplifted southern rupture, beaches widened and flattened increasing habitat availability. Post-event changes in abundance and distribution of mobile intertidal invertebrates were not uniform, varying with land-level change, tsunami height and coastal development. On beaches where subsidence occurred, intertidal zones and their associated species disappeared. On some beaches, uplift of rocky sub-tidal substrate eliminated low intertidal sand beach habitat for ecologically important species. On others, unexpected interactions of uplift with man-made coastal armouring included restoration of upper and mid-intertidal habitat seaward of armouring followed by rapid colonization of mobile crustaceans typical of these zones formerly excluded by constraints imposed by the armouring structures. Responses of coastal ecosystems to major earthquakes appear to vary strongly with land-level change, the mobility of the biota and shore type. Our results show that interactions of extreme events with human-altered shorelines can produce surprising ecological outcomes, and suggest these complex responses to landscape alteration can leave lasting footprints in coastal ecosystems.

  9. Habitat assessment of non-wadeable rivers in Michigan.

    Science.gov (United States)

    Wilhelm, Jennifer G O; Allan, J David; Wessell, Kelly J; Merritt, Richard W; Cummins, Kenneth W

    2005-10-01

    Habitat evaluation of wadeable streams based on accepted protocols provides a rapid and widely used adjunct to biological assessment. However, little effort has been devoted to habitat evaluation in non-wadeable rivers, where it is likely that protocols will differ and field logistics will be more challenging. We developed and tested a non-wadeable habitat index (NWHI) for rivers of Michigan, where non-wadeable rivers were defined as those of order >or=5, drainage area >or=1600 km2, mainstem lengths >or=100 km, and mean annual discharge >or=15 m3/s. This identified 22 candidate rivers that ranged in length from 103 to 825 km and in drainage area from 1620 to 16,860 km2. We measured 171 individual habitat variables over 2-km reaches at 35 locations on 14 rivers during 2000-2002, where mean wetted width was found to range from 32 to 185 m and mean thalweg depth from 0.8 to 8.3 m. We used correlation and principal components analysis to reduce the number of variables, and examined the spatial pattern of retained variables to exclude any that appeared to reflect spatial location rather than reach condition, resulting in 12 variables to be considered in the habitat index. The proposed NWHI included seven variables: riparian width, large woody debris, aquatic vegetation, bottom deposition, bank stability, thalweg substrate, and off-channel habitat. These variables were included because of their statistical association with independently derived measures of human disturbance in the riparian zone and the catchment, and because they are considered important in other habitat protocols or to the ecology of large rivers. Five variables were excluded because they were primarily related to river size rather than anthropogenic disturbance. This index correlated strongly with indices of disturbance based on the riparian (adjusted R2 = 0.62) and the catchment (adjusted R2 = 0.50), and distinguished the 35 river reaches into the categories of poor (2), fair (19), good (13), and

  10. Predictive modelling of habitat use by marine predators with respect to the abundance and depth distribution of pelagic prey

    Science.gov (United States)

    Boyd, Charlotte; Castillo, Ramiro; Hunt, George L.; Punt, André E..; VanBlaricom, Glenn R.; Weimerskirch, Henri; Bertrand, Sophie

    2015-01-01

    Understanding the ecological processes that underpin species distribution patterns is a fundamental goal in spatial ecology. However, developing predictive models of habitat use is challenging for species that forage in marine environments, as both predators and prey are often highly mobile and difficult to monitor. Consequently, few studies have developed resource selection functions for marine predators based directly on the abundance and distribution of their prey.

  11. About the Properties of a Modified Generalized Beverton-Holt Equation in Ecology Models

    OpenAIRE

    De La Sen, M.

    2008-01-01

    Es reproducción del documento publicado en http://dx.doi.org/10.1155/2008/592950 This paper is devoted to the study of a generalized modified version of the well-known Beverton-Holt equation in ecology. The proposed model describes the population evolution of some species in a certain habitat driven by six parametrical sequences, namely, the intrinsic growth rate (associated with the reproduction capability), the degree of sympathy of the species with the habitat (described by a so-called ...

  12. Fish assemblages associated with natural and anthropogenically-modified habitats in a marine embayment: comparison of baited videos and opera-house traps.

    Directory of Open Access Journals (Sweden)

    Corey B Wakefield

    Full Text Available Marine embayments and estuaries play an important role in the ecology and life history of many fish species. Cockburn Sound is one of a relative paucity of marine embayments on the west coast of Australia. Its sheltered waters and close proximity to a capital city have resulted in anthropogenic intrusion and extensive seascape modification. This study aimed to compare the sampling efficiencies of baited videos and fish traps in determining the relative abundance and diversity of temperate demersal fish species associated with naturally occurring (seagrass, limestone outcrops and soft sediment and modified (rockwall and dredge channel habitats in Cockburn Sound. Baited videos sampled a greater range of species in higher total and mean abundances than fish traps. This larger amount of data collected by baited videos allowed for greater discrimination of fish assemblages between habitats. The markedly higher diversity and abundances of fish associated with seagrass and limestone outcrops, and the fact that these habitats are very limited within Cockburn Sound, suggests they play an important role in the fish ecology of this embayment. Fish assemblages associated with modified habitats comprised a subset of species in lower abundances when compared to natural habitats with similar physical characteristics. This suggests modified habitats may not have provided the necessary resource requirements (e.g. shelter and/or diet for some species, resulting in alterations to the natural trophic structure and interspecific interactions. Baited videos provided a more efficient and non-extractive method for comparing fish assemblages and habitat associations of smaller bodied species and juveniles in a turbid environment.

