WorldWideScience

Sample records for h2o maser observations

  1. Chandra and XMM–Newton Observations of H 2 O Maser Galaxy ...

    Indian Academy of Sciences (India)

    For H2O megamaser galaxy Mrk 266, its Chandra and XMM–Newton data are analyzed here. It shows existence of two obscured nuclei (separation is ∼ 5''). Our preferred model, the high energy reflected model can fit the hard component of both nuclei spectra well.

  2. Chandra and XMM–Newton Observations of H 2 O Maser Galaxy ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... For H2O megamaser galaxy Mrk 348, Chandra and XMM–Newton data are analysed. The nuclear fitting results of XMM–Newton data suggest the possible existence of a heavily obscured AGN. But the nuclear spectrum extracted from Chandra cannot be well-fitted by the best fitting model for XMM–Newton.

  3. Chandra and XMM–Newton Observations of H2O Maser Galaxy Mrk ...

    Indian Academy of Sciences (India)

    For its relative lower resolution (∼ 6 ), XMM–Newton. 16:20.0. 8:20.0. 19.0. 18.0 ... can not resolve these two nucleus. It also shows the extended ... Chandra and XMM–Newton Observations. 181. 10. 0.01. 2×10 3. 5×10 3. 0.02 normaliz ed counts s. 1 ke. V. 1. 0.5. 1. 1.5. 2. 2.5. 0. 5×10 3. 0.01 residuals. Energy (keV). (c). 10.

  4. Rapidly increasing collimation and magnetic field changes of a protostellar H2O maser outflow

    Science.gov (United States)

    Surcis, G.; Vlemmings, W. H. T.; van Langevelde, H. J.; Goddi, C.; Torrelles, J. M.; Cantó, J.; Curiel, S.; Kim, S.-W.; Kim, J.-S.

    2014-05-01

    Context. W75N(B) is a massive star-forming region that contains three radio continuum sources (VLA 1, VLA 2, and VLA 3), which are thought to be three massive young stellar objects at three different evolutionary stages. VLA 1 is the most evolved and VLA 2 the least evolved source. The 22 GHz H2O masers associated with VLA 1 and VLA 2 have been mapped at several epochs over eight years. While the H2O masers in VLA 1 show a persistent linear distribution along a radio jet, those in VLA 2 are distributed around an expanding shell. Furthermore, H2O maser polarimetric measurements revealed magnetic fields aligned with the two structures. Aims: Using new polarimetric observations of H2O masers, we aim to confirm the elliptical expansion of the shell-like structure around VLA 2 and, at the same time, to determine if the magnetic fields around the two sources have changed. Methods: The NRAO Very Long Baseline Array was used to measure the linear polarization and the Zeeman-splitting of the 22 GHz H2O masers towards the massive star-forming region W75N(B). Results: The H2O maser distribution around VLA 1 is unchanged from that previously observed. We made an elliptical fit of the H2O masers around VLA 2. We find that the shell-like structure is still expanding along the direction parallel to the thermal radio jet of VLA 1. While the magnetic field around VLA 1 has not changed in the past ~7 years, the magnetic field around VLA 2 has changed its orientation according to the new direction of the major-axis of the shell-like structure and it is now aligned with the magnetic field in VLA 1. Appendix A is available in electronic form at http://www.aanda.org

  5. Monitoring Observatinos of H2O and SiO Masers Toward Post-AGB Stars

    Science.gov (United States)

    Kim, Jaeheon; Cho, Se-Hyung; Yoon, Dong-Hwan

    2016-12-01

    We present the results of simultaneous monitoring observations of H_2O 6_{1,6}-5_{2,3} (22 GHz) and SiO J=1-0, 2-1, 3-2 maser lines (43, 86, 129 GHz) toward five post-AGB (candidate) stars, using the 21-m single-dish telescopes of the Korean VLBI Network. Depending on the target objects, 7 - 11 epochs of data were obtained. We detected both H_2O and SiO maser lines from four sources: OH16.1-0.3, OH38.10-0.13, OH65.5+1.3, and IRAS 19312+1950. We could not detect H_2O maser emission toward OH13.1+5.1 between the late OH/IR and post-AGB stage. The detected H_2O masers show typical double-peaked line profiles. The SiO masers from four sources, except IRAS 19312+1950, show the peaks around the stellar velocity as a single peak, whereas the SiO masers from IRAS 19312+1950 occur above the red peak of the H_2O maser. We analyzed the properties of detected maser lines, and investigated their evolutionary state through comparison with the full widths at zero power. The distribution of observed target sources was also investigated in the IRAS two-color diagram in relation with the evolutionary stage of post-AGB stars. From our analyses, the evolutionary sequence of observed sources is suggested as OH65.5+1.3 → OH13.1+5.1 → OH16.1-0.3 → OH38.10-0.13, except for IRAS 19312+1950. In addition, OH13.1+5.1 from which the H_2O maser has not been detected is suggested to be on the gateway toward the post-AGB stage. With respect to the enigmatic object, IRAS 19312+1950, we could not clearly figure out its nature. To properly explain the unusual phenomena of SiO and H_2O masers, it is essential to establish the relative locations and spatial distributions of two masers using VLBI technique. We also include the 1.2 - 160 μm spectral energy distribution using photometric data from the following surveys: 2MASS, WISE, MSX, IRAS, and AKARI (IRC and FIS). In addition, from the IRAS LRS spectra, we found that the depth of silicate absorption features shows significant variations

  6. Bolometric Luminosity Correction of H2O Maser AGNs Q. Guo1,2, JS ...

    Indian Academy of Sciences (India)

    For all H2O maser sources, we collected their extinction-correction [O III] line and the intrinsic X-ray ... and C[O III] (right) of our maser AGN sample. C[O III] is ... 224. Q. Guo et al. Table 1. The data of H2O maser host AGN. Source. Type. Lc. [O III]. LX. Lb. C[O III]. LH2O. NGC 262 (Mrk 348). Sy2. 41.9. 42.48∼43.98. 44.5. 440.

  7. Dense Molecular Gas and H2O Maser Emission in Galaxies F ...

    Indian Academy of Sciences (India)

    and H2O non-detections. Here gas properties of these three types were analysed and compared. 2. Sample and analysis. All 62 HCN-detected galaxies with their corresponding data were collected, includ- ing luminosity distance, infrared luminosities, HCN emission luminosities, and the isotropic maser luminosities.

  8. Registration of H2O and SiO masers in the Calabash Nebula, to confirm the Planetary Nebula paradigm

    Science.gov (United States)

    Dodson, R.; Rioja, M.; Bujarrabal, V.; Kim, J.; Cho, SH; Choi, YK; Youngjoo, Y.

    2018-01-01

    We report on the astrometric registration of VLBI images of the SiO and H2O masers in OH 231.8+4.2, the iconic Proto-Planetary Nebula also known as the Calabash nebula, using the KVN and Source/Frequency Phase Referencing. This, for the first time, robustly confirms the alignment of the SiO masers, close to the AGB star, driving the bi-lobe structure with the water masers in the out-flow. We are able to trace the bulk motions for the H2O masers over the last few decades to be 19 km s-1 and deduce that the age of this expansion stage is 38±2 years. The combination of this result with the distance allows a full 3D reconstruction, and confirms that the H2O masers lie on and expand along the known large-scale symmetry axis and that the outflow is only a few decades old, so mass loss is almost certainly on-going. Therefore we conclude that the SiO emission marks the stellar core of the nebular, the H2O emission traces the expansion, and that there must be multiple epochs of ejection to drive the macro-scale structure.

  9. Multi-Wavelength Studies on H 2 O Maser Host Galaxies

    Indian Academy of Sciences (India)

    Our work in this field focusses on two projects: X-ray data analysis of individual maser source using X-ray penetrability to explore maser host obscured AGN; ... scale, we find that: (1) maser host galaxies tend to have higher nuclear radio luminosity; (2) the spectral index of both samples is comparable (∼ 0.6), within the error ...

  10. A very young, compact bipolar H2O maser outflow in the intermediate-mass star-forming LkHα 234 region

    Science.gov (United States)

    Torrelles, J. M.; Curiel, S.; Estalella, R.; Anglada, G.; Gómez, J. F.; Cantó, J.; Patel, N. A.; Trinidad, M. A.; Girart, J. M.; Carrasco-González, C.; Rodríguez, L. F.

    2014-07-01

    We report multi-epoch Very Long Baseline Interferometry (VLBI) H2O maser observations towards the compact cluster of young stellar objects (YSOs) close to the Herbig Be star LkHα 234. This cluster includes LkHα 234 and at least nine more YSOs that are formed within projected distances of ˜10 arcsec (˜9000 au). We detect H2O maser emission towards four of these YSOs. In particular, our VLBI observations (including proper motion measurements) reveal a remarkable very compact (˜0.2 arcsec = ˜180 au), bipolar H2O maser outflow emerging from the embedded YSO Very Large Array (VLA) 2. We estimate a kinematic age of ˜40 yr for this bipolar outflow, with expanding velocities of ˜20 km s-1 and momentum rate Ṁw Vw ≃ 10-4-10-3 M⊙ yr-1 km s-1 × (Ω/4π), powered by a YSO of a few solar masses. We propose that the outflow is produced by recurrent episodic jet ejections associated with the formation of this YSO. Short-lived episodic ejection events have previously been found towards high-mass YSOs. We show now that this behaviour is also present in intermediate-mass YSOs. These short-lived episodic ejections are probably related to episodic increases in the accretion rate, as observed in low-mass YSOs. We predict the presence of an accretion disc associated with VLA 2. If detected, this would represent one of the few known examples of intermediate-mass stars with a disc-YSO-jet system at scales of a few hundred astronomical units.

  11. TES/Aura L2 H2O Limb Special Observation V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The TES Aura L2 H2O data consist of information for one molecular species for an entire Global Survey or Special Observation. TES Level 2 data contain retrieved...

  12. Astrometry and Spatio-kinematics of H2O Masers in the Massive Star-forming Region NGC 6334I(North) with VERA

    Science.gov (United States)

    Chibueze, James O.; Omodaka, Toshihiro; Handa, Toshihiro; Imai, Hiroshi; Kurayama, Tomoharu; Nagayama, Takumi; Sunada, Kazuyoshi; Nakano, Makoto; Hirota, Tomoya; Honma, Mareki

    2014-04-01

    We measured the trigonometric parallax of an H2O maser source associated with the massive star-forming region NGC 6334I(North), hereafter as NGC 6334I(N), with the VLBI Exploration of Radio Astrometry. The derived annual parallax is 0.789 ± 0.161 mas, corresponding to a distance of 1.26^{+0.33}_{-0.21} kpc. Using the new distance, we recalculated the physical parameters (masses and luminosities) of the dust continuum cores in the region, and the revised parameters are only ~50% of their originally reported values. We also traced 23 relative proper motions of the H2O masers associated with SMA1 (central millimeter source in the region) between epochs, which exhibit an average amplitude of maser proper motion of ~2.03 mas yr-1 (~12.22 km s-1), tracing a bipolar outflow. The bipolar outflow structure extends through ~600 mas (~720 AU), with a dynamical timescale of ~295 yr. Using an expanding flow model, we derived the most plausible dynamical center of the outflow, pointing to SMA1b (1.3 cm and 7 mm continuum source) as the outflow driving source. Based on our results and other existing parallax results, we derive the pitch angles of the Sagittarius arm as 6.°2 ± 5.°4 along the Galactic longitude range of ~0.°7 - ~40.°1 assuming a perfect logarithmic spiral. We derived the peculiar motion of NGC 6334I(N) to be -4 ± 1 km s-1 toward the Galactic center, 8 ± 2 km s-1 in the direction of the Galactic rotation, and 25 ± 2 km s-1 toward the Galactic north pole.

  13. Ices on Charon: Distribution of H2O and NH3 from New Horizons LEISA observations

    Science.gov (United States)

    Dalle Ore, C. Morea; Protopapa, S.; Cook, J. C.; Grundy, W. M.; Cruikshank, D. P.; Verbiscer, A. J.; Ennico, K.; Olkin, C. B.; Stern, S. A.; Weaver, H. A.; Young, L. A.; New Horizons Science Team

    2018-01-01

    Charon, the largest moon of Pluto, appeared as a fairly homogeneous, gray, icy world to New Horizons during closest approach on July 14th, 2015. Charon's sub-Pluto hemisphere was scanned by the Ralph/LEISA near-IR spectrograph providing an unprecedented opportunity to measure its surface composition. We apply a statistical clustering tool to identify spectrally distinct terrains and a radiative transfer approach to study the variations of the 2.0-μm H2O ice band. We map the distribution of the ices previously reported to be present on Charon's surface, namely H2O and the products of NH3 in H2O. We find that H2O ice is mostly in the crystalline phase, confirming previous studies. The regions with the darkest albedos show the strongest signature of amorphous-phase ice, although the crystalline component is still strong. The brighter albedo regions, often corresponding to crater ejecta blankets, are characterized by larger H2O grains, possibly an indication of a younger age. We observe two different behaviors for the two absorption bands representing NH3 in H2O. The 2.21-μm band tends to cluster more in the northern areas compared to the ∼2.01-μm band. Both bands are present in the brighter crater rays, but not all craters show both bands. The 2.21-μm band is also clearly present on the smaller moons Hydra and Nix. These results hint that different physical conditions may determine the appearance or absence of these two different forms of NH3 in H2O ice in the Pluto system. We also investigate the blue slope affecting the spectrum at wavelengths longer than ∼1.8 μm previously reported by several authors. We find that the slope is common among the objects in the Pluto system, Charon, the smaller moons Nix and Hydra, and the darkest terrains on Pluto. It also characterizes the analog ice tholin obtained from irradiation of Pluto-specific materials (a mixture of N2, CH4, and CO ices) in the laboratory. Our modeling results show that Pluto ice tholins are

  14. Herschel-HIFI observations of H2O in high-mass star-forming regions : First results

    NARCIS (Netherlands)

    van der Tak, F.; Herpin, F.; Wyrowski, F.; Röllig, M.; Simon, R.; Ossenkopf, V.; Stutzki, J.

    2011-01-01

    This paper reviews the first results of observations of H2O line emission with Herschel-HIFI towards high-mass star-forming regions, obtained within the WISH guaranteed time program. The data reveal three kinds of gas-phase H2O: "cloud water" in cold tenuous foreground clouds, "envelope water" in

  15. Herschel-HIFI observations of H2O in high-mass star-forming regions: first results

    NARCIS (Netherlands)

    van der Tak, F.; Herpin, F.; Wyrowski, F.

    2011-01-01

    This paper reviews the first results of observations of H2O line emission with Herschel-HIFI towards high-mass star-forming regions, obtained within the WISH guaranteed time program. The data reveal three kinds of gas-phase H2O: "cloud water" in cold tenuous foreground clouds, "envelope water" in

  16. Retrieval of H2O abundance in Titan's stratosphere from CIRS and Herschel disc-averaged observations

    Science.gov (United States)

    Bauduin, S.; Irwin, P. G. J.; Cottini, V.; Lellouch, E.; Moreno, R.; Nixon, C. A.; Teanby, N. A.

    2017-09-01

    Since its first measurement 20 years ago by the Infrared Space Observatory (ISO), the water (H2O) mole fraction in Titan's stratosphere remains uncertain, due to large differences between the determinations from available measurements. This has notably prevented current models from fully constraining the oxygen flux flowing into Titan's atmosphere. In this work, we aim to understand the differences between the H2O mole fractions estimated from Herschel and Cassini/CIRS observations. This is done by (re)analysing disc-averaged observations from both instruments using an identical retrieval scheme. Previous differences in modelling/retrieval methods, along with differing viewing geometries between the two datasets are in this way mainly avoided. The whole methodology will be presented and the comparison between the two sets of H2O mole fractions will be discussed.

  17. Chandra and XMM–Newton Observations of H2O Maser Galaxy Mrk ...

    Indian Academy of Sciences (India)

    component, another power-law ( = 2.45 ± 0.07) for the soft component and a narrow Gaussian fitted to the Fe Kα line (EW∼48 eV) (see Fig. 2). The common model for Seyfert 2 and the above models cannot be well-fitted with the Chandra spectra. Residuals in terms of sigma show significant excess in 2–4 KeV and over 8 ...

  18. Interannual observations and quantification of summertime H2O ice deposition on the Martian CO2 ice south polar cap

    Science.gov (United States)

    Brown, Adrian J.; Piqueux, Sylvain; Titus, Timothy N.

    2014-01-01

    The spectral signature of water ice was observed on Martian south polar cap in 2004 by the Observatoire pour l'Mineralogie, l'Eau les Glaces et l'Activite (OMEGA) ( Bibring et al., 2004). Three years later, the OMEGA instrument was used to discover water ice deposited during southern summer on the polar cap ( Langevin et al., 2007). However, temporal and spatial variations of these water ice signatures have remained unexplored, and the origins of these water deposits remains an important scientific question. To investigate this question, we have used observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on the Mars Reconnaissance Orbiter (MRO) spacecraft of the southern cap during austral summer over four Martian years to search for variations in the amount of water ice. We report below that for each year we have observed the cap, the magnitude of the H2O ice signature on the southern cap has risen steadily throughout summer, particularly on the west end of the cap. The spatial extent of deposition is in disagreement with the current best simulations of deposition of water ice on the south polar cap (Montmessin et al., 2007). This increase in water ice signatures is most likely caused by deposition of atmospheric H2O ice and a set of unusual conditions makes the quantification of this transport flux using CRISM close to ideal. We calculate a ‘minimum apparent‘ amount of deposition corresponding to a thin H2O ice layer of 0.2 mm (with 70% porosity). This amount of H2O ice deposition is 0.6–6% of the total Martian atmospheric water budget. We compare our ‘minimum apparent’ quantification with previous estimates. This deposition process may also have implications for the formation and stability of the southern CO2 ice cap, and therefore play a significant role in the climate budget of modern day Mars.

  19. A Characteristic Transmission Spectrum dominated by H$_{2}$O applies to the majority of HST/WFC3 exoplanet observations

    OpenAIRE

    Iyer, Aishwarya R.; Swain, Mark R.; Zellem, Robert T.; Line, Michael R.; Roudier, Gael; Rocha, Graca; Livingston, John H.

    2015-01-01

    Currently, 19 transiting exoplanets have published transmission spectra obtained with the Hubble/WFC3 G141 near-IR grism. Using this sample, we have undertaken a uniform analysis incorporating measurement-error debiasing of the spectral modulation due to H$_{2}$O, measured in terms of the estimated atmospheric scale height, ${H_s}$. For those planets with a reported H$_{2}$O detection (10 out of 19), the spectral modulation due to H$_{2}$O ranges from 0.9 to 2.9~${H_s}$ with a mean value of 1...

  20. Observations of middle atmospheric H2O and O3 during the 2010 major sudden stratospheric warming by a network of microwave radiometers

    Directory of Open Access Journals (Sweden)

    N. Kämpfer

    2012-08-01

    Full Text Available In this study, we present middle atmospheric water vapor (H2O and ozone (O3 measurements obtained by ground-based microwave radiometers at three European locations in Bern (47° N, Onsala (57° N and Sodankylä (67° N during Northern winter 2009/2010. In January 2010, a major sudden stratospheric warming (SSW occurred in the Northern Hemisphere whose signatures are evident in the ground-based observations of H2O and O3. The observed anomalies in H2O and O3 are mostly explained by the relative location of the polar vortex with respect to the measurement locations. The SSW started on 26 January 2010 and was most pronounced by the end of January. The zonal mean temperature in the middle stratosphere (10 hPa increased by approximately 25 Kelvin within a few days. The stratospheric vortex weakened during the SSW and shifted towards Europe. In the mesosphere, the vortex broke down, which lead to large scale mixing of polar and midlatitudinal air. After the warming, the polar vortex in the stratosphere split into two weaker vortices and in the mesosphere, a new, pole-centered vortex formed with maximum wind speed of 70 m s−1 at approximately 40° N. The shift of the stratospheric vortex towards Europe was observed in Bern as an increase in stratospheric H2O and a decrease in O3. The breakdown of the mesospheric vortex during the SSW was observed at Onsala and Sodankylä as a sudden increase in mesospheric H2O. The following large-scale descent inside the newly formed mesospheric vortex was well captured by the H2O observations in Sodankylä. In order to combine the H2O observations from the three different locations, we applied the trajectory mapping technique on our H2O observations to derive synoptic scale maps of the H2O distribution. Based on our observations and the 3-D wind field, this method allows determining the approximate development of the stratospheric and mesospheric polar vortex and demonstrates the potential of a network of ground

  1. Accomplishments of the MUSICA project to provide accurate, long-term, global and high-resolution observations of tropospheric {H2O,δD} pairs - a review

    Science.gov (United States)

    Schneider, Matthias; Wiegele, Andreas; Barthlott, Sabine; González, Yenny; Christner, Emanuel; Dyroff, Christoph; García, Omaira E.; Hase, Frank; Blumenstock, Thomas; Sepúlveda, Eliezer; Mengistu Tsidu, Gizaw; Takele Kenea, Samuel; Rodríguez, Sergio; Andrey, Javier

    2016-07-01

    In the lower/middle troposphere, {H2O,δD} pairs are good proxies for moisture pathways; however, their observation, in particular when using remote sensing techniques, is challenging. The project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) addresses this challenge by integrating the remote sensing with in situ measurement techniques. The aim is to retrieve calibrated tropospheric {H2O,δD} pairs from the middle infrared spectra measured from ground by FTIR (Fourier transform infrared) spectrometers of the NDACC (Network for the Detection of Atmospheric Composition Change) and the thermal nadir spectra measured by IASI (Infrared Atmospheric Sounding Interferometer) aboard the MetOp satellites. In this paper, we present the final MUSICA products, and discuss the characteristics and potential of the NDACC/FTIR and MetOp/IASI {H2O,δD} data pairs. First, we briefly resume the particularities of an {H2O,δD} pair retrieval. Second, we show that the remote sensing data of the final product version are absolutely calibrated with respect to H2O and δD in situ profile references measured in the subtropics, between 0 and 7 km. Third, we reveal that the {H2O,δD} pair distributions obtained from the different remote sensors are consistent and allow distinct lower/middle tropospheric moisture pathways to be identified in agreement with multi-year in situ references. Fourth, we document the possibilities of the NDACC/FTIR instruments for climatological studies (due to long-term monitoring) and of the MetOp/IASI sensors for observing diurnal signals on a quasi-global scale and with high horizontal resolution. Fifth, we discuss the risk of misinterpreting {H2O,δD} pair distributions due to incomplete processing of the remote sensing products.

  2. Origin of observed periodic components in astrophysical masers' spectra

    Science.gov (United States)

    Siparov, S.; Samodurov, V.; Laptev, G.

    2017-05-01

    Further analysis of data previously obtained during the monitoring observations of 49 astrophysical water (22 GHz) masers shows that in some cases the intensity of an individual component of the maser spectrum changes periodically, on time-scales of tens of minutes. It is argued that this variation cannot be the effect of instrumental errors, weather conditions or interstellar medium instabilities, because only a single feature of the maser spectrum fluctuates but not the whole spectrum. The suggested interpretation of this effect is based on the optic-metrical parametric resonance produced by gravitational radiation emitted by short-period binary stars, with the examples of such binaries sufficing the conditions given.

  3. Quasi 18-hour wave activity in ground-based observed mesospheric H2O over Bern, Switzerland

    Science.gov (United States)

    Lainer, Martin; Hocke, Klemens; Rüfenacht, Rolf; Schranz, Franziska; Kämpfer, Niklaus

    2017-04-01

    Observations of oscillations in the abundance of middle atmospheric trace gases can provide insight into the dynamics of the middle atmosphere. Long term, high temporal resolution and continuous measurements of dynamical tracers within the strato- and mesosphere are rare, but would be important to better understand the impact of planetary and gravity waves on the middle atmosphere. Here we report on water vapor measurements from the NDACC (Network for the Detection of Atmospheric Composition Change) affiliated ground-based microwave radiometer MIAWARA located close to Bern during two winter periods of 6 months from October to March. Oscillations with periods between 6 and 30 hours are analyzed in the pressure range 0.01-10 hPa. Seven out of twelve months have the highest wave amplitudes between 15 and 21 hour periods in the mesosphere above 0.1 hPa. The quasi 18-hour wave is studied in more detail. We examine the temporal behavior and use SD-WACCM simulations for comparison and to derive characteristic wave features considering low-frequency gravity-waves being involved in the observed water vapor oscillations. The 18-hour wave is also found in SD-WACCM horizontal wind data and in measured zonal wind from the microwave Doppler wind radiometer WIRA. For two cases in January 2016 we derive the propagation direction, intrinsic period, horizontal and vertical wavelength of the model resolved 18-hour wave. A south-westward to westward propagation with horizontal wavelengths of 1884 and 1385 km and intrinsic periods close to 14 h are found. Vertical wavelengths are typically below 6 km. We were not able to single out a distinct temporal correlation between 18-hour band-pass filtered water vapor and wind data time series, although H2O should mostly be dynamically controlled in the mesosphere and sub-diurnal time range. More sophisticated numerical model studies are needed to uncover the manifold effects of gravity waves on the abundance of chemical species.

  4. Dynamic processes governing lower-tropospheric HDO/H2O ratios as observed from space and ground

    NARCIS (Netherlands)

    Frankenberg, C.; Warneke, T; Yoshimura, K.; Aben, I.; Butz, A.; Deutscher, N.; Griffith, D.; Hase, F.; Notholt, J; Schneider, M.; Schrijver, J; Röckmann, T.|info:eu-repo/dai/nl/304838233

    2009-01-01

    The hydrological cycle and its response to environmental variability such as temperature changes is of prime importance for climate reconstruction and prediction. We retrieved deuterated water/water (HDO/H2O) abundances using spaceborne absorption spectroscopy, providing an almost global perspective

  5. THz absorption spectrum of the CO2–H2O complex: Observation and assignment of intermolecular van der Waals vibrations

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, J.; Wallin Mahler Andersen, Denise

    2014-01-01

    Terahertz absorption spectra have been recorded for the weakly bound CO2–H2O complex embedded in cryogenic neon matrices at 2.8 K. The three high-frequency van der Waals vibrational transitions associated with out-of-plane wagging, in-plane rocking, and torsional motion of the isotopic H2O subunit...... have been assigned and provide crucial observables for benchmark theoretical descriptions of this systems’ flat intermolecular potential energy surface. A (semi)-empirical value for the zero-point energy of 273 ± 15 cm−1 from the class of intermolecular van der Waals vibrations is proposed...

  6. Variations in H2O+/H2O ratios toward massive star-forming regions

    NARCIS (Netherlands)

    Wyrowski, F.; van der Tak, F.; Herpin, F.; Baudry, A.; Bontemps, S.; Chavarria, L.; Frieswijk, W.; Jacq, T.; Marseille, M.; Shipman, R.; van Dishoeck, E. F.; Benz, A. O.; Caselli, P.; Hogerheijde, M. R.; Johnstone, D.; Liseau, R.; Bachiller, R.; Benedettini, M.; Bergin, E.; Bjerkeli, P.; Blake, G.; Braine, J.; Bruderer, S.; Cernicharo, J.; Codella, C.; Daniel, F.; di Giorgio, A. M.; Dominik, C.; Doty, S. D.; Encrenaz, P.; Fich, M.; Fuente, A.; Giannini, T.; Goicoechea, J. R.; de Graauw, Th; Helmich, F.; Herczeg, G. J.; Jørgensen, J. K.; Kristensen, L. E.; Larsson, B.; Lis, D.; McCoey, C.; Melnick, G.; Nisini, B.; Olberg, M.; Parise, B.; Pearson, J. C.; Plume, R.; Risacher, C.; Santiago, J.; Saraceno, P.; Tafalla, M.; van Kempen, T. A.; Visser, R.; Wampfler, S.; Yıldız, U. A.; Black, J. H.; Falgarone, E.; Gerin, M.; Roelfsema, P.; Dieleman, P.; Beintema, D.; de Jonge, A.; Whyborn, N.; Stutzki, J.; Ossenkopf, V.

    2010-01-01

    Early results from the Herschel Space Observatory revealed the water cation H2O+ to be an abundant ingredient of the interstellar medium. Here we present new observations of the H2O and H2O+ lines at 1113.3 and 1115.2 GHz using the Herschel Space Observatory toward a sample of high-mass star-forming

  7. CH4, CO, and H2O spectroscopy for the Sentinel-5 Precursor mission: an assessment with the Total Carbon Column Observing Network measurements

    Directory of Open Access Journals (Sweden)

    P. O. Wennberg

    2012-06-01

    Full Text Available The TROPOspheric Monitoring Instrument (TROPOMI will be part of ESA's Sentinel-5 Precursor (S5P satellite platform scheduled for launch in 2015. TROPOMI will monitor methane and carbon monoxide concentrations in the Earth's atmosphere by measuring spectra of back-scattered sunlight in the short-wave infrared (SWIR. S5P will be the first satellite mission to rely uniquely on the spectral window at 4190–4340 cm−1 (2.3 μm to retrieve CH4 and CO. In this study, we investigated if the absorption features of the three relevant molecules CH4, CO, and H2O are adequately known. To this end, we retrieved total columns of CH4, CO, and H2O from absorption spectra measured by two ground-based Fourier transform spectrometers that are part of the Total Carbon Column Observing Network (TCCON. The retrieval results from the 4190–4340 cm−1 range at the TROPOMI resolution (0.45 cm−1 were then compared to the CH4 results obtained from the 6000 cm−1 region, and the CO results obtained from the 4190–4340 cm−1 region at the higher TCCON resolution (0.02 cm−1. For TROPOMI-like settings, we were able to reproduce the CH4 columns to an accuracy of 0.3% apart from a constant bias of 1%. The CO retrieval accuracy was, through interference, systematically influenced by the shortcomings of the CH4 and H2O spectroscopy. In contrast to CH4, the CO column error also varied significantly with atmospheric H2O content. Unaddressed, this would introduce seasonal and latitudinal biases to the CO columns retrieved from TROPOMI measurements. We therefore recommend further effort from the spectroscopic community to be directed at the H2O and CH4 spectroscopy in the 4190–4340 cm−1 region.

  8. Water in low-mass star-forming regions with Herschel (WISH-LM). High-velocity H2O bullets in L1448-MM observed with HIFI

    Science.gov (United States)

    Kristensen, L. E.; van Dishoeck, E. F.; Tafalla, M.; Bachiller, R.; Nisini, B.; Liseau, R.; Yıldız, U. A.

    2011-07-01

    Herschel-HIFI observations of water in the low-mass star-forming object L1448-MM, known for its prominent outflow, are presented, as obtained within the "Water in star-forming regions with Herschel" (WISH) key programme. Six H216O lines are targeted and detected (Eup/kB ~ 50-250 K), as is CO J = 10-9 (Eup/kB ~ 305 K), and tentatively H218O 110-101 at 548 GHz. All lines show strong emission in the "bullets" at |3| > 50 km s-1 from the source velocity, in addition to a broad, central component and narrow absorption. The bullets are seen much more prominently in H2O than in CO with respect to the central component, and show little variation with excitation in H2O profile shape. Excitation conditions in the bullets derived from CO lines imply a temperature >150 K and density >105 cm-3, similar to that of the broad component. The H2O/CO abundance ratio is similar in the "bullets" and the broad component, ~0.05-1.0, in spite of their different origins in the molecular jet and the interaction between the outflow and the envelope. The high H2O abundance indicates that the bullets are H2 rich. The H2O cooling in the "bullets" and the broad component is similar and higher than the CO cooling in the same components. These data illustrate the power of Herschel-HIFI to disentangle different dynamical components in low-mass star-forming objects and determine their excitation and chemical conditions. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices and Tables 2 and 3 are available in electronic form at http://www.aanda.org

  9. First results of ISO-SWS observations of Saturn : Detection of CO2, CH3C2H, C4H2 and tropospheric H2O

    NARCIS (Netherlands)

    de Graauw, Th.; Feuchtgruber, H.; Bezard, B.; Drossart, P.; Encrenaz, T.; Beintema, D. A.; Griffin, M.; Heras, A.; Kessler, M.; Leech, K.; Lellouch, E.; Morris, P.; Roelfsema, P. R.; Roos-Serote, M.; Salama, A.; Vandenbussche, B.; Valentijn, E. A.; Davis, G. R.; Naylor, D. A.

    The spectrum of Saturn has been recorded between 4.5 and 16.0 mu m with the grating mode of the Short-Wavelength Spectrometer (SWS) of ISO. The resolving power is 1500. The main results of this observation are (1) the detection of CO2 CH3C2H and C4H2 in the stratosphere and (2) the detection of H2O

  10. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2

    Science.gov (United States)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.

    2013-01-01

    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  11. The Water Abundance behind Interstellar Shocks: Results from Herschel/PACS and Spitzer/IRS Observations of H2O, CO, and H2

    Science.gov (United States)

    Neufeld, David A.; Gusdorf, Antoine; Güsten, Rolf; Herczeg, Greg J.; Kristensen, Lars; Melnick, Gary J.; Nisini, Brunella; Ossenkopf, Volker; Tafalla, Mario; van Dishoeck, Ewine F.

    2014-02-01

    We have investigated the water abundance in shock-heated molecular gas, making use of Herschel measurements of far-infrared (IR) CO and H2O line emissions in combination with Spitzer measurements of mid-IR H2 rotational emissions. We present far-IR line spectra obtained with Herschel's Photodetector Array Camera and Spectrometer instrument in range spectroscopy mode toward two positions in the protostellar outflow NGC 2071 and one position each in the supernova remnants W28 and 3C391. These spectra provide unequivocal detections, at one or more positions, of 12 rotational lines of water, 14 rotational lines of CO, 8 rotational lines of OH (4 lambda doublets), and 7 fine-structure transitions of atoms or atomic ions. We first used a simultaneous fit to the CO line fluxes, along with H2 rotational line fluxes measured previously by Spitzer, to constrain the temperature and density distribution within the emitting gas; we then investigated the water abundances implied by the observed H2O line fluxes. The water line fluxes are in acceptable agreement with standard theoretical models for nondissociative shocks that predict the complete vaporization of grain mantles in shocks of velocity v ~ 25 km s-1, behind which the characteristic gas temperature is ~1300 K and the H2O/CO ratio is 1.2

  12. Quasi 18 h wave activity in ground-based observed mesospheric H2O over Bern, Switzerland

    Science.gov (United States)

    Lainer, Martin; Hocke, Klemens; Rüfenacht, Rolf; Kämpfer, Niklaus

    2017-12-01

    Observations of oscillations in the abundance of middle-atmospheric trace gases can provide insight into the dynamics of the middle atmosphere. Long-term, high-temporal-resolution and continuous measurements of dynamical tracers within the strato- and mesosphere are rare but would facilitate better understanding of the impact of atmospheric waves on the middle atmosphere. Here we report on water vapor measurements from the ground-based microwave radiometer MIAWARA (MIddle Atmospheric WAter vapor RAdiometer) located close to Bern during two winter periods of 6 months from October to March. Oscillations with periods between 6 and 30 h are analyzed in the pressure range 0.02-2 hPa. Seven out of 12 months have the highest wave amplitudes between 15 and 21 h periods in the mesosphere above 0.1 hPa. The quasi 18 h wave signature in the water vapor tracer is studied in more detail by analyzing its temporal evolution in the mesosphere up to an altitude of 75 km. Eighteen-hour oscillations in midlatitude zonal wind observations from the microwave Doppler wind radiometer WIRA (WInd RAdiometer) could be identified within the pressure range 0.1-1 hPa during an ARISE (Atmospheric dynamics Research InfraStructure in Europe)-affiliated measurement campaign at the Observatoire de Haute-Provence (355 km from Bern) in France in 2013. The origin of the observed upper-mesospheric quasi 18 h oscillations is uncertain and could not be determined with our available data sets. Possible drivers could be low-frequency inertia-gravity waves or a nonlinear wave-wave interaction between the quasi 2-day wave and the diurnal tide.

  13. Explaining the symmetry breaking observed in the endofullerenes H2@C60, HF@C60, and H2O@C60.

    Science.gov (United States)

    Felker, Peter M; Vlček, Vojtěch; Hietanen, Isaac; FitzGerald, Stephen; Neuhauser, Daniel; Bačić, Zlatko

    2017-11-29

    Symmetry breaking has been recently observed in the endofullerenes M@C 60 (M = H 2 , HF, H 2 O), manifesting in the splittings of the three-fold degenerate ground states of the endohedral ortho-H 2 , ortho-H 2 O and the j = 1 level of HF. The nature of the interaction causing the symmetry breaking is established in this study. A fragment of the solid C 60 is considered, comprised of the central C 60 molecule surrounded by twelve nearest-neighbor (NN) C 60 molecules. The fullerenes have either P (major) or H (minor) orientational orderings, and are assumed to be rigid with I h symmetry. Only the central C 60 is occupied by the guest molecule M, while the NN fullerenes are all empty. The key proposition of the study is that the electrostatic interactions between the charge densities on the NN C 60 molecules and that on M inside the central C 60 give rise to the symmetry breaking responsible for the measured level splittings. Using this model, the M@C 60 level splittings of interest are calculated variationally and using perturbation theory, for both the P and H orientations. Those obtained for the dominant P orientation are in excellent agreement with the experimental results, with respect to the splitting magnitudes and patterns, for all three M@C 60 systems considered, pointing strongly to the quadrupolar M-NN interactions as the main cause of the symmetry breaking. The level splittings calculated for the H orientation are about 30 times smaller than the ones in the P orientation.

  14. The study for the incipient solvation process of NaCl in water: the observation of the NaCl-(H2O)n (n = 1, 2, and 3) complexes using Fourier-transform microwave spectroscopy.

    Science.gov (United States)

    Mizoguchi, Asao; Ohshima, Yasuhiro; Endo, Yasuki

    2011-08-14

    Pure rotational spectra of the sodium chloride-water complexes, NaCl-(H(2)O)(n) (n = 1, 2, and 3), in the vibronic ground state have been observed by a Fourier- transform microwave spectrometer coupled with a laser ablation source. The (37)Cl-isotopic species and a few deuterated species have also been observed. From the analyses of the spectra, the rotational constants, the centrifugal distortion constants, and the nuclear quadrupole coupling constants of the Na and Cl nuclei were determined precisely for all the species. The molecular structures of NaCl-(H(2)O)(n) were determined using the rotational constants and the molecular symmetry. The charge distributions around Na and Cl nuclei in NaCl are dramatically changed by the complex formation with H(2)O. Prominent dependences of the bond lengths r(Na-Cl) on the number of H(2)O were also observed. By a comparison with results of theoretical studies, it is shown that the structure of NaCl-(H(2)O)(3) is approaching to that of the contact ion-pair, which is considered to be an intermediate species in the incipient solvation process.

  15. High-resolution Imaging of Water Maser Emission in the Active Galaxies NGC 6240 and M51

    Science.gov (United States)

    Hagiwara, Yoshiaki; Edwards, Philip G.

    2015-12-01

    We present the results of observations of 22 GHz H2O maser emission in NGC 6240 and M51 made with the Karl G. Jansky Very Large Array. Two major H2O maser features and several minor features are detected toward the southern nucleus of NGC 6240. These features are redshifted by about 300 km s-1 from the galaxy’s systemic velocity and remain unresolved at the synthesized beam size. A combination of our two-epoch observations and published data reveals an apparent correlation between the strength of the maser and the 22 GHz radio continuum emission, implying that the maser excitation relates to the activity of an active galactic nucleus in the southern nucleus rather than star-forming activity. The star-forming galaxy M51 hosts H2O maser emission in the center of the galaxy; however, the origin of the maser has been an open question. We report the first detection of 22 GHz nuclear radio continuum emission in M51. The continuum emission is co-located with the maser position, which indicates that the maser arises from nuclear active galactic nucleus-activity and not from star-forming activity in the galaxy.

  16. The H2O2-H2O Hypothesis: Extremophiles Adapted to Conditions on Mars?

    Science.gov (United States)

    Houtkooper, Joop M.; Schulze-Makuch, Dirk

    2007-08-01

    evolved into employing H2O2 as an antifreeze, which would also have the function as a water collector. If we would find life on Mars based on an intracellular H2O2-H2O mixture, this would not necessarily imply an independent origin of terrestrial and martian life. For that, a detailed study of the biochemistry and genetics is needed. The transfer of terrestrial organisms to Mars or vice versa is a possibility given favorable conditions for the origin and persistance of life on both planets early in solar system history (Schulze-Makuch and Houtkooper, 2007). The transfer of terrestrial organisms by early spacecrafts to Mars that either landed or crashed is a possibility, but it is not plausible that these organisms evolved in a few years. We suggest that we already have evidence of their existence from the Viking landers in two widely distant locations. The H2O2-H2O hypothesis does explain the Viking observations remarkably well, especially (1) the lack of organics detected by GC-MS, (2) the lack of detected oxidant(s) to support a chemical explanation, (3) evolution of O2 upon wetting (GEx experiment), (4) limited organic synthesis reactions (PR experiment), and (5) the gas release observations made (LR experiment)(Houtkooper and Schulze-Makuch, 2007). From the amounts of evolved CO2, O2 and N2 in the GEx experiment it can be concluded that the organisms have an excess oxidative content. This is a problem since in any destructive test, even by laser desorption-mass spectrometry (LDMS), the organisms may decompose completely into H2O, CO2, O2, and N2. The same will occur if the organisms are exposed to excess water, as they will perish due to hyperhydration. The consequence for future biology experiments is that the most fruitful approach may be the detection of metabolism under close to local environmental conditions, especially avoiding the addition of too much water. Of the Viking experiments, the PR experiment which aimed at carbon assimilation was the closest to

  17. SiO and CH3OH mega-masers in NGC 1068.

    Science.gov (United States)

    Wang, Junzhi; Zhang, Jiangshui; Gao, Yu; Zhang, Zhi-Yu; Li, Di; Fang, Min; Shi, Yong

    2014-11-11

    Maser is an acronym for microwave amplification by stimulated emission of radiation; in astronomy mega-masers are masers in galaxies that are ≥ 10(6) times more luminous than typical galactic maser sources. Observational studies of mega-masers can help us to understand their origins and characteristics. More importantly, mega-masers can be used as diagnostic tracers to probe the physical properties of their parent galaxies. Since the late 1970s, only three types of molecules have been found to form mega-masers: H2O, OH and H2CO. Here we report the detection of both SiO and CH3OH mega-masers near the centre of Seyfert 2 galaxy NGC 1068 at millimetre wavelengths, obtained using the IRAM 30-m telescope. We argue that the SiO mega-maser originated from the nuclear disk and the CH3OH mega-maser originated from shock fronts. High-resolution observations in the future will enable us to investigate AGN feedback and determine the masses of central supermassive black holes in such galaxies.

  18. Long-term Variability of H2CO Masers in Star-forming Regions

    Science.gov (United States)

    Andreev, N.; Araya, E. D.; Hoffman, I. M.; Hofner, P.; Kurtz, S.; Linz, H.; Olmi, L.; Lorran-Costa, I.

    2017-10-01

    We present results of a multi-epoch monitoring program on variability of 6 cm formaldehyde (H2CO) masers in the massive star-forming region NGC 7538 IRS 1 from 2008 to 2015, conducted with the Green Bank Telescope, the Westerbork Radio Telescope , and the Very Large Array. We found that the similar variability behaviors of the two formaldehyde maser velocity components in NGC 7538 IRS 1 (which was pointed out by Araya and collaborators in 2007) have continued. The possibility that the variability is caused by changes in the maser amplification path in regions with similar morphology and kinematics is discussed. We also observed 12.2 GHz methanol and 22.2 GHz water masers toward NGC 7538 IRS 1. The brightest maser components of CH3OH and H2O species show a decrease in flux density as a function of time. The brightest H2CO maser component also shows a decrease in flux density and has a similar LSR velocity to the brightest H2O and 12.2 GHz CH3OH masers. The line parameters of radio recombination lines and the 20.17 and 20.97 GHz CH3OH transitions in NGC 7538 IRS 1 are also reported. In addition, we observed five other 6 cm formaldehyde maser regions. We found no evidence of significant variability of the 6 cm masers in these regions with respect to previous observations, the only possible exception being the maser in G29.96-0.02. All six sources were also observed in the {{{H}}}213{CO} isotopologue transition of the 6 cm H2CO line; {{{H}}}213{CO} absorption was detected in five of the sources. Estimated column density ratios [{{{H}}}212{CO}]/[{{{H}}}213{CO}] are reported.

  19. H2O2: A Dynamic Neuromodulator

    Science.gov (United States)

    Rice, Margaret E.

    2012-01-01

    Increasing evidence implicates hydrogen peroxide (H2O2) as an intra- and intercellular signaling molecule that can influence processes from embryonic development to cell death. Most research has focused on relatively slow signaling, on the order of minutes to days, via second messenger cascades. However, H2O2 can also mediate subsecond signaling via ion channel activation. This rapid signaling has been examined most thoroughly in the nigrostriatal dopamine (DA) pathway, which plays a key role in facilitating movement mediated by the basal ganglia. In DA neurons of the substantia nigra, endogenously generated H2O2 activates ATP-sensitive K+ (KATP) channels that inhibit DA neuron firing. In the striatum, H2O2 generated downstream from glutamatergic AMPA receptor activation in medium spiny neurons acts as a diffusible messenger that inhibits axonal DA release, also via KATP channels. The source of dynamically generated H2O2 is mitochondrial respiration; thus, H2O2 provides a novel link between activity and metabolism via KATP channels. Additional targets of H2O2 include transient receptor potential (TRP) channels. In contrast to the inhibitory effect of H2O2 acting via KATP channels, TRP channel activation is excitatory. This review describes emerging roles of H2O2 as a signaling agent in the nigrostriatal pathway and other basal ganglia neurons. PMID:21666063

  20. Tianma 65-m telescope detection of new OH maser features towards the water fountain source IRAS 18286-0959

    Science.gov (United States)

    Chen, Xi; Shen, Zhi-Qiang; Li, Xiao-Qiong; Yang, Kai; Nakashima, Jun-ichi; Wu, Ya-Jun; Zhao, Rong-Bin; Li, Juan; Wang, Jun-Zhi; Jiang, Dong-Rong; Wang, Jin-Qing; Li, Bin; Zhong, Wei-Ye; Yung, Bosco H. K.

    2017-07-01

    We report the results of the OH maser observation towards the water fountain source IRAS 18286-0959 using the newly built Shanghai Tianma 65-m Radio Telescope. We observed the three OH ground state transition lines at frequencies of 1612, 1665 and 1667 MHz. Comparing with the spectra of previous observations, we find new maser spectral components at velocity channels largely shifted from the systemic velocity: the velocity offsets of the newly found components lie in the range 20-40 km s-1 with respect to the systemic velocity. Besides maser variability, another possible interpretation for the newly detected maser features is that part of the molecular gas in the circumstellar envelope is accelerated. The acceleration is probably caused by the passage of a high-velocity molecular jet, which has been detected in previous Very Long Baseline Interferometry observations in the H2O maser line.

  1. A comparison of ice VII formed in the H2O, NaCl-H2O, and CH3OH-H2O systems: Implications for H2O-rich planets

    Science.gov (United States)

    Frank, Mark R.; Aarestad, Elizabeth; Scott, Henry P.; Prakapenka, Vitali B.

    2013-02-01

    High-pressure H2O polymorphs, namely ice VI, ice VII, and ice X, are hypothesized to make up a considerable portion of the interiors of large icy satellites and select extra-solar planets. The incorporation of foreign ions or molecules into these high-pressure phases is possible through ocean-ice interaction, rock-ice interaction at depth, or processes that occurred during accretion. Recent research concerning the effects charged ions have on ice VII has shown that these ions notably affect the structure of ice VII (Frank et al., 2006; Klotz et al., 2009). This study was designed to determine the effects of a molecular impurity on ice VII and compare those effects to both pure H2O ice and ice with an ionic impurity. Ice samples were formed in this study via compression in a diamond anvil cell from either H2O, a 1.60 mol% NaCl aqueous solution, a 1.60 mol% CH3OH aqueous solution, or a 5.00 mol% CH3OH aqueous solution and were compressed up to 71 GPa at room temperature. Ice formed from pure H2O had no impurities whereas ices formed in the NaCl-H2O and CH3OH-H2O systems contained the impurities Na+ and Cl- and CH3OH, respectively. Pressure-volume relations were observed in situ by using synchrotron based X-ray diffraction and were used to determine the equations of state for ices formed in the H2O, NaCl-H2O and CH3OH-H2O systems. The data illustrate that ice VII formed from a NaCl-bearing aqueous solution exhibited a depressed volume when compared to that of H2O-only ice VII at any given pressure, whereas ice VII formed from CH3OH-bearing aqueous solutions showed an opposite trend, with an increase in volume relative to that of pure ice VII. The ices within planetary bodies will most likely have both ionic and molecular impurities and the trends outlined in this study can be used to improve density profiles of H2O-rich planetary bodies.

  2. OBSERVATIONAL STUDY OF THE CONTINUUM AND WATER MASER EMISSION IN THE IRAS 19217+1651 REGION

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Esnard, T.; Trinidad, M. A. [Departamento de Astronomia, Universidad de Guanajuato, Apdo Postal 144, Guanajuato, GTO, Mexico CP 36000 (Mexico); Migenes, V., E-mail: tatiana@iga.cu, E-mail: trinidad@astro.ugto.mx, E-mail: vmigenes@byu.edu [Department of Physics and Astronomy, Brigham Young University, ESC-N145, Provo, UT 84602 (United States)

    2012-12-20

    We report interferometric observations of the high-mass star-forming region IRAS 19217+1651. We observed the radio continuum (1.3 cm and 3.6 cm) and water maser emission using the Very Large Array (VLA-EVLA) in transition mode (configuration A). Two radio continuum sources were detected at both wavelengths, I19217-A and I19217-B. In addition, 17 maser spots were observed distributed mainly in two groups, M1 and M2, and one isolated maser. This latter could be indicating the relative position of another continuum source which we did not detect. The results indicate that I19217-A appears to be consistent with an ultracompact H II region associated with a zero-age main-sequence B0-type star. Furthermore, the 1.3 cm continuum emission of this source suggests a cometary morphology. In addition, I19217-B appears to be an H II region consisting of at least two stars, which may be contributing to its complex structure. It was also found that the H{sub 2}O masers of the group M1 are apparently associated with the continuum source I19217-A. These are tracing motions which are not gravitationally bound according to their spatial distribution and kinematics. They also seem to be describing outflows in the direction of the elongated cometary region. On the other hand, the second maser group, M2, could be tracing the base of a jet. Finally, infrared data from Spitzer, Midcourse Space Experiment, and IRIS show that IRAS 19217+1651 is embedded inside a large open bubble, like a broken ring, which possibly has affected the morphology of the cometary H II region observed at 1.3 cm.

  3. Herschel/HIFI observations of interstellar OH+ and H2O+ towards W49N : A probe of diffuse clouds with a small molecular fraction

    NARCIS (Netherlands)

    Neufeld, D. A.; Goicoechea, J. R.; Sonnentrucker, P.; Black, J. H.; Pearson, J.; Yu, S.; Phillips, T. G.; Lis, D. C.; de Luca, M.; Herbst, E.; Rimmer, P.; Gerin, M.; Bell, T. A.; Boulanger, F.; Cernicharo, J.; Coutens, A.; Dartois, E.; Kazmierczak, M.; Encrenaz, P.; Falgarone, E.; Geballe, T. R.; Giesen, T.; Godard, B.; Goldsmith, P. F.; Gry, C.; Gupta, H.; Hennebelle, P.; Hily-Blant, P.; Joblin, C.; Kołos, R.; Krełowski, J.; Martín-Pintado, J.; Menten, K. M.; Monje, R.; Mookerjea, B.; Perault, M.; Persson, C.; Plume, R.; Salez, M.; Schlemmer, S.; Schmidt, M.; Stutzki, J.; Teyssier, D.; Vastel, C.; Cros, A.; Klein, K.; Lorenzani, A.; Philipp, S.; Samoska, L. A.; Shipman, R.; Tielens, A. G. G. M.; Szczerba, R.; Zmuidzinas, J.

    2010-01-01

    We report the detection of absorption by interstellar hydroxyl cations and water cations, along the sight-line to the bright continuum source W49N. We have used Herschel's HIFI instrument, in dual beam switch mode, to observe the 972 GHz N = 1-0 transition of OH+ and the 1115 GHz 111-000 transition

  4. The IAGOS-core greenhouse gas package: a measurement system for continuous airborne observations of CO2, CH4, H2O and CO

    Directory of Open Access Journals (Sweden)

    Annette Filges

    2015-09-01

    Full Text Available Within the framework of IAGOS-ERI (In-service Aircraft for a Global Observing System – European Research Infrastructure, a cavity ring-down spectroscopy (CRDS-based measurement system for the autonomous measurement of the greenhouse gases (GHGs CO2 and CH4, as well as CO and water vapour was designed, tested and qualified for deployment on commercial airliners. The design meets requirements regarding physical dimensions (size, weight, performance (long-term stability, low maintenance, robustness, full automation and safety issues (fire-prevention regulations. The system uses components of a commercially available CRDS instrument (G2401-m, Picarro Inc. mounted into a frame suitable for integration in the avionics bay of the Airbus A330 and A340 series. To enable robust and automated operation of the IAGOS-core GHG package over 6-month deployment periods, numerous technical issues had to be addressed. An inlet system was designed to eliminate sampling of larger aerosols, ice particles and water droplets, and to provide additional positive ram-pressure to ensure operation throughout an aircraft altitude operating range up to 12.5 km without an upstream sampling pump. Furthermore, no sample drying is required as the simultaneously measured water vapour mole fraction is used to correct for dilution and spectroscopic effects. This also enables measurements of water vapour throughout the atmosphere. To allow for trace gas measurements to be fully traceable to World Meteorological Organization scales, a two-standard calibration system has been designed and tested, which periodically provides calibration gas to the instrument during flight and on ground for each 6-month deployment period. The first of the IAGOS-core GHG packages is scheduled for integration in 2015. The aim is to have five systems operational within 4 yr, providing regular, long-term GHG observations covering major parts of the globe. This paper presents results from recent test

  5. Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast

    Directory of Open Access Journals (Sweden)

    Dorival Martins

    2014-01-01

    Full Text Available Catalases are efficient scavengers of H2O2 and protect cells against H2O2 stress. Examination of the H2O2 stimulon in Saccharomyces cerevisiae revealed that the cytosolic catalase T (Ctt1 protein level increases 15-fold on H2O2 challenge in synthetic complete media although previous work revealed that deletion of the CCT1 or CTA1 genes (encoding peroxisomal/mitochondrial catalase A does not increase the H2O2 sensitivity of yeast challenged in phosphate buffer (pH 7.4. This we attributed to our observation that catalase activity is depressed when yeast are challenged with H2O2 in nutrient-poor media. Hence, we performed a systematic comparison of catalase activity and cell viability of wild-type yeast and of the single catalase knockouts, ctt1∆ and cta1∆, following H2O2 challenge in nutrient-rich medium (YPD and in phosphate buffer (pH 7.4. Ctt1 but not Cta1 activity is strongly induced by H2O2 when cells are challenged in YPD but suppressed when cells are challenged in buffer. Consistent with the activity results, exponentially growing ctt1∆ cells in YPD are more sensitive to H2O2 than wild-type or cta1∆ cells, whereas in buffer all three strains exhibit comparable H2O2 hypersensitivity. Furthermore, catalase activity is increased during adaptation to sublethal H2O2 concentrations in YPD but not in buffer. We conclude that induction of cytosolic Ctt1 activity is vital in protecting yeast against exogenous H2O2 but this activity is inhibited by H2O2 when cells are challenged in nutrient-free media.

  6. Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast☆

    Science.gov (United States)

    Martins, Dorival; English, Ann M.

    2014-01-01

    Catalases are efficient scavengers of H2O2 and protect cells against H2O2 stress. Examination of the H2O2 stimulon in Saccharomyces cerevisiae revealed that the cytosolic catalase T (Ctt1) protein level increases 15-fold on H2O2 challenge in synthetic complete media although previous work revealed that deletion of the CCT1 or CTA1 genes (encoding peroxisomal/mitochondrial catalase A) does not increase the H2O2 sensitivity of yeast challenged in phosphate buffer (pH 7.4). This we attributed to our observation that catalase activity is depressed when yeast are challenged with H2O2 in nutrient-poor media. Hence, we performed a systematic comparison of catalase activity and cell viability of wild-type yeast and of the single catalase knockouts, ctt1∆ and cta1∆, following H2O2 challenge in nutrient-rich medium (YPD) and in phosphate buffer (pH 7.4). Ctt1 but not Cta1 activity is strongly induced by H2O2 when cells are challenged in YPD but suppressed when cells are challenged in buffer. Consistent with the activity results, exponentially growing ctt1∆ cells in YPD are more sensitive to H2O2 than wild-type or cta1∆ cells, whereas in buffer all three strains exhibit comparable H2O2 hypersensitivity. Furthermore, catalase activity is increased during adaptation to sublethal H2O2 concentrations in YPD but not in buffer. We conclude that induction of cytosolic Ctt1 activity is vital in protecting yeast against exogenous H2O2 but this activity is inhibited by H2O2 when cells are challenged in nutrient-free media. PMID:24563848

  7. Catalase activity is stimulated by H(2)O(2) in rich culture medium and is required for H(2)O(2) resistance and adaptation in yeast.

    Science.gov (United States)

    Martins, Dorival; English, Ann M

    2014-01-01

    Catalases are efficient scavengers of H2O2 and protect cells against H2O2 stress. Examination of the H2O2 stimulon in Saccharomyces cerevisiae revealed that the cytosolic catalase T (Ctt1) protein level increases 15-fold on H2O2 challenge in synthetic complete media although previous work revealed that deletion of the CCT1 or CTA1 genes (encoding peroxisomal/mitochondrial catalase A) does not increase the H2O2 sensitivity of yeast challenged in phosphate buffer (pH 7.4). This we attributed to our observation that catalase activity is depressed when yeast are challenged with H2O2 in nutrient-poor media. Hence, we performed a systematic comparison of catalase activity and cell viability of wild-type yeast and of the single catalase knockouts, ctt1∆ and cta1∆, following H2O2 challenge in nutrient-rich medium (YPD) and in phosphate buffer (pH 7.4). Ctt1 but not Cta1 activity is strongly induced by H2O2 when cells are challenged in YPD but suppressed when cells are challenged in buffer. Consistent with the activity results, exponentially growing ctt1∆ cells in YPD are more sensitive to H2O2 than wild-type or cta1∆ cells, whereas in buffer all three strains exhibit comparable H2O2 hypersensitivity. Furthermore, catalase activity is increased during adaptation to sublethal H2O2 concentrations in YPD but not in buffer. We conclude that induction of cytosolic Ctt1 activity is vital in protecting yeast against exogenous H2O2 but this activity is inhibited by H2O2 when cells are challenged in nutrient-free media.

  8. Maser Source-Finding Methods in HOPS

    Science.gov (United States)

    Walsh, A. J.; Purcell, C.; Longmore, S.; Jordan, C. H.; Lowe, V.

    2012-12-01

    The H2O Southern Galactic Plane Survey (HOPS) has observed 100 deg2 of the Galactic plane, using the Mopra radio telescope to search for emission from multiple spectral lines in the 12-mm band (19.5-27.5GHz). Perhaps the most important of these spectral lines is the 22.2-GHz water-maser transition. We describe the methods used to identify water-maser candidates and subsequent confirmation of the sources. Our methods involve a simple determination of likely candidates by searching peak emission maps, utilising the intrinsic nature of water-maser emission, spatially unresolved and spectrally narrow-lined. We estimate completeness limits and compare our method with results from the DUCHAMP source finder. We find that the two methods perform similarly. We conclude that the similarity in performance is due to the intrinsic limitation of the noise characteristics of the data. The advantages of our method are that it is slightly more efficient in eliminating spurious detections and is simple to implement. The disadvantage is that it is a manual method of finding sources and so is not practical on datasets much larger than HOPS, or for datasets with extended emission that needs to be characterised. We outline a two-stage method for the most efficient means of finding masers, using DUCHAMP.

  9. H2O2 levels in rainwater collected in south Florida and the Bahama Islands

    Science.gov (United States)

    Zika, R.; Saltzman, E.; Chameides, W. L.; Davis, D. D.

    1982-01-01

    Measurements of H2O2 in rainwater collected in Miami, Florida, and the Bahama Islands area indicate the presence of H2O2 concentration levels ranging from 100,000 to 700,000 M. No systematic trends in H2O2 concentration were observed during an individual storm, in marked contrast to the behavior of other anions for example, NO3(-), SO4(-2), and Cl(-). The data suggest that a substantial fraction of the H2O2 found in precipitation is generated by aqueous-phase reactions within the cloudwater rather than via rainout and washout of gaseous H2O2.

  10. Water in Massive protostellar objects: first detection of THz water maser and water inner abundance.

    Science.gov (United States)

    Herpin, Fabrice

    2014-10-01

    The formation massive stars is still not well understood. Despite numerous water line observations with Herschel telescope, over a broad range of energies, in most of the observed sources the WISH-KP (Water In Star-forming regions with Herschel, Co-PI: F. Herpin) observations were not able to trace the emission from the hot core. Moreover, water maser model predict that several THz water maser should be detectable in these objects. We aim to detect for the first time the THz maser lines o-H2O 8(2,7)- 7(3,4) at 1296.41106 GHz and p-H2O 7(2,6)- 6(3,3) at 1440.78167 GHz as predicted by the model. We propose two sources for a northern flight as first priority and two other sources for a possible southern flight. This will 1) constrain the maser theory, 2) constrain the physical conditions and water abundance in the inner layers of the prostellar environnement. In addition, we will use the p-H2O 3(3,1)- 4(0,4) thermal line at 1893.68651 GHz (L2 channel) in order to probe the physical conditions and water abundance in the inner layers of the prostellar objects where HIFI-Herschel has partially failed.

  11. Single Molecular Junction Study on H2 O@C60 : H2 O is "Electrostatically Isolated".

    Science.gov (United States)

    Kaneko, Satoshi; Hashikawa, Yoshifumi; Fujii, Shintaro; Murata, Yasujiro; Kiguchi, Manabu

    2017-05-19

    A water molecule exhibits characteristic properties on the basis of hydrogen bonding. In the past decade, single water molecules placed in non-hydrogen-bonding environments have attracted growing attention. To reveal the fundamental properties of a single water molecule, endohedral fullerene H2 O@C60 is an ideal and suitable model. We examined the electronic properties of H2 O@C60 by performing single-molecule measurements. The conductance of a single molecular junction based on H2 O@C60 was found to be comparable to that of empty C60 . The observed values were remarkably higher than those obtained for conventional molecular junctions due to the effective hybridization of the π-conjugated system to the metal electrode. Additionally, the results undoubtedly exclude the possibility of electrostatic contact of entrapped H2 O with the carbon wall of C60 . We finally concluded that H2 O entrapped inside a C60 cage can be regarded as an electrostatically isolated molecule. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. MALT-45: A 7 mm survey of the southern Galaxy - II. ATCA follow-up observations of 44 GHz class I methanol masers

    Science.gov (United States)

    Jordan, Christopher H.; Walsh, Andrew J.; Breen, Shari L.; Ellingsen, Simon P.; Voronkov, Maxim A.; Hyland, Lucas J.

    2017-11-01

    We detail interferometric observations of 44 GHz class I methanol masers detected by MALT-45 (a 7 mm unbiased auto-correlated spectral-line Galactic-plane survey) using the Australia Telescope Compact Array. We detect 238 maser spots across 77 maser sites. Using high-resolution positions, we compare the class I CH3OH masers to other star formation maser species, including CS (1-0), SiO v = 0 and the H53 α radio-recombination line. Comparison between the cross- and auto-correlated data has allowed us to also identify quasi-thermal emission in the 44 GHz class I methanol maser line. We find that the majority of class I methanol masers have small spatial and velocity ranges (class I masers, and find that they are generally associated with clumps between 1000 and 3000 M⊙. For each class I methanol maser site, we use the presence of OH masers and radio recombination lines to identify relatively evolved regions of high-mass star formation; we find that maser sites without these associations have lower luminosities and preferentially appear towards dark infrared regions.

  13. EPA H2O Software Tool

    Science.gov (United States)

    EPA H2O allows user to: Understand the significance of EGS in Tampa Bay watershed; visually analyze spatial distribution of the EGS in Tampa Bay watershed; obtain map and summary statistics of EGS values in Tampa Bay watershed; analyze and compare potential impacts of development...

  14. Origin of warm and hot gas emission from low-mass protostars: Herschel-HIFI observations of CO J = 16-15. I. Line profiles, physical conditions, and H2O abundance

    Science.gov (United States)

    Kristensen, L. E.; van Dishoeck, E. F.; Mottram, J. C.; Karska, A.; Yıldız, U. A.; Bergin, E. A.; Bjerkeli, P.; Cabrit, S.; Doty, S.; Evans, N. J.; Gusdorf, A.; Harsono, D.; Herczeg, G. J.; Johnstone, D.; Jørgensen, J. K.; van Kempen, T. A.; Lee, J.-E.; Maret, S.; Tafalla, M.; Visser, R.; Wampfler, S. F.

    2017-09-01

    Context. Through spectrally unresolved observations of high-J CO transitions, Herschel Photodetector Array Camera and Spectrometer (PACS) has revealed large reservoirs of warm (300 K) and hot (700 K) molecular gas around low-mass protostars. The excitation and physical origin of this gas is still not understood. Aims: We aim to shed light on the excitation and origin of the CO ladder observed toward protostars, and on the water abundance in different physical components within protostellar systems using spectrally resolved Herschel-HIFI data. Methods: Observations are presented of the highly excited CO line J = 16-15 (Eup/kB = 750 K) with the Herschel Heterodyne Instrument for the Far Infrared (HIFI) toward a sample of 24 low-mass protostellar objects. The sources were selected from the Herschel "Water in Star-forming regions with Herschel" (WISH) and "Dust, Ice, and Gas in Time" (DIGIT) key programs. Results: The spectrally resolved line profiles typically show two distinct velocity components: a broad Gaussian component with an average FWHM of 20 km s-1 containing the bulk of the flux, and a narrower Gaussian component with a FWHM of 5 km s-1 that is often offset from the source velocity. Some sources show other velocity components such as extremely-high-velocity features or "bullets". All these velocity components were first detected in H2O line profiles. The average rotational temperature over the entire profile, as measured from comparison between CO J = 16-15 and 10-9 emission, is 300 K. A radiative-transfer analysis shows that the average H2O/CO column-density ratio is 0.02, suggesting a total H2O abundance of 2 × 10-6, independent of velocity. Conclusions: Two distinct velocity profiles observed in the HIFI line profiles suggest that the high-J CO ladder observed with PACS consists of two excitation components. The warm PACS component (300 K) is associated with the broad HIFI component, and the hot PACS component (700 K) is associated with the offset HIFI

  15. H2O Paradox and its Implications on H2O in Moon

    Science.gov (United States)

    Zhang, Youxue

    2017-04-01

    The concentration of H2O in the mantle of a planetary body plays a significant role in the viscosity and partial melting and hence the convection and evolution of the planetary body. Even though the composition of the primitive terrestrial mantle (PTM) is thought to be well known [1-2], the concentration of H2O in PTM remains paradoxial because different methods of estimation give different results [3]: Using H2O/Ce ratio in MORB and OIB and Ce concentration in PTM, the H2O concentration in PTM would be (300÷×1.5) ppm; using mass balance by adding surface water to the mantle [3-4], H2O concentration in PTM would be (900÷×1.3) ppm [2-3]. The inconsistency based on these two seemingly reliable methods is referred to as the H2O paradox [3]. For Moon, H2O contents in the primitive lunar mantle (PLM) estimated from H2O in plagioclase in lunar anorthosite and that from H2O/Ce ratio in melt inclusions are roughly consistent at ˜110 ppm [5-6] even though there is still debate about the volatile depletion trend [7]. One possible solution to the H2O paradox in PTM is to assume that early Earth experienced whole mantle degassing, which lowered the H2O/Ce ratio in the whole mantle but without depleting Ce in the mantle. The second possible solution is that some deep Earth reservoirs with high H2O/Ce ratios have not been sampled by MORB and OIB. Candidates include the transition zone [8] and the D" layer. The third possible solution is that ocean water only partially originated from mantle degassing, but partially from extraterrestrial sources such as comets [9-10]. At present, there is not enough information to determine which scenario is the answer to the H2O paradox. On the other hand, each scenario would have its own implications to H2O in PLM. If the first scenario applies to Moon, because degassed H2O or H2 would have escaped from the lunar surface, the very early lunar mantle could have much higher H2O [11] than that obtained using the H2O/Ce ratio method. The

  16. Water-Soluble Fe(II)−H2O Complex with a Weak O−H Bond Transfers a Hydrogen Atom via an Observable Monomeric Fe(III)−OH

    Science.gov (United States)

    Brines, Lisa M.; Coggins, Michael K.; Poon, Penny Chaau Yan; Toledo, Santiago; Kaminsky, Werner; Kirk, Martin L.

