WorldWideScience

Sample records for gyrocompasses

  1. Dynamics of the surveying gyrocompass

    Science.gov (United States)

    Petrenko, V. E.; Zakharenko, S. A.; Ponomarenko, A. E.

    The dynamics of the surveying gyrocompass is investigated analytically for the case of perturbations due to ball bearing imperfections. Approximate analytical expressions are obtained for calculating the natural frequencies of the compass in the presence of parametric perturbations of this kind. An example of natural frequency calculations is presented.

  2. A Gyrocompass for Maritime Applications Based Upon Multivariable Control Theory

    Directory of Open Access Journals (Sweden)

    Olav Egeland

    1984-10-01

    Full Text Available A gyrocompass is designed using multivariable control theory. The compass can be implemented with an inertial platform or as a strap-down system. Measurement noise caused by vessel acceleration is modeled and feedforward is taken from vessel speed. Though the model is of order 9, it has only three unknown parameters of which one can be chosen a priori. Parameter estimation is discussed. For simulation of the compass, a non-linear surface vessel model with 6 degrees of freedom and wave excitation is used.

  3. Estimation of heading gyrocompass error using a GPS 3DF system: Impact on ADCP measurements

    Directory of Open Access Journals (Sweden)

    Simón Ruiz

    2002-12-01

    Full Text Available Traditionally the horizontal orientation in a ship (heading has been obtained from a gyrocompass. This instrument is still used on research vessels but has an estimated error of about 2-3 degrees, inducing a systematic error in the cross-track velocity measured by an Acoustic Doppler Current Profiler (ADCP. The three-dimensional positioning system (GPS 3DF provides an independent heading measurement with accuracy better than 0.1 degree. The Spanish research vessel BIO Hespérides has been operating with this new system since 1996. For the first time on this vessel, the data from this new instrument are used to estimate gyrocompass error. The methodology we use follows the scheme developed by Griffiths (1994, which compares data from the gyrocompass and the GPS system in order to obtain an interpolated error function. In the present work we apply this methodology on mesoscale surveys performed during the observational phase of the OMEGA project, in the Alboran Sea. The heading-dependent gyrocompass error dominated. Errors in gyrocompass heading of 1.4-3.4 degrees have been found, which give a maximum error in measured cross-track ADCP velocity of 24 cm s-1.

  4. An Adaptive Damping Network Designed for Strapdown Fiber Optic Gyrocompass System for Ships

    Directory of Open Access Journals (Sweden)

    Jin Sun

    2017-03-01

    Full Text Available The strapdown fiber optic gyrocompass (strapdown FOGC system for ships primarily works on external horizontal damping and undamping statuses. When there are large sea condition changes, the system will switch frequently between the external horizontal damping status and the undamping status. This means that the system is always in an adjustment status and influences the dynamic accuracy of the system. Aiming at the limitations of the conventional damping method, a new design idea is proposed, where the adaptive control method is used to design the horizontal damping network of the strapdown FOGC system. According to the size of acceleration, the parameters of the damping network are changed to make the system error caused by the ship’s maneuvering to a minimum. Furthermore, the jump in damping coefficient was transformed into gradual change to make a smooth system status switch. The adaptive damping network was applied for strapdown FOGC under the static and dynamic condition, and its performance was compared with the conventional damping, and undamping means. Experimental results showed that the adaptive damping network was effective in improving the dynamic performance of the strapdown FOGC.

  5. 33 CFR Schedule I to Subpart A of... - Vessels Transiting U.S. Waters

    Science.gov (United States)

    2010-07-01

    ... CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Pt. 401, Subpt. A, Sch. I...) For each vessel that is fitted with a controllable pitch propeller, a table of control settings for a... compass at main steering station with compass deviation table, graph or record. (f) Gyro-compass with...

  6. The misalignment angle in vessel-mounted ADCP

    Directory of Open Access Journals (Sweden)

    Robert Osinski

    2000-09-01

    Full Text Available A description of the misalignment angle and the consequences if it occurs is given. It is shown that because of gyrocompass errors, the misalignment angle error a has to be computed for each cruise. A simple method of calibrating the acoustic Doppler current profiler (ADCP mounted on a vessel has been devised by fitting the cosinusoidal function. This is a post-processing method, suitable for calibrating previously collected data. Nevertheless, because of ADCP's constructional peculiarities, the procedure must be repeated for each cruise.

  7. Car suspension system monitoring under road conditions

    Science.gov (United States)

    Fedotov, A. I.; Kuznetsov, N. Y.; Lysenko, A. V.; Vlasov, V. G.

    2017-12-01

    The paper describes an advanced gyro-based measuring system comprising a CGV-4K central vertical gyro and a G-3M gyrocompass. The advanced system provides additional functions that help measure unsprung mass rotation angles about a vertical axis, rolling angles, trim angles and movements of the unsprung masses of the front (ap and al) and rear b axes when a car wheel hits a single obstruction. The paper also describes the operation of the system, which measures movements of unsprung masses about the body of a car when it hits a single obstruction. The paper presents the dependency diagrams ap = f(t) and al = f(t) for front and rear wheels respectively, as well as b = f(t) for a rear left wheel, which were determined experimentally. Test results for a car equipped with an advanced gyro-based measuring system moving around a circle can form a basis for developing a mathematical model of the process.

