WorldWideScience

Sample records for growth temperature sodium

  1. Modelling the effects of lactic acid, sodium benzoate and temperature on the growth of Candida maltosa.

    Science.gov (United States)

    Valík, Ľ; Ačai, P; Liptáková, D

    2017-11-01

    The growth of the oxidatively imperfect yeast Candida maltosa Komagata, Nakase et Katsuya was studied experimentally and modelled mathematically in relation to sodium benzoate and lactic acid concentrations at different temperatures. Application of gamma models for the growth rate resulted in determination of cardinal temperature parameters for the growth environment containing lactic acid or sodium benzoate (T min  = 0·7/1·3°C, T max  = 45·3/45·0°C, T opt  = 36·1/37·0°C, μ opt  = 0·88/0·96 h -1 ) as well as the maximal lactic acid concentration for growth (1·9%) or sodium benzoate (1397 mg kg -1 ). Based on the model, the times to reach the density of C. maltosa at the level of 10 5  CFU per ml can be determined at each combination of storage temperature and preservative concentration. The approach used in this study can broaden knowledge of the microbiological quality of fermented milk products during storage as well as the preservation efficacy of mayonnaise dressing for storage and consumption. The strain of Candida maltosaYP1 was originally isolated from air filters that ensured clean air overpressure in yoghurt fermentation tanks. Its growth in contaminated yoghurts manifested outwardly through surface growth, assimilation lactic acid and slight production of carbon dioxide. This was the opportunity to model the effects of lactic acid and sodium benzoate on growth and predict its behaviour in foods. The approach used in this study provides knowledge about microbiological quality development during storage of the fermented milk products as well as some preserved foods for storage and consumption. © 2017 The Society for Applied Microbiology.

  2. Modeling the Combined Effects of Temperature, pH, and Sodium Chloride and Sodium Lactate Concentrations on the Growth Rate of Lactobacillus plantarum ATCC 8014

    Directory of Open Access Journals (Sweden)

    Francieli Dalcanton

    2018-01-01

    Full Text Available Nowadays, microorganisms with probiotic or antimicrobial properties are receiving major attention as alternative resources for food preservation. Lactic acid bacteria are able to synthetize compounds with antimicrobial activity against pathogenic and spoilage flora. Among them, Lactobacillus plantarum ATCC 8014 has exhibited this capacity, and further studies reveal that the microorganism is able to produce bacteriocins. An assessment of the growth of L. plantarum ATCC 8014 at different conditions becomes crucial to predict its development in foods. A response surface model of the growth rate of L. plantarum was built in this study as a function of temperature (4, 7, 10, 13, and 16°C, pH (5.5, 6.0, 6.5, 7.0, and 7.5, and sodium chloride (0, 1.5, 3.0, 4.5, and 6.0% and sodium lactate (0, 1, 2, 3, and 4% concentrations. All the factors were statistically significant at a confidence level of 90%  (p<0.10. When temperature and pH increased, there was a corresponding increase in the growth rate, while a negative relationship was observed between NaCl and Na-lactate concentrations and the growth parameter. A mathematical validation was carried out with additional conditions, demonstrating an excellent performance of the model. The developed model could be useful for designing foods with L. plantarum ATCC 8014 added as a probiotic.

  3. High temperature sodium-concrete interactions

    International Nuclear Information System (INIS)

    Chasanov, M.G.; Staahl, G.E. Sr.

    1977-01-01

    Concrete specimens were immersed in sodium at 500 0 C, and the sodium-concrete interactions were studied. At this temperature the important reaction between CO 2 , produced by the limestone aggregate concrete, and sodium is 4Na+CO 2 → 2Na 2 O+C. This reaction is of interest for reactor safety analysis as it could act as a means of reducing gas pressures arising from CO 2 release by the concrete, in sodium cooled reactors. (B.D.)

  4. Sodium immersible high temperature microphone design description

    International Nuclear Information System (INIS)

    Gavin, A.P.; Anderson, T.T.; Janicek, J.J.

    1975-02-01

    Argonne National Laboratory has developed a rugged high-temperature (HT) microphone for use as a sodium-immersed acoustic monitor in Liquid Metal Fast Breeder Reactors (LMFBRs). Microphones of this design have been extensively tested in room temperature water, in air up to 1200 0 F, and in sodium up to 1200 0 F. They have been successfully installed and employed as acoustic monitors in several operating liquid metal systems. The design, construction sequence, calibration, and testing of these microphones are described. 6 references. (U.S.)

  5. Low temperature sodium-beta battery

    Science.gov (United States)

    Farmer, Joseph C

    2013-11-19

    A battery that will operate at ambient temperature or lower includes an enclosure, a current collector within the enclosure, an anode that will operate at ambient temperature or lower within the enclosure, a cathode that will operate at ambient temperature or lower within the enclosure, and a separator and electrolyte within the enclosure between the anode and the cathode. The anode is a sodium eutectic anode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower. The cathode is a low melting ion liquid cathode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower.

  6. Injectable sodium pentobarbital: Stability at room temperature.

    Science.gov (United States)

    Priest, Sydney M; Geisbuhler, Timothy P

    2015-01-01

    Sodium pentobarbital (Nembutal) is a barbiturate used in research as an anesthetic in many animal models. The injectable form of this drug has lately become difficult to procure and prohibitively expensive. Due to this lack of availability, researchers have begun to compound injectable sodium pentobarbital from so-called "nonpharmaceutical" pentobarbital. Some oversight agencies have objected to this practice, claiming a lack of quality control and degradation of the drug. We sought with this study to establish both: 1) a protocol for the preparation of injectable sodium pentobarbital, and 2) standard operating procedures to monitor the quality of the preparation and degradation of the drug over time. Our preparation consists of a mixture of sodium pentobarbital in alkaline aqueous solution, propylene glycol, and ethanol. Pentobarbital content in this preparation was assayed by high-pressure liquid chromatography (HPLC). We also assayed pentobarbital content over time in preparations of various ages up to 6 years old. We determined that the drug degraded at a maximum of 0.5% per year in our preparation (alkaline water/propylene glycol/ethanol) when stored in the dark at room temperature. A yellow discoloration developed after about 2 years, which we have arbitrarily determined disqualifies the preparation from use as an anesthetic. Attempts to spectroscopically assay this discoloration were not successful. Pentobarbital sodium (CID: 14075609). Copyright © 2015 Elsevier Inc. All rights reserved.

  7. A hot topic: temperature sensitive sodium channelopathies.

    Science.gov (United States)

    Egri, Csilla; Ruben, Peter C

    2012-01-01

    Perturbations to body temperature affect almost all cellular processes and, within certain limits, results in minimal effects on overall physiology. Genetic mutations to ion channels, or channelopathies, can shift the fine homeostatic balance resulting in a decreased threshold to temperature induced disturbances. This review summarizes the functional consequences of currently identified voltage-gated sodium (NaV) channelopathies that lead to disorders with a temperature sensitive phenotype. A comprehensive knowledge of the relationships between genotype and environment is not only important for understanding the etiology of disease, but also for developing safe and effective treatment paradigms.

  8. Environmental effects of high temperature sodium of fatigue crack characteristics

    International Nuclear Information System (INIS)

    Abe, Hideaki; Takahashi, Kazuo; Ozawa, Kazumasa; Takahashi, Yukio

    2004-01-01

    In order to study fatigue crack growth characteristics in the components used in liquid sodium, fatigue tests were carried out at 550degC. This is near the system temperature used for sodium coolant in fast breeder reactors (FBRs). The factors influencing fatigue lifetime in sodium compared with that in air were investigated by observation of surface cracks in 316FR steel. Furthermore, the effects of sodium environment on fatigue were investigated based on examining the results of thermal striping tests, etc., obtained up to now. The results of the fatigue tests show that many micro cracks in the shearing direction were produced by the mid-lifetime, and micro cracks connected quickly after that. This is because an oxidation film was not formed, since sodium is of a reductive nature, and strain of the material surface tends to distribute equally. During crack progression there is no oxide formed on broken surfaces. Therefore re-combination between broken surfaces takes place, and crack progression rate falls. Furthermore, in non-propagating crack, the wedge effect by oxide between broken surfaces at the time of compression is small. Therefore, the crack closure angle is small, compression strain generated in the crack tip becomes large, and the crack cannot stop easily. As mentioned above, the main sodium influence on the fatigue characteristics are because of its reductive nature. In summary, in sodium environment, it is hard to form a crack and to get it to grow. Once started, however, it is hard to stop the crack in sodium compared with in the case of the air. (author)

  9. Adiabatic flame temperature of sodium combustion and sodium-water reaction

    International Nuclear Information System (INIS)

    Okano, Y.; Yamaguchi, A.

    2001-01-01

    In this paper, background information of sodium fire and sodium-water reaction accidents of LMFBR (liquid metal fast breeder reactor) is mentioned at first. Next, numerical analysis method of GENESYS is described in detail. Next, adiabatic flame temperature and composition of sodium combustion are analyzed, and affect of reactant composition, such oxygen and moisture, is discussed. Finally, adiabatic reaction zone temperature and composition of sodium-water reaction are calculated, and affects of reactant composition, sodium vaporization, and pressure are stated. Chemical equilibrium calculation program for generic chemical system (GENESYS) is developed in this study for the research on adiabatic flame temperature of sodium combustion and adiabatic reaction zone temperature of sodium-water reaction. The maximum flame temperature of the sodium combustion is 1,950 K at the standard atmospheric condition, and is not affected by the existence of moisture. The main reaction product is Na 2 O (l) , and in combustion in moist air, with NaOH (g) . The maximum reaction zone temperature of the sodium-water reaction is 1,600 K, and increases with the system pressure. The main products are NaOH (g) , NaOH (l) and H2 (g) . Sodium evaporation should be considered in the cases of sodium-rich and high pressure above 10 bar

  10. Adiabatic flame temperature of sodium combustion and sodium-water reaction

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Y.; Yamaguchi, A. [Japan Nuclear Cycle Development Institute, Ibaraki (Japan)

    2001-07-01

    In this paper, background information of sodium fire and sodium-water reaction accidents of LMFBR (liquid metal fast breeder reactor) is mentioned at first. Next, numerical analysis method of GENESYS is described in detail. Next, adiabatic flame temperature and composition of sodium combustion are analyzed, and affect of reactant composition, such oxygen and moisture, is discussed. Finally, adiabatic reaction zone temperature and composition of sodium-water reaction are calculated, and affects of reactant composition, sodium vaporization, and pressure are stated. Chemical equilibrium calculation program for generic chemical system (GENESYS) is developed in this study for the research on adiabatic flame temperature of sodium combustion and adiabatic reaction zone temperature of sodium-water reaction. The maximum flame temperature of the sodium combustion is 1,950 K at the standard atmospheric condition, and is not affected by the existence of moisture. The main reaction product is Na{sub 2}O{sub (l)}, and in combustion in moist air, with NaOH{sub (g)}. The maximum reaction zone temperature of the sodium-water reaction is 1,600 K, and increases with the system pressure. The main products are NaOH{sub (g)}, NaOH{sub (l)} and H2{sub (g)}. Sodium evaporation should be considered in the cases of sodium-rich and high pressure above 10 bar.

  11. Sodium fire test at broad ranges of temperature and oxygen concentrations (4). Low temperature sodium spray tests (Translated document)

    International Nuclear Information System (INIS)

    Ohno, Shuji

    2012-02-01

    Sodium spray fire tests at an initial sodium temperature of 250degC were conducted under the atmospheric conditions of air (21% oxygen) and nitrogen with 3% oxygen to determine both the sodium burning rate and the aerosol release fraction, and compare them with the test results at the initial sodium temperature of 500degC in air atmosphere. In the tests, sodium was supplied using a spray nozzle into a stainless steel vessel of 100 m 3 (SOLFA-2). The sodium burning rate was calculated from two independent methods: the consumption rate of oxygen in the vessel, and the enthalpy change in the vessel constituents during the test. The aerosol release fraction during the test was evaluated by the comparison between the measured aerosol concentrations and the calculations with the ABC-INTG code. The main conclusions were as follows, (1) In air atmosphere, a) sodium droplets ignited instantaneously and the spray fire was observed even under low initial sodium temperature of 250degC, and b) the sodium burning rate was about 400 g-Na/s and its fraction of supplied sodium flow rate was about 70%. (2) In nitrogen atmosphere with 3% oxygen, a) ignition of sodium droplets was not observed under the 250degC condition, and b) the sodium burning rate was about 44 g-Na/s and the fraction of supplied sodium flow rate was less than 10%. (author)

  12. Sodium fire test at broad ranges of temperature and oxygen concentration. 4. Low temperature sodium spray fire tests

    International Nuclear Information System (INIS)

    Kawata, Koji; Miyahara, Shinya

    2005-08-01

    Sodium spray fire tests at the initial sodium temperature of 250degC were conducted under the atmospheric conditions of air and 3% oxygen containing nitrogen to determine the sodium burning rate and the aerosol release fraction and compare them with the test results at the initial sodium temperature of 500degC in air atmosphere. In the tests, sodium was supplied using a commercial spray nozzle into a stainless steel vessel of 100 m 3 volume (SOLFA-2). The sodium burning rate was calculated from two independent methods: the consumption rate of oxygen in the vessel and the enthalpy change of vessel components during the test. The aerosol release fraction was determined from the comparison between the measured aerosol concentrations and the calculated ones by the ABC-INTG code. The main conclusions were as follows, (1) In air atmosphere, a) sodium droplets ignited instantaneously and the spray fire was observed, and b) the sodium burning rate was about 440 g-Na/s and the fraction of supplied sodium was about 70%. (2) In 3% oxygen containing nitrogen, a) ignition of sodium droplets was not observed, and b) the sodium burning rate was about 44 g-Na/s and the fraction of supplied sodium was less than 10%. (author)

  13. Sodium chloride film evaporation at temperatures higher than equilibrium condensation one

    International Nuclear Information System (INIS)

    Belen'kij, V.Z.; Gel'man, Yu.A.; Lyubitov, Yu.N.; Mikhajlov, V.I.; Kholodov, A.I.

    1980-01-01

    A technique for the investigation into nonequilibrium evaporation of a sodium chloride film deposited on substrates of iridium and iridium coated with carbon is described. An evaporation model taking accoUnt of the statistical regime of appearance and growth of evaporation islands for two-level distribution of particle concentrations in an adsorbed layers is suggested. In the temperature range (700-770K) determined are heat of evaporation center formation, heat of sodium chloride adsorption on the substrates investigated, heat of two-dimensional sodium chloride evaporation and a value of a kinetic coefficient controling two-dimensional growth of the film [ru

  14. Theoretical Adiabatic Temperature and Chemical Composition of Sodium Combustion Flame

    International Nuclear Information System (INIS)

    Okano, Yasushi; Yamaguchi, Akira

    2003-01-01

    Sodium fire safety analysis requires fundamental combustion properties, e.g., heat of combustion, flame temperature, and composition. We developed the GENESYS code for a theoretical investigation of sodium combustion flame.Our principle conclusions on sodium combustion under atmospheric air conditions are (a) the maximum theoretical flame temperature is 1950 K, and it is not affected by the presence of moisture; the uppermost limiting factor is the chemical instability of the condensed sodium-oxide products under high temperature; (b) the main combustion product is liquid Na 2 O in dry air condition and liquid Na 2 O with gaseous NaOH in moist air; and (c) the chemical equilibrium prediction of the residual gaseous reactants in the flame is indispensable for sodium combustion modeling

  15. SALINITY EFFECT ON SEEDLING GROWTH, WATER, SODIUM ...

    African Journals Online (AJOL)

    AISA

    AND POTASSIUM DISTRIBUTIONS IN THE MANGROVE. SPECIES (Avicennia germinans L. ... EFFET DE LA SALINITE SUR LA CROISSANCE, LA DISTRIBUTION DES TENEURS EN EAU, SODIUM ET POTASSIUM. D'UNE ESPECE DE .... distilled water and stored for germination studies. After three days, seedlings were ...

  16. EFFECT OF SODIUM DODECYLBENZENESULFONIC ACID (SDBS ON THE GROWTH RATE AND MORPHOLOGY OF BORAX CRYSTAL

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available An investigation of the effect of sodium dodecylbenzenesulfonic acid (SDBS on both growth rate and morphology of borax crystal has been carried out.  This experiment was carried out at temperature of 25 °C and relative supersaturation of 0.21 and 0.74 under in situ cell optical microscopy method.  The result shows that SDBS inhibits the growth rate and changes the morphology of borax crystal.   Keywords: Borax; growth rate; crystallization, SDBS

  17. The Transport Properties of Sodium Atoms and the Heat Capacity of Sodium Dimers at High Temperatures

    Science.gov (United States)

    Biolsi, L.; Holland, P. M.

    2010-05-01

    Including the contribution of excited state atoms can improve calculations of dilute gaseous transport properties at high temperatures. For sodium, experimental and/or theoretical information is available about the potential energy curves associated with each of ten low-lying states of the sodium dimer. These include the {X1Σ_g{}+} and {3Σ_u{}{}+} states that dissociate to two ground state 2S sodium atoms and the four {3Σ_g,u{}+, 1Σ _g,u{}+, 1Pi _g,u, 3Pi _g,u} gerade/ungerade pairs of states that dissociate to a ground state 2S atom and an excited state 2P atom. Nine of these are bound states and have been fitted with the Hulburt-Hirschfelder potential, a very good general purpose atom-atom potential. The 3Πg state is not bound and has been fitted with the exponential repulsive potential. We have used these potentials to calculate viscosity collision integrals as a function of temperature, and employed degeneracy-weighted averaging to determine the viscosity and translational contribution to the thermal conductivity of the sodium atoms. These same potentials have been used to calculate the heat capacity, {Cp^o}, of the sodium dimer using an approach that depends on the second virial coefficient and its first two temperature derivatives. Again, the inclusion of molecular states that dissociate to an excited state atom allows {Cp^o} to be determined with improved accuracy at higher temperatures. Thus, thermophysical property calculations for sodium have been extended to 25,000 K. These results are compared with previous results, including heat capacities given in the NIST-JANAF Thermochemical Tables.

  18. Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea

    NARCIS (Netherlands)

    van de Vossenberg, J.L C M; Ubbink-Kok, T.; Elferink, M.G.L.; Driessen, A.J.M.; Konings, W.N

    1995-01-01

    Protons and sodium ions are the most commonly used coupling ions in energy transduction in bacteria and archaea. At their growth temperature, the permeability of the cytoplasmic membrane of thermophilic bacteria to protons is high compared with that of sodium ions. In some thermophiles, sodium is

  19. Microwave-assisted low temperature synthesis of sodium zirconium ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Microwave-assisted procedure for low temperature solid state synthesis of sodium zirconium phosphate (NZP), a material with the potential for immobilization and disposal of high level nuclear waste, was developed. Three selected fission products, namely, Cesium, Strontium and Tellurium were introduced ...

  20. Microwave-assisted low temperature synthesis of sodium zirconium ...

    Indian Academy of Sciences (India)

    Microwave-assisted procedure for low temperature solid state synthesis of sodium zirconium phosphate (NZP), a material with the potential for immobilization and disposal of high level nuclear waste, was developed. Three selected fission products, namely, Cesium, Strontium and Tellurium were introduced (substituted) in ...

  1. Microwave-assisted low temperature synthesis of sodium zirconium

    Indian Academy of Sciences (India)

    Microwave-assisted procedure for low temperature solid state synthesis of sodium zirconium phosphate (NZP), a material with the potential for immobilization and disposal of high level nuclear waste, was developed. Three selected fission products, namely, Cesium, Strontium and Tellurium were introduced (substituted) in ...

  2. Growth and fabrication of large size sodium iodide crystal scintillator

    International Nuclear Information System (INIS)

    Sabharwal, S.C.; Karandikar, S.C.; Mirza, T.; Ghosh, B.; Deshpande, R.Y.

    1979-01-01

    The growth of 80 - 135 mm dia. Sodium iodide crystals activated with thallium is described in the present report. The growth is effected in a glazed porcelain crucible in a protective ambient of dry nitrogen. The technical details of the equipment developed have been fully described. The results of measurements on the rate of growth of crystal and the optimization of different growth parameters are reported. The dependence of various factors upon the performance characteristics of the scintillator detectors made using these crystals is also discussed. The energy resolution obtained for a typical detector of dimensions 76 mm dia x 76 mm ht. is 10 percent. (auth.)

  3. A comparison of Rayleigh and sodium lidar temperature climatologies

    Directory of Open Access Journals (Sweden)

    P. S. Argall

    2007-02-01

    Full Text Available Temperature measurements from the PCL Rayleigh lidar located near London, Canada, taken during the 11 year period from 1994 to 2004 are used to form a temperature climatology of the middle atmosphere. A unique feature of the PCL temperature climatology is that it extends from 35 to 95 km allowing comparison with other Rayleigh lidar climatologies (which typically extend up to about 85 km, as well as with climatologies derived from sodium lidar measurements which extend from 83 to 108 km. The derived temperature climatology is compared to the CIRA-86 climatological model and to other lidar climatologies, both Rayleigh and sodium. The PCL climatology agrees well with the climatologies of other Rayleigh lidars from similar latitudes, and like these other climatologies shows significant differences from the CIRA-86 temperatures in the mesosphere and lower thermosphere. Significant disagreement is also found between the PCL climatology and sodium lidar climatologies measured in the central and western United States at similar latitudes, with the PCL climatology consistently 10 to 15 K cooler in the 85 to 90 km region.

  4. Effect of relative humidity on growth of sodium oxide aerosols

    International Nuclear Information System (INIS)

    Sundarajan, A.R.; Mitragotri, D.S.; Mukunda Rao, S.R.

    1982-01-01

    Behavior of aerosol resulting from sodium fires in a closed vessel is investigated and the changes in the particle size distribution of the aerosol due to coagulation and humidity have been studied. The initial mass concentration is in the range of 80 -- 500 mg/m 3 and the relative humidity is varied between 50 to 98%. The initial size of the released aerosol is found to be 0.9 μm. Equilibrium diameters of particles growing in humid air have been computed for various humidity levels using water activity of sodium hydroxide. Both theoretical and experimental results have yielded growth ratios of about 3 at about 95% relative humidity. It is recommended that the computer codes dealing with aerosol coagulation behavior in reactor containment should include an appropriate humidity-growth function. (author)

  5. Temperature influences on growth of aquatic organisms

    International Nuclear Information System (INIS)

    Coutant, C.C.; Suffern, J.S.

    1977-01-01

    Temperature profoundly affects the growth rates of aquatic organisms, and its control is essential for effective aquaculture. Characteristically, both low and high temperatures produce slow growth rates and inefficient food conversion, while intermediate temperature ranges provide rapid growth and efficient food conversion. Distinct, species-specific optimum temperatures and upper and lower temperatures of zero growth can often be defined. Thermal effects can be greatly modified by amounts and quality of food. These data not only provide the basis for criteria which maintain growth of wild organisms but also for effectively using waste heat to create optimal conditions of temperature and food ration for growing aquatic organisms commercially

  6. High-temperature of thermodynamic properties of sodium

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, A. Jr.

    1977-01-01

    The set of high-temperature thermodynamic properties for sodium in the two-phase and subcooled-liquid regions which was previously recommended, has been modified to incorporate recent experimental data. In particular, replacement of the previously estimated critical constants with experimentally-determined values has resulted in substantial differences in the region of the critical point. The following thermodynamic properties were determined: pressure, density, enthalpy, entropy, internal energy, compressibility (adiabatic and isothermal), thermal expansion coefficient, thermal pressure coefficient, and specific heat (constant-pressure and constant-volume). These properties were determined for the saturated liquid, saturated vapor, subcooled liquid, and superheated vapor. The superheated vapor properties are limited to low pressures and more work is required to extend them to higher pressures. The supercritical region was not investigated.

  7. Dietary sodium, added salt, and serum sodium associations with growth and depression in the U.S. general population.

    Science.gov (United States)

    Goldstein, Pavel; Leshem, Micah

    2014-08-01

    It is not known why salt is so attractive to humans. Here, guided by hypotheses suggesting that the attraction of salt is conditioned by postingestive benefits, we sought to establish whether there are such benefits in a population by analyzing the National Health and Nutrition Examination Survey (NHANES) 2007-2008 database (n = ~ 10,000). We focus on two potential benefits supported by the literature, growth and moderation of depression, and examine their relationship to sodium, dietary, added at table, and serum. We find that during growth (sodium intake, independent of caloric or other electrolyte intakes. We find that adding salt and depression are related. In contrast, and in women only, dietary sodium and depression are inversely related. The relationships are correlational, but we speculate that this constellation may reflect self-medication for depression by adding salt, and that men may be protected by their higher dietary sodium intake. Additional findings are that women add more salt than men below age ~30, after which men add more, and below 40 years of age, serum sodium is lower in women than in men. It remains possible that small but beneficial effects of sodium could condition salt preference and thus contribute to population-wide sodium intake. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Sodium

    Science.gov (United States)

    Table salt is a combination of two minerals - sodium and chloride Your body needs some sodium to work properly. It helps with the function ... in your body. Your kidneys control how much sodium is in your body. If you have too ...

  9. The effect of Sodium hydroxide catalyst in formation of Ni nanoparticles at room temperature

    International Nuclear Information System (INIS)

    Shahbahrami, N.; Reyhani, A.; Afshari, N.; Mortazavi, Z.; Norouzian, Sh.; Hojabri, A.; Novinrooz, A. J.

    2007-01-01

    In this paper, Ni nanoparticles growth is studies by spontaneous auto catalytic reduction in an alcohol- water solution in present NaOH catalysis with various ratio at room temperature. The scanning electron microscopy and XRD analyses have been used for investigation diameter and structure of Ni nanoparticles. Investigation of the analyses show that have not formed Ni Nanoparticles in Ph values 8, 9, 10 and 13, but in Ph values 11 and 12 have formed Ni Nanoparticles with average diameter of about 65 and 90 nm, respectively. The XRD patterns show that samples have face-centered cubic structure with (111),(200).(222) planes. The results show that sodium hydroxide value is very effect on the Ni nanoparticles growth.

  10. Concepts on Low Temperature Mechanical Grain Growth

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, John Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Metallurgy and Materials Joining Dept.; Boyce, Brad Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Metallurgy and Materials Joining Dept.

    2013-11-01

    In metals, as grain size is reduced below 100nm, conventional dislocation plasticity is suppressed resulting in improvements in strength, hardness, and wears resistance. Existing and emerging components use fine grained metals for these beneficial attributes. However, these benefits can be lost in service if the grains undergo growth during the component’s lifespan. While grain growth is traditionally viewed as a purely thermal process that requires elevated temperature exposure, recent evidence shows that some metals, especially those with nanocrystalline grain structure, can undergo grain growth even at room temperature or below due to mechanical loading. This report has been assembled to survey the key concepts regarding how mechanical loads can drive grain coarsening at room temperature and below. Topics outlined include the atomic level mechanisms that facilitate grain growth, grain boundary mobility, and the impact of boundary structure, loading scheme, and temperature.

  11. Microwave-assisted low temperature synthesis of sodium zirconium ...

    Indian Academy of Sciences (India)

    Administrator

    phosphate (NZP), a material with the potential for immobilization and disposal of high level nuclear waste, was developed. Three selected ... thesized several perovskite and pyrochlore structure based ceramic phases which could be used .... ing grinding, probably due to evolution of carbon dioxide by the reaction of sodium ...

  12. Temperature conditions in an LMFBR power plant from primary sodium to steam circuits

    International Nuclear Information System (INIS)

    Aubert, M.; Chaumont, J.M.; Mougniot, J.C.; Recolin, J.; Acket.

    1977-01-01

    The optimization analysis which is presented is based on an evaluation of the tender prior to contracting Super Phenix. Process constraints are reviewed: fuel limitations, turbine, steam generators; parameter selection involves major temperatures (primary ΔT 0 , steam generator water inlet temperature, turbine steam inlet temperature) or minor temperature (secondary sodium); countervailing mechanisms include upward and downward tendencies. The optimum values obtained by the method represent a coherent balanced set of parameters. So, the most significant tendency revealed by an optimization of investment costs involves the advantages of a hot system with a steam temperature above 515 0 C, but the hot temperature range is very limited (3 0 C between the hot primary sodium temperature and the steam temperature) while the cold temperatures cover a much wide range. The tolerance range within which each critical temperature may be selected without exceeding a certain cost margin per KWh is given

  13. Relationship between plasma growth hormone concentration and cellular sodium transport in acromegaly

    International Nuclear Information System (INIS)

    Herlitz, H.; Jonsson, O.; Bengtsson, B.-Aa.

    1992-01-01

    We investigated the relationship between mean plasma growth hormone (GH) concentration and cellular sodium transport in untreated and treated acromegaly. Seventeen patients (age 55 ± 3 years) with active acromegaly were studied with respect to plasma GH (mean of 24 h GH profile) and erythrocyte electrolyte content as well as transmembrane sodium transport. The patients were reinvestigated two weeks after successful surgery (N = 14) and again after one year (N = 13). Erythrocyte electrolytes were analyzed by flame photometry and sodium influx and efflux rate constant determined by in vitro incubation using a modified Keyne's formula. In patients with active acromegaly there was a significant positive correlation between IGF-1 and cellular sodium transport, while GH tended to show a negative relatonship to the same parameter. After successful treatment, both IGF-1 and GH disclosed a positive relationship to cellular sodium transport. After one year, a significant increase in erythrocyte sodium content was seen in the patients compared to the preoperative situation. In conclusion, if this is a generalized phenomonen the results are compatible with a sodium-retaining effect of GH via stimulation of transmembrane sodium transport. In active acromegaly this may be counteracted by a sodium transport inhibitor giving the reverse relationship between GH and cellular sodium transport. (au)

  14. The growth of sodium rough films on mica (0001) as determined by Helium Atom Scattering

    DEFF Research Database (Denmark)

    Gerlach, Rolf; Balzer, Frank; Rubahn, Horst-Günter

    2001-01-01

    , which is addressed to Na atoms that fill cleavage-induced holes in the mica surface. It provides a convenient means of calibrating the coverage of the surface. With increasing surface coverage Na clusters are formed on the mica surface. A broad angular distribution of the scattered Helium intensity......Elastic helium atom scattering (HAS) and linear optical extinction measurements are used to investigate the growth of sodium (Na) films on mica substrates in the surface temperature range between 90 and 300 K. At half a monolayer (ML) surface coverage we observe a maximum of scattered He intensity...... is observed with a coverage-independent angular width above eight monolayers coverage. From simultaneous optical extinction measurements we deduce that the clusters are oblate with a ratio of semiaxes perpendicular and parallel to the surface plane between 0.23 and 0.165....