    2015-01-01

    Understanding the metal ion properties that favor O−H bond formation versus cleavage should facilitate the development of catalysts tailored to promote a specific reaction, e.g., C−H activation or H2O oxidation. The first step in H2O oxidation involves the endothermic cleavage of a strong O−H bond (BDFE = 122.7 kcal/mol), promoted by binding the H2O to a metal ion, and by coupling electron transfer to proton transfer (PCET). This study focuses on details regarding how a metal ion’s electronic structure and ligand environment can tune the energetics of M(HO−H) bond cleavage. The synthesis and characterization of an Fe(II)−H2O complex, 1, that undergoes PCET in H2O to afford a rare example of a monomeric Fe(III)−OH, 7, is described. High-spin 7 is also reproducibly generated via the addition of H2O to {[FeIII(OMe2N4(tren))]2-(µ-O)}2+ (8). The O−H bond BDFE of Fe(II)−H2O (1) (68.6 kcal/mol) is calculated using linear fits to its Pourbaix diagram and shown to be 54.1 kcal/mol less than that of H2O and 10.9 kcal/mol less than that of [Fe(II)(H2O)6]2+. The O−H bond of 1 is noticeably weaker than the majority of reported Mn+(HxO−H) (M = Mn, Fe; n+ = 2+, 3+; x = 0, 1) complexes. Consistent with their relative BDFEs, Fe(II)−H2O (1) is found to donate a H atom to TEMPO•, whereas the majority of previously reported Mn+−O(H) complexes, including [MnIII(SMe2N4(tren))(OH)]+ (2), have been shown to abstract H atoms from TEMPOH. Factors responsible for the weaker O−H bond of 1, such as differences in the electron-donating properties of the ligand, metal ion Lewis acidity, and electronic structure, are discussed. PMID:25611075

  17. Water-soluble Fe(II)-H2O complex with a weak O-H bond transfers a hydrogen atom via an observable monomeric Fe(III)-OH.

    Science.gov (United States)

    Brines, Lisa M; Coggins, Michael K; Poon, Penny Chaau Yan; Toledo, Santiago; Kaminsky, Werner; Kirk, Martin L; Kovacs, Julie A

    2015-02-18

    Understanding the metal ion properties that favor O-H bond formation versus cleavage should facilitate the development of catalysts tailored to promote a specific reaction, e.g., C-H activation or H2O oxidation. The first step in H2O oxidation involves the endothermic cleavage of a strong O-H bond (BDFE = 122.7 kcal/mol), promoted by binding the H2O to a metal ion, and by coupling electron transfer to proton transfer (PCET). This study focuses on details regarding how a metal ion's electronic structure and ligand environment can tune the energetics of M(HO-H) bond cleavage. The synthesis and characterization of an Fe(II)-H2O complex, 1, that undergoes PCET in H2O to afford a rare example of a monomeric Fe(III)-OH, 7, is described. High-spin 7 is also reproducibly generated via the addition of H2O to {[Fe(III)(O(Me2)N4(tren))]2-(μ-O)}(2+) (8). The O-H bond BDFE of Fe(II)-H2O (1) (68.6 kcal/mol) is calculated using linear fits to its Pourbaix diagram and shown to be 54.1 kcal/mol less than that of H2O and 10.9 kcal/mol less than that of [Fe(II)(H2O)6](2+). The O-H bond of 1 is noticeably weaker than the majority of reported M(n+)(HxO-H) (M = Mn, Fe; n+ = 2+, 3+; x = 0, 1) complexes. Consistent with their relative BDFEs, Fe(II)-H2O (1) is found to donate a H atom to TEMPO(•), whereas the majority of previously reported M(n+)-O(H) complexes, including [Mn(III)(S(Me2)N4(tren))(OH)](+) (2), have been shown to abstract H atoms from TEMPOH. Factors responsible for the weaker O-H bond of 1, such as differences in the electron-donating properties of the ligand, metal ion Lewis acidity, and electronic structure, are discussed.

  18. Thermal Reactions of H2O2 on Icy Satellites and Small Bodies: Descent with Modification?

    Science.gov (United States)

    Hudson, Reggie L.; Loeffler, Mark J.

    2012-01-01

    Magnetospheric radiation drives surface and near-surface chemistry on Europa, but below a few meters Europa's chemistry is hidden from direct observation . As an example, surface radiation chemistry converts H2O and SO2 into H2O2 and (SO4)(sup 2-), respectively, and these species will be transported downward for possible thermally-driven reactions. However, while the infrared spectra and radiation chemistry of H2O2-containing ices are well documented, this molecule's thermally-induced solid-phase chemistry has seldom been studied. Here we report new results on thermal reactions in H2O + H2O2 + SO2 ices at 50 - 130 K. As an example of our results, we find that warming H2O + H2O2 + SO2 ices promotes SO2 oxidation to (SO4)(sup 2-). These results have implications for the survival of H2O2 as it descends, with modification, towards a subsurface ocean on Europa. We suspect that such redox chemistry may explain some of the observations related to the presence and distribution of H2O2 across Europa's surface as well as the lack of H2O2 on Ganymede and Callisto.

  19. Hydrogen peroxide (H2O2) controls axon pathfinding during zebrafish development.

    Science.gov (United States)

    Gauron, Carole; Meda, Francesca; Dupont, Edmond; Albadri, Shahad; Quenech'Du, Nicole; Ipendey, Eliane; Volovitch, Michel; Del Bene, Filippo; Joliot, Alain; Rampon, Christine; Vriz, Sophie

    2016-06-15

    It is now becoming evident that hydrogen peroxide (H2O2), which is constantly produced by nearly all cells, contributes to bona fide physiological processes. However, little is known regarding the distribution and functions of H2O2 during embryonic development. To address this question, we used a dedicated genetic sensor and revealed a highly dynamic spatio-temporal pattern of H2O2 levels during zebrafish morphogenesis. The highest H2O2 levels are observed during somitogenesis and organogenesis, and these levels gradually decrease in the mature tissues. Biochemical and pharmacological approaches revealed that H2O2 distribution is mainly controlled by its enzymatic degradation. Here we show that H2O2 is enriched in different regions of the developing brain and demonstrate that it participates to axonal guidance. Retinal ganglion cell axonal projections are impaired upon H2O2 depletion and this defect is rescued by H2O2 or ectopic activation of the Hedgehog pathway. We further show that ex vivo, H2O2 directly modifies Hedgehog secretion. We propose that physiological levels of H2O2 regulate RGCs axonal growth through the modulation of Hedgehog pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Comparison of genes required for H2O2 resistance in Streptococcus gordonii and Streptococcus sanguinis

    Science.gov (United States)

    Xu, Yifan; Itzek, Andreas

    2014-01-01

    Hydrogen peroxide (H2O2) is produced by several members of the genus Streptococcus mainly through the pyruvate oxidase SpxB under aerobic growth conditions. The acute toxic nature of H2O2 raises the interesting question of how streptococci cope with intrinsically produced H2O2, which subsequently accumulates in the microenvironment and threatens the closely surrounding population. Here, we investigate the H2O2 susceptibility of oral Streptococcus gordonii and Streptococcus sanguinis and elucidate potential mechanisms of how they protect themselves from the deleterious effect of H2O2. Both organisms are considered primary colonizers and occupy the same intraoral niche making them potential targets for H2O2 produced by other species. We demonstrate that S. gordonii produces relatively more H2O2 and has a greater ability for resistance to H2O2 stress. Functional studies show that, unlike in Streptococcus pneumoniae, H2O2 resistance is not dependent on a functional SpxB and confirms the important role of the ferritin-like DNA-binding protein Dps. However, the observed increased H2O2 resistance of S. gordonii over S. sanguinis is likely to be caused by an oxidative stress protection machinery present even under anaerobic conditions, while S. sanguinis requires a longer period of time for adaptation. The ability to produce more H2O2 and be more resistant to H2O2 might aid S. gordonii in the competitive oral biofilm environment, since it is lower in abundance yet manages to survive quite efficiently in the oral biofilm. PMID:25280752

  1. Mesospheric H2O and H2O2 densities inferred from in situ positive ion composition measurement

    Science.gov (United States)

    Kopp, E.

    1984-01-01

    A model for production and loss of oxonium ions in the high-latitude D-region is developed, based on the observed excess of 34(+) which has been interpreted as H2O2(+). The loss mechanism suggested in the study is the attachment of N2 and/or CO2 in three-body reactions. Furthermore, mesospheric water vapor and H2O2 densities are inferred from measurements of four high-latitude ion compositions, based on the oxonium model. Mixing ratios of hydrogen peroxide of up to two orders of magnitude higher than previous values were obtained. A number of reactions, reaction constants, and a block diagram of the oxonium ion chemistry in the D-region are given.

  2. Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon.

    Science.gov (United States)

    Soulard, P; Tremblay, B

    2015-12-14

    The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed.

  3. Continuous and jumpwise reversal magnetization in [Mn(II)(HL)(H2O)][Mn(III)(CN)6].2H2O molecular ferrimagnet

    Science.gov (United States)

    Kirman, M. V.; Vasiliev, L. A.; Morgunov, R. B.

    2017-10-01

    Magnetic jumps with the amplitudes of 0.01%-0.1% of the saturation magnetization were observed during the magnetization reversal of a [Mn(II)(HL)(H2O)][Mn(III)(CN)6].2H2O molecular ferrimagnet. Fourier transform of the time series of the magnetization jumps showed that its frequency spectrum is close to that of white noise. The distribution of the jump amplitudes versus time revealed that large jumps dominate at the onset of magnetization reversal.

  4. H2O2 space shuttle APU

    Science.gov (United States)

    1975-01-01

    A cryogenic H2-O2 auxiliary power unit (APU) was developed and successfully demonstrated. It has potential application as a minimum weight alternate to the space shuttle baseline APU because of its (1) low specific propellant consumption and (2) heat sink capabilities that reduce the amount of expendable evaporants. A reference system was designed with the necessary heat exchangers, combustor, turbine-gearbox, valves, and electronic controls to provide 400 shp to two aircraft hydraulic pumps. Development testing was carried out first on the combustor and control valves. This was followed by development of the control subsystem including the controller, the hydrogen and oxygen control valves, the combustor, and a turbine simulator. The complete APU system was hot tested for 10 hr with ambient and cryogenic propellants. Demonstrated at 95 percent of design power was 2.25 lb/hp-hr. At 10 percent design power, specific propellant consumption was 4 lb/hp-hr with space simulated exhaust and 5.2 lb/hp-hr with ambient exhaust. A 10 percent specific propellant consumption improvement is possible with some seal modifications. It was demonstrated that APU power levels could be changed by several hundred horsepower in less than 100 msec without exceeding allowable turbine inlet temperatures or turbine speed.

  5. Cosmetic wastewater treatment by the ZVI/H2O2 process.

    Science.gov (United States)

    Bogacki, Jan; Marcinowski, Piotr; Zapałowska, Ewa; Maksymiec, Justyna; Naumczyk, Jeremi

    2017-10-01

    The ZVI/H2O2 process was applied for cosmetic wastewater treatment. Two commercial zero-valent iron (ZVI) types with different granulations were chosen: Hepure Ferrox PRB and Hepure Ferrox Target. In addition, the pH and stirring method influence on ZVI/H2O2 process efficiency was studied. During the ZVI and ZVI/H2O2 processes, linear Fe ions concentration increase was observed. The addition of H2O2 significantly accelerated the iron dissolution process. The highest COD removal was obtained using finer ZVI (Hepure Ferrox Target) for doses of reagents ZVI/H2O2 1500/1600 mg/L, in a H2O2/COD weight ratio 2:1, at pH 3.0 with stirring on a magnetic stirrer. After 120 min of the process, 84.0% COD removal (from 796 to 127 mg/L) was achieved. It was found that the efficiency of the process depends, as in the case of the Fenton process, on the ratio of the reagents (ZVI/H2O2) and their dose in relation to the COD (H2O2/COD) but does not depend on the dose of the iron itself. Statistical analysis confirms that COD removal efficiency depends primarily on H2O2/COD ratio and ZVI granulation, but ZVI dose influence is not statistically significant. The head space, solid-phase microextraction, gas chromatography, mass spectrometry results confirm high efficiency of the ZVI/H2O2 process.

  6. First infrared investigations of OCS-H2O, OCS-(H2O)2, and (OCS)2-H2O complexes isolated in solid neon: Highlighting the presence of two isomers for OCS-H2O.

    Science.gov (United States)

    Soulard, P; Madebène, B; Tremblay, B

    2017-06-21

    For the first time, complexes involving carbonyl sulfide (OCS) and water molecules are studied by FTIR in solid neon. Many new absorption bands close to the known fundamental modes for the monomers give evidence for at least three (OCS)n-(H2O)m complexes, noted n:m. With the help of theoretical calculations, two isomers of the 1:1 complex are clearly identified. Concentration effects combined with a detailed vibrational analysis allow for the identification of transitions for the 1:1, 1:2, and 2:1 complexes. Anharmonic coupling constants have been derived from the observations of overtones and combinations.

  7. TES/Aura L2 H2O Limb V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The TES Aura L2 H2O data consist of information for one molecular species for an entire Global Survey or Special Observation. TES Level 2 data contain retrieved...

  8. TES/Aura L2 H2O Lite Nadir V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The TES Aura L2 H2O data consist of information for one molecular species for an entire Global Survey or Special Observation. TES Level 2 data contain retrieved...

  9. Transcriptome analysis of H2O2-treated wheat seedlings reveals a H2O2-responsive fatty acid desaturase gene participating in powdery mildew resistance.

    Directory of Open Access Journals (Sweden)

    Aili Li

    Full Text Available Hydrogen peroxide (H(2O(2 plays important roles in plant biotic and abiotic stress responses. However, the effect of H(2O(2 stress on the bread wheat transcriptome is still lacking. To investigate the cellular and metabolic responses triggered by H(2O(2, we performed an mRNA tag analysis of wheat seedlings under 10 mM H(2O(2 treatment for 6 hour in one powdery mildew (PM resistant (PmA and two susceptible (Cha and Han lines. In total, 6,156, 6,875 and 3,276 transcripts were found to be differentially expressed in PmA, Han and Cha respectively. Among them, 260 genes exhibited consistent expression patterns in all three wheat lines and may represent a subset of basal H(2O(2 responsive genes that were associated with cell defense, signal transduction, photosynthesis, carbohydrate metabolism, lipid metabolism, redox homeostasis, and transport. Among genes specific to PmA, 'transport' activity was significantly enriched in Gene Ontology analysis. MapMan classification showed that, while both up- and down- regulations were observed for auxin, abscisic acid, and brassinolides signaling genes, the jasmonic acid and ethylene signaling pathway genes were all up-regulated, suggesting H(2O(2-enhanced JA/Et functions in PmA. To further study whether any of these genes were involved in wheat PM response, 19 H(2O(2-responsive putative defense related genes were assayed in wheat seedlings infected with Blumeria graminis f. sp. tritici (Bgt. Eight of these genes were found to be co-regulated by H(2O(2 and Bgt, among which a fatty acid desaturase gene TaFAD was then confirmed by virus induced gene silencing (VIGS to be required for the PM resistance. Together, our data presents the first global picture of the wheat transcriptome under H(2O(2 stress and uncovers potential links between H(2O(2 and Bgt responses, hence providing important candidate genes for the PM resistance in wheat.

  10. DFT Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters

    Science.gov (United States)

    2017-10-31

    202) 767-2601 Calculations are presented of vibrational absorption spectra for energy minimized structures of PCE-nH2O, TCE-nH2O, DCE-nH2O, and VC...2 Energy- Minimized Structures and Their IR Spectra………………. ………………………...….4 Conclusion...for calculation of absorption spectra is presented. Second, DFT calculations of energy- minimized structures and vibration resonance structure for

  11. Electron scattering and ionization of H2O; OH, H2O2, HO2 radicals and (H2O)2 dimer

    Science.gov (United States)

    Joshipura, Kamalnayan N.; Pandya, Siddharth H.; Mason, Nigel J.

    2017-04-01

    Water, its dimer and their dissociative products (OH, H2O2, HO2) play an important role in several diverse processes including atmospheric chemistry, radiation induced damage within cellular systems and atmospheric plasmas used in industry. The interaction of electrons with these species is therefore an important collision process but since OH, H2O2 and HO2 are difficult to prepare as isolated experimental targets to date, electron scattering cross sections from such species are lacking in the literature. In this paper we report the results of a semi-empirical method to estimate such cross sections, benchmarking these cross sections against our knowledge of electron scattering from the water monomer. Calculations on HO2, H2O2 and (H2O2)2 are performed with improved Additivity Rules.

  12. Resolved Ammonia Thermometry, Water and Methanol Masers from the “Survey of Water and Ammonia in Nearby Galaxies (SWAN)”

    Science.gov (United States)

    Gorski, Mark; Ott, Juergen; Rand, Richard J.; Meier, David S.; Momjian, Emmanuel; Walter, Fabian; Schinnerer, Eva

    2017-01-01

    We present Karl G Jansky Very Large Array (VLA) molecular line observations of the nearby star forming galaxies NGC 253 and IC 342. These galaxies are close enough to be resolved with a few tens of pc resolution with the VLA. At this resolution we are well matched to the physical scales of Giant Molecular Clouds (GMCs) and therefore sensitive to the dominant processes therein. We have selected metastable inversion transitions of NH3 from (1,1) to (5,5) and the (9,9), the 22.2 GHz H2O (616-523) maser, and the 36.1 GHz CH3OH (414-303) maser. We use the metastable NH3 transitions to calculate rotation temperatures of the gas, and apply LVG models to estimate kinetic temperatures. Our selected masers are collisionally pumped and reveal the locations of shocked material. We find that the molecular gas is well described by cool 57K and warm 130K components, and there is no significant temperature variation over the central kpc. The result suggests that neither PDRs nor superbubbles significantly heat the molecular gas, but superbubbles likely increase the bulk motion of GMCs. We also report the discovery of H2O masers associated with the large-scale biconical outflow for the first time, indicating the presence of shocked dense gas. Finally, we find CH3OH masers, indicative of weak shocks, coincident with superbubble walls.

  13. The influence of solar ultraviolet radiation on the photochemical production of H2O2 in the equatorial Atlantic Ocean

    NARCIS (Netherlands)

    Gerringa, LJA; Rijkenberg, MJA; Timmermans, KR; Buma, AGJ

    Hydrogen peroxide (H2O2) was measured in marine surface waters of the eastern Atlantic Ocean between 25degreesN and 25degreesS. H2O2 concentrations decreased from 80 nM in the north to 20 nM in the south, in agreement with earlier observations. A diel cycle of H2O2 production as a function of

  14. H2O Formation in C-rich AGB Winds

    NARCIS (Netherlands)

    Lombaert, R.; Decin, L.; Royer, P.; de Koter, A.; Cox, N.L.J.; De Ridder, J.; Khouri, T.; Agúndez, M.; Blommaert, J.A.D.L.; Gernicharo, J.; González-Alfonso, E.; Groenewegen, M.A.T.; Kerschbaum, F.; Neufeld, D.; Vandenbussche, B.; Waelkens, C.

    2015-01-01

    The Herschel detection of warm H2O vapor emission from C-rich winds of AGB stars challenges the current understanding of circumstellar chemistry. Two mechanisms have been invoked to explain warm H2O formation. In the first, penetration of UV interstellar radiation through a clumpy circumstellar

  15. Reining in H2O2 for Safe Signaling

    OpenAIRE

    Planson, Anne-Gaëlle; Delaunay‐Moisan, Agnès

    2010-01-01

    Mammalian cells use hydrogen peroxide (H(2)O(2)) not only to kill invading pathogens, but also as a signaling modulator. Woo et al. (2010) now show that the local inactivation of a H(2)O(2)-degrading enzyme ensures that the production of this oxidant is restricted to the signaling site.

  16. Hormetic Effect of H2O2 in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Halyna M. Semchyshyn PhD

    2016-03-01

    Full Text Available In this study, we investigated the relationship between target of rapamycin (TOR and H2O2-induced hormetic response in the budding yeast Saccharomyces cerevisiae grown on glucose or fructose. In general, our data suggest that: (1 hydrogen peroxide (H2O2 induces hormesis in a TOR-dependent manner; (2 the H2O2-induced hormetic dose–response in yeast depends on the type of carbohydrate in growth medium; (3 the concentration-dependent effect of H2O2 on yeast colony growth positively correlates with the activity of glutathione reductase that suggests the enzyme involvement in the H2O2-induced hormetic response; and (4 both TOR1 and TOR2 are involved in the reciprocal regulation of the activity of glucose-6-phosphate dehydrogenase and glyoxalase 1.

  17. Main species and chemical pathways in cold atmospheric-pressure Ar + H2O plasmas

    Science.gov (United States)

    Liu, Dingxin; Sun, Bowen; Iza, Felipe; Xu, Dehui; Wang, Xiaohua; Rong, Mingzhe; Kong, Michael G.

    2017-04-01

    Cold atmospheric-pressure plasmas in Ar + H2O gas mixtures are a promising alternative to He + H2O plasmas as both can produce reactive oxygen species of relevance for many applications and argon is cheaper than helium. Although He + H2O plasmas have been the subject of multiple experimental and computational studies, Ar + H2O plasmas have received less attention. In this work we investigate the composition and chemical pathways in Ar + H2O plasmas by means of a global model that incorporates 57 species and 1228 chemical reactions. Water vapor concentrations from 1 ppm to saturation (32 000 ppm) are considered in the study and abrupt transitions in power dissipation channels, species densities and chemical pathways are found when the water concentration increases from 100 to 1000 ppm. In this region the plasma transitions from an electropositive discharge in which most power is coupled to electrons into an electronegative one in which most power is coupled to ions. While increasing electronegativity is also observed in He + H2O plasmas, in Ar + H2O plasmas the transition is more abrupt because Penning processes do not contribute to gas ionization and the changes in the electron energy distribution function and mean electron energy caused by the increasing water concentration result in electron-neutral excitation and ionization rates changing by many orders of magnitude in a relatively small range of water concentrations. Insights into the main chemical species and pathways governing the production and loss of electrons, O, OH, OH(A) and H2O2 are provided as part of the study.

  18. Relaxation of H2O from its |04>- vibrational state in collisions with H2O, Ar, H2, N2, and O2

    Science.gov (United States)

    Barnes, Peter W.; Sims, Ian R.; Smith, Ian W. M.

    2004-03-01

    We report rate coefficients at 293 K for the collisional relaxation of H2O molecules from the highly excited |04>± vibrational states in collisions with H2O, Ar, H2, N2, and O2. In our experiments, the |04>- state is populated by direct absorption of radiation from a pulsed dye laser tuned to ˜719 nm. Evolution of the population in the (|04>±) levels is observed using the combination of a frequency-quadrupled Nd:YAG laser, which selectively photolyses H2O(|04>±), and a frequency-doubled dye laser, which observes the OH(v=0) produced by photodissociation via laser-induced fluorescence. The delay between the pulse from the pump laser and those from the photolysis and probe lasers was systematically varied to generate kinetic decays. The rate coefficients for relaxation of H2O(|04>±) obtained from these experiments, in units of cm3 molecule-1 s-1, are: k(H2O)=(4.1±1.2)×10-10, k(Ar)=(4.9±1.1)×10-12, k(H2)=(6.8±1.1)×10-12, k(N2)=(7.7±1.5)×10-12, k(O2)=(6.7±1.4)×10-12. The implications of these results for our previous reports of rate constants for the removal of H2O molecules in selected vibrational states by collisions with H atoms (P. W. Barnes et al., Faraday Discuss. Chem. Soc. 113, 167 (1999) and P. W. Barnes et al., J. Chem. Phys. 115, 4586 (2001).) are fully discussed.

  19. Quantifying Fenton reaction pathways driven by self-generated H2O2 on pyrite surfaces

    Science.gov (United States)

    Gil-Lozano, C.; Davila, A. F.; Losa-Adams, E.; Fairén, A. G.; Gago-Duport, L.

    2017-03-01

    Oxidation of pyrite (FeS2) plays a significant role in the redox cycling of iron and sulfur on Earth and is the primary cause of acid mine drainage (AMD). It has been established that this process involves multi-step electron-transfer reactions between surface defects and adsorbed O2 and H2O, releasing sulfoxy species (e.g., S2O32-, SO42-) and ferrous iron (Fe2+) to the solution and also producing intermediate by-products, such as hydrogen peroxide (H2O2) and other reactive oxygen species (ROS), however, our understanding of the kinetics of these transient species is still limited. We investigated the kinetics of H2O2 formation in aqueous suspensions of FeS2 microparticles by monitoring, in real time, the H2O2 and dissolved O2 concentration under oxic and anoxic conditions using amperometric microsensors. Additional spectroscopic and structural analyses were done to track the dependencies between the process of FeS2 dissolution and the degradation of H2O2 through the Fenton reaction. Based on our experimental results, we built a kinetic model which explains the observed trend of H2O2, showing that FeS2 dissolution can act as a natural Fenton reagent, influencing the oxidation of third-party species during the long term evolution of geochemical systems, even in oxygen-limited environments.

  20. Pyruvate Protects Pathogenic Spirochetes from H2O2 Killing

    Science.gov (United States)

    Troxell, Bryan; Zhang, Jun-Jie; Bourret, Travis J.; Zeng, Melody Yue; Blum, Janice; Gherardini, Frank; Hassan, Hosni M.; Yang, X. Frank

    2014-01-01

    Pathogenic spirochetes cause clinically relevant diseases in humans and animals, such as Lyme disease and leptospirosis. The causative agent of Lyme disease, Borrelia burgdorferi, and the causative agent of leptospirosis, Leptospria interrogans, encounter reactive oxygen species (ROS) during their enzootic cycles. This report demonstrated that physiologically relevant concentrations of pyruvate, a potent H2O2 scavenger, and provided passive protection to B. burgdorferi and L. interrogans against H2O2. When extracellular pyruvate was absent, both spirochetes were sensitive to a low dose of H2O2 (≈0.6 µM per h) generated by glucose oxidase (GOX). Despite encoding a functional catalase, L. interrogans was more sensitive than B. burgdorferi to H2O2 generated by GOX, which may be due to the inherent resistance of B. burgdorferi because of the virtual absence of intracellular iron. In B. burgdorferi, the nucleotide excision repair (NER) and the DNA mismatch repair (MMR) pathways were important for survival during H2O2 challenge since deletion of the uvrB or the mutS genes enhanced its sensitivity to H2O2 killing; however, the presence of pyruvate fully protected ΔuvrB and ΔmutS from H2O2 killing further demonstrating the importance of pyruvate in protection. These findings demonstrated that pyruvate, in addition to its classical role in central carbon metabolism, serves as an important H2O2 scavenger for pathogenic spirochetes. Furthermore, pyruvate reduced ROS generated by human neutrophils in response to the Toll-like receptor 2 (TLR2) agonist zymosan. In addition, pyruvate reduced neutrophil-derived ROS in response to B. burgdorferi, which also activates host expression through TLR2 signaling. Thus, pathogenic spirochetes may exploit the metabolite pyruvate, present in blood and tissues, to survive H2O2 generated by the host antibacterial response generated during infection. PMID:24392147

  1. Submillimeter H2O and H2O+emission in lensed ultra- and hyper-luminous infrared galaxies at z 2-4

    NARCIS (Netherlands)

    Yang, C.; Omont, A.; Beelen, A.; González-Alfonso, E.; Neri, R.; Gao, Y.; van der Werf, P.; Weiß, A.; Gavazzi, R.; Falstad, N.; Baker, A. J.; Bussmann, R. S.; Cooray, A.; Cox, P.; Dannerbauer, H.; Dye, S.; Guélin, M.; Ivison, R.; Krips, M.; Lehnert, M.; Michałowski, M. J.; Riechers, D. A.; Spaans, M.; Valiante, E.

    2016-01-01

    We report rest-frame submillimeter H2O emission line observations of 11 ultra- or hyper-luminous infrared galaxies (ULIRGs or HyLIRGs) at z 2-4 selected among the brightest lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Using the IRAM NOrthern

  2. Spatial H2O2 signaling specificity: H2O2 from chloroplasts and peroxisomes modulates the plant transcriptome differentially.

    Science.gov (United States)

    Sewelam, Nasser; Jaspert, Nils; Van Der Kelen, Katrien; Tognetti, Vanesa B; Schmitz, Jessica; Frerigmann, Henning; Stahl, Elia; Zeier, Jürgen; Van Breusegem, Frank; Maurino, Veronica G

    2014-07-01

    Hydrogen peroxide (H2O2) operates as a signaling molecule in eukaryotes, but the specificity of its signaling capacities remains largely unrevealed. Here, we analyzed whether a moderate production of H2O2 from two different plant cellular compartments has divergent effects on the plant transcriptome. Arabidopsis thaliana overexpressing glycolate oxidase in the chloroplast (Fahnenstich et al., 2008; Balazadeh et al., 2012) and plants deficient in peroxisomal catalase (Queval et al., 2007; Inzé et al., 2012) were grown under non-photorespiratory conditions and then transferred to photorespiratory conditions to foster the production of H2O2 in both organelles. We show that H2O2 originating in a specific organelle induces two types of responses: one that integrates signals independently from the subcellular site of H2O2 production and another that is dependent on the H2O2 production site. H2O2 produced in peroxisomes induces transcripts involved in protein repair responses, while H2O2 produced in chloroplasts induces early signaling responses, including transcription factors and biosynthetic genes involved in production of secondary signaling messengers. There is a significant bias towards the induction of genes involved in responses to wounding and pathogen attack by chloroplastic-produced H2O2, including indolic glucosinolates-, camalexin-, and stigmasterol-biosynthetic genes. These transcriptional responses were accompanied by the accumulation of 4-methoxy-indol-3-ylmethyl glucosinolate and stigmasterol. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  3. Dense Molecular Gas and H 2 O Maser Emission in Galaxies

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Author Affiliations. F. Huang1 J. S. Zhang1 R. M. Li1 2 H. K. Li1. School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China. School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China.

  4. Characterization of titanium dioxide nanoparticles modified with polyacrylic acid and H2O2 for use as a novel radiosensitizer.

    Science.gov (United States)

    Morita, Kenta; Miyazaki, Serika; Numako, Chiya; Ikeno, Shinya; Sasaki, Ryohei; Nishimura, Yuya; Ogino, Chiaki; Kondo, Akihiko

    2016-12-01

    An induction of polyacrylic acid-modified titanium dioxide with hydrogen peroxide nanoparticles (PAA-TiO2/H2O2 NPs) to a tumor exerted a therapeutic enhancement of X-ray irradiation in our previous study. To understand the mechanism of the radiosensitizing effect of PAA-TiO2/H2O2 NPs, analytical observations that included DLS, FE-SEM, FT-IR, XAFS, and Raman spectrometry were performed. In addition, highly reactive oxygen species (hROS) which PAA-TiO2/H2O2 NPs produced with X-ray irradiation were quantified by using a chemiluminescence method and a EPR spin-trapping method. We found that PAA-TiO2/H2O2 NPs have almost the same characteristics as PAA-TiO2. Surprisingly, there were no significant differences in hROS generation. However, the existence of H2O2 was confirmed in PAA-TiO2/H2O2 NPs, because spontaneous hROS production was observed w/o X-ray irradiation. In addition, PAA-TiO2/H2O2 NPs had a curious characteristic whereby they absorbed H2O2 molecules and released them gradually into a liquid phase. Based on these results, the H2O2 was continuously released from PAA-TiO2/H2O2 NPs, and then released H2O2 assumed to be functioned indirectly as a radiosensitizing factor.

  5. Descent with Modification: Thermal Reactions of Subsurface H2O2 of Relevance to Icy Satellites and Other Small Bodies

    Science.gov (United States)

    Hudson, Reggie L.; Loefler, Mark J.

    2012-01-01

    Laboratory experiments have demonstrated that magnetospheric radiation in the Jovian system drives reaction chemistry in ices at temperatures relevant to Europa and other icy satellites. Similarly, cosmic radiation (mainly protons) acting on cometary and interstellar ices can promote extensive chemical change. Among the products that have been identified in irradiated H20-ice is hydrogen peroxide (H202), which has been observed on Europa and is suspected on other worlds. Although the infrared spectra and radiation chemistry of H2O2-containing ices are well documented, the thermally-induced solid-phase chemistry of H2O2 is largely unknown. Therefore, in this presentation we report new laboratory results on reactions at 50 - 130 K in ices containing H2O2 and other molecules, both in the presence and absence of H2O. As an example of our results, we find that warming H2O + H2O2 + SO2 ices promotes SO2 oxidation to SO4(2-). We suspect that such redox chemistry may explain some of the observations related to the presence and distribution of H2O2 across Europa's surface as well as the lack of H2O2 on Ganymede and Callisto. If other molecules prove to be just as reactive with frozen H2O2 then it may explain why H2O2 has been absent from surfaces of many of the small icy bodies that are known to be exposed to ionizing radiation. Our results also have implications for the survival of H2O2 as it descends towards a subsurface ocean on Europa.

  6. Spectral and thermal studies of MgI2·8H2O

    Science.gov (United States)

    Koleva, Violeta; Stefov, Viktor; Najdoski, Metodija; Ilievski, Zlatko; Cahil, Adnan

    2017-10-01

    In the present contribution special attention is paid to the spectroscopic and thermal characterization of MgI2·8H2O which is the stable hydrated form at room temperature. The infrared spectra of MgI2·8H2O and its deuterated analogues recorded at room and liquid nitrogen temperature are presented and interpreted. In the low-temperature diference infrared spectrum of the slightly deuterated analogue (≈5% D) at least four bands are found out of the expected five (at 2595, 2550, 2538 and 2495 cm-1) as a result of the uncoupled O-D oscillators in the isotopically isolated HOD molecules. Multiple bands are observed in the water bending region and only two bands of the HOH librational modes are found. For more precise and deep description of the processes occurring upon heating of MgI2·8H2O we have applied simultaneous TG/DTA/Mass spectrometry technique identifying the gases evolved during the thermal transformations. We have established that the thermal decomposition of MgI2·8H2O is a complex process that takes place in two main stages. In the first stage (between 120 and 275 °C) the salt undergoes a partial stepwise dehydration to MgI2·2H2O followed by a hydrolytic decomposition with formation of magnesium hydroxyiodide Mg(OH)1.44I0.56 accompanied with simultaneous release of H2O and HI. In the second stage Mg(OH)1.44I0.56 is completely decomposed to MgO with elimination of gaseous H2O, HI, I2 and H2. Infrared spectra of the annealed samples heated between 190 and 270 °C confirmed the formation of magnesium hydroxyiodide.

  7. Kinetics of H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase.

    Science.gov (United States)

    Kuusk, Silja; Bissaro, Bastien; Kuusk, Piret; Forsberg, Zarah; Eijsink, Vincent G H; Sørlie, Morten; Väljamäe, Priit

    2017-11-14

    Lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of glycosidic bonds in recalcitrant polysaccharides, such as cellulose and chitin, and are of interest in biotechnological utilization of these abundant biomaterials. It has recently been shown that LPMOs can use H2O2, instead of O2, as a co-substrate. This peroxygenase-like reaction by a mono-copper enzyme is unprecedented in nature and opens new avenues in chemistry and enzymology. Here, we provide the first detailed kinetic characterization of chitin degradation by the bacterial LPMO chitin-binding protein CBP21 using H2O2 as co-substrate. The use of [14C]-labeled chitin provided convenient and sensitive detection of the released soluble products, which enabled detailed kinetic measurements. The kcat for chitin oxidation found here (5.6 s-1) is more than an order of magnitude higher than previously reported (apparent) rate constants for reactions containing O2 but no added H2O2 The kcat/KM for H2O2-driven degradation of chitin was on the order of 106 M-1 s-1, indicating that LPMOs have catalytic efficiencies similar to those of peroxygenases. Of note, H2O2 also inactivated CBP21, but the second-order rate constant for inactivation was about three orders of magnitude lower than that for catalysis. In light of the observed CBP21 inactivation at higher H2O2 levels we conclude that controlled generation of H2O2, in situ, seems most optimal for fueling LPMO-catalyzed oxidation of polysaccharides. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  8. Dynamics, magnetic properties, and electron binding energies of H2O2 in water.

    Science.gov (United States)

    C Cabral, Benedito J

    2017-06-21

    Results for the magnetic properties and electron binding energies of H2O2 in liquid water are presented. The adopted methodology relies on the combination of Born-Oppenheimer molecular dynamics and electronic structure calculations. The Keal-Tozer functional was applied for predicting magnetic shieldings and H2O2 intramolecular spin-spin coupling constants. Electron binding energies were calculated with electron propagator theory. In water, H2O2 is a better proton donor than proton acceptor, and the present results indicate that this feature is important for understanding magnetic properties in solution. In comparison with the gas-phase, H2O2 atoms are deshielded in water. For oxygen atoms, the deshielding is mainly determined by structural/conformational changes. Hydrogen-bond interactions explain the deshielding of protons in water. The predicted chemical shift for the H2O2 protons in water (δ∼11.8 ppm) is in good agreement with experimental information (δ=11.2 ppm). The two lowest electron binding energies of H2O2 in water (10.7±0.5 and 11.2±0.5 eV) are in reasonable agreement with experiment. In keeping with data from photoelectron spectroscopy, an ∼1.6 eV red-shift of the two first ionisation energies relative to the gas-phase is observed in water. The strong dependence of magnetic properties on changes of the electronic density in the nuclei environment is illustrated by a correlation between the σ(17O) magnetic shielding constant and the energy gap between the [2a] lowest valence and [1a] core orbitals of H2O2.

  9. Sources of superoxide/H2O2 during mitochondrial proline oxidation

    Directory of Open Access Journals (Sweden)

    Renata L.S. Goncalves

    2014-01-01

    Full Text Available p53 Inducible gene 6 (PIG6 encodes mitochondrial proline dehydrogenase (PRODH and is up-regulated several fold upon p53 activation. Proline dehydrogenase is proposed to generate radicals that contribute to cancer cell apoptosis. However, there are at least 10 mitochondrial sites that can produce superoxide and/or H2O2, and it is unclear whether proline dehydrogenase generates these species directly, or instead drives production by other sites. Amongst six cancer cell lines, ZR75-30 human breast cancer cells had the highest basal proline dehydrogenase levels, and mitochondria isolated from ZR75-30 cells consumed oxygen and produced H2O2 with proline as sole substrate. Insects use proline oxidation to fuel flight, and mitochondria isolated from Drosophila melanogaster were even more active with proline as sole substrate than ZR75-30 mitochondria. Using mitochondria from these two models we identified the sites involved in formation of superoxide/H2O2 during proline oxidation. In mitochondria from Drosophila the main sites were respiratory complexes I and II. In mitochondria from ZR75-30 breast cancer cells the main sites were complex I and the oxoglutarate dehydrogenase complex. Even with combinations of substrates and respiratory chain inhibitors designed to minimize the contributions of other sites and maximize any superoxide/H2O2 production from proline dehydrogenase itself, there was no significant direct contribution of proline dehydrogenase to the observed H2O2 production. Thus proline oxidation by proline dehydrogenase drives superoxide/H2O2 production, but it does so mainly or exclusively by providing anaplerotic carbon for other mitochondrial dehydrogenases and not by producing superoxide/H2O2 directly.

  10. Sources of superoxide/H2O2 during mitochondrial proline oxidation.

    Science.gov (United States)

    Goncalves, Renata L S; Rothschild, Daniel E; Quinlan, Casey L; Scott, Gary K; Benz, Christopher C; Brand, Martin D

    2014-01-01

    p53 Inducible gene 6 (PIG6) encodes mitochondrial proline dehydrogenase (PRODH) and is up-regulated several fold upon p53 activation. Proline dehydrogenase is proposed to generate radicals that contribute to cancer cell apoptosis. However, there are at least 10 mitochondrial sites that can produce superoxide and/or H2O2, and it is unclear whether proline dehydrogenase generates these species directly, or instead drives production by other sites. Amongst six cancer cell lines, ZR75-30 human breast cancer cells had the highest basal proline dehydrogenase levels, and mitochondria isolated from ZR75-30 cells consumed oxygen and produced H2O2 with proline as sole substrate. Insects use proline oxidation to fuel flight, and mitochondria isolated from Drosophila melanogaster were even more active with proline as sole substrate than ZR75-30 mitochondria. Using mitochondria from these two models we identified the sites involved in formation of superoxide/H2O2 during proline oxidation. In mitochondria from Drosophila the main sites were respiratory complexes I and II. In mitochondria from ZR75-30 breast cancer cells the main sites were complex I and the oxoglutarate dehydrogenase complex. Even with combinations of substrates and respiratory chain inhibitors designed to minimize the contributions of other sites and maximize any superoxide/H2O2 production from proline dehydrogenase itself, there was no significant direct contribution of proline dehydrogenase to the observed H2O2 production. Thus proline oxidation by proline dehydrogenase drives superoxide/H2O2 production, but it does so mainly or exclusively by providing anaplerotic carbon for other mitochondrial dehydrogenases and not by producing superoxide/H2O2 directly.

  11. Dynamics, magnetic properties, and electron binding energies of H2O2 in water

    Science.gov (United States)

    C. Cabral, Benedito J.

    2017-06-01

    Results for the magnetic properties and electron binding energies of H2O2 in liquid water are presented. The adopted methodology relies on the combination of Born-Oppenheimer molecular dynamics and electronic structure calculations. The Keal-Tozer functional was applied for predicting magnetic shieldings and H2O2 intramolecular spin-spin coupling constants. Electron binding energies were calculated with electron propagator theory. In water, H2O2 is a better proton donor than proton acceptor, and the present results indicate that this feature is important for understanding magnetic properties in solution. In comparison with the gas-phase, H2O2 atoms are deshielded in water. For oxygen atoms, the deshielding is mainly determined by structural/conformational changes. Hydrogen-bond interactions explain the deshielding of protons in water. The predicted chemical shift for the H2O2 protons in water (δ ˜11.8 ppm) is in good agreement with experimental information (δ =11.2 ppm). The two lowest electron binding energies of H2O2 in water (10.7 ±0.5 and 11.2 ±0.5 eV) are in reasonable agreement with experiment. In keeping with data from photoelectron spectroscopy, an ˜1.6 eV red-shift of the two first ionisation energies relative to the gas-phase is observed in water. The strong dependence of magnetic properties on changes of the electronic density in the nuclei environment is illustrated by a correlation between the σ(17O) magnetic shielding constant and the energy gap between the [2a] lowest valence and [1a] core orbitals of H2O2.

  12. Study on the proliferation of human gastric cancer cell AGS by activation of EGFR in H2O2.

    Science.gov (United States)

    Wang, Q; Shen, W; Tao, G-Q; Sun, J; Shi, L-P

    2017-03-01

    This study is to investigate the effect of low concentration hydrogen peroxide (H2O2) on the proliferation of gastric cancer AGS cell line in vitro and the mechanism. AGS cells were treated with different low concentrations of H2O2 (1, 0.1, 0.01, and 0.001 μm) for 48 hours. The effect of H2O2 concentration gradient on the activity of AGS cell activities was detected by methyl thiazolyl tetrazolium (MTT) method. The expression of the epidermal growth factor receptor (EGFR) and its downstream signaling pathway extracellular signal-regulated kinase (ERK) protein in H2O2 was detected by Western blot method; moreover, the effect of H2O2 on intracellular reactive oxygen species (ROS) in AGS cells was observed under the fluorescence microscope and quantitative analysis by flow cytometry. The effect of H2O2 on the level of c-myc mRNA in AGS cells was also detected by reverse transcription polymerase chain reaction (RT-PCR). MTT detection results showed that 1 μm and 0.1 μm H2O2 at 48h can effectively promote the proliferation of AGS cells (pH2O2 treatment of AGS cells, the EGFR protein levels and ERK protein phosphorylation levels increased significantly (pH2O2 increased the intracellular reactive oxygen species (ROS). RT-PCR results showed the levels of c-myc mRNA in AGS cells treated with a low concentration of H2O2 were significantly increased (pH2O2 can significantly promote the proliferation of AGS cells by activating EGFR/ERK signaling pathway.

  13. Induced peroxidase and cytoprotective enzyme expressions support adaptation of HUVECs to sustain subsequent H2O2 exposure.

    Science.gov (United States)

    Patel, Hemang; Chen, Juan; Kavdia, Mahendra

    2016-01-01

    H2O2 mediates autocrine and paracrine signaling in the vasculature and can propagate endothelial dysfunction. However, it is not clear how endothelial cells withstand H2O2 exposure and promote H2O2-induced vascular remodeling. To understand the innate ability of endothelial cells for sustaining excess H2O2 exposure, we investigated the genotypic and functional regulation of redox systems in primary HUVECs following an H2O2 treatment. Primary HUVECs were exposed to transient H2O2 exposure and consistent H2O2 exposure. Following H2O2 treatments for 24, 48 and 72 h, we measured O2(-) production, mitochondrial membrane polarization (MMP), and gene expressions of pro-oxidative enzymes, peroxidase enzymes, and cytoprotective intermediates. Our results showed that the 24 h H2O2 exposure significantly increased O2(-) levels, hyperpolarized MMP, and downregulated CAT, GPX1, TXNRD1, NFE2L2, ASK1, and ATF2 gene expression in HUVECs. At 72 h, HUVECs in both treatment conditions were shown to adapt to reduce O2(-) levels and normalize MMP. An upregulation of GPX1, TXNRD1, and HMOX1 gene expression and a recovery of NFE2L2 and PRDX1 gene expression to control levels were observed in both consistent and transient treatments at 48 and 72 h. The response of endothelial cells to excess levels of H2O2 involves a complex interaction amongst O2(-) levels, mitochondrial membrane polarization and anti- and pro-oxidant gene regulation. As a part of this response, HUVECs induce cytoprotective mechanisms including the expression of peroxidase and antioxidant enzymes along with the downregulation of pro-apoptotic genes. This adaptation assists HUVECs to withstand subsequent exposures to H2O2. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Recirculating cryogenic hydrogen maser

    Energy Technology Data Exchange (ETDEWEB)

    Huerlimann, M.D.; Hardy, W.N.; Berlinsky, A.J.; Cline, R.W.

    1986-08-01

    We report on the design and initial testing of a new type of hydrogen maser, operated at dilution refrigerator temperatures, in which H atoms circulate back and forth between a microwave-pumped state selector and the maser cavity. Other novel design features include liquid-/sup 4/He-coated walls, He-cooled electronics, and the use of microscopic magnetic particles to relax the two lowest hyperfine levels in the state selector. Stabilities at least as good as that of a Rb clock and a high-stability quartz oscillator are observed for measuring times between 1 and 300 s.

  15. Atmospheric H2O2 measurement: comparison of cold trap method with impinger bubbling method

    Science.gov (United States)

    Sakugawa, H.; Kaplan, I. R.

    1987-01-01

    Collection of atmospheric H2O2 was performed by a cold trap method using dry ice-acetone as the refrigerant. The air was drawn by a pump into a glass gas trap immersed in the dry ice-acetone slush in a dewar flask at a flow rate of 2.5 l min-1 for approximately 2 h. Collection efficiency was > 99% and negligible interferences by O3, SO2 or organic matter with the collected H2O2 in the trap were observed. This method was compared with the air impinger bubbling method which has been previously described (Kok et al., 1978a, b, Envir. Sci. Technol. 12, 1072-1080). The measured total peroxide (H2O2 + organic peroxide) values in a series of aim samples collected by the impinger bubbling method (0.06-3.7 ppb) were always higher than those obtained by the cold trap method (0.02-1.2 ppb). Laboratory experiments suggest that the difference in values between the two methods probably results from the aqueous phase generation of H2O2 and organic peroxide in the impinger solution by a reaction of atmospheric O3 with olefinic and aromatic compounds. If these O3-organic compound reactions which occur in the impinger also occur in aqueous droplets in the atmosphere, the process could be very important for aqueous phase generation of H2O2 in clouds and rainwater.

  16. Phase Separation Kinetics in Isopycnic Mixtures of H2O/CO2/Ethoxylated Alcohol Surfactants

    Science.gov (United States)

    Lesemann, Markus; Paulaitis, Michael E.; Kaler, Eric W.

    1999-01-01

    Ternary mixtures of H2O and CO2 with ethoxylated alcohol (C(sub i)E(sub j)) surfactants form three coexisting liquid phases at conditions where two of the phases have equal densities (isopycnic phases). Isopycnic phase behavior has been observed for mixtures containing C8E5, C10E6, and C12E6 surfactants, but not for those mixtures containing either C4E1 or C8E3 surfactants. Pressure-temperature (PT) projections for this three-phase equilibrium were determined for H2O/CO2/C8E5 and H2O/CO2/C10E6 mixtures at temperatures from approximately 25 to 33 C and pressures between 90 and 350 bar. Measurements of the microstructure in H2O/CO2/C12E6 mixtures as a function of temperature (25-31 C), pressure (63.1-90.7 bar), and CO2 composition (0-3.9 wt%) have also been carried out to show that while micellar structure remains essentially un-changed, critical concentration fluctuations increase as the phase boundary and plait point are approached. In this report, we present our first measurements of the kinetics of isopycnic phase separation for ternary mixtures of H2O/CO2/C8E5.

  17. Destruction and Sequestration of H2O on Mars

    Science.gov (United States)

    Clark, Benton

    2016-07-01

    The availability of water in biologically useable form on any planet is a quintessential resource, even if the planet is in a zone habitable with temperature regimes required for growth of organisms (above -18 °C). Mars and most other planetary objects in the solar system do not have sufficient liquid water at their surfaces that photosynthesis or chemolithoautotrophic metabolism could occur. Given clear evidence of hydrous mineral alteration and geomorphological constructs requiring abundant supplies of liquid water in the past, the question arises whether this H2O only became trapped physically as ice, or whether there could be other, more or less accessible reservoirs that it has evolved into. Salts containing S or Cl appear to be ubiquitous on Mars, having been measured in soils by all six Mars landed missions, and detected in additional areas by orbital investigations. Volcanoes emit gaseous H2S, S, SO2, HCl and Cl2. A variety of evidence indicates the geochemical fate of these gases is to be transformed into sulfates, chlorides, chlorates and perchlorates. Depending on the gas, the net reaction causes the destruction of between one and up to eight molecules of H2O per atom of S or Cl (although hydrogen atoms are also released, they are lost relatively rapidly to atmospheric escape). Furthermore, the salt minerals formed often incorporate H2O into their crystalline structures, and can result in the sequestration of up to yet another six (sometimes, more) molecules of H2O. In addition, if the salts are microcrystalline or amorphous, they are potent adsorbents for H2O. In certain cases, they are even deliquescent under martian conditions. Finally, the high solubility of the vast majority of these salts (with notable exception of CaSO4) can result in dense brines with low water activity, aH, as well as cations which can be inimical to microbial metabolism, effectively "poisoning the well." The original geologic materials on Mars, igneous rocks, also provide some

  18. Electrochemical, H2O2-Boosted Catalytic Oxidation System

    Science.gov (United States)

    Akse, James R.; Thompson, John O.; Schussel, Leonard J.

    2004-01-01

    An improved water-sterilizing aqueous-phase catalytic oxidation system (APCOS) is based partly on the electrochemical generation of hydrogen peroxide (H2O2). This H2O2-boosted system offers significant improvements over prior dissolved-oxygen water-sterilizing systems in the way in which it increases oxidation capabilities, supplies H2O2 when needed, reduces the total organic carbon (TOC) content of treated water to a low level, consumes less energy than prior systems do, reduces the risk of contamination, and costs less to operate. This system was developed as a variant of part of an improved waste-management subsystem of the life-support system of a spacecraft. Going beyond its original intended purpose, it offers the advantage of being able to produce H2O2 on demand for surface sterilization and/or decontamination: this is a major advantage inasmuch as the benign byproducts of this H2O2 system, unlike those of systems that utilize other chemical sterilants, place no additional burden of containment control on other spacecraft air- or water-reclamation systems.

  19. Mechanism of H2O-Induced Conductance Changes in AuCl4-Functionalized CNTs

    KAUST Repository

    Murat, Altynbek

    2015-04-30

    We employ ab initio self-interaction corrected density functional theory combined with the nonequilibrium Green\\'s function method to study the electronic and quantum transport properties of carbon nanotubes (CNTs) functionalized with AuCl4 molecules. In particular, we investigate the electronic structure and characterize the conductance for different concentrations and configurations of randomly distributed AuCl4 molecules with and without the adsorption of H2O. We thus propose a mechanism that explains the origin of the recently observed resistivity changes of AuCl4-functionalized CNTs upon H2O adsorption. We find that water adsorption shifts the highest occupied Cl and Au states down in energy and thereby reduces the scattering of the electrons around the Fermi energy, hence enhancing the conductivity. Our results help in the development of highly sensitive nanoscale H2O vapor sensors based on AuCl4-functionalized CNTs. © 2015 American Chemical Society.

  20. A Global PLASIMO Model for H2O Chemistry

    Science.gov (United States)

    Tadayon Mousavi, Samaneh; Koelman, Peter; Graef, Wouter; Mihailova, Diana; van Dijk, Jan; EPG/ Applied Physics/ Eindhoven University of Technology Team; Plasma Matters B. V. Team

    2016-09-01

    Global warming is one of the critical contemporary problems for mankind. Transformation of CO2 into fuels, like CH4, that are transportable with the current infrastructure seems a promising idea to solve this threatening issue. The final aim of this research is to produce CH4 by using microwave plasma in CO2 -H2 O mixture and follow-up catalytic processes. In this contribution we present a global model for H2 O chemistry that is based on the PLASIMO plasma modeling toolkit. The time variation of the electron energy and the species' densities are calculated based on the source and loss terms in plasma due to chemical reactions. The short simulation times of such models allow an efficient assessment and chemical reduction of the H2O chemistry, which is required for full spatially resolved simulations.

  1. Ammonia removal from leachate by photochemical process using H2O2

    Directory of Open Access Journals (Sweden)

    Giovani Archanjo Brota

    2010-08-01

    Full Text Available In this work, it was studied the optimization of the photochemical process using H2O2/UV in order to reduce the concentration of ammonia in leachate. It was used landfills leachate previously treated in the development of studies. A photochemical reactor with the capacity of 1.7 liters equipped with refrigeration system and recirculation of leachate was employed in the research. The influence of temperature, the light bulb power, the concentration of H2O2 and treatment time were tested during the study. A removal of 97% of ammonia was observed at 90 min.

  2. Seasonal and interannual variations of H2O2 on Mars

    Science.gov (United States)

    Encrenaz, T.; Greathouse, T. K.; Lefèvre, F.; Montmessin, F.; Fouchet, T.; Bézard, B.; Atreya, S. K.; Gondet, B.; Fedorova, A.; Hartogh, P.

    2017-09-01

    Following a long-term monitoring campaign on the abundance and distribution of hydrogen peroxide on Mars, we present a new observation near summer solstice which corresponds to a maximum of the seasonal abundance of H2O2. Our result is in full agreement with GCM predictions (Lefèvre et al. 2008; [1]). We also analyse previous measurements of H2O2 in the vicinity of aphelion which seem to indicate the existence of interannual variations, and we discuss their possible origin.

  3. H2O2augments cytosolic calcium in nucleus tractus solitarii neurons via multiple voltage-gated calcium channels.

    Science.gov (United States)

    Ostrowski, Tim D; Dantzler, Heather A; Polo-Parada, Luis; Kline, David D

    2017-05-01

    Reactive oxygen species (ROS) play a profound role in cardiorespiratory function under normal physiological conditions and disease states. ROS can influence neuronal activity by altering various ion channels and transporters. Within the nucleus tractus solitarii (nTS), a vital brainstem area for cardiorespiratory control, hydrogen peroxide (H 2 O 2 ) induces sustained hyperexcitability following an initial depression of neuronal activity. The mechanism(s) associated with the delayed hyperexcitability are unknown. Here we evaluate the effect(s) of H 2 O 2 on cytosolic Ca 2+ (via fura-2 imaging) and voltage-dependent calcium currents in dissociated rat nTS neurons. H 2 O 2 perfusion (200 µM; 1 min) induced a delayed, slow, and moderate increase (~27%) in intracellular Ca 2+ concentration ([Ca 2+ ] i ). The H 2 O 2 -mediated increase in [Ca 2+ ] i prevailed during thapsigargin, excluding the endoplasmic reticulum as a Ca 2+ source. The effect, however, was abolished by removal of extracellular Ca 2+ or the addition of cadmium to the bath solution, suggesting voltage-gated Ca 2+ channels (VGCCs) as targets for H 2 O 2 modulation. Recording of the total voltage-dependent Ca 2+ current confirmed H 2 O 2 enhanced Ca 2+ entry. Blocking VGCC L, N, and P/Q subtypes decreased the number of cells and their calcium currents that respond to H 2 O 2 The number of responder cells to H 2 O 2 also decreased in the presence of dithiothreitol, suggesting the actions of H 2 O 2 were dependent on sulfhydryl oxidation. In summary, here, we have shown that H 2 O 2 increases [Ca 2+ ] i and its Ca 2+ currents, which is dependent on multiple VGCCs likely by oxidation of sulfhydryl groups. These processes presumably contribute to the previously observed delayed hyperexcitability of nTS neurons in in vitro brainstem slices. Copyright © 2017 the American Physiological Society.

  4. H2O2_COD_EPA; MEC_acclimation

    Science.gov (United States)

    H2O2_COD_EPA: Measurements of hydrogen peroxide and COD concentrations for water samples from the MEC reactors.MEC_acclimation: raw data for current and voltage of the anode in the MEC reactor.This dataset is associated with the following publication:Sim, J., J. An, E. Elbeshbishy, R. Hodon, and H. Lee. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells. Bioresource Technology. Elsevier Online, New York, NY, USA, 195: 31-36, (2015).

  5. NASA Lewis H2-O2 MHD program

    Science.gov (United States)

    Smith, M.; Nichols, L. D.; Seikel, G. R.

    1974-01-01

    Performance and power costs of H2-O2 combustion powered steam-MHD central power systems are estimated. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city. Status and plans are outlined for an experimental evaluation of H2-O2 combustion-driven MHD power generators at NASA Lewis Research Center.

  6. High-Altitude Aircraft and Balloon-Borne Observations of OH, HO2, ClO, BrO, NO2, ClONO2, ClOOCl, H2O, and O3 in Earth's Stratosphere

    Science.gov (United States)

    Anderson, James G.

    1999-01-01

    Using observations from balloon-borne instruments and aircraft-borne instruments the investigation arrived at the following developments.: (1) Determination of the dominant catalytic cycles that destroy ozone in the lower stratosphere; (2) The partial derivatives of the rate limiting steps are observables in the lower stratosphere; (3) Recognition that the "Low NOx" condition is the regime that holds the greatest potential for misjudgement of Ozone loss rates; (4) Mapping of the Bromine radical contribution to the ozone destruction rate in the lower stratosphere; (5) Observation of OH, HO2 and ClO in the plume of the Concorde SST in the stratosphere; (6) Determination of the diurnal behavior of OH in the lower stratosphere; (7) Observed OH and H02 in the Troposphere and the interrelationship between Ozone and OH, HO2, CO and NO; (8) Analysis of the Catalytic Production of Ozone and Reactions that Couple OH and H02 in the Troposphere; (9) The continuing development of the understanding of the Tropopause temperatures, water vapor mixing ratios, and vertical advection and the mixing in of mid-latitude air; (10) Performed Multiple Tracer Analyses as a diagnostic of water vapor intrusion into the "Middle World" (i.e., the lowermost stratsophere); (11) Flight testing of a new instrument for the In Situ detection of ClON02 from the ER-2; (12) Laser induced fluorescence detection of NO2. There is included an in depth discussion of each of these developments and observations.

  7. Competitive Sorption of CO2 and H2O in 2:1 Layer Phyllosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Schaef, Herbert T.; Loring, John S.; Glezakou, Vassiliki Alexandra; Miller, Quin R.; Chen, Jeffrey; Owen, Antionette T.; Lee, Mal Soon; Ilton, Eugene S.; Felmy, Andrew R.; McGrail, B. Peter; Thompson, Christopher J.

    2015-07-01

    The salting out effect, where increasing the ionic strength of aqueous solutions decreases the solubility of dissolved gases is a well-known phenomenon. Less explored is the opposite process where an initially anhydrous system containing a volatile, relatively non-polar component and inorganic ions is systematically hydrated. Expandable clays such as montmorillonite are ideal systems for exploring this scenario as they have readily accessible exchange sites containing cations that can be systematically dehydrated or hydrated, from near anhydrous to almost bulk-like water conditions. This phenomenon has new significance with the simultaneous implementation of geological sequestration and secondary utilization of CO2 to both mitigate climate warming and enhance extraction of methane from hydrated clay-rich formations. Here, the partitioning of CO2 and H2O between Na-, Ca-, and Mg-exchanged montmorillonite and variably hydrated supercritical CO2 (scCO2) was investigated using in situ X-ray diffraction, infrared (IR)spectroscopic titrations, and quartz crystal microbalance (QCM) measurements. Density functional theory calculations provided mechanistic insights. Structural volumetric changes were correlated to quantified changes in sorbed H2O and CO2 concentrations as a function of %H2O saturated in scCO2. Intercalation of CO2 is favored at low H2O/CO2 ratios in the interlayer region, where CO2 can solvate the interlayer cation. As the clay becomes more hydrated and the H2O/CO2 ratio increases, H2O displaces CO2 from the solvation shell of the cation and CO2 tends to segregate. This transition decreases both the entropic and enthalpic driving force for CO2 intercalation, consistent with experimentally observed loss of intercalated CO2.

  8. Sailuotong Prevents Hydrogen Peroxide (H2O2-Induced Injury in EA.hy926 Cells

    Directory of Open Access Journals (Sweden)

    Sai Wang Seto

    2017-01-01

    Full Text Available Sailuotong (SLT is a standardised three-herb formulation consisting of Panax ginseng, Ginkgo biloba, and Crocus sativus designed for the management of vascular dementia. While the latest clinical trials have demonstrated beneficial effects of SLT in vascular dementia, the underlying cellular mechanisms have not been fully explored. The aim of this study was to assess the ability and mechanisms of SLT to act against hydrogen peroxide (H2O2-induced oxidative damage in cultured human vascular endothelial cells (EAhy926. SLT (1–50 µg/mL significantly suppressed the H2O2-induced cell death and abolished the H2O2-induced reactive oxygen species (ROS generation in a concentration-dependent manner. Similarly, H2O2 (0.5 mM; 24 h caused a ~2-fold increase in lactate dehydrogenase (LDH release from the EA.hy926 cells which were significantly suppressed by SLT (1–50 µg/mL in a concentration-dependent manner. Incubation of SLT (50 µg/mL increased superoxide dismutase (SOD activity and suppressed the H2O2-enhanced Bax/Bcl-2 ratio and cleaved caspase-3 expression. In conclusion, our results suggest that SLT protects EA.hy916 cells against H2O2-mediated injury via direct reduction of intracellular ROS generation and an increase in SOD activity. These protective effects are closely associated with the inhibition of the apoptotic death cascade via the suppression of caspase-3 activation and reduction of Bax/Bcl-2 ratio, thereby indicating a potential mechanism of action for the clinical effects observed.

  9. [Cryogenic Raman spectroscopic characteristics of NaCl-H2O, CaCl2-H2O and NaCl-CaCl2-H2O: application to analysis of fluid inclusions].

    Science.gov (United States)

    Mao, Cui; Chen, Yong; Zhou, Yao-Qi; Ge, Yun-Jin; Zhou, Zhen-Zhu; Wang, You-Zhi

    2010-12-01

    Accurately diagnosing the types of the salt and calculating the salinity quantitatively are the significant content of fluid inclusions. The traditional method of testing fluid inclusions salinity is cooling. To overcome the difficulty for observing freezing phase transition, the authors tested the spectrum of NaCl-H2O, CaCl2-H2O and NaCl-CaCl2-H2O systems at -180 degrees C by laser Raman spectroscopy. The result demonstrates that the ratio of peak values has linear relationship with salinity. Calibration curves were established by typical ratio of hydro-halite at 3 420 cm(-1) to the ice at 3 092 cm(-1), and the ratio of antarcticite at 3 432 cm(-1) to the ice at 3 092 cm(-1). The calibration curves have very high correlation coefficient. This method is verified by synthetic hydrocarbon-bearing aqueous fluid inclusions and quartz aqueous fluid inclusions of well Fengshen 6 in Dongying sag. The results of the authors' experiments show that cryogenic Raman spectroscopy can not only identify the types of the salts but also determine the salinity effectively in fluid inclusions.

  10. The contribution of GSH peroxidase-1, catalase and GSH to the degradation of H2O2 by the mouse lens.

    Science.gov (United States)

    Spector, A; Ma, W; Wang, R R; Yang, Y; Ho, Y S

    1997-03-01

    Utilizing cultured lenses from normal and homozygous glutathione peroxidase (GSHPx-1) knockout mice and inhibitors for GSSG Reductase (GSSG Red), 1,3-bis(2-chlorethyl)-1-nitrosourea (BCNU) and catalase (Cat), 3-aminotriazole (3-AT), the ability to degrade H2O2 was examined at two H2O2 concentrations, 300 microM and 80 microM. It was found that GSHPx-1 contributed about 15% to the H2O2 degradation. The Cat contribution was concentration dependent being about 30% at 300 microM H2O2 and approximately 8% to 15% at 80 microM H2O2. GSH loss measured as nonprotein thiol (NP-SH) was shown to be linked to most of the remaining H2O2 degradation accounting for about 54% to 72% of the H2O2 degradation at 300 microM and 80 microM, respectively. However, based on evaluation of the ability of GSH to nonenzymatically degrade H2O2, it can only account for about 36% at 300 microM and 19% at 80 microM H2O2 of the observed lens H2O2 degradation. It is, therefore, concluded that lens GSH must be involved in other reactions either directly or indirectly related to H2O2 degradation.