  13. Survey of ecological resources at selected US Department of Energy sites

    International Nuclear Information System (INIS)

    McAllister, C.; Beckert, H.; Abrams, C.

    1996-09-01

    The U.S. Department of Energy (DOE) owns and manages a wide range of ecological resources. During the next 30 years, DOE Headquarters and Field Offices will make land-use planning decisions and conduct environmental remediation and restoration activities in response to federal and state statutes. This document fulfills, in part, DOE's need to know what types of ecological resources it currently owns and manages by synthesizing information on the types and locations of ecological resources at 10 DOE sites: Hanford Site, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Sandia National Laboratory, Rocky Flats Plant, Los Alamos National Laboratory, savannah River Site, Oak Ridge National Laboratory, Argonne National Laboratory, and Fernald Environmental Management Project. This report summarizes information on ecosystems, habitats, and federally listed threatened, endangered, and candidate species that could be stressed by contaminants or physical activity during the restoration process, or by the natural or anthropogenic transport of contaminants from presently contaminated areas into presently uncontaminated areas. This report also provides summary information on the ecosystems, habitats, and threatened and endangered species that exist on each of the 10 sites. Each site chapter contains a general description of the site, including information on size, location, history, geology, hydrology, and climate. Descriptions of the major vegetation and animal communities and of aquatic resources are also provided, with discussions of the treatened or endangered plant or animal species present. Site-specific ecological issues are also discussed in each site chapter. 106 refs., 11 figs., 1 tab

  14. Symbiotic germination capability of four Epipactis species (Orchidaceae) is broader than expected from adult ecology1

    Czech Academy of Sciences Publication Activity Database

    Těšitelová, Tamara; Těšitel, J.; Jersáková, Jana; Říhová, G.; Selosse,, M.-A.

    2012-01-01

    Roč. 99, č. 6 (2012), s. 1020-1032 ISSN 0002-9122 R&D Projects: GA AV ČR IAA600870802; GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60870520 Keywords : ecological niche * ectomycorrhizal ascomycete * Epipactis * habitat preferences * mixotrophy * mycoheterotrophy * orchid mycorrhiza * Orchidaceae * Pezizales * seed germination Subject RIV: EH - Ecology, Behaviour Impact factor: 2.586, year: 2012

  15. Seasonal changes in caddis larvae assemblages in river-floodplain habitats along a hydrological connectivity gradient

    NARCIS (Netherlands)

    Van den Brink, F.W.B.; Van der Velde, G.; Wijnhoven, S.

    2013-01-01

    In order to assess the impact of seasonality versus connectivity on the ecological quality of the Lower Rhine river-floodplain habitats, we studied the seasonal variation in diversity and species assemblages of caddis larvae by monthly sampling of the littoral zone of four water bodies over a

  16. Burlington Bottoms wildlife mitigation site : five-year habitat management plan, 2001-2005

    International Nuclear Information System (INIS)

    Beilke, Susan G.

    2001-01-01

    Historically the lower Columbia and Willamette River Basins were ecologically rich in both the habitat types and the species diversity they supported. This was due in part to the pattern of floods and periodic inundation of bottomlands that occurred, which was an important factor in creating and maintaining a complex system of wetland, meadow, and riparian habitats. This landscape has been greatly altered in the past 150 years, primarily due to human development and agricultural activities including cattle grazing, logging and the building of hydroelectric facilities for hydropower, navigation, flood control and irrigation in the Columbia and Willamette River Basins. The Burlington Bottoms (BB) wetlands contains some of the last remaining bottomlands in the area, supporting a diverse array of native plant and wildlife species. Located approximately twelve miles northwest of Portland and situated between the Tualatin Mountains to the west and Multnomah Channel and Sauvie Island to the east, the current habitats are remnant of what was once common throughout the region. In order to preserve and enhance this important site, a five-year habitat management plan has been written that proposes a set of actions that will carry out the goals and objectives developed for the site, which includes protecting, maintaining and enhancing wildlife habitat for perpetuity

  17. Assessing Global Marine Biodiversity Status within a Coupled Socio-Ecological Perspective

    Science.gov (United States)

    Selig, Elizabeth R.; Longo, Catherine; Halpern, Benjamin S.; Best, Benjamin D.; Hardy, Darren; Elfes, Cristiane T.; Scarborough, Courtney; Kleisner, Kristin M.; Katona, Steven K.