  15. Friction characteristics of hardfacing materials in high temperature sodium

    International Nuclear Information System (INIS)

    Mizobuchi, Syotaro; Kano, Shigeki; Nakayama, Kohichi; Atsumo, Hideo

    1980-01-01

    Friction and self-welding test were conducted on several materials used for the contacting and sliding components of a sodium cooled fast breeder reactor. In the present study, the friction and self-welding characteristics of each material were evaluated through measuring the kinetic and breakaway friction coefficients. The influence of oscillating rotation and vertical reciprocating motion on the friction mode was also investigated. The results obtained are as follows: (1) Colmonoy No.6, the nickel base hardfacing alloy, indicated the lowest kinetic friction coefficient of all the materials in the present study. Also, Cr 3 C 2 /Ni-Cr material prepared by a detonation gun showed the most stable friction behavior. (2) The breakaway friction coefficient of each material was dependent upon dwelling time in a sodium environment. (3) The friction behavior of Cr 3 C 2 /Ni-Cr material was obviously related with the finishing roughness of the friction surface. It was anticipated that nichrome material as the binder of the chrome carbide diffused and exuded to the friction surface by sliding in sodium. (4) The friction coefficient in sliding mode of vertical reciprocating was lower than that of oscillating rotation. (author)

  16. Zinc sacrificial anode behavior at elevated temperatures in sodium chloride and tap water environments

    International Nuclear Information System (INIS)

    Othman, Othman Mohsen

    2005-01-01

    Zinc sacrificial anode coupled to mild steel was tested in sodium chloride and tap water environments at elevated temperatures. The anode failed to protect the mild steel specimens in tap water environment at all temperatures specified for this study. This was partly due to the high resistivity of the medium. The temperature factor did not help to activate the anode in water tap medium. In sodium chloride environment the anode demonstrated good protection for steel cathodes. In tap water environment the anode weight loss was negligible. The zinc anode suffered intergranular corrosion in sodium chloride environment and this was noticed starting at 40 degree centigrade. In tap water environment the zinc anode demonstrated interesting behavior beyond 60 degree centigrade, that could be attributed to the phenomenon of reversal of potential at elevated temperatures. It also showed shallow pitting spots in tap water environment without any sign of intergranular corrosion. Zinc anodes would suffer intergranular corrosion at high temperatures. (author)

  17. Development of intermediate temperature sodium nickel chloride rechargeable batteries using conventional polymer sealing technologies

    Science.gov (United States)

    Chang, Hee Jung; Lu, Xiaochuan; Bonnett, Jeff F.; Canfield, Nathan L.; Son, Sori; Park, Yoon-Cheol; Jung, Keeyoung; Sprenkle, Vincent L.; Li, Guosheng

    2017-04-01

    Developing advanced and reliable electrical energy storage systems is critical to fulfill global energy demands and stimulate the growth of renewable energy resources. Sodium metal halide batteries have been under serious consideration as a low cost alternative energy storage device for stationary energy storage systems. Yet, there are number of challenges to overcome for the successful market penetration, such as high operating temperature and hermetic sealing of batteries that trigger an expensive manufacturing process. Here we demonstrate simple, economical and practical sealing technologies for Na-NiCl2 batteries operated at an intermediate temperature of 190 °C. Conventional polymers are implemented in planar Na-NiCl2 batteries after a prescreening test, and their excellent compatibilities and durability are demonstrated by a stable performance of Na-NiCl2 battery for more than 300 cycles. The sealing methods developed in this work will be highly beneficial and feasible for prolonging battery cycle life and reducing manufacturing cost for Na-based batteries at elevated temperatures (<200 °C).

  18. Silk fibroin/sodium alginate fibrous hydrogels regulated hydroxyapatite crystal growth.

    Science.gov (United States)

    Ming, Jinfa; Jiang, Zhijuan; Wang, Peng; Bie, Shiyu; Zuo, Baoqi

    2015-06-01

    Use of organic templates for controlling the growth of inorganic crystals is one of the research topics in biomimetic field. In particular, oriented growth of hydroxyapatite (HAp) in organic fibrous matrix is provided a new view angle to study biomineralization of bone and its potential biomedical applications. The crystallization of HAp in fibrous hydrogels could mimic such biomineralization. In this paper, we report HAp nanorod crystal synthesized successfully by a biomimetic method using calcium chloride and ammonium dihydrogen phosphate as reagents in the presence of silk fibroin/sodium alginate (SF/SA) fibrous hydrogels. The effects of influence factors such as mineral times, pH, and temperature on controlling HAp nanorod crystals are discussed. The elongated HAp nanorods with rectangular column are grown with the increase of mineral times in biomimetic process. By changing pH, HAp nanorod crystals are obtained at alkaline condition in fibrous hydrogels. Moreover, compared to other temperatures, rod-shaped HAp crystals were formed at 20°C. The results imply this to be an effective method for preparing HAp crystals with controllable morphology for bone repair application. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effects of different concentrations of sodium chloride on plant growth ...

    African Journals Online (AJOL)

    pakchoi shoots exposed to 0, 50 and 100 mM sodium chloride (NaCl) for two weeks. The results showed that salt stress significantly decreased the fresh weight of whole plant and the dry weight of shoots and roots of pakchoi, as compared to the control. Under 50 mM NaCl, the contents of total glucosinolates, aliphatic and ...

  20. INDUCED-GROWTH AND YIE BY SODIUM AZIDE IN TOMATO ...

    African Journals Online (AJOL)

    userpc

    ABSTRACT. The mutagenic effect of various concentra traits of three varieties of tomato was inve quantity of the traits of economic importa. Roma, UC and a Local variety were treated. (0.1mM, 1.0 mM, 2.0 mM and 0.0 mM as con seasons. The results obtained revealed high various concentrations of sodium azide on.

  1. Computer codes used in the calculation of high-temperature thermodynamic properties of sodium

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.K.

    1979-12-01

    Three computer codes - SODIPROP, NAVAPOR, and NASUPER - were written in order to calculate a self-consistent set of thermodynamic properties for saturated, subcooled, and superheated sodium. These calculations incorporate new critical parameters (temperature, pressure, and density) and recently derived single equations for enthalpy and vapor pressure. The following thermodynamic properties have been calculated in these codes: enthalpy, heat capacity, entropy, vapor pressure, heat of vaporization, density, volumetric thermal expansion coefficient, compressibility, and thermal pressure coefficient. In the code SODIPROP, these properties are calculated for saturated and subcooled liquid sodium. Thermodynamic properties of saturated sodium vapor are calculated in the code NAVAPOR. The code NASUPER calculates thermodynamic properties for super-heated sodium vapor only for low (< 1644 K) temperatures. No calculations were made for the supercritical region.

  2. Computer codes used in the calculation of high-temperature thermodynamic properties of sodium

    International Nuclear Information System (INIS)

    Fink, J.K.

    1979-12-01

    Three computer codes - SODIPROP, NAVAPOR, and NASUPER - were written in order to calculate a self-consistent set of thermodynamic properties for saturated, subcooled, and superheated sodium. These calculations incorporate new critical parameters (temperature, pressure, and density) and recently derived single equations for enthalpy and vapor pressure. The following thermodynamic properties have been calculated in these codes: enthalpy, heat capacity, entropy, vapor pressure, heat of vaporization, density, volumetric thermal expansion coefficient, compressibility, and thermal pressure coefficient. In the code SODIPROP, these properties are calculated for saturated and subcooled liquid sodium. Thermodynamic properties of saturated sodium vapor are calculated in the code NAVAPOR. The code NASUPER calculates thermodynamic properties for super-heated sodium vapor only for low (< 1644 K) temperatures. No calculations were made for the supercritical region

  3. Effects of mixed volatile fatty acid sodium salt on insulin-like growth ...

    African Journals Online (AJOL)

    Effects of mixed volatile fatty acid sodium salt on insulin-like growth factor-I (IGF-I) and insulin-like growth factor-binding protein-3 (IGFBP-3) in plasma and rumen tissue, and rumen epithelium development in lambs.

  4. Low-cycle fatigue properties of SUS304 stainless steel in high-temperature sodium

    International Nuclear Information System (INIS)

    Hirano, M.; Komine, R.; Kitao, K.; Nihei, I.; Yoshitoshi, A.

    Low-cycle fatigue tests in sodium and in air have been performed to investigate the influence of a high-temperature sodium environment on the strain-controlled fatigue behaviour for SUS304 stainless steel. The oxygen concentration in sodium was 2.4 ppm at the cold trap temperature of 145 deg. C. Tests in both environments were conducted at 450 deg. C, 550 deg. C and 650 deg. C at a constant strain rate of 1x10 -3 /sec with a fully-reversed triangular waveform and a zero mean strain. The fatigue life of SUS304 stainless steel in sodium at 450 deg. C, 550 deg. C and 650 deg. C was greater than those in air at the same temperature except at higher strain range (>0.8%) at 650 deg. C, and this difference had a tendency to increase as the total strain range decreases. At the higher total strain range at 650 deg. C, there was no marked difference between both environments. As the temperature increased, the fatigue life in sodium and in air decreased, and the Nsub(f sodium)/Nsub(f air) ratio also decreased. Microscopic examination of specimens tested in sodium and in air at 450 deg. C, 550 deg. C and 650 deg. C revealed no difference in the microstructure, but few surface cracks were observed on specimens tested in sodium than in those tested in air. Fractography of specimens tested in air at 450 deg. C, 550 deg. C and 650 deg. C revealed well-defined striations. But, in sodium, striations on specimens tested at 450 deg. C and 550 deg. C showed obscure configuration and it was difficult to find out, whereas, at 650 deg. C in sodium intergranular fracture was observed. The specimens tested in sodium had a longer fatigue life than those tested in air because the latter are subjected to considerable oxidation, while the former are free of such chemical action. Accordingly, it is concluded that crack initiation and propagation are more likely to occur in air than in sodium. (author)

  5. The equilibrium hydrogen pressure-temperature diagram for the liquid sodium-hydrogen-oxygen system

    International Nuclear Information System (INIS)

    Knights, C.F.; Whittingham, A.C.

    1982-01-01

    The underlying equilibria in the sodium-hydrogen-oxygen system are presented in the form of a completmentary hydrogen equilibrium pressure-temperature diagram, constructed by using published data and supplemented by experimental measurements of hydrogen equilibrium pressures over condensed phases in the system. Possible applications of the equilibrium pressure-temperature phase diagram limitations regarding its use are outlined

  6. sodium

    International Development Research Centre (IDRC) Digital Library (Canada)

    Les initiatives de réduction de la consommation de sel qui visent l'ensemble de la population et qui ciblent la teneur en sodium des aliments et sensibilisent les consommateurs sont susceptibles de réduire la consommation de sel dans toutes les couches de la population et d'améliorer la santé cardiovasculaire. Ce projet a ...

  7. Evaluation of Creep-Fatigue Integrity for High Temperature Pressure Vessel in a Sodium Test Loop

    International Nuclear Information System (INIS)

    Lee, Hyeong-Yeon; Lee, Dong-Won

    2014-01-01

    In this study, high temperature integrity evaluation on a pressure vessel of the expansion tank operating at elevated temperature of 510°C in the sodium test facility of the SEFLA(Sodium Thermal-hydraulic Experiment Loop for Finned-tube Sodium-to-Air heat exchanger) to be constructed at KAERI has been performed. Evaluations of creep fatigue damage based on a full 3D finite element analyses were conducted for the expansion tank according to the recent elevated temperature design codes of ASME Section III Subsection NH and French RCC-MRx. It was shown that the expansion tank maintains its integrity under the intended creep-fatigue loads. Quantitative code comparisons were conducted for the pressure vessel of austenitic stainless steel 316L

  8. Creep and creep rupture properties of cladding tube (type 316) in high temperature sodium

    International Nuclear Information System (INIS)

    Atsumo, H.

    1977-01-01

    The thin walled small sized seamless AISI 316 steel tubes, which are designated to be domestically used as the fuel cladding tube for sodium cooled fast breeder reactors in Japan, are irradiated in the following sodium of high temperature in the range of 370 deg. C to 700 deg. C, and receive gradually increased internal pressure caused by the fission produced gas generating from the nuclear fuel burn-up inside the cladding tube. Consequently, the creep behavior of fuel cladding tubes under a high temperature sodium environment is an important problem which must be determined and clarified together with their characteristic features under irradiation and in air. In relation to the creep performance of fuel cladding tubes made of AISI 316 steel and other comparable austenitic stainless steels, hardly any studies are found that are made systematically to examine the effect of sodium with sodium purity as parameter or any comparative studies with in-air data at various different temperatures. The present research work was aimed to obtain certain basic design data relating to in-sodium creep performance of the domestic made fuel cladding tubes for fast breeder reactors, and also to gain further date as considered necessary under several sodium conditions. That is, together with establishment of the technology for tensile creep test and internal pressure creep rupture test in flowing sodium of high temperature, a series of tests and studies were performed on the trial made cladding tubes of AISI Type-316 steel. In the first place, two kinds of purity conditions of sodium, close to the actual reactor-operating condition, (oxygen concentration of 10 ppm and 5 ppm respectively) were established, and then uniaxial tensile creep test and rupture test under various temperatures were performed and the resulting data were compared and evaluated against the in-air data. Then, secondly, an internal pressure creep rupture test was conducted under a single purity sodium environment

  9. Interaction of monolaurin, eugenol and sodium citrate on growth of common meat spoilage and pathogenic organisms.

    Science.gov (United States)

    Blaszyk, M; Holley, R A

    1998-02-17

    Interactions of monolaurin, eugenol (phenolic compound) and sodium citrate (chelator) on the growth of six organisms including common meat spoilage (Lactobacillus curvatus, Lactobacillus sake, Leuconostoc mesenteroides, Brochothrix thermosphacta) and pathogenic (Escherichia coli O157:H7 and Listeria monocytogenes) organisms were investigated. The combinations of 100 to 250 ppm monolaurin with 500 and 1000 ppm eugenol, and 0.2 and 0.4% sodium citrate were more effective than each component separately. More than one combination prevented detectable growth of each organism. Lactic acid bacteria (LAB) and E. coli O157:H7 were most resistant and L. monocytogenes and B. thermosphacta most sensitive to control by the chosen combinations. The presence of sodium citrate was necessary to yield potent inhibition of Lb. curvatus and Lb. sake growth by the monolaurin and eugenol combinations.

  10. Friction behavior of cobalt base and nickel base hardfacing materials in high temperature sodium

    International Nuclear Information System (INIS)

    Mizobuchi, Syotaro; Kano, Shigeki; Nakayama, Kohichi; Atsumo, Hideo

    1980-01-01

    A friction behavior of the hardfacing materials such as cobalt base alloy ''Stellite'' and nickel base alloy ''Colmonoy'' used in the sliding components of a sodium cooled fast breeder reactor was investigated in various sodium environments. Also, friction tests on these materials were carried out in argon environment. And they were compared with those in sodium environment. The results obtained are as follows: (1) In argon, the cobalt base hardfacing alloy showed better friction behavior than the nickel base hardfacing alloy. In sodium, the latter was observed to have the better friction behavior being independent of the sodium temperature. (2) The friction coefficient of each material tends to become lower by pre-exposure in sodium. Particularly, this tendency was remarkable for the nickel base hardfacing alloy. (3) The friction coefficient between SUS 316 and one of these hardfacing materials was higher than that between latter materials. Also, some elements of hardfacing alloys were recognized to transfer on the friction surface of SUS 316 material. (4) It was observed that each tested material has a greater friction coefficient with a decrease of the oxygen content in sodium. (author)

  11. The high-temperature sodium coolant technology in nuclear power installations for hydrogen power engineering

    Science.gov (United States)

    Kozlov, F. A.; Sorokin, A. P.; Alekseev, V. V.; Konovalov, M. A.

    2014-05-01

    In the case of using high-temperature sodium-cooled nuclear power installations for obtaining hydrogen and for other innovative applications (gasification and fluidization of coal, deep petroleum refining, conversion of biomass into liquid fuel, in the chemical industry, metallurgy, food industry, etc.), the sources of hydrogen that enters from the reactor plant tertiary coolant circuit into its secondary coolant circuit have intensity two or three orders of magnitude higher than that of hydrogen sources at a nuclear power plant (NPP) equipped with a BN-600 reactor. Fundamentally new process solutions are proposed for such conditions. The main prerequisite for implementing them is that the hydrogen concentration in sodium coolant is a factor of 100-1000 higher than it is in modern NPPs taken in combination with removal of hydrogen from sodium by subjecting it to vacuum through membranes made of vanadium or niobium. Numerical investigations carried out using a diffusion model showed that, by varying such parameters as fuel rod cladding material, its thickness, and time of operation in developing the fuel rods for high-temperature nuclear power installations (HT NPIs) it is possible to exclude ingress of cesium into sodium through the sealed fuel rod cladding. However, if the fuel rod cladding loses its tightness, operation of the HT NPI with cesium in the sodium will be unavoidable. Under such conditions, measures must be taken for deeply purifying sodium from cesium in order to minimize the diffusion of cesium into the structural materials.

  12. Effects of different concentrations of sodium chloride on plant growth ...

    African Journals Online (AJOL)

    USER

    2010-07-12

    Eigles et al., 2006). 4-. Methylsulfinylbutyl isothiocyanate (sulforaphane) may prevent tumor growth by blocking the cell cycle and promoting apoptosis, and exhibits potential for treating. Helicobacter pylori-caused gastritis and ...

  13. Density, thermal expansion coefficient and viscosity of sodium tetraborate (borax)-UO2 and of sodium metaborate-UO2 solutions at high temperatures

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Roth, A.

    1983-01-01

    Measurements have been performed of the density, of the volumetric thermal expansion coefficient and of the viscosity of liquid sodium tetraborate (borax) and of sodium metaborate both pure and with two different amounts of UO 2 dissolved in each. The viscosity measurements have been performed for the solution of sodium tetraborate with UO 2 and CeO 2 , and with CeO 2 only as well. These data are required for the design of core-catchers based on sodium borates. The density measurements have been performed with the buoyancy method in the temperature range from 825 0 C to 1300 0 C, the viscosity measurements in the temperature range 700-1250 0 C with a modified Haake viscosity balance. The balance was previously calibrated at ambient temperature with a standard calibration liquid and at high temperatures, with data for pure borax available from the literature. (orig.)

  14. Use of sodium chloride and zeolite during shipment of Ancistrus triradiatus under high temperature

    Directory of Open Access Journals (Sweden)

    Wilson F. Ramírez-Duarte

    Full Text Available The use of sodium chloride (0.5 g/L and 1 g/L and zeolite (22.7 g/L during shipment (48 h of Ancistrus triradiatus at high temperatures (between 24.5 and 34ºC were evaluated. Several water quality parameters (dissolved oxygen, pH, conductivity, and total ammonia were measured before and after shipment. Glycemia was measured before shipment and at 24 and 48 h after shipment. After shipment, a resistance test was carried out in a high concentration of sodium chloride, and mortality was recorded after shipment, and 7 days post-shipment. While the two evaluated substances increased survival of A. triradiatus challenged by high temperatures during shipment, the best result was obtained with 1 g/L of sodium chloride.

  15. Temperature and sodium chloride effects on the solubility of anthracene in water

    International Nuclear Information System (INIS)

    Arias-Gonzalez, Israel; Reza, Joel; Trejo, Arturo

    2010-01-01

    The solubility of anthracene was measured in pure water and in sodium chloride aqueous solution (salt concentration, m/mol . kg -1 = 0.1006, 0.5056, and 0.6082) at temperatures between (278 and 333) K. Solubility of anthracene in pure water agrees fairly well with values reported in earlier similar studies. Solubility of anthracene in sodium chloride aqueous solutions ranged from (6 . 10 -8 to 143 . 10 -8 ) mol . kg -1 . Sodium chloride had a salting-out effect on the solubility of anthracene. The salting-out coefficients did not vary significantly with temperature over the range studied. The average salting-out coefficient for anthracene was 0.256 kg . mol -1 . The standard molar Gibbs free energies, Δ tr G o , enthalpies, Δ tr H o , and entropies, Δ tr S o , for the transfer of anthracene from pure water to sodium chloride aqueous solutions were also estimated. Most of the estimated Δ tr G o values were positive [(20 to 1230) J . mol -1 ]. The analysis of the thermodynamic parameters shows that the transfer of anthracene from pure water to sodium chloride aqueous solution is thermodynamically unfavorable, and that this unfavorable condition is caused by a decrease in entropy.

  16. Effect of sodium benzoate on the growth and enzyme activity of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... The effect of different concentrations of sodium benzoate on the growth and enzyme elaboration potentials of Aspergillus niger and Penicillium citrinum in zobo drink packaged in glass bottles were investigated. All the tested concentrations of 0.025, 0.05 and 0.075% (w/v) caused decreases in the counts of ...

  17. Nanoparticle-mediated nonclassical crystal growth of sodium fluorosilicate nanowires and nanoplates

    Directory of Open Access Journals (Sweden)

    Hongxia Li

    2011-12-01

    Full Text Available We observed nonclassical crystal growth of the sodium fluorosilicate nanowires, nanoplates, and hierarchical structures through self-assembly and aggregation of primary intermediate nanoparticles. Unlike traditional ion-by-ion crystallization, the primary nanoparticles formed first and their subsequent self-assembly, fusion, and crystallization generated various final crystals. These findings offer direct evidences for the aggregation-based crystallization mechanism.

  18. A new system for sodium flux growth of bulk GaN. Part II: in situ investigation of growth processes

    KAUST Repository

    Von Dollen, Paul

    2016-09-09

    We report recent results of bulk GaN crystal growth using the sodium flux method in a new crucible-free growth system. We observed a (0001) Ga face (+c-plane) growth rate >50 µm/h for growth at a N2 overpressure of ~5 MPa and 860 °C, which is the highest crystal growth rate reported for this technique to date. Omega X-ray rocking curve (ω-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were <100 arcseconds. Oxygen impurity concentrations as measured by secondary ion mass spectroscopy (SIMS) were >1020 atoms/cm3. By monitoring the nitrogen pressure decay over the course of the crystal growth, we developed an in situ method that correlates gas phase changes with precipitation of GaN from the sodium-gallium melt. Based on this analysis, the growth rate may have actually been as high as 90 µm/h, as it would suggest GaN growth ceased prior to the end of the run. We also observed gas phase behavior identified as likely characteristic of GaN polynucleation.

  19. A new system for sodium flux growth of bulk GaN. Part II: in situ investigation of growth processes

    Science.gov (United States)

    Von Dollen, Paul; Pimputkar, Siddha; Alreesh, Mohammed Abo; Nakamura, Shuji; Speck, James S.

    2016-12-01

    We report recent results of bulk GaN crystal growth using the sodium flux method in a new crucible-free growth system. We observed a (0001) Ga face (+c-plane) growth rate >50 μm/h for growth at a N2 overpressure of 5 MPa and 860 °C, which is the highest crystal growth rate reported for this technique to date. Omega X-ray rocking curve (ω-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were 1020 atoms/cm3. By monitoring the nitrogen pressure decay over the course of the crystal growth, we developed an in situ method that correlates gas phase changes with precipitation of GaN from the sodium-gallium melt. Based on this analysis, the growth rate may have actually been as high as 90 μm/h, as it would suggest GaN growth ceased prior to the end of the run. We also observed gas phase behavior identified as likely characteristic of GaN polynucleation.

  20. Analyses for experiment on sodium-water reaction temperature by the CHAMPAGNE code

    International Nuclear Information System (INIS)

    Yoshioka, Naoki; Kishida, Masako; Yamada, Yumi

    2000-03-01

    In this work, analyses on sodium-water reaction temperature in the new SWAT-1(SWAT-1R) test were completed by the CHAMPAGNE code in order to understand void and velocity distribution in sodium system, which was difficult to be measured in experiments. The application method of the RELAP5/Mod2 code was investigated to LMFBR steam generator (SG) blow down analysis, too. The following results were obtained. (1) Analyses on sodium-water reaction temperature in the SWAT-1R test. 1) Analyses were carried out for the SWAT-1R test under the condition water leak rate 600 g/s by treating the pressure loss coefficient, the interface friction coefficient and the coefficient related to reaction rate as parameters. The effect and mechanism of each parameter on the shape of reaction zone were well understood by these analyses. 2) The void and velocity distribution in sodium system were estimated by use of the most suitable parameters. These analytical results are expected to be useful for planning of the SWAT-1R test and evaluation of test result. (2) Investigation of the RELAP5/Mod2 code. 1) The items to be improved in the RELAP5/Mod2 code were clarified to apply this code to the FBR SG blow down analysis. 2) One of these items was an addition of the shell-side (sodium-side) model. A sodium-side model was designed and added to the RELAP5/Mod2 code. Test calculations were carried out by this improved code and the basic function of this code was confirmed. (author)

  1. Operating Temperatures of a Sodium-Cooled Exhaust Valve as Measured by a Thermocouple

    Science.gov (United States)

    Sanders, J. C.; Wilsted, H. D.; Mulcahy, B. A.

    1943-01-01

    A thermocouple was installed in the crown of a sodium-cooled exhaust valve. The valve was then tested in an air-cooled engine cylinder and valve temperatures under various engine operating conditions were determined. A temperature of 1337 F was observed at a fuel-air ratio of 0.064, a brake mean effective pressure of 179 pounds per square inch, and an engine speed of 2000 rpm. Fuel-air ratio was found to have a large influence on valve temperature, but cooling-air pressure and variation in spark advance had little effect. An increase in engine power by change of speed or mean effective pressure increased the valve temperature. It was found that the temperature of the rear spark-plug bushing was not a satisfactory indication of the temperature of the exhaust valve.

  2. Effect of temperature, of oxygen content and the downstream effect on corrosion rate of structural materials in liquid sodium

    International Nuclear Information System (INIS)

    Ilincev, G.

    1988-01-01

    The effects were experimentally tested of temperature and of oxygen content on the corrosion rate of structural materials in liquid sodium and on reducing the corrosion rate down the sodium stream. The results of the experiments are shown in graphs and tables and are discussed in detail. The duration of all tests was standard 1,000 hours. The test parameters were set such as to determine the effect of temperature on corrosion of a quantity of various materials in sodium with a low oxygen content (1.2 to 2 ppm) at temperatures of 500 to 800 degC and in sodium with a high oxygen content (345 ppm) at temperatures of 500 to 700 degC. More experiments served the determination of the effect of a different oxygen content varying between 1.2 and 2 ppm at a constant temperature of 600 degC. The materials being tested included main structural materials used for fast reactor construction and materials allowing to establish the effect of main alloying elements on their corrosion in liquid sodium of different temperatures and purity grades. The relationships showing the effects of temperature and oxygen content in sodium on the rate of corrosion of various structural materials in hot parts of the installation and on the reduction in the rate of corrosion downstream due to sodium saturation with corrosion products were constructed using the experimental results. (Z.M.). 15 figs., 2 tabs., 7 refs

  3. Sodium sulfate impacts feeding, specific dynamic action, and growth rate in the freshwater bivalve Corbicula fluminea.

    Science.gov (United States)

    Soucek, David John

    2007-08-01

    Sodium sulfate is a ubiquitous salt that reaches toxic concentrations due to mining and other industrial activities, yet is currently unregulated at the Federal level in the United States. Previous studies have documented reduced growth of clams downstream of sulfate-dominated effluents, altered bioenergetics in filter-feeding invertebrates, and interactions between sulfate and other toxicants. Therefore, the purpose of this study was to determine if sodium sulfate affects the bioenergetics of the filter-feeding, freshwater bivalve, Corbicula fluminea, and the mechanism by which the effects are elicited. In addition to measuring effects on feeding, respiration and growth rates, I evaluated the relative sensitivity of a green algae consumed by clams to determine if top-down or bottom-up effects might be exhibited under field conditions. This study demonstrated that sodium sulfate had no effect on basal metabolic rates, but significantly reduced the feeding, post-feeding metabolic, and growth rates of C. fluminea. The proposed mechanism for these impacts is that filtering rates are reduced upon exposure, resulting in reduced food consumption and therefore, preventing increased metabolic rates normally associated with post-feeding specific dynamic action (SDA). In the field, these effects may cause changes in whole stream respiration rates and organic matter dynamics, as well as alter uptake rates of other food-associated contaminants like selenium, the toxicity of which is known to be antagonized by sulfate, in filter-feeding bivalves.

  4. Effect of concentration and temperature on surface tension of sodium hyaluronate saline solutions.

    Science.gov (United States)

    Ribeiro, Walkiria; Mata, José Luis; Saramago, Benilde

    2007-06-19

    The effect of concentration and temperature on the surface tension of sodium hyaluronate (NaHA) saline solutions was investigated using the technique of the shape of pendant drops. The decay rate of the surface tension with the increase of NaHA concentration was well-described by the empirical Hua-Rosen equation. Adsorption at the air-liquid interface was estimated using the Gibbs equation. The temperature dependence of a dilute solution and a semidilute entangled solution was numerically fitted with a second-order polynomial equation. The surface behavior of the NaHA saline solutions was interpreted in terms of their known viscoelastic properties.

  5. Changes in the flexural strength of engineering ceramics after high temperature sodium corrosion test. Influence after sodium exposure for 1000 hours

    International Nuclear Information System (INIS)

    Hayashi, Kazunori; Tachi, Yoshiaki; Kano, Shigeki; Hirakawa, Yasushi; Komine, Ryuji; Yoshida, Eiichi

    1998-02-01

    Engineering ceramics have excellent properties such as high strength, high hardness and high heat resistance compared with metallic materials. To apply the ceramic in fast reactor environment, it is necessary to evaluate the sodium compatibility and the influence of sodium on the mechanical properties of ceramics. In this study, the influence of high temperature sodium on the mechanical properties of sintered ceramics of conventional and high purity Al 2 O 3 , SiC, SiAlON, AlN and unidirectional solidified ceramics of Al 2 O 3 /YAG eutectic composite were investigated by means of flexure tests. Test specimens were exposed in liquid sodium at 823K and 923K for 3.6Ms. There were no changes in the flexural strength of the conventional and high purity Al 2 O 3 , AlN and Al 2 O 3 /YAG eutectic composite after the sodium exposure at 823K. On the contrary, the decrease in the flexural strength was observed in SiC and SiAlON. After the sodium exposure at 923K, there were also no changes in the flexural strength of AlN and Al 2 O 3 /YAG eutectic composite. In the conventional and high purity Al 2 O 3 and SiC, the flexural strength decreased and signs of grain boundary corrosion were detected by surface observation. The flexural strength of SiAlON after the sodium exposure at 923K increased instead of severe corrosion. In the specimens those showed no changes in the flexural strength, further exposure in sodium is needed to verify whether the mechanical properties degrade or not. For SiAlON, it is necessary to clarify the reason for the increased strength after the sodium exposure at 923K. (author)

  6. Temperature and pressure dependent osmotic pressure in liquid sodium-cesium alloys

    International Nuclear Information System (INIS)

    Rashid, R.I.M.A.

    1987-01-01

    The evaluation of the osmotic pressure in terms of the concentration fluctuations of mixtures and the equations of state of the pure liquids is considered. The temperature and pressure dependent experimentally measured concentration-concentration correlations in the long wavelength limit of liquid sodium-cesium alloys are used to demonstrate the appreciable dependence of the temperature and pressure on the osmotic pressure as a function of concentration. Introducing interchange energies as functions of temperature and pressure, our analysis is consistent with the Flory model. Thus, a formalism for evaluating the state dependent osmotic pressure is developed and our numerical work is considered to be an extension of the calculations of Rashid and March in the sense that a temperature and pressure dependent interchange energy parameter that more closely parameterizes the state dependent concentration fluctuations in the liquid alloys, is used. (author)

  7. Behavior of UO2 and FISSIUM in sodium vapor atmosphere at temperatures up to 28000C

    International Nuclear Information System (INIS)

    Feuerstein, H.; Oschinski, J.