  11. The abundance and emission of H2O and O-2 in clumpy molecular clouds

    NARCIS (Netherlands)

    Spaans, M; van Dishoeck, EF

    2001-01-01

    Recent observations with the Submillimeter Wave Astronomy Satellite (SWAS) indicate abundances of gaseous H2O and O-2 in dense molecular clouds that are significantly lower than those found in standard homogeneous chemistry models. We present here results for the thermal and chemical balance of

  12. VizieR Online Data Catalog: NGC7538-IRS1 THz water maser (Herpin+, 2017)

    Science.gov (United States)

    Herpin, F.; Baudry, A.; Richards, A. M. S.; Gray, M. D.; Schneider, N.; Menten, K. M.; Wyrowski, F.; Bontemps, S.; Simon, R.; Wiesemeyer, H.

    2017-09-01

    Observations in singlepoint chopping mode of the 82,7-73, ortho-H216O were carried out toward NGC7538-IRS1 (RA=23:13:45.3 (J2000) DE=+61:28:10.0) as part of SOFIA Cycle 3 project on 2015 December 9, using GREAT. At the systemic velocity of NGC7538-IRS1, the system temperature was typically 2000K (SSB) and signal-band zenith opacity 0.08. The on-source integration time was 20-min. The chop throw was 100" to either side of the on-source position (chop-nod method). One channel (L1) of GREAT was tuned to the 1296.41106GHz water line frequency (lower sideband LSB), the other channel, the LFA (Low Frequency Array) 7 pixel array, was tuned to the [CII] 158um line. In order to constrain the maser models, and because of the variability of the maser emission, nearly contemporaneous observations of the 616-523 transition of ortho-H2O (rest frequency 22.23508GHz) were carried out on 2015 December 11 (integration time on source of 15-min) with the MPIfR 100-m telescope at Elsberg, Germany. Interferometric observations of the same source of the ortho-H2O 616-523 line emission were performed with e-MERLIN (commissioning observations) on 2016 April 20. These were the first-ever 22GHz images made after the e-MERLIN upgrade. (2 data files).

  13. Intermolecular Interactions in Ternary Glycerol–Sample–H2O

    DEFF Research Database (Denmark)

    Westh, Peter; Rasmussen, Erik Lumby; Koga, Yoshikata

    2011-01-01

    We studied the intermolecular interactions in ternary glycerol (Gly)–sample (S)–H2O systems at 25 °C. By measuring the excess partial molar enthalpy of Gly, HGlyEHEGly, we evaluated the Gly–Gly enthalpic interaction, HGly-GlyEHEGly--Gly, in the presence of various samples (S). For S, tert...

  14. Selective effects of H2O2 on cyanobacterial photosynthesis

    NARCIS (Netherlands)

    Drabkova, M.; Matthijs, H.C.P.; Admiraal, W.; Marsalek, B.

    2007-01-01

    Abstract: The sensitivity of phytoplankton species for hydrogen peroxide (H2O2) was analyzed by pulse amplitude modulated (PAM) fluorometry. The inhibition of photosynthesis was more severe in five tested cyanobacterial species than in three green algal species and one diatom species. Hence the

  15. Ultrafast Librational Relaxation of H2O in Liquid Water

    DEFF Research Database (Denmark)

    Petersen, Jakob; Møller, Klaus Braagaard; Rey, Rossend

    2013-01-01

    The ultrafast librational (hindered rotational) relaxation of a rotationally excited H2O molecule in pure liquid water is investigated by means of classical nonequilibrium molecular dynamics simulations and a power and work analysis. This analysis allows the mechanism of the energy transfer from...

  16. Tricyclic sesquiterpene copaene prevents H2O2-induced neurotoxicity

    Directory of Open Access Journals (Sweden)

    Hasan Turkez

    2014-02-01

    Full Text Available Aim: Copaene (COP, a tricyclic sesquiterpene, is present in several essential oils of medicinal and aromatic plants and has antioxidant and anticarcinogenic features. But, very little information is known about the effects of COP on oxidative stress induced neurotoxicity. Method: We used hydrogen peroxide (H2O2 exposure for 6 h to model oxidative stress. Therefore, this experimental design allowed us to explore the neuroprotective potential of COP in H2O2-induced toxicity in rat cerebral cortex cell cultures for the first time. For this purpose, methyl thiazolyl tetrazolium (MTT and lactate dehydrogenase (LDH release assays were carried out to evaluate cytotoxicity. Total antioxidant capacity (TAC and total oxidative stress (TOS parameters were used to evaluate oxidative changes. In addition to determining of 8-hydroxy-2-deoxyguanosine (8-OH-dG levels, the single cell gel electrophoresis (SCGE or comet assay was also performed for measuring the resistance of neuronal DNA to H2O2-induced challenge. Result: The results of this study showed that survival and TAC levels of the cells decreased, while TOS, 8-OH-dG levels and the mean values of the total scores of cells showing DNA damage increased in the H2O2 alone treated cultures. But pre-treatment of COP suppressed the cytotoxicity, genotoxicity and oxidative stress which were increased by H2O2. Conclusion: It is proposed that COP as a natural product with an antioxidant capacity in mitigating oxidative injuries in the field of neurodegenerative diseases. [J Intercult Ethnopharmacol 2014; 3(1.000: 21-28

  17. X-Ray Radiographic Observation of Directional Solidification Under Microgravity: XRMON-GF Experiments on MASER12 Sounding Rocket Mission

    Science.gov (United States)

    Reinhart, G.; NguyenThi, H.; Bogno, A.; Billia, B.; Houltz, Y.; Loth, K.; Voss, D.; Verga, A.; dePascale, F.; Mathiesen, R. H.; hide

    2012-01-01

    The European Space Agency (ESA) - Microgravity Application Promotion (MAP) programme entitled XRMON (In situ X-Ray MONitoring of advanced metallurgical processes under microgravity and terrestrial conditions) aims to develop and perform in situ X-ray radiography observations of metallurgical processes in microgravity and terrestrial environments. The use of X-ray imaging methods makes it possible to study alloy solidification processes with spatio-temporal resolutions at the scales of relevance for microstructure formation. XRMON has been selected for MASER 12 sounding rocket experiment, scheduled in autumn 2011. Although the microgravity duration is typically six minutes, this short time is sufficient to investigate a solidification experiment with X-ray radiography. This communication will report on the preliminary results obtained with the experimental set-up developed by SSC (Swedish Space Corporation). Presented results dealing with directional solidification of Al-Cu confirm the great interest of performing in situ characterization to analyse dynamical phenomena during solidification processes.

  18. The influence of solar ultraviolet radiation on the photochemical production of H2O2 in the equatorial Atlantic Ocean

    OpenAIRE

    Gerringa, LJA; Rijkenberg, MJA; Timmermans, KR; Buma, AGJ

    2004-01-01

    Hydrogen peroxide (H2O2) was measured in marine surface waters of the eastern Atlantic Ocean between 25degreesN and 25degreesS. H2O2 concentrations decreased from 80 nM in the north to 20 nM in the south, in agreement with earlier observations. A diel cycle of H2O2 production as a function of sunlight in surface waters was followed twice whilst the ship steamed southward. Around 23degreesN a distinct diel cycle could be measured which correlated well with irradiance conditions. The wavelength...

  19. ERO1-independent production of H2O2 within the endoplasmic reticulum fuels Prdx4-mediated oxidative protein folding.

    Science.gov (United States)

    Konno, Tasuku; Pinho Melo, Eduardo; Lopes, Carlos; Mehmeti, Ilir; Lenzen, Sigurd; Ron, David; Avezov, Edward

    2015-10-26

    The endoplasmic reticulum (ER)-localized peroxiredoxin 4 (PRDX4) supports disulfide bond formation in eukaryotic cells lacking endoplasmic reticulum oxidase 1 (ERO1). The source of peroxide that fuels PRDX4-mediated disulfide bond formation has remained a mystery, because ERO1 is believed to be a major producer of hydrogen peroxide (H2O2) in the ER lumen. We report on a simple kinetic technique to track H2O2 equilibration between cellular compartments, suggesting that the ER is relatively isolated from cytosolic or mitochondrial H2O2 pools. Furthermore, expression of an ER-adapted catalase to degrade lumenal H2O2 attenuated PRDX4-mediated disulfide bond formation in cells lacking ERO1, whereas depletion of H2O2 in the cytosol or mitochondria had no similar effect. ER catalase did not effect the slow residual disulfide bond formation in cells lacking both ERO1 and PRDX4. These observations point to exploitation of a hitherto unrecognized lumenal source of H2O2 by PRDX4 and a parallel slow H2O2-independent pathway for disulfide formation. © 2015 Konno et al.

  20. H2O Inner-Surface Interactions in Micro/Nanoporous Silicates: Thermodynamic Behavior and Low Energy Molecular Vibrations

    Science.gov (United States)

    Geiger, C. A.; Paukov, I. E.; Kovalevskaya, Y. A.; Kolesov, B. A.

    2007-12-01

    "liquid- water-like". It is possible that this "transition" can account for the Cp behavior observed at T > 170 K in gmelinite. 4) Cp and entropy values for confined H2O in silicates cannot be considered similar, as is done in crystal-chemical-based schemes used for calculating thermodynamic properties of H2O-bearing silicates.

  1. Nitroxides protect horseradish peroxidase from H2O2-induced inactivation and modulate its catalase-like activity.

    Science.gov (United States)

    Samuni, Amram; Maimon, Eric; Goldstein, Sara

    2017-08-01

    Horseradish peroxidase (HRP) catalyzes H2O2 dismutation while undergoing heme inactivation. The mechanism underlying this process has not been fully elucidated. The effects of nitroxides, which protect metmyoglobin and methemoglobin against H2O2-induced inactivation, have been investigated. HRP reaction with H2O2 was studied by following H2O2 depletion, O2 evolution and heme spectral changes. Nitroxide concentration was followed by EPR spectroscopy, and its reactions with the oxidized heme species were studied using stopped-flow. Nitroxide protects HRP against H2O2-induced inactivation. The rate of H2O2 dismutation in the presence of nitroxide obeys zero-order kinetics and increases as [nitroxide] increases. Nitroxide acts catalytically since its oxidized form is readily reduced to the nitroxide mainly by H2O2. The nitroxide efficacy follows the order 2,2,6,6-tetramethyl-piperidine-N-oxyl (TPO)>4-OH-TPO>3-carbamoyl proxyl>4-oxo-TPO, which correlates with the order of the rate constants of nitroxide reactions with compounds I, II, and III. Nitroxide catalytically protects HRP against inactivation induced by H2O2 while modulating its catalase-like activity. The protective role of nitroxide at μM concentrations is attributed to its efficient oxidation by P940, which is the precursor of the inactivated form P670. Modeling the dismutation kinetics in the presence of nitroxide adequately fits the experimental data. In the absence of nitroxide the simulation fits the observed kinetics only if it does not include the formation of a Michaelis-Menten complex. Nitroxides catalytically protect heme proteins against inactivation induced by H2O2 revealing an additional role played by nitroxide antioxidants in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Removal of Nitrate by Zero Valent Iron in the Presence of H2O2

    Directory of Open Access Journals (Sweden)

    M.R. Samarghandi

    2014-01-01

    Full Text Available Background & Aims: Nitrate is the oxidation state of nitrogen compounds, which is founded in water resources that contaminated by municipal, industrial and agricultural waste water. If nitrate leek in to ground water resources, it can cause health problems. Material and Methods: Removal of nitrate from ground water by iron powder in the presence of H2O2 was investigated. Experiments have been done by use of 250 ml of water samples containing 100 mg/L nitrate in various condition. Various parameters such as pH (3, 5, 7, 9, iron dosage (10, 15, 20, 30 g/L, initial H2O2 concentration (5, 10, 15, 20 ml/L and contact time (10-120 min. Results: Obtained results shows the removal of nitrate was increased by pH reduction, increment of iron mass and contact time. In addition, nitrate reduction was increased by increment of initial H2O2 concentration up to 15 ml/L. High removal was observed at pH=3, iron mass=30 g/L, contact time equal 120 min and H2O2 concentration=15 ml/L. At above condition, upon 98% of nitrate was removed. Conclusion: In summary, this method is simple, low cost and effective for removal of nitrate from ground water and industrial activity.

  3. High concentrations of H2O2 make aerobic glycolysis energetically more favourable than cellular respiration.

    Directory of Open Access Journals (Sweden)

    Hamid R Molavian

    2016-08-01

    Full Text Available Since the original observation of the Warburg Effect in cancer cells, over eight decades ago, the major question of why aerobic glycolysis is favored over oxidative phosphorylation has remained unresolved. An understanding of this phenomenon may well be the key to the development of more effective cancer therapies. In this paper, we use a semi-empirical method to throw light on this puzzle. We show that aerobic glycolysis is in fact energetically more favorable than oxidative phosphorylation for concentrations of peroxide (H2O2 above some critical threshold value. The fundamental reason for this is the activation and high engagement of the pentose phosphate pathway (PPP in response to the production of reactive oxygen species H2O2 by mitochondria and the high concentration of H2O2 (produced by mitochondria and other sources. This makes oxidative phosphorylation an inefficient source of energy since it leads (despite high levels of ATP production to a concomitant high energy consumption in order to respond to the hazardous waste products resulting from cellular processes associated with this metabolic pathway. We also demonstrate that the high concentration of H2O2 results in an increased glucose consumption, and also increases the lactate production in the case of glycolysis.

  4. Co3(PO42·4H2O

    Directory of Open Access Journals (Sweden)

    Yang Kim

    2008-10-01

    Full Text Available Single crystals of Co3(PO42·4H2O, tricobalt(II bis[orthophosphate(V] tetrahydrate, were obtained under hydrothermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO42·4H2O (mineral name hopeite and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetrahedral coordination, while the second, located on a mirror plane, has a distorted octahedral coordination environment. The tetrahedrally coordinated Co2+ is bonded to four O atoms of four PO43− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water molecules (two of which are located on mirror planes, forming a framework structure. In addition, hydrogen bonds of the type O—H...O are present throughout the crystal structure.

  5. Organic Contaminant Abatement in Reclaimed Water by UV/H2O2 and a Combined Process Consisting of O3/H2O2 Followed by UV/H2O2: Prediction of Abatement Efficiency, Energy Consumption, and Byproduct Formation.

    Science.gov (United States)

    Lee, Yunho; Gerrity, Daniel; Lee, Minju; Gamage, Sujanie; Pisarenko, Aleksey; Trenholm, Rebecca A; Canonica, Silvio; Snyder, Shane A; von Gunten, Urs

    2016-04-05

    UV/H2O2 processes can be applied to improve the quality of effluents from municipal wastewater treatment plants by attenuating trace organic contaminants (micropollutants). This study presents a kinetic model based on UV photolysis parameters, including UV absorption rate and quantum yield, and hydroxyl radical (·OH) oxidation parameters, including second-order rate constants for ·OH reactions and steady-state ·OH concentrations, that can be used to predict micropollutant abatement in wastewater. The UV/H2O2 kinetic model successfully predicted the abatement efficiencies of 16 target micropollutants in bench-scale UV and UV/H2O2 experiments in 10 secondary wastewater effluents. The model was then used to calculate the electric energies required to achieve specific levels of micropollutant abatement in several advanced wastewater treatment scenarios using various combinations of ozone, UV, and H2O2. UV/H2O2 is more energy-intensive than ozonation for abatement of most micropollutants. Nevertheless, UV/H2O2 is not limited by the formation of N-nitrosodimethylamine (NDMA) and bromate whereas ozonation may produce significant concentrations of these oxidation byproducts, as observed in some of the tested wastewater effluents. The combined process of O3/H2O2 followed by UV/H2O2, which may be warranted in some potable reuse applications, can achieve superior micropollutant abatement with reduced energy consumption compared to UV/H2O2 and reduced oxidation byproduct formation (i.e., NDMA and/or bromate) compared to conventional ozonation.

  6. Photoionization-induced water migration in the amide group of trans-acetanilide-(H2O)1 in the gas phase.

    Science.gov (United States)

    Sakota, Kenji; Harada, Satoshi; Shimazaki, Yuiga; Sekiya, Hiroshi

    2011-02-10

    IR-dip spectra of trans-acetanilide-water 1:1 cluster, AA-(H(2)O)(1), have been measured for the S(0) and D(0) state in the gas phase. Two structural isomers, where a water molecule binds to the NH group or the CO group of AA, AA(NH)-(H(2)O)(1) and AA(CO)-(H(2)O)(1), are identified in the S(0) state. One-color resonance-enhanced two-photon ionization, (1 + 1) RE2PI, of AA(NH)-(H(2)O)(1) via the S(1)-S(0) origin generates [AA(NH)-(H(2)O)(1)](+) in the D(0) state, however, photoionization of [AA(CO)-(H(2)O)(1)] does not produce [AA(CO)-(H(2)O)(1)](+), leading to [AA(NH)-(H(2)O)(1)](+). This observation explicitly indicates that the water molecule in [AA-(H(2)O)(1)](+) migrates from the CO group to the NH group in the D(0) state. The reorganization of the charge distribution from the neutral to the D(0) state of AA induces the repulsive force between the water molecule and the CO group of AA(+), which is the trigger of the water migration in [AA-(H(2)O)(1)](+).

  7. Extracellular polymeric substances buffer against the biocidal effect of H2O2 on the bloom-forming cyanobacterium Microcystis aeruginosa.

    Science.gov (United States)

    Gao, Lei; Pan, Xiangliang; Zhang, Daoyong; Mu, Shuyong; Lee, Duu-Jong; Halik, Umut

    2015-02-01

    H2O2 is an emerging biocide for bloom-forming cyanobacteria. It is important to investigate the H2O2 scavenging ability of extracellular polymeric substances (EPS) of cyanobacteria because EPS with strong antioxidant activity may "waste" considerable amounts of H2O2 before it kills the cells. In this study, the buffering capacity against H2O2 of EPS from the bloom-forming cyanobacterium Microcystis aeruginosa was investigated. IC50 values for the ability of EPS and vitamin C (VC) to scavenge 50% of the initial H2O2 concentration were 0.097 and 0.28 mg mL(-1), respectively, indicating the higher H2O2 scavenging activity of EPS than VC. Both proteins and polysaccharides are significantly decomposed by H2O2 and the polysaccharides were more readily decomposed than proteins. H2O2 consumed by the EPS accounted for 50% of the total amount of H2O2 consumed by the cells. Cell growth and photosynthesis were reduced more for EPS-free cells than EPS coated cells when the cells were treated with 0.1 or 0.2 mg mL(-1) H2O2, and the maximum photochemical efficiency Fv/Fm of EPS coated cells recovered to higher values than EPS-free cells. Concentrations of H2O2 above 0.3 mg mL(-1) completely inhibited photosynthesis and no recovery was observed for both EPS-free and EPS coated cells. This shows that EPS has some buffering capacity against the killing effect of H2O2 on cyanobacterial cells. Such a strong H2O2 scavenging ability of EPS is not favorable for killing bloom-forming cyanobacteria. The high H2O2 scavenging capacity means considerable amounts of H2O2 have to be used to break through the EPS barrier before H2O2 exerts any killing effects on the cells. It is therefore necessary to determine the H2O2 scavenging capacity of the EPS of various bloom-forming cyanobacteria so that the cost-effective amount of H2O2 needed to be used for killing the cyanobacteria can be estimated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A fast H2O total column density product from GOME – Validation with in-situ aircraft measurements

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2003-01-01

    Full Text Available Atmospheric water vapour is the most important greenhouse gas which is responsible for about 2/3 of the natural greenhouse effect, therefore changes in atmospheric water vapour in a changing climate (the water vapour feedback is subject to intense debate. H2O is also involved in many important reaction cycles of atmospheric chemistry, e.g. in the production of the OH radical. Thus, long time series of global H2O data are highly required. Since 1995 the Global Ozone Monitoring Experiment (GOME continuously observes atmospheric trace gases. In particular it has been demonstrated that GOME as a nadir looking UV/vis-instrument is sensitive to many tropospheric trace gases. Here we present a new, fast H2O algorithm for the retrieval of vertical column densities from GOME measurements. In contrast to existing H2O retrieval algorithms it does not depend on additional information like e.g. the climatic zone, aerosol content or ground albedo. It includes an internal cloud-, aerosol-, and albedo correction which is based on simultaneous observations of the oxygen dimer O4. From sensitivity studies using atmospheric radiative modelling we conclude that our H2O retrieval overestimates the true atmospheric H2O vertical column density (VCD by about 4% for clear sky observations in the tropics and sub-tropics, while it can lead to an underestimation of up to -18% in polar regions. For measurements over (partly cloud covered ground pixels, however, the true atmospheric H2O VCD might be in general systematically underestimated. We compared the GOME H2O VCDs to ECMWF model data over one whole GOME orbit (extending from the Arctic to the Antarctic including also totally cloud covered measurements. The correlation of the GOME observations and the model data yield the following results: a slope of 0.96 (r2 = 0.86 and an average bias of 5%. Even for measurements with large cloud fractions between 50% and 100% an average underestimation of only -18% was found. This

  9. Solar kerosene from H2O and CO2

    Science.gov (United States)

    Furler, P.; Marxer, D.; Scheffe, J.; Reinalda, D.; Geerlings, H.; Falter, C.; Batteiger, V.; Sizmann, A.; Steinfeld, A.

    2017-06-01

    The entire production chain for renewable kerosene obtained directly from sunlight, H2O, and CO2 is experimentally demonstrated. The key component of the production process is a high-temperature solar reactor containing a reticulated porous ceramic (RPC) structure made of ceria, which enables the splitting of H2O and CO2 via a 2-step thermochemical redox cycle. In the 1st reduction step, ceria is endo-thermally reduced using concentrated solar radiation as the energy source of process heat. In the 2nd oxidation step, nonstoichiometric ceria reacts with H2O and CO2 to form H2 and CO - syngas - which is finally converted into kerosene by the Fischer-Tropsch process. The RPC featured dual-scale porosity for enhanced heat and mass transfer: mm-size pores for volumetric radiation absorption during the reduction step and μm-size pores within its struts for fast kinetics during the oxidation step. We report on the engineering design of the solar reactor and the experimental demonstration of over 290 consecutive redox cycles for producing high-quality syngas suitable for the processing of liquid hydrocarbon fuels.

  10. Redetermination of [Pr(NO33(H2O4]·2H2O

    Directory of Open Access Journals (Sweden)

    Roel Decadt

    2012-07-01

    Full Text Available The structure of the title compound, tetraaquatris(nitrato-κ2O,O′praseodymium(III dihydrate, was redetermined. The structure models derived from the previous determinations [Rumanova et al. (1964. Kristallografiya, 9, 642–654; Fuller & Jacobson (1976. Cryst. Struct. Commun. 5, 349–352] were confirmed, but now with all H atoms unambiguously located, revealing a complex O—H...O hydrogen-bonding network, extending throughout the whole structure. In the title compound, the coordination environment of the PrIII atom can best be described as a distorted bicapped square antiprism defined by three bidentate nitrate anions and four water molecules. Additionally, two lattice water molecules are observed in the crystal packing. The title compound is isotypic with several other lanthanide-containing nitrate analogues.

  11. Interfacial contributions of H2O2 decomposition-induced reaction current on mesoporous Pt/TiO2 systems

    Science.gov (United States)

    Ray, Nathan J.; Styrov, Vladislav V.; Karpov, Eduard G.

    2017-12-01

    We report on conversion of energy released due to chemical reactions into current for the decomposition of aqueous hydrogen peroxide solution on single phases Pt and TiO2, in addition to Pt and TiO2 simultaneously. We observe that H2O2 decomposition-induced current on TiO2 drastically overshadows the current generated by H2O2 decomposition on Pt. Photo-effects avoided, H2O2 decomposition was found to yield a conversion efficiency of 10-3 electrons generated per H2O2 molecule. Further understanding of chemical reaction-induced current shows promise as a metric with which the surface reaction may be monitored and could be greatly extended into the field of analytical chemistry.

  12. The HDO/H2O Ratio in Gas in the Inner Regions of a Low-mass Protostar

    DEFF Research Database (Denmark)

    Jørgensen, Jes Kristian; van Dishoeck, Ewine F.

    2010-01-01

    The HDO/H2O abundance ratio is thought to be a key diagnostic for the evolution of water during the star and planet formation process and thus for its origin on Earth. We here present millimeter-wavelength high angular resolution observations of the deeply embedded protostar NGC 1333-IRAS4B from...... the IRAM Plateau de Bure Interferometer. The non-detection of the HDO line provides a direct, model-independent, upper limit to the HDO/H2O abundance ratio of 6 × 10-4 (3s) in the warm gas associated with the central protostar. This upper limit suggests that the HDO/H2O abundance ratio is not significantly...... enhanced in the inner ˜50 AU around the protostar relative to what is seen in comets and Earth's oceans and does not support previous suggestions of a generally enhanced HDO/H2O ratio in these systems....

  13. Adsorption and reaction of CO and H2O on WC(0001) surface: A first-principles investigation

    Science.gov (United States)

    Tong, Yu-Jhe; Wu, Shiuan-Yau; Chen, Hsin-Tsung

    2018-01-01

    We have performed a spin-polarized density functional theory (DFT) study for understanding the detailed reaction mechanism of CO and H2O on WC (0001) surface. The adsorption properties and vibrational frequencies of H2O, OH, O, H, CO and CO2 on the WC (0001) surface were illustrated. These results are well in consistent with the experimental observations studied by temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS). Based on the adsorption results, potential energy profiles of H2O and OH dehydrogenation and HCO, COH, COOH, and CO2 formation on the WC (0001) surface were predicted. The calculation results demonstrated that the WC (0001) surface as Fe (110) surface exhibits significantly reaction activity toward the dehydrogenation of H2O and OH but less activity toward the formation of HCO, COH, COOH and CO2 compared to the Cu (111) and Pt (111) surfaces.

  14. Does residual H2O2 result in inhibitory effect on enhanced anaerobic digestion of sludge pretreated by microwave-H2O2 pretreatment process?

    Science.gov (United States)

    Liu, Jibao; Jia, Ruilai; Wang, Yawei; Wei, Yuansong; Zhang, Junya; Wang, Rui; Cai, Xing

    2017-04-01

    This study investigated the effects of residual H2O2 on hydrolysis-acidification and methanogenesis stages of anaerobic digestion after microwave-H2O2 (MW-H2O2) pretreatment of waste activated sludge (WAS). Results showed that high sludge solubilization at 35-45 % was achieved after pretreatment, while large amounts of residual H2O2 remained and refractory compounds were thus generated with high dosage of H2O2 (0.6 g H2O2/g total solids (TS), 1.0 g H2O2/g TS) pretreatment. The residual H2O2 not only inhibited hydrolysis-acidification stage mildly, such as hydrolase activity, but also had acute toxic effect on methanogens, resulting in long lag phase, low methane yield rate, and no increase of cumulative methane production during the 30-day BMP tests. When the low dosage of H2O2 at 0.2 g H2O2/g TS was used in MW-H2O2 pretreatment, sludge anaerobic digestion was significantly enhanced. The cumulative methane production increased by 29.02 %, but still with a lag phase of 1.0 day. With removing the residual H2O2 by catalase, the initial lag phase of hydrolysis-acidification stage decreased from 1.0 to 0.5 day.

  15. Using H2O2 treatments for the degradation of cyanobacteria and microcystins in a shallow hypertrophic reservoir.

    Science.gov (United States)

    Papadimitriou, Theodoti; Kormas, Konstantinos; Dionysiou, Dionysios D; Laspidou, Chrysi

    2016-11-01

    Toxins produced by cyanobacteria in freshwater ecosystems constitute a serious health risk worldwide for humans that may use the affected water bodies for recreation, drinking water, and/or irrigation. Cyanotoxins have also been deemed responsible for loss of animal life in many places around the world. This paper explores the effect of H2O2 treatments on cyanobacteria and microcystins in natural samples from a hypertrophic reservoir in microcosm experiments. According to the results, cyanobacteria were more easily affected by H2O2 than by other phytoplanktonic groups. This was shown by the increase in the fractions of chlorophyll-a (a proxy for phytoplankton) and chlorophyll-b (a proxy for green algae) over total phytoplankton pigments and the decrease in the fraction of phycocyanin (a proxy for cyanobacteria) over total phytoplankton pigments. Thus, while an overall increase in phytoplankton occurred, a preferential decrease in cyanobacteria was observed with H2O2 treatments over a few hours. Moreover, significant degradation of total microcystins was observed under H2O2 treatments, while more microcystins were degraded when UV radiation was used in combination with H2O2. The combination of H2O2 and ultraviolet (UV) treatment in natural samples resulted in total microcystin concentrations that were below the World Health Organization limit for safe consumption of drinking water of 1 μg/L. Although further investigation into the effects of H2O2 addition on ecosystem function must be performed, our results show that the application of H2O2 could be a promising method for the degradation of microcystins in reservoirs and the reduction of public health risks related to the occurrence of harmful algal blooms.

  16. Effective potentials for H2O-He and H2O-Ar systems. Isotropic induction-dispersion potentials

    Science.gov (United States)

    Starikov, Vitali I.; Petrova, Tatiana M.; Solodov, Alexander M.; Solodov, Alexander A.; Deichuli, Vladimir M.

    2017-05-01

    The vibrational and rotational dependence of the effective isotropic interaction potential of H2O-He and H2O-Ar systems, taken in the form of Lennard-Jones 6-12 potential has been analyzed. The analysis is based on the experimental line broadening (γ) and line shift (δ) coefficients obtained for different vibrational bands of H2O molecule perturbed by He and Ar. The first and second derivatives of the function C(1)(q) for the long-range part of the induction-dispersion potential with respect to the dimensionless normal coordinates q were calculated using literature information for the dipole moment and mean polarizability functions μ(q) and α(q), respectively. These derivatives have been used in the calculations of the quantities which determine the vibrational and rotational dependence of the long-range part of the effective isotropic potential. The optimal set of the derivatives for the function C(1)(q) is proposed. The comparison with the experimental data has been performed.

  17. Increasing extracellular H2O2 produces a bi-phasic response in intracellular H2O2, with peroxiredoxin hyperoxidation only triggered once the cellular H2O2-buffering capacity is overwhelmed.

    Science.gov (United States)

    Tomalin, Lewis Elwood; Day, Alison Michelle; Underwood, Zoe Elizabeth; Smith, Graham Robert; Dalle Pezze, Piero; Rallis, Charalampos; Patel, Waseema; Dickinson, Bryan Craig; Bähler, Jürg; Brewer, Thomas Francis; Chang, Christopher Joh-Leung; Shanley, Daryl Pierson; Veal, Elizabeth Ann

    2016-06-01

    Reactive oxygen species, such as H2O2, can damage cells but also promote fundamental processes, including growth, differentiation and migration. The mechanisms allowing cells to differentially respond to toxic or signaling H2O2 levels are poorly defined. Here we reveal that increasing external H2O2 produces a bi-phasic response in intracellular H2O2. Peroxiredoxins (Prx) are abundant peroxidases which protect against genome instability, ageing and cancer. We have developed a dynamic model simulating in vivo changes in Prx oxidation. Remarkably, we show that the thioredoxin peroxidase activity of Prx does not provide any significant protection against external rises in H2O2. Instead, our model and experimental data are consistent with low levels of extracellular H2O2 being efficiently buffered by other thioredoxin-dependent activities, including H2O2-reactive cysteines in the thiol-proteome. We show that when extracellular H2O2 levels overwhelm this buffering capacity, the consequent rise in intracellular H2O2 triggers hyperoxidation of Prx to thioredoxin-resistant, peroxidase-inactive form/s. Accordingly, Prx hyperoxidation signals that H2O2 defenses are breached, diverting thioredoxin to repair damage. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Nitrate reductase (NR)-dependent NO production mediates ABA- and H2O2-induced antioxidant enzymes.

    Science.gov (United States)

    Lu, Shaoyun; Zhuo, Chunliu; Wang, Xianghui; Guo, Zhenfei

    2014-01-01

    Abscisic acid (ABA), H2O2 and nitric oxide (NO) are important signals in gene expression and physiological responses during plant adaptation to environmental stresses. The essential role of NR-derived NO production in ABA and H2O2 induced antioxidant enzymes were studied using transgenic tobacco plants over-expressing Stylosanthes guianensis 9-cis-epoxycartenoid dioxygenase gene (SgNCED1) for elevated ABA level, or over-expressing wheat oxalate oxidase gene (OxO) for elevated H2O2 level in comparison to the wild type. Compared to the wild type, higher levels of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and nitrate reductase (NR) activities and NO production were observed in all transgenic plants. For investigating the relationship of ABA, H2O2, and NR-produced NO in the induction of antioxidant enzyme activities, an inhibitor of ABA biosynthesis, scavengers of H2O2 and NO, and an inhibitor of NR were used in the experiments. The results indicate that H2O2-induced activities of SOD, CAT, and APX depends on NR-derived NO in OxO transgenic plants, while ABA-induced activities depends on H2O2 and NR-derived NO in SgNCED1 transgenic plants. Compared to unaltered nitrate reductase 2 (NIA2), NIA1 transcript was induced in both types of transgenic plants. It is suggested NR-derived NO is essential for ABA- or H2O2-induced antioxidant enzyme activities. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast

    OpenAIRE

    Dorival Martins; Ann M. English

    2014-01-01

    Catalases are efficient scavengers of H2O2 and protect cells against H2O2 stress. Examination of the H2O2 stimulon in Saccharomyces cerevisiae revealed that the cytosolic catalase T (Ctt1) protein level increases 15-fold on H2O2 challenge in synthetic complete media although previous work revealed that deletion of the CCT1 or CTA1 genes (encoding peroxisomal/mitochondrial catalase A) does not increase the H2O2 sensitivity of yeast challenged in phosphate buffer (pH 7.4). This we attributed to...

  20. Low-Temperature Thermal Reactions Between SO2 and H2O2 and Their Relevance to the Jovian Icy Satellites

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.

    2013-01-01

    Here we present first results on a non-radiolytic, thermally-driven reaction sequence in solid H2O +SO2 + H2O2 mixtures at 50-130 K, which produces sulfate (SO(-2)/(4)), and has an activation energy of 53 kJ/mole. We suspect that these results may explain some of the observations related to the presence and distribution of H2O2 across Europa's surface as well as the lack of H2O2 on Ganymede and Callisto.

  1. MASSIVE STAR FORMATION TOWARD G28.87+0.07 (IRAS 18411-0338) INVESTIGATED BY MEANS OF MASER KINEMATICS AND RADIO TO INFRARED CONTINUUM OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Li, J. J.; Xu, Y. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Moscadelli, L.; Cesaroni, R. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Furuya, R. S.; Usuda, T. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Menten, K. M. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany); Pestalozzi, M.; Elia, D.; Schisano, E., E-mail: jjli@pmo.ac.cn [INAF-Istituto Fisica Spazio Interplanetario, Via Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2012-04-10

    We used the Very Long Baseline Array and the European VLBI Network to perform phase-referenced very long baseline interferometry observations of the three most powerful maser transitions associated with the high-mass star-forming region G28.87+0.07: the 22.2 GHz H{sub 2}O, 6.7 GHz CH{sub 3}OH, and 1.665 GHz OH lines. We also performed Very Large Array (VLA) observations of the radio continuum emission at 1.3 and 3.6 cm and Subaru observations of the continuum emission at 24.5 {mu}m. Two centimeter-continuum sources are detected and one of them (named hot molecular core (HMC)) is compact and placed at the center of the observed distribution of H{sub 2}O, CH{sub 3}OH, and OH masers. The bipolar distribution of line-of-sight velocities and the pattern of the proper motions suggest that the water masers are driven by a (proto)stellar jet interacting with the dense circumstellar gas. The same jet could both excite the centimeter-continuum source named HMC (interpreted as free-free emission from shocked gas) and power the molecular outflow observed at larger scales-although one cannot exclude that the free-free continuum is rather originating from a hypercompact H II region. At 24.5 {mu}m, we identify two objects separated along the north-south direction, whose absolute positions agree with those of the two VLA continuum sources. We establish that {approx}90% of the luminosity of the region ({approx}2 Multiplication-Sign 10{sup 5} L{sub Sun }) is coming from the radio source HMC, which confirms the existence of an embedded massive young stellar object exciting the masers and possibly still undergoing heavy accretion from the surrounding envelope.

  2. A convective study of Al2O3-H2O and Cu- H2O nano-liquid films sprayed over a stretching cylinder with viscous dissipation

    Science.gov (United States)

    Alshomrani, Ali Saleh; Gul, Taza

    2017-11-01

    This study is related with the analysis of spray distribution considering a nanofluid thin layer over the slippery and stretching surface of a cylinder with thermal radiation. The distribution of the spray rate is designated as a function of the nanolayer thickness. The applied temperature used during spray phenomenon has been assumed as a reference temperature with the addition of the viscous dissipation term. The diverse behavior of the thermal radiation with magnetic and chemical reaction has been cautiously observed, which has consequences in causing variations in the spray distribution and heat transmission. Nanofluids have been used as water-based like Al2O3-H2O, Cu- H2O and have been examined under the consideration of momentum and thermal slip boundary conditions. The basic equations have been transformed into a set of nonlinear equations by using suitable variables for alteration. The approximate results of the problem have been achieved by using the optimal approach of the Homotopy Analysis Method (HAM). We demonstrate our results with the help of the numerical (ND-Solve) method. In addition, we found a close agreement of the two methods which is confirmed through graphs and tables. The rate of the spray pattern under the applied pressure term has also been obtained. The maximum cooling performance has been obtained by using the Cu water with the small values of the magnetic parameter and alumina for large values of the magnetic parameter. The outcomes of the Cu-water and Al2O3-H2O nanofluids have been linked to the published results in the literature. The impact of the physical parameters, like the skin friction coefficient, and the local Nusselt number have also been observed and compared with the published work. The momentum slip and thermal slip parameters, thermal radiation parameter, magnetic parameter and heat generation/absorption parameter effects on the spray rate have been calculated and discussed.

  3. [Effect of germacrone in alleviating HUVECs damaged by H2O2-induced oxidative stress].

    Science.gov (United States)

    Chen, Qiong-Fang; Wang, Gang; Tang, Li-Qing; Yu, Xian-Wen; Li, Zhao-Fei; Yang, Xiu-Fen

    2017-09-01

    This study focuses on the protective effect of germacrone on human umbilical vein endothelial cells(HUVECs) damaged by H2O2-induced oxidative stress and its possible mechanisms. The oxidative damage model was established by using 500 μmol•L⁻¹ H2O2 to treat HUVECs for 3 hours, and then protected with different concentrations of germacrone for 24 hours. The effect of germacrone on cell viability of HUVECs damaged by H2O2 was detected by MTT. The contents of PGI2, TXB2, ET-1, t-PA, PAI-1, TNF-α and IL-6 were detected by ELISA. The content of NO was detected by using nitrate reductase method. Colorimetry was used to detect NOS and GSH-Px. The contents of MDA, SOD and LDH were detected by TBA, WST-1 and microplate respectively. Apoptosis was observed by Hoechst 33258 fluorescent staining. The mRNA expressions of Bax, Bcl-2 and Caspase-3 in cells were detected by RT-PCR. The results showed that the cell damage rate was 52% after treated with 500 μmol•L⁻¹ H2O2 for 3 hours. The cell activity was increasing with the rise of germacrone concentration within the range of 20-200 mol•L⁻¹. Compared with normal group, the contents of PGI2, NO, T-NOS, t-PA, SOD, GSH-Px and Bcl-2 mRNA expressions were lower after damaged with H2O2. The contents of PAI-1, ET-1, IL-6, TNF-α, TXB2, LDH, MDA, Bax mRNA and Caspase-3 mRNA expressions were increased. Compared with model group, the contents of PGI2, NO, T-NOS, t-PA, SOD, GSH-Px and Bcl-2 mRNA expressions were increased after treated with germacrone. The contents of PAI-1, ET-1, IL-6, TNF-α, TXB2, LDH, MDA, Bax mRNA and Caspase-3 mRNA expressions were lower after treated with germacrone. According to Hoechst 33258 fluorescence staining, compared with normal group, the cell membrane and the nucleus showed strong dense blue fluorescence, and the number of cells significantly decreased in model group. Compared with model group, blue fluorescence intensity decreased in drug group. The above findings demonstrate that

  4. Use of H2(18)O2 to measure absolute rates of dark H2O2 production in freshwater systems.

    Science.gov (United States)

    Vermilyea, Andrew W; Dixon, Taylor C; Voelker, Bettina M

    2010-04-15

    Photochemical production is usually considered to be the main source of H2O2 in freshwater systems; here we show that significant dark production also occurs. We used isotope-labeled H2O2 as a tracer to simultaneously determine H2O2 production and decay rates in incubations of unfiltered water samples. Our new technique for H2(18)O2 analysis, requiring only small sample volumes and simple field equipment, allows for preservation of samples in remote locations, followed by gas chromatography mass spectrometry (GCMS) analysis up to six days later. Dark H2O2 production rates of 29-122 nM/h were observed in several lakewater samples. Measured production and decay rates were consistent with pseudo steady-state, early morning [H2O2] measurements made in each water body. Dark H2O2 production is likely to be more important than photochemical production for the total H2O2 budget over 24 h in the freshwater systems we examined. Our results imply that processes usually assumed to be photochemically induced in freshwaters, such as metal redox cycling mediated by H2O2 and O2(-), and production of strong oxidants from the reaction of H2O2 with Fe(II) (Fenton's reaction) could also be occurring at significant rates in the absence of light.

  5. Proton ordering in tetragonal and monoclinic H2O ice

    CERN Document Server

    Yen, Fei; Berlie, Adam; Liu, Xiaodi; Goncharov, Alexander F

    2015-01-01

    H2O ice remains one of the most enigmatic materials as its phase diagram reveals up to sixteen solid phases. While the crystal structure of these phases has been determined, the phase boundaries and mechanisms of formation of the proton-ordered phases remain unclear. From high precision measurements of the complex dielectric constant, we probe directly the degree of ordering of the protons in H2O tetragonal ice III and monoclinic ice V down to 80 K. A broadened first-order phase transition is found to occur near 202 K we attribute to a quenched disorder of the protons which causes a continuous disordering of the protons during cooling and metastable behavior. At 126 K the protons in ice III become fully ordered, and for the case of ice V becoming fully ordered at 113 K forming ice XIII. Two triple points are proposed to exist: one at 0.35 GPa and 126 K where ices III, IX and V coexist; and another at 0.35 GPa and 113 K where ices V, IX and XIII coexist. Our findings unravel the underlying mechanism driving th...

  6. Thermodynamic calculations in the system CH4-H2O and methane hydrate phase equilibria

    Science.gov (United States)

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2006-01-01

    Using the Gibbs function of reaction, equilibrium pressure, temperature conditions for the formation of methane clathrate hydrate have been calculated from the thermodynamic properties of phases in the system CH4-H 2O. The thermodynamic model accurately reproduces the published phase-equilibria data to within ??2 K of the observed equilibrium boundaries in the range 0.08-117 MPa and 190-307 K. The model also provides an estimate of the third-law entropy of methane hydrate at 273.15 K, 0.1 MPa of 56.2 J mol-1 K-1 for 1/n CH4??H 2O, where n is the hydrate number. Agreement between the calculated and published phase-equilibria data is optimized when the hydrate composition is fixed and independent of the pressure and temperature for the conditions modeled. ?? 2006 American Chemical Society.

  7. High-Level ab initio electronic structure calculations of Water Clusters (H2O)16 and (H2O)17: a new global minimum for (H2O)16

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Soohaeng; Apra, Edoardo; Zeng, Xiao Cheng; Xantheas, Sotiris S.

    2010-10-21

    The lowest-energy structures of water clusters (H2O)16 and (H2O)17 were revisited at the MP2 and CCSD(T) levels of theory. A new global minimum structure for (H2O)16 was found at the MP2 and CCSD(T) levels of theory and the effect of zero-point energy corrections on the relative stability of the low-lying minimum energy structures was assessed. For (H2O)17 the CCSD(T) calculations confirm the previously found at the MP2 level of theory "interior" arrangement (fully coordinated water molecule inside a spherical cluster) as the global minimum.

  8. NO fluorescence sensing by europium tetracyclines complexes in the presence of H2O2.

    Science.gov (United States)

    Simões, Eliana F C; Leitão, João M M; Esteves da Silva, Joaquim C G

    2013-07-01

    The effect on the fluorescence of the europium:tetracycline (Eu:Tc), europium:oxytetracycline (Eu:OxyTc) and europium:chlortetracycline (Eu:ClTc) complexes in approximately 2:1 ratio of nitric oxide (NO), peroxynitrite (ONOO(-)), hydrogen peroxide (H2O2) and superoxide (O2 (·-)) was assessed at three ROS/RNS concentrations levels, 30 °C and pH 6.00, 7.00 and 8.00. Except for the NO, an enhancement of fluorescence intensity was observed at pH 7.00 for all the europium tetracyclines complexes-the high enhancement was observed for H2O2. The quenching of the fluorescence of the Tc complexes, without and with the presence of other ROS/RNS species, provoked by NO constituted the bases for an analytical strategy for NO detection. The quantification capability was evaluated in a NO donor and in a standard solution. Good quantification results were obtained with the Eu:Tc (3:1) and Eu:OxyTc (4:1) complexes in the presence of H2O2 200 μM with a detection limit of about 3 μM (Eu:OxyTc).

  9. Electron spin resonance study of a-Cr 2O3 and Cr 2O3·nH2O quasi-spherical nanoparticles

    CSIR Research Space (South Africa)

    Khamlich, S

    2011-12-01

    Full Text Available of Cr 2O3 · nH2O. This study shows that there could be a dominant water loss/gain during the heating-cooling cycles which is influencing the thermal relaxation time of Cr 2O3 · nH2O. A similar hysteresis was observed in the differential scanning...

  10. Vitamin D derivatives enhance cytotoxic effects of H2O2 or cisplatin on human keratinocytes.

    Science.gov (United States)

    Piotrowska, Anna; Wierzbicka, Justyna; Ślebioda, Tomasz; Woźniak, Michał; Tuckey, Robert C; Slominski, Andrzej T; Żmijewski, Michał A

    2016-06-01

    Although the skin production of vitamin D is initiated by ultraviolet radiation type B (UVB), the role vitamin D plays in antioxidative or pro-oxidative responses remains to be elucidated. We have used immortalized human HaCaT keratinocytes as a model of proliferating epidermal cells to test the influence of vitamin D on cellular response to H2O2 or the anti-cancer drug, cisplatin. Incubation of keratinocytes with 1,25(OH)2D3 or its low calcemic analogues, 20(OH)D3, 21(OH)pD or calcipotriol, sensitized cells to ROS resulting in more potent inhibition of keratinocyte proliferation by H2O2 in the presence of vitamin D compounds. These results were supported by cell cycle and apoptosis analyses, and measurement of the mitochondrial transmembrane potentials (MMP), however some unique properties of individual secosteroids were observed. Furthermore, in HaCaT keratinocytes treated with H2O2, 1,25(OH)2D3, 21(OH)pD and calcipotriol stimulated the expression of SOD1 and CAT genes, but not SOD2, indicating a possible role of mitochondria in ROS-modulated cell death. 1,25(OH)2D3 also showed a short-term, protective effect on HaCaT keratinocytes, as exemplified by the inhibition of apoptosis and the maintenance of MMP. However, with prolonged incubation with H2O2 or cisplatin, 1,25(OH)2D3 caused an acceleration in the death of the keratinocytes. Therefore, we propose that lead vitamin D derivatives can protect the epidermis against neoplastic transformation secondary to oxidative or UV-induced stress through activation of vitamin D-signaling. Furthermore, our data suggest that treatment with low calcemic vitamin D analogues or the maintenance of optimal level of vitamin D by proper supplementation, can enhance the anticancer efficacy of cisplatin. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Crystal structures of two decavanadates(V with pentaaquamanganese(II pendant groups: (NMe42[V10O28{Mn(H2O5}2]·5H2O and [NH3C(CH2OH3]2[V10O28{Mn(H2O5}2]·2H2O

    Directory of Open Access Journals (Sweden)

    Maurício P. Franco

    2015-02-01

    Full Text Available Two heterometallic decavanadate(V compounds, bis(tetramethylammonium decaaquadi-μ4-oxido-tetra-μ3-oxido-hexadeca-μ2-oxido-hexaoxidodimanganese(IIdecavanadate(V pentahydrate, (Me4N2[V10O28{Mn(H2O5}2]·5H2O, A, and bis{[tris(hydroxymethylmethyl]ammonium} decaaquadi-μ4-oxido-tetra-μ3-oxido-hexadeca-μ2-oxido-hexaoxidodimanganese(IIdecavanadate(V dihydrate, [NH3C(CH2OH3]2[V10O28{Mn(H2O5}2]·2H2O, B, have been synthesized under mild reaction conditions in an aqueous medium. Both polyanions present two [Mn(OH25]2+ complex units bound to the decavanadate cluster through oxide bridges. In A, the decavanadate unit has 2/m symmetry, whereas in B it has twofold symmetry. Apart from this, the main differences between A and B rest on the organic cations, tetramethylammonium and [tris(hydroxymethylmethyl]ammonium, respectively, and on the number and arrangement of the water molecules of crystallization. In both compounds, the H atoms from the coordinating water molecules participate in extensive three-dimensional hydrogen-bonding networks, which link the cluster units both directly and through solvent molecules and, in B, through the `tris' cation hydroxyl groups. The cation in B also participates in N—H...O hydrogen bonds. A number of C—H...O interactions are also observed in both structures.

  12. Lactobacilli inactivate Chlamydia trachomatis through lactic acid but not H2O2.

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    Full Text Available Lactobacillus species dominate the microbiome in the lower genital tract of most reproductive-age women. Producing lactic acid and H2O2, lactobacilli are believed to play an important role in prevention of colonization by and growth of pathogens. However, to date, there have been no reported studies characterizing how lactobacilli interact with Chlamydia trachomatis, a leading sexually transmitted bacterium. In this report, we demonstrate inactivation of C. trachomatis infectivity by culture media conditioned by Lactobacillus crispatus, L. gasseri and L. jensenii, known to be dominating organisms in the human vaginal microbiome. Lactobacillus still cultures produced lactic acid, leading to time- and concentration-dependent killing of C. trachomatis. Neutralization of the acidic media completely reversed chlamydia killing. Addition of lactic acid into Lactobacillus-unconditioned growth medium recapitulated the chlamydiacidal activity of conditioned media. The H2O2 concentrations in the still cultures were found to be comparable to those reported for the cervicovaginal fluid, but insufficient to inactivate chlamydiae. Aeration of Lactobacillus cultures by shaking markedly induced H2O2 production, but strongly inhibited Lactobacillus growth and lactic acid production, and thus severely affected acidification, leading to significantly reduced chlamydiacidal efficiency. These observations indicate lactobacilli inactivate chlamydiae primarily through maintaining acidity in a relatively hypoxic environment in the vaginal lumen with limited H2O2, which is consistent with the notion that women with higher vaginal pH are more prone to sexually transmitted C. trachomatis infection. In addition to lactic acid, formic acid and acetic acid also exhibited potent chlamydiacidal activities. Taken together, our findings imply that lowering the vaginal pH through engineering of the vaginal microbiome and other means will make women less susceptible to C

  13. Liquid water on Mars - An energy balance climate model for CO2/H2O atmospheres

    Science.gov (United States)

    Hoffert, M. I.; Callegari, A. J.; Hsieh, C. T.; Ziegler, W.

    1981-01-01

    A simple climatic model is developed for a Mars atmosphere containing CO2 and sufficient liquid water to account for the observed hydrologic surface features by the existence of a CO2/H2O greenhouse effect. A latitude-resolved climate model originally devised for terrestrial climate studies is applied to Martian conditions, with the difference between absorbed solar flux and emitted long-wave flux to space per unit area attributed to the divergence of the meridional heat flux and the poleward heat flux assumed to equal the atmospheric eddy heat flux. The global mean energy balance is calculated as a function of atmospheric pressure to assess the CO2/H2O greenhouse liquid water hypothesis, and some latitude-resolved cases are examined in detail in order to clarify the role of atmospheric transport and temperature-albedo feedback. It is shown that the combined CO2/H2O greenhouse at plausible early surface pressures may account for climates hot enough to support a hydrological cycle and running water at present-day insolation and visible albedo levels.

  14. A thermodynamic study of 1-propanol-glycerol-H2O at 25 degrees C: Effect of glycerol on molecular organization of H2O

    DEFF Research Database (Denmark)

    Parsons, M.T.; Westh, Peter; Davies, J.V.

    2001-01-01

    of H2O. The glycerol molecules do not exert a hydrophobic effect on H2O. Rather, the hydroxyl groups of glycerol, perhaps by forming clusters via its alkyl backbone with hydroxyl groups pointing outward, interact with H2O so as to reduce the characteristics of liquid H2O. The global hydrogen bond......The excess chemical potential, partial molar enthalpy, and volume of 1-propanol were determined in ternary mixtures of 1-propanol-glycerol-H2O at 25degreesC. The mole fraction dependence of all these thermodynamic functions was used to elucidate the effect of glycerol on the molecular organization...... probability and, hence, the percolation nature of the hydrogen bond network is reduced. In addition, the degree of fluctuation inherent in liquid H2O is reduced by glycerol perhaps by participating in the hydrogen bond network via OH groups. At infinite dilution, the pair interaction coefficients in enthalpy...

  15. Utilization of membranes for H2O recycle system

    Science.gov (United States)

    Ohya, H.; Oguchi, M.

    1986-01-01

    Conceptual studies of closed ecological life support systems (CELSS) carried out at NAL in Japan for a water recycle system using membranes are reviewed. The system will treat water from shower room, urine, impure condensation from gas recycle system, and so on. The H2O recycle system is composed of prefilter, ultrafiltration membrane, reverse osmosis membrane, and distillator. Some results are shown for a bullet train of toilet-flushing water recycle equipment with an ultraviltration membrane module. The constant value of the permeation rate with a 4.7 square meters of module is about 70 1/h after 500th of operation. Thermovaporization with porous polytetrafluorocarbon membrane is also proposed to replce the distillator.

  16. Allicin protects against H2O2-induced apoptosis of PC12 cells via the mitochondrial pathway.

    Science.gov (United States)

    Lv, Runxiao; Du, Lili; Lu, Chunwen; Wu, Jinhui; Ding, Muchen; Wang, Chao; Mao, Ningfang; Shi, Zhicai

    2017-09-01

    Allicin is a major bioactive ingredient of garlic and has a broad range of biological activities. Allicin has been reported to protect against cell apoptosis induced by H 2 O 2 in human umbilical vein endothelial cells. The present study evaluated the neuroprotective effect of allicin on the H 2 O 2 -induced apoptosis of rat pheochromocytoma PC12 cells in vitro and explored the underlying mechanism involved. PC12 cells were incubated with increasing concentrations of allicin and the toxic effect of allicin was measured by MTT assay. The cells were pretreated for 24 h with low dose (L-), medium dose (M-) and high dose (H-) of allicin, followed by exposure to 200 µM H 2 O 2 for 2 h, and the cell viability was examined by MTT assay. In addition, cell apoptosis rate was analyzed by Annexin V-FITC/PI assay, while intracellular reactive oxygen species (ROS) and mitochondrial transmembrane potential (∆ψm) were measured by flow cytometry. Bcl-2, Bax, cleaved-caspase-3 and cytochrome c (Cyt C) in the mitochondria were also examined by western blotting. The results demonstrated that 0.01 µg/ml (L-allicin), 0.1 µg/ml (M-allicin) and 1 µg/ml (H-allicin) were non-toxic doses of allicin. Furthermore, H 2 O 2 reduced cell viability, promoted cell apoptosis, induced ROS production and decreased ∆ψm. However, allicin treatment reversed the effect of H 2 O 2 in a dose-dependent manner. It was also observed that H 2 O 2 exposure significantly decreased Bcl-2 and mitochondrial Cyt C, while it increased Bax and cleaved-caspase-3, which were attenuated by allicin pretreatment. The results revealed that allicin protected PC12 cells from H 2 O 2 -induced cell apoptosis via the mitochondrial pathway, suggesting the potential neuroprotective effect of allicin against neurological diseases.

  17. The study on single crystal structure of [Zn(Hpdc) 2(H 2O) 2]·2H 2O (Hpdc -=2,5-pyridinedicarboxylic acid group)

    Science.gov (United States)

    Haitao, Xu; Nengwu, Zheng; Hanhui, Xu; Yonggang, Wu; Ruyi, Yang; Enyi, Ye; Xianglin, Jin

    2001-10-01

    The hydrothermal synthesis and structure of a coordination polymer Zn(Hpdc)2(H2O)2]·2H2O were reported. The Zn2+ center was coordinated by two waters and two chelated Hpdc- to form units [Zn(Hpdc)2 (H2O)2] and the units were connected by hydrogen bonds to engender one-dimensional channels through the c axis. Especially, the two lattice waters play an important role in construction of these channels.

  18. Survey of Water and Ammonia in Nearby Galaxies (SWAN): Resolved Ammonia Thermometry, and Water and Methanol Masers in the Nuclear Starburst of NGC 253

    Science.gov (United States)

    Gorski, Mark; Ott, Jürgen; Rand, Richard; Meier, David S.; Momjian, Emmanuel; Schinnerer, Eva

    2017-06-01

    We present Karl G. Jansky Very Large Array molecular line observations of the nearby starburst galaxy NGC 253, from SWAN, the Survey of Water and Ammonia in Nearby galaxies. SWAN is a molecular line survey at centimeter wavelengths designed to reveal the physical conditions of star-forming gas over a range of star-forming galaxies. NGC 253 has been observed in four 1 GHz bands from 21 to 36 GHz at 6″ ˜ 100 pc) spatial and 3.5 km s-1 spectral resolution. In total we detect 19 transitions from 7 molecular and atomic species. We have targeted the metastable inversion transitions of ammonia (NH3) from (1, 1) to (5, 5) and the (9, 9) line, the 22.2 GHz water (H2O) ({6}16{--}{5}23) maser, and the 36.1 GHz methanol (CH3OH) ({4}-1{--}{3}0) maser. Using NH3 as a thermometer, we present evidence for uniform heating over the central kpc of NGC 253. The molecular gas is best described by a two kinetic temperature model with a warm 130 K and a cooler 57 K component. A comparison of these observations with previous ALMA results suggests that the molecular gas is not heated in photon-dominated regions or shocks. It is possible that the gas is heated by turbulence or cosmic rays. In the galaxy center we find evidence for NH3(3, 3) masers. Furthermore, we present velocities and luminosities of three water maser features related to the nuclear starburst. We partially resolve CH3OH masers seen at the edges of the bright molecular emission, which coincides with expanding molecular superbubbles. This suggests that the masers are pumped by weak shocks in the bubble surfaces.

  19. Validation of MIPAS-ENVISAT H2O operational data collected between July 2002 and March 2004

    Directory of Open Access Journals (Sweden)

    G. Wetzel

    2013-06-01

    Full Text Available Water vapour (H2O is one of the operationally retrieved key species of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS instrument aboard the Environmental Satellite (ENVISAT which was launched into its sun-synchronous orbit on 1 March 2002 and operated until April 2012. Within the MIPAS validation activities, independent observations from balloons, aircraft, satellites, and ground-based stations have been compared to European Space Agency (ESA version 4.61 operational H2O data comprising the time period from July 2002 until March 2004 where MIPAS measured with full spectral resolution. No significant bias in the MIPAS H2O data is seen in the lower stratosphere (above the hygropause between about 15 and 30 km. Differences of H2O quantities observed by MIPAS and the validation instruments are mostly well within the combined total errors in this altitude region. In the upper stratosphere (above about 30 km, a tendency towards a small positive bias (up to about 10% is present in the MIPAS data when compared to its balloon-borne counterpart MIPAS-B, to the satellite instruments HALOE (Halogen Occultation Experiment and ACE-FTS (Atmospheric Chemistry Experiment, Fourier Transform Spectrometer, and to the millimeter-wave airborne sensor AMSOS (Airborne Microwave Stratospheric Observing System. In the mesosphere the situation is unclear due to the occurrence of different biases when comparing HALOE and ACE-FTS data. Pronounced deviations between MIPAS and the correlative instruments occur in the lowermost stratosphere and upper troposphere, a region where retrievals of H2O are most challenging. Altogether it can be concluded that MIPAS H2O profiles yield valuable information on the vertical distribution of H2O in the stratosphere with an overall accuracy of about 10 to 30% and a precision of typically 5 to 15% – well within the predicted error budget, showing that these global and continuous data are very valuable for scientific

  20. Empirical electronic polarizabilities: deviations from the additivity rule. I. M2+SO4·nH2O, blödite Na2M2+(SO4)2·4H2O, and kieserite-related minerals with sterically strained structures

    Science.gov (United States)

    Gagné, Olivier; Hawthorne, Frank; Shannon, Robert D.; Fischer, Reinhard X.

    2017-09-01

    Empirical electronic polarizabilities allow the prediction of total mineral polarizabilities and mean refractive indices of the vast majority of minerals and synthetic oxides. However, deviations from the valence-sum rule at cations in some minerals are associated with large deviations of observed from calculated total polarizabilities. We have identified several groups of minerals and compounds where deviations from the valence-sum rule at cations lead to polarizability deviations of 2-5%: M(SO4)·nH2O, n = 1-6, blödite-group minerals [Na2M2+(SO4)2·4H2O], and the kieserite-related minerals: isokite, panasqueiraite and tilasite. In these minerals, the environment of the M ions contains both O and H2O: Mg[O4(H2O)2] in kieserite, szmikite, and szomolnokite; Mg[O2(H2O)4] in starkeyite, ilesite, and rozenite, and Mg[(H2O)6] in hexahydrite. In compounds where the ligands are only H2O, deviations from the valence-sum rule at the M(H2O)6 groups are not accompanied by significant polarizability deviations. This is the case for epsomite, MgSO4·7H2O; bieberite, CoSO4·7H2O; goslarite, ZnSO4·7H2O, six silicofluorides, MSiF6·6H2O; eighteen Tutton's salts, M2M'(SO4)2·6H2O, where M = K, Rb, Cs and M' = Mg, Mn, Fe, Co, Ni, Cu, and Zn; and eleven MM'(SO4)2·12H2O alums, where M = Na, K, Rb and Cs, and M' = Al, Cr, Ga and In. This is also the case for the sulfates alunogen, Al2(SO4)3·17H2O and halotrichite, FeAl2(SO4)4·22H2O; three hydrated nitrates; one phosphate; three antimonates and two hydrated perchlorates. A possible explanation for this different behavior is that the bond-valence model treats O and H separately, whereas polarizability calculations treat the polarizability of the entire H2O molecule.

  1. The solid state maser

    CERN Document Server

    Orton, J W; Walling, J C; Ter Haar, D

    1970-01-01

    The Solid State Maser presents readings related to solid state maser amplifier from the first tentative theoretical proposals that appeared in the early 1950s to the successful realization of practical devices and their application to satellite communications and radio astronomy almost exactly 10 years later. The book discusses a historical account of the early developments (including that of the ammonia maser) of solid state maser; the properties of paramagnetic ions in crystals; the development of practical low noise amplifiers; and the characteristics of maser devices designed for communica

  2. Reactivity of organic complexes at mineral-CO2-H2O interfaces

    Science.gov (United States)

    Miller, Q. R.; Schaef, T.; Kaszuba, J. P.; Qiu, L.; Bowden, M. E.; McGrail, B. P.

    2015-12-01

    Understanding the interactions between minerals and organics in H2O-CO2 fluids is important, as they are the two most abundant volatiles in the crust. CO2-rich fluids in natural and anthropogenic environments, such as metamorphic aureoles and carbon storage reservoirs, respectively, produce a complex geochemical setting in which CO2-rich fluids containing dissolved water and organic compounds interact with rocks and minerals. We have undertaken experimental and theoretical studies to evaluate how organics impact carbonate mineralization and to determine the partitioning behavior of organic complexes between CO2, H2O, and mineral interfaces. The first groups of experiments have clarified how the type and concentration of simple organic ligands impact the degree and type of carbonation in interfacial water films. In these experiments, salts of simple organic ligands were equilibrated with wet supercritical CO2, which was reacted with the model mineral forsterite (Mg2SiO4). The forsterite dissolution and coupled carbonate precipitation reactions were followed with time-resolved pressurized X-ray diffraction (XRD) at 50 °C and 90 bar. The extent of carbonation and the relative abundance of anhydrous magnesite (MgCO3) precipitated relative to hydrated nesquehonite (MgCO3·3H2O) was impacted by the type of organic ligand. Magnesite enhancement was observed with the trend of citrate>oxalate≈malonate>acetate>organic-free control. This indicates that the organic ligands complexed Mg2+ in the interfacial water film environment and helped alleviate kinetic barriers to magnesite formation. Additional XRD experiments with varying concentrations of citrate verified the dependence of magnesite enhancement and the degree of overall carbonation on the amount of organic present in the water film. Lastly, our ongoing work concerning the partitioning of organic and metal-organic complexes between CO2, H2O, and interfacial water films will be presented. This experimental work, which

  3. Synergistic Effect of H2O2 and NO2 in Cell Death Induced by Cold Atmospheric He Plasma

    Science.gov (United States)

    Girard, Pierre-Marie; Arbabian, Atousa; Fleury, Michel; Bauville, Gérard; Puech, Vincent; Dutreix, Marie; Sousa, João Santos

    2016-01-01

    Cold atmospheric pressure plasmas (CAPPs) have emerged over the last decade as a new promising therapy to fight cancer. CAPPs’ antitumor activity is primarily due to the delivery of reactive oxygen and nitrogen species (RONS), but the precise determination of the constituents linked to this anticancer process remains to be done. In the present study, using a micro-plasma jet produced in helium (He), we demonstrate that the concentration of H2O2, NO2− and NO3− can fully account for the majority of RONS produced in plasma-activated buffer. The role of these species on the viability of normal and tumour cell lines was investigated. Although the degree of sensitivity to H2O2 is cell-type dependent, we show that H2O2 alone cannot account for the toxicity of He plasma. Indeed, NO2−, but not NO3−, acts in synergy with H2O2 to enhance cell death in normal and tumour cell lines to a level similar to that observed after plasma treatment. Our findings suggest that the efficiency of plasma treatment strongly depends on the combination of H2O2 and NO2− in determined concentrations. We also show that the interaction of the He plasma jet with the ambient air is required to generate NO2− and NO3− in solution. PMID:27364563

  4. Degradation of rhodamine B in aqueous solution by using swirling jet-induced cavitation combined with H2O2.

    Science.gov (United States)

    Wang, Xikui; Wang, Jingang; Guo, Peiquan; Guo, Weilin; Wang, Chen

    2009-09-30

    The degradation of rhodamine B in aqueous solution by using swirling jet-induced cavitation combined with H(2)O(2) was investigated. It was found that there is an obvious synergetic effect between hydrodynamic cavitation and H(2)O(2) for the degradation of rhodamine B. The effects of various operating parameters such as H(2)O(2) dosage, medium pH, solution temperature, fluid pressure and the dye initial concentration on the degradation of rhodamine B have been studied. It was found that the removal of rhodamine B in aqueous solution was increased with increasing the addition of H(2)O(2) and the fluid pressure, and the removal of rhodamine B was decreased with increasing the medium pH and dye initial concentration. It was also found that the degradation of rhodamine B is dependent on the solution temperature. The removal of rhodamine B increased with increase of temperature from 30 to 50 degrees C, but less degradation ratio is observed at 60 degrees C. The degradation kinetics of rhodamine B in aqueous solution using swirling jet-induced cavitation combined with H(2)O(2) under various operational conditions was also investigated. It was found that the degradation of rhodamine B follows a pseudo-first-order kinetics.