    2013-01-01

    People value the existence of a variety of marine species and habitats, many of which are negatively impacted by human activities. The Convention on Biological Diversity and other international and national policy agreements have set broad goals for reducing the rate of biodiversity loss. However, efforts to conserve biodiversity cannot be effective without comprehensive metrics both to assess progress towards meeting conservation goals and to account for measures that reduce pressures so that positive actions are encouraged. We developed an index based on a global assessment of the condition of marine biodiversity using publically available data to estimate the condition of species and habitats within 151 coastal countries. Our assessment also included data on social and ecological pressures on biodiversity as well as variables that indicate whether good governance is in place to reduce them. Thus, our index is a social as well as ecological measure of the current and likely future status of biodiversity. As part of our analyses, we set explicit reference points or targets that provide benchmarks for success and allow for comparative assessment of current conditions. Overall country-level scores ranged from 43 to 95 on a scale of 1 to 100, but countries that scored high for species did not necessarily score high for habitats. Although most current status scores were relatively high, likely future status scores for biodiversity were much lower in most countries due to negative trends for both species and habitats. We also found a strong positive relationship between the Human Development Index and resilience measures that could promote greater sustainability by reducing pressures. This relationship suggests that many developing countries lack effective governance, further jeopardizing their ability to maintain species and habitats in the future. PMID:23593188

  18. Systematic review of the influence of foraging habitat on red-cockaded woodpecker reproductive success.

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, James E. [North Carolina State University

    2014-04-01

    Relationships between foraging habitat and reproductive success provide compelling evidence of the contribution of specific vegetative features to foraging habitat quality, a potentially limiting factor for many animal populations. For example, foraging habitat quality likely will gain importance in the recovery of the threatened red-cockaded woodpecker Picoides borealis (RCW) in the USA as immediate nesting constraints are mitigated. Several researchers have characterized resource selection by foraging RCWs, but emerging research linking reproductive success (e.g. clutch size, nestling and fledgling production, and group size) and foraging habitat features has yet to be synthesized. Therefore, we reviewed peer-refereed scientific literature and technical resources (e.g. books, symposia proceedings, and technical reports) that examined RCW foraging ecology, foraging habitat, or demography to evaluate evidence for effects of the key foraging habitat features described in the species’ recovery plan on group reproductive success. Fitness-based habitat models suggest foraging habitat with low to intermediate pine Pinus spp. densities, presence of large and old pines, minimal midstory development, and herbaceous groundcover support more productive RCW groups. However, the relationships between some foraging habitat features and RCW reproductive success are not well supported by empirical data. In addition, few regression models account for > 30% of variation in reproductive success, and unstandardized multiple and simple linear regression coefficient estimates typically range from -0.100 to 0.100, suggesting ancillary variables and perhaps indirect mechanisms influence reproductive success. These findings suggest additional research is needed to address uncertainty in relationships between foraging habitat features and RCW reproductive success and in the mechanisms underlying those relationships.

  19. Endozoochory by free-ranging, large herbivores : Ecological correlates and perspectives for restoration

    NARCIS (Netherlands)

    Mouissie, Albert; Vos, P; Verhagen, HMC; Bakker, JP

    2005-01-01

    Seed dispersal via ingestion and defecation by large herbivores provides a possible aid for ecological restoration of plant communities, by connecting source communities of target species with habitat restoration sites. It is also a possible threat due to invasion of weeds, grasses or exotic

  20. Interdisciplinary Adventures in Perceptual Ecology

    Science.gov (United States)

    Bocast, Christopher S.

    A portfolio dissertation that began as acoustic ecology and matured into perceptual ecology, centered on ecomusicology, bioacoustics, and translational audio-based media works with environmental perspectives. The place of music in Western eco-cosmology through time provides a basis for structuring an environmental history of human sound perception. That history suggests that music may stabilize human mental activity, and that an increased musical practice may be essential for the human project. An overview of recent antecedents preceding the emergence of acoustic ecology reveals structural foundations from 20th century culture that underpin modern sound studies. The contextual role that Aldo Leopold, Jacob von Uexkull, John Cage, Marshall McLuhan, and others played in anticipating the development of acoustic ecology as an interdiscipline is detailed. This interdisciplinary aspect of acoustic ecology is defined and defended, while new developments like soundscape ecology are addressed, though ultimately sound studies will need to embrace a broader concept of full-spectrum "sensory" or "perceptual" ecology. The bioacoustic fieldwork done on spawning sturgeon emphasized this necessity. That study yielded scientific recordings and spectrographic analyses of spawning sounds produced by lake sturgeon, Acipenser fulvescens, during reproduction in natural habitats in the Lake Winnebago watershed in Wisconsin. Recordings were made on the Wolf and Embarrass River during the 2011-2013 spawning seasons. Several specimens were dissected to investigate possible sound production mechanisms; no sonic musculature was found. Drumming sounds, ranging from 5 to 7 Hz fundamental frequency, verified the infrasonic nature of previously undocumented "sturgeon thunder". Other characteristic noises of sturgeon spawning including low-frequency rumbles and hydrodynamic sounds were identified. Intriguingly, high-frequency signals resembling electric organ discharges were discovered. These

  1. Fragmentation alters stream fish community structure in dendritic ecological networks.

    Science.gov (United States)