    1986-11-01

    In case of a HCDA a rubble bed of fuel debris may form under a sodium pool and reach high temperatures. An experimental technique was developed to study the behavior of fuel and fission products in out-of-pile tests in a sodium vapor atmosphere. Evaporation rates of UO 2 were measured up to 2800 0 C. The evaporation was found to be a complex process, depending on temperature and the 'active' surface. Evaporation restructures the surface of the samples, however no new 'active' surface is formed. UO 2 forms sometimes well shaped crystals and curious erosion products. The efficiency of the used condenser/filter lines was higher than 99.99%. In case of a HCDA all the evaporated substances will condense in the soidum pool. Thermal reduction of the UO 2 reduces the oxygen potential of the system. The final composition at 2500 0 C was found to be UO 1.95 . The only influence of the sodium vapor was found for the diffusion of UO 2 into the thoria of the crucible. Compared with experiments in an atmosphere of pure argon, the diffusion rate was reduced. (orig.) [de

  8. Effect of Temperature and Relative Humidity on the Growth of ...

    African Journals Online (AJOL)

    The effects of temperature and relative humidity on the growth of Helminthosporium fulvum were investigated. Various temperature regimes of 10oC, 15oC, 20oC, 25oC, 30oC, 35oC and 40¢ªC were used to determine the temperature effect on the growth of H. fulvum. Maximum growth of H. fulvum was obtained at 25¢ªC ...

  9. Effect of Temperature and Relative Humidity on the Growth of ...

    African Journals Online (AJOL)

    ABSTRACT: The effects of temperature and relative humidity on the growth of Helminthosporium fulvum were investigated. Various temperature regimes of 10oC, 15oC, 20oC, 25oC, 30oC, 35oC and 40˚C were used to determine the temperature effect on the growth of H. fulvum. Maximum growth of H. fulvum was obtained ...

  10. Climatology of mesopause region nocturnal temperature, zonal wind, and sodium density observed by sodium lidar over Hefei, China (32°N, 117°E)

    Science.gov (United States)

    Li, T.; Ban, C.; Fang, X.; Li, J.; Wu, Z.; Xiong, J.; Feng, W.; Plane, J. M. C.

    2017-12-01

    The University of Science and Technology of China narrowband sodium temperature/wind lidar, located in Hefei, China (32°N, 117°E), was installed in November 2011 and have made routine nighttime measurements since January 2012. We obtained 154 nights ( 1400 hours) of vertical profiles of temperature, sodium density, and zonal wind, and 83 nights ( 800 hours) of vertical flux of gravity wave (GW) zonal momentum in the mesopause region (80-105 km) during the period of 2012 to 2016. In temperature, it is likely that the diurnal tide dominates below 100 km in spring, while the semidiurnal tide dominates above 100 km throughout the year. A clear semiannual variation in temperature is revealed near 90 km, likely related to the tropical mesospheric semiannual oscillation (MSAO). The variability of sodium density is positively correlated with temperature, suggesting that in addition to dynamics, the chemistry may also play an important role in the formation of sodium atoms. The observed sodium peak density is 1000 cm-3 higher than that simulated by the model. In zonal wind, the diurnal tide dominates in both spring and fall, while semidiurnal tide dominates in winter. The observed semiannual variation in zonal wind near 90 km is out-of-phase with that in temperature, consistent with tropical MSAO. The GW zonal momentum flux is mostly westward in fall and winter, anti-correlated with eastward zonal wind. The annual mean flux averaged over 87-97 km is -0.3 m2/s2 (westward), anti-correlated with eastward zonal wind of 10 m/s. The comparisons of lidar results with those observed by satellite, nearby radar, and simulated by model show generally good agreements.

  11. Definition study for temperature control in advanced protein crystal growth

    Science.gov (United States)

    Nyce, Thomas A.; Rosenberger, Franz; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    Some of the technical requirements for an expedient application of temperature control to advanced protein crystal growth activities are defined. Lysozome was used to study the effects of temperature ramping and temperature gradients for nucleation/dissolution and consecutive growth of sizable crystals and, to determine a prototype temperature program. The solubility study was conducted using equine serum albumin (ESA) which is an extremely stable, clinically important protein due to its capability to bind and transport many different small ions and molecules.

  12. The Effect Of Sodium Chloride On Growth And Quality Of Plectranthus Forsteri Benth. ‘Nico’

    Directory of Open Access Journals (Sweden)

    Krzymińska Agnieszka

    2015-06-01

    Full Text Available Experiments were conducted on the response of Plectranthus forsteri ‘Nico’ to NaCl. Plants were grown in pots of 1.5 dm3 and 0.15 dm3 water solution of NaCl at concentrations 0, 5, 10, 15, 20 g dm−3 in 2011 and 0, 10, 20, 30, 40 g dm−3 in 2012 were applied one time in the beginning of experiment. Sodium chloride applied at 10-40 g NaCl·dm−3 water, reduced plant growth and values of SPAD readings. It may be stated that Plectranthus forsteri ‘Nico’ plants are tolerant to medium concentrations of sodium chloride (5-20 g NaCl·dm−3 water and therefore can be planted in flowerbeds in urbanized areas.

  13. Effect of Temperature, Concentration and Contact Time of Sodium Hypochlorite on the Treatment and Revitalization of Oral Biofilms

    Directory of Open Access Journals (Sweden)

    Aldo del Carpio-Perochena

    2015-12-01

    Full Text Available Background and aims. Increasing the temperature of sodium hypochlorite (NaOCl enhances its dissolution and antibacterial properties. However, the high resistance of multi-species biofilms could restrict the effect of the solution regardless of its temperature, enabling the long-term recovery of the surviving bacteria. The aim of this study was to investigate if the increase of temperature of NaOCl improves its antibacterial and dissolution ability on oral biofilms and if the post-treatment remaining bacteria were capable of growing in a nutrient-rich medium. Materials and methods. Forty dentin blocks were infected intra-orally for 48 hours. Then, the specimens were treated with 1% and 2.5% NaOCl at room temperature (22ºC and body temperature (37ºC for 5 and 20 min. The percentage of live cells and the biovolume were measured pre- (control and post-treatment and after the biofilm revitalization. Four confocal ‘stacks’ were chosen from random areas of each sample. Statistical analysis was performed using Kruskal-Wallis and Dunn tests. Statistical significance was defined at P 0.05. The 1%-NaOCl for 5min was not able to significantly kill the bacteria, regardless of its temperature and contact time (P >0.05. Conclusion. The temperature variation of the NaOCl was not relevant in killing or dissolving bacterial biofilms. Twenty-four hours of reactivation did not appear to be enough time to induce a significant bacterial growth.

  14. Temperature effect on growth and larval duration of plaice

    NARCIS (Netherlands)

    Comerford, S.; Brophy, D.; Fox, C.J.; Taylor, N.; van der Veer, H.W.; Nash, R.D.M.; Geffen, A.J.

    2013-01-01

    Transport models for planktonic fish eggs and larvae often use temperature to drive growth because temperature data are readily available. This pragmatic approach can be criticised as too simplistic as it ignores additional factors, such as food availability and growth-rate-dependent mortality. We

  15. Use of sodium chloride and zeolite during shipment of Ancistrus triradiatus under high temperature

    Directory of Open Access Journals (Sweden)

    Wilson F. Ramírez-Duarte

    2011-01-01

    Full Text Available The use of sodium chloride (0.5 g/L and 1 g/L and zeolite (22.7 g/L during shipment (48 h of Ancistrus triradiatus at high temperatures (between 24.5 and 34ºC were evaluated. Several water quality parameters (dissolved oxygen, pH, conductivity, and total ammonia were measured before and after shipment. Glycemia was measured before shipment and at 24 and 48 h after shipment. After shipment, a resistance test was carried out in a high concentration of sodium chloride, and mortality was recorded after shipment, and 7 days post-shipment. While the two evaluated substances increased survival of A. triradiatus challenged by high temperatures during shipment, the best result was obtained with 1 g/L of sodium chloride.O uso de cloreto de sódio (0,5 g/L e 1 g/L e zeolita (22,7 g/L foram avaliados durante o transporte (48 h de Ancistrus triradiatus em altas temperaturas (entre 24,5 e 34ºC. Os seguintes parâmetros foram monitorados: pH, oxigênio dissolvido, condutividade e amônia antes e depois do transporte. Também foi mensurada a concentração de glicose no sangue antes do transporte e 0, 24 e 48 h após o transporte. Foi realizado um teste de resistência a altas concentrações de cloreto de sódio após o transporte, sendo registrada a mortalidade no final do transporte e após 7 dias. As duas substâncias testadas aumentam a sobrevivência de A. triradiatus a altas temperaturas durante o transporte, porém o melhor resultado foi obtido com o uso de 1 g/L cloreto de sódio.

  16. Sodium-immersed electromagnetic pump design and development of large coil under high temperature

    International Nuclear Information System (INIS)

    Naohara, Nobuyuki; Ohto, Akihiro; Ishida, Masayoshi; Kuroki, Toshitaka; Katsuki, Kenji; Kumazawa, Ryoji.

    1993-01-01

    A sodium-immersed electromagnetic pump (EMP) has special features of high reliability, high maintainability and nonrestrictions for installation, in comparison with a mechanical pump. This type of EMP has the potential to simplify the FBR plant system by its application to the primary system. In this paper, a study on practical EMP application focusing on an EMP system and the structural concept, and a development of a coil under high temperature focusing on the electrical insulation system of a large coil are described. For practical EMP application, the system components and the structural concept for the modular double pool reactor are established. For development of a coil, heat cycle testing from the point of view of mechanical and electrical characteristics under high temperature is first carried out. It is confirmed that the electrical insulation characteristics for the first-step heat cycle test are adequate. (author)

  17. Formula for radial profiles of temperature in steam-liquid sodium reactive jets

    International Nuclear Information System (INIS)

    Hobbes, P.; Mora-Perez, J.L.; Carreau, J.L.; Gbahoue, L.; Roger, F.

    1987-01-01

    One of the important problems of the study of distribution of temperatures in the reactive steam-liquid sodium jet rests in the mathematical formulation of their radial effects. During the experiment, two forms have been brought to light: from a certain distance of the injector, the radial distribution of temperature can be represented, in a classical way, by an error function curve; close to the injector, the radial profile allows for a minimum located on the axis of the jet. An energy balance permits, by dividing the jet in three parts: a central nucleus composed of practically pure gas, a gas ring plus drops and a liquid peripheral area plus bubbles, to obtain a mathematical formulation of the profiles, close to the injection which accounts quite well for the experimental points and their form

  18. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth

    International Nuclear Information System (INIS)

    Jäckle, Markus; Groß, Axel

    2014-01-01

    Lithium and magnesium exhibit rather different properties as battery anode materials with respect to the phenomenon of dendrite formation which can lead to short-circuits in batteries. Diffusion processes are the key to understanding structure forming processes on surfaces. Therefore, we have determined adsorption energies and barriers for the self-diffusion on Li and Mg using periodic density functional theory calculations and contrasted the results to Na which is also regarded as a promising electrode material in batteries. According to our calculations, magnesium exhibits a tendency towards the growth of smooth surfaces as it exhibits lower diffusion barriers than lithium and sodium, and as an hcp metal it favors higher-coordinated configurations in contrast to the bcc metals Li and Na. These characteristic differences are expected to contribute to the unequal tendencies of these metals with respect to dendrite growth

  19. Effect of sodium chloride on the growth and fruiting of Cabernet Sauvignon vines

    Energy Technology Data Exchange (ETDEWEB)

    Hawker, J.S.; Walker, R.R.

    1978-01-01

    Sodium chloride was supplied to rooted cuttings of Vitis vinifera cv Cabernet Sauvignon grown in a porous growth medium at concentrations of 0, 20, 50 and 75 mM. Shoot and leaf growth and berry set and development were reduced by NaCl, the severity of the effects depending on both NaCl concentration and the age of the plants receiving the treatment. Shoots were not affected by 20 mM NaCl supplied 10 days after flowering but 50 and 75 mM NaCl caused severe stunting of shoots and 75 mM NaCl had a marked effect on berry growth and development. When NaCl was supplied to vines 10 days before flowering, 20, 50 and 75 mM NaCl inhibited shoot growth and reduced berry size and sugar content. Although NaCl caused a decrease in the rate of growth of both leaves and berries, no changes in invertase or pectin methylesterase activities were found in these organs from plants supplied with NaCl.

  20. Effect of sodium accumulation on heterotrophic growth and polyhydroxybutyrate (PHB) production by Cupriavidus necator.

    Science.gov (United States)

    Mozumder, Md Salatul Islam; Garcia-Gonzalez, Linsey; De Wever, Heleen; Volcke, Eveline I P

    2015-09-01

    This study evaluates the effect of sodium (Na(+)) concentration on the growth and PHB production by Cupriavidus necator. Both biomass growth and PHB production were inhibited by Na(+): biomass growth became zero at 8.9 g/L Na(+) concentration while PHB production was completely stopped at 10.5 g/L Na(+). A mathematical model for pure culture heterotrophic PHB production was set up to describe the Na(+) inhibition effect. The parameters related to Na(+) inhibition were estimated based on shake flask experiments. The accumulated Na(+) showed non-linear inhibition effect on biomass growth but linear inhibition effect on PHB production kinetics. Fed-batch experiments revealed that a high accumulation of Na(+) due to a prolonged growth phase, using NaOH for pH control, decreased the subsequent PHB production. The model was validated based on independent experimental data sets, showing a good agreement between experimental data and simulation results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Kinetic and thermophysical studies of acetamide-sodium bromide eutectic for low temperature storage applications

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.K.; Sethi, B.P.S.; Chopra, Suneeta (Panjab Univ., Chandigarh (IN). Energy Research Centre)

    1992-02-01

    The kinetics of thermal decomposition of acetamide-sodium bromide using a Differential Scanning Calorimeter and a Differential Thermogravimetric Analyser have been reported. The kinetic parameters have been evaluated using Zsako's method using 10 different mechanisms, such as nucleation, nuclei growth and diffusion. The thermophysical properties, such as density and viscosity, which have a profound effect on the design of the heat exchanger and crystallization have been evaluated and reported. The results show that the eutectic has favourable characteristics, namely low volume change, high energy storage density, high heat of fusion, good thermal stability and favourable crystallization characteristics. The eutectic could find use in thermal energy storage applications for commercial and laundry water heating, process heating hot water, process heating hot air, crop drying and food warming in the hotel industry. (Author).

  2. Root temperature and growth of young tomato plants

    NARCIS (Netherlands)

    Harssema, H.

    1978-01-01

    During recent years sophisticated techniques are applied in the glasshouse industry for the control of the glasshouse climate. Along with that development, extensive research programs were carried out to establish optimum conditions for growth. Air temperature, radiation, CO

  3. In-reactor corrosion behavior of stainless steel cladding in high temperature sodium

    Energy Technology Data Exchange (ETDEWEB)

    Weber, J.W.

    1976-04-01

    Sodium-cladding chemical interaction has been studied on fuel pins clad with 20% cold worked type 316 stainless steel and irradiated in the EBR-II at temperatures up to 705/sup 0/C and for exposures to 5300 hours. The measured corrosion rate of the cladding surface immediately above the top of the fuel column was 12.5 ..mu..m per year at 690/sup 0/C. The loss of Ni at 700/sup 0/C resulted in the formation of a ferrite layer approximately 5 ..mu..m thick. A zone depleted in Ni and Cr extends into the austenite from the ferrite-austenite interface an additional distance of approximately 15 ..mu..m. No large changes in volumetric average carbon or nitrogen were observed.

  4. Novel copper redox-based cathode materials for room-temperature sodium-ion batteries

    Science.gov (United States)

    Xu, Shu-Yin; Wu, Xiao-Yan; Li, Yun-Ming; Hu, Yong-Sheng; Chen, Li-Quan

    2014-11-01

    Layered oxides of P2-type Na0.68Cu0.34Mn0.66O2, P2-type Na0.68Cu0.34Mn0.50Ti0.16O2, and O'3-type NaCu0.67Sb0.33O2 were synthesized and evaluated as cathode materials for room-temperature sodium-ion batteries. The first two materials can deliver a capacity of around 70 mAh/g. The Cu2+ is oxidized to Cu3+ during charging, and the Cu3+ goes back to Cu2+ upon discharging. This is the first demonstration of the highly reversible change of the redox couple of Cu2+/Cu3+ with high storage potential in secondary batteries.

  5. EBR-II secondary sodium loop Plugging Temperature Indicator control system upgrade

    International Nuclear Information System (INIS)

    Carlson, R.B.; Gehrman, R.L.

    1995-01-01

    The Experimental Breeder Reactor II (EBR-II) secondary sodium coolant loop Plugging Temperature Indicator (PTI) control system was upgraded in 1993 to a real-time computer based system. This was done to improve control, to remove obsolete and high maintenance equipment, and to provide a graphical CRT based operator interface. A goal was to accomplish this inexpensively using small, reliable computer and display hardware with a minimum of purchased software. This paper describes the PTI system, the upgraded control system and its operator interface, and development methods and tools. The paper then assesses how well the system met its goals, discusses lessons learned and operational improvements noted, and provides some recommendations and suggestions on applying small real-time control systems of this type

  6. Growth temperature and plant age influence on nutritional quality of ...

    African Journals Online (AJOL)

    As a leafy vegetable, Amaranthus can be harvested at different stages of plant growth, ranging from young seedlings to the late juvenile stage, but data on the changes in leaf nutritional value with plant age are scanty. The objective of this study was to determine the effect of growth temperature on Amaranthus leaf yield and ...

  7. Layered SnS sodium ion battery anodes synthesized near room temperature

    KAUST Repository

    Xia, Chuan

    2017-08-10

    In this report, we demonstrate a simple chemical bath deposition approach for the synthesis of layered SnS nanosheets (typically 6 nm or ~10 layers thick) at very low temperature (40 °C). We successfully synthesized SnS/C hybrid electrodes using a solution-based carbon precursor coating with subsequent carbonization strategy. Our data showed that the ultrathin carbon shell was critical to the cycling stability of the SnS electrodes. As a result, the as-prepared binder-free SnS/C electrodes showed excellent performance as sodium ion battery anodes. Specifically, the SnS/C anodes delivered a reversible capacity as high as 792 mAh·g−1 after 100 cycles at a current density of 100 mA·g−1. They also had superior rate capability (431 mAh·g−1 at 3,000 mA·g−1) and stable long-term cycling performance under a high current density (345 mAh·g−1 after 500 cycles at 3 A·g−1). Our approach opens up a new route to synthesize SnS-based hybrid materials at low temperatures for energy storage and other applications. Our process will be particularly useful for chalcogenide matrix materials that are sensitive to high temperatures during solution synthesis.

  8. Higher temperature variability reduces temperature sensitivity of vegetation growth in Northern Hemisphere

    Science.gov (United States)

    Wu, Xiuchen; Liu, Hongyan; Li, Xiaoyan; Piao, Shilong; Ciais, Philippe; Guo, Weichao; Yin, Yi; Poulter, Ben; Peng, Changhui; Viovy, Nicolas; Vuichard, Nicolas; Wang, Pei; Huang, Yongmei

    2017-06-01

    Interannual air temperature variability has changed over some regions in Northern Hemisphere (NH), accompanying with climate warming. However, whether and to what extent it regulates the interannual sensitivity of vegetation growth to temperature variability (i.e., interannual temperature sensitivity)—one central issue in understanding and predicting the responses of vegetation growth to changing climate—still remains poorly quantified and understood. Here we quantify the relationships between the interannual temperature sensitivity of mean growing-season (April-October) normalized difference vegetation index (NDVI) and ecosystem model simulations of gross primary productivity (GPP), and variability in mean growing-season temperature for forest, shrub, and grass over NH. We find that higher interannual variability in mean growing-season temperature leads to consistent decrease in interannual temperature sensitivity of mean growing-season NDVI among all vegetation types but not in model simulations of GPP. Drier condition associates with 130 ± 150% further decrease in interannual temperature sensitivity of mean growing-season NDVI by temperature variability in forest and shrub. These results illustrate that varying temperature variability can significantly regulate the interannual temperature sensitivity of vegetation growth over NH, interacted with drought variability and nonlinear responses of photosynthesis to temperature. Our findings call for an improved characterization of the nonlinear effects of temperature variability on vegetation growth within global ecosystem models.

  9. The stimulating impact of elevated temperatures on growth and ...

    African Journals Online (AJOL)

    Different biochemical constituents were also higher in the leaves during summer than in winter season. The present investigation clearly indicates that growth and productivity of Parthenium was directly proportional to the increase in atmospheric temperature, indicating the possibility of the influence of rising temperature on ...

  10. Characterisation of Ceramic-Coated 316LN Stainless Steel Exposed to High-Temperature Thermite Melt and Molten Sodium

    Science.gov (United States)

    Ravi Shankar, A.; Vetrivendan, E.; Shukla, Prabhat Kumar; Das, Sanjay Kumar; Hemanth Rao, E.; Murthy, S. S.; Lydia, G.; Nashine, B. K.; Mallika, C.; Selvaraj, P.; Kamachi Mudali, U.

    2017-11-01

    Currently, stainless steel grade 316LN is the material of construction widely used for core catcher of sodium-cooled fast reactors. Design philosophy for core catcher demands its capability to withstand corium loading from whole core melt accidents. Towards this, two ceramic coatings were investigated for its application as a layer of sacrificial material on the top of core catcher to enhance its capability. Plasma-sprayed thermal barrier layer of alumina and partially stabilised zirconia (PSZ) with an intermediate bond coat of NiCrAlY are selected as candidate material and deposited over 316LN SS substrates and were tested for their suitability as thermal barrier layer for core catcher. Coated specimens were exposed to high-temperature thermite melt to simulate impingement of molten corium. Sodium compatibility of alumina and PSZ coatings were also investigated by exposing samples to molten sodium at 400 °C for 500 h. The surface morphology of high-temperature thermite melt-exposed samples and sodium-exposed samples was examined using scanning electron microscope. Phase identification of the exposed samples was carried out by x-ray diffraction technique. Observation from sodium exposure tests indicated that alumina coating offers better protection compared to PSZ coating. However, PSZ coating provided better protection against high-temperature melt exposure, as confirmed during thermite melt exposure test.

  11. Effect of temperature on swelling and bubble growth in metals

    International Nuclear Information System (INIS)

    Tiwari, G.P.

    1982-01-01

    The effect of temperature on the swelling of copper-boron alloys has been studied in the temperature range of 900-1040deg C. It is observed that beyond 1030deg C, swelling as well as the rate of bubble growth decrease. Similar characteristics of the bubble growth have been observed in aluminium-boron alloys also. At 590deg C, the bubble growth in aluminium-boron alloys is faster as compared to that at 640deg C. It thus appears that the swelling as well as the growth of the gas bubble are retarded at temperatures near the melting point in metals. Possible reasons for this kind of behaviour are discussed. (author)

  12. Studies on growth and toxin production of C. botulinum type E on cod homogenate treated with a combination of spices, sodium chloride and gamma-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, A.K. (Atomic Energy Centre, Dacca (Bangladesh)); Ando, Y.; Karashimada, T.; Kameyama, K.

    1979-09-01

    Cod homogenates inoculated with spores of C. botulinum type E strain Erimo at 10/sup 2/ and 10/sup 4//g were treated with 1% and 2% sodium chloride, 0.25% each of mustard, garlic and turmeric and 0.3 Mrad ..gamma..-radiation either in single or combination treatments. The growth and toxin production of type E spores in the inoculated homogenates were followed at incubation temperatures of 30/sup 0/, 10/sup 0/ and 5/sup 0/C for 7, 28 and 56 days respectively. Growth and gas formation were noted in all the samples but type E toxin could not be detected. The reason for the absence of toxin in both the untreated and treated homogenates could not be ascertained. Inadequate detection method, unfavourable growth conditions in the homogenate and weak toxigenicity of the strain employed have been advanced as probable factors that contributed to the negative results on the toxin assay.

  13. Studies on growth and toxin production of C. botulinum type E on cod homogenate treated with a combination of spices, sodium chloride and gamma-radiation

    International Nuclear Information System (INIS)

    Siddiqui, A.K.; Ando, Y.; Karashimada, T.; Kameyama, K.

    1979-01-01

    Cod homogenates inoculated with spores of C. botulinum type E strain Erimo at 10 2 and 10 4 /g were treated with 1% and 2% sodium chloride, 0.25% each of mustard, garlic and turmeric and 0.3 Mrad ν-radiation either in single or combination treatments. The growth and toxin production of type E spores in the inoculated homogenates were followed at incubation temperatures of 30 0 , 10 0 and 5 0 C for 7, 28 and 56 days respectively. Growth and gas formation were noted in all the samples but type E toxin could not be detected. The reason for the absence of toxin in both the untreated and treated homogenates could not be ascertained. Inadequate detection method, unfavourable growth conditions in the homogenate and weak toxigenicity of the strain employed have been advanced as probable factors that contributed to the negative results on the toxin assay. (author)

  14. Measurements of local temperature distributions in rod bundles with sodium flow

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.; Kolodziej, M.

    1984-12-01

    In an electrically heated 19-rod bundle (P/D = 1.30, W/R = 1.40) with sodium flow the three-dimensional temperature fields in the rod clads were measured. The main characteristics of the test section are three adjacent heater rods in the duct wall zone instrumented on four measuring planes and rotatable by 360 0 under full power conditions; furthermore spacer grids which are axially movable, and a system allowing to bow one heater rod over the last third of its heated length. The results of measurements of the azimuthal temperature variations of the rotatable rods are presented for different operating conditions (80 2 ), different spacer grid positions relative to the measuring planes and different bowing positions of one rod. For better understanding of the experimental results cross sections of the 19-rod bundle were prepared. It became evident, that a well-known bundle geometry is very important for the interpretation of the experimental results. (orig.) [de

  15. Uranium recovery by leaching with sodium carbonate at high temperature and pressure

    International Nuclear Information System (INIS)

    Soerensen, E.; Koefoed, S.; Lundgaard, T.

    1990-09-01

    An alkaline rock from the Ilimaussaq instrusion, SW Greenland, was proposed as a source of uranium. Its principal uranium bearing mineral, Steenstrupine, is a complex sodium REE phosphosilicate in which Fe, Mn, Th and U are minor constituents. A special feature of this ore body is the content of water soluble minerals: NaF (Villiaumite), Na 2 Si 2 O 5 (Natrosilite) and an organic substance which displays the characteristics of humus. Sulfides are sparse, the most important one being ZnS (Sphalerite) of which the content is generally less than 0.5%. In the mineral under consideration (Lujavrite) the Steenstrupine is mainly finelay disseminated throughout the rock, yielding a uranium content of 300-400 ppm and thorium content of 800-1000 ppm. Laboratory tests indicated that high temperature carbonate leaching was necessary to decompose Steenstrupine. The optium temperature was shown to be 260 deg. C and the leach liquor composition 120 g/l of NaHCO 3 and 20 g/l of Na 2 C0 3 . Addition of oxygen is necessary. The process was developed to industrial scale in a continuous pipe autoclave with a retention time of 20 min. After filtering on a belt filter, the liquor was recycled several times to obtain a higher U-concentration. By reductive precipitation with iron powder a raw UO 2 was obtained. It was purified after dissolution in HNO 3 . An overall yield of 80% could be obtained. (author) 32 tabs., 13 ills., 24 refs

  16. Effect of High Temperature Sodium Hydroxide Immersion on Fusion Bond Epoxy Coating

    Directory of Open Access Journals (Sweden)

    Amal Al-Borno

    2015-01-01

    Full Text Available Fusion Bond Epoxy (FBE coating system was exposed to 5% sodium hydroxide at elevated temperature for 30 days. The result of exposure showed formation of adhere deposit layer, a discolored zone underneath and remaining un-affected bulk of the coating. The deterioration of the coating was characterized using analytical techniques like scanning electron microscopy (SEM, energy-dispersive X-ray (EDAX spectroscopy, attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR, differential scanning calorimetry (DSC, pull-off adhesion, and electrochemical impedance spectroscopy (EIS. Results obtained indicated chemical deterioration of the coating in the discolored zone and leaching of low molecular weight coating component forming deposit layer. Although the adhesion strength and barrier property were not affected, the polymer matrix in the affected zone undergoes severe changes in its surface microstructure, primary chemical structure, and glass transition temperature. This may inflict serious impairment of the coating functional properties and premature failure of the coating in long term exposure.

  17. Bulk Group-III Nitride Crystal Growth in Supercritical Ammonia-Sodium Solutions

    Science.gov (United States)

    Griffiths, Steven Herbert

    Gallium nitride (GaN) and its alloys with indium nitride (InGaN) and aluminum nitride (AlGaN), collectively referred to as Group-III Nitride semiconductors, have enabled white solid-state lighting (SSL) sources and power electronic devices. While these technologies have already made a lasting, positive impact on society, improvements in design and efficiency are anticipated by shifting from heteroepitaxial growth on foreign substrates (such as sapphire, Si, SiC, etc.) to homoepitaxial growth on native, bulk GaN substrates. Bulk GaN has not supplanted foreign substrate materials due to the extreme conditions required to achieve a stoichiometric GaN melt (temperatures and pressures in excess of 2200°C and 6 GPa, respectively). The only method used to produce bulk GaN on an industrial scale is hydride vapor phase epitaxy (HVPE), but the high cost of gaseous precursors and relatively poor crystal quality have limited the adoption of this technology. A solution growth technique known as the ammonothermal method has attracted interest from academia and industry alike for its ability to produce bulk GaN boules of exceedingly high crystal quality. The ammonothermal method employs supercritical ammonia (NH3) solutions to dissolve, transport, and crystallize GaN. However, ammonothermal growth pressures are still relatively high (˜200 MPa), which has thus far prevented the acquisition of fundamental crystal growth knowledge needed to efficiently (i.e. through data-driven approaches) advance the field. This dissertation focused on addressing the gaps in the literature through two studies employing in situ fluid temperature analysis. The first study focused on identifying the solubility of GaN in supercritical NH3-Na solutions. The design and utilization of in situ and ex situ monitoring equipment enabled the first reports of the two-phase nature of supercritical NH3-Na solutions, and of Ga-alloying of Ni-containing autoclave components. The effects of these error sources on

  18. A High Temperature Electrochemical Energy Storage System Based on Sodium Beta-Alumina Solid Electrolyte (Base)

    Energy Technology Data Exchange (ETDEWEB)

    Anil Virkar

    2008-03-31

    AlO{sub 2} is never formed. Conversion occurs by a coupled transport of Na{sup +} through BASE formed and of O{sup 2-} through YSZ to the reaction front. Transport to the reaction front is described in terms of a chemical diffusion coefficient of Na{sub 2}O. The conversion kinetics as a function of microstructure is under investigation. The mechanism of conversion is described in this report. A number of discs and tubes of BASE have been fabricated by the vapor phase process. The material was investigated by X-ray diffraction (XRD), optical microscopy and scanning electron microscopy (SEM), before and after conversion. Conductivity (which is almost exclusively due to sodium ion transport at the temperatures of interest) was measured. Conductivity was measured using sodium-sodium tests as well as by impedance spectroscopy. Various types of both planar and tubular electrochemical cells were assembled and tested. In some cases the objective was to determine if there was any interaction between the salt and BASE. The interaction of interest was mainly ion exchange (possible replacement of sodium ion by the salt cation). It was noted that Zn{sup 2+} did not replace Na+ over the conditions of interest. For this reason much of the work was conducted with ZnCl{sub 2} as the cathode salt. In the case of Sn-based, Sn{sup 2+} did ion exchange, but Sn{sup 4+} did not. This suggests that Sn{sup 4+} salts are viable candidates. These results and implications are discussed in the report. Cells made with Na as the anode and ZnCl{sub 2} as the cathode were successfully charged/discharged numerous times. The key advantages of the batteries under investigation here over the Na-S batteries are: (1) Steel wool can be used in the cathode compartment unlike Na-S batteries which require expensive graphite. (2) Planar cells can be constructed in addition to tubular, allowing for greater design flexibility and integration with other devices such as planar SOFC. (3) Comparable or higher open circuit

  19. Low-temperature growth of nanostructured diamond films.

    Science.gov (United States)

    Baker, P A; Catledge, S A; Vohra, Y K

    2001-03-01

    Nanostructured diamond films are grown on a titanium alloy substrate using a two-step deposition process. The first step is performed at elevated temperature (820 degrees C) for 30 min using a H2/CH4/N2 gas mixture to grow a thin (approximately 600 nm) nanostructured diamond layer and to improve film adhesion. The remainder of the deposition involves growth at low temperature (diamond film growth during low-temperature deposition is confirmed by in situ laser reflectance interferometry, atomic force microscopy, micro-Raman spectroscopy, and surface profilometry. Similar experiments performed without the initial nanostructured diamond layer resulted in poorly adhered films with a more crystalline appearance and a higher surface roughness. This low-temperature deposition of nanostructured diamond films on metals offers advantages in cases where high residual thermal stress leads to delamination at high temperatures.