  5. Photochemistry of HI on argon and water nanoparticles: hydronium radical generation in HI·(H2O)n.

    Science.gov (United States)

    Poterya, Viktoriya; Fedor, Juraj; Pysanenko, Andriy; Tkáč, Ondřej; Lengyel, Jozef; Ončák, Milan; Slavíček, Petr; Fárník, Michal

    2011-02-14

    Photochemistry of HI molecules on large Ar(n) and (H(2)O)(n), n ∼ 100-500, clusters was investigated after excitation with 243 nm and 193 nm laser radiation. The measured H-fragment kinetic energy distributions pointed to a completely different photodissociation mechanism of HI on water than on argon clusters. Distinct features corresponding to the fragment caging (slow fragments) and direct exit (fast fragments) were observed in the spectra from HI photodissociation on Ar(n) clusters. On the other hand, the fast fragments were entirely missing in the spectrum from HI·(H(2)O)(n) and the slow-fragment part of the spectrum had a different shape from HI·Ar(n). The HI·(H(2)O)(n) spectrum was interpreted in terms of the acidic dissociation of HI on (H(2)O)(n) in the ground state, and hydronium radical H(3)O formation following the UV excitation of the ionically dissociated species into states of a charge-transfer-to-solvent character. The H(3)O generation was proved by experiments with deuterated species DI and D(2)O. The experiment was complemented by ab initio calculations of structures and absorption spectra for small HI·(H(2)O)(n) clusters, n = 0-5, supporting the proposed model.

  6. H2O absorption tomography in a diesel aftertreatment system using a polymer film for optical access

    Science.gov (United States)

    Wang, Ze; Sanders, Scott T.; Backhaus, Jacob A.; Munnannur, Achuth; Schmidt, Niklas M.

    2017-12-01

    Film-optical-access H2O absorption tomography is, for the first time, applied to a practical diesel aftertreatment system. A single rotation stage and a single translation stage are used to move a single laser beam to obtain each of the 3480 line-of-sight measurements used in the tomographic reconstruction. It takes 1 h to acquire one image in a 60-view-angle measurement. H2O images are acquired in a 292.4-mm-diameter selective catalytic reduction (SCR) can with a 5-mm spatial resolution at temperatures in the 158-185 °C range. When no liquid H2O is injected into the gas, the L1 norm-based uniformity index is 0.994, and the average mole fraction error is - 6% based on a separate FTIR measurement. When liquid water is injected through the reductant dosing system designed to inject diesel exhaust fluid, nonuniformity is observed, as evidenced by measured uniformity indices for H2O in the 0.977-0.986 range. A mixing plate installed into the system is able to improve the uniformity of the H2O mole fraction.

  7. Effect of coagulation on treatment of municipal wastewater reverse osmosis concentrate by UVC/H2O2.

    Science.gov (United States)

    Umar, Muhammad; Roddick, Felicity; Fan, Linhua

    2014-02-15

    Disposal of reverse osmosis concentrate (ROC) is a growing concern due to potential health and ecological risks. Alum coagulation was investigated as pre-treatment for the UVC/H2O2 treatment of two high salinity ROC samples (ROC A and B) of comparable organic and inorganic content. Coagulation removed a greater fraction of the organic content for ROC B (29%) than ROC A (16%) which correlated well with the reductions of colour and A254. Although the total reductions after 60 min UVC/H2O2 treatment with and without coagulation were comparable, large differences in the trends of reduction were observed which were attributed to the different nature of the organic content (humic-like) of the samples as indicated by the LC-OCD analyses and different initial (5% and 16%) biodegradability. Coagulation and UVC/H2O2 treatment preferentially removed humic-like compounds which resulted in low reaction rates after UVC/H2O2 treatment of the coagulated samples. The improvement in biodegradability was greater (2-3-fold) during UVC/H2O2 treatment of the pre-treated samples than without pre-treatment. The target DOC residual (≤ 15 mg/L) was obtained after 30 and 20 min irradiation of pre-treated ROC A and ROC B with downstream biological treatment, corresponding to reductions of 55% and 62%, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Water Masers and AGN Structure

    Science.gov (United States)

    Greenhill, L. J.

    2000-05-01

    Water masers have been observed in 22 active galactic nuclei (AGN) that are Seyfert II objects or LINERs. The masers are high brightness-temperature beacons, and when studied with high frequency and angular resolution, as with Very Long Baseline Interferometry, they may be used to pinpoint the central engines of the AGN. Four of the maser sources that have been investigated in detail have been found to trace the warm, dense (molecular) gas in accretion disks at radii of 0.1 to 1 pc. In these systems (NGC4258, NGC1068, NGC4945, and the Circinus Galaxy) the disks are vertically thin and mildly warped, and their rotation axes are aligned with known outflow axes. The declining rotation curves display orbital motions of 200 to 1100 km/s, and indicate central masses of one to forty million suns. Accretion efficiencies are on the order of 0.01% to 10%, with respect to the Eddington luminosities. The disks are clumpy, and the warps suggest that there is substantial dense material at radii less than about 1 pc, along the lines of lines of sight to the central engines. Rather than the oft posited dusty tori of AGN unification scenarios, this disk material may be responsible for much of the observed X-ray absorbing columns in these systems. In Circinus, dense material traced by masers also lies at high latitudes, away from the disk. The emission traces a clumpy, wide-angle outflow that arises within ~ 0.1 pc of the central engine. Because the outflow-borne clumps that display maser emission are widely distributed and have no discernable rotation curve, they probably arise largely independently of radiation or wind-driven ablation of the visible accretion disk. However, disk-wind interaction may be responsbile for exciting some maser clumps at low latitudes.

  9. I + (H2O)2 → HI + (H2O)OH Forward and Reverse Reactions. CCSD(T) Studies Including Spin-Orbit Coupling.

    Science.gov (United States)

    Wang, Hui; Li, Guoliang; Li, Qian-Shu; Xie, Yaoming; Schaefer, Henry F

    2016-03-03

    The potential energy profile for the atomic iodine plus water dimer reaction I + (H2O)2 → HI + (H2O)OH has been explored using the "Gold Standard" CCSD(T) method with quadruple-ζ correlation-consistent basis sets. The corresponding information for the reverse reaction HI + (H2O)OH → I + (H2O)2 is also derived. Both zero-point vibrational energies (ZPVEs) and spin-orbit (SO) coupling are considered, and these notably alter the classical energetics. On the basis of the CCSD(T)/cc-pVQZ-PP results, including ZPVE and SO coupling, the forward reaction is found to be endothermic by 47.4 kcal/mol, implying a significant exothermicity for the reverse reaction. The entrance complex I···(H2O)2 is bound by 1.8 kcal/mol, and this dissociation energy is significantly affected by SO coupling. The reaction barrier lies 45.1 kcal/mol higher than the reactants. The exit complex HI···(H2O)OH is bound by 3.0 kcal/mol relative to the asymptotic limit. At every level of theory, the reverse reaction HI + (H2O)OH → I + (H2O)2 proceeds without a barrier. Compared with the analogous water monomer reaction I + H2O → HI + OH, the additional water molecule reduces the relative energies of the entrance stationary point, transition state, and exit complex by 3-5 kcal/mol. The I + (H2O)2 reaction is related to the valence isoelectronic bromine and chlorine reactions but is distinctly different from the F + (H2O)2 system.

  10. Water delivery from cores to disks: Deuteration as a probe of the prestellar inheritance of H2O

    Science.gov (United States)

    Furuya, K.; Drozdovskaya, M. N.; Visser, R.; van Dishoeck, E. F.; Walsh, C.; Harsono, D.; Hincelin, U.; Taquet, V.

    2017-03-01

    We investigate the delivery of regular and deuterated forms of water from prestellar cores to circumstellar disks. We adopt a semi-analytical, axisymmetric, two-dimensional collapsing core model with post-processing gas-ice astrochemical simulations, in which a layered ice structure is considered. The physical and chemical evolutions are followed until the end of the main accretion phase. In our models, when mass averaged over the whole disk, a forming disk has a similar H2O abundance and HDO/H2O abundance ratio (within a factor of 2) as the precollapse values of these quantities, regardless of time. Consistent with previous studies, our models suggest that interstellar water ice is delivered to forming disks without significant alteration. On the other hand, the local vertically averaged H2O ice abundance and HDO/H2O ice ratio can differ more, by up to a factor of several, depending on time and distance from a central star. Key parameters for the local variations are the fluence of stellar UV photons en route into the disk and the ice layered structure, the latter of which is mostly established in the prestellar stages. We also find that even if interstellar water ice is destroyed by stellar UV and (partly) reformed prior to disk entry, the HDO/H2O ratio in reformed water ice is similar to the original value. This finding indicates that some caution is needed in discussions on the prestellar inheritance of H2O based on comparisons between the observationally derived HDO/H2O ratio in clouds/cores and that in disks/comets. Alternatively, we propose that the ratio of D2O/HDO to HDO/H2O better probes the prestellar inheritance of H2O. It is also found that in forming disks icy organics are more enriched in deuterium than water ice. The differential deuterium fractionation in water and organics is inherited from prestellar stages.

  11. Life in the fast lane: H2O reveals the universal nature of shocks in outflows

    Science.gov (United States)

    Mottram, J. C.; van Dishoeck, E. F.; Kristensen, L. E.; San José-García, I.

    2015-05-01

    Water is an unique tracer of motion in protostars. It has broad and complex line profiles, dominated by the jet/outflow system. We summarise the results of spectrally resolved H2O line profiles observed with Herschel HIFI from the "Water in star-forming regions with Herschel" (WISH, van Dishoeck et al. 2011), "William Herschel Line Legacy" (WILL, Mottram et al. in prep.) and Cygnus-X surveys. In total, more than 100 low-, intermediate and high-mass (LM, IM & HM) protostars have been observed with Lbol from 0.1 to 105 L⊙. On Galactic scales, water traces star formation.

  12. Nanoparticle formation in H2O/N-2 and H2O/Ar mixtures under irradiation by 20 MeV protons and positive corona discharge

    DEFF Research Database (Denmark)

    Imanaka, M.; Tomita, S.; Kanda, S.

    2010-01-01

    To investigate the contribution of ions to gas nucleation, we have performed experiments on the formation of water droplets in H2O/N-2 and H2O/Ar gas mixtures by irradiation with a 20 MeV proton beam and by positive corona discharge. The size of the formed nanoparticles was measured using a diffe...

  13. Decolorization and Mineralization of Reactive Dyes, by the H2O2/UV Process With Electrochemically Produced H2O2

    NARCIS (Netherlands)

    Jeric, T.; Bisselink, R.J.M.; Tongeren, W. van; Marechal. A.M. Le

    2013-01-01

    Decolorization of Reactive Red 238, Reactive Orange 16, Reactive Black 5 and Reactive Blue 4 was studied in the UV/H2O2 process with H2O2 being produced electrochemically. The experimental results show that decolorization increased considerably when switching on the electrochemical production of

  14. Self-sufficing H2O2-responsive nanocarriers through tumor-specific H2O2 production for synergistic oxidation-chemotherapy.

    Science.gov (United States)

    Li, Junjie; Ke, Wendong; Wang, Lei; Huang, Mingming; Yin, Wei; Zhang, Ping; Chen, Qixian; Ge, Zhishen

    2016-03-10

    One of distinct features in tumor tissues is the elevated concentration of reactive oxygen species (ROS) during tumor immortality, proliferation and metastasis. However, ROS-responsive materials are rarely utilized in the field of in vivo tumoral ROS-responsive applications due to the fact that the intrinsic ROS level in the tumors could not escalate to an adequate level that the developed materials can possibly respond. Herein, palmitoyl ascorbate (PA) as a prooxidant for hydrogen peroxide (H2O2) production in tumor tissue is strategically compiled into a H2O2-responsive camptothecin (CPT) polymer prodrug micelle, which endowed the nanocarriers with self-sufficing H2O2 stimuli in tumor tissues. Molecular oncology manifests the hallmarks of tumoral physiology with deteriorating propensity in eliminating hazardous ROS. H2O2 production was demonstrated to specifically sustain in tumors, which not only induced tumor cell apoptosis by elevated oxidation stress but also served as autochthonous H2O2 resource to trigger CPT release for chemotherapy. Excess H2O2 and released CPT could penetrate into cells efficiently, which showed synergistic cytotoxicity toward cancer cells. Systemic therapeutic trial revealed potent tumor suppression of the proposed formulation via synergistic oxidation-chemotherapy. This report represents a novel nanomedicine platform combining up-regulation of tumoral H2O2 level and self-sufficing H2O2-responsive drug release to achieve novel synergistic oxidation-chemotherapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Giardia duodenalis: Number and Fluorescence Reduction Caused by the Advanced Oxidation Process (H2O2/UV)

    Science.gov (United States)

    Guimarães, José Roberto; Franco, Regina Maura Bueno; Guadagnini, Regiane Aparecida; dos Santos, Luciana Urbano

    2014-01-01

    This study evaluated the effect of peroxidation assisted by ultraviolet radiation (H2O2/UV), which is an advanced oxidation process (AOP), on Giardia duodenalis cysts. The cysts were inoculated in synthetic and surface water using a concentration of 12 g H2O2 L−1 and a UV dose (λ = 254 nm) of 5,480 mJcm−2. The aqueous solutions were concentrated using membrane filtration, and the organisms were observed using a direct immunofluorescence assay (IFA). The AOP was effective in reducing the number of G. duodenalis cysts in synthetic and surface water and was most effective in reducing the fluorescence of the cyst walls that were present in the surface water. The AOP showed a higher deleterious potential for G. duodenalis cysts than either peroxidation (H2O2) or photolysis (UV) processes alone. PMID:27379301

  16. An Accurate Potential Energy Surface for H2O

    Science.gov (United States)

    Schwenke, David W.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    We have carried out extensive high quality ab initio electronic structure calculations of the ground state potential energy surface (PES) and dipole moment function (DMF) for H2O. A small adjustment is made to the PES to improve the agreement of line positions from theory and experiment. The theoretical line positions are obtained from variational ro-vibrational calculations using the exact kinetic energy operator. For the lines being fitted, the root-mean-square error was reduced from 6.9 to 0.08 /cm. We were then able to match 30,092 of the 30,117 lines from the HITRAN 96 data base to theoretical lines, and 80% of the line positions differed less than 0.1 /cm. About 3% of the line positions in the experimental data base appear to be incorrect. Theory predicts the existence of many additional weak lines with intensities above the cutoff used in the data base. To obtain results of similar accuracy for HDO, a mass dependent correction to the PH is introduced and is parameterized by simultaneously fitting line positions for HDO and D2O. The mass dependent PH has good predictive value for T2O and HTO. Nonadiabatic effects are not explicitly included. Line strengths for vibrational bands summed over rotational levels usually agree well between theory and experiment, but individual line strengths can differ greatly. A high temperature line list containing about 380 million lines has been generated using the present PES and DMF

  17. Giardia duodenalis: Number and Fluorescence Reduction Caused by the Advanced Oxidation Process (H2O2/UV)

    OpenAIRE

    Guimarães,José Roberto; Franco,Regina Maura Bueno; Guadagnini, Regiane Aparecida; Santos, Luciana Urbano dos

    2014-01-01

    This study evaluated the effect of peroxidation assisted by ultraviolet radiation (H2O2/UV), which is an advanced oxidation process (AOP), on Giardia duodenalis cysts. The cysts were inoculated in synthetic and surface water using a concentration of 12?g H2O2?L?1 and a UV dose (? = 254?nm) of 5,480?mJcm?2. The aqueous solutions were concentrated using membrane filtration, and the organisms were observed using a direct immunofluorescence assay (IFA). The AOP was effective in reducing the numbe...

  18. Mass-independent fractionation of oxygen isotopes during H2O2 formation by gas-phase discharge from water vapour

    Science.gov (United States)

    Velivetskaya, Tatiana A.; Ignatiev, Alexander V.; Budnitskiy, Sergey Y.; Yakovenko, Victoria V.; Vysotskiy, Sergey V.

    2016-11-01

    Hydrogen peroxide is an important atmospheric component involved in various gas-phase and aqueous-phase transformation processes in the Earth's atmosphere. A study of mass-independent 17O anomalies in H2O2 can provide additional insights into the chemistry of the modern atmosphere and, possibly, of the ancient atmosphere. Here, we report the results of laboratory experiments to study the fractionation of three oxygen isotopes (16O, 17O, and 18O) during H2O2 formation from products of water vapour dissociation. The experiments were carried out by passing an electrical discharge through a gaseous mixture of helium and water at atmospheric pressure. The effect of the presence of O2 in the gas mixture on the isotopic composition of H2O2 was also investigated. All of the experiments showed that H2O2 produced under two different conditions (with or without O2 added in the gas mixtures) was mass-independently fractionated (MIF). We found a positive MIF signal (∼1.4‰) in the no-O2 added experiments, and this signal increased to ∼2.5‰ once O2 was added (1.6% mixing ratio). We suggest that if O2 concentrations are very low, the hydroxyl radical recombination reaction is the dominant pathway for H2O2 formation and is the source of MIF in H2O2. Although H2O2 formation via a hydroxyl radical recombination process is limited in the modern atmosphere, it would be possible in the Archean atmosphere when O2 was a trace constituent, and H2O2 would be mass-independently fractionated. The anomalous 17O excess, which was observed in H2O2 produced by spark discharge experiments, may provide useful information about the radical chemistry of the ancient atmosphere and the role of H2O2 in maintaining and controlling the atmospheric composition.

  19. Differential regulation of TRPV1 channels by H2O2: implications for diabetic microvascular dysfunction

    Science.gov (United States)

    DelloStritto, Daniel J.; Connell, Patrick J.; Dick, Gregory M.; Fancher, Ibra S.; Klarich, Brittany; Fahmy, Joseph N.; Kang, Patrick T.; Chen, Yeong-Renn; Damron, Derek S.; Thodeti, Charles K.

    2016-01-01

    We demonstrated previously that TRPV1-dependent coupling of coronary blood flow (CBF) to metabolism is disrupted in diabetes. A critical amount of H2O2 contributes to CBF regulation; however, excessive H2O2 impairs responses. We sought to determine the extent to which differential regulation of TRPV1 by H2O2 modulates CBF and vascular reactivity in diabetes. We used contrast echocardiography to study TRPV1 knockout (V1KO), db/db diabetic, and wild type C57BKS/J (WT) mice. H2O2 dose-dependently increased CBF in WT mice, a response blocked by the TRPV1 antagonist SB366791. H2O2-induced vasodilation was significantly inhibited in db/db and V1KO mice. H2O2 caused robust SB366791-sensitive dilation in WT coronary microvessels; however, this response was attenuated in vessels from db/db and V1KO mice, suggesting H2O2-induced vasodilation occurs, in part, via TRPV1. Acute H2O2 exposure potentiated capsaicin-induced CBF responses and capsaicin-mediated vasodilation in WT mice, whereas prolonged luminal H2O2 exposure blunted capsaicin-induced vasodilation. Electrophysiology studies re-confirms acute H2O2 exposure activated TRPV1 in HEK293A and bovine aortic endothelial cells while establishing that H2O2 potentiate capsaicin-activated TRPV1 currents, whereas prolonged H2O2 exposure attenuated TRPV1 currents. Verification of H2O2-mediated activation of intrinsic TRPV1 specific currents were found in isolated mouse coronary endothelial cells from WT mice and decreased in endothelial cells from V1KO mice. These data suggest prolonged H2O2 exposure impairs TRPV1-dependent coronary vascular signaling. This may contribute to microvascular dysfunction and tissue perfusion deficits characteristic of diabetes. PMID:26907473

  20. Manganese ions enhance mitochondrial H2O2emission from Krebs cycle oxidoreductases by inducing permeability transition.

    Science.gov (United States)

    Bonke, Erik; Siebels, Ilka; Zwicker, Klaus; Dröse, Stefan

    2016-10-01

    Manganese-induced toxicity has been linked to mitochondrial dysfunction and an increased generation of reactive oxygen species (ROS). We could recently show in mechanistic studies that Mn 2+ ions induce hydrogen peroxide (H 2 O 2 ) production from the ubiquinone binding site of mitochondrial complex II (II Q ) and generally enhance H 2 O 2 formation by accelerating the rate of superoxide dismutation. The present study with intact mitochondria reveals that manganese additionally enhances H 2 O 2 emission by inducing mitochondrial permeability transition (mPT). In mitochondria fed by NADH-generating substrates, the combination of Mn 2+ and different respiratory chain inhibitors led to a dynamically increasing H 2 O 2 emission which was sensitive to the mPT inhibitor cyclosporine A (CsA) as well as Ru-360, an inhibitor of the mitochondrial calcium uniporter (MCU). Under these conditions, flavin-containing enzymes of the mitochondrial matrix, e.g. the mitochondrial 2-oxoglutaratedehydrogenase (OGDH), were major sources of ROS. With succinate as substrate, Mn 2+ stimulated ROS production mainly at complex II, whereby the applied succinate concentration had a marked effect on the tendency for mPT. Also Ca 2+ increased the rate of H 2 O 2 emission by mPT, while no direct effect on ROS-production of complex II was observed. The present study reveals a complex scenario through which manganese affects mitochondrial H 2 O 2 emission: stimulating its production from distinct sites (e.g. site II Q ), accelerating superoxide dismutation and enhancing the emission via mPT which also leads to the loss of soluble components of the mitochondrial antioxidant systems and favors the ROS production from flavin-containing oxidoreductases of the Krebs cycle. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. H2O and CO2 exchange between a sphagnum mire ecosystem and the atmosphere

    Science.gov (United States)

    Olchev, Alexander; Volkova, Elena; Karataeva, Tatiana; Novenko, Elena

    2013-04-01

    The modern climatic conditions are strongly influenced by both internal variability of climatic system, and various external natural and anthropogenic factors (IPCC 2007). Significant increase of concentration of greenhouse gases in the atmosphere and especially the growth of atmospheric CO2 due to human activity are considered as the main factors that are responsible for modern global warming and climate changes. A significant part of anthropogenic CO2 is absorbed from the atmosphere by land biota and especially by vegetation cover. However, it is still not completely clear what is the role of different land ecosystems and especially forests and mires in global cycles of H2O and CO2 and what is a sensitivity of these ecosystems to climate changes. Within the framework of this study the spatial and temporal variability of H2O and CO2 fluxes between a mire ecosystem and the atmosphere was described using results of the field measurements and modeling approach. For the study a mire ecosystem located in Tula region in European part of Russia was selected. The selected mire has karst origin, depth of peat float is 2.5-3.0 m (depth of depression is more than 10 meter), area is about 1 ha. The mire vegetation is characterized by sedge and sphagnum mosses cover. The mire is surrounded by broad-leaved forest of about 20 meter high. To describe the temporal and spatial patterns of H2O and CO2 fluxes within selected mire the chamber method was applied. The measurement were carried out along transect from mire edge to center from June to September of 2012. For measurements the transparent ventilated chambers combined with portable infrared CO2/H2O analyzer LI-840 (Li-Cor, USA) was used. To estimate the gross primary production and respiration of different type of vegetation within the mire the measurements were conducted both under actual light conditions and artificial shading. Results of the experimental studies showed that the maximal CO2 fluxes was observed in central

  2. Profiling of cytosolic and mitochondrial H2O2production using the H2O2-sensitive protein HyPer in LPS-induced microglia cells.

    Science.gov (United States)

    Park, Junghyung; Lee, Seunghoon; Lee, Hyun-Shik; Lee, Sang-Rae; Lee, Dong-Seok

    2017-07-27

    Dysregulation of the production of pro-inflammatory mediators in microglia exacerbates the pathologic process of neurodegenerative disease. ROS actively affect microglia activation by regulating transcription factors that control the expression of pro-inflammatory genes. However, accurate information regarding the function of ROS in different subcellular organelles has not yet been established. Here, we analyzed the pattern of cytosolic and mitochondrial H 2 O 2 formation in LPS-activated BV-2 microglia using the H 2 O 2- sensitive protein HyPer targeted to specific subcellular compartments. Our results show that from an early time, cytosolic H 2 O 2 started increasing constantly, whereas mitochondrial H 2 O 2 rapidly increased later. In addition, we found that MAPK affected cytosolic H 2 O 2 , but not mitochondrial H 2 O 2 . Consequently, our study provides the basic information about subcellular H 2 O 2 generation in activated microglia, and a useful tool for investigating molecular targets that can modulate neuroinflammatory responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Lattice variation and thermal parameters of NixMg1–xSO4⋅7H2O ...

    Indian Academy of Sciences (India)

    Unknown

    unit cell parameters for magnesium sulphate heptahydrate,. MgSO4⋅7H2O .... a given type of atom. This disorder enhances the Debye–. Waller factor and also the amplitude of vibration. Hence the observed Debye–Waller factor for mixed crystal is written as ... measured and m the mean atomic mass of crystal. The function ...

  4. UV/H2O2 oxidation of arsenic and terbuthylazine in drinking water.

    Science.gov (United States)

    Sorlini, S; Gialdini, F; Stefan, M

    2014-02-01

    Arsenic is a widespread contaminant in the environment. The intake of water containing high concentrations of arsenic could have serious impact on human health, such as skin and lung cancer. In the European Union, thus, also in Italy, the arsenic limit in drinking water is 10 μg L(-1). Several water remediation treatment technologies are available for arsenic removal. For some processes, the removal efficiencies can be improved after an oxidation step. Most full-scale applications are based on conventional oxidation processes for chemical micropollutant removal. However, if water contains arsenic and refractory organic contaminants, the advanced oxidation processes could be considered. The aim of this work was to investigate the effectiveness of ultraviolet (UV) radiation alone and in combination with hydrogen peroxide for the oxidation of arsenic and terbuthylazine (TBA). The experimental tests were performed in groundwater at the laboratory scale (0.1 mg L(-1) As(III) and 10 μg L(-1) TBA). Hydrogen peroxide alone (15 mg L(-1)) was ineffective on both arsenic and TBA oxidation; the 253.7-nm radiation alone did not oxidize arsenic(III), but photolyzed efficiently TBA (52 % removal yield at a UV dose of 1,200 mJ cm(-2)). The UV/H2O2 advanced oxidation (UV dose 600-2,000 mJ cm(-2), 5-15 mg L(-1) H2O2) was the most effective process for the oxidation of both arsenic and TBA, with observed oxidation efficiencies of 85 and 94 %, respectively, with 5 mg L(-1) H2O2 and a UV dose of 2,000 mJ cm(-2).

  5. Room-temperature NaI/H2O compression icing: solute-solute interactions.

    Science.gov (United States)

    Zeng, Qingxin; Yao, Chuang; Wang, Kai; Sun, Chang Q; Zou, Bo

    2017-10-11

    In situ Raman spectroscopy revealed that transiting the concentrated NaI/H2O solutions to an ice VI phase and then into an ice VII phase at 298 K proceeds in a way different from that activated by the solute type. Unlike the solute type that raises both the critical pressures PC1 and PC2, for the liquid-VI, the VI-VII transition simultaneously occurs in the Hofmeister series order: I > Br > Cl > F ∼ 0; concentration increase raises the PC1 faster than the PC2 that remains almost constant at higher NaI/H2O molecular number ratios. Concentration increase moves the PC1 along the liquid-VI phase boundary and it finally merges with PC2 at the triple-phase junction featured at 350 K and 3.05 GPa. The highly-deformed H-O bond is less sensitive to the concentration because of the involvement of anion-anion repulsion that weakens the electric field in the hydration shells. Observations confirm that the salt solvation lengthens the O:H nonbond and softens its phonon but relaxes the H-O bond contrastingly. Compression, however, has the opposite effect from that of salt solvation. Therefore, compression recovers the polarization-deformed O:H-O bond first and then proceeds to the phase transitions. The anion-anion interaction discriminates the effect of NaI/H2O concentration from that of the solute type at an identical concentration on the phase transitions.

  6. Detection and evolution of H2O ice spots on 67P/Churyumov-Gerasimenko's nucleus

    Science.gov (United States)

    Barucci, Maria Antonieta; Filacchione, Gianrico; Fornasier, Sonia; Raponi, Andrea; Prasanna Deshapriya, Jasinghege Don; Tosi, Federico; Feller, Clement; Ciarniello, Mauro; Sierks, Holger; Capaccioni, Fabrizio; Pommerol, Antoine; Massironi, Matteo; Oklay Vincent, Nilda; Guilbert-Lepoutre, Aurelie; Fulchignoni, Marcello; Érard, Stéphane; OSIRIS Team, VIRTIS Team

    2016-10-01

    The OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System), and VIRTIS (Visible InfraRed Thermal Imaging Spectrometer) instruments on board Rosetta spacecraft acquired a huge quantity of resolved images and spectra of the comet 67P/Churyumov-Gerasimenko, producing the most detailed maps at the highest spatial resolution of a cometary nucleus surface. After almost two years of observations, 67P was revealed as an intriguing body with a surface rich in heterogeneous geological structures, different surface properties (albedo, colors, texture, tensile strength, layers, pits, boulders…).A large quantity of bright spots of different size with high visible albedo and flat visible spectrophotometry have been identified by OSIRIS high resolution images. Comparing the image data with near-infrared spectra and modeling the spectra (using Hapke's radiative transfer model) as a mixture of H2O ice and the ubiquitios « Dark Material » present on the nucleus' surface, we were able to study at the same time the morphological, thermal and compositional properties of these areas.With this complementary study we are able to confirm the presence of H2O ice on many brighter areas distributed on the two lobes of 67P.The detected bright spots are mostly situated on consolidated dust free material surfaces, distributed on the two lobes of 67P in locations which stay longer in shadow, mostly concentrated in near equatorial latitudes. Some spots are stable for several months and others show temporal changes connected to diurnal and seasonal variations. Stability of the spots is corroborated by the temperature retrieved at the surface. The behavior of ice at these locations is in very good agreement with theoretical expectations. The majority of the detected H2O ice spots are located in the same approximate position of previously detected cometary outbursts. A general overview of these icy spots on the surface of comet 67P will be presented and discussed.

  7. Effects of L-carnitine against H2O2-induced oxidative stress in grass carp ovary cells (Ctenopharyngodon idellus).

    Science.gov (United States)

    Wang, Qiuju; Ju, Xue; Chen, Yuke; Dong, Xiaoqing; Luo, Sha; Liu, Hongjian; Zhang, Dongming

    2016-06-01

    This study was designed in vitro to investigate the effects of L-carnitine against H2O2-induced oxidative stress in a grass carp (Ctenopharyngodon idellus) ovary cell line (GCO). GCO cells were pre-treated with different concentrations of L-carnitine, followed by incubation with 2.5 mM H2O2 for 1 h to induce oxidative damage. The results indicated that adding L-carnitine at concentrations of 0.01-1 mM into the medium for 12 h significantly increased cell viability. Pre-treatment with L-carnitine at concentrations of 0.1-5 mM for 12 h significantly inhibited 2.5 mM H2O2-induced cell viability loss. The significant decreases in the level of reactive oxygen species and cell apoptosis were observed in 0.5 mM L-carnitine group compared to the H2O2 group. Malondialdehyde values of all of the L-carnitine groups were significantly lower than those of the H2O2 group, while total glutathione levels of all of the L-carnitine groups were significantly higher than of the H2O2 group. The activity of antioxidant enzymes, such as total superoxide dismutase (0.1 and 0.5 mM L-carnitine), catalase (0.5 mM L-carnitine) and γ-glutamyl cysteine synthetase (0.5 and 1 mM L-carnitine), was significantly increased. In addition, pre-treatment of L-carnitine in GCO cells exposed to 2.5 mM H2O2 significantly increased the mRNA expression of copper, zinc superoxide dismutase, catalase (0.5 mM L-carnitine), glutamate cysteine ligase catalytic subunit (0.1-1 mM) and glutathione peroxidase (0.1 mM L-carnitine). In conclusion, L-carnitine promotes GCO cell growth and improves antioxidant function, it plays a protective role against oxidative stress induced by H2O2 in GCO cells, and the appropriate supplemental amount of L-carnitine is 0.1-1 mM.

  8. The role of Golgi reassembly and stacking protein 65 phosphorylation in H2O2-induced cell death and Golgi morphological changes.

    Science.gov (United States)

    Ji, Guang; Zhang, Weiwei; Quan, Moyuan; Chen, Yang; Qu, Hui; Hu, Zhiping

    2016-12-01

    This study aimed to investigate the effects of H2O2-induced oxidative stress on cell viability and survival, as well as changes in the distribution of Golgi apparatus and in the level of Golgi reassembly and stacking protein 65 (GRASP65). Cell viability of cultured N2a cells treated with H2O2 was measured by the MTT assay. Apoptosis was measured by flow cytometry analyses. Cells labeled by indirect immunofluorescence were observed under confocal microscope to detect any Golgi morphological alterations; electron microscopy of Golgi apparatus was also done. Expression of GRASP65 and phospho-GRASP65 was examined by immunoblotting. H2O2 treatment reduced the cell viability and raised the cell mortality of N2a cells in a time-dependent manner. Notable changes were only observed in the distribution and morphology of Golgi apparatus at 6 h after H2O2 treatment. The expression of GRASP65 showed no significant changes at different time points; the phosphorylated GRASP65 level was significantly increased after H2O2 treatment, peaked at 3 h, and finally dropped at 6 h. Taken together, GRASP65 phosphorylation may have a critical role in inducing cell death at the early stage after H2O2 treatment, while its role in H2O2-induced Golgi morphological changes may be complex.

  9. The distribution of H2O between silicate melt and nominally anhydrous peridotite and the onset of hydrous melting in the deep upper mantle

    Science.gov (United States)

    Novella, Davide; Frost, Daniel J.; Hauri, Erik H.; Bureau, Helene; Raepsaet, Caroline; Roberge, Mathilde

    2014-08-01

    phases as a function of depth and at H2O-undersaturated conditions is constructed. The model indicates that for a fixed mantle composition containing 150 ppm wt H2O, the olivine H2O content will increase with depth solely due to changes in inter-phase partitioning and modal proportions of minerals. The change in the olivine H2O concentration with depth corresponds to proposed changes in the dominant olivine slip system for deformation by dislocation creep, that might provide an explanation for the reduction in seismic anisotropy observed at depths >200 km.

  10. Invited: Tailoring Platinum Group Metals Towards Optimal Activity for Oxygen Electroreduction to H2o and H2O2: From Extended Surfaces to Nanoparticles

    DEFF Research Database (Denmark)

    Stephens, Ifan

    2014-01-01

    The slow kinetics of the 4-electron reduction of oxygen to H2O imposes a bottleneck against the widespread uptake of low temperature fuel cells in automotive vehicles. High loadings of platinum are required to drive the reaction; the limited supply of this precious metal limits the extent to which......, H2O2 is produced via the anthraquinone process, a complex, batch process, conducted in large scale facilities. The electrochemical production of H2O2 would enable on-site small scale production of hydrogen peroxide, closer to the point of consumption. The viability of the process would require...

  11. Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes.

    Science.gov (United States)

    Morgan, Bruce; Van Laer, Koen; Owusu, Theresa N E; Ezeriņa, Daria; Pastor-Flores, Daniel; Amponsah, Prince Saforo; Tursch, Anja; Dick, Tobias P

    2016-06-01

    Genetically encoded probes based on the H2O2-sensing proteins OxyR and Orp1 have greatly increased the ability to detect elevated H2O2 levels in stimulated or stressed cells. However, these proteins are not sensitive enough to monitor metabolic H2O2 baseline levels. Using yeast as a platform for probe development, we developed two peroxiredoxin-based H2O2 probes, roGFP2-Tsa2ΔCR and roGFP2-Tsa2ΔCPΔCR, that afford such sensitivity. These probes are ∼50% oxidized under 'normal' unstressed conditions and are equally responsive to increases and decreases in H2O2. Hence, they permit fully dynamic, real-time measurement of basal H2O2 levels, with subcellular resolution, in living cells. We demonstrate that expression of these probes does not alter endogenous H2O2 homeostasis. The roGFP2-Tsa2ΔCR probe revealed real-time interplay between basal H2O2 levels and partial oxygen pressure. Furthermore, it exposed asymmetry in H2O2 trafficking between the cytosol and mitochondrial matrix and a strong correlation between matrix H2O2 levels and cellular growth rate.

  12. The Role of Peroxiredoxins in the Transduction of H2O2 Signals.

    Science.gov (United States)

    Rhee, Sue Goo; Woo, Hyun Ae; Kang, Dongmin

    2017-07-10

    Hydrogen peroxide (H2O2) is produced on stimulation of many cell surface receptors and serves as an intracellular messenger in the regulation of diverse physiological events, mostly by oxidizing cysteine residues of effector proteins. Mammalian cells express multiple H2O2-eliminating enzymes, including catalase, glutathione peroxidase (GPx), and peroxiredoxin (Prx). A conserved cysteine in Prx family members is the site of oxidation by H2O2. Peroxiredoxins possess a high-affinity binding site for H2O2 that is lacking in catalase and GPx and which renders the catalytic cysteine highly susceptible to oxidation, with a rate constant several orders of magnitude greater than that for oxidation of cysteine in most H2O2 effector proteins. Moreover, Prxs are abundant and present in all subcellular compartments. The cysteines of most H2O2 effectors are therefore at a competitive disadvantage for reaction with H2O2. Recent Advances: Here we review intracellular sources of H2O2 as well as H2O2 target proteins classified according to biochemical and cellular function. We then highlight two strategies implemented by cells to overcome the kinetic disadvantage of most target proteins with regard to H2O2-mediated oxidation: transient inactivation of local Prx molecules via phosphorylation, and indirect oxidation of target cysteines via oxidized Prx. Critical Issues and Future Directions: Recent studies suggest that only a small fraction of the total pools of Prxs and H2O2 effector proteins localized in specific subcellular compartments participates in H2O2 signaling. Development of sensitive tools to selectively detect phosphorylated Prxs and oxidized effector proteins is needed to provide further insight into H2O2 signaling. Antioxid. Redox Signal. 00, 000-000.

  13. Seasonal change in CO2 and H2O exchange between grassland and atmosphere

    Directory of Open Access Journals (Sweden)

    N. Saigusa

    1996-03-01

    Full Text Available The seasonal change in CO2 flux over an artificial grassland was analyzed from the ecological and meteorological point of view. This grassland contains C3 and C4 plants; the three dominant species belonging to the Gramineae; Festuca elatior (C3 dominated in early spring, and Imperata cylindrica (C4 and Andropogon virginicus (C4 grew during early summer and became dominant in mid-summer. CO2 flux was measured by the gradient method, and the routinely observed data for the surface-heat budget were used to analyze the CO2 and H2O exchange between the grassland and atmosphere. From August to October in 1993, CO2 flux was reduced to around half under the same solar-radiation conditions, while H2O flux decreased 20% during the same period. The monthly values of water use efficiency, i.e., ratio of CO2 flux to H2O flux decreased from 5.8 to 3.3 mg CO2/g H2O from August to October, the Bowen ratio increased from 0.20 to 0.30, and the ratio of the bulk latent heat transfer coefficient CE to the sensible heat transfer coefficient CH was maintained around 0.40-0.50. The increase in the Bowen ratio was explained by the decrease in air temperature from 22.3 °C in August to 16.6 °C in October without considering biological effects such as stomatal closure on the individual leaves. The nearly constant CE/CH ratios suggested that the contribution ratio of canopy resistance to aerodynamic resistance did not change markedly, although the meteorological conditions changed seasonally. The decrease in the water use efficiency, however, suggested that the photosynthetic rate decreased for individual leaves from August to October under the same radiation conditions. Diurnal variations of CO2 exchange were simulated by the multi-layer canopy model taking into account the differences in the stomatal conductance and photosynthetic pathway between C3 and C4 plants. The results suggested that C4 plants played a major role in the CO2 exchange in August, the contribution

  14. Seasonal change in CO2 and H2O exchange between grassland and atmosphere

    Directory of Open Access Journals (Sweden)

    T. Oikawa

    Full Text Available The seasonal change in CO2 flux over an artificial grassland was analyzed from the ecological and meteorological point of view. This grassland contains C3 and C4 plants; the three dominant species belonging to the Gramineae; Festuca elatior (C3 dominated in early spring, and Imperata cylindrica (C4 and Andropogon virginicus (C4 grew during early summer and became dominant in mid-summer. CO2 flux was measured by the gradient method, and the routinely observed data for the surface-heat budget were used to analyze the CO2 and H2O exchange between the grassland and atmosphere. From August to October in 1993, CO2 flux was reduced to around half under the same solar-radiation conditions, while H2O flux decreased 20% during the same period. The monthly values of water use efficiency, i.e., ratio of CO2 flux to H2O flux decreased from 5.8 to 3.3 mg CO2/g H2O from August to October, the Bowen ratio increased from 0.20 to 0.30, and the ratio of the bulk latent heat transfer coefficient CE to the sensible heat transfer coefficient CH was maintained around 0.40-0.50. The increase in the Bowen ratio was explained by the decrease in air temperature from 22.3 °C in August to 16.6 °C in October without considering biological effects such as stomatal closure on the individual leaves. The nearly constant CE/CH ratios suggested that the contribution ratio of canopy resistance to aerodynamic resistance did not change markedly, although the meteorological conditions changed seasonally. The decrease in the water use efficiency, however, suggested that the photosynthetic rate decreased for individual leaves from August to October under the same radiation conditions. Diurnal variations of CO2 exchange were simulated by the multi-layer canopy model taking into account the differences in the stomatal conductance and photosynthetic pathway between C3 and C4 plants. The results suggested that C4 plants played a major role in the CO2 exchange in August, the contribution

  15. HIFI Spectroscopy of H2O Submillimeter Lines in Nuclei of Actively Star-forming Galaxies

    Science.gov (United States)

    Liu, L.; Weiß, A.; Perez-Beaupuits, J. P.; Güsten, R.; Liu, D.; Gao, Y.; Menten, K. M.; van der Werf, P.; Israel, F. P.; Harris, A.; Martin-Pintado, J.; Requena-Torres, M. A.; Stutzki, J.

    2017-09-01

    We present a systematic survey of multiple velocity-resolved H2O spectra using Herschel/Heterodyne Instrument for the Far Infrared (HIFI) toward nine nearby actively star-forming galaxies. The ground-state and low-excitation lines (E up ≤ 130 K) show profiles with emission and absorption blended together, while absorption-free medium-excitation lines (130 K ≤ E up ≤ 350 K) typically display line shapes similar to CO. We analyze the HIFI observation together with archival SPIRE/PACS H2O data using a state-of-the-art 3D radiative transfer code that includes the interaction between continuum and line emission. The water excitation models are combined with information on the dust and CO spectral line energy distribution to determine the physical structure of the interstellar medium (ISM). We identify two ISM components that are common to all galaxies: a warm ({T}{dust}˜ 40{--}70 K), dense (n({{H}})˜ {10}5{--}{10}6 {{cm}}-3) phase that dominates the emission of medium-excitation H2O lines. This gas phase also dominates the far-IR emission and the CO intensities for {J}{up}> 8. In addition, a cold ({T}{dust}˜ 20{--}30 K), dense (n({{H}})˜ {10}4{--}{10}5 {{cm}}-3), more extended phase is present. It outputs the emission in the low-excitation H2O lines and typically also produces the prominent line absorption features. For the two ULIRGs in our sample (Arp 220 and Mrk 231) an even hotter and more compact (R s ≤ 100 pc) region is present, which is possibly linked to AGN activity. We find that collisions dominate the water excitation in the cold gas and for lines with {E}{up}≤slant 300 K and {E}{up}≤slant 800 K in the warm and hot component, respectively. Higher-energy levels are mainly excited by IR pumping.

  16. Massive star formation and feedback in W49A: the source of our Galaxy's most luminous water maser outflow

    Science.gov (United States)

    Smith, Nathan; Whitney, Barbara A.; Conti, Peter S.; de Pree, Chris G.; Jackson, James M.

    2009-10-01

    We present high spatial resolution mid-infrared (mid-IR) images of the ring of ultracompact H II regions in W49A obtained at Gemini North, allowing us to identify the driving source of its powerful H2O maser outflow. These data also confirm our previous report that several radio sources in the ring are undetected in the mid-IR because they are embedded deep inside the cloud core. We locate the source of the water maser outflow at the position of the compact mid-IR peak of source G (source G:IRS1) to within 0.07 arcsec. This IR source is not coincident with any identified compact radio continuum source, but is coincident with a hot molecular core, so we propose that G:IRS1 is a hot core driving an outflow analogous to the wide-angle bipolar outflow in OMC-1. G:IRS1 is at the origin of a larger bipolar cavity and CO outflow. The water maser outflow is orthogonal to the bipolar CO cavity, so the masers probably reside near its waist in the thin cavity walls. Models of the IR emission require a massive protostar with M* ~= 45Msolar, L* ~= 3 × 105Lsolar and an effective envelope accretion rate of ~10-3Msolaryr-1. Feedback from the central star could potentially drive the small-scale H2O maser outflow, but it has insufficient radiative momentum to have driven the large-scale bipolar CO outflow, requiring that this massive star had an active accretion disc over the past 104 yr. Combined with the spatially resolved morphology in IR images, G:IRS1 in W49 provides compelling evidence for a massive protostar that formed by accreting from a disc, accompanied by a bipolar outflow. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the

  17. A thermodynamical model for the surface tension of silicate melts in contact with H2O gas

    Science.gov (United States)

    Colucci, Simone; Battaglia, Maurizio; Trigila, Raffaello

    2016-01-01

    Surface tension plays an important role in the nucleation of H2O gas bubbles in magmatic melts and in the time-dependent rheology of bubble-bearing magmas. Despite several experimental studies, a physics based model of the surface tension of magmatic melts in contact with H2O is lacking. This paper employs gradient theory to develop a thermodynamical model of equilibrium surface tension of silicate melts in contact with H2O gas at low to moderate pressures. In the last decades, this approach has been successfully applied in studies of industrial mixtures but never to magmatic systems. We calibrate and verify the model against literature experimental data, obtained by the pendant drop method, and by inverting bubble nucleation experiments using the Classical Nucleation Theory (CNT). Our model reproduces the systematic decrease in surface tension with increased H2O pressure observed in the experiments. On the other hand, the effect of temperature is confirmed by the experiments only at high pressure. At atmospheric pressure, the model shows a decrease of surface tension with temperature. This is in contrast with a number of experimental observations and could be related to microstructural effects that cannot be reproduced by our model. Finally, our analysis indicates that the surface tension measured inverting the CNT may be lower than the value measured by the pendant drop method, most likely because of changes in surface tension controlled by the supersaturation.

  18. TAML/H2O2 Oxidative Degradation of Metaldehyde: Pursuing Better Water Treatment for the Most Persistent Pollutants.

    Science.gov (United States)

    Tang, Liang L; DeNardo, Matthew A; Gayathri, Chakicherla; Gil, Roberto R; Kanda, Rakesh; Collins, Terrence J

    2016-05-17

    The extremely persistent molluscicide, metaldehyde, widely used on farms and gardens, is often detected in drinking water sources of various countries at concentrations of regulatory concern. Metaldehyde contamination restricts treatment options. Conventional technologies for remediating dilute organics in drinking water, activated carbon, and ozone, are insufficiently effective against metaldehyde. Some treatment plants have resorted to effective, but more costly UV/H2O2. Here we have examined if TAML/H2O2 can decompose metaldehyde under laboratory conditions to guide development of a better real world option. TAML/H2O2 slowly degrades metaldehyde to acetaldehyde and acetic acid. Nuclear magnetic resonance spectroscopy ((1)H NMR) was used to monitor the degradation-the technique requires a high metaldehyde concentration (60 ppm). Within the pH range of 6.5-9, the reaction rate is greatest at pH 7. Under optimum conditions, one aliquot of TAML 1a (400 nM) catalyzed 5% degradation over 10 h with a turnover number of 40. Five sequential TAML aliquots (2 μM overall) effected a 31% removal over 60 h. TAML/H2O2 degraded metaldehyde steadily over many hours, highlighting an important long-service property. The observation of metaldehyde decomposition under mild conditions provides a further indication that TAML catalysis holds promise for advancing water treatment. These results have turned our attention to more aggressive TAML activators in development, which we expect will advance the observed technical performance.

  19. The Eddington Ratio of H2O Maser Host AGN Q. Guo1, J. S. Zhang2 ...

    Indian Academy of Sciences (India)

    tion rate and on the efficiency for converting gravitational energy into radiation. The. Eddington ratio, i.e., ratio of ... always considered to be one of the indicators of AGN intrinsic power (e.g., Zhang et al. 2010). A strong ... confirms that intrinsic. X-ray luminosity can also be used as another indicator of the nuclear AGN power.

  20. Deuterium Exchange in the Systems of H2O+/H2O and H3O+/H2O

    Science.gov (United States)

    Anicich, V. G.; Sen, A. D.

    1995-01-01

    Using tandem mass spectrometry various water ion interactions were observed. These reactions consisted of a series of charge transfer, proton transfer, and isotopic exchange steps. The experimental data sets consist of variations of ion abundances over a neutral pressure range. An expected sequence of isotopic exchange reactions is given along with differential equation solutions & reaction rate data.

  1. Influences of H2O mass fraction and chemical kinetics mechanism on the turbulent diffusion combustion of H2-O2 in supersonic flows

    Science.gov (United States)

    Huang, Wei; Wang, Zhen-guo; Li, Shi-bin; Liu, Wei-dong

    2012-07-01

    Hydrogen is one of the most promising fuels for the airbreathing hypersonic propulsion system, and it attracts an increasing attention of the researchers worldwide. In this study, a typical hydrogen-fueled supersonic combustor was investigated numerically, and the predicted results were compared with the available experimental data in the open literature. Two different chemical reaction mechanisms were employed to evaluate their effects on the combustion of H2-O2, namely the two-step and the seven-step mechanisms, and the vitiation effect was analyzed by varying the H2O mass fraction. The obtained results show that the predicted mole fraction profiles for different components show very good agreement with the available experimental data under the supersonic mixing and combustion conditions, and the chemical reaction mechanism has only a slight impact on the overall performance of the turbulent diffusion combustion. The simple mechanism of H2-O2 can be employed to evaluate the performance of the combustor in order to reduce the computational cost. The H2O flow vitiation makes a great difference to the combustion of H2-O2, and there is an optimal H2O mass fraction existing to enhance the intensity of the turbulent combustion. In the range considered in this paper, its optimal value is 0.15. The initiated location of the reaction appears far away from the bottom wall with the increase of the H2O mass fraction, and the H2O flow vitiation quickens the transition from subsonic to supersonic mode at the exit of the combustor.

  2. LC-MS/MS suggests that hole hopping in cytochrome c peroxidase protects its heme from oxidative modification by excess H2O2.

    Science.gov (United States)

    Kathiresan, Meena; English, Ann M

    2017-02-01

    We recently reported that cytochrome c peroxidase (Ccp1) functions as a H2O2 sensor protein when H2O2 levels rise in respiring yeast. The availability of its reducing substrate, ferrocytochrome c (CycII), determines whether Ccp1 acts as a H2O2 sensor or peroxidase. For H2O2 to serve as a signal it must modify its receptor so we employed high-performance LC-MS/MS to investigate in detail the oxidation of Ccp1 by 1, 5 and 10 M eq. of H2O2 in the absence of CycII to prevent peroxidase activity. We observe strictly heme-mediated oxidation, implicating sequential cycles of binding and reduction of H2O2 at Ccp1's heme. This results in the incorporation of ∼20 oxygen atoms predominantly at methionine and tryptophan residues. Extensive intramolecular dityrosine crosslinking involving neighboring residues was uncovered by LC-MS/MS sequencing of the crosslinked peptides. The proximal heme ligand, H175, is converted to oxo-histidine, which labilizes the heme but irreversible heme oxidation is avoided by hole hopping to the polypeptide until oxidation of the catalytic distal H52 in Ccp1 treated with 10 M eq. of H2O2 shuts down heterolytic cleavage of H2O2 at the heme. Mapping of the 24 oxidized residues in Ccp1 reveals that hole hopping from the heme is directed to three polypeptide zones rich in redox-active residues. This unprecedented analysis unveils the remarkable capacity of a polypeptide to direct hole hopping away from its active site, consistent with heme labilization being a key outcome of Ccp1-mediated H2O2 signaling. LC-MS/MS identification of the oxidized residues also exposes the bias of electron paramagnetic resonance (EPR) detection toward transient radicals with low O2 reactivity.

  3. Pretreatment of MQA, a caffeoylquinic acid derivative compound, protects against H2O2-induced oxidative stress in SH-SY5Y cells.

    Science.gov (United States)

    Tian, Xing; Gao, Lingyue; An, Li; Jiang, Xiaowen; Bai, Junpeng; Huang, Jian; Meng, Weihong; Zhao, Qingchun

    2016-12-01

    Compound MQA (1,5-O-dicaffeoyl-3-O-[4-malic acid methyl ester]-quinic acid) is a natural caffeoylquinic acid derivative isolated from Arctium lappa L. roots. This study aims to explore the neuroprotective effects of MQA against hydrogen peroxide (H 2 O 2 )-induced oxidative stress in SH-SY5Y neuroblastoma cells. The SH-SY5Y cells were divided into four groups, including control, 20 μM MQA, 200 μM H2O2, 200 μM H2O2 + 20 μM MQA groups. The effects of MQA on H 2 O 2 -induced cell death were measured by MTT and LDH assays. Hoechst 33342 and Annexin V-PI double staining were used to observed H2O2-induced apoptosis. Also, the effects of MQA on antioxidant system and mitochondrial pathway were explored. Further, steady-state phosphorylation levels of ERK1/2, Akt and GSK-3β were examined by Western blot analysis. Pretreatment with MQA prevented cell death in SH-SY5Y cells exposed to 200 μM H2O2 for 3 h. Meanwhile, Hoechst 33342 and Annexin V-PI double staining showed that MQA attenuated H 2 O 2 -induced apoptosis. These changes are related to elevation in SOD activity, reduction in MDA production and ROS formation, and increases in mitochondrial membrane potential (MMP). In addition, the potential mechanisms of MQA against H 2 O 2 -induced apoptosis are associated with increases in the Bcl-2/Bax ratio, decreases in cytochrome c release, caspase-3 and caspase-9 expressions, phosphorylation of ERK1/2, and dephosphorylation of AKT and GSK-3β. These findings suggest that protective effects of MQA against H 2 O 2 -induced apoptosis might be associated with mitochondrial apoptosis, ERK1/2 and AKT/GSK-3β pathway.

  4. The thioredoxin and glutathione-dependent H2O2 consumption pathways in muscle mitochondria: Involvement in H2O2 metabolism and consequence to H2O2 efflux assays.

    Science.gov (United States)

    Munro, Daniel; Banh, Sheena; Sotiri, Emianka; Tamanna, Nahid; Treberg, Jason R

    2016-07-01

    The most common methods of measuring mitochondrial hydrogen peroxide production are based on the extramitochondrial oxidation of a fluorescent probe such as amplex ultra red (AUR) by horseradish peroxidase (HRP). These traditional HRP-based assays only detect H2O2 that has escaped the matrix, raising the potential for substantial underestimation of production if H2O2 is consumed by matrix antioxidant pathways. To measure this underestimation, we characterized matrix consumers of H2O2 in rat skeletal muscle mitochondria, and developed specific means to inhibit these consumers. Mitochondria removed exogenously added H2O2 (2.5µM) at rates of 4.7 and 5.0nmol min(-1) mg protein(-1) when respiring on glutamate+malate and succinate+rotenone, respectively. In the absence of respiratory substrate, or after disrupting membranes by cycles of freeze-thaw, rates of H2O2 consumption were negligible. We concluded that matrix consumers are respiration-dependent (requiring respiratory substrates), suggesting the involvement of either the thioredoxin (Trx) and/or glutathione (GSH)-dependent enzymatic pathways. The Trx-reductase inhibitor auranofin (2µM), and a pre-treatment of mitochondria with 35µM of 1-chloro-2,4-dintrobenzene (CDNB) to deplete GSH specifically compromise these two consumption pathways. These inhibition approaches presented no undesirable "off-target" effects during extensive preliminary tests. These inhibition approaches independently and additively decreased the rate of consumption of H2O2 exogenously added to the medium (2.5µM). During traditional HRP-based H2O2 efflux assays, these inhibition approaches independently and additively increased apparent efflux rates. When used in combination (double inhibition), these inhibition approaches allowed accumulation of (endogenously produced) H2O2 in the medium at a comparable rate whether it was measured with an end point assay where 2.5µM H2O2 is initially added to the medium or with traditional HRP-based efflux

  5. Garlic and H2O2 in overcoming dormancy on the vine “Cabernet Sauvignon”

    Directory of Open Access Journals (Sweden)

    Saavedra del Aguila Juan

    2015-01-01

    Full Text Available The objective of this experiment was to evaluate the effect of garlic extract, H2O2 and hydrogen cyanamide on dormancy break, budding and maturation of “Cabernet Sauvignon” in the Campaign Region – Brazil. In late winter 2014 and after drought pruning were performed spraying in the bud: T1 – distilled water (control; T2 – 3.0% of hydrogen cyanamide; T3 – 18.0% H2O2; and T4 – 3.0% garlic extract. It was evaluated in the field: the number of sprouted buds per plant, number of bunches per plant and weight of bunches per plant; and laboratory: on ripening, performed weekly from the color change of 360 berries per treatment for analyzes solids soluble – SS (Brix pH and titratable acidity – TA (% tartaric acid. It was observed that the vines of treatment T4 (3.0% garlic extract, showed higher percentage of buds sprouting (63 shoots plant−1. Already at the number of clusters and weight per plant, there were no statistical differences between all treatments. The results obtained in the laboratory to SS, pH and TA did not differ statistically for the four tested treatments.

  6. Poly(ADP-ribose) glycohydrolase silencing protects against H2O2-induced cell death.

    Science.gov (United States)

    Blenn, Christian; Althaus, Felix R; Malanga, Maria

    2006-06-15

    PAR [poly(ADP-ribose)] is a structural and regulatory component of multiprotein complexes in eukaryotic cells. PAR catabolism is accelerated under genotoxic stress conditions and this is largely attributable to the activity of a PARG (PAR glycohydrolase). To overcome the early embryonic lethality of parg-knockout mice and gain more insights into the biological functions of PARG, we used an RNA interference approach. We found that as little as 10% of PARG protein is sufficient to ensure basic cellular functions: PARG-silenced murine and human cells proliferated normally through several subculturing rounds and they were able to repair DNA damage induced by sublethal doses of H2O2. However, cell survival following treatment with higher concentrations of H2O2 (0.05-1 mM) was increased. In fact, PARG-silenced cells were more resistant than their wild-type counterparts to oxidant-induced apoptosis while exhibiting delayed PAR degradation and transient accumulation of ADP-ribose polymers longer than 15-mers at early stages of drug treatment. No difference was observed in response to the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine, suggesting a specific involvement of PARG in the cellular response to oxidative DNA damage.

  7. Treatment of an industrial stream containing vinylcyclohexene by the H2O2/UV process.

    Science.gov (United States)

    Gonçalves, Lenise V F; Azevedo, Eduardo B; de Aquino-Neto, Francisco R; Bila, Daniele M; Sant'Anna, Geraldo L; Dezotti, Márcia

    2016-10-01

    Petrochemical industries generate wastewaters containing pollutants that can severely impact the biological treatment systems. Some streams from specific production units may contain nonbiodegradable or toxic compounds that impair the performance of the wastewater treatment plant and should be segregated and treated by specific techniques. In this work, the utilization of chemical oxidation (H2O2/UV) was investigated for removing 4-vinylcyclohexene (VCH) from a liquid stream coming from the production of hydroxylated liquid polybutadiene (HLPB). Besides VCH, this stream also contains ethanol, hydrogen peroxide, and many other organic compounds. Experiments were carried out in a small-scale photochemical reactor (0.7 L) using a 25-W low-pressure mercury vapor lamp. The photochemical reactor was operated in batch, and the reaction times were comprised between 10 and 60 min. Assays were also performed with a synthetic medium containing VCH, H2O2, and ethanol to investigate the removal of these substances in a less complex aqueous matrix. By-products formed in the reaction were identified by gas chromatography and mass spectroscopy (GC-MS). VCH was significantly removed by the oxidation process, in most assays to undetectable levels. Ethanol removal varied from 16 to 23 % depending on the reaction conditions. Acetic acid, acetaldehyde, and diols were detected as by-products of the industrial wastewater stream oxidation. A drop on the toxicity of the industrial stream was also observed in assays using the organism Artemia salina.

  8. Tolerance of banana for fusarium wilt is associated with early H 2 O ...

    African Journals Online (AJOL)

    Production of O2•− , H2O2 and MDA, as well as changes in enzyme activities, and transcript levels of SOD and CAT in root extracts were monitored every 24 h over 4 days. The histochemical location of H2O2 was also detected. In the resistant iso-line, the accumulation of O2•− and H2O2, and the activation of SOD occurred ...

  9. Absolute linestrengths in the H2O2 nu6 band

    Science.gov (United States)

    May, Randy D.

    1991-01-01

    Absolute linestrengths at 295 K have been measured for selected lines in the nu6 band of H2O2 using a tunable diode-laser spectrometer. H2O2 concentrations in a flowing gas mixture were determined by ultraviolet (uv) absorption at 254 nm using a collinear infrared (ir) and uv optical arrangement. The measured linestrengths are approx. 60 percent larger than previously reported values when absorption by hot bands in H2O2 is taken into account.

  10. Vibrational relaxation of the H2O bending mode in liquid water.

    Science.gov (United States)

    Larsen, Olaf F A; Woutersen, Sander

    2004-12-22

    We have studied the vibrational relaxation of the H(2)O bending mode in an H(2)O:HDO:D(2)O isotopic mixture using infrared pump-probe spectroscopy. The transient spectrum and its delay dependence reveal an anharmonic shift of 55+/-10 cm(-1) for the H(2)O bending mode, and a value of 400+/-30 fs for its vibrational lifetime. (c) 2004 American Institute of Physics.

  11. Synthesis of CuO nanoflower and its application as a H2O2 sensor

    Indian Academy of Sciences (India)

    Administrator

    Abstract. CuO three-dimensional (3D) flower-like nanostructures were successfully synthesized by a simple method at 100°C with Cu(NO3)2⋅3H2O and NH3⋅H2O for 6 h in the absence of any additives. We found that. NH3⋅H2O amount was critical for CuO morphology evolution. The phase analysis was carried out using ...

  12. High resolution pore water delta2H and delta18O measurements by H2O(liquid)-H2O(vapor) equilibration laser spectroscopy.

    Science.gov (United States)

    Wassenaar, L I; Hendry, M J; Chostner, V L; Lis, G P

    2008-12-15

    A new H2O(liquid)-H2O(vapor) pore water equilibration and laser spectroscopy method provides a fast way to obtain accurate high resolution deltaD and delta18O profiles from single core samples from saturated and unsaturated geologic media. The precision and accuracy of the H2O(liquid)-H2O(vapor) equilibration method was comparable to or better than conventional IRMS-based methods, and it can be conducted on geologic cores that contain volumetric water contents as low as 5%. Significant advantages of the H2O(liquid)-H2O(vapor) pore water equilibration method and laser isotopic analysis method include dual hydrogen- and oxygen-isotope assays on single small core samples, low consumable and instrumentation costs, and the potential for field-based hydrogeologic profiling. A single core is sufficient to obtain detailed vertical isotopic depth profiles in geologic, soil, and lacustrine pore water, dramatically reducing the cost of obtaining pore water by conventional wells or physical water extraction methods. In addition, other inherent problems like contamination of wells by leakage and drilling fluids can be eliminated.

  13. The Photochemistry of Pyrimidine in Pure H2O Ice Subjected to Different Radiation Environments and the Formation of Uracil

    Science.gov (United States)

    Nuevo, M.; Chen, Y.-J.; Materese. C. K..; Hu, W.-J.; Qiu, J.-M.; Wu, S.-R.; Fung, H.-S.; Sandford, S. A.; Chu, C.-C.; Yih, T.-S.; hide

    2013-01-01

    Nucleobases are N-heterocycles which are the informational subunits of DNA and RNA. They include pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in several meteorites, although no Nheterocycles have been observed in space to data. Laboratory experiments showed that the ultraviolet (UV) irradiation of pyrimidine in pure H2O ice at low temperature (<=20 K) leads to the formation of pyrimidine derivatives including the nucleobase uracil and its precursor 4(3H)-pyrimidone. These results were confirmed by quantum chemical calculations. When pyrimidine is mixed with combinations of H2O, NH3, CH3OH, and CH4 ices under similar conditions, uracil and cytosine are formed. In the present work we study the formation of 4(3H)-pyrimidone and uracil from the irradiation of pyrimidine in H2O ice with high-energy UV photons (Lyman , He I, and He II lines) provided by a synchrotron source. The photo-destruction of pyrimidine in these H2O ices as well as the formation yields for 4(3H)-pyrimidone and uracil are compared with our previous results in order to study the photo-stability of pyrimidine and the production efficiency of uracil as a function of the photon energy.

  14. Ionic strength dependence of the oxidation of SO2 by H2O2 in sodium chloride particles

    Science.gov (United States)

    Ali, H. M.; Iedema, M.; Yu, X.-Y.; Cowin, J. P.

    2014-06-01

    The reaction of sulfur dioxide and hydrogen peroxide in the presence of deliquesced (>75% RH) sodium chloride (brine) particles was studied by utilizing a cross flow mini-reactor. The reaction kinetics were followed by observing chloride depletion in particles by computer-controlled scanning electron microscope with energy dispersive X-ray analysis, namely CCSEM/EDX. The reactions take place in concentrated mixed salt brine aerosols, for which no complete kinetic equilibrium data previously existed. We measured the Henry's law solubility of H2O2 in brine solutions to close that gap. We also calculated the reaction rate as the particle transforms continuously from concentrated NaCl brine to, eventually, a mixed NaHSO4 plus H2SO4 brine solution. The reaction rate of the SO2 oxidation by H2O2 was found to be influenced by the change in ionic strength as the particle undergoes compositional transformation, following closely the dependence of the third order rate constant on ionic strength as predicted using established rate equations. This is the first study that has measured the ionic strength dependence of sulfate formation (in non-aqueous media) from oxidation of mixed salt brine aerosols in the presence of H2O2. It also gives the first report of the dependence of the Henry's law constant of H2O2 on ionic strength.