    Perkin, Joshuah S; Gido, Keith B

    2012-12-01

    Effects of fragmentation on the ecology of organisms occupying dendritic ecological networks (DENs) have recently been described through both conceptual and mathematical models, but few hypotheses have been tested in complex, real-world ecosystems. Stream fishes provide a model system for assessing effects of fragmentation on the structure of communities occurring within DENs, including how fragmentation alters metacommunity dynamics and biodiversity. A recently developed habitat-availability measure, the "dendritic connectivity index" (DCI), allows for assigning quantitative measures of connectivity in DENs regardless of network extent or complexity, and might be used to predict fish community response to fragmentation. We characterized stream fish community structure in 12 DENs in the Great Plains, USA, during periods of dynamic (summer) and muted (fall) discharge regimes to test the DCI as a predictive model of fish community response to fragmentation imposed by road crossings. Results indicated that fish communities in stream segments isolated by road crossings had reduced species richness (alpha diversity) relative to communities that maintained connectivity with the surrounding DEN during summer and fall. Furthermore, isolated communities had greater dissimilarity (beta diversity) to downstream sites notisolated by road crossings during summer and fall. Finally, dissimilarity among communities within DENs decreased as a function of increased habitat connectivity (measured using the DCI) for summer and fall, suggesting that communities within highly connected DENs tend to be more homogeneous. Our results indicate that the DCI is sensitive to community effects of fragmentation in riverscapes and might be used by managers to predict ecological responses to changes in habitat connectivity. Moreover, our findings illustrate that relating structural connectivity of riverscapes to functional connectivity among communities might aid in maintaining metacommunity

  2. Ecological and population genetics of locally rare plants: A review

    Science.gov (United States)

    Simon A. Lei

    2001-01-01

    Plant species with limited dispersal ability, narrow geographical and physiological tolerance ranges, as well as with specific habitat and ecological requirements are likely to be rare. Small and isolated populations and species contain low levels of within-population genetic variation in many plant species. The gene pool of plants is a product of phenotype-environment...

  3. Habitat Selection and Activity Pattern of GPS Collared Sumateran Tigers

    Directory of Open Access Journals (Sweden)

    Dolly Priatna

    2012-12-01

    Full Text Available Although translocation has been used in mitigating human-carnivore conflict for decades, few studies have been conducted on the behavioral ecology of released animals. Such information is necessary in the context of sustainable forest management. In this study we determine the type of land cover used as main habitat and examine the activity pattern of translocated tigers. Between 2008 and 2010 we captured six conflict tigers and translocated them 74-1,350 km from their capture sites in Sumatera. All tigers were fitted with global positioning system (GPS collars. The collars were set to fix 24-48 location coordinates per day.  All translocated tigers showed a preference for a certain habitat type within their new home range, and tended to select the majority of natural land cover type within the landscape as their main habitat, but the availability of natural forest habitat within the landscape remains essensial for their survival. The activity of male translocated tigers differed significantly between the six time intervals of 24 hours, and their most active periods were in the afternoon (14:00-18:00 hours and in the evening (18:00-22:00 hours. Despite being preliminary, the findings of this study-which was the first such study conducted in Sumatera-highlight the conservation value of tiger translocation and provide valuable information for improving future management of conflict tigers.Keywords: activity pattern, GPS collars, habitat selection, sumateran tiger, translocation

  4. Terrestrial habitat mapping of the Oak Ridge Reservation: 1996 Summary

    International Nuclear Information System (INIS)

    Washington-Allen, R.A.; Ashwood, T.L.

    1996-09-01

    The US DOE is in the process of remediating historical contamination on the Oak Ridge Reservation (ORR). Two key components are ecological risk assessment and monitoring. In 1994 a strategy was developed and a specific program was initiated to implement the strategy for the terrestrial biota of the entire ORR. This document details results of the first task: development of a habitat map and habitat models for key species of interest. During the last 50 years ORR has been a relatively protected island of plant and animal habitats in a region of rapidly expanding urbanization. A preliminary biodiversity assessment of the ORR by the Nature Conservancy in 1995 noted 272 occurrences of significant plant and animal species and communities. Field surveys of threatened and endangered species show that the ORR contains 20 rare plant species, 4 of which are on the state list of endangered species. The rest are either on the state list of threatened species or listed as being of special concern. The ORR provides habitat for some 60 reptilian and amphibian species; more than 120 species of terrestrial birds; 32 species of waterfowl, wading birds, and shorebirds; and about 40 mammalian species. The ORR is both a refuge for rare species and a reservoir of recruitment for surrounding environments and wildlife management areas. Cedar barrens, river bluffs, and wetlands have been identified as the habitat for most rare vascular plant species on the ORR

  5. Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats.

    Science.gov (United States)

    Franssen, Nathan R; Stewart, Laura K; Schaefer, Jacob F

    2013-11-01

    Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.