  20. Inhibitive effect of N,N'-Dimethylaminoethanol on carbon steel corrosion in neutral sodium chloride solution, at different temperatures

    OpenAIRE

    Hassoune Mohammed; Bezzar Abdelillah; Sail Latéfa; Ghomari Fouad

    2018-01-01

    The inhibition of carbon steel corrosion in neutral sodium chloride solution by N,N'- Dimethylaminoethanol (DMEA), at different temperatures, was investigated using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results obtained confirm that DMEA is a good organic corrosion inhibitor for carbon steel in 0.5M of NaCl (concentration encountered in the Mediterranean seawater), over the whole range of temperatures studied. The inhibition...

  1. Uranium recovery by leaching with sodium carbonate at high temperature and pressure

    International Nuclear Information System (INIS)

    Soerensen, E.; Koefoed, S.; Lundgaard, T.

    1983-11-01

    The principal uranium bearing mineral in Greenland steenstrupine is a complex sodium REE phosphosilicate in which Fe, Mn, Th, U are minor constituents. The Na 2 CO 3 extractant is used for specially acidconsuming ores. However, steenstrupine is decomposed by Na 2 CO 3 only at temperatures above 220degC, so the leaching must be carried out under pressure. Laboratory tests have shown the optimal temperature to be 260degC and the leach liquor composition120 g/l of NaHCO 3 and 20 g/l of Na 2 CO 3 . Addition of oxygen is necessary as uranium will not dissolve in carbonate unless it is brought in its highest state of oxidation. According to the laboratory tests it may be estimated that 1 kg of ore suspended in 1 l of leach liquor and ground to 80% minus 200 mesh can be extracted in 20-40 minutes. On the basis of data obtained a process was suggested in which the ore is ground with carbonate leach liquor to a suitable suspension which is fed to an autoclave with a retentiontime of 20 minutes at 260degC. The residue is filtered off and the liquor reused for grinding and ex- traction. The demand for a reaction temperature near 300degC, a pressure up to 120 atm. and a continuos operation favours a tubular flow autoclave with so narrow a bore that the turbulence provides the mechanical agitation of the suspension. From the mined material it appears that more than 80% of the uranium can be extracted in the pipe autoclave. Some samples give off the obtainable uranium in 20 minutes. The precipitated yellow cake is contaminated with more Na and Si than admitted by international standards. (EG)

  2. Crescimento de Acidovorax avenae subsp. citrulli sob diferentes temperaturas, pH, concentrações de cloreto de sódio e fontes de carbono Growth of Acidovorax avenae subsp. citrulli under different variable temperature, pH, sodium chloride concentrations and carbon sources

    Directory of Open Access Journals (Sweden)

    Márcia Tanajura Cavalcanti

    2005-12-01

    Full Text Available O objetivo deste estudo foi determinar o efeito da temperatura (0 a 45°C, pH (4 a 10 e concentração de NaCl (1 a 10% sobre o crescimento de Acidovorax avenae subsp. citrulli (Aac. Quatro estirpes de Aac foram cultivadas em meio de cultura líquido específico e o crescimento avaliado pela absorbância (580nm. Os dados obtidos foram submetidos à análise de regressão não linear. O crescimento das estirpes também foi avaliado em caldo base para fermentação contendo 1% dos carboidratos glicose, galactose, ramnose, sacarose, lactose, maltose, amido, inulina, manitol, dulcitol, sorbitol e salicina, indicada pela mudança da cor do meio. Com base nas análises de regressão, as temperaturas mínima, ótima e máxima para crescimento de Aac foram, respectivamente, 1, 32 e 41°C; o pH ótimo para crescimento dessa bactéria foi 7,4 com os extremos mínimo de 4,0 e máximo de 10,8 e; o crescimento de Aac decresceu com o aumento da concentração de NaCl, sendo o nível de 6,2% letal. Todos os carboidratos testados foram utilizados pelas estirpes de Aac como fonte de carbono, com pequena variação de crescimento observada pela velocidade e intensidade da utilização do substrato com produção de ácido.The objective of this study was to determine the effect of temperature (0 to 45°C, pH (4 to 10 and NaCl concentration (1 to 10% in the growth of Acidovorax avenae subsp. citrulli (Aac. Four Aac strains were grown in specific liquid medium, and their growth evaluated by absorbance (580nm. Data were submitted to nonlinear regression analysis. The bacterial growth was also studied in fermentation broth containing 1% of fermentable carbohydrates, glucose, galactose, rhamnose, sucrose, lactose, maltose, starch, inulin, mannitol, dulcitol, sorbitol and salicin, being evaluated by medium color change. Based upon regression analyses, the minimum, optimum and maximum temperatures for Aac growth were respectively 1, 32 and 41°C; the optimum pH for Aac

  3. Crack growth by micropore coalescence at high temperatures

    International Nuclear Information System (INIS)

    Beere, W.

    1981-01-01

    At high temperatures in the creep regime the stress distribution around a crack is different from the low temperature elastically generated distribution. The stress distribution ahead of the crack is calculated for a crack preceded by an array of growing cavities. The cavities maintain a displacement wedge ahead of the crack. When the displacement wedge is less than one-tenth the crack length the driving force for crack growth is similar to an all elastically loaded crack. When the deforming wedge exceeds the crack length the net section stress controls crack growth. An expression is derived for a crack growing by the growth and coalescence of cavities situated in the crack plane. It is predicted that at high temperatures above a critical stress intensity, the crack propagates in a brittle fashion. (author)

  4. A prospective scenario of the French nuclear fleet growth based on sodium cooled fast reactor technology

    International Nuclear Information System (INIS)

    Garzenne, Claude; Le Mer, Joel; Lemasson, David; Hoang, Manh-Hung

    2011-01-01

    Generation IV Sodium cooled Fast Reactors (SFR) deployment would allow to optimize the use of the various available resources (natural, reprocessed and depleted uranium, plutonium) thanks to breeding capacities featuring a valuable advantage with respect to the fuel cycle flexibility and fissile material management. The complete replacement of the 60 GWe French nuclear fleet by GEN IV SFRs in 2100 would require around 1000 tons of plutonium. An accurate simulation of this prospective scenario shows that the amount of plutonium issued from the French PWRs spent fuel reprocessing would not be enough. The lacking amount of plutonium could be produced with fertile blankets during the transient SFR deployment phase. A more ambitious research scenario, aimed at doubling the nuclear French fleet installed power in 2100, would require to use SFRs at their maximum breeding capacity. However, it is not possible to deploy more than about 100 GWe of SFRs in 2100, meaning that the fleet growth would have to be partially supported by GEN III PWRs. Using the scenario simulation code TIRELIRE-STRATEGIE, we have optimized the main scenario parameters: the capacities of the fuel cycle facilities, the proportion of PWRs necessary for supporting the growth phase, the kinetics of SFRs deployment compatible with the plutonium build-up, etc., while respecting industrial constraints such as a realistic cooling time before reprocessing, a fuel cycle plants utilization rate constant over several decades, etc.. We illustrate the impact of this French fleet growth scenario over the nuclear material fluxes in the fuel cycle plants, the uranium consumption, and the waste production. (author)

  5. Induction of gene expression in bacteria at optimal growth temperatures.

    Science.gov (United States)

    Jiang, Xinglin; Zhang, Haibo; Yang, Jianming; Liu, Min; Feng, Hongru; Liu, Xiaobin; Cao, Yujin; Feng, Dexin; Xian, Mo

    2013-06-01

    Traditional temperature-sensitive systems use either heat shock (40-42 °C) or cold shock (15-23 °C) to induce gene expression at temperatures that are not the optimal temperature for host cell growth (37 °C). This impacts the overall productivity and yield by disturbing cell growth and cellular metabolism. Here, we have developed a new system which controls gene expression in Escherichia coli at more permissive temperatures. The temperature-sensitive cI857-P L system and the classic lacI-P lacO system were connected in series to control the gene of interest. When the culture temperature was lowered, the thermolabile cI857 repressor was activated and blocked the expression of lacI from P L. Subsequently, the decrease of LacI derepressed the expression of gene of interest from P lacO . Using a green fluorescent protein marker, we demonstrated that (1) gene expression was tightly regulated at 42 °C and strongly induced by lowering temperature to 25-37 °C; (2) different levels of gene expression can be induced by varying culture temperature; and (3) gene expression after induction was sustained until the end of the log phase. We then applied this system in the biosynthesis of acetoin and demonstrated that high yield and production could be achieved using temperature induction. The ability to express proteins at optimal growth temperatures without chemical inducers is advantageous for large-scale and industrial fermentations.

  6. Effect of increasing growth temperature on yeast fermentation ...

    African Journals Online (AJOL)

    The effect of increasing growth temperature on yeast fermentation was studied at approximately 5 oC intervals over a range of 18 – 37 oC, using one strain each of ale, lager and wine yeast. The ale and wine yeasts grew at all the temperatures tested, but lager yeast failed to grow at 37 oC. All these strains gave lower ...

  7. In-reactor corrosion behavior of stainless steel in high temperature sodium

    International Nuclear Information System (INIS)

    Weber, J.W.

    1976-01-01

    Sodium-cladding chemical interaction has been studied on fuel pins clad with 20 percent cold worked type 316 stainless steel and irradiated in the EBR-II at temperatures up to 705 0 C and for exposures to 5300 hours. The measured corrosion rate of the cladding surface immediately above the top of the fuel column was 12.5 μm per year at 690 0 C. The loss of Ni at 700 0 C resulted in the formation of a ferrite layer approximately 5 μm thick. A zone depleted in Ni and Cr extends into the austenite from the ferrite-austenite interface an additional distance of approximately 15 μm. No large changes in volumetric average carbon or nitrogen were observed. The results suggest a slight increase in carbon during the first 2300 hours followed by a slow decrease for longer exposure times. A 25 to 30 percent decrease in bulk nitrogen was observed in cladding with an initial nitrogen content of 225 ppM. Cladding with a lower initial nitrogen content of 63 ppM showed essentially no change. Fuel pin cladding corrosion behavior agrees well with that predicted using out-of-reactor Na loop data, thus providing confidence that out-of-reactor corrosion data can be reliably used in predicting in-reactor fuel cladding performance

  8. Development of neural network driven fuzzy controller for outlet sodium temperature of DHX

    International Nuclear Information System (INIS)

    Okusa, Kyoichi; Endou, Akira; Yoshikawa, Shinji; Ozawa, Kenji

    1996-01-01

    Fuzzy controls are capable to exquisitely control non-linear dynamic systems in wide operating range, using linguistic description to define the control law. However the selection and the definition of the fuzzy rules and sets require a tedious trial and error process based on experience. As a method to overcome this limitation, a neural network driven fuzzy control (NDF), where the learning capability of the neural network (NN) is used to build the fuzzy rules and sets, is presented in this paper. In the NDF control the IF part of a fuzzy control is represented by a multilayer NN while the THEN part is represented by a series of multilayer NNs which calculate the desirable control action. In this work the usual stepwise variable reduction method, used for the selection of the input variable in the THEN part NN, is replaced with a learning algorithm with forgetting mechanism that realizes the automatic reduction of the variables and the tuning up of all the fuzzy control law i.e. the membership function. The NDF has been successfully applied to control the outlet sodium temperature of a dump heat exchanger (DHX) of a FBR plant

  9. Void growth and coalescence in metals deformed at elevated temperature

    DEFF Research Database (Denmark)

    Klöcker, H.; Tvergaard, Viggo

    2000-01-01

    For metals deformed at elevated temperatures the growth of voids to coalescence is studied numerically. The voids are assumed to be present from the beginning of deformation, and the rate of deformation considered is so high that void growth is dominated by power law creep of the material, without...... any noticeable effect of surface diffusion. Axisymmetric unit cell model computations are used to study void growth in a material containing a periodic array of voids, and the onset of the coalescence process is defined as the stage where plastic flow localizes in the ligaments between neighbouring...

  10. Effect of temperature, light intensity and growth regulators on ...

    African Journals Online (AJOL)

    Ansellia africana (Orchidaceae) is an important endangered medicinal plant species of South Africa which has been heavily exploited in recent years. Experiments were conducted in growth rooms at different temperatures (16, 26, 36°C) and in a nursery at different light intensities induced by shade cloth densities (200, 400, ...

  11. Effect of temperature, light intensity and growth regulators on ...

    African Journals Online (AJOL)

    ONOS

    2010-08-23

    Aug 23, 2010 ... Ansellia africana (Orchidaceae) is an important endangered medicinal plant species of South Africa which has been heavily exploited in recent years. Experiments were conducted in growth rooms at different temperatures (16, 26, 36°C) and in a nursery at different light intensities induced by shade.

  12. Influence of growth temperature on morphological, structural and ...

    Indian Academy of Sciences (India)

    Influence of growth temperature on morphological, structural and photoluminescence properties of ZnO nanostructure thin layers and powders deposited by thermal evaporation. YASER ARJMAND and HOSEIN ESHGHI. ∗. Department of Physics, University of Shahrood, Shahrood 36155-316, Iran. MS received 9 April ...

  13. Influence of growth temperature on morphological, structural and ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 7. Influence of growth temperature on morphological, structural and photoluminescence properties of ZnO nanostructure thin layers and powders deposited by thermal evaporation. Yaser Arjmand Hosein Eshghi. Volume 37 Issue 7 December 2014 pp 1663- ...

  14. Influence of temperature, light and plant growth regulators on ...

    African Journals Online (AJOL)

    Effects of temperature, light and different concentrations of plant growth regulators on germination of Piper nigrum L. seeds was studied under controlled environmental conditions. Black pepper seeds were placed in. Petri dishes with filtration papers and the germination and radical development followed during eighteen ...

  15. From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

    Directory of Open Access Journals (Sweden)

    Philipp Adelhelm

    2015-04-01

    Full Text Available Research devoted to room temperature lithium–sulfur (Li/S8 and lithium–oxygen (Li/O2 batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite surprisingly, not much is known about the analogous sodium-based battery systems, although the already commercialized, high-temperature Na/S8 and Na/NiCl2 batteries suggest that a rechargeable battery based on sodium is feasible on a large scale. Moreover, the natural abundance of sodium is an attractive benefit for the development of batteries based on low cost components. This review provides a summary of the state-of-the-art knowledge on lithium–sulfur and lithium–oxygen batteries and a direct comparison with the analogous sodium systems. The general properties, major benefits and challenges, recent strategies for performance improvements and general guidelines for further development are summarized and critically discussed. In general, the substitution of lithium for sodium has a strong impact on the overall properties of the cell reaction and differences in ion transport, phase stability, electrode potential, energy density, etc. can be thus expected. Whether these differences will benefit a more reversible cell chemistry is still an open question, but some of the first reports on room temperature Na/S8 and Na/O2 cells already show some exciting differences as compared to the established Li/S8 and Li/O2 systems.

  16. Steady-state, local temperature fields with turbulent liquid sodium flow in nominal and disturbed bundle geometries with spacer grids

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.

    1980-01-01

    The operating reliability of nuclear reactors calls for a reliable strength analysis of the highly loaded core elements, one of its prerequisites being the reliable determination of the three-dimensional velocity and temperature fields. To verify thermohydraulics computer programs, extensive local temperature measurements in the rod claddings of the critical bundle zone were performed on a heated 19-rod bundle model with sodium flow and provided with spacer grids (P/D = 1.30; W/D = 1.19). The essential results are: - Outside the spacer grids, the azimuthal temperature variations of the side and corner rods are approximately 10-fold those of rods in the central bundle zone. - The spacer grids investigated give rise to great local temperature peaks and correspondingly great temperature gradients in the axial and azimuthal directions immediately around the support points. - Continuous reduction of a subchannel by rod bowing results in substantial rises of temperature which, however, are limited to adjacent cladding tubes. (orig.)

  17. Low temperature CVD growth of ultrathin carbon films

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2016-05-01

    Full Text Available We demonstrate the low temperature, large area growth of ultrathin carbon films by chemical vapor deposition under atmospheric pressure on various substrates. In particularly, uniform and continuous carbon films with the thickness of 2-5 nm were successfully grown at a temperature as low as 500 oC on copper foils, as well as glass substrates coated with a 100 nm thick copper layer. The characterizations revealed that the low-temperature-grown carbon films consist on few short, curved graphene layers and thin amorphous carbon films. Particularly, the low-temperature grown samples exhibited over 90% transmittance at a wavelength range of 400-750 nm and comparable sheet resistance in contrast with the 1000oC-grown one. This low-temperature growth method may offer a facile way to directly prepare visible ultrathin carbon films on various substrate surfaces that are compatible with temperatures (500-600oC used in several device processing technologies.

  18. Influence of sodium humate on the growth of Scenedesmus quadricauda (Turp. Brèb. and Gonium pectorale in the case of different calciumand iron doses

    Directory of Open Access Journals (Sweden)

    Krystyna Juraja

    2015-01-01

    Full Text Available The influence of sodium humate on calcium and iron uptake by two species of algae was studied. It was found that sodium humate influence differentially the growth of these algae in various culture conditions by regulating the iron uptake. The action of sodium humate is especially favourable in non optimal pH of the medium and its effectiveness increases with time.

  19. Effects of duct configuration on flow and temperature structure in sodium-cooled 19-rod simulated LMFBR fuel bundles with helical wire-wrap spacers

    International Nuclear Information System (INIS)

    Wantland, J.L.; Fontana, M.H.; Gnadt, P.A.; Hanus, N.; MacPherson, R.E.; Smith, C.M.

    1976-01-01

    Thermal-hydrodynamic testing of sodium-cooled 19-rod simulated LMFBR fuel bundles is being conducted at the O ak Ridge National Laboratory in the Fuel Failure Mockup (FFM), an engineering-scale high-temperature sodium facility which provides prototypic flows, temperatures and power densities. Electrically heated bundles have been tested with two scalloped and two hexagonal duct configurations. Peripheral helical flows, attributed to the spacers, have been observed with strengths dependent upon the evenness and relative sizes of the peripheral flow areas. Diametral sodium temperature profiles are more uniform with smaller peripheral flow areas

  20. Effect of oral sodium bicarbonate on fibroblast growth factor-23 in patients with chronic kidney disease: a pilot study.

    Science.gov (United States)

    Chen, Wei; Melamed, Michal L; Hostetter, Thomas H; Bauer, Carolyn; Raff, Amanda C; Almudevar, Anthony L; Lalonde, Amy; Messing, Susan; Abramowitz, Matthew K

    2016-08-05

    The regulation of fibroblast growth factor-23 (FGF23) secretion in patients with chronic kidney disease (CKD) is incompletely understood. An in vitro study showed that metabolic acidosis increased FGF23 in mouse bone. The objective of this study is to evaluate the effect of oral sodium bicarbonate on circulating FGF23 levels in patients with CKD. This was a single-blind pilot study. Twenty adults with estimated glomerular filtration rate between 15-45 mL/min/1.73 m(2) and serum bicarbonate between 20-24 mEq/L were treated with placebo for 2 weeks, followed by increasing doses of oral sodium bicarbonate (0.3, 0.6 and 1.0 mEq/kg/day) in 2 week intervals for a total of 6 weeks. C-terminal FGF23 levels were measured at the initial visit, after 2 weeks of placebo and after 6 weeks of bicarbonate therapy. Wilcoxon matched-pairs signed-rank test was used to compare FGF23 before and after sodium bicarbonate. After 6 weeks of oral sodium bicarbonate, the median FGF23 increased significantly from 150.9 RU/mL (IQR 107.7-267.43) to 191.4 RU/mL (IQR 132.6-316.9) (p = 0.048) and this persisted after excluding participants who received activated vitamin D. FGF23 increased after short-term oral sodium bicarbonate therapy in patients with CKD and mild metabolic acidosis. It is unclear whether this was due to the alkalinizing effect of sodium bicarbonate or other factors. The study was registered at ClinicalTrials.gov ( NCT00888290 ) on April 23, 2009.

  1. Morphology evolution of gold nanoparticles as function of time, temperature, and Au(III)/sodium ascorbate molar ratio

    Energy Technology Data Exchange (ETDEWEB)

    Priolisi, Ornella, E-mail: ornella.priolisi@depretto.gov.it [ITIS “De Pretto” (Italy); Fabrizi, Alberto, E-mail: fabrizi@gest.unipd.it [University of Padova, Department of Management and Engineering (Italy); Deon, Giovanna, E-mail: giovanna.deon@depretto-vi.it [ITIS “De Pretto” (Italy); Bonollo, Franco, E-mail: bonollo@gest.unipd.it [University of Padova, Department of Management and Engineering (Italy); Cattini, Stefano, E-mail: stefano.cattini@unimore.it [University of Modena and Reggio Emilia, Department of Engineering Enzo Ferrari (Italy)

    2016-01-15

    In this work the morphology evolution of Au nanoparticles (AuNPs), obtained by direct reduction, was studied as a function of time, temperature, and Au(III)/sodium ascorbate molar ratio. The NPs morphology was examined by transmission electron microscope with image analysis, while time evolution was investigated by visible and near-infrared absorption spectroscopy and dynamic light scattering. It is found that initially formed star-like NPs transform in more spheroidal particles and the evolution appears more rapid by increasing the temperature while a large amount of reducing agent prevents the remodeling of AuNPs. An explication of morphology evolution is proposed.

  2. Keratinocyte Growth Factor Combined with a Sodium Hyaluronate Gel Inhibits Postoperative Intra-Abdominal Adhesions

    Directory of Open Access Journals (Sweden)

    Guangbing Wei

    2016-09-01

    Full Text Available Postoperative intra-abdominal adhesion is a very common complication after abdominal surgery. One clinical problem that remains to be solved is to identify an ideal strategy to prevent abdominal adhesions. Keratinocyte growth factor (KGF has been proven to improve the proliferation of mesothelial cells, which may enhance fibrinolytic activity to suppress postoperative adhesions. This study investigated whether the combined administration of KGF and a sodium hyaluronate (HA gel can prevent intra-abdominal adhesions by improving the orderly repair of the peritoneal mesothelial cells. The possible prevention mechanism was also explored. The cecum wall and its opposite parietal peritoneum were abraded after laparotomy to induce intra-abdominal adhesion formation. Animals were randomly allocated to receive topical application of HA, KGF, KGF + HA, or normal saline (Control. On postoperative day 7, the adhesion score was assessed with a visual scoring system. Masson’s trichrome staining, picrosirius red staining and hydroxyproline assays were used to assess the magnitude of adhesion and tissue fibrosis. Cytokeratin, a marker of the mesothelial cells, was detected by immunohistochemistry. The levels of tissue plasminogen activator (tPA, interleukin-6 (IL-6, and transforming growth factor β1 (TGF-β1 in the abdominal fluid were determined using enzyme-linked immunosorbent assays (ELISAs. Western blotting was performed to examine the expression of the TGF-β1, fibrinogen and α-smooth muscle actin (α-SMA proteins in the rat peritoneal adhesion tissue. The combined administration of KGF and HA significantly reduced intra-abdominal adhesion formation and fibrin deposition and improved the orderly repair of the peritoneal mesothelial cells in the rat model. Furthermore, the combined administration of KGF and HA significantly increased the tPA levels but reduced the levels of IL-6, tumor necrosis factor α (TNF-α and TGF-β1 in the abdominal fluid. The

  3. Growth, optical, thermal, mechanical and dielectric studies of sodium succinate hexahydrate (β phase) single crystal: A promising third order NLO material

    Science.gov (United States)

    Mageshwari, P. S. Latha; Priya, R.; Krishnan, S.; Joseph, V.; Das, S. Jerome

    2016-11-01

    A third order nonlinear optical (NLO)single crystals of sodium succinate hexahydrate (SSH) (β phase) has been grown by a slow evaporation growth technique using aqueous solution at ambient temperature. The lattice parameters and morphology of SSH were determined by single crystal X-ray diffraction analysis. SSH crystallizes in centrosymmetric monoclinic system with space group P 21 / c and the crystalline purity was analyzed by powder X-ray diffraction analysis. The UV-vis-NIR spectrum reveals that the crystal is transparent in the entire visible region. The recorded FT-IR spectrum verified the presence of various functional groups in the material. NMR analysis of the grown crystal confirms the structural elucidation and detects the major and minor functional groups present in the title compound. ICP-OES analysis proved the presence of sodium in SSH. TG-DTA/DSCanalysis was used to investigate the thermal stability of the material. The dielectric permittivity and dielectric loss of SSH were carried out as a function of frequency for different temperatures and the results were discussed. The mechanical stability was evaluated from Vicker's microhardness test. The third order nonlinear optical properties of SSH has been investigated employing Z-scan technique with He-Ne laser operating at 632.8 nm wavelength.

  4. Flooding, root temperature, physiology and growth of two Annona species.

    Science.gov (United States)

    Ojeda, Maritza; Schaffer, Bruce; Davies, Frederick S

    2004-09-01

    The effects of root zone temperature (RZT) and flooding on physiology and growth of Annona glabra L. (pond apple) and A. muricata L. (soursop) were investigated. Trees planted in containers were exposed to RZTs of 5, 10, 20, 25 or 35 degrees C in controlled root temperature chambers. Trees at each RZT were either non-flooded (control) or continuously flooded. There were four replications over time for each treatment combination. Pond apple was more flood-tolerant than soursop. A combination of flooding and RZTs of 5 and 10 degrees C resulted in tree mortality of both species by Week 4. Only trees that appeared to develop morphological adaptations survived continuous flooding. In both species, net CO2 assimilation (A) decreased to nearly zero within 1 week following exposure to RZTs of 5 or 10 degrees C and became consistently negative over the remaining experimental period. Flooding reduced leaf chlorophyll index (measured with a SPAD meter), A and plant growth, and increased root electrolyte leakage from soursop. Optimum growth occurred at RZTs of 25 to 35 degrees C for non-flooded pond apple trees and at 20 to 25 degrees C for flooded trees. Soursop exhibited maximum growth at RZTs of 35 degrees C under non-flooded conditions and at 25 degrees C under flooded conditions.

  5. Experimental determination of temperature fields in sodium-cooled rod bundles with hexagonal rod arrangement and grid spacers

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.; Kolodziej, M.

    1977-01-01

    Three-dimensional temperature fields in the claddings of sodium cooled rods were determined experimentally under representative nominal operating conditions for a SNR typical 19-rod bundle model provided with spark-eroded spacers. These experiments are required to verify thermohydraulic computer programs which will provide the output data for strength calculations of the high loaded cladding tubes. In this work the essentials are reported of the measured circumferential distributions of wall temperatures of peripheral rods. In addition the sub-channel temperatures measured over the bundle cross section are indicated, they are required to sustain codes for the global thermohydraulic design of core elements. The most important results are: 1) The whole fuel element is located within the thermal entrance length. 2) High azimuthal temperature differences were measured in the claddings of peripheral rods, which are strongly influenced by the distance between the rod and the shroud, especially for the corner rod. 3) With decreasing Pe-number ( [de

  6. Explaining growth variation over large spatial scales: Effects of temperature and food on walleye growth

    DEFF Research Database (Denmark)

    Mosgaard, Thomas; Venturelli, Paul; Lester, Nigel P.

    2012-01-01

    Most fishes exhibit strong spatial variation in growth. Because fish growth and production are tightly linked, quantifying and explaining variation in growth can mean the difference between successful management and unforeseen collapse. However, disentangling the factors that are responsible...... freshwater fish species in North America. We then use length at age data from yellow perch (Perca flavescens) to identify the mechanisms behind the remaining variation in the length at age – temperature relationship for walleye. A positive perch – walleye relationship indicates that the mechanism behind...

  7. Effect of temperature on solvation behaviour of diclofenac sodium salt in aqueous glycine and L-proline solutions

    International Nuclear Information System (INIS)

    Ryshetti, Suresh; Gardas, Ramesh L; Tangeda, Savitha Jyostna

    2015-01-01

    Highlights: • Solvation behaviour of diclofenac drug studied in aqueous solutions. • Density and speed of sound of drug in aq. glycine and L-proline are measured. • Hydrophobic nature of diclofenac sodium salt is studied. • Effect of temperature on solvation of diclofenac sodium salt is analysed. - Abstract: Apparent molar volume (V 2,ϕ ) and apparent molar isentropic compressibility (K s,2,ϕ ) of diclofenac sodium salt (DSS) drug within the concentration range of (0.001 to 0.008) mol · kg −1 in (0.01, 0.03 and 0.05) mol · kg −1 aqueous glycine and L-proline solutions are computed from the experimental density (ρ) and speed of sound (u) values at T = (293.15 to 313.15) K and atmospheric pressure. Derived parameters such as partial molar properties, transfer partial molar properties, hydration numbers and Hepler’s constant are computed from the data of V 2,ϕ and K s,2,ϕ . These parameters have been used to understand the effect of temperature on interactions between DSS drug and aqueous glycine/L-proline solution. Furthermore, the structure making and breaking ability of DSS drug in probed solutions are analysed at experimental conditions

  8. Low Temperature Growth of Nanostructured Diamond Films on Metals

    Science.gov (United States)

    Baker, Paul A.; Catledge, Shane A.; Vohra, Yogesh K.