  15. C-phycocyanin alleviates osteoarthritic injury in chondrocytes stimulated with H2O2 and compressive stress.

    Science.gov (United States)

    Young, In-Chi; Chuang, Sung-Ting; Hsu, Chia-Hsien; Sun, Yu-Jun; Lin, Feng-Huei

    2016-12-01

    During the progression of osteoarthritis (OA), dysregulation of extracellular matrix anabolism, abnormal generation of reactive oxygen species (ROS) and inflammatory cytokines have been shown to accelerate the degradation process of cartilage. The potency of c-phycocyanin (C-PC) to protect cellular components against oxidative stress, along with its anti-inflammation and anti-apoptosis effects, are well documented; however, effects of C-PC on OA are still unclear. In this study, we aimed to investigate the effects of C-PC on OA using H2O2 or compression-stimulated OA-like porcine chondrocyte models. The results showed that C-PC had the ability to inhibit ROS production, reverse caspase-3 activity, and reduce apoptosis cell population. C-PC also reversed aggrecan and type II collagen gene expressions after stimulation with 1mM H2O2 or 60psi of compression. Inhibition of IL-6 and MMP-13 genes was observed in compression-stimulated chondrocytes but not in H2O2-treated cells. In dimethylmethylene blue assay and alcian blue staining, C-PC maintained the sulfated-glycosaminoglycan (sGAG) content after stimulation with compression. We concluded that C-PC can prevent early signs of OA caused by compressive stress and attenuate H2O2-induced oxidative stress. Therefore, we suggest that C-PC can be used as a potential drug candidate for chronic OA treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Enhanced Cr(VI) removal from groundwater by Fe0-H2O system with bio-amended iron corrosion

    DEFF Research Database (Denmark)

    Yin, Weizhao; Li, Yongtao; Wu, Jinhua

    2017-01-01

    Abstract A one-pot bio-iron system was established to investigate synergetic abiotic and biotic effects between iron and microorganisms on Cr(VI) removal. More diverse iron corrosion and reactive solids, such as green rusts, lepidocrocite and magnetite were found in the bio-iron system than...... in the Fe0-H2O system, leading to 4.3 times higher Cr(VI) removal efficiency in the bio-iron system than in the Fe0-H2O system. The cycling experiment also showed that the Cr(VI) removal capacity of Fe0 in the bio-iron system was 12.4 times higher than that in the Fe0-H2O system. A 62 days of life......-span could be achieved in the bio-iron system, while the Fe0-H2O system lost its efficacy after 30 days. Enhanced effects of extra Fe2+ on Cr(VI) removal was observed, largely contributed to the adsorbed Fe2+ on iron surface, which could function as an extra reductant for Cr(VI) and promote the electron...

  17. Kinetic studies on the initial crystallization process of lysozyme in the presence of D2O and H2O.

    Science.gov (United States)

    Liu, X Q; Sano, Y

    1998-01-01

    In the initial stages of the crystallization of egg-white lysozyme, monomeric lysozyme aggregates rapidly and forms a nucleus in the presence of high salt concentrations. The formation process of the aggregates was examined to make clear the difference between the situations in heavy water and in water at the same sodium ion concentration. The aggregation in both cases was observed at unsaturated and/or saturated lysozyme concentrations. The turbidity at 350 nm of lysozyme increased remarkably within 60 min under each experimental condition and showed no appreciable changes over 60 min. The increase of turbidity in H2O was much slower than in D2O at the same salt concentration (3%). Lysozyme showed a critical concentration for nucleus formation whose value in H2O was lower than in D2O at 3% salt concentration. There are two different aggregation models, depending on the concentration of lysozyme. However, similar results were not obtained at 3% sodium ions in H2O. The initial aggregation rate was also dependent on the concentrations of both lysozyme and NaCl. Therefore, the effect of lysozyme concentration on the aggregation process in H2O may be smaller than in D2O.

  18. Human Milk H2O2 content: Does it benefit preterm infants?

    Science.gov (United States)

    Cieslak, Monika; Ferreira, Cristina H F; Shifrin, Yulia; Pan, Jingyi; Belik, Jaques

    2017-11-22

    Human milk has a high content of the antimicrobial compound hydrogen peroxide (H2O2). As opposed to healthy full-term infants, preterm neonates are fed previously expressed and stored maternal milk. These practices may favor H2O2 decomposition, thus limiting its potential benefit to preterm infants. The goal of this study was to evaluate the factors responsible for H2O2 generation and degradation in breastmilk. Human donors' and rat milk, along with rat mammary tissue were evaluated. The role of oxytocin and xanthine oxidase on H2O2 generation, its pH-dependent stability, as well as its degradation via lactoperoxidase and catalase were measured in milk. Breast tissue xanthine oxidase is responsible for the H2O2 generation and its milk content is dependent on oxytocin stimulation. Stability of the human milk H2O2 content is pH dependent and greatest in the acidic range. Complete H2O2 degradation occurs when human milk is maintained, longer than 10 min, at room temperature and this process is suppressed by lactoperoxidase and catalase inhibition. Fresh breastmilk H2O2 content is labile and quickly degrades at room temperature. Further investigation on breastmilk handling techniques to preserve its H2O2 content, when gavage-fed to preterm infants is warranted.Pediatric Research accepted article preview online, 22 November 2017. doi:10.1038/pr.2017.303.

  19. H2O2-triggered bubble generating antioxidant polymeric nanoparticles as ischemia/reperfusion targeted nanotheranostics.

    Science.gov (United States)

    Kang, Changsun; Cho, Wooram; Park, Minhyung; Kim, Jinsub; Park, Sanghoon; Shin, Dongho; Song, Chulgyu; Lee, Dongwon

    2016-04-01

    Overproduction of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) leads to oxidative stress, causing inflammation and cellular damages and death. H2O2 is one of the most stable and abundant ROS and H2O2-mediated oxidative stress is considered as a key mediator of cellular and tissue damages during ischemia/reperfusion (I/R) injury. Therefore, H2O2 could hold tremendous potential as a diagnostic biomarker and therapeutic target for oxidative stress-associated inflammatory conditions such as I/R injury. Here, we report a novel nanotheranostic agent that can express ultrasound imaging and simultaneous therapeutic effects for hepatic I/R treatment, which is based on H2O2-triggered CO2-generating antioxidant poly(vanillin oxalate) (PVO). PVO nanoparticles generate CO2 through H2O2-triggered oxidation of peroxalate esters and release vanillin, which exerts antioxidant and anti-inflammatory activities. PVO nanoparticles intravenously administrated remarkably enhanced the ultrasound signal in the site of hepatic I/R injury and also effectively suppressed the liver damages by inhibiting inflammation and apoptosis. To our best understanding, H2O2-responsive PVO is the first platform which generates bubbles to serve as ultrasound contrast agents and also exerts therapeutic activities. We therefore anticipate that H2O2-triggered bubble-generating antioxidant PVO nanoparticles have great potential for ultrasound imaging and therapy of H2O2-associated diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. TLR agonists downregulate H2-O in CD8α− DCs1

    Science.gov (United States)

    Porter, Gavin W.; Yi, Woelsung; Denzin, Lisa K.

    2011-01-01

    Peptide loading of MHC class II (MHCII) molecules is catalyzed by the non-classical MHCII-related molecule, H2-M. H2-O, another MHCII-like molecule, associates with H2-M and modulates H2-M function. The MHCII presentation pathway is tightly regulated in dendritic cells (DCs); yet how the key modulators of MHCII presentation, H2-M and H2-O, are affected in different DC subsets in response to maturation is unknown. Here we show that H2-O is markedly downregulated in vivo in mouse CD8α− DCs in response to a broad array of TLR agonists. In contrast, CD8α+ DCs only modestly downregulated H2-O in response to TLR-agonists. H2-M levels were slightly down-modulated in both CD8α− and CD8α+ DCs. As a consequence, H2-M:H2-O ratios significantly increased for CD8α− but not CD8α+ DCs. The TLR-mediated downregulation was DC-specific, as B cells did not show significant H2-O and H2-M downregulation. TLR4 signaling was required to mediate DC H2-O downregulation in response to LPS. Finally, our studies showed that the mechanism of H2-O downregulation was likely due to direct protein degradation of H2-O as well as down regulation of H2-O mRNA levels. The differential H2-O and H2-M modulation after DC maturation support the proposed roles of CD8α− dendritic cells in initiating CD4-restricted immune responses by optimal MHCII presentation and CD8α+ DCs in promoting immune tolerance via presentation of low levels of MHCII-peptide. PMID:21918198

  1. TLR agonists downregulate H2-O in CD8alpha- dendritic cells.

    Science.gov (United States)

    Porter, Gavin W; Yi, Woelsung; Denzin, Lisa K

    2011-10-15

    Peptide loading of MHC class II (MHCII) molecules is catalyzed by the nonclassical MHCII-related molecule H2-M. H2-O, another MHCII-like molecule, associates with H2-M and modulates H2-M function. The MHCII presentation pathway is tightly regulated in dendritic cells (DCs), yet how the key modulators of MHCII presentation, H2-M and H2-O, are affected in different DC subsets in response to maturation is unknown. In this study, we show that H2-O is markedly downregulated in vivo in mouse CD8α(-) DCs in response to a broad array of TLR agonists. In contrast, CD8α(+) DCs only modestly downregulated H2-O in response to TLR agonists. H2-M levels were slightly downmodulated in both CD8α(-) and CD8α(+) DCs. As a consequence, H2-M/H2-O ratios significantly increased for CD8α(-) but not for CD8α(+) DCs. The TLR-mediated downregulation was DC specific, as B cells did not show significant H2-O and H2-M downregulation. TLR4 signaling was required to mediate DC H2-O downregulation in response to LPS. Finally, our studies showed that the mechanism of H2-O downregulation was likely due to direct protein degradation of H2-O as well as downregulation of H2-O mRNA levels. The differential H2-O and H2-M modulation after DC maturation supports the proposed roles of CD8α(-) DCs in initiating CD4-restricted immune responses by optimal MHCII presentation and of CD8α(+) DCs in promoting immune tolerance via presentation of low levels of MHCII-peptide.

  2. Dexmedetomidine attenuates H2O2-induced cell death in human osteoblasts.

    Science.gov (United States)

    Yoon, Ji-Young; Park, Jeong-Hoon; Kim, Eun-Jung; Park, Bong-Soo; Yoon, Ji-Uk; Shin, Sang-Wook; Kim, Do-Wan

    2016-12-01

    Reactive oxygen species play critical roles in homeostasis and cell signaling. Dexmedetomidine, a specific agonist of the α2-adrenoceptor, has been commonly used for sedation, and it has been reported to have a protective effect against oxidative stress. In this study, we investigated whether dexmedetomidine has a protective effect against H2O2-induced oxidative stress and the mechanism of H2O2-induced cell death in normal human fetal osteoblast (hFOB) cells. Cells were divided into three groups: control group-cells were incubated in normoxia without dexmedetomidine, hydrogen peroxide (H2O2) group-cells were exposed to H2O2 (200 µM) for 2 h, and Dex/H2O2 group-cells were pretreated with dexmedetomidine (5 µM) for 2 h then exposed to H2O2 (200 µM) for 2 h. Cell viability and apoptosis were evaluated. Osteoblast maturation was determined by assaying bone nodular mineralization. Expression levels of bone-related proteins were determined by western blot. Cell viability was significantly decreased in the H2O2 group compared with the control group, and this effect was improved by dexmedetomidine. The Hoechst 33342 and Annexin-V FITC/PI staining revealed that dexmedetomidine effectively decreased H2O2-induced hFOB cell apoptosis. Dexmedetomidine enhanced the mineralization of hFOB cells when compared to the H2O2 group. In western blot analysis, bone-related protein was increased in the Dex/H2O2 group. We demonstrated the potential therapeutic value of dexmedetomidine in H2O2-induced oxidative stress by inhibiting apoptosis and enhancing osteoblast activity. Additionally, the current investigation could be evidence to support the antioxidant potential of dexmedetomidine in vitro.

  3. H2O2 INDUCES DELAYED HYPEREXCITABILITY IN NUCLEUS TRACTUS SOLITARII NEURONS

    Science.gov (United States)

    Ostrowski, Tim D.; Hasser, Eileen M.; Heesch, Cheryl M.; Kline, David D.

    2014-01-01

    Hydrogen peroxide (H2O2) is a stable reactive oxygen species and potent neuromodulator of cellular and synaptic activity. Centrally, endogenous H2O2 is elevated during bouts of hypoxia-reoxygenation, a variety of disease states, and aging. The nucleus tractus solitarii (nTS) is the central termination site of visceral afferents for homeostatic reflexes and contributes to reflex alterations during these conditions. We determined the extent to which H2O2 modulates synaptic and membrane properties in nTS neurons in rat brainstem slices. Stimulation of the tractus solitarii (which contains the sensory afferent fibers) evoked synaptic currents that were not altered by 10 – 500 μM H2O2. However, 500 μM H2O2 modulated several intrinsic membrane properties of nTS neurons, including a decrease in input resistance, hyperpolarization of resting membrane potential (RMP) and action potential (AP) threshold (THR), and an initial reduction in AP discharge to depolarizing current. H2O2 increased conductance of barium-sensitive potassium currents, and block of these currents ablated H2O2-induced changes in RMP, input resistance and AP discharge. Following washout of H2O2 AP discharge was enhanced due to depolarization of RMP and a partially maintained hyperpolarization of THR. Hyperexcitability persisted with repeated H2O2 exposure. H2O2 effects on RMP and THR were ablated by intracellular administration of the antioxidant catalase, which was immunohistochemically identified in neurons throughout the nTS. Thus, H2O2 initially reduces excitability of nTS neurons that is followed by sustained hyperexcitability, which may play a profound role in cardiorespiratory reflexes. PMID:24397952

  4. Electrochemical Quantification of Extracellular Local H2O2Kinetics Originating from Single Cells.

    Science.gov (United States)

    Bozem, Monika; Knapp, Phillip; Mirčeski, Valentin; Slowik, Ewa J; Bogeski, Ivan; Kappl, Reinhard; Heinemann, Christian; Hoth, Markus

    2017-05-15

    H 2 O 2 is produced by all eukaryotic cells under physiological and pathological conditions. Due to its enormous relevance for cell signaling at low concentrations and antipathogenic function at high concentrations, precise quantification of extracellular local H 2 O 2 concentrations ([H 2 O 2 ]) originating from single cells is required. Using a scanning electrochemical microscope and bare platinum disk ultramicroelectrodes, we established sensitive long-term measurements of extracellular [H 2 O 2 ] kinetics originating from single primary human monocytes (MCs) ex vivo. For the electrochemical techniques square wave voltammetry, cyclic and linear scan voltammetry, and chronoamperometry, detection limits for [H 2 O 2 ] were determined to be 5, 50, and 500 nM, respectively. Following phorbol ester stimulation, local [H 2 O 2 ] 5-8 μm above a single MC increased by 3.4 nM/s within the first 10 min before reaching a plateau. After extracellular addition of H 2 O 2 to an unstimulated MC, the local [H 2 O 2 ] decreased on average by 4.2 nM/s due to degradation processes of the cell. Using the scanning mode of the setup, we found that H 2 O 2 is evenly distributed around the producing cell and can still be detected up to 30 μm away from the cell. The electrochemical single-cell measurements were validated in MC populations using electron spin resonance spectroscopy and the Amplex ® UltraRed assay. Innovation and Conclusion: We demonstrate a highly sensitive, spatially, and temporally resolved electrochemical approach to monitor dynamics of production and degradation processes for H 2 O 2 separately. Local extracellular [H 2 O 2 ] kinetics originating from single cells is quantified in real time. Antioxid. Redox Signal. 00, 000-000.

  5. Graphene-amplified electrogenerated chemiluminescence of CdTe quantum dots for H2O2 sensing.

    Science.gov (United States)

    Wang, Zhonghui; Song, Hongjie; Zhao, Huihui; Lv, Yi

    2013-01-01

    Electrogenerated chemiluminescence (ECL) of thiol-capped CdTe quantum dots (QDs) in aqueous solution was greatly enhanced by PDDA-protected graphene (P-GR) film that were used for the sensitive detection of H2 O2 . When the potential was cycled between 0 and -2.3 V, two ECL peaks were observed at -1.1 (ECL-1) and -1.4 V (ECL-2) in pH 11.0, 0.1 M phosphate buffer solution (PBS), respectively. The electron-transfer reaction between individual electrochemically-reduced CdTe nanocrystal species and oxidant coreactants (H2 O2 or reduced dissolved oxygen) led to the production of ECL-1. While mass nanocrystals packed densely in the film were reduced electrochemically, assembly of reduced nanocrystal species reacted with coreactants to produce an ECL-2 signal. ECL-1 showed higher sensitivity for the detection of H2 O2 concentrations than that of ECL-2. Further, P-GR film not only enhanced ECL intensity of CdTe QDs but also decreased its onset potential. Thus, a novel CdTe QDs ECL sensor was developed for sensing H2O2. Light intensity was linearly proportional to the concentration of H2 O2 between 1.0 × 10(-5) and 2.0 x 10(-7) mol L(-1) with a detection limit of 9.8 x 10(-8) mol L(-1). The P-GR thin-film modified glassy carbon electrode (GCE) displayed acceptable reproducibility and long-term stability. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Crystal structures of hydrates of simple inorganic salts. III. Water-rich aluminium halide hydrates: AlCl3 · 15H2O, AlBr3 · 15H2O, AlI3 · 15H2O, AlI3 · 17H2O and AlBr3 · 9H2O.

    Science.gov (United States)

    Schmidt, Horst; Hennings, Erik; Voigt, Wolfgang

    2014-09-01

    Water-rich aluminium halide hydrate structures are not known in the literature. The highest known water content per Al atom is nine for the perchlorate and fluoride. The nonahydrate of aluminium bromide, stable pentadecahydrates of aluminium chloride, bromide and iodide, and a metastable heptadecahydrate of the iodide have now been crystallized from low-temperature solutions. The structures of these hydrates were determined and are discussed in terms of the development of cation hydration spheres. The pentadecahydrate of the chloride and bromide are isostructural. In AlI(3) · 15H2O, half of the Al(3+) cations are surrounded by two complete hydration spheres, with six H2O in the primary and 12 in the secondary. For the heptadecahydrate of aluminium iodide, this hydration was found for every Al(3+).

  7. Experimental determination of the H2O + 15 wt% NaCl and H2O + 25 wt% NaCl liquidi to 1.4 GPa

    Science.gov (United States)

    Valenti, P.; Schmidt, C.

    2009-12-01

    The binary H2O+NaCl is one of the most important model systems for chloridic fluids in many geologic environments such as the Earth’s crust, upper mantle, and subducting slabs, and is also applicable to extraterrestrial icy planetary bodies (e.g., Manning 2004, Zolensky et al., 1999). The knowledge on phase equilibria and PVTx properties of this system is still fragmentary at high pressures, e.g., very little has been reported on liquidi at compositions diamond-anvil cell (Bassett et al. 1993) modified for Raman spectroscopy and accurate temperature measurements. A quartz chip, halite, and water were loaded into the sample chamber, which also contained a small trapped air bubble (10 vol%) when it was sealed. The actual salinity was then determined from measurement of the vapor-saturated liquidus temperature. The sample chamber was then compressed until the bubble disappeared. After freezing, phase transitions occurring with increasing temperature were observed optically, and the pressure was determined from the frequency shift of the 464 cm-1 Raman line of quartz (Schmidt and Ziemann 2000). The sample chamber was then compressed further, and the experiment was repeated at various bulk densities until a pressure of ~1.4 GPa was attained. At some conditions, Raman spectra were acquired for identification of the phase assemblage. The solution always crystallized to a single phase upon cooling above ~0.15 GPa at 25 wt% NaCl and above ~1 GPa at 15 wt% NaCl. Raman spectra in the OH stretching region indicate that this phase contains or is a NaCl hydrate other than hydrohalite, probably in solid solution with ice. Melting of this phase produced liquid and hydrohalite and/or ice VI. Ice VI was the last solid that dissolved upon heating, between 1100 MPa, 3 °C and 1370 MPa, 17 °C for 15 wt% NaCl and at 1380 MPa, 12.7°C for 25 wt% NaCl. At lower pressures (except at 0.1 MPa and 15 wt%NaCl), the last solid was hydrohalite. Hydrohalite was identified based on crystal

  8. First detection of a THz water maser in NGC 7538-IRS1 with SOFIA and new 22 GHz e-MERLIN maps

    Science.gov (United States)

    Herpin, F.; Baudry, A.; Richards, A. M. S.; Gray, M. D.; Schneider, N.; Menten, K. M.; Wyrowski, F.; Bontemps, S.; Simon, R.; Wiesemeyer, H.

    2017-10-01

    Context. The formation of massive stars (M> 10M⊙, L > 103L⊙) is still not well understood. Accumulating a large amount of mass infalling within a single entity in spite of radiation pressure is possible if, in addition to several other conditions, enough thermal energy is released. Despite numerous water line observations over a broad range of energies obtained with the Herschel Space Observatory, observations were not able to trace the emission from the hot core around the newly forming protostellar object in most of the sources. Aims: We wish to probe the physical conditions and water abundance in the inner layers of the host protostellar object NGC 7538-IRS1 using a highly excited H2O line. Water maser models predict that several THz water masers should be detectable in these objects. We therefore aim to detect the o-H2O 82,7-73,4 line in a star forming region for the first time. Model calculations have predicted this line to show maser action. Methods: We present SOFIA observations of the o-H2O 82,7-73,4 line at 1296.41106 GHz and a 616-523 22 GHz e-MERLIN map of the region (the very first 22 GHz images made after the e-MERLIN upgrade). In order to be able to constrain the nature of the emission - thermal or maser - we used near-simultaneous observations of the 22 GHz water maser performed with the Effelsberg radiotelescope and e-MERLIN. A thermal water model using the RATRAN radiative transfer code is presented based on HIFI pointed observations. Molecular water abundances are derived for the hot core. Results: The o-H2O 82,7-73,4 line is detected toward NGC 7538-IRS1 with one feature at the source velocity (-57.7 kms-1) and another one at -48.4 kms-1. We propose that the emission at the source velocity is consistent with thermal excitation and is excited in the innermost part of the IRS1a, in the closest circumstellar environment of the massive protostellar object. The other emission is very likely the first detection of a water THz maser line, pumped by

  9. H2O2-induced higher order chromatin degradation: A novel ...

    Indian Academy of Sciences (India)

    The genotoxicity of reactive oxygen species (ROS) is well established. The underlying mechanism involves oxidation of DNA by ROS. However, we have recently shown that hydrogen peroxide (H2O2), the major mediator of oxidative stress, can also cause genomic damage indirectly. Thus, H2O2 at pathologically relevant ...

  10. Degradation of acidic Orange G dye using UV-H2O2 in batch ...

    African Journals Online (AJOL)

    Degradation of Orange G dye has been investigated using UV irradiation with hydrogen peroxide (H2O2) in a batch photoreactor. UV irradiation and H2O2 resulted in significant photodegradation of the dye although the effect individual reaction was very little. The degradation was studied to elucidate the effect of various ...

  11. Transport properties of the H2O@C60-dimer-based junction.

    Science.gov (United States)

    Zhu, Chengbo; Wang, Xiaolin

    2015-09-23

    Theoretical predictions play an important role in finding potential applications in molecular electronics. Fullerenes have a number of potential applications, and the charge flow from a single C60 molecule to another becomes more versatile and more interesting after doping. Here, we report the conductance of two H2O@C60 molecules in series order and how the number of encapsulated water molecules influences the transport properties of the junction. Encapsulating an H2O molecule into one of the C60 cages increases the conductance of the dimer. Negative differential resistance is found in the dimer systems, and its peak-to-valley current ratio depends on the number of encapsulated H2O molecules. The conductance of the C60 dimer and the H2O@C60 dimer is two orders of magnitude smaller than that of the C60 monomer. Furthermore, we demonstrate that the conductance of the molecular junctions based on the H2O@C60 dimer can be tuned by moving the encapsulated H2O molecules. The conductance is H2O-position dependent. Our findings indicate that H2O@C60 can be used as a building block in C60-based molecular electronic devices and sensors.

  12. Stability of globular proteins in H2O and D2O

    NARCIS (Netherlands)

    Efimova, Y. M.; Haemers, S.; Wierczinski, B.; Norde, W.; van Well, A. A.

    2007-01-01

    In several experimental techniques D2O rather then H2O is often used as a solvent for proteins. Concerning the influence of the solvent on the stability of the proteins, contradicting results have been reported in literature. In this paper the influence of H2O-D2O solvent substitution on the

  13. Stability of globular proteins in H2O and in D2O

    NARCIS (Netherlands)

    Efimova, Y.M.; Haemers, S.; Wierczinsky, B.; Norde, W.; Well, van A.A.

    2007-01-01

    In several experimental techniques D2O rather then H2O is often used as a solvent for proteins. Concerning the influence of the solvent on the stability of the proteins, contradicting results have been reported in literature. In this paper the influence of H2O-D2O solvent substitution on the

  14. Pretreatment of seed with H2O2 enhances drought tolerance of ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... water use efficiency (WUE) and proline level. H2O2 pretreatment enhanced the membrane stability, as ... ments and cultivation techniques for wheat production. Among various technique strategies, pre-sowing ... were surface sterilized with 75% ethanol for 2 min followed by repeated washings with ddH2O.

  15. Full Length Research Paper Lack of correlation between H 2O 2 ...

    African Journals Online (AJOL)

    substance, we attempted to determine if there is a consistent link between in vitro anti-staphylococcal activity and H2O2 production by Lactobacillus spp. A simple quantitative analysis of H2O2 produced by Lactobacillus spp. was performed by a modified spectrophotometric method. A statistically significant correlation was ...

  16. Image-Based Measurement of H2O2 Reaction-Diffusion in Wounded Zebrafish Larvae.

    Science.gov (United States)

    Jelcic, Mark; Enyedi, Balázs; Xavier, João B; Niethammer, Philipp

    2017-05-09

    Epithelial injury induces rapid recruitment of antimicrobial leukocytes to the wound site. In zebrafish larvae, activation of the epithelial NADPH oxidase Duox at the wound margin is required early during this response. Before injury, leukocytes are near the vascular region, that is, ∼100-300 μm away from the injury site. How Duox establishes long-range signaling to leukocytes is unclear. We conceived that extracellular hydrogen peroxide (H2O2) generated by Duox diffuses through the tissue to directly regulate chemotactic signaling in these cells. But before it can oxidize cellular proteins, H2O2 must get past the antioxidant barriers that protect the cellular proteome. To test whether, or on which length scales this occurs during physiological wound signaling, we developed a computational method based on reaction-diffusion principles that infers H2O2 degradation rates from intravital H2O2-biosensor imaging data. Our results indicate that at high tissue H2O2 levels the peroxiredoxin-thioredoxin antioxidant chain becomes overwhelmed, and H2O2 degradation stalls or ceases. Although the wound H2O2 gradient reaches deep into the tissue, it likely overcomes antioxidant barriers only within ∼30 μm of the wound margin. Thus, Duox-mediated long-range signaling may require other spatial relay mechanisms besides extracellular H2O2 diffusion. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Adsorption of H2O and CO2 on supported amine sorbents

    NARCIS (Netherlands)

    Veneman, Rens; Frigka, Natalia; Zhao, Wenying; Li, Zhenshan; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik

    2015-01-01

    In this work the adsorption of H2O and CO2 on Lewatit VP OC 1065 was studied in view of the potential application of this sorbent in post combustion CO2 capture. Both CO2 and H2O were found to adsorb on the amine active sites present on the pore surface of the sorbent material. However, where the

  18. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells.

    Science.gov (United States)

    Sim, Junyoung; An, Junyeong; Elbeshbishy, Elsayed; Ryu, Hodon; Lee, Hyung-Sool

    2015-11-01

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2O2 conversion efficiency was negligible at 0.3-12%. Current density decreased for passive O2 diffusion to the cathode, but H2O2 conversion efficiency increased by 65%. An MEC equipped with a gas diffusion cathode was operated with acetate medium and domestic wastewater, which presented relatively high H2O2 conversion efficiency from 36% to 47%, although cathode overpotential was fluctuated. Due to different current densities, the maximum H2O2 production rate was 141 mg H2O2/L-h in the MEC fed with acetate medium, but it became low at 6 mg H2O2/L-h in the MEC fed with the wastewater. Our study clearly indicates that improving anodic current density and mitigating membrane fouling would be key parameters for large-scale H2O2-MECs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. System and method to control h2o2 level in advanced oxidation processes

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a bio-electrochemical system (BES) and a method of in-situ production and removal of H2O2 using such a bio-electrochemical system (BES). Further, the invention relates to a method for in-situ control of H2O2 content in an aqueous system of advanced oxidation...

  20. Activity and Selectivity for O-2 Reduction to H2O2 on Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Verdaguer Casadevall, Arnau; Karamad, Mohammadreza

    2013-01-01

    Industrially viable electrochemical production of H2O2 requires active, selective and stable electrocatalyst materials to catalyse the oxygen reduction reaction to H2O2. On the basis of density functional theory calculations, we explain why single site catalysts such as Pd/Au show improved...

  1. Adsorption of CO2 and H2O on supported amine sorbents

    NARCIS (Netherlands)

    Veneman, Rens; Zhao, W.; Li, Z.; Cai, N.; Brilman, Derk Willem Frederik

    2014-01-01

    In this work we have evaluated the H2O and CO2 adsorption characteristics of Lewatit VP OC 1065 in view of the potential application of solid sorbents in post combustion CO2 capture. Here we present single component adsorption isotherms for H2O and CO2 as well as co-adsorption experiments. It was

  2. Protective Effects of an Ancient Chinese Kidney-Tonifying Formula against H2O2-Induced Oxidative Damage to MES23.5 Cells.

    Science.gov (United States)

    Xu, Yihui; Lin, Wei; Ye, Shuifen; Wang, Huajin; Wang, Tingting; Su, Youyan; Wu, Liangning; Wang, Yuanwang; Xu, Qian; Xu, Chuanshan; Cai, Jing

    2017-01-01

    Oxidative damage plays a critical role in the etiology of neurodegenerative disorders including Parkinson's disease (PD). In our study, an ancient Chinese kidney-tonifying formula, which consists of Cistanche, Epimedii, and Polygonatum cirrhifolium, was investigated to protect MES23.5 dopaminergic neurons against hydrogen peroxide- (H2O2-) induced oxidative damage. The damage effects of H2O2 on MES23.5 cells and the protective effects of KTF against oxidative stress were evaluated using MTT assay, transmission electron microscopy (TEM), immunocytochemistry (ICC), enzyme-linked immunosorbent assay (ELISA), and immunoblotting. The results showed that cell viability was dramatically decreased after a 12 h exposure to 150 μM H2O2. TEM observation found that the H2O2-treated MES23.5 cells presented cellular organelle damage. However, when cells were incubated with KTF (3.125, 6.25, and 12.5 μg/ml) for 24 h after H2O2 exposure, a significant protective effect against H2O2-induced damage was observed in MES23.5 cells. Using ICC, we found that KTF inhibited the reduction of the tyrosine hydroxylase (TH) induced by H2O2, upregulated the mRNA and protein expression of HO-1, CAT, and GPx-1, and downregulated the expression of caspase 3. These results indicated that KTF may provide neuron protection against H2O2-induced cell damage through ameliorating oxidative stress, and our findings provide a new potential strategy for the prevention and treatment of Parkinson's disease.

  3. Single photon ionization of van der Waals clusters with a soft x-ray laser: (CO2)n and (CO2)n(H2O)m.

    Science.gov (United States)

    Heinbuch, S; Dong, F; Rocca, J J; Bernstein, E R

    2006-10-21

    Pure neutral (CO2)n clusters and mixed (CO2)n(H2O)m clusters are investigated employing time of flight mass spectroscopy and single photon ionization at 26.5 eV. The distribution of pure (CO2)n clusters decreases roughly exponentially with increasing cluster size. During the ionization process, neutral clusters suffer little fragmentation because almost all excess cluster energy above the vertical ionization energy is taken away by the photoelectron and only a small part of the photon energy is deposited into the (CO2)n cluster. Metastable dissociation rate constants of (CO2)n+ are measured in the range of (0.2-1.5) x 10(4) s(-1) for cluster sizes of 5CO2-H2O clusters are studied under different generation conditions (5% and 20% CO2 partial pressures and high and low expansion pressures). At high CO2 concentration, predominant signals in the mass spectrum are the (CO2)n+ cluster ions. The unprotonated cluster ion series (CO2)nH2O+ and (CO2)n(H2O)2+ are also observed under these conditions. At low CO2 concentration, protonated cluster ions (H2O)nH+ are the dominant signals, and the protonated CO2(H2O)nH+ and unprotonated (H2O)n+ and (CO2)(H2O)n+ cluster ion series are also observed. The mechanisms and dynamics of the formation of these neutral and ionic clusters are discussed.

  4. Search Directions for Direct H2O2 Synthesis Catalysts Starting from Au-12 Nanoclusters

    DEFF Research Database (Denmark)

    Grabow, Lars; Larsen, Britt Hvolbæk; Falsig, Hanne

    2012-01-01

    We present density functional theory calculations on the direct synthesis of H2O2 from H-2 and O-2 over an Au-12 corner model of a gold nanoparticle. We first show a simple route for the direct formation of H2O2 over a gold nanocatalyst, by studying the energetics of 20 possible elementary...... that the rate of H2O2 and H2O formation can be determined from a single descriptor, namely, the binding energy of oxygen (E-O). Our model predicts the search direction starting from an Au-12 nanocluster for an optimal catalyst in terms of activity and selectivity for direct H2O2 synthesis. Taking also stability...

  5. Synthesis, X-ray crystal structure, and EPR study of [Na(H 2O) 2] 2[VO(H 2O) 5][SiW 12O 40]·4H 2O

    Science.gov (United States)

    Tézé, André; Marchal-Roch, Catherine; So, Hyunsoo; Fournier, Michel; Hervé, Gilbert

    2001-03-01

    The vanadyl salt [Na(H 2O) 2] 2[VO(H 2O) 5][SiW 12O 40]·4H 2O has been synthesized in mild conditions by cationic exchanges from dodecasilicotungstic acid. Structural determination and EPR study have been achieved on single crystals. They are tetragonal, space group P4/ n with a=14.7759(1), c=10.4709(2) Å, V=2286(1) Å 3 and Z=2. A three-dimensional framework built from Keggin anions [SiW 12O 40] 4- linked by sodium cations in (110) and ( 1 1¯0 ) planes generates channels along the c axis in which are localized aquo vanadyl complexes [VO(H 2O) 5] 2+ and water molecules. Single crystal EPR spectra show eight hyperfine lines of the vanadium atom ( I=7/2) which are split into 1:2:1 pattern when the magnetic field is parallel to the c axis. The triplet pattern may be attributed to weak dipolar interactions between the nearest-neighbor vanadium atoms which are 10.47 Å apart in the infinite chain. A ring model was used to simulate the spectrum, and a very small antiferromagnetic exchange interaction was determined accurately . The EPR parameters determined are gx= gy=1.980, gz=1.9336, Ax= Ay=0.0072 cm -1, and Az=0.01805 cm -1, J=-0.00025 cm -1.

  6. Comparative effect of simulated solar light, UV, UV/H2O2 and photo-Fenton treatment (UV-Vis/H2O2/Fe2+,3+) in the Escherichia coli inactivation in artificial seawater.

    Science.gov (United States)

    Rubio, D; Nebot, E; Casanueva, J F; Pulgarin, C

    2013-10-15

    Innovative disinfection technologies are being studied for seawater, seeking a viable alternative to chlorination. This study proposes the use of H2O2/UV254 and photo-Fenton as disinfection treatment in seawater. The irradiations were carried out using a sunlight simulator (Suntest) and a cylindrical UV reactor. The efficiency of the treatment was compared for Milli-Q water, Leman Lake water and artificial seawater. The presence of bicarbonates and organic matter was investigated in order to evaluate possible effects on the photo-Fenton disinfection treatment. The photo-Fenton treatment, employing 1 mg L(-1) Fe(2+) and 10 mg L(-1) of H2O2, led to the fastest bacterial inactivation kinetics. Using H2O2/UV254 high disinfection rates were obtained similar to those obtained with photo-Fenton under UV254 light. In Milli-Q water, the rate of inactivation for Escherichia coli was higher than in Leman Lake water and seawater due to the lack of inorganic ions affecting negatively bacteria inactivation. The presence of bicarbonate showed scavenging of the OH(•) radicals generated in the treatment of photo-Fenton and H2O2/UV254. Despite the negative effect of inorganic ions, especially HCO3(-), the disinfection treatments with AOPs in lake water and seawater improved significantly the disinfection compared to light alone (simulated sunlight and UV254). In the treatment of photo-Fenton with simulated sunlight, dissolved organic matter had a beneficial effect by increasing the rate of inactivation. This is associated with the formation of Fe(3+)-organo photosensitive complexes leading to the formation of ROS able to inactivate bacteria. This effect was not observed in the photo-Fenton with UV254. Growth of E. coli surviving in seawater was observed 24 and 48 h after treatment with UV light. However, growth of surviving bacteria was not detected after photo-Fenton with UV254 and H2O2/UV254 treatments. This study suggests H2O2/UV254 and photo-Fenton treatments for the

  7. In Vivo Monitoring of H2O2 with Polydopamine and Prussian Blue-coated Microelectrode.

    Science.gov (United States)

    Li, Ruixin; Liu, Xiaomeng; Qiu, Wanling; Zhang, Meining

    2016-08-02

    In vivo monitoring of hydrogen peroxide (H2O2) in the brain is of importance for understanding the function of both reactive oxygen species (ROS) and signal transmission. Producing a robust microelectrode for in vivo measurement of H2O2 is challenging due to the complex brain environment and the instability of electrocatalysts employed for the reduction of H2O2. Here, we develop a new kind of microelectrode for in vivo monitoring of H2O2, which is prepared by, first, electrodeposition of Prussian blue (PB) onto carbon nanotube (CNT) assembled carbon fiber microelectrodes (CFEs) and then overcoating of the CFEs with a thin membrane of polydopamine (PDA) through self-polymerization. Scanning electron microscopic and X-ray proton spectroscopic results confirm the formation of PDA/PB/CNT/CFEs. The PDA membrane enables PB-based electrodes to show high stability in both in vitro and in vivo studies and to stably catalyze the electrochemical reduction of H2O2. The microelectrode is selective for in vivo measurements of H2O2, interference-free from O2 and other electroactive species coexisting in the brain. These properties, along with good linearity, high biocompatibility, and stability toward H2O2, substantially enable the microelectrode to track H2O2 changes in vivo during electrical stimulation and microinfusion of H2O2 and drug, which demonstrates that the microelectrode could be well suited for in vivo monitoring of dynamic changes of H2O2 in rat brain.

  8. Photodegradation of amoxicillin by catalyzed Fe3+/H2O2 process.

    Science.gov (United States)

    Li, Xiaoming; Shen, Tingting; Wang, Dongbo; Yue, Xiu; Liu, Xian; Yang, Qi; Cao, Jianbin; Zheng, Wei; Zeng, Guangming

    2012-01-01

    Three oxidation processes of UV-Fe3+(EDTA)/H2O2 (UV: ultraviolet light; EDTA: ethylenediaminetetraacetic acid), UV-Fe3+/H2O2 and Fe3+/H2O2 were simultaneously investigated for the degradation of amoxicillin at pH 7.0. The results indicated that, 100% amoxicillin degradation and 81.9% chemical oxygen demand (COD(Cr)) removal could be achieved in the UV-Fe3+ (EDTA)/H2O2 process. The treatment efficiency of amoxicillin and COD(Cr) removal were found to decrease to 59.0% and 43.0% in the UV-Fe3+/H2O2 process; 39.6% and 31.3% in the Fe3+/H2O2 process. Moreover, the results of biodegradability (biological oxygen demand (BOD5)/COD(Cr) ratio) revealed that the UV-Fe3+ (EDTA)/H2O2 process was a promising strategy to degrade amoxicillin as the biodegradability of the effluent was improved to 0.45, compared with the cases of UV-Fe3+/H2O2 (0.25) and Fe3+/H2O2 (0.10) processes. Therefore, it could be deduced that EDTA and UV light performed synergetic catalytic effect on the Fe3+/H2O2 process, enhancing the treatment efficiency. The degradation mechanisms were also investigated via UV-Vis spectra, and high performance liquid chromatography-mass spectra. The degradation pathway of amoxicillin was further proposed.

  9. Ab initio studies of O-2(-) (H2O)(n) and O-3(-) (H2O)(n) anionic molecular clusters, n

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Kurten, T.; Enghoff, Martin Andreas Bødker

    2011-01-01

    An ab initio study of gaseous clusters of O-2(-) and O-3(-) with water is presented. Based on thorough scans of configurational space, we determine the thermodynamics of cluster growth. The results are in good agreement with benchmark computational methods and existing experimental data. We find...... that anionic O-2(-)(H2O)n and O-3(-)(H2O)n clusters are thermally stabilized at typical atmospheric conditions for at least n = 5. The first 4 water molecules are strongly bound to the anion due to delocalization of the excess charge while stabilization of more than 4 H2O is due to normal hydrogen bonding...... finally, the thermodynamics of a few relevant cluster reactions are considered....

  10. Hydrogen constituents of the mesosphere inferred from positive ions - H2O, CH4, H2CO, H2O2, and HCN

    Science.gov (United States)

    Kopp, E.

    1990-01-01

    The concentrations in the mesosphere of H2O, CH4, H2CO, H2O2, and HCN were inferred from data on positive ion compositions, obtained from one mid-latitude and four high-latitude rocket flights. The inferred concentrations were found to agree only partially with the ground-based microwave measurements and/or model prediction by Garcia and Solomon (1985). The CH4 concentration was found to vary between 70 and 4 ppb in daytime and 900 and 100 ppbv at night, respectively. Unexpectedly high H2CO concentrations were obtained, with H2CO/H2O ratios between 0.0006 and 0.1, and a mean HCN volume mixing ratio of 6 x 10 to the -10th was inferred.

  11. Sequential transition of the injury phenotype, temperature-dependent survival and transcriptional response in Listeria monocytogenes following lethal H2O2 exposure.

    Science.gov (United States)

    Ochiai, Yoshitsugu; Yamada, Fumiya; Yoshikawa, Yuko; Mochizuki, Mariko; Takano, Takashi; Hondo, Ryo; Ueda, Fukiko

    2017-10-16

    The food-borne pathogen Listeria monocytogenes is present persistently in food processing environments, where this bacterium is exposed to various stress factors, including oxidative stress. This study aimed to elucidate the temperature-dependent response of L. monocytogenes to H2O2 exposure and the phenotypic changes in colony formation by H2O2-treated bacteria. Survival curves indicated an increase in the resistance to H2O2 in L. monocytogenes as the temperature decreased during the stress exposure procedure. Transcriptional induction of genes with key roles in response to H2O2, including sigB and kat, was observed at 37°C, but not at 20°C, whereas other stress response genes were induced at both temperatures. Following H2O2 exposure, L. monocytogenes produced small colony phenotypes and the colony size decreased in a stress exposure duration-dependent manner. Resuscitated cells with no ability to form colonies in the absence of sodium pyruvate were also found. Our findings show the possibility that a sequential transition in the injury phenotype from small colony phenotype to resuscitated cells occurred during the course of exposure to H2O2. The higher H2O2 resistance at 20°C than 37°C suggests further investigation of the response to H2O2 exposure under the lower temperatures, including refrigeration temperature, which may contribute to elucidation of bacterial survival over extended time periods in food-processing environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. ABA induces H2O2 production in guard cells, but does not close the stomata on Vicia faba leaves developed at high air humidity

    Science.gov (United States)

    Arve, Louise E; Carvalho, Dália RA; Olsen, Jorunn E; Torre, Sissel

    2014-01-01

    Plants developed under constant high (> 85%) relative air humidity (RH) have larger stomata that are unable to close completely. One of the hypotheses for the less responsive stomata is that the plants have reduced sensitivity to abscisic acid (ABA). Both ABA and darkness are signals for stomatal closure and induce the production of the secondary messenger hydrogen peroxide (H2O2). In this study, the ability of Vicia faba plants developed in moderate or high RH to close the stomata in response to darkness, ABA and H2O2 was investigated. Moreover, the ability of the plants to produce H2O2 when treated with ABA or transferred to darkness was also assessed. Our results show that the ABA concentration in moderate RH is not increased during darkness even though the stomata are closing. This indicates that stomatal closure in V. faba during darkness is independent of ABA production. ABA induced both H2O2 production and stomatal closure in stomata formed at moderate RH. H2O2 production, as a result of treatment with ABA, was also observed in stomata formed at high RH, though the closing response was considerably smaller as compared with moderate RH. In either RH, leaf ABA concentration was not affected by darkness. Similarly to ABA treatment, darkness elicited both H2O2 production and stomatal closure following plant cultivation at moderate RH. Contrary to this, neither H2O2 production nor stomatal closure took place when stomata were formed at high RH. These results suggest that the reduced stomatal response in plants developed in continuous high RH is caused by one or more factors downstream of H2O2 in the signaling pathway toward stomatal closure. PMID:25763494

  13. ABA induces H2O2 production in guard cells, but does not close the stomata on Vicia faba leaves developed at high air humidity.

    Science.gov (United States)

    Arve, Louise E; Carvalho, Dália R A; Olsen, Jorunn E; Torre, Sissel

    2014-01-01

    Plants developed under constant high (> 85%) relative air humidity (RH) have larger stomata that are unable to close completely. One of the hypotheses for the less responsive stomata is that the plants have reduced sensitivity to abscisic acid (ABA). Both ABA and darkness are signals for stomatal closure and induce the production of the secondary messenger hydrogen peroxide (H2O2). In this study, the ability of Vicia faba plants developed in moderate or high RH to close the stomata in response to darkness, ABA and H2O2 was investigated. Moreover, the ability of the plants to produce H2O2 when treated with ABA or transferred to darkness was also assessed. Our results show that the ABA concentration in moderate RH is not increased during darkness even though the stomata are closing. This indicates that stomatal closure in V. faba during darkness is independent of ABA production. ABA induced both H2O2 production and stomatal closure in stomata formed at moderate RH. H2O2 production, as a result of treatment with ABA, was also observed in stomata formed at high RH, though the closing response was considerably smaller as compared with moderate RH. In either RH, leaf ABA concentration was not affected by darkness. Similarly to ABA treatment, darkness elicited both H2O2 production and stomatal closure following plant cultivation at moderate RH. Contrary to this, neither H2O2 production nor stomatal closure took place when stomata were formed at high RH. These results suggest that the reduced stomatal response in plants developed in continuous high RH is caused by one or more factors downstream of H2O2 in the signaling pathway toward stomatal closure.

  14. Purification and characterization of a surfactin-like molecule produced by Bacillus sp. H2O-1 and its antagonistic effect against sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    Korenblum Elisa

    2012-11-01

    Full Text Available Abstract Background Bacillus sp. H2O-1, isolated from the connate water of a Brazilian reservoir, produces an antimicrobial substance (denoted as AMS H2O-1 that is active against sulfate reducing bacteria, which are the major bacterial group responsible for biogenic souring and biocorrosion in petroleum reservoirs. Thus, the use of AMS H2O-1 for sulfate reducing bacteria control in the petroleum industry is a promising alternative to chemical biocides. However, prior to the large-scale production of AMS H2O-1 for industrial applications, its chemical structure must be elucidated. This study also analyzed the changes in the wetting properties of different surfaces conditioned with AMS H2O-1 and demonstrated the effect of AMS H2O-1 on sulfate reducing bacteria cells. Results A lipopeptide mixture from AMS H2O-1 was partially purified on a silica gel column and identified via mass spectrometry (ESI-MS. It comprises four major components that range in size from 1007 to 1049 Da. The lipid moiety contains linear and branched β-hydroxy fatty acids that range in length from C13 to C16. The peptide moiety contains seven amino acids identified as Glu-Leu-Leu-Val-Asp-Leu-Leu. Transmission electron microscopy revealed cell membrane alteration of sulfate reducing bacteria after AMS H2O-1 treatment at the minimum inhibitory concentration (5 μg/ml. Cytoplasmic electron dense inclusions were observed in treated cells but not in untreated cells. AMS H2O-1 enhanced the osmosis of sulfate reducing bacteria cells and caused the leakage of the intracellular contents. In addition, contact angle measurements indicated that different surfaces conditioned by AMS H2O-1 were less hydrophobic and more electron-donor than untreated surfaces. Conclusion AMS H2O-1 is a mixture of four surfactin-like homologues, and its biocidal activity and surfactant properties suggest that this compound may be a good candidate for sulfate reducing bacteria control. Thus, it is a potential

  15. Membrane potential and H2O2 production in duodenal mitochondria from broiler chickens (Gallus gallus domesticus) with low and high feed efficiency.

    Science.gov (United States)

    Ojano-Dirain, C; Tinsley, N B; Wing, T; Cooper, M; Bottje, W G

    2007-08-01

    Increased hydrogen peroxide (H2O2) production was observed in duodenal mitochondria obtained from broiler chickens with low feed efficiency (FE). As a decrease in mitochondrial membrane potential (Deltapsi(m)) due to mild uncoupling of oxidative phosphorylation reduces reactive oxygen species production, this study was conducted to evaluate the effect of uncoupling on Deltapsi(m) and H2O2 production in duodenal mitochondria isolated from broilers with low (0.48+/-0.02) and high (0.68+/-0.01) FE. Membrane potential and H2O2 production were measured fluorometrically and in the presence of different levels of an uncoupler, carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP). The Deltapsi(m) was higher (PH2O2 generation was higher in the low FE mitochondria at all FCCP levels except at 200 nM. Adding 200 to 800 nM FCCP decreased H2O2 production in low but not in high FE mitochondria. These results showed that FCCP-induced uncoupling lowered H2O2 production in low FE but not in high FE duodenal mitochondria and suggest that Deltapsi(m) may influence H2O2 production in low FE mitochondria.

  16. Switching off H2O2 Decomposition during TS-1 Catalysed Epoxidation via Post-Synthetic Active Site Modification

    Directory of Open Access Journals (Sweden)

    Ceri Hammond

    2015-12-01

    Full Text Available Despite its widespread use, the Lewis acidic zeolite, TS-1, still exhibits several unfavourable properties, such as excessive H2O2 decomposition, which decrease its overall performance. In this manuscript, we demonstrate that post-synthetic modification of TS-1 with aqueous NH4HF2 leads to modifications in epoxidation catalysis, which both improves the levels of epoxide selectivity obtained, and drastically minimises undesirable H2O2 decomposition. Through in situ spectroscopic study with UV-resonance enhanced Raman spectroscopy, we also observe a change in Ti site speciation, which occurs via the extraction of mononuclear [Ti(OSi4] atoms, and which may be responsible for the changes in observed activity.

  17. Kinetic modeling of nitric oxide removal by ultraviolet/H2O2 advanced oxidation process

    Directory of Open Access Journals (Sweden)

    Masoumeh Moheb Shahrestani

    2016-01-01

    Full Text Available Aims: In present study, the mass transfer-reaction kinetic parameters of nitric oxide (NO removal by ultraviolet (UV/H 2 O 2 process in a bubble column reactor in the presence of SO 2 are calculated. Materials and Methods: The mass balance equation for NO through a layer thickness of δ, under the steady state condition is solved, and NO absorption rate is calculated. The value of rate constants and Ha numbers are obtained based on experimental data under different conditions. Results: The calculations indicate that the values of Ha number are >3. The values of rate constants (k obs are fitted to some empirical equations for different operating conditions. It is observed that the value of k obs increases with an increase in H 2 O 2 concentration and UV radiation intensity while it decreases with an increase in NO and SO 2 inlet concentrations. The values of rate constants are in order of 10−5 , expect for SO 2 , which are in order of 10−7 . The results reveal that there is a good agreement between calculated and experimental values where the maximum absolute error is 16.18% related to UV light intensities between 0 and 0.012 W/m 3 . Conclusion: The obtained values of Ha numbers under different condition confirm that the absorption process of gas in the liquid phase is a fast reaction. The maximum error values resulted from a comparison between the calculated NO absorption rates and the experimental ones are acceptable.

  18. H2O on Pt(111): structure and stability of the first wetting layer.

    Science.gov (United States)

    Standop, Sebastian; Morgenstern, Markus; Michely, Thomas; Busse, Carsten

    2012-03-28

    We study the structure and stability of the first water layer on Pt(111) by variable-temperature scanning tunneling microscopy. We find that a high Pt step edge density considerably increases the long-range order of the equilibrium √37 × √37R25.3°- and √39 × √39R16.1°-superstructures, presumably due to the capability of step edges to trap residual adsorbates from the surface. Passivating the step edges with CO or preparing a flat metal surface leads to the formation of disordered structures, which still show the same structural elements as the ordered ones. Coadsorption of Xe and CO proves that the water layer covers the metal surface completely. Moreover, we determine the two-dimensional crystal structure of Xe on top of the chemisorbed water layer which exhibits an Xe-Xe distance close to the one in bulk Xe and a rotation angle of 90° between the close-packed directions of Xe and the close-packed directions of the underlying water layer. CO is shown to replace H(2)O on the Pt(111) surface as has been deduced previously. In addition, we demonstrate that tunneling of electrons into the antibonding state or from the bonding state of H(2)O leads to dissociation of the molecules and a corresponding reordering of the adlayer into a √3 × √3R30°-structure. Finally, a so far not understood restructuring of the adlayer by an increased tunneling current has been observed. © 2012 IOP Publishing Ltd

  19. Mechanisms and applications of redox-sensitive GFP-based H2O2 probes.

    Science.gov (United States)

    Roma, Leticia Prates; Deponte, Marcel; Riemer, Jan; Morgan, Bruce

    2017-11-21

    Genetically encoded H2O2 sensors, based upon fusions between thiol peroxidases and redox-sensitive green fluorescent protein 2 (roGFP2) have dramatically broadened the available 'toolbox' for monitoring cellular H2O2 changes. Recent advances: Recently developed peroxiredoxin-based probes such as roGFP2-Tsa2∆CR offer considerably improved H2O2-sensitivity compared to previously available genetically encoded sensors and now permit dynamic, real-time, monitoring of changes in endogenous H2O2 levels. The correct understanding and interpretation of probe read-outs is crucial for their meaningful use. We discuss probe mechanisms, potential pitfalls and best practices for application and interpretation of probe responses and highlight where gaps in our knowledge remain. The full potential of the newly available sensors remains far from being fully realized and exploited. We discuss how the ability to monitor basal H2O2 levels in real-time now allows us to re-visit long held ideas in redox biology such as the response to ischemia-reperfusion and hypoxia-induced ROS production. Furthermore, recently proposed circadian cycles of peroxiredoxin hyperoxidation might now be rigorously tested. Beyond their application as H2O2 probes, roGFP2-based H2O2 sensors hold exciting potential for studying thiol peroxidase mechanisms, inactivation properties and the impact of post-translational modifications, in vivo.

  20. Advanced oxidation of hypophosphite and phosphite using a UV/H2O2 process.

    Science.gov (United States)

    Liu, Peng; Li, Chaolin; Liang, Xingang; Xu, Jianhui; Lu, Gang; Ji, Fei

    2013-01-01

    The oxidation of hypophosphite and phosphite in an aqueous solution by an ultraviolet (UV)/H2O2 process was studied in this work. The reactions were performed in a lab-scale batch photoreactor. The effect of different parameters such as H2O2 dosage, H2O2 feeding mode and the initial pH of the solution on the oxidation efficiency of the process was investigated. The results indicated that the UV/H2O2 process could effectively oxidize hypophosphite and phosphite in both synthesized and real wastewater. However, neither H2O2 nor UV alone was able to appreciably oxidize the hypophosphite or phosphite. The best way of feeding H2O2 was found to be 'continuous feeding', which maximized the reaction rate. It was also found that the process presented a wide range of applicable initial pH (5-11). When treating real rinse-wastewater, which was obtained from the electroless nickel plating industry, both hypophosphite and phosphite were completely oxidized within 60 min, and by extending by another 30 min, over 90% of the chemical oxygen demand removal was obtained. Without any additional catalyst, the UV/H2O2 process can oxidize hypophosphite and phosphite to easily removable phosphate. It is really a powerful and environmentally friendly treatment method for the wastewater containing hypophosphite and phosphite.

  1. Ametryn degradation in the ultraviolet (UV) irradiation/hydrogen peroxide (H2O2) treatment.

    Science.gov (United States)

    Gao, Nai-Yun; Deng, Yang; Zhao, Dandan

    2009-05-30

    Ultraviolet (UV) irradiation (253.7nm) in the presence of hydrogen peroxide (H(2)O(2)) was used to decompose aqueous ametryn. The concentrations of ametryn were measured with time under various experiment conditions. The investigated factors included H(2)O(2) dosages, initial pH, initial ametryn concentrations, and a variety of inorganic anions. Results showed that ametryn degradation in UV/H(2)O(2) process was a pseudo-first-order reaction. Removal rates of ametryn were greatly affected by H(2)O(2) dosage and initial concentrations of ametryn, but appeared to be slightly influenced by initial pH. Furthermore, we investigated the effects of four anions (SO(4)(2-), Cl(-), HCO(3)(-), and CO(3)(2-)) on ametryn degradation by UV/H(2)O(2). The impact of SO(4)(2-) seemed to be insignificant; however, Cl(-), HCO(3)(-), and CO(3)(2-) considerably slowed down the degradation rate because they could strongly scavenge hydroxyl radicals (OH) produced during the UV/H(2)O(2) process. Finally, a preliminary cost analysis revealed that UV/H(2)O(2) process was more cost-effective than the UV alone in removal of ametryn from water.

  2. H2O and CO coadsorption on Co (0001): The effect of intermolecular hydrogen bond

    Science.gov (United States)

    Jiawei, Wu; Chen, Jun; Guo, Qing; Su, Hai-Yan; Dai, Dongxu; Yang, Xueming

    2017-09-01

    The co-adsorption of CO and H2O on a Co(0001) surface at 100 K has been systematically studied using temperature programmed desorption (TPD) and density functional theory (DFT) calculations. While the TPD spectra of CO is almost not affected by the presence of H2O, the stabilization of H2O by co-adsorbed CO is found for the first time in a large coverage range (0.15 ML interaction between H2O molecules and the attractive interaction between H2O and CO molecules, respectively. With increasing the coverage of predosed CO, not only the position of the high temperature peak shifts toward higher temperature (by about 15 K), but the intensity is greatly strengthened until a maximum is achieved when θCO = 0.36 ML. DFT calculations suggest that the attractive interaction between H2O and CO on Co(0001) originates from the formation of intermolecular hydrogen bonds. This work not only provides insights into water gas shift reactions with H2O and CO as reactants, but opens new avenues for a volume of catalytic process of technological importance.

  3. Salidroside Stimulates Mitochondrial Biogenesis and Protects against H2O2-Induced Endothelial Dysfunction

    Directory of Open Access Journals (Sweden)

    Shasha Xing

    2014-01-01

    Full Text Available Salidroside (SAL is an active component of Rhodiola rosea with documented antioxidative properties. The purpose of this study is to explore the mechanism of the protective effect of SAL on hydrogen peroxide- (H2O2- induced endothelial dysfunction. Pretreatment of the human umbilical vein endothelial cells (HUVECs with SAL significantly reduced the cytotoxicity brought by H2O2. Functional studies on the rat aortas found that SAL rescued the endothelium-dependent relaxation and reduced superoxide anion (O2∙- production induced by H2O2. Meanwhile, SAL pretreatment inhibited H2O2-induced nitric oxide (NO production. The underlying mechanisms involve the inhibition of H2O2-induced activation of endothelial nitric oxide synthase (eNOS, adenosine monophosphate-activated protein kinase (AMPK, and Akt, as well as the redox sensitive transcription factor, NF-kappa B (NF-κB. SAL also increased mitochondrial mass and upregulated the mitochondrial biogenesis factors, peroxisome proliferator-activated receptor gamma-coactivator-1alpha (PGC-1α, and mitochondrial transcription factor A (TFAM in the endothelial cells. H2O2-induced mitochondrial dysfunction, as demonstrated by reduced mitochondrial membrane potential (Δψm and ATP production, was rescued by SAL pretreatment. Taken together, these findings implicate that SAL could protect endothelium against H2O2-induced injury via promoting mitochondrial biogenesis and function, thus preventing the overactivation of oxidative stress-related downstream signaling pathways.

  4. H2O2 dynamics in the malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Rahbari, Mahsa; Rahlfs, Stefan; Jortzik, Esther; Bogeski, Ivan; Becker, Katja

    2017-01-01

    Hydrogen peroxide is an important antimicrobial agent but is also crucially involved in redox signaling and pathogen-host cell interactions. As a basis for systematically investigating intracellular H2O2 dynamics and regulation in living malaria parasites, we established the genetically encoded fluorescent H2O2 sensors roGFP2-Orp1 and HyPer-3 in Plasmodium falciparum. Both ratiometric redox probes as well as the pH control SypHer were expressed in the cytosol of blood-stage parasites. Both redox sensors showed reproducible sensitivity towards H2O2 in the lower micromolar range in vitro and in the parasites. Due to the pH sensitivity of HyPer-3, we used parasites expressing roGFP2-Orp1 for evaluation of short-, medium-, and long-term effects of antimalarial drugs on H2O2 levels and detoxification in Plasmodium. None of the quinolines or artemisinins tested had detectable direct effects on the H2O2 homeostasis at pharmacologically relevant concentrations. However, pre-treatment of the cells with antimalarial drugs or heat shock led to a higher tolerance towards exogenous H2O2. The systematic evaluation and comparison of the two genetically encoded cytosolic H2O2 probes in malaria parasites provides a basis for studying parasite-host cell interactions or drug effects with spatio-temporal resolution while preserving cell integrity.

  5. Superoxide radicals have a protective role during H2O2 stress

    Science.gov (United States)

    Thorpe, Geoffrey W.; Reodica, Mayfebelle; Davies, Michael J.; Heeren, Gino; Jarolim, Stefanie; Pillay, Bethany; Breitenbach, Michael; Higgins, Vincent J.; Dawes, Ian W.

    2013-01-01

    Reactive oxygen species (ROS) consist of potentially toxic, partly reduced oxygen species and free radicals. After H2O2 treatment, yeast cells significantly increase superoxide radical production. Respiratory chain complex III and possibly cytochrome b function are essential for this increase. Disruption of complex III renders cells sensitive to H2O2 but not to the superoxide radical generator menadione. Of interest, the same H2O2-sensitive mutant strains have the lowest superoxide radical levels, and strains with the highest resistance to H2O2 have the highest levels of superoxide radicals. Consistent with this correlation, overexpression of superoxide dismutase increases sensitivity to H2O2, and this phenotype is partially rescued by addition of small concentrations of menadione. Small increases in levels of mitochondrially produced superoxide radicals have a protective effect during H2O2-induced stress, and in response to H2O2, the wild-type strain increases superoxide radical production to activate this defense mechanism. This provides a direct link between complex III as the main source of ROS and its role in defense against ROS. High levels of the superoxide radical are still toxic. These opposing, concentration-dependent roles of the superoxide radical comprise a form of hormesis and show one ROS having a hormetic effect on the toxicity of another. PMID:23864711

  6. Cross talk between H2O2 and interacting signal molecules under plant stress response

    Directory of Open Access Journals (Sweden)

    Ina eSaxena

    2016-04-01

    Full Text Available It is well established that oxidative stress is an important cause of cellular damage. During stress condition plants have evolved regulatory mechanism to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of ROS, which is subsequently converted to H2O2. H2O2 is continuously produced as the by-product of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 acts as a key regulator of many biological processes because H2O2 has been identified as an important second messenger in signal transduction networks. In this review we discuss potential roles of H2O2 and other signaling molecule during various stress responses.

  7. Salidroside Stimulates Mitochondrial Biogenesis and Protects against H2O2-Induced Endothelial Dysfunction

    Science.gov (United States)

    Xing, Shasha; Yang, Xiaoyan; Li, Wenjing; Bian, Fang; Wu, Dan; Chi, Jiangyang; Xu, Gao; Zhang, Yonghui; Jin, Si

    2014-01-01

    Salidroside (SAL) is an active component of Rhodiola rosea with documented antioxidative properties. The purpose of this study is to explore the mechanism of the protective effect of SAL on hydrogen peroxide- (H2O2-) induced endothelial dysfunction. Pretreatment of the human umbilical vein endothelial cells (HUVECs) with SAL significantly reduced the cytotoxicity brought by H2O2. Functional studies on the rat aortas found that SAL rescued the endothelium-dependent relaxation and reduced superoxide anion (O2∙−) production induced by H2O2. Meanwhile, SAL pretreatment inhibited H2O2-induced nitric oxide (NO) production. The underlying mechanisms involve the inhibition of H2O2-induced activation of endothelial nitric oxide synthase (eNOS), adenosine monophosphate-activated protein kinase (AMPK), and Akt, as well as the redox sensitive transcription factor, NF-kappa B (NF-κB). SAL also increased mitochondrial mass and upregulated the mitochondrial biogenesis factors, peroxisome proliferator-activated receptor gamma-coactivator-1alpha (PGC-1α), and mitochondrial transcription factor A (TFAM) in the endothelial cells. H2O2-induced mitochondrial dysfunction, as demonstrated by reduced mitochondrial membrane potential (Δψm) and ATP production, was rescued by SAL pretreatment. Taken together, these findings implicate that SAL could protect endothelium against H2O2-induced injury via promoting mitochondrial biogenesis and function, thus preventing the overactivation of oxidative stress-related downstream signaling pathways. PMID:24868319

  8. Basalt Reactivity in the Presence of H2O-Saturated Supercritical CO2 Containing Gaseous Sulfur Compounds

    Science.gov (United States)

    Schaef, H. T.; McGrail, P.; Owen, A. T.

    2009-12-01

    Future impacts of climate change may be minimized by capture of emissions, primarily CO2 from fossil-fueled electric generating stations and subsequent sequestration in deep geologic formations. Injection of dry liquid CO2 into porous geologic reservoirs for long term storage is expected to eventually form a buoyant water-saturated bubble of supercritical fluid. Depending on purification processes and underground injection control regulations, the injected CO2 also could contain trace compounds associated with flue gas streams (SO2, N2, and O2). Once injected, the scCO2 will absorb water (1500 to 3000 ppmw) until becoming immobilized by reservoir trapping mechanisms. Reactivity of the water-bearing scCO2 with silicate minerals is relatively unknown and could have impacts on long term reservoir seal integrity and trapping by mineralization. To examine the reactivity of H2O-saturated scCO2, basalt experiments were conducted at pressures and temperatures relevant to geologic sequestration. Reaction products differed considerably depending on the gas mixtures used and type of basalt. In the presence of H2O-saturated CO2, the Newark Basin basalt reacted to produce secondary mineralization with needle-like morphologies and chemistries similar to aragonite. Exposing the same basalt to a CO2-H2S mixture (H2O saturated) produced two types of reaction products: carbonates in the form of small discrete nodules or needles and metallic-like circular areas similar in chemistry to pyrite and marcarsite. Tests conducted in the presence of CO2-SO2 produced the most extensive surface reaction products observed during the experiments. Some basalts were completely coated in white precipitate identified as a mixture of gypsum, sulfate bearing minerals (rozenite and melanterite), and a magnesium sulfate compound (MgSO4 ●5H2O). Hawaiian flow top basalts contained extensive reaction products including magnesium sulfate (MgSO4●6H2O), which formed on the large olivine crystals present

  9. Oxygen isotope fractionation in the CaCO3-DIC-H2O system

    Science.gov (United States)

    Devriendt, Laurent S.; Watkins, James M.; McGregor, Helen V.