  6. Inferring ecological explanations for biogeographic boundaries of parapatric Asian mountain frogs.

    Science.gov (United States)

    Hu, Junhua; Jiang, Jianping

    2018-02-02

    Identifying and understanding the mechanisms that shape barriers to dispersal and resulting biogeographic boundaries has been a longstanding, yet challenging, goal in ecology, evolution and biogeography. Characterized by stable, adjacent ranges, without any intervening physical barriers, and limited, if any, range overlap in a narrow contact zone, parapatric species are an interesting system for studying biogeographic boundaries. The geographic ranges of two parapatric frog species, Feirana quadranus and F. taihangnica, meet in a contact zone within the Qinling Mountains, an important watershed for East Asia. To identify possible ecological determinants of the parapatric range boundaries for two closely related frog species, we quantified the extent of their niche differentiation in both geographical and environmental space combining ecological niche models with an ordination technique. We tested two alternative null hypotheses (sharp environmental gradients versus a ribbon of unsuitable habitat dividing two highly suitable regions) for biogeographic boundaries, against the null expectation that environmental variation across a given boundary is no greater than expected by chance. We found that the niches of these two parapatric species are more similar than expected by chance, but not equivalent. No sharp environmental gradient was found, while a ribbon of unsuitable habitat did act as a barrier for F. quadranus, but not for F. taihangnica. Integrating our findings with historical biogeographic information, our results suggest that at a contact zone, environmental tolerance restricted F. quadranus from dispersing further north, while interspecific competition most likely prevented the southward expansion of F. taihangnica. This study highlights the importance of both climate and competition in exploring ecological explanations for parapatric range boundaries between ecologically similar frog species, in particular under the effects of changing climate.

  7. Ocean acidification alters fish populations indirectly through habitat modification

    Science.gov (United States)

    Nagelkerken, Ivan; Russell, Bayden D.; Gillanders, Bronwyn M.; Connell, Sean D.

    2016-01-01

    Ocean ecosystems are predicted to lose biodiversity and productivity from increasing ocean acidification. Although laboratory experiments reveal negative effects of acidification on the behaviour and performance of species, more comprehensive predictions have been hampered by a lack of in situ studies that incorporate the complexity of interactions between species and their environment. We studied CO2 vents from both Northern and Southern hemispheres, using such natural laboratories to investigate the effect of ocean acidification on plant-animal associations embedded within all their natural complexity. Although we substantiate simple direct effects of reduced predator-avoidance behaviour by fishes, as observed in laboratory experiments, we here show that this negative effect is naturally dampened when fish reside in shelter-rich habitats. Importantly, elevated CO2 drove strong increases in the abundance of some fish species through major habitat shifts, associated increases in resources such as habitat and prey availability, and reduced predator abundances. The indirect effects of acidification via resource and predator alterations may have far-reaching consequences for population abundances, and its study provides a framework for a more comprehensive understanding of increasing CO2 emissions as a driver of ecological change.

  8. The welfare implications of using exotic tortoises as ecological replacements.

    Science.gov (United States)

    Griffiths, Christine J; Zuël, Nicolas; Tatayah, Vikash; Jones, Carl G; Griffiths, Owen; Harris, Stephen

    2012-01-01

    Ecological replacement involves the introduction of non-native species to habitats beyond their historical range, a factor identified as increasing the risk of failure for translocations. Yet the effectiveness and success of ecological replacement rely in part on the ability of translocatees to adapt, survive and potentially reproduce in a novel environment. We discuss the welfare aspects of translocating captive-reared non-native tortoises, Aldabrachelys gigantea and Astrochelys radiata, to two offshore Mauritian islands, and the costs and success of the projects to date. Because tortoises are long-lived, late-maturing reptiles, we assessed the progress of the translocation by monitoring the survival, health, growth, and breeding by the founders. Between 2000 and 2011, a total of 26 A. gigantea were introduced to Ile aux Aigrettes, and in 2007 twelve sexually immature A. gigantea and twelve male A. radiata were introduced to Round Island, Mauritius. Annual mortality rates were low, with most animals either maintaining or gaining weight. A minimum of 529 hatchlings were produced on Ile aux Aigrettes in 11 years; there was no potential for breeding on Round Island. Project costs were low. We attribute the success of these introductions to the tortoises' generalist diet, habitat requirements, and innate behaviour. Feasibility analyses for ecological replacement and assisted colonisation projects should consider the candidate species' welfare during translocation and in its recipient environment. Our study provides a useful model for how this should be done. In addition to serving as ecological replacements for extinct Mauritian tortoises, we found that releasing small numbers of captive-reared A. gigantea and A. radiata is cost-effective and successful in the short term. The ability to release small numbers of animals is a particularly important attribute for ecological replacement projects since it reduces the potential risk and controversy associated with

  9. The welfare implications of using exotic tortoises as ecological replacements.

    Directory of Open Access Journals (Sweden)