    2001-01-01

    The field of nanocrystalline diamond and tetrahedral amorphous carbon films has been the focus of intense experimental activity in the last few years for applications in field emission display devices, optical windows, and tribological coatings, The choice of substrate used in most studies has typically been silicon. For metals, however, the thermal expansion mismatch between the diamond film and substrate gives rise to thermal stress that often results in delamination of the film. To avoid this problem in conventional CVD deposition low substrate temperatures (less than 700 C) have been used, often with the incorporation of oxygen or carbon monoxide to the feedgas mixture. Conventionally grown CVD diamond films are also rough and would require post-deposition polishing for most applications. Therefore, there is an obvious need to develop techniques for deposition of well-adhered, smooth nano-structured diamond films on metals for various tribological applications. In our work, nanostructured diamond films are grown on a titanium alloy substrate using a two-step deposition process. The first step is performed at elevated temperature (820 C) for 30 minutes using a H2/CH4/N2 gas mixture in order to grow a thin (approx. 600 nm) nanostructured diamond layer and improve film adhesion. The remainder of the deposition involves growth at low temperature (less than 600 C) in a H2/CH4/O2 gas mixture. Laser reflectance Interferometry (LRI) pattern during growth of a nanostructured diamond film on Ti-6Al-4V alloy. The first 30 minutes are at a high temperature of 820 C and the rest of the film is grown at a low temperature of 580 T. The fringe pattern is observed till the very end due to extremely low surface roughness of 40 nm. The continuation of the smooth nanostructured diamond film growth during low temperature deposition is confirmed by in-situ laser reflectance interferometry and by post-deposition micro-Raman spectroscopy and surface profilometry. Similar experiments

  9. Study of an ultrasonic method of estimating local temperatures of liquid sodium at the output of the core of SFRs

    International Nuclear Information System (INIS)

    Massacret, Nicolas

    2014-01-01

    In the frame of research on Sodium cooled Fast nuclear Reactor (SFR), CEA aims to develop an innovative instrumentation, specific to these reactors. The present work relates to the measurement of the sodium temperature at the outlet of the assemblies of the reactor's core by an ultrasonic method. This instrumentation involves the propagation of ultrasonic waves in liquid sodium, thermally inhomogeneous and turbulent. Environment causes deviations of the acoustic beam that must be understood to predict and quantify to consider ultrasound as a measure means in a core of SFR reactor. To determine the magnitude of these influences, a code named AcRaLiS (Acoustic Ray in Liquid Sodium) has been implemented. In a first step, a thermal-hydraulic study specific to the medium, was conducted to provide an adequate description of the environment and choose a suitable acoustic propagation model. Then an implementation has been performed to allow rapid simulations of the wave propagation at several megahertz in this particular environment. This code provides ultrasounds deviations and changes in beam intensity.Two experiments were designed and conducted to verify the code. The first, named UPSilon innovates by replacing sodium by silicone oil in order to have a stable thermal inhomogeneity during the experiment. It allows to determine the validity of the code AcRaLiS with thermal inhomogeneities. The second, called IKHAR allows to study the influence of water turbulence on the propagation of waves, using the Kelvin-Helmholtz instabilities. Conclusions and perspectives are presented, including perspectives for other application domains. (author) [fr

  10. Growth Temperature Dependence of Morphology of GaN Single Crystals in the Na-Li-Ca Flux Method

    Science.gov (United States)

    Wu, Xi; Hao, Hangfei; Li, Zhenrong; Fan, Shiji; Xu, Zhuo

    2018-02-01

    In this paper, the effect of growth temperature on the morphology and transparency of the GaN crystals obtained by the Li-Ca-added Na Flux method was studied. Addition of Li-Ca was attempted to control the growth habit and further improve transparency of GaN crystals. The samples with wurtzite structure of GaN were confirmed by the x-ray powder diffraction analysis. GaN single crystal with maximum size of about 6 mm was grown at 750°C. As the growth temperature was increased from 700°C to 850°C, the morphology of the crystals changed from pyramid to prism, and their surfaces became smooth. It was found that high growth temperature was beneficial to obtain a transparent crystal, but the evaporation of sodium would suppress its further growth. The E 2 (high) mode in the Raman spectra was at 568 cm-1, and the full-width at half-maximum values of this peak for the crystals obtained at 700°C, 750°C, 800°C, and 850°C were 7.5 cm-1, 10.3 cm-1, 4.4 cm-1, and 4.0 cm-1, respectively. It indicates that all the crystals are stress free and the transparent crystal grown at high temperature has high structural quality or low impurity concentrations.

  11. High-temperature corrosion of alloyed steels in molten sodium tetraborate under atmosphere of air

    International Nuclear Information System (INIS)

    Kochergin, V.P.; Zvegintseva, G.E.; Vinyarskaya, I.N.; Demidenko, O.V.; Sazonova, N.A.

    1993-01-01

    Results of corrosion process investigation at 1123-1223 K in molten sodium tetraborate on the surface of samples produced of steels alloyed by 1-6 mas.% of Mn, chromium-nickel steels containing 0.35 mas.% of C, 1-3 mas.% of Cr and Ni, as well as of a group of corrosion resistant steels are generalized

  12. Study of sodium film-boiling heat transfer from a high-temperature sphere

    International Nuclear Information System (INIS)

    Le-Belguet, A.

    2013-01-01

    During a severe accident in a sodium-cooled fast reactor, molten fuel may come into contact with the surrounding liquid sodium, resulting in a so-called Fuel-Coolant Interaction. This work aims at providing a better understanding and knowledge of the associated heat transfer, likely to be in the film-boiling regime and required to study the risks related to a vapor explosion. Scarce literature has been found on sodium film boiling, both from an experimental and a theoretical point of view. Only one experiment has been conducted to investigate sodium pool film-boiling heat transfer. In our analysis of the experiment, two film-boiling regimes have been identified: a stable film boiling regime, without liquid-solid contact, and an unstable film-boiling regime, with contacts. Besides, the only theoretical model dedicated to sodium film boiling has shown some weaknesses. First, a scaling analysis of the problem has been proposed for free and forced convection, considering the two extreme cases of saturated and highly subcooled liquid. This simplified approach, which shows a good agreement with the experimental data, provides the dimensionless numbers which should be used to build correlations. A theoretical model has been developed to describe sodium film-boiling heat transfer from a hot sphere in free and forced convection, whatever the liquid subcooling. It is based on a two-phase laminar boundary layer integral method and includes the inertial and convective terms in the vapor momentum and energy equations, usually neglected. The radiation has been taken into account in the interfacial energy balance and contributes directly to produce vapor. This model enables to predict the heat lost from a hot body within an acceptable error compared to the tests results especially when the experimental uncertainties are considered. The heat partition between liquid heating and vaporization, essential to study the vapor explosion phenomenon, is also estimated. The influence of

  13. The effect of temperature and addition of reducing agent on sodium stannate preparation from cassiterite by the alkaline roasting process

    Science.gov (United States)

    Lalasari, Latifa Hanum; Andriyah, Lia; Arini, Tri; Firdiyono, F.

    2018-04-01

    Sodium stannate is an intermediate compound with the formula Na2SnO3. This compound is easily dissolved in water and has many applications in the electroplating industry, tin alloy production, and catalysts for organic synthesis. In this occasion was investigated the effect of temperature and the addition of reducing agent on making of sodium stannate phase from cassiterite by an alkaline roasting process using sodium carbonate (Na2CO3). Firstly, cassiterite was roasted at 700 °C for 3 hours and continued leaching process using 10% HCl solution at 110 °C for 2 hours. The cassiterite residue than was dried at 110 °C and mixed homogenously with a Na2CO3 decomposer at a mass ratio Na2CO3/cassiterite as 5:3 for the decomposition process. It was done by variation temperatures (300 °C, 700 °C, 800 °C, 870 °C, 900 °C) for 3 hours, variation times (3, 4, 5 hours) at a roasting temperature of 700 °C and addition of reducing agent such as sub-bituminous coal. The result of the experiment shows that cassiterite prepared by roasting and acid leaching process has the chemical composition as follows: 59.98% Sn, 22.58% O, 3.20% Ce, 3.15% La, 2.57% Nd, 1.67% Ti, 1.56% Fe, 1.24% P, 0.62% Ca and others. The Na2SnO3 phase begins to form at a roasting temperature of 870 °C for 3 hours. Although the roasting times was extended from 3 hours to 5 hours at 700 °C, the Na2SnO3 phase also has not yet formed. In other conditions, the addition of coal reducing agent to the roasting process would cause formations of Sn metal besides Na2SnO3 phase at 870 °C. At temperatures lower than 870 °C, the addition of coal only forms Sn metal, whereas the sodium stannate phase is not formed.

  14. Impact of vegetation growth on urban surface temperature distribution

    International Nuclear Information System (INIS)

    Buyadi, S N A; Mohd, W M N W; Misni, A

    2014-01-01

    Earlier studies have indicated that, the temperature distribution in the urban area is significantly warmer than its surrounding suburban areas. The process of urbanization has created urban heat island (UHI). As a city expands, trees are cut down to accommodate commercial development, industrial areas, roads, and suburban growth. Trees or green areas normally play a vital role in mitigating the UHI effects especially in regulating high temperature in saturated urban areas. This study attempts to assess the effects of vegetation growth on land surface temperature (LST) distribution in urban areas. An area within the City of Shah Alam, Selangor has been selected as the study area. Land use/land cover and LST maps of two different dates are generated from Landsat 5 TM images of the year 1991 and 2009. Only five major land cover classes are considered in this study. Mono-window algorithm is used to generate the LST maps. Landsat 5 TM images are also used to generate the NDVI maps. Results from this study have shown that there are significant land use changes within the study area. Although the conversion of green areas into residential and commercial areas significantly increase the LST, matured trees will help to mitigate the effects of UHI

  15. Use of the vasodilator sodium nitroprusside during local hyperthermia: effects on tumor temperature and tumor response in a rat tumor model

    International Nuclear Information System (INIS)

    Krossnes, Baard Kronen; Mella, Olav; Dahl, Olav

    1996-01-01

    Purpose: The effect of a decrease in the mean arterial blood pressure (MAP) induced by sodium nitroprusside (SNP) on the tumor temperature during hyperthermia (HT), and on the cytotoxic effect of HT, was studied in the BT 4 An tumor transplanted to the hind limb of BD IX rats. Experiments with two different anesthetics, pentobarbital and the midazolam/fentanyl/fluanisone combination (MFF), were performed to secure reliable conclusions. Methods and Materials: In the tumor response experiments local waterbath HT at 44.0 deg. C was given for 60 min. Sodium nitroprusside was administered as a continuous intravenous infusion to lower the MAP to 60 or 80 mmHg during HT. In two other experiments the temperature at the base of the tumor during HT was measured before and during SNP infusion. In animals without tumor the temperature was measured subcutaneously on the foot during HT with or without SNP-induced hypotension. Results: When SNP was given to lower the MAP to 60 mmHg during HT in MFF anesthetized animals, the median tumor growth time (TGT) was 70 days, compared to 14.5 days in the HT alone group. The corresponding figures were 127 and 12.1 days with pentobarbital anesthesia. In the HT + SNP group, more than 40% cure was observed in both experiments. No cures were seen in any of the other groups. Hyperthermia alone prolonged the TGT slightly, whereas SNP given alone had no effect, compared to controls. When the MAP was lowered to 80 mmHg by SNP infusion during HT (MFF anesthesia), the median TGT was 19.9 days, which was significantly longer than that in the HT alone group (10.9 days). In the MAP range from 60 to 120 mmHg, a nearly linear relationship between the MAP and the tumor temperature was found during HT in MFF anesthetized animals. With both anesthetics, the median temperature at the base of the tumor was about 0.8 deg. C higher during HT when the MAP was lowered to 60 mmHg by SNP. In animals without tumors, the temperature subcutaneously on the foot was 0

  16. Growth and Survivability of Microorganisms at Martian Temperatures and Pressures

    Science.gov (United States)

    Mickol, Rebecca Lynne

    The discovery of methane in the martian atmosphere via numerous ground- and space-based sources has prompted the study of methanogens as models for life on Mars. Methanogens are microorganisms within the domain Archaea, many of which utilize carbon dioxide (CO2) and hydrogen to produce methane. The non-photosynthetic nature of methanogens indicates that they could exist in sub-surface environments, protected from harmful UV and ionizing radiation on the surface of Mars. These organisms also do not require organics, which are sparse on the planet. Additionally, the wide variety of environments we find life in on Earth, as well as evidence for liquid brines on the surface of Mars, suggest that habitable environments may still exist on the planet. However, there are a variety of conditions that any extant life on Mars would need to endure, including wide variations in temperature over one sol, a low-pressure atmosphere, and a limited availability of liquid water, among others. This dissertation encompasses various experiments that examined the ability of four species of methanogens (Methanosarcina barkeri, Methanobacterium formicicum, Methanococcus maripaludis, and Methanothermobacter wolfeii) to survive and/or grow under 1) low-pressure conditions and 2) freeze/thaw cycles. Low pressure studies include both survival and active growth experiments conducted between 7 mbar (the average surface pressure on Mars) and 143 mbar. Freeze/thaw experiments utilized short- and long-term cycles varying in temperature between the organisms' growth temperatures (22 °C, M. maripaludis; 37 °C, M. barkeri and M. formicicum; 55 °C, M. wolfeii ) and -80 °C, encompassing Mars-relevant temperature changes. As a comparison to methanogen growth and survivability, additional experiments were conducted using a non-spore-forming bacterium, Serratia liquefaciens , previously shown capable of growth at 7 mbar, 0 °C and within an anoxic CO2 atmosphere. The experiments described here assessed

  17. Adaptive temperature profile control of a multizone crystal growth furnace

    Science.gov (United States)

    Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.

    1991-01-01

    An intelligent measurement system is described which is used to assess the shape of a crystal while it is growing inside a multizone transparent furnace. A color video imaging system observes the crystal in real time, and determines the position and the shape of the interface. This information is used to evaluate the crystal growth rate, and to analyze the effects of translational velocity and temperature profiles on the shape of the interface. Creation of this knowledge base is the first step to incorporate image processing into furnace control.

  18. The application of MI cable to measure temperatures in a sodium heat transfer experiment

    International Nuclear Information System (INIS)

    Davies, N.W.; Barrett, W.I.; Sheward, G.E.; Cameron, P.

    1980-01-01

    A description is given of the design and manufacture of a complex instrumented heater plate assembly to investigate natural convection in a liquid sodium environment up to 400 0 C. The theory of the experiment and results obtained are discussed. The manufacture of the assembly required the application of a novel design to ensure the accurate positioning of the thermocouples and incorporation of heater cables into a flat plate. The various joining methods used in manufacture, both welding and brazing, are described and the quality procedures used to underwrite the integrity of the assembly for use in liquid sodium are discussed. The life of this assembly has far exceeded original expectations and underwrites the application of brazing in this demanding situation. (author)

  19. Low temperature sulfur and sodium metal battery for grid-scale energy storage application

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Wang, Dongdong

    2018-03-27

    A re-chargeable battery comprising a non-dendrite forming sodium (Na)/potassium (K) liquid metal alloy anode, a sulfur and polyacrylonitrile (PAN) conductive polymer composite cathode, a polyethyleneoxide (PEO) solid electrolyte, a solid electrolyte interface (SEI) formed on the PEO solid electrolyte; and a cell housing, wherein the anode, cathode, and electrolyte are assembled into the cell housing with the PEO solid electrolyte disposed between the cathode and anode.

  20. Solubilities of sodium nitrate, sodium nitrite, and sodium aluminate in simulated nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, D.A.; Herting, D.L.

    1984-09-01

    Solubilities were determined for sodium nitrate, sodium nitrite, and sodium aluminate in synthetic nuclear waste liquor. Solubilities were determined as a function of temperature and solution composition (concentrations of sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate). Temperature had the greatest effect on the solubilities of sodium nitrate and sodium nitrite and a somewhat lesser effect on sodium aluminate solubility. Hydroxide had a great effect on the solubilities of all three salts. Other solution components had minor effects. 2 references, 8 figures, 11 tables.

  1. Size, growth, temperature and the natural mortality of marine fish

    DEFF Research Database (Denmark)

    Gislason, Henrik; Daan, Niels; Rice, Jake C.

    2010-01-01

    The natural mortality of exploited fish populations is often assumed to be a species-specific constant independent of body size. This assumption has important implications for size-based fish population models and for predicting the outcome of size-dependent fisheries management measures such as ......The natural mortality of exploited fish populations is often assumed to be a species-specific constant independent of body size. This assumption has important implications for size-based fish population models and for predicting the outcome of size-dependent fisheries management measures...... such as mesh-size regulations. To test the assumption, we critically review the empirical estimates of the natural mortality, M (year(-1)), of marine and brackish water fish stocks and model them as a function of von Bertalanffy growth parameters, L-infinity (cm) and K (year(-1)), temperature (Kelvin......) and length, L (cm). Using the Arrhenius equation to describe the relationship between M and temperature, we find M to be significantly related to length, L-infinity and K, but not to temperature (R-2 = 0.62, P Temperature and K are significantly correlated and when K is removed from...

  2. Steady-state, local temperature fields with turbulent sodium flow in nominal and disturbed bundle geometries with spacer grids

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.; Kolodziej, M.

    1980-12-01

    The operating reliability of nuclear reactors calls for a reliable strength analysis of the highly loaded core elements, one of its prerequisites being the reliable determination of the three-dimensional velocity and temperature fields. To verify thermohydraulics computer programs, extensive local temperature measurements in the rod claddings of the critical bundle zone were performed on a heated 19-rod bundle model with sodium flow and provided with spacer grids (P/D = 1.30; W/D = 1.19). These are the essential results obtained: Outside the spacer grids the azimuthal temperature variations of the side and corner rods are greater by approximately the factor 10 in the bundle geometry under consideration as compared to rods in the central bundle zone. The spacer grids investigated give rise to great local temperature peaks and correspondingly great temperature gradients in the axial and azimuthal directions immediately around the support points. Continuous reduction of a subchannel by rod bowing results in substantial rises of temperature which, however, are limited to the adjacent cladding tube zones. (orig.) [de

  3. Exogenously Applied Plant Growth Regulators Enhance the Morpho-Physiological Growth and Yield of Rice under High Temperature

    OpenAIRE

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Ihsan, Zahid; Shah, Adnan N.; Wu, Chao; Yousaf, Muhammad; Nasim, Wajid; Alharby, Hesham; Alghabari, Fahad; Huang, Jianliang

    2016-01-01

    A two-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR) on rice growth and yield attributes under high day (HDT) and high night temperature (HNT). Two rice cultivars (IR-64 and Huanghuazhan) were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA) and triazoles (Tr) were applied. High temperature s...

  4. The transport phenomena during the growth of ZnTe crystal by the temperature gradient solution growth technique

    Science.gov (United States)

    Yin, Liying; Jie, Wanqi; Wang, Tao; Zhou, Boru; Yang, Fan

    2017-03-01

    A numerical model is developed to simulate the temperature field, the thermosolutal convection, the solute segregation and the growth interface morphology during the growth of ZnTe crystal from Te rich solution by the temperature gradient solution growth (TGSG) technique. Effects of the temperature gradient on the transport phenomena, the growth interface morphology and the growth rate are examined. The influences of the latent heat and the thermal conductivity of ZnTe crystal on the transport phenomena and the growth interface are also discussed. We find that the mass transfer of ZnTe in the solution is very slow because of the low diffusion coefficient and the lack of mixing in the lower part of the solution. During the growth, dilute solution with high density and low growth temperature accumulates in the central region of the growth interface, making the growth interface change into two distinct parts. The inner part is very concave, while the outer part is relatively flat. Growth conditions in front of the two parts of the growth interface are different. The crystalline quality of the inner part of the ingot is predicted to be worse than that of the outer part. High temperature gradient can significantly increase the growth rate, and avoid the diffusion controlled growth to some extent.

  5. Stability of Sodium Electrodeposited From a Series of Room Temperature Chloroaluminate Molten Salts

    National Research Council Canada - National Science Library

    Gray, Gary

    1996-01-01

    .... This work&involved the synthesis of room temperature molten salts and the examination of the electrochemical and transport properties of these salts with the goal of developing a room temperature molten salt...

  6. Body temperatures in dinosaurs: what can growth curves tell us?

    Directory of Open Access Journals (Sweden)

    Eva Maria Griebeler

    Full Text Available To estimate the body temperature (BT of seven dinosaurs Gillooly, Alleen, and Charnov (2006 used an equation that predicts BT from the body mass and maximum growth rate (MGR with the latter preserved in ontogenetic growth trajectories (BT-equation. The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006. I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006 did. In particular, I estimated BT of Archaeopteryx (from two MGRs, ornithischians (two, theropods (three, prosauropods (three, and sauropods (nine. For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006 I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately

  7. Body temperatures in dinosaurs: what can growth curves tell us?

    Science.gov (United States)

    Griebeler, Eva Maria

    2013-01-01

    To estimate the body temperature (BT) of seven dinosaurs Gillooly, Alleen, and Charnov (2006) used an equation that predicts BT from the body mass and maximum growth rate (MGR) with the latter preserved in ontogenetic growth trajectories (BT-equation). The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006). I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006) did. In particular, I estimated BT of Archaeopteryx (from two MGRs), ornithischians (two), theropods (three), prosauropods (three), and sauropods (nine). For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed) and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006) I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda) studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately limited

  8. TEGENA: Detailed experimental investigations of temperature and velocity distributions in rod bundle geometries with turbulent sodium flow

    International Nuclear Information System (INIS)

    Moeller, R.

    1989-02-01

    Precise knowledge of the velocity and temperature distributions is necessary in fuel element design (rod bundles with longitudinal flow). The detail codes required in the fine analysis of non-uniformly cooled bundle zones are presently at the stage of development. In order to verify these computer codes, the mean fluid temperatures and the related RMS values of the temperature fluctuations were measured in a heated bundle TEGENA, containing 4 rods arranged in one row (P/D = W/D = 1.147) with sodium cooling (Pr ≅ 0.005). The temperature distribution in the structures was determined as the necessary boundary condition for the temperature profiles in the fluid. The experiments were carried out with different types of heating (uniform load and load tilting) and the flow conditions were varied in the range from 4000 ≤ Re ≤ 76.000, 20 ≤ Pe ≤ 400. The essential process of thermal development took place under uniform load within a heated bundle length of about 100 hydraulic diameters. In the main measuring plane at the end of the heated zone, after 200 hydraulic diameters, the flow can be termed largely developed thermally. There, the temperature profiles measured in the fluid exhibit pronounced maxima in the narrowest gaps of the subchannels as well as pronounced minima in the centers of the subchannels at the unheated wall. In the zones of maximum temperature gradients the temperature fluctuations attain maximum and minimum values, respectively, at the points of disappearance of the temperature gradients. In all cases of load tilting investigated the flow at the end of the heated zone had not yet developed thermally. By inspection of all thermocouples in isothermal experiments performed at regular intervals, by redundant arrangement of the mobile probe thermocouples and by demonstration of the reproducibility of results of measurement the experiments have been validated satisfactorily. (orig./GL) [de

  9. TEGENA: Detailed experimental investigations of temperature and velocity distributions in rod bundle geometries with turbulent sodium flow

    International Nuclear Information System (INIS)

    Moeller, R.

    1989-12-01

    Precise knowlege of the velocity and temperature distributions is necessary in fuel element design (rod bundles with longitudinal flow). The detail codes required in the fine analysis of non-uniformly cooled bundle zones are presently at the stage of development. In order to verify these computer codes, the mean fluid temperatures and the related RMS values of the temperature fluctuations were measured in a heated bundle, TEGENA, containing four rods arranged in one row (P/D = W/D = 1.147) with sodium cooling (Pr≅0.005). The temperature distribution in the structures was determined as the necessary boundary condition for the temperature profiles in the fluid. The experiments were carried out with different types of heating (uniform load and flux tilting) and the flow conditions were varied in the ranges 4000≤Re≤76,000; 20≤Pe≤400. The essential processes of thermal development took place under uniform load within a heated bundle length of about 100 hydraulic diameters. In the main measuring plane at the end of the heated zone, after 200 hydraulic diameters, the flow can be termed largely developed thermally. There, the temperature profiles measured in the fluid exhibit pronounced maxima in the narrowest gaps of the subchannels as well as pronounced minima in the centers of the subchannels at the unheated wall. In the zones of maximum temperature gradients the temperature fluctuations attain maximum and minimum values, respectively, at the points of disappearance of the temperature gradients. In all cases of flux tilting investigated the flow at the end of the heated zone had not yet developed thermally. (orig.) [de

  10. Inhibitive effect of N,N'-Dimethylaminoethanol on carbon steel corrosion in neutral sodium chloride solution, at different temperatures

    Directory of Open Access Journals (Sweden)

    Hassoune Mohammed

    2018-01-01

    Full Text Available The inhibition of carbon steel corrosion in neutral sodium chloride solution by N,N'- Dimethylaminoethanol (DMEA, at different temperatures, was investigated using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS techniques. The results obtained confirm that DMEA is a good organic corrosion inhibitor for carbon steel in 0.5M of NaCl (concentration encountered in the Mediterranean seawater, over the whole range of temperatures studied. The inhibition efficiency (IE% increases with increasing DMEA concentration; it reaches highest value for a concentration around 0.125 mol.L-1. Potentiodynamic polarization data show that, the compound studied in this research predominantly act as anodic-type inhibitor. The EIS study reveals that the addition of DMEA decreases the corrosion rate of carbon steel in neutral sodium chloride solution, due to the fact that the inhibitor molecules are strongly adsorbed on the active sites following Langmuir isotherm, thus leading to the formation of a stable protective film on the steel surface which is able to keep the metal/solution interface in a passive state. Furthermore, the values of the activation parameters, i.e. ΔHa and Ea obtained in this study indicate that the adsorption process of DMEA is endothermic and could be mainly attributed to chemisorption, respectively.

  11. Investigations on organic fungicides. X. Pyruvic acid accumulation and its relation to the phenomenon of inversion growth as effected by sodium dimethyldithiocarbamate

    NARCIS (Netherlands)

    Kaars Sijpesteijn, A.; Kerk, G.J.M. van der

    1956-01-01

    1. 1. Sodium dimethyldithiocarbamate (NaDDC) induces spores and mycelium of A. niger and P. italicum to accumulate pyruvic acid in the medium. This accumulation shows a maximum at those NaDDC concentrations which in growth experiments on agar lead to the zone of inversion growth, and decreases

  12. Effect of ambient temperature and sodium bicarbonate supplementation on water and electrolyte balances in dry and lactating Holstein cows.

    Science.gov (United States)

    Khelil-Arfa, H; Faverdin, P; Boudon, A

    2014-01-01

    The aim of this study was to quantify the effect of the interaction between 2 constant ambient temperatures [thermoneutrality (TN; 15°C) and high temperature (HT; 28°C)] and 2 levels of Na bicarbonate supplementation [calculated to provide diet Na contents of 0.20%DM (Na-) and 0.50%DM (Na+)] on water partitioning in dairy cows. Treatments were compared on 4 dry and 4mid-lactation Holstein cows according to 2 Latin squares (1 for each physiological stage) over the course of 4 periods of 15d. Diets consisted of a total mixed ration based on maize silage. Dry cows were restricted to their protein and energy requirements, whereas lactating cows were fed ad libitum. The daily average temperature-humidity index was 59.4 for TN and 73.2 for HT. Lactating and dry cows had higher vaginal temperatures at HT than at TN, but the increase was more pronounced in lactating cows (+1.05 vs. +0.12°C for vaginal temperature, respectively). Dry matter intake (DMI) of lactating cows decreased by 2.3kg/d at HT. Free water intake (FWI) and estimated volume of water lost to evaporation increased at HT in both lactating and dry cows; no interactions were observed between temperature and physiological stage. When expressed as a proportion of DMI, the increase in evaporation that occurred with increasing temperature was completely compensated for by an increase in FWI for both physiological stages. The urinary water excretion increased slightly at HT in lactating cows but not in dry cows, which may be related to the low chloride content of the offered diet. High Na supplementation increased DMI slightly in lactating cows, but milk yield was not affected. Sodium supplementation did not limit the decrease in DMI observed in lactating cows at HT; this observation is likely due to the high diet electrolyte balance of the offered diets. Sodium supplementation increased FWI in lactating cows and urinary flow in both physiological states. The interaction between ambient temperature and Na

  13. Antiphase light and temperature cycles disrupt rhythmic plant growth : the Arabidopsis jetlag

    NARCIS (Netherlands)

    Bours, R.M.E.H.

    2014-01-01

    Light and temperature are important determinants of plant growth and development. Plant elongation is stimulated by positively increasing differences between day and night temperature (+DIF, phased cycles). In contrast, a negative temperature difference (-DIF, antiphased cycles) reduces

  14. Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Hosseini, Rahim; Jamehbozorg, Bahman

    2008-01-01

    Precise density, sound velocity, water activity, and phase diagram measurements have been carried out on polyethylene oxide (PEO) in aqueous solutions of sodium di-hydrogen phosphate, di-sodium hydrogen phosphate, and tri-sodium phosphate over a range of temperatures at atmospheric pressure. The experimental density and sound velocity data are used to calculate the apparent specific volume and isentropic compressibility as a function of temperature and concentration. It was found that both of the apparent specific volume and isentropic compressibility of PEO in aqueous solutions increase by increasing temperature and charge on the anion of electrolytes. The results show that the slope of constant water activity lines increased with increasing the temperature and charge on the anion of electrolytes and the vapour pressure depression for an aqueous (PEO + sodium phosphate) system is more than the sum of those for the corresponding binary solutions. Furthermore, the effect of temperature and type of anion of salt on the salting-out effect of polyethylene oxide by sodium phosphate salts has been studied

  15. Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)], E-mail: rahsadeghi@yahoo.com; Hosseini, Rahim; Jamehbozorg, Bahman [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2008-09-15

    Precise density, sound velocity, water activity, and phase diagram measurements have been carried out on polyethylene oxide (PEO) in aqueous solutions of sodium di-hydrogen phosphate, di-sodium hydrogen phosphate, and tri-sodium phosphate over a range of temperatures at atmospheric pressure. The experimental density and sound velocity data are used to calculate the apparent specific volume and isentropic compressibility as a function of temperature and concentration. It was found that both of the apparent specific volume and isentropic compressibility of PEO in aqueous solutions increase by increasing temperature and charge on the anion of electrolytes. The results show that the slope of constant water activity lines increased with increasing the temperature and charge on the anion of electrolytes and the vapour pressure depression for an aqueous (PEO + sodium phosphate) system is more than the sum of those for the corresponding binary solutions. Furthermore, the effect of temperature and type of anion of salt on the salting-out effect of polyethylene oxide by sodium phosphate salts has been studied.

  16. The problems of using a high-temperature sodium coolant in nuclear power plants for the production of hydrogen and other innovative applications

    Science.gov (United States)

    Sorokin, A. P.; Alexeev, V. V.; Kuzina, Ju. A.; Konovalov, M. A.