    2017-10-01

    to a relatively constant foraminifer calcite δ18O-temperature relationship (-0.21 ± 0.01‰/°C). The lower average coral δ18O data relative to foraminifers and other calcifiers is best explained by the precipitation of internal DIC derived from hydrated CO2 in a high-pH calcifying fluid and minimal subsequent DIC-H2O isotopic equilibration. This leads to a reduced and variable coral aragonite δ18O-temperature relationship (-0.11 to -0.22‰/°C). Together, the model presented here reconciles observations of oxygen isotope fractionation over a range of CaCO3-DIC-H2O systems.

  10. H2O2 modulates the energetic metabolism of the cloud microbiome

    Science.gov (United States)

    Wirgot, Nolwenn; Vinatier, Virginie; Deguillaume, Laurent; Sancelme, Martine; Delort, Anne-Marie

    2017-12-01

    Chemical reactions in clouds lead to oxidation processes driven by radicals (mainly HO⚫, NO3⚫, or HO2⚫) or strong oxidants such as H2O2, O3, nitrate, and nitrite. Among those species, hydrogen peroxide plays a central role in the cloud chemistry by driving its oxidant capacity. In cloud droplets, H2O2 is transformed by microorganisms which are metabolically active. Biological activity can therefore impact the cloud oxidant capacity. The present article aims at highlighting the interactions between H2O2 and microorganisms within the cloud system. First, experiments were performed with selected strains studied as a reference isolated from clouds in microcosms designed to mimic the cloud chemical composition, including the presence of light and iron. Biotic and abiotic degradation rates of H2O2 were measured and results showed that biodegradation was the most efficient process together with the photo-Fenton process. H2O2 strongly impacted the microbial energetic state as shown by adenosine triphosphate (ATP) measurements in the presence and absence of H2O2. This ATP depletion was not due to the loss of cell viability. Secondly, correlation studies were performed based on real cloud measurements from 37 cloud samples collected at the PUY station (1465 m a.s.l., France). The results support a strong correlation between ATP and H2O2 concentrations and confirm that H2O2 modulates the energetic metabolism of the cloud microbiome. The modulation of microbial metabolism by H2O2 concentration could thus impact cloud chemistry, in particular the biotransformation rates of carbon compounds, and consequently can perturb the way the cloud system is modifying the global atmospheric chemistry.

  11. Production of superoxide/H2O2 by dihydroorotate dehydrogenase in rat skeletal muscle mitochondria.

    Science.gov (United States)

    Hey-Mogensen, Martin; Goncalves, Renata L S; Orr, Adam L; Brand, Martin D

    2014-07-01

    Dehydrogenases that use ubiquinone as an electron acceptor, including complex I of the respiratory chain, complex II, and glycerol-3-phosphate dehydrogenase, are known to be direct generators of superoxide and/or H2O2. Dihydroorotate dehydrogenase oxidizes dihydroorotate to orotate and reduces ubiquinone to ubiquinol during pyrimidine metabolism, but it is unclear whether it produces superoxide and/or H2O2 directly or does so only indirectly from other sites in the electron transport chain. Using mitochondria isolated from rat skeletal muscle we establish that dihydroorotate oxidation leads to superoxide/H2O2 production at a fairly high rate of about 300pmol H2O2·min(-1)·mg protein(-1) when oxidation of ubiquinol is prevented and complex II is uninhibited. This H2O2 production is abolished by brequinar or leflunomide, known inhibitors of dihydroorotate dehydrogenase. Eighty percent of this rate is indirect, originating from site IIF of complex II, because it can be prevented by malonate or atpenin A5, inhibitors of complex II. In the presence of inhibitors of all known sites of superoxide/H2O2 production (rotenone to inhibit sites in complex I (site IQ and, indirectly, site IF), myxothiazol to inhibit site IIIQo in complex III, and malonate plus atpenin A5 to inhibit site IIF in complex II), dihydroorotate dehydrogenase generates superoxide/H2O2, at a small but significant rate (23pmol H2O2·min(-1)·mg protein(-1)), from the ubiquinone-binding site. We conclude that dihydroorotate dehydrogenase can generate superoxide and/or H2O2 directly at low rates and is also capable of indirect production at higher rates from other sites through its ability to reduce the ubiquinone pool. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. H2O2 Based Oxidation Processes for the Treatment of Real High Strength Aqueous Wastes

    Directory of Open Access Journals (Sweden)

    Maria Cristina Collivignarelli

    2017-02-01

    Full Text Available This work was aimed at studying the applicability of H2O2-based oxidation processes (namely H2O2/UV, photo-Fenton, and Fenton for the treatment of six real aqueous wastes. These wastes derived from chemical, pharmaceutical, and detergent production, and were characterised by high COD (chemical oxygen demand and, in four cases, surfactant concentrations: overall, about 100 tests were conducted. The H2O2/UV and photo-Fenton processes proved to be very effective in COD removal, the efficiency being greater than 70%. The optimal treatment conditions for the H2O2/UV process were: 120 min reaction, H2O2/CODinitial dosage ratio = 1/2; the radiation intensity (up to 2000 W·L−1 revealed to be a crucial factor, especially in the earlier stage of the process (about 40 min: this aspect can be exploited to reduce the costs related to energy consumption. For the photo-Fenton process the following conditions were chosen: Fe2+/H2O2 ratio = 1/30; specific power input = 125 W·L−1; H2O2/CODinitial = 1/2; reaction time = 240 min. Photolytic reactions and the presence of dissolved oxygen revealed to be crucial factors for COD removal. The Fenton process, while showing a moderate efficiency (25% COD removal in the treatment of high loaded wastewaters, provided excellent results in the treatment of aqueous wastes with high content of surfactants. An average yield removal of 70% for non-ionic surfactants (TAS and 95% for anionic surfactants (MBAS was obtained, under the following optimal conditions: Fe2+/H2O2 = 1/4, H2O2/CODinitial ratio = 1, and contact time = 30 min.

  13. H2O2 modulates the energetic metabolism of the cloud microbiome

    Directory of Open Access Journals (Sweden)

    N. Wirgot

    2017-12-01

    Full Text Available Chemical reactions in clouds lead to oxidation processes driven by radicals (mainly HO⚫, NO3⚫, or HO2⚫ or strong oxidants such as H2O2, O3, nitrate, and nitrite. Among those species, hydrogen peroxide plays a central role in the cloud chemistry by driving its oxidant capacity. In cloud droplets, H2O2 is transformed by microorganisms which are metabolically active. Biological activity can therefore impact the cloud oxidant capacity. The present article aims at highlighting the interactions between H2O2 and microorganisms within the cloud system. First, experiments were performed with selected strains studied as a reference isolated from clouds in microcosms designed to mimic the cloud chemical composition, including the presence of light and iron. Biotic and abiotic degradation rates of H2O2 were measured and results showed that biodegradation was the most efficient process together with the photo-Fenton process. H2O2 strongly impacted the microbial energetic state as shown by adenosine triphosphate (ATP measurements in the presence and absence of H2O2. This ATP depletion was not due to the loss of cell viability. Secondly, correlation studies were performed based on real cloud measurements from 37 cloud samples collected at the PUY station (1465 m a.s.l., France. The results support a strong correlation between ATP and H2O2 concentrations and confirm that H2O2 modulates the energetic metabolism of the cloud microbiome. The modulation of microbial metabolism by H2O2 concentration could thus impact cloud chemistry, in particular the biotransformation rates of carbon compounds, and consequently can perturb the way the cloud system is modifying the global atmospheric chemistry.

  14. Degradation of organic ultraviolet filter diethylamino hydroxybenzoyl hexyl benzoate in aqueous solution by UV/H2O2.

    Science.gov (United States)

    Gong, Ping; Yuan, Haixia; Zhai, Pingping; Dong, Wenbo; Li, Hongjing

    2015-07-01

    Steady-state and transient-state photolysis experiments were conducted to investigate the degradation of organic ultraviolet filter diethylamino hydroxybenzoyl hexyl benzoate (DHHB) in the aqueous solution by UV/H2O2. Results showed that the obvious degradation of DHHB was not observed under UV irradiation (λ = 254 nm), and the DHHB degradation was conducted due to the oxidation by hydroxyl radical (HO·). While the H2O2 concentration was between 0.05 and 0.10 mol L(-1), the highest DHHB degradation efficiency was obtained. The lower solution pH favored the transformation of DHHB, and the coexisting Cl(-) and NO3(-) ions slightly enhanced the conversion. The degradation of DHHB by HO· followed a pseudo-first-order kinetic model with different initial DHHB concentrations. By intermediate products during DHHB oxidation and laser flash photolysis spectra analysis, a primary degradation pathway was proposed.

  15. An NMR study of the molecular mobility in BeSO 4·4H 2O

    Science.gov (United States)

    Larsson, K.; Tegenfeldt, J.

    1988-05-01

    Molecular and ionic mobility in the solid hydrate BeSO 4·H 2O has been studied by 1H-NMR spectroscopy. Spin-lattice relaxation rates in the laboratory and rotating frames, T-11 and T-11π, have been measured as a function of temperature for polycrystalline samples, and as a function of orientation for a single crystal. One dynamical process has been clearly identified as being responsible for the rotating frame relaxation: an H 2O flip motion with an activation energy of 58 kJ mol -1. The pre-exponential factor of the Arrhenius relation for the correlation time of this motion is 4.3 × 10 -16 s. A second process, responsible for the laboratory frame spin-lattice relaxation is observed, but cannot be identified unambiguously.

  16. Cell proliferating and differentiating role of H2O2 in Sclerotium rolfsii and Sclerotinia sclerotiorum.

    Science.gov (United States)

    Papapostolou, Ioannis; Sideri, Marina; Georgiou, Christos D

    2014-01-01

    This study shows that the oxidant and also signal transducing H2O2 exerts a cell proliferating action at certain intracellular concentrations (around 80 nM), by inhibiting the lateral-chained and terminal sclerotial differentiation of the phytopathogenic filamentous fungi S. rolfsii and S. sclerotiorum, respectively. H2O2 also promotes sclerotial differentiation in these fungi at higher intracellular concentrations (approx. 130 nM). A cell proliferating and differentiation inhibiting effect was exerted also by the inhibitor of catalase activity aminotriazole via increase of intracellular H2O2. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Turn-on fluorescence detection of H2O2 and TATP.

    Science.gov (United States)

    Germain, Meaghan E; Knapp, Michael J

    2008-11-03

    Peroxide-based explosives, like triacetone triperoxide (TATP), are important targets for detection because of their broad use in improvised explosives but pose challenges. We report a highly sensitive turn-on fluorescence detection for H2O2 and organic peroxides, including TATP. The detection strategy relies on oxidative deboronation to unmask H2Salen, which subsequently binds Zn(2+) to form fluorescent Zn(Salen). Sensitivity is excellent, with detection limits below 10 nM for H2O2, TATP, and benzoyl peroxide. In addition, acid treatment is necessary to sense TATP, suggesting the potential to discriminate between H2O2 and TATP based upon minimal sample pretreatment.

  18. Ab initio studies of O2-(H2O)n and O3-(H2O)n anionic molecular clusters, n≤12

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Kurtén, T.; Enghoff, Martin Andreas Bødker

    2011-01-01

    An ab initio study of gaseous clusters of O2− and O2− with water is presented. Based on thorough scans of configurational space, we determine the thermodynamics of cluster growth. The results are in good agreement with benchmark computational methods and existing experimental data. We find...... that anionic O2−(H2O)n and O3−(H2O)n clusters are thermally stabilized at typical atmospheric conditions for at least n = 5. The first 4 water molecules are strongly bound to the anion due to delocalization of the excess charge while stabilization of more than 4 H2O is due to normal hydrogen bonding. Although...... clustering up to 12 H2O, we find that the O2 and O3 anions retain at least ca. 80 % of the charge and are located at the surface of the cluster. The O2− and O3− speicies are thus accessible for further reactions. Finally, the thermodynamics of a few relevant cluster reactions are considered....

  19. Redetermination of Ce[B5O8(OH(H2O]NO3·2H2O

    Directory of Open Access Journals (Sweden)

    Ya-Xi Huang

    2012-05-01

    Full Text Available The crystal structure of Ce[B5O8(OH(H2O]NO3·2H2O, cerium(III aquahydroxidooctaoxidopentaborate nitrate dihydrate, has been redetermined from single-crystal X-ray diffraction data. In contrast to the previous determination [Li et al. (2003. Chem. Mater. 15, 2253–2260], the present study reveals the location of all H atoms, slightly different fundamental building blocks (FBBs of the polyborate anions, more reasonable displacement ellipsoids for all non-H atoms, as well as a model without disorder of the nitrate anion. The crystal structure is built from corrugated polyborate layers parallel to (010. These layers, consisting of [B5O8(OH(H2O]2− anions as FBBs, stack along [010] and are linked by Ce3+ ions, which exhibit a distorted CeO10 coordination sphere. The layers are additionally stabilized via O—H...O hydrogen bonds between water molecules and nitrate anions, located at the interlayer space. The [BO3(H2O]-group shows a [3 + 1] coordination and is considerably distorted from a tetrahedral configuration. Bond-valence-sum calculation shows that the valence sum of boron is only 2.63 valence units (v.u. when the contribution of the water molecule (0.49 v.u. is neglected.

  20. Core-shell Prussian blue analogue molecular magnet Mn(1.5)[Cr(CN)6]·mH2O@Ni(1.5)[Cr(CN)6]·nH2O for hydrogen storage.

    Science.gov (United States)

    Bhatt, Pramod; Banerjee, Seemita; Anwar, Sharmistha; Mukadam, Mayuresh D; Meena, Sher Singh; Yusuf, Seikh M

    2014-10-22

    Core-shell Prussian blue analogue molecular magnet Mn1.5[Cr(CN)6]·mH2O@Ni1.5[Cr(CN)6]·nH2O has been synthesized using a core of Mn1.5[Cr(CN)6]·7.5H2O, surrounded by a shell of Ni1.5[Cr(CN)6]·7.5H2O compound. A transmission electron microscopy (TEM) study confirms the core-shell nature of the nanoparticles with an average size of ∼25 nm. The core-shell nanoparticles are investigated by using x-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) and elemental mapping, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and infrared (IR) spectroscopy. The Rietveld refinement of the XRD pattern reveals that the core-shell compound has a face-centered cubic crystal structure with space group Fm3m. The observation of characteristic absorption bands in the range of 2000-2300 cm(-1) in IR spectra corresponds to the CN stretching frequency of Mn(II)/Ni(II)-N≡C-Cr(III) sequence, confirming the formation of Prussian blue analogues. Hydrogen absorption isotherm measurements have been used to investigate the kinetics of molecular hydrogen adsorption into core-shell compounds of the Prussian blue analogue at low temperature conditions. Interestingly, the core-shell compound shows an enhancement in the hydrogen capacity (2.0 wt % at 123 K) as compared to bare-core and bare-shell compounds. The hydrogen adsorption capacity has been correlated with the specific surface area and TGA analysis of the core-shell compound. To the best of our knowledge, this is the first report on the hydrogen storage properties of core-shell Prussian blue analogue molecular magnet that could be useful for hydrogen storage applications.

  1. H2O frost point detection on Mars

    Science.gov (United States)

    Ryan, J. A.; Sharman, R. D.

    1981-01-01

    The Viking Mars landers contain meteorological instrumentation to measure wind, temperature, and pressure but not atmospheric water content. The landings occurred during local summer, and it was observed that the nocturnal temperature decrease at sensor height (1.6 m) did not exhibit a uniform behavior at either site. It was expected that the rate of decrease would gradually slow, leveling off near sunrise. Instead, a leveling occurred several hours earlier. Temperature subsequently began a more rapid decrease which slowed by sunrise. This suggested that the temperature sensors may be detecting the frost point of water vapor. Analysis of alternative hypotheses demonstrates that none of these are viable candidates. The frost point interpretation is consistent with other lander and orbiter observations, with terrestrial experience, and with modeling of Mars' atmospheric behavior. It thus appears that the meteorology experiment can help provide a basis toward understanding the distribution and dynamics of Martian water vapor.

  2. Quantum tunneling during interstellar surface-catalyzed formation of water: the reaction H + H2O2 → H2O + OH.

    Science.gov (United States)

    Lamberts, Thanja; Samanta, Pradipta Kumar; Köhn, Andreas; Kästner, Johannes

    2016-12-07

    The final step of the water formation network on interstellar grain surfaces starting from the H + O2 route is the reaction between H and H2O2. This reaction is known to have a high activation energy and therefore at low temperatures it can only proceed via tunneling. To date, however, no rate constants are available at temperatures below 200 K. In this work, we use instanton theory to compute rate constants for the title reaction with and without isotopic substitutions down to temperatures of 50 K. The calculations are based on density functional theory, with additional benchmarks for the activation energy using unrestricted single-reference and multireference coupled-cluster single-point energies. Gas-phase bimolecular rate constants are calculated and compared with available experimental data not only for H + H2O2 → H2O + OH, but also for H + H2O2 → H2 + HO2. We find a branching ratio where the title reaction is favored by at least two orders of magnitude at 114 K. In the interstellar medium this reaction predominantly occurs on water surfaces, which increases the probability that the two reactants meet. To mimic this, one, two, or three spectator H2O molecules are added to the system. Eley-Rideal bimolecular and Langmuir-Hinshelwood unimolecular rate constants are presented here. The kinetic isotope effects for the various cases are compared to experimental data as well as to expressions commonly used in astrochemical models. Both the rectangular barrier and the Eckart approximations lead to errors of about an order of magnitude. Finally, fits of the rate constants are provided as input for astrochemical models.

  3. Estimate of bias in Aura TES HDO/H2O profiles from comparison of TES and in situ HDO/H2O measurements at the Mauna Loa observatory

    Directory of Open Access Journals (Sweden)

    J. Lee

    2011-05-01

    Full Text Available The Aura satellite Tropospheric Emission Spectrometer (TES instrument is capable of measuring the HDO/H2O ratio in the lower troposphere using thermal infrared radiances between 1200 and 1350 cm−1. However, direct validation of these measurements is challenging due to a lack of in situ measured vertical profiles of the HDO/H2O ratio that are spatially and temporally co-located with the TES observations. From 11 October through 5 November 2008, we undertook a campaign to measure HDO and H2O at the Mauna Loa observatory in Hawaii for comparison with TES observations. The Mauna Loa observatory is situated at 3.1 km above sea level or approximately 680 hPa, which is approximately the altitude where the TES HDO/H2O observations show the most sensitivity. Another advantage of comparing in situ data from this site to estimates derived from thermal IR radiances is that the volcanic rock is heated by sunlight during the day, thus providing significant thermal contrast between the surface and atmosphere; this thermal contrast increases the sensitivity to near surface estimates of tropospheric trace gases. The objective of this inter-comparison is to better characterize a bias in the TES HDO data, which had been previously estimated to be approximately 5 % too high for a column integrated value between 850 hPa and 500 hPa. We estimate that the TES HDO profiles should be corrected downwards by approximately 4.8 % and 6.3 % for Versions 3 and 4 of the data respectively. These corrections must account for the vertical sensitivity of the TES HDO estimates. We estimate that the precision of this bias correction is approximately 1.9 %. The accuracy is driven by the corrections applied to the in situ HDO and H2O measurements using flask data taken during the inter-comparison campaign and is estimated to be less than 1 %. Future comparisons of TES data to accurate vertical profiles of in situ measurements are needed to refine this bias estimate.

  4. K 3 [Fe (CN) 6]. 3H 2 O supported on silica gel: An efficient and ...

    Indian Academy of Sciences (India)

    6].3H2O supported on silica gel: An efficient and selective reagent for the cleavage of oximes to their corresponding carbonyl compounds in aqueous medium. Abbas Amini Manesh Behzad Shirmardi Shaghasemi. Regular Articles Volume 127 ...

  5. Exopolysaccharides from Sinorhizobium meliloti can protect against H2O2-dependent damage.

    Science.gov (United States)

    Lehman, Alisa P; Long, Sharon R

    2013-12-01

    Sinorhizobium meliloti requires exopolysaccharides in order to form a successful nitrogen-fixing symbiosis with Medicago species. Additionally, during early stages of symbiosis, S. meliloti is presented with an oxidative burst that must be overcome. Levels of production of the exopolysaccharides succinoglycan (EPS-I) and galactoglucan (EPS-II) were found to correlate positively with survival in hydrogen peroxide (H2O2). H2O2 damage is dependent on the presence of iron and is mitigated when EPS-I and EPS-II mutants are cocultured with cells expressing either exopolysaccharide. Purified EPS-I is able to decrease in vitro levels of H2O2, and this activity is specific to the symbiotically active low-molecular-weight form of EPS-I. This suggests a potential protective function of exopolysaccharides against H2O2 during early symbiosis.

  6. MLS/Aura Level 2 Water Vapor (H2O) Mixing Ratio V004

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2H2O is the EOS Aura Microwave Limb Sounder (MLS) standard product for water vapor derived from radiances measured primarily by the 190 GHz radiometer. The current...

  7. MLS/Aura L2 Water Vapor (H2O) Mixing Ratio V002

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2H2O is the EOS Aura Microwave Limb Sounder (MLS) standard product for water vapor derived from radiances measured primarily by the 190 GHz radiometer. The current...

  8. TES/Aura L3 H2O Monthly Gridded V004

    Data.gov (United States)

    National Aeronautics and Space Administration — The TES Aura L3 H2O data consist of daily atmospheric temperature and VMR for the atmospheric species. Data are provided at 2 degree latitude X 4 degree longitude...

  9. Decarburization Kinetics of Fe-C-S Droplets with H2O

    National Research Council Canada - National Science Library

    Simento, Noel J; Hayes, Peter C; Lee, Hae-Geon

    1998-01-01

    ... chemisorption of H2O at the melt surface. The Steinberger-Treybal correlation equation was found to correctly represent the gas phase mass transfer in the present system geometry and experimental conditions...

  10. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells

    Data.gov (United States)

    U.S. Environmental Protection Agency — H2O2_COD_EPA: Measurements of hydrogen peroxide and COD concentrations for water samples from the MEC reactors. MEC_acclimation: raw data for current and voltage of...

  11. MLS/Aura L2 Water Vapor (H2O) Mixing Ratio V003

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2H2O is the EOS Aura Microwave Limb Sounder (MLS) standard product for water vapor derived from radiances measured primarily by the 190 GHz radiometer. The current...

  12. Activation of ERK signalling by Src family kinases (SFKs) in DRG neurons contributes to hydrogen peroxide (H2O2)-induced thermal hyperalgesia.

    Science.gov (United States)

    Singh, Ajeet Kumar; Vinayak, Manjula

    2017-10-01

    Concomitant generation of reactive oxygen species during tissue inflammation has been recognised as a major factor for the development and the maintenance of hyperalgesia, out of which H2O2 is the major player. However, molecular mechanism of H2O2 induced hyperalgesia is still obscure. The aim of present study is to analyse the mechanism of H2O2-induced hyperalgesia in rats. Intraplantar injection of H2O2 (5, 10 and 20 µmoles/paw) induced a significant thermal hyperalgesia in the hind paw, confirmed by increased c-Fos activity in dorsal horn of spinal cord. Onset of hyperalgesia was prior to development of oxidative stress and inflammation. Rapid increase in phosphorylation of extracellular signal regulated kinase (ERK) was observed in neurons of dorsal root ganglia after 20 min of H2O2 (10 µmoles/paw) administration, which gradually returned towards normal level within 24 h, following the pattern of thermal hyperalgesia. The expression of TNFR1 followed the same pattern and colocalised with pERK. ERK phosphorylation was observed in NF-200-positive and -negative neurons, indicating the involvement of ERK in C-fibres as well as in A-fibres. Intrathecal preadministration of Src family kinases (SFKs) inhibitor (PP1) and MEK inhibitor (PD98059) prevented H2O2 induced augmentation of ERK phosphorylation and thermal hyperalgesia. Pretreatment of protein tyrosine phosphatases (PTPs) inhibitor (sodium orthovanadate) also diminished hyperalgesia, although it further increased ERK phosphorylation. Combination of orthovanadate with PP1 or PD98059 did not exhibit synergistic antihyperalgesic effect. The results demonstrate SFKs-mediated ERK activation and increased TNFR1 expression in nociceptive neurons during H2O2 induced hyperalgesia. However, the role of PTPs in hyperalgesic behaviour needs further molecular analysis.

  13. How to Detect Inclined Water Maser Disks (and Possibly Measure Black Hole Masses)

    Energy Technology Data Exchange (ETDEWEB)

    Darling, Jeremy, E-mail: jdarling@colorado.edu [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Sciences, University of Colorado, 389 UCB, Boulder, CO 80309-0389 (United States)

    2017-03-10

    We describe a method for identifying inclined water maser disks orbiting massive black holes and for potentially using them to measure black hole masses. Owing to the geometry of maser amplification pathways, the minority of water maser disks are observable: only those viewed nearly edge-on have been identified, suggesting that an order of magnitude additional maser disks exist. We suggest that inward-propagating masers are gravitationally deflected by the central black hole, thereby scattering water maser emission out of the disk plane and enabling detection. The signature of an inclined water maser disk would be narrow masers near the systemic velocity that appear to emit from the black hole position, as identified by the radio continuum core. To explore this possibility, we present high-resolution (0.″07–0.″17) Very Large Array line and continuum observations of 13 galaxies with narrow water maser emission and show that three are good inclined-disk candidates (five remain ambiguous). For the best case, CGCG 120−039, we show that the maser and continuum emission are coincident to within 3.5 ± 1.4 pc (6.7 ± 2.7 mas). Subsequent very long baseline interferometric maps can confirm candidate inclined disks and have the potential to show maser rings or arcs that provide a direct measurement of black hole mass, although the mass precision will rely on knowledge of the size of the maser disk.

  14. Zn-Fe-CNTs catalytic in situ generation of H2O2 for Fenton-like degradation of sulfamethoxazole.

    Science.gov (United States)

    Liu, Yong; Fan, Qin; Wang, Jianlong

    2018-01-15

    A novel Fenton-like catalyst (Zn-Fe-CNTs) capable of converting O2 to H2O2 and further to OH was prepared through infiltration fusion method followed by chemical replacement in argon atmosphere. The catalyst was characterized by SEM, EDS, TEM, XRD and XPS. The reaction between Zn-Fe-CNTs and O2 in aqueous solution could generate H2O2 in situ, which was further transferred to OH. The Fenton-like degradation of sulfamethoxazole (SMX) using Zn-Fe-CNTs as catalyst was evaluated. The results indicated that Zn-Fe-CNTs had a coral porous structure with a BET area of 51.67m(2)/g, exhibiting excellent adsorption capacity for SMX, which enhanced its degradation. The particles of Zn(0) and Fe(0)/Fe2O3 were observed on the surface of Zn-Fe-CNTs. The mixture of Zn(0) and CNTs could reduce O2 into H2O2 by micro-electrolysis and Fe(0)/Fe2O3 could catalyze in-situ generation of H2O2 to produce OH through Fenton-like process. When initial pH=1.5, T=25°C, O2 flow rate=400mL/min, Zn-Fe-CNTs=0.6g/L, SMX=25mg/L and reaction time=10min, the removal efficiency of SMX and TOC was 100% and 51.3%, respectively. The intermediates were detected and the possible pathway of SMX degradation and the mechanism of Zn-Fe-CNTs/O2 process were tentatively proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Quantum Interference in the Vibrational Relaxation of the O-H Stretch Overtone of Liquid H2O.

    Science.gov (United States)

    van der Post, Sietse T; Woutersen, Sander; Bakker, Huib J

    2016-05-26

    Using femtosecond two-color infrared pump-probe spectroscopy, we study the vibrational relaxation of the O-H stretch vibrations of liquid H2O after excitation of the overtone transition. The overtone transition has its maximum at 6900 cm(-1) (1.45 μm), which is a relatively high frequency in view of the central frequency of 3400 cm(-1) of the fundamental transition. The excitation of the overtone leads to a transient induced absorption of two-exciton states of the O-H stretch vibrations. When the overtone excitation frequency is tuned from 6600 to 7200 cm(-1), the vibrational relaxation time constant of the two-exciton states increases from 400 ± 50 fs to 540 ± 40 fs. These values define a limited range of relatively long relaxation time constants compared to the range of relaxation time constants of 250-550 fs that we recently observed for the one-exciton O-H stretch vibrational state of liquid H2O ( S. T. van der Post et al., Nature Comm. 2015 , 6 , 8384 ). We explain the high central frequency and the limited range of relatively long relaxation time constants of the overtone transition from the destructive quantum interference of the mechanical and electrical anharmonic contributions to the overtone transition probability. As a result of this destructive interference, the overtone transition of liquid H2O is dominated by molecules of which the O-H groups donate relatively weak hydrogen bonds to other H2O molecules.

  16. Enhanced Cr(VI) removal from groundwater by Fe0-H2O system with bio-amended iron corrosion.

    Science.gov (United States)

    Yin, Weizhao; Li, Yongtao; Wu, Jinhua; Chen, Guocai; Jiang, Gangbiao; Li, Ping; Gu, Jingjing; Liang, Hao; Liu, Chuansheng

    2017-06-15

    A one-pot bio-iron system was established to investigate synergetic abiotic and biotic effects between iron and microorganisms on Cr(VI) removal. More diverse iron corrosion and reactive solids, such as green rusts, lepidocrocite and magnetite were found in the bio-iron system than in the Fe 0 -H 2 O system, leading to 4.3 times higher Cr(VI) removal efficiency in the bio-iron system than in the Fe 0 -H 2 O system. The cycling experiment also showed that the Cr(VI) removal capacity of Fe 0 in the bio-iron system was 12.4 times higher than that in the Fe 0 -H 2 O system. A 62days of life-span could be achieved in the bio-iron system, while the Fe 0 -H 2 O system lost its efficacy after 30days. Enhanced effects of extra Fe 2+ on Cr(VI) removal was observed, largely contributed to the adsorbed Fe 2+ on iron surface, which could function as an extra reductant for Cr(VI) and promote the electron transfer on the solid phase. The results also showed that the reduction of Cr(VI) by microorganisms was insignificant, indicating the adsorption/co-precipitation of Cr by iron oxides on iron surface was responsible for the overall Cr(VI) removal. Our study demonstrated that the bio-amended iron corrosion could improve the performance of Fe 0 for Cr(VI) removal from groundwater. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. H2O2 sensing using HRP modified catalyst-free ZnO nanorods synthesized by RF sputtering

    Science.gov (United States)

    Srivastava, Amit; Kumar, Naresh; Singh, Priti; Singh, Sunil Kumar

    2017-06-01

    Catalyst-free ( 00 l) oriented ZnO nanorods (NRs) -based biosensor for the H2O2 sensing has been reported. The (002) oriented ZnO NRs as confirmed by X-ray diffraction were successfully grown on indium tin oxide (ITO) coated glass substrate by radio frequency (RF) sputtering technique without using any catalyst. Horseradish peroxidase (HRP) enzyme was immobilized on ZnO NRs by physical adsorption technique to prepare the biosensor. In this HRP/ZnO NR/ITO bioelectrode, nafion solution was added to form a tight membrane on surface. The prepared bioelectrode has been used for biosensing measurements by electrochemical analyzer. The electrochemical studies reveal that the prepared HRP/ZnO NR/ITO biosensor is highly sensitive to the detection of H2O2 over a linear range of 0.250-10 μM. The ZnO NR-based biosensor showed lower value of detection limit (0.125 μM) and higher sensitivity (13.40 µA/µM cm2) towards H2O2. The observed value of higher sensitivity attributed to larger surface area of ZnO nanostructure for effective loading of HRP besides its high electron communication capability. In addition, the biosensor also shows lower value of enzyme's kinetic parameter (Michaelis-Menten constant, K m) of 0.262 μM which indicates enhanced enzyme affinity of HRP to H2O2. The reported biosensor may be useful for various applications in biosensing, clinical, food, and beverage industry.

  18. Cobalt ferrite nanoparticles decorated on exfoliated graphene oxide, application for amperometric determination of NADH and H2O2.

    Science.gov (United States)

    Ensafi, Ali A; Alinajafi, Hossein A; Jafari-Asl, M; Rezaei, B; Ghazaei, F

    2016-03-01

    Here, cobalt ferrite nanohybrid decorated on exfoliated graphene oxide (CoFe2O4/EGO) was synthesized. The nanohybrid was characterized by different methods such as X-ray diffraction spectroscopy, scanning electron microscopy, energy dispersive X-ray diffraction microanalysis, transmission electron microscopy, FT-IR, Raman spectroscopy and electrochemical methods. The CoFe2O4/EGO nanohybrid was used to modify glassy carbon electrode (GCE). The voltammetric investigations showed that CoFe2O4/EGO nanohybrid has synergetic effect towards the electro-reduction of H2O2 and electro-oxidation of nicotinamide adenine dinucleotide (NADH). Rotating disk chronoamperometry was used for their quantitative analysis. The calibration curves were observed in the range of 0.50 to 100.0 μmol L(-1) NADH and 0.9 to 900.0 μmol L(-1) H2O2 with detections limit of 0.38 and 0.54 μmol L(-1), respectively. The repeatability, reproducibility and selectivity of the electrochemical sensor for analysis of the analytes were studied. The new electrochemical sensor was successfully applied for the determination of NADH and H2O2 in real samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Nanoporous Carbon Nanofibers Decorated with Platinum Nanoparticles for Non-Enzymatic Electrochemical Sensing of H2O2

    Directory of Open Access Journals (Sweden)

    Yang Li

    2015-11-01

    Full Text Available We describe the preparation of nanoporous carbon nanofibers (CNFs decorated with platinum nanoparticles (PtNPs in this work by electrospining polyacrylonitrile (PAN nanofibers and subsequent carbonization and binding of PtNPs. The fabricated nanoporous CNF-PtNP hybrids were further utilized to modify glass carbon electrodes and used for the non-enzymatic amperometric biosensor for the highly sensitive detection of hydrogen peroxide (H2O2. The morphologies of the fabricated nanoporous CNF-PtNP hybrids were observed by scanning electron microscopy, transmission electron microscopy, and their structure was further investigated with Brunauer–Emmett–Teller (BET surface area analysis, X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectrum. The cyclic voltammetry experiments indicate that CNF-PtNP modified electrodes have high electrocatalytic activity toward H2O2 and the chronoamperometry measurements illustrate that the fabricated biosensor has a high sensitivity for detecting H2O2. We anticipate that the strategies utilized in this work will not only guide the further design and fabrication of functional nanofiber-based biomaterials and nanodevices, but also extend the potential applications in energy storage, cytology, and tissue engineering.

  20. Biotransformation of (R-(+-Limonene by the Psychrotrophic Fungus Mortierella minutissima in H2O2-Oxygenated Culture

    Directory of Open Access Journals (Sweden)

    Mariusz Trytek

    2009-01-01

    Full Text Available The aim of the present work is to investigate an integration of a microbial reaction system for the oxidation of limonene using a psychrotrophic strain with an unconventional oxygenation of the culture. The alternative method for increasing the dissolved oxygen concentration in culture media for biotransformation of R-(+-limonene by Mortierella minutissima 01 is based on catalase-mediated decomposition of hydrogen peroxide (H2O2 into oxygen and water. Automated addition of H2O2 into the bioreactor made it possible to keep the dissolved oxygen concentration constant over a range from 5 to 100 % (±2 %. Perillyl alcohol and perillyl aldehyde were the main products of the limonene biotransformation. The amounts of perillyl alcohol produced during H2O2-oxygenated culture of M. minutissima 01 were over 2-fold higher in comparison with classical, stirred aeration. Some factors affecting the biotransformation yield were also investigated. The addition of 0.3 % methanol enhanced 1.4-fold the perillyl alcohol production by M. minutissima 01. A maximum yield of this product (258.1 mg/L was observed between 2 and 3 days of cultivation in a medium containing 0.5 % substrate at 15 °C, pH=6.0. The bioconversion activity increased over 3.6-fold after optimization of some biotransformation conditions.

  1. Free radical behaviours during methylene blue degradation in Fe2+/H2O2 system.

    Science.gov (United States)

    Wang, Zhonghua; Zhao, Haiqian; Qi, Hanbing; Liu, Xiaoyan; Liu, Yang

    2017-12-13

    Behaviours of the free radicals during methylene blue (MB) oxidation process in Fe2+/H2O2 system were studied to reveal the reason for the low utilization efficiency of H2O2. The roles of O2-·, OH and HO2· radicals were proven to be different in MB oxidation process. The results showed that O2-·radicals had a strong ability to oxidize MB, however, they were not the main active substances for MB degradation due to the low concentration in traditional Fe2+/H2O2 system. HO2 radicals could not oxidize MB. OH radicals were the main active substances for MB oxidation. In the short initial stage, the utilization efficiency of H2O2 was high, because the generation rate of OH was much higher than that of HO2. More·OH radicals were involved in MB oxidation reaction. In the long deceleration stage (after the short initial stage), a large amount of H2O2 was consumed, but the amount of oxidized MB was very small. Most of the·OH radicals were consumed via the rapid useless reaction between ·OH and HO2· in this stage, resulting in the serious useless consumption of H2O2. It is a feasible method to improve the utilization efficiency of H2O2 by adding suitable additives into the Fe2+/H2O2 system to weaken the useless reaction between OH and HO2.

  2. Drosophila TRPA1 isoforms detect UV light via photochemical production of H2O2

    Science.gov (United States)

    Guntur, Ananya R.; Gu, Pengyu; Takle, Kendra; Chen, Jingyi; Xiang, Yang; Yang, Chung-Hui

    2015-01-01

    The transient receptor potential A1 (TRPA1) channel is an evolutionarily conserved detector of temperature and irritant chemicals. Here, we show that two specific isoforms of TRPA1 in Drosophila are H2O2 sensitive and that they can detect strong UV light via sensing light-induced production of H2O2. We found that ectopic expression of these H2O2-sensitive Drosophila TRPA1 (dTRPA1) isoforms conferred UV sensitivity to light-insensitive HEK293 cells and Drosophila neurons, whereas expressing the H2O2-insensitive isoform did not. Curiously, when expressed in one specific group of motor neurons in adult flies, the H2O2-sensitive dTRPA1 isoforms were as competent as the blue light-gated channelrhodopsin-2 in triggering motor output in response to light. We found that the corpus cardiacum (CC) cells, a group of neuroendocrine cells that produce the adipokinetic hormone (AKH) in the larval ring gland endogenously express these H2O2-sensitive dTRPA1 isoforms and that they are UV sensitive. Sensitivity of CC cells required dTRPA1 and H2O2 production but not conventional phototransduction molecules. Our results suggest that specific isoforms of dTRPA1 can sense UV light via photochemical production of H2O2. We speculate that UV sensitivity conferred by these isoforms in CC cells may allow young larvae to activate stress response—a function of CC cells—when they encounter strong UV, an aversive stimulus for young larvae. PMID:26443856

  3. H2O2 Production in Microbial Electrochemical Cells Fed with Primary Sludge.

    Science.gov (United States)

    Ki, Dongwon; Popat, Sudeep C; Rittmann, Bruce E; Torres, César I

    2017-06-06

    We developed an energy-efficient, flat-plate, dual-chambered microbial peroxide producing cell (MPPC) as an anaerobic energy-conversion technology for converting primary sludge (PS) at the anode and producing hydrogen peroxide (H2O2) at the cathode. We operated the MPPC with a 9 day hydraulic retention time in the anode. A maximum H2O2 concentration of ∼230 mg/L was achieved in 6 h of batch cathode operation. This is the first demonstration of H2O2 production using PS in an MPPC, and the energy requirement for H2O2 production was low (∼0.87 kWh/kg H2O2) compared to previous studies using real wastewaters. The H2O2 gradually decayed with time due to the diffusion of H2O2-scavenging carbonate ions from the anode. We compared the anodic performance with a H2-producing microbial electrolysis cell (MEC). Both cells (MEC and MPPC) achieved ∼30% Coulombic recovery. While similar microbial communities were present in the anode suspension and anode biofilm for the two operating modes, aerobic bacteria were significant only on the side of the anode facing the membrane in the MPPC. Coupled with a lack of methane production in the MPPC, the presence of aerobic bacteria suggests that H2O2 diffusion to the anode side caused inhibition of methanogens, which led to the decrease in chemical oxygen demand removal. Thus, the Coulombic efficiency was ∼16% higher in the MPPC than in the MEC (64% versus 48%, respectively).

  4. Antioxidative potential of Duranta repens (linn.) fruits against H 2 O 2 ...

    African Journals Online (AJOL)

    The effects of Duranta repens fruits were investigated on H2O2 induced oxidative cell death to evaluate its antioxidative potential in vitro. HEK293T cells were treated with different concentrations [0-1000 ìg/ ml] of ethanol extract (E-Ex) and methanol extract (M-Ex) of D. repens for 24h, and then treated with 100 ìM H2O2 for ...

  5. Energetics of CO2 and H2O adsorption on zinc oxide.

    Science.gov (United States)

    Gouvêa, Douglas; Ushakov, Sergey V; Navrotsky, Alexandra

    2014-08-05

    Adsorption of H2O and CO2 on zinc oxide surfaces was studied by gas adsorption calorimetry on nanocrystalline samples prepared by laser evaporation in oxygen to minimize surface impurities and degassed at 450 °C. Differential enthalpies of H2O and CO2 chemisorption are in the range -150 ±10 kJ/mol and -110 ±10 kJ/mol up to a coverage of 2 molecules per nm(2). Integral enthalpy of chemisorption for H2O is -96.8 ±2.5 kJ/mol at 5.6 H2O/nm(2) when enthalpy of water condensation is reached, and for CO2 is -96.6 ±2.5 kJ/mol at 2.6 CO2/nm(2) when adsorption ceases. These values are consistent with those reported for ZnO prepared by other methods after similar degas conditions. The similar energetics suggests possible competition of CO2 and H2O for binding to ZnO surfaces. Exposure of bulk and nanocrystalline ZnO with preadsorbed CO2 to water vapor results in partial displacement of CO2 by H2O. In contrast, temperature-programmed desorption (TPD) indicates that a small fraction of CO2 is retained on ZnO surfaces up to 800 °C, under conditions where all H2O is desorbed, with adsorption energies near -200 kJ/mol. Although molecular mechanisms of adsorption were not studied, the thermodynamic data are consistent with dissociative adsorption of H2O at low coverage and with several different modes of CO2 binding.

  6. Biosynthesis and Degradation of H2O2 by Vaginal Lactobacilli▿

    OpenAIRE

    Martín, Rebeca; Suárez, Juan E.

    2009-01-01

    Hydrogen peroxide production by vaginal lactobacilli represents one of the most important defense mechanisms against vaginal colonization by undesirable microorganisms. To quantify the ability of a collection of 45 vaginal Lactobacillus strains to generate H2O2, we first compared three published colorimetric methods. It was found that the use of DA-64 as a substrate rendered the highest sensitivity, while tetramethyl-benzidine (TMB) maintained its linearity from nanomolar to millimolar H2O2 c...

  7. Drosophila TRPA1 isoforms detect UV light via photochemical production of H2O2.

    Science.gov (United States)

    Guntur, Ananya R; Gu, Pengyu; Takle, Kendra; Chen, Jingyi; Xiang, Yang; Yang, Chung-Hui

    2015-10-20

    The transient receptor potential A1 (TRPA1) channel is an evolutionarily conserved detector of temperature and irritant chemicals. Here, we show that two specific isoforms of TRPA1 in Drosophila are H2O2 sensitive and that they can detect strong UV light via sensing light-induced production of H2O2. We found that ectopic expression of these H2O2-sensitive Drosophila TRPA1 (dTRPA1) isoforms conferred UV sensitivity to light-insensitive HEK293 cells and Drosophila neurons, whereas expressing the H2O2-insensitive isoform did not. Curiously, when expressed in one specific group of motor neurons in adult flies, the H2O2-sensitive dTRPA1 isoforms were as competent as the blue light-gated channelrhodopsin-2 in triggering motor output in response to light. We found that the corpus cardiacum (CC) cells, a group of neuroendocrine cells that produce the adipokinetic hormone (AKH) in the larval ring gland endogenously express these H2O2-sensitive dTRPA1 isoforms and that they are UV sensitive. Sensitivity of CC cells required dTRPA1 and H2O2 production but not conventional phototransduction molecules. Our results suggest that specific isoforms of dTRPA1 can sense UV light via photochemical production of H2O2. We speculate that UV sensitivity conferred by these isoforms in CC cells may allow young larvae to activate stress response--a function of CC cells--when they encounter strong UV, an aversive stimulus for young larvae.

  8. CO2 trapping in amorphous H2O ice: Relevance to polar mesospheric cloud particles

    Science.gov (United States)

    Mangan, T. P.; Frankland, V. L.; Plane, J. M. C.

    2015-05-01

    Polar mesospheric clouds form in the summer high latitude mesopause region and are primarily comprised of H2O ice, forming at temperatures below 150 K. Average summertime temperatures in the polar mesosphere (78°N) are approximately 125 K and can be driven lower than 100 K by gravity waves. Under these extreme temperature conditions and given the relative mesospheric concentrations of CO2 and H2O (~360 ppmv and ~10 ppmv, respectively) it has been hypothesised that CO2 molecules could become trapped within amorphous mesospheric ice particles, possibly making a significant contribution to the total condensed volume. Studies of CO2 trapping in co-deposited gas mixtures of increasing CO2:H2O ratio (deposited at 98 K) were analysed via temperature programmed desorption. CO2 trapping was found to be negligible when the H2O flux to the surface was reduced to 4.8×1013 molecules cm-2 s-1. This corresponds to an average of 0.4 H2O molecules depositing on an adsorbed CO2 molecule and thereby trapping it in amorphous ice. Extrapolating the experimental data to mesospheric conditions shows that a mesospheric temperature of 100 K would be required (at a maximum mesospheric H2O concentration of 10 ppmv) in order to trap CO2 in the ice particles. Given the rarity of this temperature being reached in the mesosphere, this process would be an unlikely occurrence.

  9. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response

    Science.gov (United States)

    Saxena, Ina; Srikanth, Sandhya; Chen, Zhong

    2016-01-01

    It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses. PMID:27200043

  10. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response.

    Science.gov (United States)

    Saxena, Ina; Srikanth, Sandhya; Chen, Zhong

    2016-01-01

    It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses.

  11. Quantification of the production of hydrogen peroxide H2O2 during accelerated wine oxidation.

    Science.gov (United States)

    Héritier, Julien; Bach, Benoît; Schönenberger, Patrik; Gaillard, Vanessa; Ducruet, Julien; Segura, Jean-Manuel

    2016-11-15

    Understanding how wines react towards oxidation is of primary importance. Here, a novel approach was developed based on the quantitative determination of the key intermediate H2O2 produced during accelerated oxidation by ambient oxygen. The assay makes use of the conversion of the non-fluorescent Amplex Red substrate into a fluorescent product in presence of H2O2. The total production of H2O2 during 30min was quantified with low within-day and between-day variabilities. Polymerized pigments, but not total polyphenols, played a major role in the determination of H2O2 levels, which were lower in white wines than red wines. H2O2 amounts also increased with temperature and the addition of metal ions, but did not depend on the concentration of many other wine constituents such as SO2. H2O2 levels did not correlate with anti-oxidant properties. We believe that this novel methodology might be generically used to decipher the oxidation mechanisms in wines and food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. In vivo imaging of H2O2 production in Drosophila.

    Science.gov (United States)

    Barata, Ana G; Dick, Tobias P

    2013-01-01

    H2O2 plays many roles in cellular physiology. Therefore, we need tools for quantitative detection of H2O2 in tissues and whole model organisms. We recently introduced a genetically encoded H2O2 sensor, roGFP2-Orp1, which couples the redox-sensitive green fluorescent protein 2 (roGFP2) to the yeast H2O2 sensor protein Orp1. Expression of cytosolic or mitochondrial roGFP2-Orp1 in Drosophila allows the measurement of physiologically relevant changes in H2O2 levels, with compartment-specific resolution. Here, we provide a detailed protocol for the relative quantitation of H2O2 levels in living larvae by real-time imaging. We also describe a dissection and fixation method that conserves the redox state of the probe and thus allows reliable measurements on fixed adult tissues. Finally, we give recommendations for image processing, analysis, and interpretation, highlighting issues that require attention to detail, to ensure accuracy and validity of results. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Cosmetic wastewater treatment using the Fenton, Photo-Fenton and H2O2/UV processes.

    Science.gov (United States)

    Marcinowski, Piotr P; Bogacki, Jan P; Naumczyk, Jeremi H

    2014-01-01

    Advanced Oxidation Processes (AOPs), such as the Fenton, photo-Fenton and H2O2/UV processes, have been investigated for the treatment of cosmetic wastewaters that were previously coagulated by FeCl3. The Photo-Fenton process at pH 3.0 with 1000/100 mg L(-1) H2O2/Fe(2+) was the most effective (74.0% Chemical Oxygen Demand (COD) removal). The Fenton process with 1200/500 mg L(-1) H2O2/Fe(2+) achieved a COD removal of 72.0%, and the H2O2/UV process achieved a COD removal of 47.0%. Spreading the H2O2 doses over time to obtain optimal conditions did not improve COD removal. The kinetics of the Fenton and photo-Fenton processes may be described by the following equation: d[COD]/dt = -a[COD] t(m) (t represents time and a and m are constants). The rate of COD removal by the H2O2/UV process may be described by a second-order reaction equation. Head Space, Solid-Phase MicroExtraction, Gas Chromatography and Mass Spectrometry (HS-SPME-GC-MS) were used to identify 48 substances in precoagulated wastewater. Among these substances, 26 were fragrances. Under optimal AOP conditions, over 99% of the identified substances were removed in 120 min.

  14. Abundances and spatial distributions of H2O and CO2 at comet 9P/Tempel 1 during a natural outburst

    Science.gov (United States)

    Moretto, M. J.; Feaga, L. M.; A'Hearn, M. F.

    2017-11-01

    On approach to comet 9P/Tempel 1, Deep Impact observed about one dozen natural outbursts. One of the largest occurred on 2 July 2005 and was also captured by Deep Impact's infrared spectrometer, HRI-IR. HRI-IR operates between 1.05 and 4.86 μm, allowing it to detect H2O (2.67 μm) and CO2 (4.27 μm) emission bands simultaneously. In the hours leading up to the outburst, both H2O and CO2 behaved quiescently, consistent with previously published studies. During the outburst, CO2 abundance increased by 40% while H2O abundance stayed constant. No additional species were detectable during the outburst. The distribution of CO2 during the outburst is correlated with that of the dust, observed at the same time in the visible. The abundance of CO2 returned to quiescent levels within 3.6 h of outburst onset. A slight enhancement in H2O was observed well after the outburst, though this does not appear to be correlated with the outburst. From this analysis, it is likely that CO2 was a driver of the 2 July 2005 outburst and that H2O was not.

  15. Production of O2 through dismutation of H2O2 during water ice desorption: a key to understanding comet O2 abundances

    Science.gov (United States)

    Dulieu, F.; Minissale, M.; Bockelée-Morvan, D.

    2017-01-01

    Context. Detection of molecular oxygen and prediction of its abundance have long been a challenge for astronomers. The low abundances observed in few interstellar sources are well above the predictions of current astrochemical models. During the Rosetta mission, an unexpectedly high abundance of O2 was discovered in the comet 67P/Churyumov-Gerasimenko's coma. A strong correlation between O2 and H2O productions is observed, whereas no such correlation is observed between O2 and either of CO or N2. Aims: We suggest that the O2 molecule may be formed during the evaporation of water ice. We propose a possible reaction: the dismutation of H2O2 (2 H2O2-→ 2 H2O + O2), a molecule which should be co-produced during the water ice mantle growth on dust grains. We aim to test this hypothesis under realistic experimental conditions. Methods: We performed two sets of experiments. They consist of producing a mixture of D2O and D2O2 via the reaction of O2 and D on a surface held at 10 K. The first set is made on a silicate substrate, and explores the limit of thin films, in order to prevent any complication due to trapping during the desorption. The second set is performed on a pre-deposited H2O ice substrate and mimics the desorption of mixed ice. Results: In thin films, O2 is produced by the dismutation of H2O2, even at temperatures as low as 155 K. Mixed with water, H2O2 desorbs after the water ice sublimation and even more desorption of O2 is observed. Conclusions: H2O2, synthesised during the growth of interstellar ices (or by later processing), desorbs at the latest stage of the water sublimation and undergoes the dismutation reaction. Therefore an O2 release in the gas phase should occur at the end of the evaporation of ice mantles. Temperature gradients along the geometry of clouds, or interior of comets, should blend the different stages of the sublimation. Averaged along the whole process, a mean value of the O2/H2O ratio of a few percent in the gas phase seems

  16. Microchannel Reactor System Design & Demonstration For On-Site H2O2 Production by Controlled H2/O2 Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Adeniyi Lawal

    2008-12-09

    We successfully demonstrated an innovative hydrogen peroxide (H2O2) production concept which involved the development of flame- and explosion-resistant microchannel reactor system for energy efficient, cost-saving, on-site H2O2 production. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for controlled direct combination of H2 and O2 in all proportions including explosive regime, at a low pressure and a low temperature to produce about 1.5 wt% H2O2 as proposed. In the second phase of the program, as a prelude to full-scale commercialization, we demonstrated our H2O2 production approach by ‘numbering up’ the channels in a multi-channel microreactor-based pilot plant to produce 1 kg/h of H2O2 at 1.5 wt% as demanded by end-users of the developed technology. To our knowledge, we are the first group to accomplish this significant milestone. We identified the reaction pathways that comprise the process, and implemented rigorous mechanistic kinetic studies to obtain the kinetics of the three main dominant reactions. We are not aware of any such comprehensive kinetic studies for the direct combination process, either in a microreactor or any other reactor system. We showed that the mass transfer parameter in our microreactor system is several orders of magnitude higher than what obtains in the macroreactor, attesting to the superior performance of microreactor. A one-dimensional reactor model incorporating the kinetics information enabled us to clarify certain important aspects of the chemistry of the direct combination process as detailed in section 5 of this report. Also, through mathematical modeling and simulation using sophisticated and robust commercial software packages, we were able to elucidate the hydrodynamics of the complex multiphase flows that take place in the microchannel. In conjunction with the kinetics information, we were able to validate the experimental data. If fully implemented across the whole

  17. Detailed Analysis of Near-IR Water (H2O) Emission in Comet C/2014 Q2 (LOVEJOY) with the GIANO/TNG Spectrograph

    Science.gov (United States)

    Faggi, S.; Villanueva, G. L.; Mumma, M. J.; Brucato, J.R.; Tozzi, G. P.; Oliva, E.; Massi, F.; Sanna, N.; Tozzi, A.

    2016-01-01

    We observed the Oort cloud comet C/2014 Q2 (Lovejoy) on 2015 January 31 and February 1 and 2 at a heliocentric distance of 1.3 au and geocentric distance of 0.8 au during its approach to the Sun. Comet Lovejoy was observed with GIANO, the near-infrared high-resolution spectrograph mounted at the Nasmyth-A focus of the TNG (Telescopio Nazionale Galileo) telescope in La Palma, Canary Islands, Spain. We detected strong emissions of radical CN and water, along with many emission features of unidentified origin, across the 1-2.5 micron region. Spectral lines from eight ro-vibrational bands of H2O were detected, six of them for the first time. We quantified the water production rate [Q(H2O), (3.11+/- 0.14) x 10(exp 29)/s] by comparing the calibrated line fluxes with the Goddard full non-resonance cascade fluorescence model for H2O. The production rates of ortho-water [Q(H2O)ORTHO, (2.33+/- 0.11) x 10(exp 29)/s] and para-water [Q(H2O)PARA, (0.87+/-0.21) x 10(exp 29)/s] provide a measure of the ortho-to-para ratio (2.70+/- 0.76)). The confidence limits are not small enough to provide a critical test of the nuclear spin temperature.

  18. High pressure experimental study of eclogite with varying H2O contents

    Science.gov (United States)

    Rosenthal, A.; Frost, D. J.; Petitgirard, S.; Yaxley, G. M.; Berry, A.; Woodland, A. B.; Pinter, Z.; Vasilyev, P.; Ionov, D. A.; Jacob, D. E.; Pearson, G. D.; Kovacs, I.; Padron-Navarta, A.

    2014-12-01

    Given the strong influence of volatiles on mantle melting processes, it is critical to understand the behaviour of volatiles (such as H2O) in subducted oceanic crustal material (eclogite) during subduction and subsequent recycling and mantle melting processes, and their impacts on volcanism. As natural samples from subduction zones from the deep Earth's interior are largely inaccessible, the only way to determine the H2O content of eclogite is to simulate high pressure (P) and temperature (T) conditions equivalent to conditions of the Earth's interior using high-P experimental facilities. A particular interest is to determine the H2O content of eclogitic nominally anhydrous minerals (NAMs; such as garnet, clinopyroxene) at the conditions where hydrous phases (such as phengite) are breaking down to release H2O that would then leave the slab. As a starting material, we use average oceanic basalt (GA1, representative of recycled oceanic crust [1]) with varying bulk %H2O (≤7 wt.%). We conducted experiments using GA1 at different P's (6-10 GPa), T's (850-1500°C) and bulk %H2O (up to 7 wt.%) using multi anvil apparatuses. The run products at each P, T, and bulk H2O contents show well-equilibrated eclogitic phase assemblages of garnet ± clinopyroxene ± coesite/stishovite ± rutile ± phengite ± melt ± vapour. Runs (>0.5 wt.% H2O) at 6 GPa and up to ~950°C, and at 8-9 GPa and up to ~1050°C are subsolidus, while towards higher T small melt fractions appear. Similar to previous studies [e.g. 2-6], the stability of phengite varies as a function of P, T, buffering mineral paragenesis and bulk H2O concentration. Phengite breaks down >9 GPa. Eclogitic NAMs and phengite also break down at subsolidus conditions in the presence of excess of hydrous fluids. For instance, K2O in phengite and clinopyroxene decrease with increasing bulk H2O content at subsolidus conditions at given P, T, suggesting a leaching role of K2O by a vapour-rich fluid. [1] Yaxley, G. M. & Green, D. H

  19. Preparation of a Superhydrophobic and Peroxidase-like Activity Array Chip for H2O2 Sensing by Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Yu, Zhi; Park, Yeonju; Chen, Lei; Zhao, Bing; Jung, Young Mee; Cong, Qian

    2015-10-28

    In this paper, we propose a novel and simple method for preparing a dual-biomimetic functional array possessing both superhydrophobic and peroxidase-like activity that can be used for hydrogen peroxide (H2O2) sensing. The proposed method is an integration innovation that combines the above two properties and surface-enhanced Raman scattering (SERS). We integrated a series of well-ordered arrays of Au points (d = 1 mm) onto a superhydrophobic copper (Cu)/silver (Ag) surface by replicating an arrayed molybdenum template. Instead of using photoresists and the traditional lithography method, we utilized a chemical etching method (a substitution reaction between Cu and HAuCl4) with a Cu/Ag superhydrophobic surface as the barrier layer, which has the benefit of water repellency. The as-prepared Au points were observed to possess peroxidase-like activity, allowing for catalytic oxidation of the chromogenic molecule o-phenylenediamine dihydrochloride (OPD). Oxidation was evidenced by a color change in the presence of H2O2, which allows the array chip to act as an H2O2 sensor. In this study, the water repellency of the superhydrophobic surface was used to fabricate the array chip and increase the local reactant concentration during the catalytic reaction. As a result, the catalytic reaction occurred when only 2 μL of an aqueous sample (OPD/H2O2) was placed onto the Au point, and the enzymatic product, 2,3-diaminophenazine, showed a SERS signal distinguishable from that of OPD after mixing with 2 μL of colloidal Au. Using the dual-biomimetic functional array chip, quantitative analysis of H2O2 was performed by observing the change in the SERS spectra, which showed a concentration-dependent behavior for H2O2. This method allows for the detection of H2O2 at concentrations as low as 3 pmol per 2 μL of sample, which is a considerable advantage in H2O2 analysis. The as-prepared substrate was convenient for H2O2 detection because only a small amount of sample was required in

  20. Polyoxometalate catalysts: toward the development of green H2O2-based epoxidation systems.

    Science.gov (United States)

    Mizuno, Noritaka; Yamaguchi, Kazuya

    2006-01-01

    This paper describes the development of green, efficient H(2)O(2)-based epoxidation systems with three kinds of polyoxometalates: (i) a dinuclear peroxotungstate [W(2)O(3)(O(2))(4)(H(2)O)(2)](2-) (I), (ii) a divacant lacunary polyoxotungstate [gamma-SiW(10)O(34)(H(2)O)(2)]4 (II), (iii) and a divanadium-substituted polyoxotungstate [gamma-1,2-H(2)SiV(2)W(10)O(40)](4-) (III). The highly chemo-, regio-, and diastereoselective epoxidation of various allylic alcohols with only 1 equiv H(2)O(2) in water can be efficiently catalyzed by potassium salt of I (K-I). The catalyst K-I can be recycled with the retention of the catalytic performance. Protonation of a divacant lacunary polyoxotungstate [gamma-SiW(10)O(36)](8-) gives [gamma-SiW(10)O(34)(H(2)O)(2)](4-) (II) with two aquo ligands. The tetra-n-butylammonium salt of II (TBA-II) catalyzes epoxidation of common olefins including propylene with >or=99% selectivity to epoxide and >or=99% efficiency of H(2)O(2) utilization. The bis(mu-hydroxo)bridged dioxovanadium site in [gamma-1,2-H(2)SiV(2)W(10)O(40)](4-) (III) can also efficiently catalyze epoxidation of a variety of olefins with 1 equiv H(2)O(2). Notably, the system with III shows unique stereospecificity, diastereoselectivity, and regioselectivity for the epoxidation of cis/trans olefins, 3-substituted cyclohexenes, and nonconjugated dienes, respectively, which are quite different from those reported for epoxidation systems up to now. Furthermore, the heterogenization of the mentioned polyoxometalates can be achieved by using ionic liquid-modified SiO(2) as a support without loss of catalytic performance. (c) 2006 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  1. [Photochemical degradation of landfill leachate facilitated by combined schwertmannite and H2O2].

    Science.gov (United States)

    Wang, He-Ru; Song, Yong-Wei; Xu, Zhi-Hui; Cui, Chun-Hong; Zhou, Li-Xiang

    2014-04-01

    It is practically important that high concentrations of organic pollutants in landfill leachate were degraded by a rapid and efficient approach. The influence of operating conditions such as schwertmannite dosage, V(H2O2)/m (schwertmannite) ratio on the degradation efficiency of color, TOC and COD contents of landfill leachate, was investigated by using the schwertmannite/H2O2/UV process. It was demonstrated that the color, TOC and COD removal efficiencies increased significantly with the increase in schwertmannite dosage, and then were approximately stable. However, COD removal efficiency declined because of the presence of the residual H2O2 when V (H2O2)/m (schwertmannite) was greater than 2, and the best removal efficiency of COD was 44.9%. Furthermore, high-intensity ultraviolet was more conducive to eliminate pollutants through photochemical oxidation with schwertmannite/H2O2. The color, TOC and COD removal efficiencies were 90.0%, 78.8% and 52.6% respectively after 2.5 hours of photochemical degradation, with UV-500 W under optimal initial pH = 2.5; meanwhile, this study found that it was beneficial to the photochemical degradation of leachate at room temperature via the schwertmannite/H2O2/UV process, and COD removal efficiency declined gradually when the temperature was higher than 25 degrees C. Controlled trials showed that the schwertmannite/H2O2 method was conducive to the removal of color compared with the traditional homogeneous Fenton reaction.

  2. Effects of H2O2 at rat myenteric neurones in culture.

    Science.gov (United States)

    Pouokam, Ervice; Rehn, Matthias; Diener, Martin

    2009-08-01

    Oxidants, produced e.g. during inflammation, alter gastrointestinal functions finally leading to diarrhoea and/or tissue damage. There is only scarce information about the action of oxidants on enteric neurones, which play a central role in the regulation of many gastrointestinal processes. Therefore, the effect of an oxidant, H(2)O(2), on cultured rat myenteric neurones was studied with the whole-cell patch-clamp and imaging (fura-2) techniques. H(2)O(2) (5 mmol/l) induced an increase in the cytosolic Ca(2+) concentration. Both an intracellular release via IP(3) and ryanodine receptors as well as a Gd(3+)-sensitive Ca(2+) influx contributed to this response. Measurement of the membrane potential revealed that the neuronal membrane hyperpolarized by 11.3+/-0.8 mV in the presence of H(2)O(2). Inhibition of Ca(2+)-dependent K(+) channels prevented this hyperpolarization. Voltage-clamp experiments revealed a second action of the oxidant, i.e. a strong inhibition of the fast Na(+) current responsible for the generation of action potentials. This effect seemed to be mediated by the hydroxyl radical (*OH), as Fe(2+) (100 micromol/l), which leads to the generation of this radical from H(2)O(2) via the Fenton reaction, strongly potentiated the action of an ineffective concentration (100 micromol/l) of the oxidant. Protein phosphorylation/dephosphorylation seems to be involved in the mechanism of action of H(2)O(2), as the protein phosphatase inhibitor calyculin A (100 nmol/l) strongly reduced the inhibition of Na(+) current by H(2)O(2). This effect was mimicked by the protein phosphatase 2A specific inhibitor endothall (100 nmol/l), whereas the PP1 blocker tautomycin (3 nmol/l) was less effective. These results suggest that H(2)O(2) reduces the excitability of rat myenteric neurones by a change of basal membrane potential and an inhibition of Na(+) currents.

  3. [Degradation of norfloxacin by nano-Fe3O4/H2O2].

    Science.gov (United States)

    Zhang, Di; Wang, Yi-Xuan; Niu, Hong-Yun; Meng, Zhao-Fu

    2011-10-01

    The degradation of norfloxacin in aquatic environment was studied in the presence of Fe3O4 nanoparticles and H2O2. The effects of solution pH, temperature, dose of catalysts and concentration of H2O2 on norfloxacin degradation were surveyed. The degradation behaviors of different substrates by nano-Fe3O4/H2O2 were investigated and the reaction mechanism of norfloxacin was discussed. The results showed that the reaction was strongly pH-dependent and favored in acidic solution (pH = 3.5). The removal efficiency of norfloxacin was enhanced with the increase of temperature, catalysts dosage and H2O2 concentration. The degradation efficiency of norfloxacin by nano-Fe3O4/H2O2 was significantly higher than those of sulfathiazole, phenolic and aniline compounds. In the presence of 4.4 mmol x L(-1) of H2O2, 0.80 g x L(-1) of Fe3O4 and T = 303 K, norfloxacin was degraded completely in 5 min. The F element in norfloxacin molecule existed totally as F(-) in solution within 5 min, and the removal efficiency of total organic carbon was 57% in 1 h. In the ESR spectrum of nano-Fe3O4/H2O2 system, the characteristic peaks of BMPO-*OH adduct was detected, however, the intensity of the peaks was reduced to 5% with the addition of tert-butanol, a strong *OH scavenger, and the degradation efficiency of norfloxacin was correspondingly decreased to 10% in 1 h. These results indicated that *OH played an important role on norfloxacin degradation, and the reaction proceeded based on a heterogeneous Fenton-like system.

  4. Electric Properties of Water Ice doped with Hydrogen Peroxide (H2O2): Implications for Icy Moons such as Europa

    Science.gov (United States)

    Keller, C.; Freund, F. T.; Cruikshank, D. P.