    Christine J Griffiths

    Full Text Available Ecological replacement involves the introduction of non-native species to habitats beyond their historical range, a factor identified as increasing the risk of failure for translocations. Yet the effectiveness and success of ecological replacement rely in part on the ability of translocatees to adapt, survive and potentially reproduce in a novel environment. We discuss the welfare aspects of translocating captive-reared non-native tortoises, Aldabrachelys gigantea and Astrochelys radiata, to two offshore Mauritian islands, and the costs and success of the projects to date.Because tortoises are long-lived, late-maturing reptiles, we assessed the progress of the translocation by monitoring the survival, health, growth, and breeding by the founders. Between 2000 and 2011, a total of 26 A. gigantea were introduced to Ile aux Aigrettes, and in 2007 twelve sexually immature A. gigantea and twelve male A. radiata were introduced to Round Island, Mauritius. Annual mortality rates were low, with most animals either maintaining or gaining weight. A minimum of 529 hatchlings were produced on Ile aux Aigrettes in 11 years; there was no potential for breeding on Round Island. Project costs were low. We attribute the success of these introductions to the tortoises' generalist diet, habitat requirements, and innate behaviour.Feasibility analyses for ecological replacement and assisted colonisation projects should consider the candidate species' welfare during translocation and in its recipient environment. Our study provides a useful model for how this should be done. In addition to serving as ecological replacements for extinct Mauritian tortoises, we found that releasing small numbers of captive-reared A. gigantea and A. radiata is cost-effective and successful in the short term. The ability to release small numbers of animals is a particularly important attribute for ecological replacement projects since it reduces the potential risk and controversy

  10. Oyster larvae settle in response to habitat-associated underwater sounds.

    Science.gov (United States)

    Lillis, Ashlee; Eggleston, David B; Bohnenstiehl, DelWayne R

    2013-01-01

    Following a planktonic dispersal period of days to months, the larvae of benthic marine organisms must locate suitable seafloor habitat in which to settle and metamorphose. For animals that are sessile or sedentary as adults, settlement onto substrates that are adequate for survival and reproduction is particularly critical, yet represents a challenge since patchily distributed settlement sites may be difficult to find along a coast or within an estuary. Recent studies have demonstrated that the underwater soundscape, the distinct sounds that emanate from habitats and contain information about their biological and physical characteristics, may serve as broad-scale environmental cue for marine larvae to find satisfactory settlement sites. Here, we contrast the acoustic characteristics of oyster reef and off-reef soft bottoms, and investigate the effect of habitat-associated estuarine sound on the settlement patterns of an economically and ecologically important reef-building bivalve, the Eastern oyster (Crassostrea virginica). Subtidal oyster reefs in coastal North Carolina, USA show distinct acoustic signatures compared to adjacent off-reef soft bottom habitats, characterized by consistently higher levels of sound in the 1.5-20 kHz range. Manipulative laboratory playback experiments found increased settlement in larval oyster cultures exposed to oyster reef sound compared to unstructured soft bottom sound or no sound treatments. In field experiments, ambient reef sound produced higher levels of oyster settlement in larval cultures than did off-reef sound treatments. The results suggest that oyster larvae have the ability to respond to sounds indicative of optimal settlement sites, and this is the first evidence that habitat-related differences in estuarine sounds influence the settlement of a mollusk. Habitat-specific sound characteristics may represent an important settlement and habitat selection cue for estuarine invertebrates and could play a role in driving

  11. Oyster larvae settle in response to habitat-associated underwater sounds.

    Directory of Open Access Journals (Sweden)

    Ashlee Lillis

    Full Text Available Following a planktonic dispersal period of days to months, the larvae of benthic marine organisms must locate suitable seafloor habitat in which to settle and metamorphose. For animals that are sessile or sedentary as adults, settlement onto substrates that are adequate for survival and reproduction is particularly critical, yet represents a challenge since patchily distributed settlement sites may be difficult to find along a coast or within an estuary. Recent studies have demonstrated that the underwater soundscape, the distinct sounds that emanate from habitats and contain information about their biological and physical characteristics, may serve as broad-scale environmental cue for marine larvae to find satisfactory settlement sites. Here, we contrast the acoustic characteristics of oyster reef and off-reef soft bottoms, and investigate the effect of habitat-associated estuarine sound on the settlement patterns of an economically and ecologically important reef-building bivalve, the Eastern oyster (Crassostrea virginica. Subtidal oyster reefs in coastal North Carolina, USA show distinct acoustic signatures compared to adjacent off-reef soft bottom habitats, characterized by consistently higher levels of sound in the 1.5-20 kHz range. Manipulative laboratory playback experiments found increased settlement in larval oyster cultures exposed to oyster reef sound compared to unstructured soft bottom sound or no sound treatments. In field experiments, ambient reef sound produced higher levels of oyster settlement in larval cultures than did off-reef sound treatments. The results suggest that oyster larvae have the ability to respond to sounds indicative of optimal settlement sites, and this is the first evidence that habitat-related differences in estuarine sounds influence the settlement of a mollusk. Habitat-specific sound characteristics may represent an important settlement and habitat selection cue for estuarine invertebrates and could play a

  12. Individual variation in habitat use in two stream fish assemblages

    Directory of Open Access Journals (Sweden)