    2017-11-01

    The intensity of the hydrogen sources arriving from the third contour of installation in second in comparison with the hydrogen sources on NPP BN-600 increases by two – three order at using of high-temperature nuclear power plants with the sodium coolant (HT-NPP) for drawing of hydrogen and other innovative applications (gasification and a liquefaction of coal, profound oil refining, transformation of biomass to liquid fuel, in the chemical industry, metallurgy, the food-processing industry etc.). For these conditions basic new technological solutions are offered. The main condition of their implementation is raise of hydrogen concentration in the sodium coolant on two – three order in comparison with the modern NPP, in a combination to hydrogen removal from sodium and its pumping out through membranes from vanadium or niobium. The researches with use diffusive model have shown possibility to expel a casium inflow in sodium through a leakproof shell of fuel rods if vary such parameters as a material of fuel rods shell, its thickness and maintenance time at design of fuel rods for high-temperature NPP. However maintenance of high-temperature NPP in the presence of casium in sodium is inevitable at loss of leakproof of a fuel rods shell. In these conditions for minimisation of casium diffusion in structural materials it is necessary to provide deep clearing of sodium from cesium.

  17. Individual effects of sodium, potassium, calcium, and magnesium chloride salts on Lactobacillus pentosus and Saccharomyces cerevisiae growth.

    Science.gov (United States)

    Bautista-Gallego, J; Arroyo-López, F N; Durán-Quintana, M C; Garrido-Fernandez, A

    2008-07-01

    A quantitative investigation on the individual effects of sodium (NaCl), potassium (KCl), calcium (CaCl2), and magnesium (MgCl2) chloride salts against Lactobacillus pentosus and Saccharomyces cerevisiae, two representative microorganisms of table olives and other fermented vegetables, was carried out. In order to assess their potential activities, both the kinetic growth parameters and dose-response profiles in synthetic media (deMan Rogosa Sharpe broth medium and yeast-malt-peptone-glucose broth medium, respectively) were obtained and analyzed. Microbial growth was monitored via optical density measurements as a function of contact time in the presence of progressive chloride salt concentrations. Relative maximum specific growth rate and lag-phase period were modeled as a function of the chloride salt concentrations. Moreover, for each salt and microorganism tested, the noninhibitory concentrations and the MICs were estimated and compared. All chloride salts exerted a significant antimicrobial effect on the growth cycle; particularly, CaCl2 showed a similar effect to NaCl, while KCl and MgCl2 were progressively less inhibitory. Microbial susceptibility and resistance were found to be nonlinearly dose related.

  18. [Antibacterial actin of vinegar against food-borne pathogenic bacteria including Escherichia coli O157:H7 (Part 2). Effect of sodium chloride and temperature on bactericidal activity].

    Science.gov (United States)

    Entani, E; Asai, M; Tsujihata, S; Tsukamoto, Y; Ohta, M

    1997-05-01

    Bactericidal effects of various kinds of AWASEZU (processed vinegar, 2.5% acidity) on food-borne pathogenic bacteria including Escherichia coli O157:H7 and other bacteria were examined. the order of bactericidal activities was NIHAIZU (3.5% NaCl was added) > SANBA-IZU (3.5% NaCl and 10% sucrose were added) > plain vinegar (spirit vinegar) > AMAZU (10% sucrose was added). This indicates that their activities were enhanced by the addition of sodium chloride and suppressed by the addition of sugar. On the other hand, when soy sauce was used instead of sodium chloride, the order of bactericidal activities was plain vinegar > AMAZU > NIHAIZU > SANBAIZU. This is mainly because their activities were suppressed by the increase in the pH value. The effect of sodium chloride (0.01-15%) and temperature (10-50 degrees C) on bactericidal activities against E. coli O157:H7 in spirit vinegar (0.5-2.5% acidity) was further examined. When vinegar was used in combination with sodium chloride, predominant synergism on the bactericidal activity was observed. Their activities were markedly enhanced by the addition of sodium chloride in proportion to the concentration. In addition to this, at higher temperatures spirit vinegar killed bacteria much more rapidly. It should be noted that the bactericidal activity of spirit vinegar was extremely enhanced by the combined use of the addition of sodium chloride and the rise of temperature. For example, in 2.5% acidity vinegar, the time required for 3 log decrease in viable cell numbers at 20 degrees C was shortened to 1/140-fold by the addition of 5% sodium chloride, shortened to 1/51-fold by the rise of the reaction temperature at 40 degrees C, and shortened to 1/830-fold; 0.89 minutes by both the addition of 5% sodium chloride and the rise of temperature at 40 degrees C. In order to propose the methods to prevent food poisoning by bacterial infection, bactericidal activities of vinegar solution containing sodium chloride on cooking tools and

  19. Synthesis of Monodisperse CdSe QDs using Controlled Growth Temperatures

    International Nuclear Information System (INIS)

    Noor Razinah Rahmat; Akrajas Ali Umar; Muhammad Yahya; Muhamad Mat Salleh; Mohammad Hafizuddin Jumali

    2011-01-01

    The effect of growth temperatures on size of CdSe quantum dots (QDs) has been investigated. CdSe QDs were synthesized using thermolysis of organometallics precursor route using wet chemical method. The growth temperature was varied from 260-310 degree Celsius with growth period fixed at 60 s. As the growth temperature increased, the monodispersed CdSe QDs with diameter in the range 3-7 nm were obtained. Both absorption and PL spectra of the QDs revealed a strong red-shift supporting the increment size of QDs with the rise of growth temperature. (author)

  20. A study on sodium-concrete reaction

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jae Heum; Min, Byong Hun [Suwon University, Suwon (Korea, Republic of)

    1997-07-01

    A small sodium-concrete reaction facility was designed, manufactured and installed. this facility has been operated under inert gas(N{sub 2}) with different experimental variables such as sodium injection temperature, injection amount of sodium, aging period of concrete, sodium reservoir temperature. As a result, it was found that sodium injection temperature and injected amount of sodium has little effect on sodium-concrete reaction. However, sodium reservoir temperature and aging period of concrete has relatively high impact on sodium-concrete reaction. Sodium-concrete reaction model has also been developed and compared with experimental results. (Author) 51 refs., 16 tabs., 64 figs.

  1. Sodium Butyrate Stimulates Expression of Fibroblast Growth Factor 21 in Liver by Inhibition of Histone Deacetylase 3

    Science.gov (United States)

    Li, Huating; Gao, Zhanguo; Zhang, Jin; Ye, Xin; Xu, Aimin; Ye, Jianping; Jia, Weiping

    2012-01-01

    Fibroblast growth factor 21 (FGF21) stimulates fatty acid oxidation and ketone body production in animals. In this study, we investigated the role of FGF21 in the metabolic activity of sodium butyrate, a dietary histone deacetylase (HDAC) inhibitor. FGF21 expression was examined in serum and liver after injection of sodium butyrate into dietary obese C57BL/6J mice. The role of FGF21 was determined using antibody neutralization or knockout mice. FGF21 transcription was investigated in liver and HepG2 hepatocytes. Trichostatin A (TSA) was used in the control as an HDAC inhibitor. Butyrate was compared with bezafibrate and fenofibrate in the induction of FGF21 expression. Butyrate induced FGF21 in the serum, enhanced fatty acid oxidation in mice, and stimulated ketone body production in liver. The butyrate activity was significantly reduced by the FGF21 antibody or gene knockout. Butyrate induced FGF21 gene expression in liver and hepatocytes by inhibiting HDAC3, which suppresses peroxisome proliferator–activated receptor-α function. Butyrate enhanced bezafibrate activity in the induction of FGF21. TSA exhibited a similar set of activities to butyrate. FGF21 mediates the butyrate activity to increase fatty acid use and ketogenesis. Butyrate induces FGF21 transcription by inhibition of HDAC3. PMID:22338096

  2. Root-zone temperature and water availability affect early root growth of planted longleaf pine

    Science.gov (United States)

    M.A. Sword

    1995-01-01

    Longleaf pine seedlings from three seed sources were exposed to three root-zone temperatures and three levels of water availability for 28 days. Root growth declined as temperature and water availability decreased. Root growth differed by seed source. Results suggest that subtle changes in the regeneration environment may influence early root growth of longleaf pine...

  3. Effect of cold work on decarburization of 2.25Cr-1Mo steel in high temperature sodium

    International Nuclear Information System (INIS)

    Aoki, Norichika; Yoshida, Eiichi; Wada, Yusaku.

    1994-01-01

    It is known that the mechanical properties of a 2.25Cr-1Mo steel deteriorated due to the decarburization during immersion in the melt sodium at high temperatures. In low-alloy steel as well as a 2.25Cr-1Mo steel, precipitation reactions of carbides are known to be accelerated by cold working and aging. Thus, it may be expected that cold working and aging effectively suppress the decarburization of the mechanical properties of a 2.25Cr-1Mo steel because the decarburization will be restrained owing to fixation of carbon as precipitates of the carbides. In the present article, effects of cold-working and heat treatments on the kinetics of the decarburization of a 2.25Cr-1Mo steel has been studied experimentally. The annealed, cold-rolled, and normalized and tempered specimens were immersed in the melt of sodium at 500, 600 and 700degC for 425, 437 and 432h, respectively. On the basis of the observations obtained from these specimens, the experiment was also carried out at 450, 500 and 550degC for 2270 and 5465h. The microstructures before and after the immersion were observed with optical and scanning electron microscopes. An average concentration of carbon in each specimen was analyzed by an inert gas fusion method. The carbides extracted from the specimens were identified by X-ray diffraction. At immersion temperatures of 450 and 500degC, a 10% reduction of the decarburization in thickness by cold-working is sufficiently effective for retardation of the decarburization at both 2270 and 5465h. Whereas, at 550degC, more than 30% reduction in thickness by cold-working is needed for it at 2270h but even 80% reduction in thickness by cold-working causes merely slight retardation of the decarburization at 5465h. (author)

  4. Low temperature electrochemical cells with sodium β″-alumina solid electrolyte (BASE)

    Science.gov (United States)

    Girija, T. C.; Virkar, Anil V.

    Cells of Daniell-type with copper-zinc electrochemical couples and sodium β″-alumina solid electrolyte (BASE) were constructed. The cathode consisted of copper in contact with its ions (Cu/Cu 2+) while zinc in contact with its ions (Zn/Zn 2+) constituted the anode. Dimethyl sulfoxide (DMSO) containing 1 M NaBF 4 was used as the liquid electrolyte. The configuration of the cell constructed can be written as follows: Zn(s)/ZnCl 2(DMSO)(0.1 M), NaBF 4(1 M)/BASE/NaBF 4(1 M), CuCl 2(DMSO)(0.1 M)/Cu(s). The cell was subjected to charge-discharge cycles at 100 °C. The BASE discs were found to be stable even after the cell was subjected to several electrochemical charge-discharge cycles. Cells were also constructed using BASE discs with porous BASE surface layers introduced to lower the interfacial resistance. Cells with surface modified BASE exhibited a lower resistance in comparison to those using unmodified BASE. XRD and SEM analyses indicated that no detectable degradation of BASE discs occurred after cell testing. Preliminary cell tests were also conducted with NaCF 3SO 3 in place of NaBF 4.

  5. Low temperature electrochemical cells with sodium {beta}''-alumina solid electrolyte (BASE)

    Energy Technology Data Exchange (ETDEWEB)

    Girija, T.C.; Virkar, Anil V. [Department of Materials Science and Engineering, 122 S. Central Campus Drive, University of Utah, Salt Lake City, UT 84112 (United States)

    2008-05-15

    Cells of Daniell-type with copper-zinc electrochemical couples and sodium {beta}''-alumina solid electrolyte (BASE) were constructed. The cathode consisted of copper in contact with its ions (Cu/Cu{sup 2+}) while zinc in contact with its ions (Zn/Zn{sup 2+}) constituted the anode. Dimethyl sulfoxide (DMSO) containing 1 M NaBF{sub 4} was used as the liquid electrolyte. The configuration of the cell constructed can be written as follows: Zn(s)/ZnCl{sub 2}(DMSO)(0.1 M), NaBF{sub 4}(1 M)/BASE/NaBF{sub 4}(1 M), CuCl{sub 2}(DMSO)(0.1 M)/Cu(s) The cell was subjected to charge-discharge cycles at 100 C. The BASE discs were found to be stable even after the cell was subjected to several electrochemical charge-discharge cycles. Cells were also constructed using BASE discs with porous BASE surface layers introduced to lower the interfacial resistance. Cells with surface modified BASE exhibited a lower resistance in comparison to those using unmodified BASE. XRD and SEM analyses indicated that no detectable degradation of BASE discs occurred after cell testing. Preliminary cell tests were also conducted with NaCF{sub 3}SO{sub 3} in place of NaBF{sub 4}. (author)

  6. A Sodium Lidar Transmitter for Wind and Temperature Measurements at Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR)

    National Research Council Canada - National Science Library

    She, Chiao-Yao

    2000-01-01

    As stated in the abstract of this DURIP proposal, quoted below, the goal is to deploy a state of the art sodium lidar transmitter and detector, based on recent innovations in sodium technology, at ALOMAR...

  7. Self-Growth of Centimeter-Scale Single Crystals by Normal Sintering Process in Modified Potassium Sodium Niobate Ceramics

    Science.gov (United States)

    Ahn, Cheol-Woo; Lee, Ho-Yong; Han, Guifang; Zhang, Shujun; Choi, Si-Young; Choi, Jong-Jin; Kim, Jong-Woo; Yoon, Woon-Ha; Choi, Joon-Hwan; Park, Dong-Soo; Hahn, Byung-Dong; Ryu, Jungho

    2015-01-01

    In this manuscript, an interesting phenomenon is reported. That is the self-growth of single crystals in Pb-free piezoelectric ceramics. These crystals are several centimeters in size. They are grown without any seed addition through a normal sintering process in modified potassium sodium niobate ceramics. It has been achieved by the composition designed to compensate the Na+ loss which occurs during the liquid phase sintering. The composition of the crystals is (K0.4925Na0.4925−xBa0.015+x/2)Nb0.995+xO3 [x is determined by the Na+ loss, due to Na2O volatilization]. These crystals have high piezoelectric voltage coefficients (g33, 131 10−3Vm/N), indicating that they are good candidates for piezoelectric sensors and energy harvesting devices. We hope that this report can offer the opportunity for many researchers to have an interest in these crystals. PMID:26631973

  8. Microbial Growth in the Magnesium- Chloride - Sodium- Sulphate Ion System: Implications for Habitability in Terrestrial and Extraterrestrial Salts

    Science.gov (United States)

    Loudon, C. M.; Aka, S.; Cockell, C. S.

    2017-12-01

    Icy moons in the outer solar system are key targets in the search for extra-terrestrial life as there is evidence that they harbour subsurface oceans. Observational evidence of icy moons such as Europa suggest that these likely brine oceans should be composed of chloride and sulphate salts. The effects of the ions that compose these salts on biology and how the interactions between them can create geochemical and geophysical barriers to life are poorly understood. Here we present an in depth study of four microorganisms grown in solutions with varying combinations of the magnesium- chloride- sodium- sulphate ions. We find that the ion composition of the brine solution can have a large effect on growth. Whilst the water activity must be permissible for growth we found that this alone could not predict the effects of the ions on growth, chaotropic effects and ion specific effects influenced by the specific physiology of organisms are also evident. For this reason we conclude that simply knowing which salts are present on icy moons is not sufficient information to determine their potential habitibility. A full sample of any brine ocean would need to be studied to fully determine the potential for biology on these outer solar system satellites.

  9. Do changes in carbon allocation account for the growth response to potassium and sodium applications in tropical Eucalyptus plantations?

    Science.gov (United States)

    Epron, Daniel; Laclau, Jean-Paul; Almeida, Julio C R; Gonçalves, José Leonardo M; Ponton, Stephane; Sette, Carlos R; Delgado-Rojas, Juan S; Bouillet, Jean-Pierre; Nouvellon, Yann

    2012-06-01

    Understanding the underlying mechanisms that account for the impact of potassium (K) fertilization and its replacement by sodium (Na) on tree growth is key to improving the management of forest plantations that are expanding over weathered tropical soils with low amounts of exchangeable bases. A complete randomized block design was planted with Eucalyptus grandis (W. Hill ex Maiden) to quantify growth, carbon uptake and carbon partitioning using a carbon budget approach. A combination of approaches including the establishment of allometric relationships over the whole rotation and measurements of soil CO(2) efflux and aboveground litterfall at the end of the rotation were used to estimate aboveground net production (ANPP), total belowground carbon flux and gross primary production (GPP). The stable carbon isotope (δ(13)C) of stem wood α-cellulose produced every year was used as a proxy for stomatal limitation of photosynthesis. Potassium fertilization increased GPP and decreased the fraction of carbon allocated belowground. Aboveground net production was strongly enhanced, and because leaf lifespan increased, leaf biomass was enhanced without any change in leaf production, and wood production (P(W)) was dramatically increased. Sodium application decreased the fraction of carbon allocated belowground in a similar way, and enhanced GPP, ANPP and P(W), but to a lesser extent compared with K fertilization. Neither K nor Na affected δ(13)C of stem wood α-cellulose, suggesting that water-use efficiency was the same among the treatments and that the inferred increase in leaf photosynthesis was not only related to a higher stomatal conductance. We concluded that the response to K fertilization and Na addition on P(W) resulted from drastic changes in carbon allocation.

  10. Procedure for Substrate Temperature Control Using the Pyrometer During MBE Growth

    National Research Council Canada - National Science Library

    Svensson, Stefan

    2000-01-01

    ...) computer control system that allow a user to automatically outgas and desorb the oxide from substrates before growth, as well as set substrate temperatures based on pyrometer readings during growths...

  11. Impact of Sodium Tungstate and Tungsten Alloys on the Growth of Selected Microorganisms with Environmental Significance

    Science.gov (United States)

    2010-07-30

    TUNGSTEN ALLOYS ON THE GROWTH OF SELECTED MICROORGANISMS WITH ENVIROMENTAL SIGNIFICANCE 5a. Contract Number: 5b. Grant Number: 5c. Program Element...either of these effects would be an issue in environmental settings is unclear. The water-soluble components of both alloys inhibited bacterial

  12. Impact of temperature and nitrogen composition on the growth of GaAsPN alloys

    Science.gov (United States)

    Yamane, Keisuke; Mugikura, Shun; Tanaka, Shunsuke; Goto, Masaya; Sekiguchi, Hiroto; Okada, Hiroshi; Wakahara, Akihiro

    2018-03-01

    This paper presents the impact of temperature and nitrogen-composition on the growth mode and crystallinity of GaAsPN alloys. Reflection high-energy electron diffraction results combined with transmission electron microscopy analysis revealed that maintaining two-dimensional (2-D) growth required higher temperatures when nitrogen composition increased. Outside the 2-D growth windows, stacking faults and micro-twins were preferentially formed at {1 1 1} B planes rather than at the {1 1 1} A planes and anomalous growth was observed. The photoluminescence spectra of GaAsPN layers implies that the higher temperature growth is effective for reducing the nitrogen-related point defects.

  13. Effects of methionine source, arginine: lysine ratio and sodium chloride level in the diets of grower broilers reared under high-temperature conditions

    Directory of Open Access Journals (Sweden)

    R Montanhini Neto

    2013-06-01

    Full Text Available The objective of this study was to evaluate the influence of methionine sources (DL-methionine 99% powder (DLM or methionine hydroxy analog liquid 88% (HMTBA, arginine:lysine (Arg:Lys ratio and sodium chloride (NaCl content in the diet of broilers on their performance, carcass yield, serum biochemistry, duodenal mucosal morphology, and immune response. Birds were kept under high temperature conditions during the grower phase and were inoculated or not with an antigen. The use of HMTBA promoted better live performance and carcass yield than the use of DLM. Diets with 1.05 Arg:Lys ratio resulted in better live performance, higher carcass and breast meat yields, longer villi, shallower crypts, and stronger immune response when broilers were challenged than the 1.40 ratio. The dietary supplementation of 6.0 g NaCl/kg promoted better growth performance and carcass weight than 2.0 g NaCl/kg. There was no influence of the different methionine sources or NaCl concentrations on any evaluated intestinal morphology parameter or immune response, nor of any interactions between these sources of variation.

  14. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

    2014-03-01

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

  15. Influence of refreshment/activation cycles and temperature rise on the reaction rate of sodium hypochlorite with bovine dentine during ultrasonic activated irrigation

    NARCIS (Netherlands)

    Macedo, R.G.; Verhaagen, B.; Wesselink, P.R.; Versluis, M.; van der Sluis, L.W.M.

    2014-01-01

    Aim To evaluate the effect of multiple refreshment/activation cycles and temperature on the reaction rate of sodium hypochlorite (NaOCl) with bovine dentine during ultrasonic activated irrigation (UAI) under laboratory conditions. Methodology The root canal walls of 24 standardized root canals in

  16. Modeling the effects of temperature, sodium chloride and green tea and their interactions on the thermal inactivation of Listeria monocytogenes in turkey

    Science.gov (United States)

    The interactive effects of heating temperature (55 – 65C), sodium chloride (NaCl, 0-2%), and green tea 60% polyphenol extract (GTPE, 0-3%) on heat resistance of a five-strain mixture of Listeria monocytogenes in ground turkey were determined. Thermal death times were quantified in bags submerged in ...

  17. Effect of Sodium Bicarbonate Supplementation on Carcass Characteristics of Lambs Fed Concentrate Diets at Different Ambient Temperature Levels

    Directory of Open Access Journals (Sweden)

    Demba B. Jallow

    2014-08-01

    Full Text Available The objective of this study was to investigate the influence of ambient temperatures on carcass characteristics of lambs fed concentrate diets with or without NaHCO3 supplementation. A slaughter study was carried on 12 male Black Belly Barbados lambs randomly drawn from a growth trial (35 weeks. The lambs were divided into four equal groups and allotted in a 2×2 factorial design. The lambs were allotted at random to two dietary treatments of a basal diet (35:65 roughage:concentrate or basal diet supplemented with 4% NaHCO3 at different ambient temperatures (20°C and 30°C in an environment controlled chamber for 10 days. Lambs were slaughtered for carcass evaluation at about 262 days of age (245 days of growth trial, 7 days adaptation and 10 days of experimental period. Ambient temperature had significant (p0.05 effects on pH, and water holding capacity on both muscles. These results indicated that NaHCO3 supplementation at low ambient temperatures had caused an increase in carcass characteristics leading to significant effect on meat quality.

  18. Sustained release of growth hormone and sodium nitrite from biomimetic collagen coating immobilized on silicone tubes improves endothelialization.

    Science.gov (United States)

    Salehi-Nik, Nasim; Malaie-Balasi, Zahra; Amoabediny, Ghassem; Banikarimi, Seyedeh Parnian; Zandieh-Doulabi, Behrouz; Klein-Nulend, Jenneke

    2017-08-01

    Biocompatibility of biomedical devices can be improved by endothelialization of blood-contacting parts mimicking the vascular endothelium's function. Improved endothelialization might be obtained by using biomimetic coatings that allow local sustained release of biologically active molecules, e.g. anti-thrombotic and growth-inducing agents, from nanoliposomes. We aimed to test whether incorporation of growth-inducing nanoliposomal growth hormone (nGH) and anti-thrombotic nanoliposomal sodium nitrite (nNitrite) into collagen coating of silicone tubes enhances endothelialization by stimulating endothelial cell proliferation and inhibiting platelet adhesion. Collagen coating stably immobilized on acrylic acid-grafted silicone tubes decreased the water contact angle from 102° to 56°. Incorporation of 50 or 500nmol/ml nNitrite and 100 or 1000ng/ml nGH into collagen coating decreased the water contact angle further to 48°. After 120h incubation, 58% nitrite and 22% GH of the initial amount of sodium nitrite and GH in nanoliposomes were gradually released from the nNitrite-nGH-collagen coating. Endothelial cell number was increased after surface coating of silicone tubes with collagen by 1.6-fold, and with nNitrite-nGH-collagen conjugate by 1.8-3.9-fold after 2days. After 6days, endothelial cell confluency in the absence of surface coating was 22%, with collagen coating 74%, and with nNitrite-nGH-collagen conjugate coating 83-119%. In the absence of endothelial cells, platelet adhesion was stimulated after collagen coating by 1.3-fold, but inhibited after nNitrite-nGH-collagen conjugate coating by 1.6-3.7-fold. The release of anti-thrombotic prostaglandin I 2 from endothelial cells was stimulated after nNitrite-nGH-collagen conjugate coating by 1.7-2.2-fold compared with collagen coating. Our data shows improved endothelialization and blood compatibility using nNitrite-nGH-collagen conjugate coating on silicone tubes suggesting that these coatings are highly suitable

  19. Temperature extremes: Effect on plant growth and development

    Directory of Open Access Journals (Sweden)

    Jerry L. Hatfield

    2015-12-01

    Full Text Available Temperature is a primary factor affecting the rate of plant development. Warmer temperatures expected with climate change and the potential for more extreme temperature events will impact plant productivity. Pollination is one of the most sensitive phenological stages to temperature extremes across all species and during this developmental stage temperature extremes would greatly affect production. Few adaptation strategies are available to cope with temperature extremes at this developmental stage other than to select for plants which shed pollen during the cooler periods of the day or are indeterminate so flowering occurs over a longer period of the growing season. In controlled environment studies, warm temperatures increased the rate of phenological development; however, there was no effect on leaf area or vegetative biomass compared to normal temperatures. The major impact of warmer temperatures was during the reproductive stage of development and in all cases grain yield in maize was significantly reduced by as much as 80−90% from a normal temperature regime. Temperature effects are increased by water deficits and excess soil water demonstrating that understanding the interaction of temperature and water will be needed to develop more effective adaptation strategies to offset the impacts of greater temperature extreme events associated with a changing climate.

  20. Non-enzymatic glycation enhances human serum albumin binding capacity to sodium fluorescein at room temperature: A spectroscopic analysis.

    Science.gov (United States)

    Fatima, Sadaf; Anwar, Tamanna; Ahmad, Nabeel; Islam, Asimul; Sen, Priyankar

    2017-06-01

    Sodium fluorescein (SF) is a fluorescent tracer dye used extensively in diagnostic tools in the field of Ophthalmology, particularly in intravenous fluorescein angiography (IVFA). The binding of SF to human serum albumin (HSA) has been predicted by molecular docking and investigated by circular dichroism (CD) and fluorescence spectroscopy with or without glycation at temperatures 296, 301, and 310K. The binding parameters were calculated by quenching of emission spectrum of a constant concentration of SF (2μmol/l) at 513nm against increasing concentrations of glycated or unmodified HSA as quencher starting from stoichiometry ratio of 1:1. The HSA-SF interaction found to be a static binding. The Stern-Volmer constants (Ksv) were in the range of ~10 4 M -1 and other thermodynamic parameters like enthalpy (ΔH°), free energy (ΔG°) and entropy (ΔS°) are similar to albumin ligand bindings reported by previous workers. The interactions were found to be spontaneous, irrespective of temperature or glycation. Glycated HSA is clinically used to monitor unstable glycemic controls in diabetic patients. A 39% increase in binding affinity (log K) and free energy (ΔG°) is reported on glycation at 310K (room temperature), which may be important in the SF based angiographies. On glycation HSA-SF binding appears to change from an enthalpy-driven to an entropy-driven reaction. SF shows best binding to FA binding site III of HSA, which also overlaps with drug binding site II of subdomain IIIA. Leu430 seems to play a pivotal role in the interaction. Copyright © 2017. Published by Elsevier B.V.

  1. Effect of sodium chloride and cadmium on the growth, oxidative stress and antioxidant enzyme activities of Zygosaccharomyces rouxii

    Science.gov (United States)

    Li, Chunsheng; Xu, Ying; Jiang, Wei; Lv, Xin; Dong, Xiaoyan

    2014-06-01

    Zygosaccharomyces rouxii is a salt-tolerant yeast species capable of removing cadmium (Cd) pollutant from aqueous solution. Presently, the physiological characteristics of Z. rouxii under the stress of sodium chloride (NaCl) and Cd are poorly understood. This study investigated the effects of NaCl and Cd on the growth, oxidative stress and antioxidant enzyme activities of Z. rouxii after stress treatment for 24 h. Results showed that NaCl or Cd alone negatively affected the growth of Z. rouxii, but the growth-inhibiting effect of Cd on Z. rouxii was reduced in the presence of NaCl. Flow cytometry assay showed that under Cd stress, NaCl significantly reduced the production of reactive oxygen species (ROS) and cell death of Z. rouxii compared with those in the absence of NaCl. The activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) of Z. rouxii were significantly enhanced by 2%-6% NaCl, which likely contributed to the high salt tolerance of Z. rouxii. The POD activity was inhibited by 20 mg L-1 Cd while the SOD and CAT activities were enhanced by 8 mg L-1 Cd and inhibited by 20 mg L-1 or 50 mg L-1 Cd. The inhibitory effect of high-level Cd on the antioxidant enzyme activities of Z. rouxii was counteracted by the combined use of NaCl, especially at 6%. This probably accounted for the decrease in Cd-induced ROS production and cell death of Z. rouxii after incubation with NaCl and Cd. Our work provided physiological clues as to the use of Z. rouxii as a biosorbent for Cd removal from seawater and liquid highly salty food.

  2. Sodium chloride inhibits the growth and infective capacity of the amphibian chytrid fungus and increases host survival rates.

    Directory of Open Access Journals (Sweden)

    Michelle Pirrie Stockwell

    Full Text Available The amphibian chytrid fungus Batrachochytrium dendrobatidis is a recently emerged pathogen that causes the infectious disease chytridiomycosis and has been implicated as a contributing factor in the global amphibian decline. Since its discovery, research has been focused on developing various methods of mitigating the impact of chytridiomycosis on amphibian hosts but little attention has been given to the role of antifungal agents that could be added to the host's environment. Sodium chloride is a known antifungal agent used routinely in the aquaculture industry and this study investigates its potential for use as a disease management tool in amphibian conservation. The effect of 0-5 ppt NaCl on the growth, motility and survival of the chytrid fungus when grown in culture media and its effect on the growth, infection load and survivorship of infected Peron's tree frogs (Litoria peronii in captivity, was investigated. The results reveal that these concentrations do not negatively affect the survival of the host or the pathogen. However, concentrations greater than 3 ppt significantly reduced the growth and motility of the chytrid fungus compared to 0 ppt. Concentrations of 1-4 ppt NaCl were also associated with significantly lower host infection loads while infected hosts exposed to 3 and 4 ppt NaCl were found to have significantly higher survival rates. These results support the potential for NaCl to be used as an environmentally distributed antifungal agent for the prevention of chytridiomycosis in susceptible amphibian hosts. However, further research is required to identify any negative effects of salt exposure on both target and non-target organisms prior to implementation.