    2012-12-01

    Large floats of ice on Jupiter's moon Europa drift and collide. The float boundaries are marked by brownish-reddish colors. The origin of these colors is poorly understood. Maybe upwelling of water along the active float boundaries brings finely divided suspended matter or organic compounds from the ocean below to the surface, where the intense, high energy environment in Jupiter's radiation belt would lead to photochemical oxidation. At the same time it has been suggested that Europa's ice contains traces of H2O2, presumably due to micro-meteorite impacts and other processes. We measured the electric currents generated in pure and H2O2-doped water ice when we subjected one end of ice blocks to uniaxial stress. Ice samples with 0%, 0.3% and 0.03% H2O2 were formed in polyethylene troughs, 4.1 x 13.5 x 3.8 cm, with Cu contacts at both ends, at 263K (-10°C), 190K (-78°C, dry ice) and 77K (-196°C,liquid N2). At 77K the ice samples detached themselves from at least one of the Cu contacts, due to thermal contraction. At 190K, when stressing one end, essentially no currents were produced in the pure water ice. By contrast, H2O2-doped ices produced several hundred picoamperes (pA) of positive currents, indicating defect electrons (holes) flowing down the stress gradient. At 263K the results are ambiguous. These (as yet preliminary) results indicate that stresses might break the peroxy bonds of imbedded H2O2 molecules, releasing the same type of positive hole charge carriers as observed during stress experiments with silicate rocks. Since positive holes are defect electrons associated with O 2sp levels at the upper edge of the valence band, they seem to have the capability to spread through the ices. Chemically positive holes are equivalent to highly oxidizing oxygen radicals. They may be responsible for oxidation reactions along the boundaries of active ice floats on Europa.

  5. Contrasting atmospheric boundary layer chemistry of methylhydroperoxide (CH3OOH and hydrogen peroxide (H2O2 above polar snow

    Directory of Open Access Journals (Sweden)

    D. K. Friel

    2009-05-01

    Full Text Available Atmospheric hydroperoxides (ROOH were measured at Summit, Greenland (72.97° N, 38.77° W in summer 2003 (SUM03 and spring 2004 (SUM04 and South Pole in December 2003 (SP03. The two dominant hydroperoxides were H2O2 and CH3OOH (from here on MHP with average (±1σ mixing ratios of 1448 (±688 pptv, 204 (±162 and 278 (±67 for H2O2 and 578 (±377 pptv, 139 (±101 pptv and 138 (±89 pptv for MHP, respectively. In early spring, MHP dominated the ROOH budget and showed night time maxima and daytime minima, out of phase with the diurnal cycle of H2O2, suggesting that the organic peroxide is controlled by photochemistry, while H2O2 is largely influenced by temperature driven exchange between the atmosphere and snow. Highly constrained photochemical box model runs yielded median ratios between modeled and observed MHP of 52%, 148% and 3% for SUM03, SUM04 and SP03, respectively. At Summit firn air measurements and model calculations suggest a daytime sink of MHP in the upper snow pack, which decreases in strength through the spring season into the summer. Up to 50% of the estimated sink rates of 1–5×1011 molecules m−3 s−1 equivalent to 24–96 pptv h−1 can be explained by photolysis and reaction with the OH radical in firn air and in the quasi-liquid layer on snow grains. Rapid processing of MHP in surface snow is expected to contribute significantly to a photochemical snow pack source of formaldehyde (CH2O. Conversely, summer levels of MHP at South Pole are inconsistent with the prevailing high NO concentrations, and cannot be explained currently by known photochemical precursors or transport, thus suggesting a missing source. Simultaneous measurements of H2O2, MHP and CH2O allow to constrain the NO background today and potentially also in the past using ice cores, although it seems less likely that MHP is preserved in firn and ice.

  6. H2O2 Synthesis Induced by Irradiation of H2O with Energetic H(+) and Ar(+) Ions at Various Temperatures

    Science.gov (United States)

    Baragiola, R. A.; Loeffler, M. J.; Raut, U.; Vidal, R. A.; Carlson, R. W.

    2004-01-01

    The detection of H2O2 on Jupiter's icy satellite Europa by the Galileo NIMS instrument presented a strong evidence for the importance of radiation effects on icy surfaces. A few experiments have investigated whether solar flux of protons incident on Europa ice could cause a significant if any H2O2 production. These published results differ as to whether H2O2 can be formed by ions impacting water at temperatures near 80 K, which are appropriate to Europa. This discrepancy may be a result of the use of different incident ion energies, different vacuum conditions, or different ways of processing the data. The latter possibility comes about from the difficulty of identifying the 3.5 m peroxide OH band on the long wavelength wing of the much stronger water 3.1 m band. The problem is aggravated by using straight line baselines to represent the water OH band with a curvature, in the region of the peroxide band, that increases with temperature. To overcome this problem, we use polynomial baselines that provide good fits to the water band and its derivative.

  7. Crystal structure of [Y6(μ6-O(μ3-OH8(H2O24]I8·8H2O

    Directory of Open Access Journals (Sweden)

    François Le Natur

    2014-12-01

    Full Text Available The crystal structure of the title compound {systematic name: octa-μ3-hydroxido-μ6-oxido-hexakis[tetraaquayttrium(III] octaiodide octahydrate}, is characterized by the presence of the centrosymmetric molecular entity [Y6(μ6-O(μ3-OH8(H2O24]8+, in which the six Y3+ cations are arranged octahedrally around a μ6-O atom at the centre of the cationic complex. Each of the eight faces of the Y6 octahedron is capped by an μ3-OH group in the form of a distorted cube. In the hexanuclear entity, the Y3+ cations are coordinated by the central μ6-O atom, the O atoms of four μ3-OH and of four water molecules. The resulting coordination sphere of the metal ions is a capped square-antiprism. The crystal packing is quite similar to that of the orthorhombic [Ln6(μ6-O(μ3-OH8(H2O24]I8·8H2O structures with Ln = La—Nd, Eu—Tb, Dy, except that the title compound exhibits a slight monoclinic distortion. The proximity of the cationic complexes and the lattice water molecules leads to the formation of a three-dimensional hydrogen-bonded network of medium strength.

  8. Expression patterns of H2-O in mouse B cells and dendritic cells correlate with cell function.

    Science.gov (United States)

    Fallas, Jennifer L; Yi, Woelsung; Draghi, Nicole A; O'Rourke, Helen M; Denzin, Lisa K

    2007-02-01

    In the endosomes of APCs, the MHC class II-like molecule H2-M catalyzes the exchange of class II-associated invariant chain peptides (CLIP) for antigenic peptides. H2-O is another class II-like molecule that modulates the peptide exchange activity of H2-M. Although the expression pattern of H2-O in mice has not been fully evaluated, H2-O is expressed by thymic epithelial cells, B cells, and dendritic cells (DCs). In this study, we investigated H2-O, H2-M, and I-A(b)-CLIP expression patterns in B cell subsets during B cell development and activation. H2-O was first detected in the transitional 1 B cell subset and high levels were maintained in marginal zone and follicular B cells. H2-O levels were down-regulated specifically in germinal center B cells. Unexpectedly, we found that mouse B cells may have a pool of H2-O that is not associated with H2-M. Additionally, we further evaluate H2-O and H2-M interactions in mouse DCs, as well as H2-O expression in bone marrow-derived DCs. We also evaluated H2-O, H2-M, I-A(b), and I-A(b)-CLIP expression in splenic DC subsets, in which H2-O expression levels varied among the splenic DC subsets. Although it has previously been shown that H2-O modifies the peptide repertoire, H2-O expression did not alter DC presentation of a number of endogenous and exogenous Ags. Our further characterization of H2-O expression in DCs, as well as the identification of a potential free pool of H2-O in mouse splenic B cells, suggest that H2-O may have a yet to be elucidated role in immune responses.

  9. Role of Structural H2O in Intercalation Electrodes: The Case of Mg in Nanocrystalline Xerogel-V2O5

    Science.gov (United States)

    Sai Gautam, Gopalakrishnan; Canepa, Pieremanuele; Richards, William Davidson; Malik, Rahul; Ceder, Gerbrand

    2016-04-01

    Co-intercalation is a potential approach to influence the voltage and mobility with which cations insert in electrodes for energy storage devices. Combining a robust thermodynamic model with first-principles calculations, we present a detailed investigation revealing the important role of H$_2$O during ion intercalation in nano-materials. We examine the scenario of Mg$^{2+}$ and H$_2$O co-intercalation in nano-crystalline Xerogel-V$_2$O$_5$, a potential cathode material to achieve energy density greater than Li-ion batteries. Water co-intercalation in cathode materials could broadly impact an electrochemical system by influencing its voltages or causing passivation at the anode. The analysis of the stable phases of Mg-Xerogel V$_2$O$_5$ and voltages at different electrolytic conditions reveals a range of concentrations for Mg in the Xerogel and H$_2$O in the electrolyte where there is no thermodynamic driving force for H$_2$O to shuttle with Mg during electrochemical cycling. Also, we demonstrate that H$_2$O shuttling with the Mg$^{2+}$ ions in wet electrolytes yields higher voltages than in dry electrolytes. The thermodynamic framework used to study water and Mg$^{2+}$ co-intercalation in this work opens the door for studying the general phenomenon of solvent co-intercalation observed in other complex solvent-electrode pairs used in the Li- and Na-ion chemical spaces.

  10. Airborne Measurements of Venus Cloud-top H2O and HDO from NASA’s SOFIA in the Mid-Infrared

    Science.gov (United States)

    Tsang, Constantine; Encrenaz, Therese; DeWitt, Curtis N.; Richter, Matthew; Irwin, Patrick

    2017-10-01

    The determination of the D/H ratio in Venus’s atmosphere using water (H2O) and light water (HDO) has been used as evidence for the loss of a global sized ocean in the distant past on paleo-Venus. Measurements of atmospheric water vapour at and above the cloud level is also important as water is a key ingredient in the production of the hydrated H2SO4 clouds that prevail globally on Venus. While variations in latitude and local solar time of H2O at the cloud tops has been most recently measured by ESA’s Venus Express spacecraft, the data is sporadic due to the limb sounding geometry needed to make these measurements.Here we present H2O and HDO measurements from January 2017 from NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) using the EXES mid-infrared spectrometer flying at 40,000 ft where the relatively low telluric absorption makes detection of Venusian H2O possible. Two observation sequences were obtained that yielded spatially resolved maps of H2O and HDO at R~89,000 centered at 7.21 µm (1380 cm-1). We will also discuss the preliminary retrieved values of D/H ratios at the 65 km altitude probed at this wavelength.

  11. DNA-guided assembly of a five-component enzyme cascade for enhanced conversion of cellulose to gluconic acid and H2O2.

    Science.gov (United States)

    Chen, Qi; Yu, Sooyoun; Myung, Nosang; Chen, Wilfred

    2017-12-10

    Enzymatic fuel cells have received considerable attention because of their potential for direct conversion of abundant raw materials such as cellulose to electricity. The use of multi-enzyme cascades is particularly attractive as they offer the possibility of achieving a series of complex reactions at higher efficiencies. Here we reported the use of a DNA-guided approach to assemble a five-component enzyme cascade for direct conversion of cellulose to gluconic acid and H 2 O 2 . Site-specific co-localization of β-glucosidase and glucose oxidase resulted in over 11-fold improvement in H 2 O 2 production from cellobiose, highlighting the benefit of substrate channeling. Although a more modest 1.5-fold improvement in H 2 O 2 production was observed using a five-enzyme cascade, due to H 2 O 2 inhibition on enzyme activity, these results demonstrated the possibility to enhance the production of gluconic acid and H 2 O 2 directly from cellulose by DNA-guided enzyme assembly. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Differentiating between apparent and actual rates of H2O2 metabolism by isolated rat muscle mitochondria to test a simple model of mitochondria as regulators of H2O2 concentration

    Science.gov (United States)

    Treberg, Jason R.; Munro, Daniel; Banh, Sheena; Zacharias, Pamela; Sotiri, Emianka

    2015-01-01

    Mitochondria are often regarded as a major source of reactive oxygen species (ROS) in animal cells, with H2O2 being the predominant ROS released from mitochondria; however, it has been recently demonstrated that energized brain mitochondria may act as stabilizers of H2O2 concentration (Starkov et al. [1]) based on the balance between production and the consumption of H2O2, the later of which is a function of [H2O2] and follows first order kinetics. Here we test the hypothesis that isolated skeletal muscle mitochondria, from the rat, are able to modulate [H2O2] based upon the interaction between the production of ROS, as superoxide/H2O2, and the H2O2 decomposition capacity. The compartmentalization of detection systems for H2O2 and the intramitochondrial metabolism of H2O2 leads to spacial separation between these two components of the assay system. This results in an underestimation of rates when relying solely on extramitochondrial H2O2 detection. We find that differentiating between these apparent rates found when using extramitochondrial H2O2 detection and the actual rates of metabolism is important to determining the rate constant for H2O2 consumption by mitochondria in kinetic experiments. Using the high rate of ROS production by mitochondria respiring on succinate, we demonstrate that net H2O2 metabolism by mitochondria can approach a stable steady-state of extramitochondrial [H2O2]. Importantly, the rate constant determined by extrapolation of kinetic experiments is similar to the rate constant determined as the [H2O2] approaches a steady state. PMID:26001520

  13. Differentiating between apparent and actual rates of H2O2 metabolism by isolated rat muscle mitochondria to test a simple model of mitochondria as regulators of H2O2 concentration.

    Science.gov (United States)

    Treberg, Jason R; Munro, Daniel; Banh, Sheena; Zacharias, Pamela; Sotiri, Emianka

    2015-08-01

    Mitochondria are often regarded as a major source of reactive oxygen species (ROS) in animal cells, with H2O2 being the predominant ROS released from mitochondria; however, it has been recently demonstrated that energized brain mitochondria may act as stabilizers of H2O2 concentration (Starkov et al. [1]) based on the balance between production and the consumption of H2O2, the later of which is a function of [H2O2] and follows first order kinetics. Here we test the hypothesis that isolated skeletal muscle mitochondria, from the rat, are able to modulate [H2O2] based upon the interaction between the production of ROS, as superoxide/H2O2, and the H2O2 decomposition capacity. The compartmentalization of detection systems for H2O2 and the intramitochondrial metabolism of H2O2 leads to spacial separation between these two components of the assay system. This results in an underestimation of rates when relying solely on extramitochondrial H2O2 detection. We find that differentiating between these apparent rates found when using extramitochondrial H2O2 detection and the actual rates of metabolism is important to determining the rate constant for H2O2 consumption by mitochondria in kinetic experiments. Using the high rate of ROS production by mitochondria respiring on succinate, we demonstrate that net H2O2 metabolism by mitochondria can approach a stable steady-state of extramitochondrial [H2O2]. Importantly, the rate constant determined by extrapolation of kinetic experiments is similar to the rate constant determined as the [H2O2] approaches a steady state. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. On the mechanisms of oxidation of organic sulfides by H2O2 in aqueous solutions.

    Science.gov (United States)

    Chu, Jhih-Wei; Trout, Bernhardt L

    2004-01-28

    The mechanism of oxidation of organic sulfides in aqueous solutions by hydrogen peroxide was investigated via ab initio calculations. Specifically, two reactions, hydrogen transfer of hydrogen peroxide to form water oxide and the oxidation of dimethyl sulfide (DMS) by hydrogen peroxide to form dimethyl sulfoxide, were studied as models of these processes in general. Solvent effects are included both via including explicitly water molecules and via the polarizable continuum model. The former was found to have a much more significant effect than the latter. When explicit water molecules are included, a mechanism different from those proposed in the literature was found. Specific interactions including hydrogen bonding with 2-3 water molecules can provide enough stabilization for the charge separation of the activation complex. The energy barrier of the oxidation of DMS by hydrogen peroxide was estimated to be 12.7 kcal/mol, within the experimental range of the oxidation of analogous compounds (10-20 kcal/mol). The major reaction coordinates of the reaction are the breaking of the O-O bond of H2O2 and the formation of the S-O bond, the transfer of hydrogen to the distal oxygen of hydrogen peroxide occurring after the system has passed the transition state. Reaction barriers of the hydrogen transfer of H2O2 are an average of 10 kcal/mol or higher than the reaction barriers of the oxidation of DMS. Therefore, a two-step oxidation mechanism in which, first, the transfer of a hydrogen atom occurs to form water oxide and, second, the transfer of oxygen to the substrate occurs is unlikely to be correct. Our proposed oxidation mechanism does not suggest a pH dependence of oxidation rate within a moderate range around neutral pH (i.e., under conditions in which hydronium and hydroxide ions do not participate directly in the reaction), and it agrees with experimental observations over moderate pH values. Also, without including a protonated solvent molecule, it has activation

  15. Transition metal containing decatungstosilicate dimer [M(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (M = Mn(2+), Co(2+), Ni(2+)).

    Science.gov (United States)

    Bassil, Bassem S; Dickman, Michael H; Reicke, Markus; Kortz, Ulrich; Keita, Bineta; Nadjo, Louis

    2006-09-21

    The new, monometal substituted silicotungstates [Mn(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (1), [Co(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (2) and [Ni(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (3) have been synthesized and isolated as the potassium salts K(10)[Mn(H(2)O)(2)(gamma-SiW(10)O(35))(2)] x 8.25 H(2)O (K-1), K(10)[Co(H(2)O0(2)(gamma-SiW(10)O(35))(2)] x 8.25 H(2)O (K-2) and K(10)[Ni(H(2)O)(2)(gamma-SiW(10)O(35))(2)] x 13.5 H(2)O (K-3), which have been characterized by IR spectroscopy, single crystal X-ray diffraction, elemental analysis and cyclic voltammetry. Polyanions 1-3 are composed of two (gamma-SiW(10)O(36)) units fused on one side via two W-O-W' bridges and on the other side by an octahedrally coordinated trans-MO(4)(OH(2))(2) transition metal fragment, resulting in a structure with C(2v) point group symmetry. Anions 1-3 were synthesized by reaction of the dilacunary precursor [gamma-SiW(10)O(36)](8-) with Mn(2+), Co(2+) and Ni(2+) ions, respectively, in 1 M KCl solution at pH 4.5. The electrochemical properties of 1-3 were studied by cyclic voltammetry and controlled potential coulometry in a pH 5 buffer medium. The waves associated with the W-centers are compared with each other and with those of the parent lacunary precursor [gamma-SiW(10)O(36)](8-) in the same medium. They appear to be dominated by the acid-base properties of the intermediate reduced species. A facile merging of the waves for 3 is observed while those for 1 and 2 remain split. Controlled potential coulometry of the single wave of 3 or the combined waves of 1 and 2 is accompanied by catalysis of the hydrogen evolution reaction. No redox activity was detected for the Ni(2+) center in 3, whereas the Co(2+) center in 2 shows a one-electron redox process. The two-electron, chemically reversible process of the Mn(2+) center in 1 is accompanied by a film deposition on the electrode surface.

  16. Molecular sensing behavior of di-2-pyridyl ketone p-aminophenylhydrazone hydrate (dpkabh·H 2O) in non-aqueous media

    Science.gov (United States)

    Bakir, Mohammed; Green, Orville; Gyles, Colin

    2009-02-01

    1H NMR studies on di-2-pyridyl ketone p-aminobenzoylhydrazone hydrate (dpkabh·H 2O) in non-aqueous solvents show high sensitivity to its surrounding. In protophilic solvents ( d6-dmso or d7-dmf), the amine protons are equivalent, while in CDCl 3 they are not. Variable temperature analysis in CDCL 3 show the NH proton to exhibit high temperature dependence due to strong intra-molecular hydrogen bonding of the type N-H⋯N between the amide (NH) and N atom of a pyridine ring. The temperature dependence for the same proton in d6-dmso and d7-dmf is due to hydrogen bonding of the type N-H⋯O between the amide proton and oxygen atom of the solvent. Optical measurements on dpkabh·H 2O show one intra-ligand charge transfer (ILCT) transition in CH 2Cl 2 and in protophilic solvents, two ILCT of the donor-acceptor type due to dpkabh·H 2O and its conjugate base appeared. Variable temperature studies on protophilic solution of dpkabh·H 2O confirm the sensitivity of dpkabh·H 2O to its surroundings and show facile reversible inter-conversion between dpkabh·H 2O and its conjugate base. Changes in enthalpy (Δ Hϕ) of -5.2 ± 0.4 and -24.2 ± 1.20 kJ mol -1, entropy (Δ Sϕ) of +9.6 ± 0.5 and -63.0 ± 2.0 JK -1 mol -1, and free energy (Δ Gϕ) of +2.3 ± 0.2 and +5.4 ± 0.2 kJ mol -1 were calculated for dpkabh·H 2O at 298 K in dmso and dmf, respectively. When stoichiometric amounts of NaBH 4 or MCl 2 (M = Zn, Cd or Hg) were added to protophilic solution of dpkanh·H 2O conversion from the high to low energy electronic transition was observed and show that substrates in low concentrations can be detected and determined using protophilic solution of dpkabh·H 2O.

  17. [Morroniside inhibits H2O2-induced apoptosis in cultured nerve cells].

    Science.gov (United States)

    Ai, Hou-Xi; Wang, Wen; Sun, Fang-Lin; Huang, Wen-Ting; An, Yi; Li, Lin

    2008-09-01

    To investigate the effects of morroniside on H2O2-induced apoptosis in nerve cells. Human neuroblastoma cell line SH-SY5Y cells were pre-incubaed with morroniside (1, 10, and 100 micromol x L(-1)) for 24 h prior to exposure to H2O2 (500 micromol x L(-1)) for 18 h. The activity of reactive SOD was measured by a biochemical assay. The expression of caspase-3, caspase-9, Bcl-2 and Bax was determined by Wastern blotting method. Pretreatment of the cells with morroniside (10 and 100 micromol x L(-1)) increasd SOD activity by 14% (P<0.01) and 11% (P<0.05) in comparison with cells exposed only to H2O2. Morroniside (1, 10, 100 micromol x L(-1)) lowered caspase-3 level by 31% (P<0.01), 103% (P<0.001) and 95% (P<0.001), decreased caspase-9 content by 71% (P<0.001), 132% (P<0.001) and 37% (P<0.05), and increasd Bcl-1 level by 88% (P<0.01), 121% (P<0.001) and 60% (P<0.01) respectively but no significant change occurred in Bax level in comparison with cells exposed only to H2O2. Morroniside has neuroprotection effect against H2O2-induced oxidation injury in nerve cell.

  18. The interaction of H(2)O(2) with ice surfaces between 203 and 233 K.

    Science.gov (United States)

    Pouvesle, N; Kippenberger, M; Schuster, G; Crowley, J N

    2010-12-21

    The interaction of H(2)O(2) with ice surfaces at temperatures between 203 and 233 K was investigated using a low pressure, coated-wall flow tube equipped with a chemical ionisation/electron impact mass spectrometer. Equilibrium surface coverages of H(2)O(2) on ice were measured at various concentrations and temperatures to derive Langmuir-type adsorption isotherms. H(2)O(2) was found to be strongly partitioned to the ice surface at low temperatures, with a partition coefficient, K(linC), equal to 2.1 × 10(-5) exp(3800/T) cm. At 228 K, this expression results in values of K(linC) which are orders of magnitude larger than the single previous determination and suggests that H(2)O(2) may be significantly partitioned to the ice phase in cirrus clouds. The partition coefficient for H(2)O(2) was compared to several other trace gases which hydrogen-bond to ice surfaces and a good correlation with the free energy of condensation found. For this class of trace gas a simple parameterisation for calculating K(linC)(T) from thermodynamic properties was established.

  19. Smart H2O2-Responsive Drug Delivery System Made by Halloysite Nanotubes and Carbohydrate Polymers.

    Science.gov (United States)

    Liu, Feng; Bai, Libin; Zhang, Hailei; Song, Hongzan; Hu, Liandong; Wu, Yonggang; Ba, Xinwu

    2017-09-20

    A novel chemical hydrogel was facilely achieved by coupling 1,4-phenylenebisdiboronic acid modified halloysite nanotubes (HNTs-BO) with compressible starch. The modified halloysite nanotubes (HNTs) and prepared hydrogel were characterized by solid-state nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscope (TEM). The linkage of B-C in the hydrogel can be degraded into B-OH and C-OH units in the presence of H2O2 and result in the degradation of the chemical hydrogel. Pentoxifylline was loaded into the lumen of the HNTs-BO, and then gave the pentoxifylline-loaded hydrogel. The drug release profile shows that it was no more than 7% dissolved when using phosphate buffer solution (PBS) as the release medium. Notably, a complete release (near 90%) can be achieved with the addition of H2O2 ([H2O2] = 1 × 10-4 M), suggesting a high H2O2 responsiveness of the as-formed hydrogel. The drug release results also show that the "initial burst release" can be effectively suppressed by loading pentoxifylline inside the lumen of the HNTs rather than embedding the drug in the hydrogel network. The drug-loaded hydrogel with H2O2-responsive release behavior may open up a broader application in the field of biomedicine.

  20. The H2O-O2 water vapour complex in the Earth's atmosphere

    Directory of Open Access Journals (Sweden)

    S. Kondo

    2011-08-01

    Full Text Available Until recently, abundance estimates for bound molecular complexes have been affected by uncertainties of a factor 10–100. This is due to the difficulty of accurately obtaining the equilibrium constant, either from laboratory experiments or by statistical thermodynamic calculations. In this paper, we firstly present laboratory experiments that we performed in order to determine the molecular structure of H2O-O2. We also derive global abundance estimates for H2O-O2 in the Earth's atmosphere. The equilibrium constant Kp evaluated using the "anharmonic oscillator approach" (AHOA (Sabu et al., 2005 was employed: the AHOA explains well the structure of the complex obtained by the present experiment. The Kp calculated by this method shows a realistic temperature dependence. We used this Kp to derive global abundance estimates for H2O-O2 in the Earth's atmosphere. The distribution of H2-O2 follows that of water vapour in the troposphere and seems inversely proportional to temperature in the lower stratosphere. Preliminary estimates at the surface show amount of H2O-O2 is comparable to CO or N2O, ranking water vapour complexes among the ten most abundant species in the boundary layer.

  1. Treatment of Sulfonated Azo Dye Reactive Red 198 by UV/H2O2

    Directory of Open Access Journals (Sweden)

    Jefferson P. Ribeiro

    2014-01-01

    Full Text Available UV/H2O2 system was tested on the color removal of sulfonated azo dye Reactive Red 198 (RR, which is widely used in textile process. The effects of hydrogen peroxide concentration, temperature, pH, and the in-line addition of hydrogen peroxide on high color and chemical oxygen demand (COD removals were investigated. The kinetic of dye decolorization was also determined. The results showed that 2% H2O2 decreased the process efficiency, while 1% H2O2 solution led to a better performance of the system. Despite the fact that the pH increase had small effect on color removal, it affects positively COD removals. The same behavior was found for temperature increase. A high temperature resulted in a slight decrease in color removal and a sharp decrease for COD removal. In addition the H2O2 in-line provided a small improvement in both color and COD removals. UV/1% H2O2 treatment was the most efficient, the good performance was linked to higher amount of hydroxyl radicals formed.

  2. Active sites and mechanisms for H2O2 decomposition over Pd catalysts

    Science.gov (United States)

    Plauck, Anthony; Stangland, Eric E.; Dumesic, James A.; Mavrikakis, Manos

    2016-01-01

    A combination of periodic, self-consistent density functional theory (DFT-GGA-PW91) calculations, reaction kinetics experiments on a SiO2-supported Pd catalyst, and mean-field microkinetic modeling are used to probe key aspects of H2O2 decomposition on Pd in the absence of cofeeding H2. We conclude that both Pd(111) and OH-partially covered Pd(100) surfaces represent the nature of the active site for H2O2 decomposition on the supported Pd catalyst reasonably well. Furthermore, all reaction flux in the closed catalytic cycle is predicted to flow through an O–O bond scission step in either H2O2 or OOH, followed by rapid H-transfer steps to produce the H2O and O2 products. The barrier for O–O bond scission is sensitive to Pd surface structure and is concluded to be the central parameter governing H2O2 decomposition activity. PMID:27006504

  3. Water clusters (H2O)n, n=6-8, in external electric fields.

    Science.gov (United States)

    Rai, Dhurba; Kulkarni, Anant D; Gejji, Shridhar P; Pathak, Rajeev K

    2008-01-21

    Structural evolution of water clusters, (H2O)n, n=6-8, induced by a uniform static external electric field is studied within the density functional theory. The electric field is seen to stretch the intermolecular hydrogen bonds in the water clusters, eventually breaking them at some characteristic threshold value, triggering a conformational transformation to a lower energy. The transformed configurations appear as local minima on the cluster's multidimensional potential energy landscape with the applied field as an extra coordinate. This transformation is accompanied by a rather abrupt increase in the electric dipole moment over and above its steady, albeit nonlinear increase with the applied field. The overall effect of the applied field is the "opening up" of three dimensional morphologies of water clusters to form linear, branched, or netlike structures by making the dipolar water monomers align along the field axis. Consequently, the number of hydrogen bonds in a cluster decreases, in general, with an increase in the field strength. It has been observed that moderately low fields (Field strength

  4. Tetradecacobalt(II)-containing 36-niobate [Co14(OH)16(H2O)8Nb36O106]20- and its photocatalytic H2 evolution activity.

    Science.gov (United States)

    Niu, Jingyang; Li, Fang; Zhao, Junwei; Ma, Pengtao; Zhang, Dongdi; Bassil, Bassem; Kortz, Ulrich; Wang, Jingping

    2014-08-04

    A gigantic Co14-containing 36-niobate, Na12K8[Co14(OH)16(H2O)8Nb36O106]⋅71H2O (1), has been prepared by the hydrothermal method and structurally characterized. Polyanion [Co14(OH)16(H2O)8Nb36O106](20-) (1 a) comprises a central Co7 core, surrounded by another seven isolated Co(2+) ions and six Lindqvist-type (Nb6O19) hexaniobate fragments. This is the first example of a high-nuclear cobalt-cluster-containing polyoxoniobate. The photocatalytic H2 evolution activity of Pt-loaded 1 was observed in methanol solution under irradiation using a 300 W Xe lamp. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Photocatalytic performance of freestanding tetragonal zirconia nanotubes formed in H2O2/NH4F/ethylene glycol electrolyte by anodisation of zirconium

    Science.gov (United States)

    Rozana, Monna; Izza Soaid, Nurul; Kian, Tan Wai; Kawamura, Go; Matsuda, Atsunori; Lockman, Zainovia

    2017-04-01

    ZrO2 nanotubes (ZrNTs) were produced by anodisation of zirconium foil in H2O2/NH4F/ethylene glycol electrolyte. The as-anodised foils were then soaked in the anodising electrolyte for 12 h. Soaking weakens the adherence of the anodic layer from the substrate resulting in freestanding ZrNTs (FS-ZrNTs). Moreover, the presence of H2O2 in the electrolyte also aids in weakening the adhesion of the film from the foil, as foil anodised in electrolyte without H2O2 has good film adherence. The as-anodised FS-ZrNTs film was amorphous and crystallised to predominantly tetragonal phase upon annealing at >300 °C. Annealing must, however, be done at degrade methyl orange (MO), whereby 82% MO degradation was observed after 5 h, whereas FS-ZrNTs with a mixture of monoclinic and tetragonal degraded 70% of MO after 5 h.

  6. High resolution spectroscopy of the Martian atmosphere - Study of seasonal variations of CO, O3, H2O, and T on the north polar cap and a search for SO2, H2O2, and H2CO

    Science.gov (United States)

    Krasnopolsky, V. A.; Chakrabarti, S.; Larson, H.; Sandel, B. R.

    1992-01-01

    An overview is presented of an observational campaign which will measure (1) the seasonal variations of the CO mixing ratio on the Martian polar cap due to accumulation and depletion of CO during the condensation and evaporation of CO2, as well as (2) the early spring ozone and water vapor of the Martian north polar cap, and (3) the presence of H2CO, H2O2, and SO2. The lines of these compounds will be measured by a combined 4-m telescope and Fourier-transform spectrometer 27097.

  7. H2SO4-HNO3-H2O ternary system in the stratosphere

    Science.gov (United States)

    Kiang, C. S.; Hamill, P.

    1974-01-01

    Estimation of the equilibrium vapor pressure over the ternary system H2SO4-HNO3-H2O to study the possibility of stratospheric aerosol formation involving HNO3. It is shown that the vapor pressures for the ternary system H2SO4-HNO3-H2O with weight composition around 70-80% H2SO4, 10-20% HNO3, 10-20% H2O at -50 C are below the order of 10 to the minus 8th mm Hg. It is concluded that there exists more than sufficient nitric acid and water vapor in the stratosphere to participate in ternary system aerosol formation at -50 C. Therefore, HNO3 should be present in stratospheric aerosols, provided that H2SO4 is also present.

  8. Electrochemical Generation of Individual O2 Nanobubbles via H2O2 Oxidation.

    Science.gov (United States)

    Ren, Hang; German, Sean R; Edwards, Martin A; Chen, Qianjin; White, Henry S

    2017-06-01

    Herein, we use Pt nanodisk electrodes (apparent radii from 4 to 80 nm) to investigate the nucleation of individual O2 nanobubbles generated by electrooxidation of hydrogen peroxide (H2O2). A single bubble reproducibly nucleates when the dissolved O2 concentration reaches ∼0.17 M at the Pt electrode surface. This nucleation concentration is ∼130 times higher than the equilibrium saturation concentration of O2 and is independent of electrode size. Moreover, in acidic H2O2 solutions (1 M HClO4), in addition to producing an O2 nanobubble through H2O2 oxidation at positive potentials, individual H2 nanobubbles can also be generated at negative potentials. Alternating generation of single O2 and H2 bubbles within the same experiment allows direct comparison of the critical concentrations for nucleation of each nanobubble without knowing the precise size/geometry of the electrode or the exact viscosity/temperature of the solution.

  9. Investigating the adsorption of H2O on ZnO nanoclusters by first principle calculations

    KAUST Repository

    Al-Sunaidi, Abdullah A.

    2011-04-01

    The interaction of a single H2O molecule on selected ZnO nanoclusters is investigated by carrying out calculations based on the density-functional theory at the hybrid-GGA (B97-2) level. These clusters have ring, drum, tube and bubble shapes and their physical properties like the binding energy and the band gap energy depend strongly on the shape and size of the cluster. Depending on the stability of the cluster, H2O show both chemisorption and dissociation on the surfaces of the clusters. We analyzed the effect of H2O adsorption on the properties of clusters of size n = 12 via the density of state, HOMO-LUMO orbitals and the changes in the IR frequencies. © 2011 Elsevier B.V. All rights reserved.

  10. Correction of Doppler-broadened Rayleigh backscattering effects in H2O dial measurements

    Science.gov (United States)

    Ansmann, A.; Bosenberg, J.

    1986-01-01

    A general method of solutions for treating effects of Doppler-broadened Rayleigh backscattering in H2O Differential Absorption Lidar (DIAL) measurements are described and discussed. Errors in vertical DIAL measuremtns caused by this laser line broadening effect can be very large and, therfore, this effect has to be accounted for accurately. To analyze and correct effects of Doppler-broadened Rayleigh backscattering in DIAL experiments, a generalized DIAL approximation was derived starting from a lidar equation, which includes Doppler broadening. To evaluate the accuracy of H2O DIAL measurements, computer simulations were performed. It was concluded that correction of Doppler broadened Rayleigh backscattering is possible with good accuracy in most cases of tropospheric H2O DIAL measurements, but great care has to be taken when layers with steep gradients of Mie backscattering like clouds or inversion layers are present.

  11. Diels-Alder addition to H2O@C60 an electronic and structural study

    Science.gov (United States)

    Reveles, J. Ulises; Govinda, K. C.; Baruah, Tunna; Zope, Rajendra R.

    2017-10-01

    Exohedral reactivity of endohedral fullerenes has aroused a significant interest because of its potential applications. The present letter examines the effect of an entrapped single water molecule on the reactivity of C60. We study the thermodynamics and kinetics of a Diels-Alder reaction occurring at all non-identical bonds of free C60 and H2O@C60. Our calculations show that encapsulation of water does not have a significant effect on H2O@C60 reactivity compared to C60, as attested by the investigation of the reaction under several orientations of H2O inside C60. Reaction and activation energies indicate that [6,6] bonds are the most reactive sites.

  12. Reconstructing the history of water ice formation from HDO/H2O and D2O/HDO ratios in protostellar cores

    Science.gov (United States)

    Furuya, K.; van Dishoeck, E. F.; Aikawa, Y.

    2016-02-01

    Recent interferometer observations have found that the D2O/HDO abundance ratio is higher than that of HDO/H2O by about one order of magnitude in the vicinity of low-mass protostar NGC 1333-IRAS 2A, where water ice has sublimated. Previous laboratory and theoretical studies show that the D2O/HDO ice ratio should be lower than the HDO/H2O ice ratio, if HDO and D2O ices are formed simultaneously with H2O ice. In this work, we propose that the observed feature, D2O/HDO > HDO/H2O, is a natural consequence of chemical evolution in the early cold stages of low-mass star formation as follows: 1) majority of oxygen is locked up in water ice and other molecules in molecular clouds, where water deuteration is not efficient; and 2) water ice formation continues with much reduced efficiency in cold prestellar/protostellar cores, where deuteration processes are highly enhanced as a result of the drop of the ortho-para ratio of H2, the weaker UV radiation field, etc. Using a simple analytical model and gas-ice astrochemical simulations, which traces the evolution from the formation of molecular clouds to protostellar cores, we show that the proposed scenario can quantitatively explain the observed HDO/H2O and D2O/HDO ratios. We also find that the majority of HDO and D2O ices are likely formed in cold prestellar/protostellar cores rather than in molecular clouds, where the majority of H2O ice is formed. This work demonstrates the power of the combination of the HDO/H2O and D2O/HDO ratios as a tool to reveal the past history of water ice formation in the early cold stages of star formation, and when the enrichment of deuterium in the bulk of water occurred. Further observations are needed to explore if the relation, D2O/HDO > HDO/H2O, is common in low-mass protostellar sources.

  13. Transgenic Centipedegrass (Eremochloa ophiuroides [Munro] Hack.) Overexpressing S-Adenosylmethionine Decarboxylase (SAMDC) Gene for Improved Cold Tolerance Through Involvement of H2O2 and NO Signaling.

    Science.gov (United States)

    Luo, Jianhao; Liu, Mingxi; Zhang, Chendong; Zhang, Peipei; Chen, Jingjing; Guo, Zhenfei; Lu, Shaoyun

    2017-01-01

    Centipedegrass (Eremochloa ophiuroides [Munro] Hack.) is an important warm-season turfgrass species. Transgenic centipedgrass plants overexpressing S-adenosylmethionine decarboxylase from bermudagrass (CdSAMDC1) that was induced in response to cold were generated in this study. Higher levels of CdSAMDC1 transcript and sperimidine (Spd) and spermin (Spm) concentrations and enhanced freezing and chilling tolerance were observed in transgenic plants as compared with the wild type (WT). Transgenic plants had higher levels of polyamine oxidase (PAO) activity and H2O2 than WT, which were blocked by pretreatment with methylglyoxal bis (guanylhydrazone) or MGBG, inhibitor of SAMDC, indicating that the increased PAO and H2O2 were a result of expression of CdSAMDC1. In addition, transgenic plants had higher levels of nitrate reductase (NR) activity and nitric oxide (NO) concentration. The increased NR activity were blocked by pretreatment with MGBG and ascorbic acid (AsA), scavenger of H2O2, while the increased NO level was blocked by MGBG, AsA, and inhibitors of NR, indicating that the enhanced NR-derived NO was dependent upon H2O2, as a result of expression CdSAMDC1. Elevated superoxide dismutase (SOD) and catalase (CAT) activities were observed in transgenic plants than in WT, which were blocked by pretreatment with MGBG, AsA, inhibitors of NR and scavenger of NO, indicating that the increased activities of SOD and CAT depends on expression of CdSAMDC1, H2O2, and NR-derived NO. Our results suggest that the elevated cold tolerance was associated with PAO catalyzed production of H2O2, which in turn led to NR-derived NO production and induced antioxidant enzyme activities in transgenic plants.

  14. Defects in the Expression of Chloroplast Proteins Leads to H2O2Accumulation and Activation of Cyclic Electron Flow around Photosystem I.

    Science.gov (United States)

    Strand, Deserah D; Livingston, Aaron K; Satoh-Cruz, Mio; Koepke, Tyson; Enlow, Heather M; Fisher, Nicholas; Froehlich, John E; Cruz, Jeffrey A; Minhas, Deepika; Hixson, Kim K; Kohzuma, Kaori; Lipton, Mary; Dhingra, Amit; Kramer, David M

    2016-01-01

    We describe a new member of the class of mutants in Arabidopsis exhibiting high rates of cyclic electron flow around photosystem I (CEF), a light-driven process that produces ATP but not NADPH. High cyclic electron flow 2 ( hcef2 ) shows strongly increased CEF activity through the NADPH dehydrogenase complex (NDH), accompanied by increases in thylakoid proton motive force ( pmf ), activation of the photoprotective q E response, and the accumulation of H 2 O 2 . Surprisingly, hcef2 was mapped to a non-sense mutation in the TADA1 (tRNA adenosine deaminase arginine) locus, coding for a plastid targeted tRNA editing enzyme required for efficient codon recognition. Comparison of protein content from representative thylakoid complexes, the cytochrome bf complex, and the ATP synthase, suggests that inefficient translation of hcef2 leads to compromised complex assembly or stability leading to alterations in stoichiometries of major thylakoid complexes as well as their constituent subunits. Altered subunit stoichiometries for photosystem I, ratios and properties of cytochrome bf hemes, and the decay kinetics of the flash-induced thylakoid electric field suggest that these defect lead to accumulation of H 2 O 2 in hcef2 , which we have previously shown leads to activation of NDH-related CEF. We observed similar increases in CEF, as well as increases in H 2 O 2 accumulation, in other translation defective mutants. This suggests that loss of coordination in plastid protein levels lead to imbalances in photosynthetic energy balance that leads to an increase in CEF. These results taken together with a large body of previous observations, support a general model in which processes that lead to imbalances in chloroplast energetics result in the production of H 2 O 2 , which in turn activates CEF. This activation could be from either H 2 O 2 acting as a redox signal, or by a secondary effect from H 2 O 2 inducing a deficit in ATP.

  15. In search of CS2(H2O)(n=1-4) clusters.

    Science.gov (United States)

    Kirschner, Karl N; Hartt, Gregory M; Evans, Timothy M; Shields, George C

    2007-04-21

    Gaussian-3 and MP2/aug-cc-pVnZ methods have been used to calculate geometries and thermochemistry of CS(2)(H2O)n, where n=1-4. An extensive molecular dynamics search followed by optimization using these two methods located two dimers, six trimers, six tetramers, and two pentamers. The MP2/aug-cc-pVDZ structure matched best with the experimental result for the CS(2)(H2O) dimer, showing that diffuse functions are necessary to model the interactions found in this complex. For larger CS(2)(H2O)n clusters, the MP2/aug-cc-pVDZ minima are significantly different from the MP2(full)6-31G* structures, revealing that the G3 model chemistry is not suitable for investigation of sulfur containing van der Waals complexes. Based on the MP2/aug-cc-pVTZ free energies, the concentration of saturated water in the atmosphere and the average amount of CS(2) in the atmosphere, the concentrations of these clusters are predicted to be on the order of 10(5) CS(2)(H2O) clusters.cm(-3) and 10(2) CS(2)(H2O)(2) clusters.cm(-3) at 298.15 K. The MP2/aug-cc-pVDZ scaled harmonic and anharmonic frequencies of the most abundant dimer cluster at 298 K are presented, along with the MP2/aug-cc-pVDZ scaled harmonic frequencies for the CS(2)(H(2)O)(n) structures predicted to be present in a low-temperature molecular beam experiment.

  16. Antioxidant ameliorating effects against H2O2-induced cytotoxicity in primary endometrial cells.

    Science.gov (United States)

    Zal, F; Khademi, F; Taheri, R; Mostafavi-Pour, Z

    2017-09-15

    Oxidative stress and a disrupted antioxidant system are involved in a variety of pregnancy complications. In the present study, the role of vitamin E (Vit E) and folate as radical scavengers on the GSH homeostasis in stress oxidative induced in rat endometrial cells was investigated. Primary endometrial stromal cell cultures treated with 50 and 200 µM of H2O2 and evaluated the cytoprotective effects of Vit E (5 µM) and folate (0.01 µM) in H2O2-treated cells for 24 h. Following the exposure of endometrial cells to H2O2 alone and in the presence of Vit E and/or folate, cell survival, glutathione peroxidase (GPx) and glutathione reductase activities and the level of reduced glutathione (GSH) were measured. Cell adhesions comprise of cell attachment and spreading on collagen were determined. Flow cytometric analysis using annexin V was used to measure apoptosis. H2O2 treatment showed a marked decrease in cell viability, GPx and GR activities and the level of GSH. Although Vit E or folate had some protective effect, combination therapy with Vit E and folate attenuated all the changes due to H2O2 toxicity. An increasing number of alive cells was showed in the cells exposed to H2O2 (50 µM) accompanied by co-treatment with Vit E and folic acid. The present findings indicate that co-administration of Vit E and folate before and during pregnancy may maintain a viable pregnancy and contribute to its clinical efficacy for the treatment of some idiopathic infertility.

  17. No effect of H2O degassing on the oxidation state of magmatic liquids

    Science.gov (United States)

    Waters, Laura E.; Lange, Rebecca A.

    2016-08-01

    The underlying cause for why subduction-zone magmas are systematically more oxidized than those formed at mid-ocean spreading ridges is a topic of vigorous debate. It is either a primary feature inherited from the subduction of oxidized oceanic crust into the mantle or a secondary feature that develops because of H2O degassing and/or magma differentiation. Low total iron contents and high melt H2O contents render rhyolites sensitive to any effect of H2O degassing on ferric-ferrous ratios. Here, pre-eruptive magmatic Fe2+ concentrations, measured using Fe-Ti oxides that co-crystallized with silicate phenocrysts under hydrous conditions, are compared with Fe2+ post-eruptive concentrations in ten crystal-poor, fully-degassed obsidian samples; five are microlite free. No effect of H2O degassing on the ferric-ferrous ratio is found. In addition, Fe-Ti oxide data from this study and the literature show that arc magmas are systematically more oxidized than both basalts and hydrous silicic melts from Iceland and Yellowstone prior to extensive degassing. Nor is there any evidence that differentiation (i.e., crystal fractionation, crustal assimilation) is the cause of the higher redox state of arc magmas relative to those of Iceland/Yellowstone rhyolites. Instead, the evidence points to subduction of oxidized crust and the release of an H2O-rich fluid and/or melt with a high oxygen fugacity (fO2), which plays a role during H2O-flux melting of the mantle in creating basalts that are relatively oxidized.

  18. PSO Method for Fitting Analytic Potential Energy Functions. Application to I-(H2O).

    Science.gov (United States)

    Bhandari, H N; Ma, X; Paul, A K; Smith, P; Hase, W L

    2018-02-08

    In this work a particle swarm optimization (PSO) algorithm was used to fit an analytic potential energy function to I - (H 2 O) intermolecular potential energy curves calculated with DFT/B97-1 theory. The analytic function is a sum of two-body terms, each written as a generalized sum of Buckingham and Lennard-Jones terms with only six parameters. Two models were used to describe the two-body terms between I - and H 2 O: a three-site model H 2 O and a four-site model including a ghost atom. The fits are compared with those obtained with a genetic/nonlinear least-squares algorithm. The ghost atom model significantly improves the fitting accuracy for both algorithms. The PSO fits are significantly more accurate and much less time-consuming than those obtained with the genetic/nonlinear least-squares algorithm. Eight I - ---H 2 O potential energy curves, fit with the PSO algorithm for the three- and four-site models, have RMSE of 1.37 and 0.22 kcal/mol and compute times of ∼20 and ∼68 min, respectively. The PSO fit for the four-site model is quite adequate for determining densities of states and partition functions for I - (H 2 O) n clusters at high energies and temperatures, respectively. The PSO algorithm was also applied to the eight potential energy curves, with the four-site model, for a short time ∼8 min fitting. The RMSE was small, only 0.37 kcal/mol, showing the high efficiency of the PSO algorithm with retention of a good fitting accuracy. The PSO algorithm is a good choice for fitting analytic potential energy functions, and for the work presented here was able to find an adequate fit to an I - (H 2 O) analytic intermolecular potential with a small number of parameters.

  19. Accumulation of 2H2O in plasma and eccrine sweat during exercise-heat stress.

    Science.gov (United States)

    Armstrong, Lawrence E; Klau, Jennifer F; Ganio, Matthew S; McDermott, Brendon P; Yeargin, Susan W; Lee, Elaine C; Maresh, Carl M

    2010-02-01

    The purpose of this research was to characterize the movement of ingested water through body fluids, during exercise-heat stress. Deuterium oxide ((2)H(2)O) accumulation in plasma and eccrine sweat was measured at two sites (back and forehead). The exercise of 14 males was controlled via cycle ergometry in a warm environment (60 min; 28.7 degrees C, 51%rh). Subjects consumed (2)H(2)O (0.15 mg kg(-1), 99.9% purity) mixed in flavored, non-caloric, colored water before exercise, then consumed 3.0 ml kg(-1) containing no (2)H(2)O every 15 min during exercise. We hypothesized that water transit from mouth to skin would occur before 15 min. (2)H(2)O appeared rapidly in both plasma and sweat (P deuterium accumulation (DeltaD:H min(-1)) in plasma was 14.9 and 23.7 times greater than in forehead and back sweat samples, respectively. Mean (+/-SE) whole-body sweat rate was 1.04 +/- 0.05 L h(-1) and subjects with the greatest whole-body sweat rate exhibited the greatest peak deuterium enrichment in sweat (r(2) = 0.87, exponential function); the peak (2)H(2)O enrichment in sweat was not proportional (P > 0.05) to body mass, volume of the deuterium dose, or total volume of fluid consumed. These findings clarify the time course of fluid movement from mouth to eccrine sweat glands, and demonstrate considerable differences of (2)H(2)O enrichment in plasma versus sweat.

  20. Protective effects of remifentanil against H2O2-induced oxidative stress in human osteoblasts.

    Science.gov (United States)

    Yoon, Ji-Young; Kim, Do-Wan; Kim, Eun-Jung; Park, Bong-Soo; Yoon, Ji-Uk; Kim, Hyung-Joon; Park, Jeong-Hoon

    2016-12-01

    Bone injury is common in many clinical situations, such as surgery or trauma. During surgery, excessive reactive oxygen species (ROS) production decreases the quality and quantity of osteoblasts. Remifentanil decreases ROS production, reducing oxidative stress and the inflammatory response. We investigated remifentanil's protective effects against H 2 O 2 -induced oxidative stress in osteoblasts. To investigate the effect of remifentanil on human fetal osteoblast (hFOB) cells, the cells were incubated with 1 ng/ml of remifentanil for 2 h before exposure to H 2 O 2 . For induction of oxidative stress, hFOB cells were then treated with 200 µM H 2 O 2 for 2 h. To evaluate the effect on autophagy, a separate group of cells were incubated with 1 mM 3-methyladenine (3-MA) before treatment with remifentanil and H 2 O 2 . Cell viability and apoptotic cell death were determined via MTT assay and Hoechst staining, respectively. Mineralized matrix formation was visualized using alizarin red S staining. Western blot analysis was used to determine the expression levels of bone-related genes. Cell viability and mineralized matrix formation increased on remifentanil pretreatment before exposure to H 2 O 2 -induced oxidative stress. As determined via western blot analysis, remifentanil pretreatment increased the expression of bone-related genes (Col I, BMP-2, osterix, and TGF-β). However , pretreatment with 3-MA before exposure to remifentanil and H 2 O 2 inhibited remifentanil's protective effects on hFOB cells during oxidative stress. We showed that remifentanil prevents oxidative damage in hFOB cells via a mechanism that may be highly related to autophagy. Further clinical studies are required to investigate its potential as a therapeutic agent.

  1. Treatment of hospital laundry wastewater by UV/H2O2 process.

    Science.gov (United States)

    Zotesso, Jaqueline Pirão; Cossich, Eneida Sala; Janeiro, Vanderly; Tavares, Célia Regina Granhen

    2017-03-01

    Hospitals consume a large volume of water to carry out their activities and, hence, generate a large volume of effluent that is commonly discharged into the local sewage system without any treatment. Among the various sectors of healthcare facilities, the laundry is responsible for the majority of water consumption and generates a highly complex effluent. Although several advanced oxidation processes (AOPs) are currently under investigation on the degradation of a variety of contaminants, few of them are based on real wastewater samples. In this paper, the UV/H2O2 AOP was evaluated on the treatment of a hospital laundry wastewater, after the application of a physicochemical pretreatment composed of coagulation-flocculation and anthracite filtration. For the UV/H2O2 process, a photoreactor equipped with a low-pressure UV-C lamp was used and the effects of initial pH and [H2O2]/chemical oxygen demand (COD) ratio on COD removal were investigated through a randomized factorial block design that considered the batches of effluent as blocks. The results indicated that the initial pH had no significant effect on the COD removal, and the process was favored by the increase in [H2O2]/COD ratio. Color and turbidity were satisfactorily reduced after the application of the physicochemical pretreatment, and COD was completely removed by the UV/H2O2 process under suitable conditions. The results of this study show that the UV/H2O2 AOP is a promising candidate for hospital laundry wastewater treatment and should be explored to enable wastewater reuse in the washing process.

  2. Development of the Phase-up Technology of the Radio Telescopes: 6.7 GHz Methanol Maser Observations with Phased Hitachi 32 m and Takahagi 32 m Radio Telescopes

    Science.gov (United States)

    Takefuji, K.; Sugiyama, K.; Yonekura, Y.; Saito, T.; Fujisawa, K.; Kondo, T.

    2017-11-01

    For the sake of high-sensitivity 6.7 GHz methanol maser observations, we developed a new technology for coherently combining the two signals from the Hitachi 32 m radio telescope and the Takahagi 32 m radio telescope of the Japanese Very long baseline interferometer Network (JVN), where the two telescopes were separated by about 260 m. After the two telescopes were phased as a twofold larger single telescope, the mean signal-to-noise ratio (S/N) of the 6.7 GHz methanol masers observed by the phased telescopes was improved to 1.254-fold higher than that of the single dish, through a very long baseline interferometry (VLBI) experiment on the 50 km baseline of the Kashima 34 m telescope and the 1000 km baseline of the Yamaguchi 32 m telescope. Furthermore, we compared the S/Ns of the 6.7 GHz maser spectra for two methods. One is a VLBI method and the other is the newly developed digital position switching that is a similar technology to that used in noise-canceling headphones. Finally, we confirmed that the mean S/N of method of the digital position switching (ON-OFF) was 1.597-fold higher than that of the VLBI method.

  3. On the Electronic Structure of [Cu(H2O)6]2+

    DEFF Research Database (Denmark)

    Tanaka, Kiyoshi; Johansen, Helge

    1997-01-01

    The electronic structure of the ground state and doublet excited states due to d-d transitions and charge transfer transitions from ligand to copper of [Cu(H2O)6]2+ are investigated by ab initio calculations. The excited states corresponding to the the d-d transitions are calculated to be 1.1 - 1...... on the description of these excited states. The chargetransfer excitations are predicted to start around 6.5 eV for [Cu(H2O)6]2+....

  4. Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages

    Science.gov (United States)

    Pomari, Elena; Stefanon, Bruno; Colitti, Monica

    2014-01-01

    Background Arctium lappa (AL), Camellia sinensis (CS), Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG), and Vaccinium myrtillus (VM) are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study. Materials and methods Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (m)RNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2. Results A noncytotoxic dose (200 μM) of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001) regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus. Conclusion The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in vitro and in vivo investigation into molecular mechanisms modulated by herbal extracts should be undertaken to shed light on the development of novel

  5. Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages

    Directory of Open Access Journals (Sweden)

    Pomari E

    2014-06-01

    Full Text Available Elena Pomari, Bruno Stefanon, Monica Colitti Department of Agricultural and Environmental Sciences, University of Udine, Udine, Italy Background: Arctium lappa (AL, Camellia sinensis (CS, Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG, and Vaccinium myrtillus (VM are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study. Materials and methods: Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (mRNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2. Results: A noncytotoxic dose (200 µM of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001 regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus. Conclusion: The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in

  6. Molecular simulation study of the competitive adsorption of H2O and CO2 in zeolite 13X.

    Science.gov (United States)

    Joos, Lennart; Swisher, Joseph A; Smit, Berend

    2013-12-23

    The presence of H2O in postcombustion gas streams is an important technical issue for deploying CO2-selective adsorbents. Because of its permanent dipole, H2O can interact strongly with materials where the selectivity for CO2 is a consequence of its quadrupole interacting with charges in the material. We performed molecular simulations to model the adsorption of pure H2O and CO2 as well as H2O/CO2 mixtures in 13X, a popular zeolite for CO2 capture processes that is commercially available. The simulations show that H2O reduces the capacity of these materials for adsorbing CO2 by an order of magnitude and that at the partial pressures of H2O relevant for postcombustion capture, 13X will be essentially saturated with H2O .

  7. Naringenin Attenuates H2O2-Induced Mitochondrial Dysfunction by an Nrf2-Dependent Mechanism in SH-SY5Y Cells.

    Science.gov (United States)

    de Oliveira, Marcos Roberto; Brasil, Flávia Bittencourt; Andrade, Cláudia Marlise Balbinotti

    2017-11-01

    Mitochondria are the major site of ATP production in mammalian cells. Furthermore, these organelles are a source and a target of reactive oxygen species (ROS), such as radical anion superoxide (O 2 -· ) and hydrogen peroxide (H 2 O 2 ). The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is the master regulator of the mammalian redox biology and controls the expression of antioxidant and phase II detoxifying enzymes in several cell types. Naringenin (NGN, 5,7-dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one), a flavanone, exhibits cytoprotective effects by acting as an antioxidant and anti-inflammatory agent. NGN is a potent activator of Nrf2. Nonetheless, it was not examine yet whether NGN would induce mitochondrial protection in cells under redox stress. Therefore, we investigate here whether Nrf2 would be involved in the mitochondrial protection elicited by NGN in SH-SY5Y cells exposed to H 2 O 2 . We observed that a pretreatment with NGN at 80 µM for 2 h reduced the levels of lipid peroxidation, protein carbonylation, and protein nitration in the membranes of mitochondria obtained from H 2 O 2 -treated SH-SY5Y cells. Additionally, NGN prevented the H 2 O 2 -induced impairment in the function of the enzymes aconitase, α-ketoglutarate dehydrogenase, and succinate dehydrogenase. The activites of the complexes I and V, as well as the production of ATP, were restored by NGN. NGN also suppressed the H 2 O 2 -induced mitochondria-related apoptosis. Interestingly, NGN promoted an increase in the levels of both total and mitochondrial glutathione (GSH). Silencing of Nrf2 abolished the protective effects induced by NGN. Overall, NGN induced mitochondrial protection by an Nrf2-dependent mechanism in H 2 O 2 -treated SH-SY5Y cells.

  8. Theoretical and experimental studies of the photoluminescent properties of the coordination polymer [Eu(DPA)(HDPA)(H2O)2].4H2O.

    Science.gov (United States)

    Rodrigues, Marcelo O; Júnior, Nivan B da Costa; Simone, Carlos A de; Araújo, Adriano A S; Brito-Silva, A M; Paz, Filipe A Almeida; Mesquita, Maria E de; Júnior, Severino A; Freire, Ricardo O

    2008-04-10

    We report on the hydrothermal synthesis of the [Eu(DPA)(HDPA)(H(2)O)(2)].4H(2)O lanthanide-organic framework (where H2DPA stands for pyridine-2,6-dicarboxylic acid), its full structural characterization including single-crystal X-ray diffraction and vibrational spectroscopy studies, plus detailed investigations on the experimental and predicted (using the Sparkle/PM3 model) photophysical luminescent properties. We demonstrate that the Sparkle/PM3 model arises as a valid and efficient alternative to the simulation and prediction of the photoluminescent properties of lanthanide-organic frameworks when compared with methods traditionally used. Crystallographic investigations showed that the material is composed of neutral one-dimensional coordination polymers infinity(1)[Eu(DPA)(HDPA)(H(2)O)(2)] which are interconnected via a series of hydrogen bonding interactions involving the water molecules (both coordinated and located in the interstitial spaces of the structure). In particular, connections between bilayer arrangements of infinity(1)[Eu(DPA)(HDPA)(H(2)O)(2)] are assured by a centrosymmetric hexameric water cluster. The presence of this large number of O-H oscillators intensifies the vibronic coupling with water molecules and, as a consequence, increases the number of nonradiative decay pathways controlling the relaxation process, ultimately considerably reducing the quantum efficiency (eta = 12.7%). The intensity parameters (Omega(2), Omega(4), and Omega(6)) were first calculated by using both the X-ray and the Sparkle/PM3 structures and were then used to calculate the rates of energy transfer (W(ET)) and back-transfer (W(BT)). Intensity parameters were used to predict the radiative decay rate. The calculated quantum yield obtained from the X-ray and Sparkle/PM3 structures (both of about 12.5%) are in good agreement with the experimental value (12.0 +/- 5%). These results clearly attest for the efficacy of the theoretical models employed in all calculations and

  9. MgSO4-H2O system at High pressure and its implication for the internal structure and evolution of Ganymede

    Science.gov (United States)

    Nakamura, R. S.; Ohtani, E.; Terasaki, H.

    2008-12-01

    Cryovolcanism and active geological alterations have been discovered in many icy satellites. Not only the surface activities but also the possibility of the subsurface ocean in Galilean satellites have been discussed by Shoemaker et al. (1982) and Kargel (1991). In the previous studies (Prockter 2001, Fortes 2007) existence of subsurface ocean has been suggested based on the observed data such as surface structures of alteration and gravity observations which includes the momentum of inertia. We can adopt the three- layered model for Ganymede (Mueller et al. 1988) composed of Fe or FeS inner core, Silicate outer core, and volatile-rich icy mantle. We calculated the density profile for the three-layered model based on the mixture of C1 chondrite Orgueil meteorite and H2O. We constructed a new model which has a deeper icy mantle with the density larger than pure ice. The infrared data of the Galileo survey (McCord et al. 1999,2001) found a large amount of sulfates such as MgSO4•6 H2O, MgSO4•7 H2O. Thus we estimated that the volatile-rich icy mantle contains not only pure ice but also a heavy MgSO4 component with several weight percents. We investigated the phase relations of MgSO4- H2O system under high pressure in order to discuss the internal structure of Ganymede. The sample which consisted of 0 to 30 weight percent of MgSO4 was put in diamond anvil cell with external heating device. The experiments performed up to 5GPa and 600K. This condition is a bit higher than the bottom of icy mantle (around 350K and 2GPa) (Prentice 2000, Sohl 2001). Under our experimental conditions, we found various high pressure phases in MgSO4- H2O system such as Ice VI and VII, and sulfates hydrates such as MgSO4•1H2O, MgSO4•6H2O, and MgSO4•7H2O depending on pressure and temperature conditions. Viscosity and density of the eutectic liquid at high pressure were measured using the falling sphere method with diamond anvil cell.We will present our experimental results and discuss

  10. Photodesorption of H2O, HDO, and D2O ice and its impact on fractionation

    Science.gov (United States)

    Arasa, Carina; Koning, Jesper; Kroes, Geert-Jan; Walsh, Catherine; van Dishoeck, Ewine F.

    2015-03-01

    The HDO/H2O ratio measured in interstellar gas is often used to draw conclusions on the formation and evolution of water in star-forming regions and, by comparison with cometary data, on the origin of water on Earth. In cold cores and in the outer regions of protoplanetary disks, an important source of gas-phase water comes from photodesorption of water ice. This research note presents fitting formulae for implementation in astrochemical models using previously computed photodesorption efficiencies for all water ice isotopologues obtained with classical molecular dynamics simulations. The results are used to investigate to what extent the gas-phase HDO/H2O ratio reflects that present in the ice or whether fractionation can occur during the photodesorption process. Probabilities for the top four monolayers are presented for photodesorption of X (X = H, D) atoms, OX radicals, and X2O and HDO molecules following photodissociation of H2O, D2O, and HDO in H2O amorphous ice at ice temperatures from 10-100 K. Significant isotope effects are found for all possible products: (1) H atom photodesorption probabilities from H2O ice are larger than those for D atom photodesorption from D2O ice by a factor of 1.1; the ratio of H and D photodesorbed upon HDO photodissociation is a factor of 2. This process will enrich the ice in deuterium atoms over time; (2) the OD/OH photodesorption ratio upon D2O and H2O photodissociation is on average a factor of 2, but the OD/OH photodesorption ratio upon HDO photodissociation is almost constant at unity for all ice temperatures; (3) D atoms are more effective in kicking out neighbouring water molecules than H atoms. However, the ratio of the photodesorbed HDO and H2O molecules is equal to the HDO/H2O ratio in the ice, therefore, there is no isotope fractionation when HDO and H2O photodesorb from the ice. Nevertheless, the enrichment of the ice in D atoms due to photodesorption can over time lead to an enhanced HDO/H2O ratio in the ice, and

  11. The Cheshire-cat-like Behavior of 2nu(sub 3) Overtone of Co2 near 2.134 micron: NIR Lab Spectra of Solid CO2 in H2O and CH3OH

    Science.gov (United States)

    Bernstein, Max; Sandford, Scott; Cruikshank, Dale

    2005-01-01

    Infrared (IR) spectra have demonstrated that solid H2O is very common in the outer Solar System, and solid carbon dioxide (CO2) has been detected on icy satellites, comets, and planetismals throughout the outer Solar System. In such environments, CO2 and H2O must sometimes be mixed at a molecular level, changing their IR absorption features. In fact, the IR spectra of CO2-H2O mixtures are not equivalent to a linear combination of the spectra of the pure materials. Laboratory IR spectra of pure CO2 and H2O have been published but a lack of near-IR spectra of CO2-H2O mixtures has made the interpretation of outer Solar System spectra more difficult. We present near infrared (IR) spectra of CO2 in H2O and in CH3OH compared to that of pure solid CO2 and find significant differences. Peaks not present in either pure H2O or pure CO2 spectra become evident. First, the CO2 (2nu(sub 3)) overtone near 2.134 micron (4685/ cm) that is not seen in pure solid CO2 is prominent in the spectrum of a CO2/H2O = 25 mixture. Second, a 2.74 micron (3650/ cm) dangling OH feature of water (and a potentially related peak at 1.89 micron) appear in the spectra of CO2-H2O ice mixtures, but may not be specific to the presence of CO2. Other CO2 peaks display shifts in position and increased width because of intermolecular interactions with water. Changes in CO2 peak positions and profiles on warming of a CO2/H2O = 5 mixture are consistent with 'segregation' of the ice into nearly pure separate components. Absolute strengths for absorptions of CO2 in solid H2O are estimated. Similar results are observed for CO2 in solid CH3OH. Since the CO2 ( 2nu(sub 3)) overtone near 2.134 micron (4685/ cm) is not present in pure CO2 but prominent in mixtures it may be a good observational indicator of whether solid CO2 is a pure material or intimately mixed with other molecules. Significant changes in the near IR spectrum of solid CO2 in the presence of H2O and CH3OH means that the abundance of solid CO2 in the

  12. U3Si2 behavior in H2O environments: Part II, pressurized water with controlled redox chemistry

    Science.gov (United States)

    Nelson, A. T.; Migdisov, A.; Wood, E. Sooby; Grote, C. J.