    Luisa Resende Manna

    2015-12-01

    Full Text Available The habitat use is an individual choice that is influenced by physical conditions such as substrate type, food resources availability and adequate depth. However, habitat use is often measured only through interspecific variability because intraspecific variability is supposed to be low. Here, the differences in habitat use by two stream fish assemblages in two different environments (Brazilian rainforest and semiarid were investigated at both interspecific and intraspecific levels. We performed 55 hours of underwater observation in a 200 meters long stretch in each stream and quantified the following habitat descriptors: (i water velocity, (ii distance from the stream bank, (iii substratum, (iv water column depth, (v aquatic cover, and (vi canopy percentage. To compare intra and interspecific variability we summarized the multivariate habitat use databases using Principal Components Analysis (PCA on Euclidean distance. An Analysis of Similarity (ANOSIM was performed to test the differences in habitat use by the two assemblages. Besides, in each fish community we did an Analysis of Variance (ANOVA to test within vs between species variability for individual position on each PCA axes. To go further than these univariate tests, the differences among the species and assemblages were tested with Permutational Multivariate Analysis of Variance (PERMANOVA. The habitat use between assemblages was significantly different (ANOSIM – R=0.14; p<0.001. PERMANOVA revealed significant differences among species in both assemblages (Rainforest - F=7.25; p<0.001; semiarid - F=4.84; p<0.001. Lower F values in the semiarid assemblage revealed a higher level of intraspecific variability for this assemblage. Our findings showed high intra and interspecific variability in both stream fish assemblages and highlight the importance of measuring individual’s differences for this feature of fish biodiversity. Additionally, the versatility described for tropical

  13. A concept for extraction of habitat features from laser scanning and hypersprectral imaging for evaluation of Natura 2000 sites - the ChangeHabitats2 project approach

    Science.gov (United States)

    Székely, B.; Kania, A.; Pfeifer, N.; Heilmeier, H.; Tamás, J.; Szöllősi, N.; Mücke, W.

    2012-04-01

    be immediately used in the evaluation of the Natura 2000 sites. The goal of the project is the identification of many potential habitat features that can be extracted or implied from remotely sensed data, and the development of processing chains to provide data that can be used in the everyday field work of ecological site assessment. This is a contribution of ChangeHabitats2 project financed by the European Union within the Industry Academia Partnership Pathways (IAPP), as a part of FP7 Marie Curie Actions.

  14. Maladaptive habitat selection of a migratory passerine bird in a human-modified landscape.

    Directory of Open Access Journals (Sweden)

    Franck A Hollander

    Full Text Available In human-altered environments, organisms may preferentially settle in poor-quality habitats where fitness returns are lower relative to available higher-quality habitats. Such ecological trapping is due to a mismatch between the cues used during habitat selection and the habitat quality. Maladaptive settlement decisions may occur when organisms are time-constrained and have to rapidly evaluate habitat quality based on incomplete knowledge of the resources and conditions that will be available later in the season. During a three-year study, we examined settlement decision-making in the long-distance migratory, open-habitat bird, the Red-backed shrike (Lanius collurio, as a response to recent land-use changes. In Northwest Europe, the shrikes typically breed in open areas under a management regime of extensive farming. In recent decades, Spruce forests have been increasingly managed with large-size cutblocks in even-aged plantations, thereby producing early-successional vegetation areas that are also colonised by the species. Farmland and open areas in forests create mosaics of two different types of habitats that are now occupied by the shrikes. We examined redundant measures of habitat preference (order of settlement after migration and distribution of dominant individuals and several reproductive performance parameters in both habitat types to investigate whether habitat preference is in line with habitat quality. Territorial males exhibited a clear preference for the recently created open areas in forests with higher-quality males settling in this habitat type earlier. Reproductive performance was, however, higher in farmland, with higher nest success, offspring quantity, and quality compared to open areas in forests. The results showed strong among-year consistency and we can therefore exclude a transient situation. This study demonstrates a case of maladaptive habitat selection in a farmland bird expanding its breeding range to human

  15. Enhancing and restoring habitat for the desert tortoise

    Science.gov (United States)

    Abella, Scott R.; Berry, Kristin H.

    2016-01-01

    Habitat has changed unfavorably during the past 150 y for the desert tortoise Gopherus agassizii, a federally threatened species with declining populations in the Mojave Desert and western Sonoran Desert. To support recovery efforts, we synthesized published information on relationships of desert tortoises with three habitat features (cover sites, forage, and soil) and candidate management practices for improving these features for tortoises. In addition to their role in soil health and facilitating recruitment of annual forage plants, shrubs are used by desert tortoises for cover and as sites for burrows. Outplanting greenhouse-grown seedlings, protected from herbivory, has successfully restored (>50% survival) a variety of shrubs on disturbed desert soils. Additionally, salvaging and reapplying topsoil using effective techniques is among the more ecologically beneficial ways to initiate plant recovery after severe disturbance. Through differences in biochemical composition and digestibility, some plant species provide better-quality forage than others. Desert tortoises selectively forage on particular annual and herbaceous perennial species (e.g., legumes), and forage selection shifts during the year as different plants grow or mature. Nonnative grasses provide low-quality forage and contribute fuel to spreading wildfires, which damage or kill shrubs that tortoises use for cover. Maintaining a diverse “menu” of native annual forbs and decreasing nonnative grasses are priorities for restoring most desert tortoise habitats. Reducing herbivory by nonnative animals, carefully timing herbicide applications, and strategically augmenting annual forage plants via seeding show promise for improving tortoise forage quality. Roads, another disturbance, negatively affect habitat in numerous ways (e.g., compacting soil, altering hydrology). Techniques such as recontouring road berms to reestablish drainage patterns, vertical mulching (“planting” dead plant material