  3. Radiation-induced degradation of sodium alginate and its plant growth promotion effect

    Directory of Open Access Journals (Sweden)

    H.L. Abd El-Mohdy

    2017-02-01

    Full Text Available Alginate was irradiated as a solid with 60Co gamma rays in the dose range of 20–100 kGy to investigate the effect of radiation on alginates. One of the principle factors for reducing the cost is achieving the degradation at low irradiation doses which occurs with addition of chemical initiator to NaAlg during irradiation process that leads to a synergistic effect, which remarkably increases the degradation efficiency of alginate. The factors affecting the degradation process such as irradiation dose and potassium per-sulfate (KPS addition were studied. The average molecular weight of the irradiated alginate was investigated in detail by using several complementary techniques such as chromatography and viscometry. The lowest molecular weight of alginate resulted at 100 kGy and added KPS, whereas the highest one at 20 kGy in absence of KPS. Characterization of the oligoalginates obtained by radiation degradation was performed by FT-IR and UV–vis spectroscopy, XRD and TGA. The effect of water-soluble radiation-induced alginate fractions on the growth promotion of Faba bean plant was studied. The highest plant growth and seed yield compared with control occurred for plants sprayed with low molecular weight NaAlg fractions (treated with 100 kGy and added KPS.

  4. Temperatures and the growth and development of maize and rice

    DEFF Research Database (Denmark)

    Sánchez, Berta; Rasmussen, Anton; Porter, John Roy

    2014-01-01

    and maize crop responses to temperature in different, but consistent, phenological phases and development stages. A literature review and data compilation of around 140 scientific articles have determined the key temperature thresholds and response to extreme temperature effects for rice and maize...... defined in all three crops. Anthesis and ripening are the most sensitive temperature stages in rice as well as in wheat and maize. We call for further experimental studies of the effects of transgressing threshold temperatures so such responses can be included into crop impact and adaptation models....

  5. Dietary sodium bicarbonate, cool temperatures, and feed withdrawal: impact on arterial and venous blood-gas values in broilers.

    Science.gov (United States)

    Wideman, R F; Hooge, D M; Cummings, K R

    2003-04-01

    Sodium bicarbonate (NaHCO3) has been used successfully in mammals and birds to alleviate pulmonary hypertension. Experiment 1 was designed to provide measurements of arterial and venous blood-gas values from unanesthetized male broilers subjected to a cool temperature (16 degrees C) challenge and fed either a control diet or the same diet alkalinized by dilution with 1% NaHCO3. The incidences of pulmonary hypertension syndrome (PHS, ascites) for broilers fed the control or bicarbonate diets were 15.5 and 10.5%, respectively (P = 0.36, NS). Non-ascitic broilers fed the control diet were heavier than those fed the bicarbonate diet on d 49 (2,671 vs. 2,484 g, respectively); however, other comparisons failed to reveal diet-related differences in heart weight, pulse oximetry values, electrocardiogram amplitudes, or blood-gas values (P > 0.05). When the data were resorted into categories based on right:total ventricular weight ratios (RV:TV) indicative of normal (RV:TV or = 0.28) pulmonary arterial pressures, broilers with elevated RV:TV ratios had poorly oxygenated arterial blood that was more acidic, had high partial pressure of CO2 (PCO2), and had higher HCO3 concentrations when compared with broilers with normal RV:TV ratios. Experiment 2 was conducted to determine if metabolic variations associated with differences in feed intake or environmental temperature potentially could mask an impact of diet composition on blood-gas values. Male broilers maintained at thermoneutral temperature (24 degrees C) either received feed ad libitum or had the feed withdrawn > or = 12 h prior to blood sampling. Broilers fed ad libitum had lower venous saturation of hemoglobin with O2, higher venous PCO2, and higher arterial HCO3 concentrations than broilers subjected to feed withdrawal. Broilers in experiment 2 fed ad libitum and exposed to cool temperatures (16 degrees C) had lower arterial partial pressure of O2 and higher venous PCO2 than broilers fed ad libitum and maintained at 24

  6. The impact of atmospheric ammonia and temperature on growth and nitrogen metabolism of winter wheat

    NARCIS (Netherlands)

    Clement, J.M A M; Loorbach, J; Meijer, J; van Hasselt, P.R; Stulen, G

    The effect of atmospheric ammonia in combination with low and moderate growth temperature on growth and nitrogen metabolism of winter wheat plants (Triticum aestivum L. cv. Urban) was investigated. Plants were exposed to 0, 1000 and 2000 nl l(-1) NH3 for 1 week at moderate day/night temperatures

  7. Correlations between Growth Kinetics and Microstructure for Scales Formed by High-Temperature Oxidation of Pure Nickel. II. Growth Kinetics

    OpenAIRE

    Peraldi, Raphaëlle; Monceau, Daniel; Pieraggi, Bernard

    2002-01-01

    The oxidation kinetics of high-purity nickel were studied between 500 and 1200°C, in pure oxygen at atmospheric pressure, for aûerage oxide-scale thicknesses of 1, 5, 10, and 30 μm. In the oûerall temperature range studied, a decrease in the parabolic rate constant kp with increasing scale thickness was observed. Depending on temperature and oxide-scale thickness, growth kinetics can be interpreted as a mixture of parabolic- and cubic-growth kinetics. Possible correlations between growth kine...

  8. Growth Mechanism for Low Temperature PVD Graphene Synthesis on Copper Using Amorphous Carbon

    Science.gov (United States)

    Narula, Udit; Tan, Cher Ming; Lai, Chao Sung

    2017-03-01

    Growth mechanism for synthesizing PVD based Graphene using Amorphous Carbon, catalyzed by Copper is investigated in this work. Different experiments with respect to Amorphous Carbon film thickness, annealing time and temperature are performed for the investigation. Copper film stress and its effect on hydrogen diffusion through the film grain boundaries are found to be the key factors for the growth mechanism, and supported by our Finite Element Modeling. Low temperature growth of Graphene is achieved and the proposed growth mechanism is found to remain valid at low temperatures.

  9. Temperature dependence of protein solubility-determination, application to crystallization, and growth kinetics studies

    Science.gov (United States)

    Rosenberger, Franz

    1993-01-01

    A scintillation method was developed for determinations of the temperature dependence of the solubility, and of nucleation induction times of proteins, in 50-100 mu(l) volumes of solution. Solubility data for lysozyme and horse serum albumin were obtained for various combinations of pH and precipitant concentrations. These data and the nucleation induction information were used for dynamic crystallization control, that is, for the controlled separation of nucleation and growth stages. Individual lysozyme and horse serum albumin crystals were grown in 15-20 mu(l) solution volumes contained in x-ray capillaries. The morphology and kinetics of the growth and dissolution of lysozyme in aqueous solutions with 2.5 percent NaCl and at pH = 4.5 was studied in situ with a depth resolution of 300 A (4 unit cells) by high resolution optical microscopy and digital image processing. The bulk super- or under saturation, sigma, of the solution inside a closed growth cell was controlled by temperature. The growth habit was bound by (110) and (101) faces that grew through layer spreading, although with different growth rate dependencies on supersaturation/temperature. At sigma less than 10 (obtained at higher temperatures) growth was purely kinetic ally controlled, with impurity effects (macrostep formation and kinetic hindrance) becoming significant for sigma less than 2. At sigma greater than 10 (lower temperatures), anisotropies in the interfacial kinetics were more pronounced, with interfacial kinetics and bulk transport becoming equally important to the growth morphology. Growth rates were growth history dependent. The formation of striations (layers of irregularly incorporated solution) was unambiguously correlated with growth temperature variations. Etching exposed dislocations and various high-index faces whose growth morphologies were studied during return to the steady state growth form. Growth steps were observed to originate from two-dimensional nuclei or from outcrops

  10. Durability of class C fly ash belite cement in simulated sodium chloride radioactive liquid waste: Influence of temperature

    International Nuclear Information System (INIS)

    Guerrero, A.; Goni, S.; Allegro, V.R.

    2009-01-01

    This work is a continuation of a previous durability study of class C fly ash belite cement (FABC-2-W) in simulated radioactive liquid waste (SRLW) that is very rich in sulphate salts. The same experimental methodology was applied in the present case, but with a SRLW rich in sodium chloride. The study was carried out by testing the flexural strength of mortars immersed in simulated radioactive liquid waste that was rich in chloride (0.5 M), and demineralised water as a reference, at 20 and 40 deg. C over a period of 180 days. The reaction mechanism of chloride ions with the mortar was evaluated by scanning electron microscopy (SEM), porosity and pore-size distribution, and X-ray diffraction (XRD). The results showed that the FABC mortar was stable against simulated chloride radioactive liquid waste (SCRLW) attack at the two chosen temperatures. The enhancement of mechanical properties was a result of the formation of non-expansive Friedel's salt inside the pores; accordingly, the microstructure was refined

  11. Temperature control and calibration issues in the growth, processing and characterization of electronic materials

    Science.gov (United States)

    Wilson, B. A.

    1989-01-01

    The temperature control and calibration issues encountered in the growth, processing, and characterization of electronic materials are summarized. The primary problem area is identified as temperature control during epitaxial materials growth. While qualitative thermal measurements are feasible and reproducibility is often achievable within a given system, absolute calibration is essentially impossible in many cases, precluding the possibility of portability from one system to another. The procedures utilized for thermal measurements during epitaxial growth are described, and their limitations discussed.

  12. Characterization of velocity and temperature fields in a 217 pin wire wrapped fuel bundle of sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Naveen Raj, M.; Velusamy, K.

    2016-01-01

    Highlights: • We simulate flow and temperature fields in fuel subassembly of fast reactor. • We perform high fidelity computations for 217 pin bundle of 7 axial pitch lengths. • We investigate transverse and axial flows in different types of subchannels. • Correlations are proposed for transverse flow, which form input for subchannel analysis. • Periodic variations of large magnitude are observed in subchannel flow rates. - Abstract: RANS based computational fluid dynamic (CFD) simulation of flow and temperature fields in a fast reactor fuel subassembly has been carried out. The sodium cooled prototype subassembly consists of 217 pins with helical wire spacers. An axial length of seven helical wire pitches has been considered for the study adopting a structured mesh having 36 million points and 84 processors in parallel. The computational model has been validated against in-house and published experimental data for friction factor and Nusselt number. Also, the transverse flow in the central subchannel and swirl flow in the peripheral subchannel are compared against reported experimental data and those computed by subchannel models. The focus of the study is investigation of transverse and axial flows in different types of subchannels. Based on the 3-dimensional CFD study, correlations have been proposed for calculation of transverse flow, which forms an important input for development of subchannel analysis codes. Periodic variations have been observed in the subchannel axial flow rates. For the subchannels located in the central region, the peak to peak variation in the axial flow rate is ∼21% and it is found to be contributed by the changes in the flow area and hydraulic resistance due to frequent passage of helical wires through the subchannel. For the subchannels located in the periphery, this variation is as high as 50%. The transverse flow in the central subchannels follows a cosine profile, for all the faces. However, there is a phase lag of 120

  13. Influence of pH and temperature on the rheological properties of aqueous dispersions of starch-sodium palmitate complexes

    Science.gov (United States)

    Aqueous dispersions of high-amylose corn starch were steam jet cooked and blended with aqueous solutions of sodium palmitate to form amylose inclusion complexes. The rheology of dispersions of these complexes was examined. Acetic acid was added to reduce the pH, converting complexed sodium palmita...

  14. Low temperature diamond growth by linear antenna plasma CVD over large area

    International Nuclear Information System (INIS)

    Izak, Tibor; Babchenko, Oleg; Potocky, Stepan; Kromka, Alexander; Varga, Marian

    2012-01-01

    Recently, there is a great effort to increase the deposition area and decrease the process temperature for diamond growth which will enlarge its applications including use of temperature sensitive substrates. In this work, we report on the large area (20 x 30 cm 2 ) and low temperature (250 C) polycrystalline diamond growth by pulsed linear antenna microwave plasma system. The influence of substrate temperature varied from 250 to 680 C, as controlled by the table heater and/or by microwave power, is studied. It was found that the growth rate, film morphology and diamond to non-diamond phases (sp 3 /sp 2 carbon bonds) are influenced by the growth temperature, as confirmed by SEM and Raman measurements. The surface chemistry and growth processes were studied in terms of activation energies (E a ) calculated from Arrhenius plots. The activation energies of growth processes were very low (1.7 and 7.8 kcal mol -1 ) indicating an energetically favourable growth process from the CO 2 -CH 4 -H 2 gas mixture. In addition, from activation energies two different growth regimes were observed at low and high temperatures, indicating different growth mechanism. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Improvement in surface morphology of GaSb buffer layer by two-step high and low temperature growth

    Science.gov (United States)

    Okumura, Shigekazu; Tomabechi, Shuichi; Suzuki, Ryo; Matsukura, Yusuke; Tsunoda, Koji; Kon, Jun-ichi; Nishino, Hironori

    2017-11-01

    The surface morphology of GaSb was investigated by changing growth conditions such as thermal oxide desorption temperature, growth temperature, and growth step by solid source molecular beam epitaxy. At high temperature growth, the pits caused by the thermal oxide desorption remained in the GaSb buffer layer surface, while the surface was sufficiently flattened. At low temperature growth, the pits disappeared, while the surface was not enough flattened even in the case of step-flow mode growth. Since the pits disappeared at lower growth temperature regardless of the growth mode, this behavior might be explained by the Ga migration length depending on the growth temperature. By applying two-step high/low temperature growth, where both growth steps proceed in step-flow mode, flat, a pit-free GaSb buffer surface could be obtained.

  16. [Effects of temperature on the embryonic development and larval growth of Sepia lycidas].

    Science.gov (United States)

    Jiang, Xia-Min; Peng, Rui-Bing; Luo, Jiang; Tang, Feng

    2013-05-01

    A single-factor experiment was conducted to study the effects of different temperature (15, 18, 21, 24, 27, 30, and 33 degrees C) on the embryonic development and larval growth of Sepia lycidas, aimed to search for the optimum temperature for the development and growth of S. lycidas. The results showed that temperature had significant effects on the embryonic development and larval growth of S. lycidas (P < 0.05). The suitable temperature for hatching ranged from 21 degrees C to 30 degrees C, and the optimum temperature was 24 degrees C. At the optimum temperature, the hatching rate was (93.3 +/- 2.9)%, incubation period was (24.33 +/- 0.58) d, hatching period was (6.00 +/- 1.00) d, completely absorked rate of yolk sac was (96.4 +/- 3.1)%, and newly hatched larvae mass was (0.258 +/- 0.007) g. The effective accumulated temperature model was N = 284.42/(T-12.57). The suitable temperature for the larval survival and growth ranged from 21 degrees C to 30 degrees C, and the optimum temperature was from 24 degrees C to 27 degrees C. At the optimum temperature, the survival rate ranged from 70.0% to 73.3%, and the specific growth rate was from 2.4% to 3.8%.

  17. Influence of temperature and concentration on the dynamic viscosity of sodium hypochlorite in comparison with 17% EDTA and 2% chlorhexidine gluconate: An in vitro study.

    Science.gov (United States)

    Gopikrishna, Velayutham; Ashok, Priyanka; Kumar, Ar Pradeep; Narayanan, L Lakshmi

    2014-01-01

    The aim of this study was to assess the influence of temperature and concentration on the dynamic viscosity of sodium hypochlorite in comparison with 17% EDTA and 2% chlorhexidine gluconate. In vitro. Dynamic viscosity measurements of sodium hypochlorite [NaOCl (5.25%, 2.6%, 1.25%)], EDTA (17%), and chlorhexidine gluconate [CHX, 2%] were measured using a rotational digital viscometer at room temperature (25°C). The influence of temperature (45°C, 60°C) and concentration (5.25%, 2.6%, and 1.25%) on the dynamic viscosity of NaOCl was also evaluated. The measurements were performed using a circulating water bath calibrated with a thermostat, and the dynamic viscosity measurements were noted in Centipoise (Cps). The tests used for the statistical analysis were Kolmogorov-Smirnov and Shapiro Wilk tests, one-way ANOVA, and independent sample t-test. Viscosity statistically increased with NaOCl concentration and decreased with increasing temperature. Amongst the tested NaOCl groups, 5.25% NaOCl at room temperature was significantly the most viscous (μ =1.5300 Cps) while 1.25% NaOCl at 60°C was significantly the least viscous (μ =1.1800 Cps). 5.25% NaOCl and 17% EDTA are significantly viscous at room temperature. Elevating the temperature of 1.25% NaOCl to 60°C significantly reduces the viscosity of the NaOCl.

  18. Temperature and salinity affect the germination and growth of Silybum marianum Gaertn and Avena fatua

    International Nuclear Information System (INIS)

    Kashmir, S.; Khan, M. A.; Shad, A.

    2016-01-01

    Two troublesome weeds like Silybum marianum and Avena fatua were exposed to different levels of temperature and salinity. Laboratory based experimented were conducted in the Department of Weed Science, The University of Agriculture Peshawar during 2015. Sterilized seeds of S. marianum and A. fatua were placed in petri-dishes in a growth chamber. The temperature levels studied were 15, 25 and 40 degree C while the NaCl concentrations were 0, 100, 200, 300, 400, 500 and 600 mM. Data revealed that germination and growth related traits responded differently to different levels of temperature and salinity. Optimum temperature (25 degree C) resulted in higher germination and growth of both the weed species. While highest temperature used (40 degree C) or lower temperature (15 degree C) resulted in poor germination and growth of S. marianum and A. fatua. Salinity level up to 100 mM did not affect the seed germination of S. marianum and A. fatua. NaCl concentration above 100 mM significantly decreased germination and ceased the germination of both the weeds at 600 mM. Like germination, the growth related variables were also decreased at very low or very high temperature and higher concentrations of NaCl. It is concluded that temperature and NaCl can affect establishment, growth and seed production potential of S. marianum and A. fatua. (author)

  19. Exogenously Applied Plant Growth Regulators Enhance the Morpho-Physiological Growth and Yield of Rice under High Temperature.

    Science.gov (United States)

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Ihsan, Zahid; Shah, Adnan N; Wu, Chao; Yousaf, Muhammad; Nasim, Wajid; Alharby, Hesham; Alghabari, Fahad; Huang, Jianliang

    2016-01-01

    A 2-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR) on rice growth and yield attributes under high day (HDT) and high night temperature (HNT). Two rice cultivars (IR-64 and Huanghuazhan) were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA), and triazoles (Tr) were applied. High temperature severely affected rice morphology, and also reduced leaf area, above-, and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future.

  20. Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature

    Directory of Open Access Journals (Sweden)

    Shah Fahad

    2016-08-01

    Full Text Available A two-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR on rice growth and yield attributes under high day (HDT and high night temperature (HNT. Two rice cultivars (IR-64 and Huanghuazhan were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc, alpha-tocopherol (Ve, brassinosteroids (Br, methyl jasmonates (MeJA and triazoles (Tr were applied. High temperature severely affected rice morphology, and also reduced leaf area, above- and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future.

  1. Some Aspects of the RHEED Behavior of Low-Temperature GaAs Growth

    International Nuclear Information System (INIS)

    Nemcsics, A.

    2005-01-01

    The reflection high-energy electron diffraction (RHEED) behavior manifested during MBE growth on a GaAs(001) surface under low-temperature (LT) growth conditions is examined in this study. RHEED and its intensity oscillations during LT GaAs growth exhibit some particular behavior. The intensity, phase, and decay of the oscillations depend on the beam equivalent pressure (BEP) ratio and substrate temperature, etc. Here, the intensity dependence of RHEED behavior on the BEP ratio, substrate temperature, and excess of As content in the layer are examined. The change in the decay constant of the RHEED oscillations is also discussed

  2. Effect of stress-induced grain growth during room temperature ...

    Indian Academy of Sciences (India)

    The TEM observations reveal that stress-induced grain growth during tensile deformation is significantly suppressed for the nc Ni–Co alloys rich in Co in sharp contrast to those poor in Co. We believe that sufficient solutes could effectively pin grain boundaries making grain boundary motions (e.g. grain boundary migration ...

  3. Ascertaining the potential effects of temperature on growth, survival and feeding of different juvenile clown fish

    Directory of Open Access Journals (Sweden)

    Vishwas Rao Methari

    2015-02-01

    Full Text Available Objective: To determine the physiological and ecological responses of marine ornamental fishes to the change of water temperature with its potential effects on the growth, survival and feeding in clown fish. Methods: Three different sea anemone fish (Premnas biaculeatus, Amphiprion clarkii, Amphiprion akallopisos were reared in confinement at water temperatures of 26, 28, 30, 32, and 34 °C using thermostat and they were maintained up to the marketable size, and growth, survival and feeding were evaluated during the experimental period. Results: The results illustrated that water temperature influenced the physiological performance of juveniles of three different sea anemone fish significantly. The growth and survival rates of juveniles of three different clown fish significantly increased with the increase of water temperature from 26 °C to 34 °C (P<0.05. Water temperature also influenced the feeding of three different clown fish significantly with feed conversion ratio increased from (0.071±0.020, (0.075±0.030 and (0.079±0.028 to (0.057±0.040, (0.047±0.030 and (0.045±0.028 for Premnas biaculeatus, Amphiprion clarkii and Amphiprion akallopisos respectively with increase of water temperature from 26 °C to 34 °C (P<0.05. Specific growth rates (P<0.05 increased significantly with increase of water temperature and positively correlated with the feed conversion ratio, indicating that growth rates are significantly increased with increase of temperature. Conclusions: This study deliberately reveals that the physiological response of juveniles of clown fish as the change of water temperature and substantiated that water temperature influenced juvenile growth, survival and feeding significantly. This study also put forward that the reduced growth, survival and feeding of juveniles at lower temperature which have ecological impacts on clown fish juveniles in settlement and population replacement in the wild.

  4. Seasonal changes in temperature and nutrient control of photosynthesis, respiration and growth of natural phytoplankton communities

    DEFF Research Database (Denmark)

    Stæhr, P. A.; Sand-Jensen, K.

    2006-01-01

    cultures in seasons of low ambient nutrient availability. 3. Temperature stimulation of growth and metabolism was higher at low than high ambient temperature showing that long-term temperature acclimation of the phytoplankton community before the experiments was of great importance for the measured rates...... +2, +4 and +6 °C for 2 weeks with and without addition of extra inorganic nutrients. 2. Rates of photosynthesis, respiration and growth generally increased with temperature, but this effect was strongly enhanced by high nutrient availability, and therefore was most evident for nutrient amended......1. To investigate the influence of elevated temperatures and nutrients on photosynthesis, respiration and growth of natural phytoplankton assemblages, water was collected from a eutrophic lake in spring, summer, autumn, winter and the following spring and exposed to ambient temperature and ambient...

  5. Crack growth in an austenitic stainless steel at high temperature

    International Nuclear Information System (INIS)

    Polvora, J.P.

    1998-01-01

    This study deals with crack propagation at 650 deg C on an austenitic stainless steel referenced by Z2 CND 17-12 (316L(NN)). It is based on an experimental work concerning two different cracked specimens: CT specimens tested at 650 deg C in fatigue, creep and creep-fatigue with load controlled conditions (27 tests), tube specimens containing an internal circumferential crack tested in four points bending with displacement controlled conditions (10 tests). Using the fracture mechanics tools (K, J and C* parameters), the purpose here is to construct a methodology of calculation in order to predict the evolution of a crack with time for each loading condition using a fracture mechanics global approach. For both specimen types, crack growth is monitored by using a specific potential drop technique. In continuous fatigue, a material Paris law at 650 deg C is used to correlate crack growth rate with the stress intensity factor range corrected with a factor U(R) in order to take into account the effects of crack closure and loading ratio R. In pure creep on CT specimens, crack growth rate is correlated to the evolution of the C* parameter (evaluated experimentally) which can be estimated numerically with FEM calculations and analytically by using a simplified method based on a reference stress approach. A modeling of creep fatigue growth rate is obtained from a simple summation of the fatigue contribution and the creep contribution to the total crack growth. Good results are obtained when C* parameter is evaluated from the simplified expression C* s . Concerning the tube specimens tested in 4 point bending conditions, a simulation based on the actual A 16 French guide procedure proposed at CEA. (authors)

  6. Water temperature and fish growth: otoliths predict growth patterns of a marine fish in a changing climate.

    Science.gov (United States)

    Rountrey, Adam N; Coulson, Peter G; Meeuwig, Jessica J; Meekan, Mark

    2014-08-01

    Ecological modeling shows that even small, gradual changes in body size in a fish population can have large effects on natural mortality, biomass, and catch. However, efforts to model the impact of climate change on fish growth have been hampered by a lack of long-term (multidecadal) data needed to understand the effects of temperature on growth rates in natural environments. We used a combination of dendrochronology techniques and additive mixed-effects modeling to examine the sensitivity of growth in a long-lived (up to 70 years), endemic marine fish, the western blue groper (Achoerodus gouldii), to changes in water temperature. A multi-decadal biochronology (1952-2003) of growth was constructed from the otoliths of 56 fish collected off the southwestern coast of Western Australia, and we tested for correlations between the mean index chronology and a range of potential environmental drivers. The chronology was significantly correlated with sea surface temperature in the region, but common variance among individuals was low. This suggests that this species has been relatively insensitive to past variations in climate. Growth increment and age data were also used in an additive mixed model to predict otolith growth and body size later this century. Although growth was relatively insensitive to changes in temperature, the model results suggested that a fish aged 20 in 2099 would have an otolith about 10% larger and a body size about 5% larger than a fish aged 20 in 1977. Our study shows that species or populations regarded as relatively insensitive to climate change could still undergo significant changes in growth rate and body size that are likely to have important effects on the productivity and yield of fisheries. © 2014 John Wiley & Sons Ltd.

  7. Influence of water temperature and feeding regime on otolith growth in Anguilla japonica glass eels and elvers: does otolith growth cease at low temperatures?

    Science.gov (United States)

    Fukuda, N; Kuroki, M; Shinoda, A; Yamada, Y; Okamura, A; Aoyama, J; Tsukamoto, K

    2009-06-01

    The influences of water temperature and feeding regime on otolith growth in Anguilla japonica glass eels and elvers were investigated using individuals reared at 5, 10, 15, 20, 25 and 30 degrees C and in fed or unfed conditions at salinity 32 after their otoliths were marked with alizarin complexone (ALC). To eliminate the difficulty of observing the edges of otoliths with optical (OM) or scanning electron (SEM) microscopes, three to 10 individuals were sampled from each tank at 10, 20 and 30 days during the experiment and reared for an additional 10 days at 25 degrees C after their otoliths were marked a second time. Otolith growth and the number of increments were measured using both OM and SEM. Most A. japonica commenced feeding after 10 days at 20-30 degrees C or after 20 days at 15 degrees C, but no feeding occurred at 5 and 10 degrees C. No otolith growth occurred at 5 and 10 degrees C except in two individuals with minimal increment deposition at 10 degrees C. Otolith growth was proportional to water temperature within 15-25 degrees C and not different between 25 and 30 degrees C. At 15, 25 and 30 degrees C, the mean otolith growth rate in fed conditions was higher than in unfed conditions. The number of increments per day was significantly different among water temperatures (0.00-0.01 day(-1) at 5 and 10 degrees C, 0.43-0.48 day(-1) at 15 degrees C and 0.94-1.07 day(-1) at 20-30 degrees C). These results indicated that otolith growth in A. japonica glass eels and elvers was affected by temperature and ceased at otoliths of wild-caught A. japonica glass eels and elvers need to carefully consider the water temperatures potentially experienced by the juveniles in the wild.

  8. Heterogeneous Ti3SiC2@C-Containing Na2Ti7O15Architecture for High-Performance Sodium Storage at Elevated Temperatures.

    Science.gov (United States)

    Zou, Guodong; Zhang, Qingrui; Fernandez, Carlos; Huang, Gang; Huang, Jianyu; Peng, Qiuming

    2017-12-26

    Rational design of heterogeneous electrode materials with hierarchical architecture is a potential approach to significantly improve their energy densities. Herein, we report a tailored microwave-assisted synthetic strategy to create heterogeneous hierarchical Ti 3 SiC 2 @C-containing Na 2 Ti 7 O 15 (MAX@C-NTO) composites as potential anode materials for high-performance sodium storage in a wide temperature range from 25 to 80 °C. This composite delivers first reversible capacities of 230 mAh g -1 at 200 mA g -1 and 149 mAh g -1 at 3000 mA g -1 at 25 °C. A high capacity of ∼93 mAh g -1 without any apparent decay even after more than 10 000 cycles is obtained at an ultrahigh current density of 10 000 mA g -1 . Moreover, both a high reversible capacity and an ultralong durable stability are achieved below 60 °C for the same composites, wherein a 75.2% capacity retention (∼120 mAh g -1 at 10 000 mA g -1 ) is achieved after 3000 cycles at 60 °C. To the best of our knowledge, both the sodium storage performances and the temperature tolerances outperform those of all the Ti-based sodium storage materials reported so far. The superior sodium storage performances of the as-synthesized composites are attributed to the heterogeneous core-shell architecture, which not only provides fast kinetics by high pseudocapacitance but also prolongs cycling life by preventing particle agglomeration and facilitates the transportation of electrons and sodium ions by large micro/mesopore structure.

  9. Resource supply overrides temperature as a controlling factor of marine phytoplankton growth.

    Directory of Open Access Journals (Sweden)

    Emilio Marañón

    Full Text Available The universal temperature dependence of metabolic rates has been used to predict how ocean biology will respond to ocean warming. Determining the temperature sensitivity of phytoplankton metabolism and growth is of special importance because this group of organisms is responsible for nearly half of global primary production, sustains most marine food webs, and contributes to regulate the exchange of CO2 between the ocean and the atmosphere. Phytoplankton growth rates increase with temperature under optimal growth conditions in the laboratory, but it is unclear whether the same degree of temperature dependence exists in nature, where resources are often limiting. Here we use concurrent measurements of phytoplankton biomass and carbon fixation rates in polar, temperate and tropical regions to determine the role of temperature and resource supply in controlling the large-scale variability of in situ metabolic rates. We identify a biogeographic pattern in phytoplankton metabolic rates, which increase from the oligotrophic subtropical gyres to temperate regions and then coastal waters. Variability in phytoplankton growth is driven by changes in resource supply and appears to be independent of seawater temperature. The lack of temperature sensitivity of realized phytoplankton growth is consistent with the limited applicability of Arrhenius enzymatic kinetics when substrate concentrations are low. Our results suggest that, due to widespread resource limitation in the ocean, the direct effect of sea surface warming upon phytoplankton growth and productivity may be smaller than anticipated.