    2018-03-01

    Recent interest in U3Si2 as an advanced light water reactor fuel has driven assessment of numerous properties, but characterization of its response to H2O environments is sparse in available literature. The behavior of U3Si2 in H2O containing atmospheres is investigated and presented in a two-part series of articles. This work examines the behavior of U3Si2 following exposure to pressurized H2O at temperatures from 300 to 350 °C. Testing was performed using two autoclave configurations and multiple redox conditions. Use of solid state buffers to attain a controlled water chemistry is also presented as a means to test actinide-bearing systems. Buffers were used to vary the hydrogen concentration between 1 and 30 parts per million H2. Testing included UN, U3Si5, and UO2. Both UN and U3Si5 were found to rapidly pulverize in less than 50 h at 300 °C. Uranium dioxide was included as a control for the autoclave system, and was found to be minimally impacted by exposure to pressurized water at the conditions tested for extended time periods. Testing of U3Si2 at 300 °C found reasonable stability through 30 days in 1-5 ppm H2. However, pulverization was observed following 35 days. The redox condition of testing strongly affected pulverization. Characterization of the resulting microstructures suggests that the mechanism responsible for pulverization under more strongly reducing conditions differs from that previously identified. Hydride formation is hypothesized to drive this transition. Testing performed at 350 °C resulted in rapid pulverization of U3Si2 in under 50 h.

  13. Electrical conductivity of H2O-NaCl fluids to 10 kbar

    Science.gov (United States)

    Sinmyo, R.; Keppler, H.

    2016-12-01

    Magnetotelluric studies often reveal zones of elevated electrical conductivity in the mantle wedge above subducting slabs, in the deep crust below fold belts, or below active volcanoes. Since both aqueous fluids and hydrous silivate melts may be highly conductive, they may both account for these observations. Distinguishing between these two posssibilities, however, is difficult. One reason for this problem is that while there are very good conductivity data for silicate melts, such data do not exist for aqueous fluids under the relevant conditions of pressure, temperature and solute concentration. Most crustal and mantle fluids likely contain some NaCl, which greatly enhances conductivity due to its partial dissociation into Na+ and Cl-. We therefore studied the electrical conductivity of 0.01, 0.1 and 1 m NaCl solutions in water to 10 kbar and 600 °C. The measurements were carried out in externally-heated diamond cells containing two gaskets separated by an insulating ring of diamond, following a method described by Ni et al. (2014). The two gaskets were used as electrodes and full impedance spectra were measured from 30 Hz to 10 MHz using a Solartron 1260 impedance analyzer. Electrical conductivity was generally found to increase with pressure temperature, and fluid density. The conductivity increase observed upon variation of NaCl concentration from 0.1m to 1m was smaller than from 0.01m to 0.1m, which reflects the reduced degree of dissociation at high NaCl concentration. In general, the data show that already a very small fraction of NaCl-bearing aqueous fluid is sufficient to enhance bulk conductivities to values that would be expected for a high degree of partial melting. Accordingly, aqueous fluids may be distinguished from hydrous melts by comparing magnetotelluric and seismic data. H2O-NaCl fluids may enhance electrical conductivities with little disturbance of vp or vp/vs ratios.

  14. QTAIM and stress tensor interpretation of the (H2 O)5 potential energy surface.

    Science.gov (United States)

    Xu, Tianlv; Farrell, James; Xu, Yuning; Momen, Roya; Kirk, Steven R; Jenkins, Samantha; Wales, David J

    2016-12-05

    Using the quantum theory of atoms in molecules a near complete combined directed spanning quantum topology phase diagram (QTPD) was constructed from the nine (H2 O)5 reaction-pathways and five unique Poincaré-Hopf solutions that were found after an extensive search of the MP2 potential energy surface. Two new energy minima that were predicted from earlier work are found and include the first (H2 O)5 conformer with a 3-DQT quantum topology. The stress tensor Poincaré-Hopf relation indicated a preference for 2-DQT (H2 O)5 topologies as well as the presence of coupling between shared-shell OH BCPs to the hydrogen-bond BCPs that share an H NCP. The complexity of the near complete combined QTPD was explained in terms of the O…O bonding interactions that were found in six of the nine (H2 O)5 reaction-pathways and for all points of the combined QTPD. The stabilizing role of the O…O bonding interactions from the values of the total local energy density was explored. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Magnetic structure of molecular magnet Fe [Fe (CN) 6]· 4H2O

    Indian Academy of Sciences (India)

    We have studied the magnetic structure of Fe[Fe(CN)6]·4H2O, prepared by precipitation method, using neutron diffraction technique. Temperature dependent DC magnetization study down to 4.2 K shows that the compound undergoes from a high temperature disordered (paramagnetic) to an ordered magnetic phase ...

  16. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells

    Science.gov (United States)

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2...

  17. Utilisation of factorial experiments for the UV/H2O2 process in a ...

    African Journals Online (AJOL)

    Phenol oxidative degradation kinetics were not significantly influenced by pH or hardness of the solution to be treated, as is predicted by factorial experiments. On the other hand, initial H2O2 concentration, initial phenol concentration and temperature significantly influenced the efficiency of the process. Optimal values were ...

  18. [Degradation mechanisms of dimethyl phthalate in the UV-H2O2 system].

    Science.gov (United States)

    Liu, Qing; Chen, Cheng; Chen, Hong-Zhe; Yang, Shao-Gui; He, Huan; Sun, Cheng

    2013-07-01

    To investigate the photodegradation process of dimethyl phthalate (DMP) in the ultraviolet light (UV)-H2O2 system, mass spectrometer was used to identify degradation products and further more, to speculate the possible mechanisms of degradation process. Experimental results showed that the degradation efficiency of 10 mg x L(-1) DMP reached 92.3% in 90 minutes in the UV-H2O2 system, and the more H2O2 was added, the faster DMP decomposed. The pH of DMP solution decreased from the initial 6.5 to 4.98, because of the generating of organic phenolic acids and small acid molecules generated by the degradation of DMP. By the GC/MS as well as LC/MS analysis, degradation products of the DMP in the UV-H2O2 system were thought to comprise six categories, from which we could infer that hydrolysis occurs simultaneously on the two side chains of the DMP, generating phthalic acid that can quickly change to the more stable terephthalic acid. In addition, DMP could also occur benzene ring replacement as well as the ring condensed of the side chains. Finally, by the role of *OH, DMP and its aromatic intermediates occurred ring-opening reaction, and benzene ring was destroyed and generated organic acids of small molecular, which was further mineralized to CO2 and water.

  19. Thermodynamic analysis of BiAsO4-H2O

    Directory of Open Access Journals (Sweden)

    M. Baikenov

    2011-12-01

    Full Text Available The present of the work calculated and build up diagram of potential-pH of system BiAsO4-H2O, with using to thermodynamic analysis. There are determined zones of stability of BiAsO4-on tne basis of diagram.

  20. Identification of a (H2O)8 cluster in a supramolecular host of a ...

    Indian Academy of Sciences (India)

    We have introduced an intense green coloured plat- inum(II) complex exhibiting intramolecular interligand charge transfer transition in the long wavelength part of visible spectrum. Elucidation of X-ray structure analy- sis confirmed the presence of a novel (H2O)8 water cluster in the supramolecular host lattice of the ref-.

  1. Absorption of CO2-NH3-H2O mixture in mini-channel heat exchangers

    NARCIS (Netherlands)

    Shi, Liang; Gudjonsdottir, V.; Infante Ferreira, C.A.; Rexwinkel, Glenn; Kiss, Anton A.

    2017-01-01

    Compression resorption heat pumps (CRHP) are a promising option to upgrade waste heat from industry. Alternative working fluids can further improve the efficiency of CRHP. The ternary mixture NH3-CO2-H2O has been identified as a promising working fluid for CRHP and has the potential to further

  2. Supplementary Material Table 1: H2O molecule as example. Water ...

    Indian Academy of Sciences (India)

    Administrator

    Table 1: H2O molecule as example. Water has 3N-6=3 frequencies. So we need three force constants. the f4 is automatically fixed from f1,f2 and f3. In C1 symmetry, all the off- diagonal elements are fixed by the diagonal force constants because 3N-6=number of frequencies= number of diagonal force constants.

  3. Identification of a (H2O)8 cluster in a supramolecular host of a ...

    Indian Academy of Sciences (India)

    sg8

    Identification of a (H2O)8 cluster in a supramolecular host of a charge transfer platinum(II) complex. SUTANUVA MANDAL, a. IPSITA CHATTERJEE, a. ALFONSO CASTIÑEIRS,. *b. SREEBRATA. GOSWAMI. *a. Page 2. 2. Figure S1. Experimental and simulated ESI-MS spectra of the compound [1]Cl. Figure S2. 1H NMR ...

  4. Identification of a (H 2 O) 8 cluster in a supramolecular host of a ...

    Indian Academy of Sciences (India)

    The complex showed intense interligand charge transfer (ILCT) transition in the long wavelength region of UV-vis spectrum at 785 nm. The single-crystal X-ray structure of complex, [1]Cl·2.6H2O is reported. The cationic complex upon crystallization from aqueous methanol solvent produces an assembly of three dimensional ...

  5. X-ray irradiation activates K+ channels via H2O2 signaling.

    Science.gov (United States)

    Gibhardt, Christine S; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-09-09

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels.

  6. Photoconduction in [Fe(Htrz)2(trz)](BF4)·H2O nanocrystals.

    Science.gov (United States)

    Etrillard, Celine; Faramarzi, Vina; Dayen, Jean-Francois; Letard, Jean-Francois; Doudin, Bernard

    2011-09-14

    Sub-micron-sized [Fe(Htrz)(2)(trz)](BF(4))·H(2)O nanoparticles that exhibit a spin crossover transition are positioned between Au electrodes with sub-100 nm separation. After voltage poling, samples exhibit unexpected large conductivity, with photoconductance and photovoltaic behavior. This journal is © The Royal Society of Chemistry 2011

  7. Dynamics of the dissociative electron attachment in H 2 O and D 2 O ...

    Indian Academy of Sciences (India)

    The dynamics of the formation and decay of negative ion resonance of A1 symmetry at 8.5 eV electron energy in the dissociative electron attachment (DEA) process in H2O and D2O are investigated using the velocity slice imaging technique. While the highest energy hydride ions formed by DEA show angular distributions ...

  8. Lack of correlation between H2O2 production and in vitro anti ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... bacteria, e.g., Lactobacillus acidophilus, release H2O2 required for this peroxidase-mediated antimicrobial sys- tem (Leher, 1969). What properties do these strains possess that make them effective probiotic agents? Although the answer is not fully known, some common denominators appear to exist, ...

  9. Mechanisms in manganese catalysed oxidation of alkenes with H2O2

    NARCIS (Netherlands)

    Saisaha, Pattama; de Boer, Johannes W.; Browne, Wesley R.

    2013-01-01

    The development of new catalytic systems for cis-dihydroxylation and epoxidation of alkenes, based on atom economic and environmentally friendly concepts, is a major contemporary challenge. In recent years, several systems based on manganese catalysts using H2O2 as the terminal oxidant have been

  10. [H(2)O(2) treatment improves the bond strength between glass fiber posts and resin cement].

    Science.gov (United States)

    Zhang, Yong; Zhong, Bo; Tan, Jian guo; Zhou, Jian feng; Chen, Li

    2011-02-18

    To evaluate the effect of etching with H2O2 on the bond strength between epoxy-based glass fiber posts and resin cement. Sixteen epoxy-based glass fiber posts were randomly divided into 4 groups (4 posts in each group) for different surface treatments. Group 1, no surface treatment (Control group); Group 2, treated with silane coupling agent for 60 s; Group 3, immersed in 10% H2O2 for 10 min then treated with silane coupling agent for 60 s; Group 4, immersed in 30% H2O2 for 10 min then treated with silane coupling agent for 60 s. Resin cement was used for the post cementation to form resin slabs which were then sectioned and trimmed into dumbbell shape to obtain microtensile specimens. Microtensile bond strengths were tested and the failure modes were examined with a stereomicroscope. Statistical analysis of microtensile bond strengths was performed with Kruskal-Wallis test. The microtensile bond strengths (standard deviation) were 18.81 (4.04) MPa for Group 1, 26.70 (9.63) MPa for Group 2, 39.07 (6.47) MPa for Group 3, 46.05 (5.97) MPa for Group 4. Etching with H2O2 followed by silanization could significantly improve the bond strength between epoxy-based glass fiber posts and resin cement.

  11. Mussel oligopeptides protect human fibroblasts from hydrogen peroxide (H2O2)-induced premature senescence.

    Science.gov (United States)

    Zhou, Yue; Dong, Ying; Xu, Qing-Gang; Zhu, Shu-Yun; Tian, Shi-Lei; Huo, Jing-jing; Hao, Ting-Ting; Zhu, Bei-Wei

    2014-01-01

    Mussel bioactive peptides have been viewed as mediators to maximize the high quality of life. In this study, the anti-aging activities of mussel oligopeptides were evaluated using H2O2-induced prematurely senescent MRC-5 fibroblasts. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry displayed that exposure to H2O2 led to the loss of cell viability and cell cycle arrest. In addition, H2O2 caused the elevation of senescence-associated-β-galactosidase (SA-β-gal) activity and formation of senescence-associated heterochromatin foci (SAHF). It was found that pretreatment with mussel oligopeptides could significantly attenuate these properties associated with cellular senescence. Mussel oligopeptides also led to the increase of glutathione (GSH) level and mitochondrial transmembrane potential (Δψm) recovery. In addition, mussel oligopeptides resulted in an improvement in transcriptional activity of peroxiredoxin 1 (Prx1), nicotinamide phosphoribosyltransferase (NAMPT) and sirtuin 1 (SIRT1). This study revealed that mussel oligopeptides could protect against cellular senescence induced by H2O2, and the effects were closely associated with redox cycle modulating and potentiating the SIRT1 pathway. These findings provide new insights into the beneficial role of mussel bioactive peptides on retarding senescence process. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  12. LaCl3⋅7H2O catalysed cyclocondensation of o-phenylenediamine ...

    Indian Academy of Sciences (India)

    TECS

    LaCl3⋅7H2O catalysed cyclocondensation of o-phenylenediamine and ketones under solvent-free conditions. SHIVAJI S PANDIT,* BHUSHAN D VIKHE and GANESH D SHELKE. Department of Chemistry, Padmashri Vikhe Patil College, Pravaranagar, Ahmednagar 413 713 e-mail: akankshapandit2002@yahoo.com.

  13. H 2 O 2-HBr: A metal-free and organic solvent-free reagent system ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 121; Issue 2. H2O2-HBr: A metal-free and organic solvent-free reagent system for the synthesis of arylaldehydes from methylarenes. Mohammad Ghaffarzadeh Mohammad Bolourtchian Kourosh Tabar-Heydar Iman Daryaei Farshid Mohsenzadeh. Full Papers Volume ...

  14. Conversion of pentahalogenated phenols by microperoxidase-8/H2O2 to benzoquinone-type products

    NARCIS (Netherlands)

    Osman, A.M.; Posthumus, M.A.; Veeger, C.; Bladeren, P.J. van; Laane, C.; Rietjens, I.M.C.M.

    1998-01-01

    This study reports the microperoxidase-8 (MP8)/H2O2-catalyzed dehalogenation of pentafluorophenol and pentachlorophenol, compounds whose toxic effects and persistence in the environment are well documented. The primary products of this dehalogenation reaction appear to be the corresponding

  15. Combined amino acids modulation with H 2 O 2 stress for ...

    African Journals Online (AJOL)

    Strategies of amino acids addition coupled with H2O2 stresses were developed for glutathione (GSH) overproduction in high cell density (HCD) cultivation of Candida utilis. Based on the fact that glycine shows two functions of promoting cells growth as well as GSH production, precursor amino acids modulations of feeding ...

  16. Use of Energy Method to Simulate the Performance of LiBr/H 2 O ...

    African Journals Online (AJOL)

    Absorption refrigeration system provides large potential for reducing heat pollution of the environment. In this paper, a model has been developed for description of a simple LiBr / H2O absorption system in a climatic setting that is amenable to change. The fundamental characteristics and performance index of the system ...

  17. Effect of H2O Adsorption on Negative Differential Conductance Behavior of Single Junction.

    Science.gov (United States)

    Li, Zong-Liang; Yi, Xiao-Hua; Liu, Ran; Bi, Jun-Jie; Fu, Huan-Yan; Zhang, Guang-Ping; Song, Yu-Zhi; Wang, Chuan-Kui

    2017-06-23

    Large negative differential conductance (NDC) at lower bias regime is a very desirable functional property for single molecular device. Due to the non-conjugated segment separating two conjugated branches, the single thiolated arylethynylene molecule with 9,10-dihydroanthracene core (denoted as TADHA) presents excellent NDC behavior in lower bias regime. Based on the ab initio calculation and non-equilibrium Green's function formalism, the NDC behavior of TADHA molecular device and the H2O-molecule-adsorption effects are studied systematically. The numerical results show that the NDC behavior of TADHA molecular junction originates from the Stark effect of the applied bias which splits the degeneration of the highest occupied molecular orbital (HOMO) and HOMO-1. The H2O molecule adsorbed on the terminal sulphur atom strongly suppresses the conductance of TADHA molecular device and destroys the NDC behavior in the lower bias regime. Single or separated H2O molecules adsorbed on the backbone of TADHA molecule can depress the energy levels of molecular orbitals, but have little effects on the NDC behavior of the TADHA molecular junction. Aggregate of several H2O molecules adsorbed on one branch of TADHA molecule can dramatically enhance the conductance and NDC behavior of the molecular junction, and result in rectifier behavior.

  18. High purity H2/H2O/Ni/SZ electrodes at 500º C

    DEFF Research Database (Denmark)

    Høgh, Jens Valdemar Thorvald; Hansen, Karin Vels; Norrman, Kion

    2013-01-01

    of stabilized zirconia (SZ) with 10, 13 and 18 mol% yttria and one with 6 mol% scandia plus 4 mol% yttria were studied at open circuit voltage at 400-500 C in mixtures of H2/H2O over 46 days. The polarization resistances (Rp) for all samples increased significantly during the first 10-20 days at 500 C...

  19. Photoignition Torch Applied to Cryogenic H2/O2 Coaxial Jet

    Science.gov (United States)

    2016-12-06

    19b. TELEPHONE NUMBER (Include area code ) 12/06/2016 Conference Paper 17 October 2016- 09 December 2016 Photoignition Torch Applied to Cryogenic H2/O2...Coaxial Jet A. Badakhshan, S. Danczyk, and D. Talley Air Force Research Laboratory (AFMC) AFRL/RQRC 10 E. Saturn Blvd. Edwards AFB, CA 93524-7680

  20. Crystal structures of Ca(ClO42·4H2O and Ca(ClO42·6H2O

    Directory of Open Access Journals (Sweden)

    Erik Hennings

    2014-12-01

    Full Text Available The title compounds, calcium perchlorate tetrahydrate and calcium perchlorate hexahydrate, were crystallized at low temperatures according to the solid–liquid phase diagram. The structure of the tetrahydrate consists of one Ca2+ cation eightfold coordinated in a square-antiprismatic fashion by four water molecules and four O atoms of four perchlorate tetrahedra, forming chains parallel to [01-1] by sharing corners of the ClO4 tetrahedra. The structure of the hexahydrate contains two different Ca2+ cations, each coordinated by six water molecules and two O atoms of two perchlorate tetrahedra, forming [Ca(H2O6(ClO4]2 dimers by sharing two ClO4 tetrahedra. The dimers are arranged in sheets parallel (001 and alternate with layers of non-coordinating ClO4 tetrahedra. O—H...O hydrogen bonds between the water molecules as donor and ClO4 tetrahedra and water molecules as acceptor groups lead to the formation of a three-dimensional network in the two structures. Ca(ClO42·6H2O was refined as a two-component inversion twin, with an approximate twin component ratio of 1:1 in each of the two structures.

  1. Catalase-dependent H2O2 consumption by cardiac mitochondria and redox-mediated loss in insulin signaling.

    Science.gov (United States)

    Rindler, Paul M; Cacciola, Angela; Kinter, Michael; Szweda, Luke I

    2016-11-01

    We have recently demonstrated that catalase content in mouse cardiac mitochondria is selectively elevated in response to high dietary fat, a nutritional state associated with oxidative stress and loss in insulin signaling. Catalase and various isoforms of glutathione peroxidase and peroxiredoxin each catalyze the consumption of H2O2 Catalase, located primarily within peroxisomes and to a lesser extent mitochondria, has a low binding affinity for H2O2 relative to glutathione peroxidase and peroxiredoxin. As such, the contribution of catalase to mitochondrial H2O2 consumption is not well understood. In the current study, using highly purified cardiac mitochondria challenged with micromolar concentrations of H2O2, we found that catalase contributes significantly to mitochondrial H2O2 consumption. In addition, catalase is solely responsible for removal of H2O2 in nonrespiring or structurally disrupted mitochondria. Finally, in mice fed a high-fat diet, mitochondrial-derived H2O2 is responsible for diminished insulin signaling in the heart as evidenced by reduced insulin-stimulated Akt phosphorylation. While elevated mitochondrial catalase content (∼50%) enhanced the capacity of mitochondria to consume H2O2 in response to high dietary fat, the selective increase in catalase did not prevent H2O2-induced loss in cardiac insulin signaling. Taken together, our results indicate that mitochondrial catalase likely functions to preclude the formation of high levels of H2O2 without perturbing redox-dependent signaling. Copyright © 2016 the American Physiological Society.

  2. Descent Without Modification? The Thermal Chemistry of H2O2 on Europa and Other Icy Worlds

    Science.gov (United States)

    Loeffler, Mark Josiah; Hudson, Reggie Lester

    2015-01-01

    The strong oxidant H2O2 is known to exist in solid form on Europa and is suspected to exist on several other Solar System worlds at temperatures below 200 K. However, little is known of the thermal chemistry that H2O2 might induce under these conditions. Here, we report new laboratory results on the reactivity of solid H2O2 with eight different compounds in H2O-rich ices. Using infrared spectroscopy, we monitored compositional changes in ice mixtures during warming. The compounds CH4 (methane), C3H4 (propyne), CH3OH (methanol), and CH3CN (acetonitrile) were unaltered by the presence of H2O2 in ices, showing that exposure to either solid H2O2 or frozen H2O+H2O2 at cryogenic temperatures will not oxidize these organics, much less convert them to CO2. This contrasts strongly with the much greater reactivity of organics with H2O2 at higher temperatures, and particularly in the liquid and gas phases. Of the four inorganic compounds studied, CO, H2S, NH3, and SO2, only the last two reacted in ices containing H2O2, NH3 making NHþ 4 and SO2 making SO2 4 by H+ and e - transfer, respectively. An important astrobiological conclusion is that formation of surface H2O2 on Europa and that molecule's downward movement with H2O-ice do not necessarily mean that all organics encountered in icy subsurface regions will be destroyed by H2O2 oxidation.

  3. Classification of H2O2 as a Neuromodulator that Regulates Striatal Dopamine Release on a Subsecond Time Scale

    Science.gov (United States)

    2012-01-01

    Here we review evidence that the reactive oxygen species, hydrogen peroxide (H2O2), meets the criteria for classification as a neuromodulator through its effects on striatal dopamine (DA) release. This evidence was obtained using fast-scan cyclic voltammetry to detect evoked DA release in striatal slices, along with whole-cell and fluorescence imaging to monitor cellular activity and H2O2 generation in striatal medium spiny neurons (MSNs). The data show that (1) exogenous H2O2 suppresses DA release in dorsal striatum and nucleus accumbens shell and the same effect is seen with elevation of endogenous H2O2 levels; (2) H2O2 is generated downstream from glutamatergic AMPA receptor activation in MSNs, but not DA axons; (3) generation of modulatory H2O2 is activity dependent; (4) H2O2 generated in MSNs diffuses to DA axons to cause transient DA release suppression by activating ATP-sensitive K+ (KATP) channels on DA axons; and (5) the amplitude of H2O2-dependent inhibition of DA release is attenuated by enzymatic degradation of H2O2, but the subsecond time course is determined by H2O2 diffusion rate and/or KATP-channel kinetics. In the dorsal striatum, neuromodulatory H2O2 is an intermediate in the regulation of DA release by the classical neurotransmitters glutamate and GABA, as well as other neuromodulators, including cannabinoids. However, modulatory actions of H2O2 occur in other regions and cell types, as well, consistent with the widespread expression of KATP and other H2O2-sensitive channels throughout the CNS. PMID:23259034

  4. Validation of SCIAMACHY HDO/H2O measurements using the TCCON and NDACC-MUSICA networks

    Science.gov (United States)

    Scheepmaker, R. A.; Frankenberg, C.; Deutscher, N. M.; Schneider, M.; Barthlott, S.; Blumenstock, T.; Garcia, O. E.; Hase, F.; Jones, N.; Mahieu, E.; Notholt, J.; Velazco, V.; Landgraf, J.; Aben, I.

    2015-04-01

    Measurements of the atmospheric HDO/H2O ratio help us to better understand the hydrological cycle and improve models to correctly simulate tropospheric humidity and therefore climate change. We present an updated version of the column-averaged HDO/H2O ratio data set from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). The data set is extended with 2 additional years, now covering 2003-2007, and is validated against co-located ground-based total column δD measurements from Fourier transform spectrometers (FTS) of the Total Carbon Column Observing Network (TCCON) and the Network for the Detection of Atmospheric Composition Change (NDACC, produced within the framework of the MUSICA project). Even though the time overlap among the available data is not yet ideal, we determined a mean negative bias in SCIAMACHY δD of -35 ± 30‰ compared to TCCON and -69 ± 15‰ compared to MUSICA (the uncertainty indicating the station-to-station standard deviation). The bias shows a latitudinal dependency, being largest (∼ -60 to -80‰) at the highest latitudes and smallest (∼ -20 to -30‰) at the lowest latitudes. We have tested the impact of an offset correction to the SCIAMACHY HDO and H2O columns. This correction leads to a humidity- and latitude-dependent shift in δD and an improvement of the bias by 27‰, although it does not lead to an improved correlation with the FTS measurements nor to a strong reduction of the latitudinal dependency of the bias. The correction might be an improvement for dry, high-altitude areas, such as the Tibetan Plateau and the Andes region. For these areas, however, validation is currently impossible due to a lack of ground stations. The mean standard deviation of single-sounding SCIAMACHY-FTS differences is ∼ 115‰, which is reduced by a factor ∼ 2 when we consider monthly means. When we relax the strict matching of individual measurements and focus on the mean seasonalities using all available

  5. Distillation of H2O from hard-frozen Martian permafrost

    Science.gov (United States)

    Zent, A. P.; Gwynne, O.

    The authors present a method for distillation of hard-frozen Martian permafrost. A cable-tool is drilled into hard frozem permafrost to a depth of 10 to 20 m. They calculate that a 10 m hole could be drilled in a few days. A 10 m shaft with a diameter equal to the bore is inserted into the hole, and a air tight tent-like structure is erected over the borehole. Photovoltaic cells mounted on the tent supply electrical energy that is dissipated in the shaft. Drilling power can be supplied by other sources. With 1000 watts, the shaft can be heated to near 350 K, producing relatively high temperatures in the vicinity of the borehole. Surrounding H2O is vaporized and diffuses up through the regolith. The authors calculate that a tent of a radius of no more than a few meters would intercept most of the H2O as it diffused to the surface. Calculations suggest that it would require perhaps 30 days to extract H2O from most of the volume drained by this technique. Assuming that the hard frozen regolith is no more than 10 percent ice, the author's calculate that that about 2890 kg of H2O could be extracted in 30 days. Since the nominal requirement for each crew member is about 5 kg/day, one such borehole might be expected to supply enough H2O to maintain a crew of 5 for perhaps 100 days. Additional engineering studies will be done to attempt to improve the capacity or efficiency of this method.

  6. Reducing THMFP by H2O2/UV oxidation for humic acid of small molecular weight.

    Science.gov (United States)

    Yen, Hsing Yuan; Yen, Li Shuang

    2015-01-01

    In this study, the merits of using H2O2/UV oxidation for reducing trihalomethane formation potential (THMFP), colour, and dissolved organic carbon (DOC) of smaller molecular humic acid were investigated, especially the energy consumption based on EEO. The results show that THMFP decreases by increasing oxidation time, H2O2 dose and UV intensity. The reaction constant in descending order is kColour>kDOC>kTHMFP. Furthermore, EEO shows three trends. First, it decreases as H2O2 dose increases. That is, by increasing the amount of H2O2 dose, the electrical energy efficiency becomes better. Second, EEO,9 W>EEO,13 W, implying that higher UV power would result in a higher electrical energy efficiency. Third, EEO,THMFP>EEO,DOC>EEO,colour. That is, the electric energy efficiency is the best for colour removal, second for DOC removal, and third for THMFP reduction. The operation costs for 90% removal of colour, DOC, and THMFP are from 0.31 to 0.69, from 0.78 to 1.72, and from 1.11 to 2.29 US$/m3, respectively. However, reducing THMs to Taiwan's drinking water standard of 80 µg/L needs only 0.25-0.60 US$/m3. Therefore, the condition with UV of 9 W, H2O2 of 50 mg/L, and oxidation time of 23 min can be applied for THMs reduction as the cost is the smallest of 0.25 US$/m3, even lower than current Taiwan's drinking water price of 0.3 US$/m3.

  7. Promotion of CO oxidation on PdO(101) by adsorbed H2O

    Science.gov (United States)

    Choi, Juhee; Pan, Li; Mehar, Vikram; Zhang, Feng; Asthagiri, Aravind; Weaver, Jason F.

    2016-08-01

    We investigated the influence of adsorbed H2O on the oxidation of CO on PdO(101) using temperature programmed reaction spectroscopy (TPRS), reflection absorption infrared spectroscopy (RAIRS) and density functional theory (DFT) calculations. We find that water inhibits CO adsorption on PdO(101) by site blocking, but also provides a more facile pathway for CO oxidation compared with the bare oxide surface. In the presence of adsorbed H2O, the oxidation of CO on PdO(101) produces a CO2 TPRS peak that is centered at a temperature 50 K lower than the main CO2 TPRS peak arising from CO oxidation on clean PdO(101) ( 330 vs. 380 K). RAIRS shows that CO continues to adsorb on atop-Pd sites of PdO(101) when H2O is co-adsorbed, and provides no evidence of other reactive intermediates. DFT calculations predict that the CO oxidation mechanism follows the same steps for CO adsorbed on PdO(101) with and without co-adsorbed H2O, wherein an atop-CO species recombines with an oxygen atom from the oxide surface lattice. According to DFT, hydrogen bonding interactions with adsorbed H2O species stabilize the carboxyl-like transition structure and intermediate that result from the initial recombination of CO and O on the PdO(101) surface. This stabilization lowers the energy barrier for CO oxidation on PdO(101) by 10 kJ/mol, in good agreement with our experimental estimate.

  8. Variability of H2O and SO2 on Venus between 2012 and 2016

    Science.gov (United States)

    Encrenaz, Therese A.; Greathouse, Thomas K.; Richter, Matthew; DeWitt, Curtis; Widemann, Thomas; Bézard, Bruno; Fouchet, Thierry; Atreya, Sushil K.; Sagawa, Hideo

    2016-10-01

    Since January 2012, we have been using the TEXES high-resolution imaging spectrometer at the NASA Infrared Telescope Facility to map sulfur dioxide and deuterated water over the disk of Venus. Data have been recorded in two spectral ranges around 1348 cm-1 (7.4 microns) and 530 cm-1 (19 microns), in order to probe the cloudtop at an altitude of about 64 km (SO2 and HDO at 7 microns) and a few kilometers below (SO2 at 19 microns). Observations took place during six runs between January 2012 and January 2016. The diameter of Venus ranged between 12 and 33 arcsec. Data were recorded with a spectral resolving power as high as 80000 and a spatial resolution of about 1 arcsec (at 7 microns) and 2.5 arcsec (at 19 microns). Mixing ratios have been estimated from HDO/CO2 and SO2/CO2 line depth ratios, using weak neighboring transitions of comparable depths. All data show that the two molecules have a very different behavior. The HDO maps are globally uniform over the disk. The variations of the disk-integrated H2O mixing ratio (estimated assuming a D/H of 200 VSMOW in the mesosphere of Venus) varies by about a factor 1.5 over the four-year period. A constant value of 1.0 - 1.5 pppmv is obtained in most of the cases. The SO2 maps, in contrast, show strong variations over the disk of Venus, by a factor as high as 5. Long-term variations of SO2 show that the disk-integrated SO2 mixing ratio varies between 2012 and 2016 by a factor as high as 10, with a minimum value of 30 +/- 5 ppbv in February 2014 an a maximum value of 300 +/- 50 ppbv in January 2016. The SO2 maps also show a strong short-term variability, with a timescale of a few hours.

  9. The HO2 + (H2O)n + O3 reaction: an overview and recent developments*

    Science.gov (United States)

    Viegas, Luís P.; Varandas, António J. C.

    2016-03-01

    The present work is concerned with the reaction of the hydroperoxyl radical with ozone, which is key in the atmosphere. We first give a brief overview which emphasizes theoretical work developed at the authors' Group, considering not only the naked reaction (n = 0) but also the reaction with one water molecule added to the reactants (n = 1). Aiming at a broad and contextual understanding of the role of water, we have also very recently published the results of the investigation considering the addition of water dimers (n = 2) and trimers (n = 3) to the reactants. Such results are also succinctly addressed before we present our latest and unpublished research endeavors. These consist of two items: the first one addresses a new mechanistic pathway for hydrogen-abstraction in n = 2-4 cases, in which we observe a Grotthuss-like hydrogen shuttling mechanism that interconverts covalent and hydrogen bonds (water molecules are no longer spectators); the second addresses our exploratory calculations of the HO2 + O3 reaction inside a (H2O)20 water cage, where we strive to give a detailed insight of the molecular processes behind the uptake of gas-phase molecules by a water droplet. Supplementary material in the form of one zip file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-60733-5Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.

  10. Synthesis and Characterization of TiO2(B Nanotubes Prepared by Hydrothermal Method Using [Ti8O12(H2O24]Cl8.HCl.7H2O as Precursor

    Directory of Open Access Journals (Sweden)

    Hari Sutrisno

    2010-04-01

    Full Text Available Low-dimension TiO2-related material has been synthesized by hydrothermal treatment of [Ti8O12(H2O24]Cl8.HCl.7H2O crystal as precursor in a 10 M NaOh aqueous solution at 150 C for 24 h. Characterization of the obtained product was carried out by a range of techniques including X-ray diffraction (XRD, high resolution scanning electron microscopy (HRSEM, high resolution transmission electron microscopy (HRTEM, Raman spectroscopy and nitrogen adsorption-desorption isotherm (Brunauer-Emmett-Teller (BET-Barret-Joyner-Halender (BJH. From HRTEM, XRD and Raman spectra showed that the obtained product has a TiO2(B structure. According to HRTEM observations, it was found that TiO2(B has nanotubular structure with approximately 5-8 nm in outer and 3-6 nm in inner diameter. The BET surface area of TiO2(B nanotubes is quiet large, values of 418.3163 m2/g being obtained. Pore structure analyisis by the BJH method showed that the average pore diameter of TiO2(B nanotubes has 5.5781 nm.

  11. Carbon Deposition in Solid Oxide Cells during Co-Electrolysis of H2O and CO2

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2014-01-01

    % respectively. Based on the nominal gas composition, carbon formation only occurs, according to equilibrium thermodynamics, at a reactant conversion above 99%. Therefore, the observed carbon formation is ascribed to a change in gas composition due to the diffusion limitations within the Ni-YSZ support......Carbon formation during co-electrolysis of H2O and CO2 in Ni-YSZ supported Solid Oxide Electrolysis Cells (SOECs) may occur, especially at high current density and high conversion. In order to evaluate the carbon formation limits, five galvanostatic tests were performed in this work at electrolysis...... current densities from 1.5 to 2.25 A/cm2 and reactant (H2O + CO2) conversion of up to 67%. Delamination and carbon nano-fibers were observed at the Ni-YSZ|YSZ interface for two cells with a dense microstructure operated at electrolysis current densities of 2.0 and 2.25 A/cm2 and a conversion of 59% and 67...

  12. Reactions of M(+)(H2O)n, n < 40, M = V, Cr, Mn, Fe, Co, Ni, Cu, and Zn, with D2O reveal water activation in Mn(+)(H2O)n.

    Science.gov (United States)

    van der Linde, Christian; Beyer, Martin K

    2012-11-08

    Reactions of M(+)(H(2)O)(n), n hydrogen occurs. For manganese, HDO formation occurs in the size regime n ≈ 8-20. Additional experiments show that, in this size regime, Mn(+)(H(2)O)(n) is slowly converted into HMnOH(+)(H(2)O)(n-1) under the influence of room temperature blackbody radiation. The reaction is mildly exothermic; ΔH ≈ -21 ± 10 kJ mol(-1).

  13. Understanding Pegmatite Texture: Kinetics of Crystallization in the Haplogranite-Li-B-H2O System

    Science.gov (United States)

    Sirbescu, M. C.; Wilke, M.; Veksler, I. V.

    2009-12-01

    We investigated the crystallization behavior of haplogranite-Li-B-H2O melts in a series of dynamic experiments in order to constrain development of texture in Li-rich pegmatites. Current models propose that salient pegmatitic features such as sub-millimeter to meter scale crystal sizes and unidirectional, spherulitic, and skeletal intergrowths are a consequence of disequilibrium crystallization under conditions of large undercooling. Although pegmatite melts are inferred to be rich in water, the role of water in promoting large crystals during magmatic crystallization is not well understood. Hydrous haplogranite glasses containing 1% Li2O+2.3% B2O3 (composition C1, by weight) and 2% Li2O+4.6% B2O3 (C2) were synthesized at 1200°C and 300 MPa in sealed Pt capsules. The water ranged between 3 to 9% H2O. Time series of unseeded crystallization experiments lasting from 1 to 14 days were performed in hydrothermal autoclaves at temperatures ranging from 400 to 700°C at 200 and 300 MPa. The experimental conditions placed the hydrous melts under variable degrees of undercooling between their liquidus and glass transition. Reproducible phase assemblages including alkali-feldspars, muscovite, stuffed β-quartz (a silica-rich solid solution between quartz and petalite), petalite (LiAlSi4O10), and virgilite (a solid solution between petalite and spodumene - LiAlSi2O6) were documented using Raman spectroscopy, XRD, and EPMA. The incubation times varied with temperature and composition. At 500° C the incubation times were between 5 and 9 days for C1 and <5 days for C2. At 400°C C1 did not produce any crystals after 14 days whereas C2 contained trace amounts of skeletal crystals formed between 9 and 14 days. The largest crystals of up to 1.5 mm and maximum growth rates of 0.25 mm/day were produced in composition C2 at 550°C. Although crystallization did not exceed ~30%, pertinent textural characteristics of LCT pegmatites were simulated reproducibly. In all runs heterogeneous

  14. Differentiating between apparent and actual rates of H2O2 metabolism by isolated rat muscle mitochondria to test a simple model of mitochondria as regulators of H2O2 concentration

    OpenAIRE

    Treberg, Jason R.; Munro, Daniel; Banh, Sheena; Zacharias, Pamela; Sotiri, Emianka

    2015-01-01

    Mitochondria are often regarded as a major source of reactive oxygen species (ROS) in animal cells, with H2O2 being the predominant ROS released from mitochondria; however, it has been recently demonstrated that energized brain mitochondria may act as stabilizers of H2O2 concentration (Starkov et al. [1]) based on the balance between production and the consumption of H2O2, the later of which is a function of [H2O2] and follows first order kinetics. Here we test the hypothesis that isolated sk...

  15. Long-term series of tropospheric water vapour amounts and HDO/H2O ratio profiles above Jungfraujoch.

    Science.gov (United States)

    Lejeune, B.; Mahieu, E.; Schneider, M.; Hase, F.; Servais, C.; Demoulin, P.

    2012-04-01

    Water vapour is a crucial climate variable involved in many processes which widely determine the energy budget of our planet. In particular, water vapour is the dominant greenhouse gas in the Earth's atmosphere and its radiative forcing is maximum in the middle and upper troposphere. Because of the extremely high variability of water vapour concentration in time and space, it is challenging for the available relevant measurement techniques to provide a consistent data set useful for trend analyses and climate studies. Schneider et al. (2006a) showed that ground-based Fourier Transform Infrared (FTIR) spectroscopy, performed from mountain observatories, allows for the detection of H2O variabilities up to the tropopause. Furthermore, the FTIR measurements allow the retrieval of HDO amounts and therefore the monitoring of HDO/H2O ratio profiles whose variations act as markers for the source and history of the atmospheric water vapour. In the framework of the MUSICA European project (Multi-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water, http://www.imk-asf.kit.edu/english/musica.php), a new approach has been developed and optimized by M. Schneider and F. Hase, using the PROFFIT algorithm, to consistently retrieve tropospheric water vapour profiles from high-resolution ground-based infrared solar spectra and so taking benefit from available long-term data sets of ground-based observations. The retrieval of the water isotopologues is performed on a logarithmic scale from 14 micro-windows located in the 2600-3100 cm-1 region. Other important features of this new retrieval strategy are: a speed dependant Voigt line shape model, a joint temperature profile retrieval and an interspecies constraint for the HDO/H2O profiles. In this contribution, we will combine the quality of the MUSICA strategy and of our observations, which are recorded on a regular basis with FTIR spectrometers, under clear-sky conditions, at the NDACC site

  16. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    Science.gov (United States)

    Sljukić, Biljana; Morais, Ana L; Santos, Diogo M F; Sequeira, César A C

    2012-07-19

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC's performance. Cell polarization, power density, stability, and durability tests are used in the membranes' evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load.

  17. Detoxification of superoxide without production of H2O2: antioxidant activity of superoxide reductase complexed with ferrocyanide

    CERN Document Server

    Molina-Heredia, Fernando P; Berthomieu, Catherine; Touati, Danièle; Tremey, Emilie; Favaudon, Vincent; Adam, Virgile; Nivière, Vincent

    2015-01-01

    The superoxide radical O(2)(-.) is a toxic by-product of oxygen metabolism. Two O(2)(-.) detoxifying enzymes have been described so far, superoxide dismutase and superoxide reductase (SOR), both forming H2O2 as a reaction product. Recently, the SOR active site, a ferrous iron in a [Fe(2+) (N-His)(4) (S-Cys)] pentacoordination, was shown to have the ability to form a complex with the organometallic compound ferrocyanide. Here, we have investigated in detail the reactivity of the SOR-ferrocyanide complex with O(2)(-.) by pulse and gamma-ray radiolysis, infrared, and UV-visible spectroscopies. The complex reacts very efficiently with O(2)(-.). However, the presence of the ferrocyanide adduct markedly modifies the reaction mechanism of SOR, with the formation of transient intermediates different from those observed for SOR alone. A one-electron redox chemistry appears to be carried out by the ferrocyanide moiety of the complex, whereas the SOR iron site remains in the reduced state. Surprisingly, the toxic H2O2 s...

  18. DFT study of CO2 and H2O co-adsorption on carbon models of coal surface.

    Science.gov (United States)

    Gao, Zhengyang; Ding, Yi

    2017-06-01

    The moisture content of coal affects the adsorption capacity of CO2 on the coal surface. Since the hydrogen bonds are formed between H2O and oxygen functional group, the H2O cluster more easily adsorbs on the coal micropore than CO2 molecule. The coal micropores are occupied by H2O molecules that cannot provide extra space for CO2 adsorption, which may leads to the reduction of CO2 adsorption capacity. However, without considering factors of micropore and oxygen functional groups, the co-adsorption mechanisms of CO2 and adsorbed H2O molecule are not clear. Density functional theory (DFT) calculations were performed to elucidate the effect of adsorbed H2O to CO2 adsorption. This study reports some typical coal-H2O···CO2 complexes, along with a detailed analysis of the geometry, energy, electrostatic potential (ESP), atoms in molecules (AIM), reduced density gradient (RDG), and energy decomposition analysis (EDA). The results show that H2O molecule can more stably adsorb on the aromatic ring surface than CO2 molecule, and the absolute values of local ESP maximum and minimum of H2O cluster are greater than CO2. AIM analysis shows a detailed interaction path and strength between atoms in CO2 and H2O, and RDG analysis shows that the interactions among CO2, H2O, and coal model belong to weak van der Waals force. EDA indicates that electrostatic and long-range dispersion terms play a primary role in the co-adsorption of CO2 and H2O. According to the DFT calculated results without considering micropore structure and functional group, it is shown that the adsorbed H2O can promote CO2 adsorption on the coal surface. These results demonstrate that the micropore factor plays a dominant role in affecting CO2 adsorption capacity, the attractive interaction of adsorbed H2O to CO2 makes little contribution.

  19. A Facile, Nonreactive Hydrogen Peroxide (H2O2) Detection Method Enabled by Ion Chromatography with UV Detector.

    Science.gov (United States)

    Song, Mingrui; Wang, Junli; Chen, Baiyang; Wang, Lei

    2017-11-07

    Hydrogen peroxide (H2O2) is ubiquitous in the natural environment, and it is now widely used for pollutant control in water and wastewater treatment processes. However, current analytical methods for H2O2 inevitably require reactions between H2O2 and other reactants to yield signals and are thus likely subjective to the interferences of coexisting colored, oxidative, and reductive compounds. In order to overcome these barriers, we herein for the first time propose to analyze H2O2 by ion chromatography (IC) using an ultraviolet (UV) detector. The proposal is based on two principles: first, that H2O2 can deprotonate to hydroperoxyl ion (HO2-) when eluent pH is higher than the acid-dissociation coefficient of H2O2 (pKa = 11.6); and second, that after separation from other compounds via IC column, H2O2 can be quantified by a UV detector. Under favorable operating conditions, this method has successfully achieved acceptable recoveries (>91%) of H2O2 dosed to ultrapure and natural waters, a calibration curve with R2 > 0.99 for a wide range of H2O2 concentrations from 0.1 to 50 mg/L and a method detection limit of 0.027 mg/L. In addition, this approach was shown to be capable of distinguishing H2O2 from anions (e.g., fluoride and chloride) and organics (e.g., glycolate) and monochloramine, suggesting that it is insensitive to many neighboring compounds as long as they do not react quickly with H2O2. Hence, this study proves the combination of IC and UV detector a facile and reliable method for H2O2 measurement.

  20. Combined UV-C/H2O2-VUV processes for the treatment of an actual slaughterhouse wastewater.

    Science.gov (United States)

    Naderi, Kambiz Vaezzadeh; Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab; Abdekhodaie, Mohammad Jafar

    2017-05-04

    In this study, a three-factor, three-level Box-Behnken design with response surface methodology were used to maximize the TOC removal and minimize the H2O2 residual in the effluent of the combined UV-C/H2O2-VUV system for the treatment of an actual slaughterhouse wastewater (SWW) collected from one of the meat processing plants in Ontario, Canada. The irradiation time and the initial concentrations of total organic carbon (TOCo) and hydrogen peroxide (H2O2o) were the three predictors, as independent variables, studied in the design of experiments. The multiple response approach was used to obtain desirability response surfaces at the optimum factor settings. Subsequently, the optimum conditions to achieve the maximum percentage TOC removal of 46.19% and minimum H2O2 residual of 1.05% were TOCo of 213 mg L-1, H2O2o of 450 mg L-1, and irradiation time of 9 min. The attained optimal operating conditions were validated with a complementary test. Consequently, the TOC removal of 45.68% and H2O2 residual of 1.03% were achieved experimentally, confirming the statistical model reliability. Three individual processes, VUV alone, VUV/H2O2, and UV-C/H2O2, were also evaluated to compare their performance for the treatment of the actual SWW using the optimum parameters obtained in combined UV-C/H2O2-VUV processes. Results confirmed that an adequate combination of the UV-C/H2O2-VUV processes is essential for an optimized TOC removal and H2O2 residual. Finally, respirometry analyses were also performed to evaluate the biodegradability of the SWW and the BOD removal efficiency of the combined UV-C/H2O2-VUV processes.

  1. A non-equilibrium ortho-to-para ratio of H2O in the Orion PDR

    NARCIS (Netherlands)

    Choi, Yunhee; van der Tak, Floris; Bergin, Edwin; Plume, Rene

    The ortho-to-para ratio (OPR) of H2O is lower than 1 at low temperature (<15 K) and increases to 3 at high temperature (> 40 K). The OPR of H2O is thus useful to study the formation mechanism of water. The measured OPRs of H2O is 2-3 in solar system comets (Mumma & Charnley, 2011) and in the

  2. A potential energy surface for the process H2 + H2O yielding H + H + H2O - Ab initio calculations and analytical representation

    Science.gov (United States)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1991-01-01

    Extensive ab initio calculations on the ground state potential energy surface of H2 + H2O were performed using a large contracted Gaussian basis set and a high level of correlation treatment. An analytical representation of the potential energy surface was then obtained which reproduces the calculated energies with an overall root-mean-square error of only 0.64 mEh. The analytic representation explicitly includes all nine internal degrees of freedom and is also well behaved as the H2 dissociates; it thus can be used to study collision-induced dissociation or recombination of H2. The strategy used to minimize the number of energy calculations is discussed, as well as other advantages of the present method for determining the analytical representation.

  3. Sequential bond energies and barrier heights for the water loss and charge separation dissociation pathways of Cd(2+)(H2O)n, n = 3-11.

    Science.gov (United States)

    Cooper, Theresa E; Armentrout, P B

    2011-03-21

    The bond dissociation energies for losing one water from Cd(2+)(H(2)O)(n) complexes, n = 3-11, are measured using threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer coupled with a thermal electrospray ionization source. Kinetic energy dependent cross sections are obtained for n = 4-11 complexes and analyzed to yield 0 K threshold measurements for loss of one, two, and three water ligands after accounting for multiple collisions, kinetic shifts, and energy distributions. The threshold measurements are converted from 0 to 298 K values to give the hydration enthalpies and free energies for sequentially losing one water from each complex. Theoretical geometry optimizations and single point energy calculations are performed on reactant and product complexes using several levels of theory and basis sets to obtain thermochemistry for comparison to experiment. The charge separation process, Cd(2+)(H(2)O)(n) → CdOH(+)(H(2)O)(m) + H(+)(H(2)O)(n-m-1), is also observed for n = 4 and 5 and the competition between this process and water loss is analyzed. Rate-limiting transition states for the charge separation process at n = 3-6 are calculated and compared to experimental threshold measurements resulting in the conclusion that the critical size for this dissociation pathway of hydrated cadmium is n(crit) = 4.

  4. Plasmonic Ag-pillared rectorite as catalyst for degradation of 2,4-DCP in the H2O2-containing system under visible light irradiation.

    Science.gov (United States)

    Chen, Yunfang; Fang, Jianzhang; Lu, Shaoyou; Wu, Yan; Chen, Dazhi; Huang, Liyan; Cheng, Cong; Ren, Lu; Zhu, Ximiao; Fang, Zhanqiang

    2015-10-30

    This study aims at photocatalytic degradation of 2,4-DCP with the assistance of H2O2 in aqueous solution by a composite catalyst of Ag-rectorite. The catalysts were prepared via a novel thermal decomposition method followed after the cation-exchange process. The synthesized nano-materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface analyzer, Ultraviolet-visible light (UV-vis) absorption spectra, field-emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). The different mechanisms of degradation process with or without visible light irradiation were discussed, respectively. Moreover, the degradation efficiency of 2,4-DCP wastewater under Ag-rectorite/H2O2/visible light system was investigated by series of experiments, concerning on effects of major operation factors, such as H2O2 dosage and the initial pH value. The highest degradation rate was observed when adding 0.18 mL H2O2 into 50 mL 2,4-DCP solution, and the optimal pH value was 4 for the reaction. Afterwards, total organic carbon (TOC) experiments were carried out to evaluate the mineralization ratio of 2,4-DCP. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Absolutely calibrated mass spectrometry measurement of reactive and stable plasma chemistry products in the effluent of a He/H2O atmospheric plasma

    Science.gov (United States)

    Willems, Gert; Benedikt, Jan; von Keudell, Achim

    2017-08-01

    Mass spectrometry has been used to analyse the effluent of a micro-scaled atmospheric plasma jet operated in helium with a controlled concentration of water vapour. Absolute densities of H2O2 and OH have been measured as function of water vapour concentration and distance from the jet nozzle. The trend for both species densities are correlated and after an initial increase, the densities of H2O2 and OH saturate around 5000 ppm to 6000 ppm of water admixture. The largest densities for H2O2 (2.37× 1014 cm-3 ) and OH (1.96× 1014 cm-3 ) were measured at 7980 ppm water admixture and 2 mm distance from the jet. Densities of HO2 (1× 1014 cm-3 ) and O2 (4× 1014 cm-3 ) have been measured as well, although no trend could be observed. The direct electron impact ionisation cross-section of H2O2 at 70 eV electron energy was experimentally determined to be 1.02 × 10-16 cm2 . The measured densities and profiles have been compared to a 2D axially symmetric fluid model of species transport and recombination reactions. The effluent reaction chemistry is dominated by the hydroxyl radical, where the hydrogen atoms seem to play an important role as well. The analysis of neutral plasma chemistry products have been complemented by measurements of qualitative ion signals.

  6. [Salidroside protects PC12 cells from H2O2-induced apoptosis via suppressing NOX2-ROS-MAPKs signaling pathway].

    Science.gov (United States)

    Qi, Zhi-Lin; Liu, Yin-Hua; Qi, Shi-Mei; Ling, Lie-Feng; Feng, Zun-Yong; Li, Qiang

    2016-02-20

    To investigate the molecular mechanism by which salidroside protects PC12 cells from H2O2-induced apoptosis. PC12 cells cultured in DMEM supplemented with 10% horse serum and 5% fetal bovine serum were pretreated with different doses of salidroside for 2 h and then stimulated with H2O2 for different lengths of time. The expression levels of PARP and caspase 3 and the phosphorylation of p38, ERK and JNK were determined with Western blotting. The cell nuclear morphology was observed after DAPI staining. The production of ROS was detected using a ROS detection kit, and the levels of gp91(phox) and p47(phox) in the membrane and cytoplasm were detected by membrane-cytoplasm separation experiment; the binding between gp91(phox) and p47(phox) was assayed by coimmunoprecipitation experiment. Salidroside dose-dependently suppressed cell apoptosis, lowered phosphorylation levels of p38, ERK and JNK, inhibited the production of ROS, reduced the binding between gp91(phox) and p47(phox), and inhibited the activity of NOX2 in PC12 cells exposed to H2O2. Salidroside protects PC12 cells from H2O2-induced apoptosis at least partly by suppressing NOX2-ROS-MAPKs signaling pathway.

  7. Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange.

    Science.gov (United States)

    Huang, Yong-Ming; Zou, Ying-Ning; Wu, Qiang-Sheng

    2017-02-08

    The Non-invasive Micro-test Technique (NMT) is used to measure dynamic changes of specific ions/molecules non-invasively, but information about hydrogen peroxide (H2O2) fluxes in different classes of roots by mycorrhiza is scarce in terms of NMT. Effects of Funneliformis mosseae on plant growth, H2O2, superoxide radical (O2·-), malondialdehyde (MDA) concentrations, and H2O2 fluxes in the taproot (TR) and lateral roots (LRs) of trifoliate orange seedlings under well-watered (WW) and drought stress (DS) conditions were studied. DS strongly inhibited mycorrhizal colonization in the TR and LRs, whereas mycorrhizal inoculation significantly promoted plant growth and biomass production. H2O2, O2·-, and MDA concentrations in leaves and roots were dramatically lower in mycorrhizal seedlings than in non-mycorrhizal seedlings under DS. Compared with non-mycorrhizal seedlings, mycorrhizal seedlings had relatively higher net root H2O2 effluxes in the TR and LRs especially under WW, as well as significantly higher total root H2O2 effluxes in the TR and LRs under WW and DS. Total root H2O2 effluxes were significantly positively correlated with root colonization but negatively with root H2O2 and MDA concentrations. It suggested that mycorrhizas induces more H2O2 effluxes of the TR and LRs, thus, alleviating oxidative damage of DS in the host plant.

  8. Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism.

    Science.gov (United States)

    Exposito-Rodriguez, Marino; Laissue, Pierre Philippe; Yvon-Durocher, Gabriel; Smirnoff, Nicholas; Mullineaux, Philip M

    2017-06-29

    Chloroplasts communicate information by signalling to nuclei during acclimation to fluctuating light. Several potential operating signals originating from chloroplasts have been proposed, but none have been shown to move to nuclei to modulate gene expression. One proposed signal is hydrogen peroxide (H2O2) produced by chloroplasts in a light-dependent manner. Using HyPer2, a genetically encoded fluorescent H2O2 sensor, we show that in photosynthetic Nicotiana benthamiana epidermal cells, exposure to high light increases H2O2 production in chloroplast stroma, cytosol and nuclei. Critically, over-expression of stromal ascorbate peroxidase (H2O2 scavenger) or treatment with DCMU (photosynthesis inhibitor) attenuates nuclear H2O2 accumulation and high light-responsive gene expression. Cytosolic ascorbate peroxidase over-expression has little effect on nuclear H2O2 accumulation and high light-responsive gene expression. This is because the H2O2 derives from a sub-population of chloroplasts closely associated with nuclei. Therefore, direct H2O2 transfer from chloroplasts to nuclei, avoiding the cytosol, enables photosynthetic control over gene expression.Multiple plastid-derived signals have been proposed but not shown to move to the nucleus to promote plant acclimation to fluctuating light. Here the authors use a fluorescent hydrogen peroxide sensor to provide evidence that H2O2 is transferred directly from chloroplasts to nuclei to control nuclear gene expression.

  9. Modulating and Measuring Intracellular H2O2 Using Genetically Encoded Tools to Study Its Toxicity to Human Cells.

    Science.gov (United States)

    Huang, Beijing K; Stein, Kassi T; Sikes, Hadley D

    2016-12-16

    Reactive oxygen species (ROS) such as H2O2 play paradoxical roles in mammalian physiology. It is hypothesized that low, baseline levels of H2O2 are necessary for growth and differentiation, while increased intracellular H2O2 concentrations are associated with pathological phenotypes and genetic instability, eventually reaching a toxic threshold that causes cell death. However, the quantities of intracellular H2O2 that lead to these different responses remain an unanswered question in the field. To address this question, we used genetically encoded constructs that both generate and quantify H2O2 in a dose-response study of H2O2-mediated toxicity. We found that, rather than a simple concentration-response relationship, a combination of intracellular concentration and the cumulative metric of H2O2 concentration multiplied by time (i.e., the area under the curve) determined the occurrence and level of cell death. Establishing the quantitative relationship between H2O2 and cell toxicity promotes a deeper understanding of the intracellular effects of H2O2 specifically as an individual reactive oxygen species, and it contributes to an understanding of its role in various redox-related diseases.

  10. Raman spectrum of the solid electrolytes LiI·H2O and LiI·D2O

    DEFF Research Database (Denmark)

    Poulsen, Finn Willy

    1986-01-01

    The Raman spectra of cubic LiI·H2O and LiI·D2O have been revised. The spectra reveal only internal and librational modes of H2O (D2O). The isotopic ratios νH/νD, are in the range 1.33-1.78......The Raman spectra of cubic LiI·H2O and LiI·D2O have been revised. The spectra reveal only internal and librational modes of H2O (D2O). The isotopic ratios νH/νD, are in the range 1.33-1.78...

  11. H2O2 INDUCES APOPTOSIS OF RABBIT CHONDROCYTES VIA BOTH THE EXTRINSIC AND THE CASPASE-INDEPENDENT INTRINSIC PATHWAYS

    Directory of Open Access Journals (Sweden)

    CAIPING ZHUANG

    2013-07-01

    Full Text Available Osteoarthritis (OA, one of the most common joint diseases with unknown etiology, is characterized by the progressive destruction of articular cartilage and the apoptosis of chondrocytes. The purpose of this study is to elucidate the molecular mechanisms of H2O2-mediated rabbit chondrocytes apoptosis. CCK-8 assay showed that H2O2 treatment induced a remarkable reduction of cell viability, which was further verified by the remarkable phosphatidylserine externalization after H2O2 treatment for 1 h, the typical characteristics of apoptosis. H2O2 treatment induced a significant dysfunction of mitochondrial membrane potential (ΔΨm, but did not induce casapse-9 activation, indicating that H2O2 treatment induced caspase-independent intrinsic apoptosis that was further verified by the fact that silencing of AIF but not inhibiting caspase-9 potently prevented H2O2-induced apoptosis. H2O2 treatment induced a significant increase of caspase-8 and -3 activation, and inhibition of caspase-8 or -3 significantly prevented H2O2-induced apoptosis, suggesting that the extrinsic pathway played an important role. Collectively, our findings demonstrate that H2O2 induces apoptosis via both the casapse-8-mediated extrinsic and the caspase-independent intrinsic apoptosis pathways in rabbit chondrocytes.

  12. Synthesis and characterization of two manganese(II) complexes containing di(4-pyridyl)sulfide (4-DPS) ligand: The effects of the counter ion and of the weak non-covalent interactions in the crystal structures of [Mn(4-DPS) 4(H 2O) 2](ClO 4) 2·H 2O and {[Mn(4-DPS) 2(NCS) 2] ·2H 2O} n

    Science.gov (United States)

    Marinho, Maria Vanda; Yoshida, Maria Irene; Krambrock, Klaus; De Oliveira, Luiz Fernando C.; Diniz, Renata; Machado, Flávia C.

    2009-04-01

    From the reaction between the metallic precursor Mn(ClO 4) 2·6H 2O and the flexible ligand di(4-pyridyl)sulfide (4-DPS) a mononuclear complex [Mn(4-DPS) 4(H 2O) 2](ClO 4) 2·H 2O ( 1) was obtained, while the reaction of MnCl 2·4H 2O with 4-DPS and KSCN afforded a neutral 1-D coordination polymer namely {[Mn(4-DPS) 2(NCS) 2] ·2H 2O} n ( 2). Compounds ( 1) and ( 2) were characterized by means of elemental analysis, thermal analysis (TG/DTA), vibrational (IR and Raman) and electron paramagnetic resonance (EPR) spectroscopies. Additionally, single-crystal X-ray diffraction analysis shows that in ( 1) the 4-DPS ligand acts in the monodentate coordination mode while in ( 2) it exhibits bridging coordination mode. The crystal structure of both compounds shows that each Mn 2+ adopts a distorted octahedral geometry in which the equatorial planes contain four nitrogen atoms from different 4-DPS ligands. In ( 1), the axial positions are occupied by two oxygen atoms from two water molecules and in ( 2) by two other nitrogen atoms from two isothiocyanate groups. The supramolecular array observed in ( 1) was achieved through hydrogen-bonding and π-π interactions and in ( 2) the 1-D doubled stranded polymeric chain is extended by metal-ligand interaction. EPR spectra for both compounds are consistent with the X-ray structures containing isolated Mn 2+ ions in distorted octahedral arrangements with very weak anti-ferromagnetic coupling.

  13. H 2O- and temperature-zoning in magma chambers: The example of the Tufo Giallo della Via Tiberina eruptions (Sabatini Volcanic District, central Italy)

    Science.gov (United States)

    Masotta, M.; Gaeta, M.; Gozzi, F.; Marra, F.; Palladino, D. M.; Sottili, G.

    2010-07-01

    Textural and chemical variations of juvenile clasts are widely observed in pyroclastic deposits. In particular, the co-existence of whitish, pumiceous, and dark grey, scoriaceous, juvenile clasts has been observed in many eruptive units of well-known volcanoes (i.e., Somma-Vesuvius, Vulsini, Colli Albani, Stromboli). Here we report the example of the Tufo Giallo della Via Tiberina (TGVT) pyroclastic succession, which comprises two eruptive units emplaced at ca. 561 and 548 ka, during the early explosive activity of the Sabatini Volcanic District (SVD; Roman Province, central Italy). TGVT deposits, as well as underlying pyroclastic products (FAD, ca. 582 ka), are characterized by coexisting whitish pumice and black-grey scoria clasts showing common phonolitic composition but different textural features: white pumice is highly vesicular, vitrophyric, and contains scarce, > 50 µm-sized, feldspar and clinopyroxene crystals, while black-grey scoria is poorly vesicular, highly crystallized, and contains diffuse leucite phenocrysts. The latter records crystallization under H 2O-undersaturated conditions, as opposed to the vitrophyric texture of white pumice indicating higher temperature and H 2O concentration. On these grounds, a thermally and H 2O-zoned pre-eruptive system has been modelled for the phonolitic magma chambers feeding the early SVD events, in which white pumice and black-grey scoria represent the inner and peripheral portions of the reservoirs, respectively. Extensive leucite + clinopyroxene crystallization in the H 2O-undersaturated, peripheral portions of the reservoirs, resulted in water flux toward the inner zones, where the higher temperature and increasing H 2O content acted to delay crystallization in the white pumice-feeder magma. The withdrawal of white pumice at the eruption onset produced decompression of the peripheral magma, triggering black-grey scoria eruption during the late phases of explosive events.

  14. Cyclic mononucleotides modulate potassium and calcium flux responses to H2O2 in Arabidopsis roots

    KAUST Repository

    Ordoñez, Natalia Maria

    2014-02-13

    Cyclic mononucleotides are messengers in plant stress responses. Here we show that hydrogen peroxide (H2O2) induces rapid net K+-efflux and Ca2+-influx in Arabidopsis roots. Pre-treatment with either 10 μM cAMP or cGMP for 1 or 24 h does significantly reduce net K+-leakage and Ca2+-influx, and in the case of the K+-fluxes, the cell permeant cyclic mononucleotides are more effective. We also examined the effect of 10 μM of the cell permeant 8-Br-cGMP on the Arabidopsis microsomal proteome and noted a specific increase in proteins with a role in stress responses and ion transport, suggesting that cGMP is sufficient to directly and/or indirectly induce complex adaptive changes to cellular stresses induced by H2O2. © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Nickel and platinum in high-temperature H2O + HCl fluids: Implications for hydrothermal mobilization

    Science.gov (United States)

    Scholten, Lea; Watenphul, Anke; Beermann, Oliver; Testemale, Denis; Ames, Doreen; Schmidt, Christian

    2018-03-01

    The dissolution of NiS and NiAs (nickeline) in 0.1 and 1 molal HCl at 400 °C, 80 MPa, and of PtAs2 (sperrylite) and Pt metal in 1 and 6.86 molal HCl at 500 °C, 80 MPa was studied in-situ using synchrotron radiation X-ray fluorescence and absorption spectroscopy. The Pt concentration in the fluid averaged 8 · 10-5 molal (12.8 ppm) during dissolution of Pt metal in 6.86 molal HCl, and was below the minimum detection limit (mdl; 2.6 · 10-5 molal) in all other experiments. Dissolution of NiS was congruent or nearly congruent. Equilibrium was attained rapidly in about 250 min at an initial HCl concentration of 1 molal HCl, and in about 500 min at 0.1 molal HCl. Addition of HCl resulted in a larg