  16. Differentiation and adaptive radiation of amphibious gobies (Gobiidae: Oxudercinae) in semi-terrestrial habitats.

    Science.gov (United States)

    Polgar, G; Sacchetti, A; Galli, P

    2010-11-01

    During several surveys made in the region of the lower Fly River and delta, Papua New Guinea, nine species of oxudercine gobies (Gobiidae: Oxudercinae) were recorded: Boleophthalmus caeruleomaculatus, Oxuderces wirzi, Periophthalmodon freycineti, Periophthalmus darwini, Periophthalmus novaeguineaensis, Periophthalmus takita, Periophthalmus weberi, Scartelaos histophorus and Zappa confluentus. An exploratory multivariate analysis of their habitat conditions discriminated five guilds, differentially distributed in habitats with different quantities of environmental water and three guilds corresponding to different levels of salinity. A partial correspondence between phylogenetic and ecological categories suggested the presence of parallel adaptive radiations within different genera. In particular, the species found in the most terrestrial habitats (P. weberi) was also found in the widest range of conditions, suggesting that colonization of extreme semi-terrestrial and freshwater habitats by this species was facilitated by eurytypy. It is proposed that these findings provide insight into convergent adaptations for the vertebrate eco-evolutionary transition from sea to land. © 2010 The Authors. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles.

  17. Ecological Monitoring and Compliance Program Fiscal Year 1998 Report

    International Nuclear Information System (INIS)

    Bechtel Nevada Ecological Services

    1998-01-01

    The Ecological Monitoring and Compliance program, funded through the U. S. Department of Energy/Nevada Operations Office, monitors the ecosystem of the Nevada Test Site and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by Bechtel Nevada during fiscal year 1998. Twenty-one sites for seven projects were surveyed for the presence of state or federally protected species. Three projects were in or near habitat of the threatened desert tortoise and required special clearance and transect surveys. All geospatial data collected were entered into Bechtel Nevada's Ecological Geographic Information system for use in ongoing ecosystem management of the NTS

  18. Ecological mechanisms underlying arthropod species diversity in grasslands.

    Science.gov (United States)

    Joern, Anthony; Laws, Angela N

    2013-01-01

    Arthropods are an important component of grassland systems, contributing significantly to biodiversity and ecosystem structure and function. Climate, fire, and grazing by large herbivores are important drivers in grasslands worldwide. Arthropod responses to these drivers are highly variable and clear patterns are difficult to find, but responses are largely indirect with respect to changes in resources, species interactions, habitat structure, and habitat heterogeneity resulting from interactions among fire, grazing, and climate. Here, we review these ecological mechanisms influencing grassland arthropod diversity. We summarize hypotheses describing species diversity at local and regional scales and then discuss specific factors that may affect arthropod diversity in grassland systems. These factors include direct and indirect effects of grazing, fire, and climate, species interactions, above- and belowground interactions, and landscape-level effects.

  19. Biota connect aquatic habitats throughout freshwater ecosystem mosaics

    Science.gov (United States)

    Schofield, Kate A.; Alexander, Laurie C.; Ridley, Caroline E.; Vanderhoof, Melanie; Fritz, Ken M.; Autrey, Bradley; DeMeester, Julie; Kepner, William G.; Lane, Charles R.; Leibowitz, Scott; Pollard, Amina I.

    2018-01-01

    Freshwater ecosystems are linked at various spatial and temporal scales by movements of biota adapted to life in water. We review the literature on movements of aquatic organisms that connect different types of freshwater habitats, focusing on linkages from streams and wetlands to downstream waters. Here, streams, wetlands, rivers, lakes, ponds, and other freshwater habitats are viewed as dynamic freshwater ecosystem mosaics (FEMs) that collectively provide the resources needed to sustain aquatic life. Based on existing evidence, it is clear that biotic linkages throughout FEMs have important consequences for biological integrity and biodiversity. All aquatic organisms move within and among FEM components, but differ in the mode, frequency, distance, and timing of their movements. These movements allow biota to recolonize habitats, avoid inbreeding, escape stressors, locate mates, and acquire resources. Cumulatively, these individual movements connect populations within and among FEMs and contribute to local and regional diversity, resilience to disturbance, and persistence of aquatic species in the face of environmental change. Thus, the biological connections established by movement of biota among streams, wetlands, and downstream waters are critical to the ecological integrity of these systems. Future research will help advance our understanding of the movements that link FEMs and their cumulative effects on downstream waters.

  20. Biodiversity and Ecosystem Functioning: Exploring Principles of Ecology with Agricultural Plants

    Science.gov (United States)

    Ruesink, Jennifer; O'Connor, Eileen; Sparks, Grace

    2006-01-01

    To date, little of the ecological research on biological diversity and ecosystem functioning has been carried out in agricultural systems, despite the fact that agriculture is a major contributor to loss of native habitats and species. However, agricultural research has demonstrated that polycultures of multiple crop species can have higher total…