  8. The Coriolis field

    Science.gov (United States)

    Costa, L. Filipe; Natário, José

    2016-05-01

    We present a pedagogical discussion of the Coriolis field, emphasizing its not-so-well-understood aspects. We show that this field satisfies the field equations of the so-called Newton-Cartan theory, a generalization of Newtonian gravity that is covariant under changes of arbitrarily rotating and accelerated frames. Examples of solutions of this theory are given, including the Newtonian analogue of the Gödel universe. We discuss how to detect the Coriolis field by its effect on gyroscopes, of which the gyrocompass is an example. Finally, using a similar framework, we discuss the Coriolis field generated by mass currents in general relativity, and its measurement by the gravity probe B and LAGEOS/LARES experiments.

  9. Phase considerations in a rotating system

    International Nuclear Information System (INIS)

    Page, L.A.

    1978-01-01

    A neutron interferometer in constant absolute rotation will exhibit a certain phase-shift between its two beams, a phenomenon shared with the classic Sagnac or Michelson-Gale-Pearson experiments or with the modern laser-gyrocompass composed of lasers in a ring. To first order in the rotational frequency, it is possible to understand by employing only rudimentary theory, the essence of this phenomenon to any degree of relativistiness of the participating particle. This paper is mainly paedagogical, noting the similarity due to permanent rotation between photon-, electron and neutron-interferometers. Future experimentation, aside from corroborating well believed tenets, may hope with improving precision to bring new approaches to measurement of fundamental effects

  10. Quantum imaging for underwater arctic navigation

    Science.gov (United States)

    Lanzagorta, Marco

    2017-05-01

    The precise navigation of underwater vehicles is a difficult task due to the challenges imposed by the variable oceanic environment. It is particularly difficult if the underwater vehicle is trying to navigate under the Arctic ice shelf. Indeed, in this scenario traditional navigation devices such as GPS, compasses and gyrocompasses are unavailable or unreliable. In addition, the shape and thickness of the ice shelf is variable throughout the year. Current Arctic underwater navigation systems include sonar arrays to detect the proximity to the ice. However, these systems are undesirable in a wartime environment, as the sound gives away the position of the underwater vehicle. In this paper we briefly describe the theoretical design of a quantum imaging system that could allow the safe and stealthy navigation of underwater Arctic vehicles.

  11. IMU Calibration and Validation in a Factory, Remote on Land and at Sea

    DEFF Research Database (Denmark)

    Jørgensen, Martin Juhl; Paccagnan, Dario; Poulsen, Niels Kjølstad

    2014-01-01

    relevance for gyro-compassing grade optical gyroscopes and force-rebalanced pendulous accelerometers: Scale factor, bias and sensor axes misalignments. Focus is on low-dynamic marine applications e.g., subsea construction and survey. Two different methods of calibration are investigated: Kalman smoothing...... using an Aided Inertial Navigation System (AINS) framework, augmenting the error state Kalman filter (ESKF) to include the full set of IMU calibration parameters and a least squares approach, where the calibration parameters are determined by minimizing the magnitude of the INS error differential...... equation output. A method of evaluating calibrations is introduced and discussed. The two calibration methods are evaluated for factory use and results compared to a legacy proprietary method as well as in-field calibration/verification on land and at sea. The calibration methods shows similar navigation...

  12. REAL-TIME MONITORING SYSTEM USING UNMANNED AERIAL VEHICLE INTEGRATED WITH SENSOR OBSERVATION SERVICE

    Directory of Open Access Journals (Sweden)

    A. Witayangkurn

    2012-09-01

    Full Text Available The Unmanned Aerial Vehicle (UAV is an emerging technology being adapted for a wide range of applications. Real-time monitoring is essential to enhance the effectiveness of UAV applications. Sensor networks are networks constructed from various sensor nodes. International standard such as OGC's SOS (Sensor Observation Service makes it possible to share sensor data with other systems as well as to provide accessibility to globally distributed users. In this paper, we propose a system combining UAV technology and sensor network technology to use an UAV as a mobile node of sensor network so that the sensor data from UAV is published and shared real-time. A UAV can extend the observation range of a sensor network to remote areas where it is usually difficult to access such as disaster area. We constructed a UAV system using remote-controlled helicopter and various sensors such as GPS, gyrocompass, laser range finder, Digital camera and Thermometer. Furthermore, we extended the Sensor Observation Service (SOS and Sensor Service Grid (SSG to support mobile sensor nodes. Then, we conducted experiments of flying the helicopter over an area of the interest. During the flight, the system measured environmental data using its sensors and captured images of the ground. The data was sent to a SOS node as the ground station via Wi-Fi which was published using SSG to give real- time access to globally distributed users.

  13. The practical Einstein experiments, patents, inventions

    CERN Document Server

    Illy, József

    2012-01-01

    Albert Einstein may be best known as the wire-haired whacky physicist who gave us the theory of relativity, but that's just one facet of this genius' contribution to human knowledge and modern science. As Jozsef Illy expertly shows in this book, Einstein had an eminently practical side as well. As a youth, Einstein was an inveterate tinkerer in the electrical supply factory his father and uncle owned and operated. His first paid job was as a patent examiner. Later in life, Einstein contributed to many inventions, including refrigerators, microphones, and instruments for aviation. In published papers, Einstein often provided ways to test his theories and fundamental problems of the scientific community of his times. He delved deeply into a variety of technological innovations, most notably the gyrocompass, and consulted for industry in patent cases and on other legal matters. Einstein also provided explanations for common and mundane phenomena, such as the meandering of rivers. In these and other hands-on exam...