  10. Resource Supply Overrides Temperature as a Controlling Factor of Marine Phytoplankton Growth

    Science.gov (United States)

    Marañón, Emilio; Cermeño, Pedro; Huete-Ortega, María; López-Sandoval, Daffne C.; Mouriño-Carballido, Beatriz; Rodríguez-Ramos, Tamara

    2014-01-01

    The universal temperature dependence of metabolic rates has been used to predict how ocean biology will respond to ocean warming. Determining the temperature sensitivity of phytoplankton metabolism and growth is of special importance because this group of organisms is responsible for nearly half of global primary production, sustains most marine food webs, and contributes to regulate the exchange of CO2 between the ocean and the atmosphere. Phytoplankton growth rates increase with temperature under optimal growth conditions in the laboratory, but it is unclear whether the same degree of temperature dependence exists in nature, where resources are often limiting. Here we use concurrent measurements of phytoplankton biomass and carbon fixation rates in polar, temperate and tropical regions to determine the role of temperature and resource supply in controlling the large-scale variability of in situ metabolic rates. We identify a biogeographic pattern in phytoplankton metabolic rates, which increase from the oligotrophic subtropical gyres to temperate regions and then coastal waters. Variability in phytoplankton growth is driven by changes in resource supply and appears to be independent of seawater temperature. The lack of temperature sensitivity of realized phytoplankton growth is consistent with the limited applicability of Arrhenius enzymatic kinetics when substrate concentrations are low. Our results suggest that, due to widespread resource limitation in the ocean, the direct effect of sea surface warming upon phytoplankton growth and productivity may be smaller than anticipated. PMID:24921945

  11. Low temperature growth of conformal, transparent conducting oxides

    Science.gov (United States)

    Gordon, Roy

    2013-03-01

    Transparent conductors (TC) are essential components of many widely-used technologies, including energy conserving low-E windows, electronic displays and solar cells. Currently, TC films are made by chemical vapor deposition (CVD) or by sputtering or evaporation (PVD). CVD has generally required high temperatures (greater than 500 C), so that is not applicable to plastic substrates and some solar cells. PVD makes films with low step coverage, so textured substrates, such as those with narrow holes, cannot be coated uniformly. The most effective PVD films are based on indium, a rare and expensive element. Recently, atomic layer deposition (ALD) processes have been developed that overcome all of these limitations, allowing highly uniform and conformal coating of substrates with very narrow holes even at substrate temperatures below 100 C. The metals used in these ALD TCs are tin and/or zinc, which are abundant and inexpensive elements. In this talk, we will review these ALD processes, along with the optical, structural and electrical properties of the TCs that they produce. Applications of these low-temperature, conformal TCs will also be discussed. Record-breaking solar cells made entirely from Earth-abundant elements were enabled by these ALD processes. Transparent transistors with excellent characteristics can now be made at low temperature even on rough or textured plastic surfaces. Micro-channel plate array detectors are being produced for use in highly sensitive imaging applications.

  12. The influence of the combined effects of acute gamma-radiation, sodium bromate and sodium nitrate on lettuce (Lactuca sativa) seedling root growth

    Energy Technology Data Exchange (ETDEWEB)

    Pryakhin, E.; Osipov, D. [Urals Research Center for Radiation Medicine - URCRM (Russian Federation)

    2014-07-01

    Among special industrial reservoirs used for the storage of liquid radioactive waste of Mayak PA, Russia, one of the most radioactively contaminated is the R-17 reservoir, so-called 'Staroye Boloto' (the total β-activity of water ranged in the observation period from 0.4 MBq/l to 4.5 MBq/l, the total a-activity ranged from 43 to 420 Bq/l). Also this reservoir is characterized by high level of chemical contamination, in particular, the concentration of nitrates in water is 2.5-4,4 g/l, sodium bromate - up to 35 mg/l. One of the interesting questions is interaction of radiation and chemical contamination in their effect on living organisms in this reservoir. In laboratory experiments seeds of Lactuca sativa were used; the effect of the studied factor on the length of the sprout's root was estimated. To assess the effect of chemical toxicants the solutions of each salt in 7 different concentrations were used, distilled water was used as a control. For evaluation of acute effects of external gamma irradiation the seeds after exposure for 24 hours in distilled water, were irradiated at 7 different doses using gamma-unit on the basis of Cs-137 with the dose rate of 0.62 Gy/min. To assess the combined effects of acute external gamma irradiation, of nitrates and bromates, seeds after 24 hour exposure at each test concentration of the salts solutions were irradiated using gamma-unit. To calculate the effective concentrations or doses was used drc package for R software. To calculate the dose rate to aquatic organisms in the R-17 was used ERICA Assessment Tool 2012. It was found out that the EC50 of sodium nitrate for lettuce was 2.69 g/l, which is comparable to the concentration of nitrates in the 'Staroye Boloto'. This indicates that nitrate can have significant toxic effect on aquatic higher plants of the reservoir. The EC50 of sodium bromate was 14.6 mg/l. This is less than the maximum concentration of the substance in the R-17, which suggests

  13. Growth of cuprate high temperature superconductor thin films

    Directory of Open Access Journals (Sweden)

    H-U Habermeier

    2006-09-01

    Full Text Available   This paper reviews briefly the development of physical vapour deposition based HTS thin film preparation technologies to today’s state-of-the-art methods. It covers the main trends of in-situ process and growth control. The current activities to fabricate tapes for power applications as well as to tailor interfaces in cuprate are described. Some future trends in HTS thin film research, both for science as well as application driven activities are outlined.

  14. Habitat Temperature and Precipitation of Arabidopsis thaliana Ecotypes Determine the Response of Foliar Vasculature, Photosynthesis, and Transpiration to Growth Temperature.

    Science.gov (United States)

    Adams, William W; Stewart, Jared J; Cohu, Christopher M; Muller, Onno; Demmig-Adams, Barbara

    2016-01-01

    Acclimatory adjustments of foliar vascular architecture, photosynthetic capacity, and transpiration rate in Arabidopsis thaliana ecotypes (Italian, Polish [Col-0], Swedish) were characterized in the context of habitat of origin. Temperatures of the habitat of origin decreased linearly with increasing habitat latitude, but habitat precipitation was greatest in Italy, lowest in Poland, and intermediate in Sweden. Plants of the three ecotypes raised under three different growth temperature regimes (low, moderate, and high) exhibited highest photosynthetic capacities, greatest leaf thickness, highest chlorophyll a/b ratio and levels of β-carotene, and greatest levels of wall ingrowths in phloem transfer cells, and, in the Col-0 and Swedish ecotypes, of phloem per minor vein in plants grown at the low temperature. In contrast, vein density and minor vein tracheary to sieve element ratio increased with increasing growth temperature - most strongly in Col-0 and least strongly in the Italian ecotype - and transpirational water loss correlated with vein density and number of tracheary elements per minor vein. Plotting of these vascular features as functions of climatic conditions in the habitat of origin suggested that temperatures during the evolutionary history of the ecotypes determined acclimatory responses of the foliar phloem and photosynthesis to temperature in this winter annual that upregulates photosynthesis in response to lower temperature, whereas the precipitation experienced during the evolutionary history of the ecotypes determined adjustment of foliar vein density, xylem, and transpiration to temperature. In particular, whereas photosynthetic capacity, leaf thickness, and foliar minor vein phloem features increased linearly with increasing latitude and decreasing temperature of the habitats of origin in response to experimental growth at low temperature, transpiration rate, foliar vein density, and minor vein tracheary element numbers and cross

  15. Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets

    DEFF Research Database (Denmark)

    Le Gall, Maud; Gallois, Mélanie; Sève, Bernard

    2009-01-01

    Sodium butyrate (SB) provided orally favours body growth and maturation of the gastrointestinal tract (GIT) in milk-fed pigs. In weaned pigs, conflicting results have been obtained. Therefore, we hypothesised that the effects of SB (3 g/kg DM intake) depend on the period (before v. after weaning......) of its oral administration. From the age of 5 d, thirty-two pigs, blocked in quadruplicates within litters, were assigned to one of four treatments: no SB (control), SB before (for 24 d), or after (for 11-12 d) weaning and SB before and after weaning (for 35-36 d). Growth performance, feed intake...

  16. Tree growth variation in the tropical forest: understanding effects of temperature, rainfall and CO2.

    Science.gov (United States)

    Schippers, Peter; Sterck, Frank; Vlam, Mart; Zuidema, Pieter A

    2015-01-28

    Tropical forest responses to climatic variability have important consequences for global carbon cycling, but are poorly understood. As empirical, correlative studies cannot disentangle the interactive effects of climatic variables on tree growth, we used a tree growth model (IBTREE) to unravel the climate effects on different physiological pathways and in turn on stem growth variation. We parameterized the model for canopy trees of Toona ciliata (Meliaceae) from a Thai monsoon forest and compared predicted and measured variation from a tree-ring study over a 30-year period. We used historical climatic variation of minimum and maximum day temperature, precipitation and carbon dioxide (CO 2 ) in different combinations to estimate the contribution of each climate factor in explaining the inter-annual variation in stem growth. Running the model with only variation in maximum temperature and rainfall yielded stem growth patterns that explained almost 70% of the observed inter-annual variation in stem growth. Our results show that maximum temperature had a strong negative effect on the stem growth by increasing respiration, reducing stomatal conductance and thus mitigating a higher transpiration demand, and - to a lesser extent - by directly reducing photosynthesis. Although stem growth was rather weakly sensitive to rain, stem growth variation responded strongly and positively to rainfall variation owing to the strong inter-annual fluctuations in rainfall. Minimum temperature and atmospheric CO 2 concentration did not significantly contribute to explaining the inter-annual variation in stem growth. Our innovative approach - combining a simulation model with historical data on tree-ring growth and climate - allowed disentangling the effects of strongly correlated climate variables on growth through different physiological pathways. Similar studies on different species and in different forest types are needed to further improve our understanding of the sensitivity of

  17. Does Temperature and UV Exposure History Modulate the Effects of Temperature and UV Stress on Symbiodinium Growth Rates?

    Science.gov (United States)

    Temperature and ultraviolet radiation (UV) alone or in combination are known to inhibit the growth of Symbiodinium isolates. This conclusion was drawn from a number of studies having widely different exposure scenarios. Here we have examined the effects of pre-exposure acclimat...

  18. Impact of diurnal temperature fluctuations on larval settlement and growth of the reef coral Pocillopora damicornis

    Science.gov (United States)

    Jiang, Lei; Sun, You-Fang; Zhang, Yu-Yang; Zhou, Guo-Wei; Li, Xiu-Bao; McCook, Laurence J.; Lian, Jian-Sheng; Lei, Xin-Ming; Liu, Sheng; Cai, Lin; Qian, Pei-Yuan; Huang, Hui

    2017-12-01

    Diurnal fluctuations in seawater temperature are ubiquitous on tropical reef flats. However, the effects of such dynamic temperature variations on the early stages of corals are poorly understood. In this study, we investigated the responses of larvae and new recruits of Pocillopora damicornis to two constant temperature treatments (29 and 31 °C) and two diurnally fluctuating treatments (28-31 and 30-33 °C with daily means of 29 and 31 °C, respectively) simulating the 3 °C diel oscillations at 3 m depth on the Luhuitou fringing reef (Sanya, China). Results showed that the thermal stress on settlement at 31 °C was almost negated by the fluctuating treatment. Further, neither elevated temperature nor temperature fluctuations caused bleaching responses in recruits, while the maximum excitation pressure over photosystem II (PSII) was reduced under fluctuating temperatures. Although early growth and development were highly stimulated at 31 °C, oscillations of 3 °C had little effects on budding and lateral growth at either mean temperature. Nevertheless, daytime encounters with the maximum temperature of 33 °C in fluctuating 31 °C elicited a notable reduction in calcification compared to constant 31 °C. These results underscore the complexity of the effects caused by diel temperature fluctuations on early stages of corals and suggest that ecologically relevant temperature variability could buffer warming stress on larval settlement and dampen the positive effects of increased temperatures on coral growth.

  19. The effects of irradiation and temperature on the growth of Zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Kendoush, A.A.

    1987-01-01

    The growth strain was measured after irradiation for 16 Zircaloy-4 tubes of the recrystallised and stress relieved types. The operating temperature during irradiation ranged between 317 and 344 0 C. The average fast neutron fluence was 9.6x10 20 n/cm 2 . Experimental results indicated the dependence of the growth on the irradiation temperature. The stress relieved result was compared with data of the literature. (orig.)

  20. Ascertaining the potential effects of temperature on growth, survival and feeding of different juvenile clown fish

    OpenAIRE

    Vishwas Rao Methari; Thipramalai Thankappan Ajith Kumar; Mohideen Abdul Badhul Haq; Chinna Raja; Sheik Mohamed

    2015-01-01

    Objective: To determine the physiological and ecological responses of marine ornamental fishes to the change of water temperature with its potential effects on the growth, survival and feeding in clown fish. Methods: Three different sea anemone fish (Premnas biaculeatus, Amphiprion clarkii, Amphiprion akallopisos) were reared in confinement at water temperatures of 26, 28, 30, 32, and 34 °C using thermostat and they were maintained up to the marketable size, and growth, surv...

  1. Sodium fire suppression

    International Nuclear Information System (INIS)

    Malet, J.C.

    1979-01-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  2. Report of sodium cavitation

    International Nuclear Information System (INIS)

    Murai, Hitoshi; Shima, Akira; Oba, Toshisaburo; Kobayashi, Ryoji; Hashimoto, Hiroyuki

    1975-01-01

    The damage of components for LMFBRs due to sodium cavitation is serious problem. This report summarizes the following items, (1) mechanism of the incipience of sodium cavitation, (2) damage due to sodium cavitation, (3) detection method for sodium cavitation, and (4) estimation method for sodium cavitation by the comparison with water cavitation. Materials were collected from the reports on liquid metal cavitation, sodium cavitation and water cavitation published from 1965 to now. The mechanism of the incipience of sodium cavitation cavitation parameters (mean location, distributed amount or occurrence aspect and stability), experiment of causing cavitation with Venturi tube, and growth of bubbles within superheated sodium. The sodium cavitation damage was caused by magnetostriction vibration method and with Venturi tube. The state of damage was investigated with the cavitation performance of a sodium pump, and the damage was examined in view of the safety of LMFBR plants. Sodium cavitation was detected with acoustic method, radiation method, and electric method. The effect of physical property of liquid on incipient cavitation was studied. These are thermodynamic effect based on quasistatic thermal equilibrium condition and the effect of the physical property of liquid based on bubble dynamics. (Iwase, T.)

  3. High Growth Rate Hydride Vapor Phase Epitaxy at Low Temperature through Use of Uncracked Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Kevin L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Simon, John D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ptak, Aaron J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Braun, Anna [Rose-Hulman Institute of Technology

    2018-01-22

    We demonstrate hydride vapor phase epitaxy (HVPE) of GaAs with unusually high growth rates (RG) at low temperature and atmospheric pressure by employing a hydride-enhanced growth mechanism. Under traditional HVPE growth conditions that involve growth from Asx species, RG exhibits a strong temperature dependence due to slow kinetics at the surface, and growth temperatures >750 degrees C are required to obtain RG > 60 um/h. We demonstrate that when the group V element reaches the surface in a hydride, the kinetic barrier is dramatically reduced and surface kinetics no longer limit RG. In this regime, RG is dependent on mass transport of uncracked AsH3 to the surface. By controlling the AsH3 velocity and temperature profile of the reactor, which both affect the degree of AsH3 decomposition, we demonstrate tuning of RG. We achieve RG above 60 um/h at temperatures as low as 560 degrees C and up to 110 um/h at 650 degrees C. We incorporate high-RG GaAs into solar cell devices to verify that the electronic quality does not deteriorate as RG is increased. The open circuit voltage (VOC), which is a strong function of non-radiative recombination in the bulk material, exhibits negligible variance in a series of devices grown at 650 degrees C with RG = 55-110 um/h. The implications of low temperature growth for the formation of complex heterostructure devices by HVPE are discussed.

  4. Tables of thermodynamic properties of sodium

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.K.

    1982-06-01

    The thermodynamic properties of saturated sodium, superheated sodium, and subcooled sodium are tabulated as a function of temperature. The temperature ranges are 380 to 2508 K for saturated sodium, 500 to 2500 K for subcooled sodium, and 400 to 1600 K for superheated sodium. Tabulated thermodynamic properties are enthalpy, heat capacity, pressure, entropy, density, instantaneous thermal expansion coefficient, compressibility, and thermal pressure coefficient. Tables are given in SI units and cgs units.

  5. The averaged face growth rates of lysozyme crystals: the effect of temperature

    Science.gov (United States)

    Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1995-05-01

    Measurements of the averaged or macroscopic face growth rates of lysozyme crystals are reported here for the (110) face of tetragonal lysozyme, at three sets of pH and salt concentrations, with temperatures over a 4-22°C range for several protein concentrations. The growth rate trends with supersaturation were similar to previous microscopic growth rate measurements. However, it was found that at high supersaturations the growth rates attain a maximum and then start decreasing. No "dead zone" was observed but the growth rates were found to approach zero asymptotically at very low supersaturations. The growth rate data also displayed a dependence on pH and salt concentration which could not be characterized solely by the supersaturation. A complete mechanism for lysozyme crystal growth, involving the formation of an aggregate growth unit, mass transport of the growth unit to the crystal interface and faceted crystal growth by growth unit addition, is suggested. Such a mechanism may provide a more consistent explanation for the observed growth rate trends than those suggested by other investigators. The nutrient solution interactions leading to the formation of the aggregate growth unit may, thus, be as important as those occurring at the crystal interface and may account for the differences between small molecule and protein crystal growth.

  6. Novel Mechanism for Buffering Dietary Salt in Humans: Effects of Salt Loading on Skin Sodium, Vascular Endothelial Growth Factor C, and Blood Pressure.

    Science.gov (United States)

    Selvarajah, Viknesh; Mäki-Petäjä, Kaisa M; Pedro, Liliana; Bruggraber, Sylvaine F A; Burling, Keith; Goodhart, Anna K; Brown, Morris J; McEniery, Carmel M; Wilkinson, Ian B

    2017-11-01

    High dietary sodium intake triggers increased blood pressure (BP). Animal studies show that dietary salt loading results in dermal Na + accumulation and lymphangiogenesis mediated by VEGF-C (vascular endothelial growth factor C), both attenuating the rise in BP. Our objective was to determine whether these mechanisms function in humans. We assessed skin electrolytes, BP, and plasma VEGF-C in 48 healthy participants randomized to placebo (70 mmol sodium/d) and slow sodium (200 mmol/d) for 7 days. Skin Na + and K + concentrations were measured in mg/g of wet tissue and expressed as the ratio Na + :K + to correct for variability in sample hydration. Skin Na + :K + increased between placebo and slow sodium phases (2.91±0.08 versus 3.12±0.09; P =0.01). In post hoc analysis, there was a suggestion of a sex-specific effect, with a significant increase in skin Na + :K + in men (2.59±0.09 versus 2.88±0.12; P =0.008) but not women (3.23±0.10 versus 3.36±0.12; P =0.31). Women showed a significant increase in 24-hour mean BP with salt loading (93±1 versus 91±1 mm Hg; P salt, and this may be influenced by sex. © 2017 The Authors.

  7. Ambient temperature effects on growth of milkfish (Chanos chanos) at aquaculture scale in Blanakan, West Java

    Science.gov (United States)

    A'yun, Q.; Takarina, N. D.

    2017-07-01

    Growth and survival of fishes can be influenced by temperature [1]. Variation among size like weight and length could be the preference how temperature works on growth of fishes [2]. This could be key factor in determining in production as well as market demand since people like heavy and large fishes. The main purpose of this study was to determine the effects of temperature on the growth of milkfish (Chanos Chanos) on weight and length parameters in fish farms Blanakan. This study conducted to assess the optimal temperature for the growth of fish of different sizes to optimize the culture conditions for raising milkfishes in scale cultivation in Blanakan, West Java. Milkfishes were reared in the aquaculture Blanakan ponds because they can adapt very well. The weight and length of milkfishes were measured together with water temperature. The results showed the temperature min (tmin) and max (tmax) were ranged from 29-35 °C. Based on the result, there were significant differences in mean weight (p = 0.00) between temperature with the fish reared in tmax group having the lowest mean weight (99.87±11.51 g) and fish reared in tmin group having the highest mean weight (277.17±33.76 g). Likewise, the significant differences were also observed in mean length (p = 0.00) between temperature with the fish reared in tmax group having the lowest mean length (176.50±12.50 mm) and fish reared in tmin group having the highest mean length (183.60±23.86 mm). Therefore, this paper confirmed the significant effects of temperature on the fish growth reared in aquaculture ponds. More, maintaining aquaculture to lower temperature can be considered as way to keep growth of milkfish well.

  8. Growth, temperature and density relationships of North Sea cod ( Gadus morhua )

    DEFF Research Database (Denmark)

    Rindorf, Anna; Jensen, Henrik; Schrum, Corinna

    2008-01-01

    This study presents an analysis of the relationship between ambient temperature, cod density, fishing mortality, prey fish biomass, and growth of North Sea cod (Gadus morhua) as estimated from survey catches during the period from 1983 to 2006. Growth of young cod was positively related to temper...

  9. Effect of temperature on development and growth potential of axillary buds in roses

    NARCIS (Netherlands)

    Marcelis-van Acker, C.A.M.

    1995-01-01

    The effect of temperature during axillary bud formation on axillary bud development and subsequent shoot growth was investigated. Growth potential of the axillary buds was studied either in situ, by pruning the parent shoot above the bud, or in isolation, by grafting the bud or by culturing the bud

  10. Multi-level analysis of the impact of temperature and light on tomato fruit growth

    NARCIS (Netherlands)

    Okello, R.C.O.

    2015-01-01

    Keywords: cell division, endoreduplication, cell expansion, cyclin, cyclin dependent kinase, growth theory, systems biology.

    Okello, R.C.O (2015) Multi-level analysis of the impact of temperature and light on tomato fruit growth. PhD thesis, Wageningen University, Wageningen, The

  11. Growth and Low Temperature Transport Measurements of Pure and Doped Bismuth Selenide

    DEFF Research Database (Denmark)

    Mlack, Jerome Thomas

    pressure vapor-solid growth. The growth method yields a variety of nanostructures, and materials analysis shows ordered structures of bismuth selenide in all cases. Low-temperature measurements of as-grown nanostructures indicate tunable carrier density in all samples. By doping the nanostructures...

  12. Development and validation of a combined temperature, water activity, pH model for bacterial growth rate of Lactobacillus curvatus

    NARCIS (Netherlands)

    Wijtzes, T.; Rombouts, F.M.; Kant-Muermans, M.L.T.; Riet, van 't K.; Zwietering, M.H.

    2001-01-01

    A model was established to predict growth rate as a function of temperature, pH and water activity. The model is based on two, earlier developed models, one for growth rate as a function of temperature and water activity and the other for growth rate as a function of temperature and pH. Based on the

  13. Early stage of diamond growth at low temperature

    Czech Academy of Sciences Publication Activity Database

    Kromka, Alexander; Potocký, Štěpán; Čermák, Jan; Rezek, Bohuslav; Zemek, Josef; Vaněček, Milan

    2008-01-01

    Roč. 17, 7-10 (2008), s. 1252-1255 ISSN 0925-9635 R&D Projects: GA AV ČR KAN400100701; GA AV ČR KAN400100652; GA MŠk(CZ) 1M06002 Grant - others: Marie Curie RTN DRIVE(XE) MRTN-CT-2004-512224 Institutional research plan: CEZ:AV0Z10100521 Keywords : nanocrystalline diamond film * AFM * SEM * low temperature CVD Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.092, year: 2008

  14. Engineering and design properties of thallium-doped sodium iodide and selected properties of sodium-doped cesium iodide

    Science.gov (United States)

    Forrest, K.; Haehner, C.; Heslin, T.; Magida, M.; Uber, J.; Freiman, S.; Hicho, G.; Polvani, R.

    1984-01-01

    Mechanical and thermal properties, not available in the literature but necessary to structural design, using thallium doped sodium iodide and sodium doped cesium iodide were determined to be coefficient of linear thermal expansion, thermal conductivity, thermal shock resistance, heat capacity, elastic constants, ultimate strengths, creep, hardness, susceptibility to subcritical crack growth, and ingot variation of strength. These properties were measured for single and polycrystalline materials at room temperature.

  15. Influences of Temperature on Development and Survival, Reproduction and Growth of a Calanoid Copepod (Pseudodiaptomus dubia

    Directory of Open Access Journals (Sweden)

    Changling Li

    2009-01-01

    Full Text Available Pseudodiaptomus dubia is a calanoid copepod that is distributed widely in the estuarine-coastal waters of Asia and is a dominant copepod in the shrimp grow-out ponds in southern China. A laboratory culture experiment was conducted to evaluate the influences of water temperature on larval development, survival, and reproduction. Results indicate that within a temperature range from 15 to 35°C, larval development increases as the temperature increases. The water temperature for optimal larval survival rate ranges from 20 to 35°C. Longevity and egg hatching time decrease as the temperature increases from 20 to 35°C. Total fecundity and reproduction frequency increase as the water temperature increases, with the maximum at 30°C. Fecundity and reproduction frequency decrease when the temperature exceeds 30°C. Intrinsic growth rate (rm ranges from 0.168 to 0.195 at 25 to 30°C; net reproduction rate (R0 and finite growth rate (? are 163 to 264 and 1.183 to 1.215, respectively, when the temperature is greater than 20 and 35°C; population doubling time (t varies from 3.556 to 4.128 days at temperatures less than 20 and 35°C. Population generation time (T is negatively correlated with temperature, with the optimal population growth rate at 25 to 30°C.

  16. The Effect of Temperature on Leaf and Rhizome Growth Rates in the ...

    African Journals Online (AJOL)

    Growth and reproduction in seagrass is affected by environmental parameters such as temperature, salinity, tidal current and nutrients. Following the current global warming trend, ocean temperatures in Tanzania are predicted to increase by 2-4oC from current levels of 27-28oC. Changes in climate are thus likely to affect ...

  17. Effects of light and temperature on the growth rate of potentially ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... light intensity is more effective compared to temperature in excessive reproduction of the algae in its natural environment. Key words: Growth rate, light, temperature, Thalassiosira allenii, marine diatom. INTRODUCTION. Besides the significance of diatoms being the main food source of pelagic and benthic ...

  18. Effect of temperature on growth and structure of carbon nanotubes by chemical vapor deposition

    Science.gov (United States)

    Li, W. Z.; Wen, J. G.; Ren, Z. F.

    The effect of temperature on growth and structure of carbon nanotubes (NTs) using chemical vapor deposition (CVD) has been investigated. Iron embedded silica was used to grow NTs in large quantity at various temperatures from 600 to 1050 °C with gas pressure fixed at 0.6 and 760 Torr, respectively. The growth and structure of the NTs are strongly affected by the temperature. At low gas pressure, the NTs are completely hollow at low temperature and bamboo-like structure at high temperature. While at high gas pressure, all the NTs are bamboo-like structure regardless of temperature. The diameter of NTs increases significantly with temperature. At low gas pressure the diameter gets bigger by mainly increasing the number of graphene layers of the wall of NTs, whereas at high gas pressure the diameter gets bigger by increasing both the number of graphene layers of the wall and the inner diameter of the NTs. This result indicates that the growth temperature is crucial in synthesizing NTs with different structures. The findings here are important for realizing controlled growth of NTs for their applications in different fields.

  19. Effects of Elevated Ambient Temperature on Reproductive Outcomes and Offspring Growth Depend on Exposure Time

    Directory of Open Access Journals (Sweden)

    Huda Yahia Hamid

    2012-01-01

    Full Text Available Reproductive performance has been shown to be greatly affected by changes in environmental factors, such as temperature. However, it is also crucial to identify the particular stage of pregnancy that is most adversely affected by elevated ambient temperature. The aims of this study were to determine the effect on reproductive outcomes of exposure to elevated ambient temperature during different stages of pregnancy and to determine the effect of prenatal heat stress on offspring growth. Sixty pregnant rats were used in this study. The rats were divided equally into four groups as group 1 (control, group 2 (exposed to elevated temperature following implantation, group 3 (exposed to elevated temperature during pre- and periimplantation, and group 4 (exposed to elevated temperature during pre- and periimplantation and following implantation. Groups 3 and 4 had prolonged gestation periods, reduced litter sizes, and male-biased sex ratios. Moreover, the growth patterns of group 3 and 4 pups were adversely affected by prenatal exposure to elevated temperature. The differences between group 1 and group 3 and between group 1 and group 4 were highly significant. However, no significant differences were observed between groups 1 and 2 in the gestation length, sex ratios, and growth patterns. Thus, it can be concluded that exposure to elevated ambient temperature during pre- and periimplantation has stronger adverse effects on reproductive outcomes and offspring growth than postimplantation exposure.

  20. Behavior of specific heat and self diffusion coefficient of sodium near transition temperature: a molecular dynamics study

    International Nuclear Information System (INIS)

    Ahmed, N.; Khan, G.

    1990-09-01

    In this report the author used of a very useful technique of simulation and applied it to successfully for determining the various properties of sodium, both in liquid and solid phase near transition point. As a first step the determination of specific heat and diffusion coefficient have been carried out. In liquid state the molecular dynamics (MD) values calculated matched the experimental data. But in solid state the diffusion coefficient obtained were not consistent with the one expected for a solid, rather the values obtained suggested that sodium remained in liquid state even below the melting point. (A.B.)

  1. Daily changes in temperature, not the circadian clock, regulate growth rate in Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Dominick A Matos

    Full Text Available Plant growth is commonly regulated by external cues such as light, temperature, water availability, and internal cues generated by the circadian clock. Changes in the rate of growth within the course of a day have been observed in the leaves, stems, and roots of numerous species. However, the relative impact of the circadian clock on the growth of grasses has not been thoroughly characterized. We examined the influence of diurnal temperature and light changes, and that of the circadian clock on leaf length growth patterns in Brachypodium distachyon using high-resolution time-lapse imaging. Pronounced changes in growth rate were observed under combined photocyles and thermocycles or with thermocycles alone. A considerably more rapid growth rate was observed at 28°C than 12°C, irrespective of the presence or absence of light. In spite of clear circadian clock regulated gene expression, plants exhibited no change in growth rate under conditions of constant light and temperature, and little or no effect under photocycles alone. Therefore, temperature appears to be the primary cue influencing observed oscillations in growth rate and not the circadian clock or photoreceptor activity. Furthermore, the size of the leaf meristem and final cell length did not change in response to changes in temperature. Therefore, the nearly five-fold difference in growth rate observed across thermocycles can be attributed to proportionate changes in the rate of cell division and expansion. A better understanding of the growth cues in B. distachyon will further our ability to model metabolism and biomass accumulation in grasses.

  2. Growth studies of Mytilus californianus using satellite surface temperatures and chlorophyll data for coastal Oregon

    Science.gov (United States)

    Price, J.; Lakshmi, V.

    2013-12-01

    The advancement of remote sensing technology has led to better understanding of the spatial and temporal variation in many physical and biological parameters, such as, temperature, salinity, soil moisture, vegetation cover, and community composition. This research takes a novel approach in understanding the temporal and spatial variability of mussel body growth using remotely sensed surface temperatures and chlorophyll-a concentration. Within marine rocky intertidal ecosystems, temperature and food availability influence species abundance, physiological performance, and distribution of mussel species. Current methods to determine the temperature mussel species experience range from in-situ field observations, temperature loggers, temperature models, and using other temperature variables. However, since the temperature that mussel species experience is different from the air temperature due to physical and biological characteristics (size, color, gaping, etc.), it is difficult to accurately predict the thermal stresses they experience. Methods to determine food availability (chlorophyll-a concentration used as a proxy) for mussel species are mostly done at specific study sites using water sampling. This implies that analysis of temperature and food availability across large spatial scales and long temporal scales is not a trivial task given spatial heterogeneity. However, this is an essential step in determination of the impact of changing climate on vulnerable ecosystems such as the marine rocky intertidal system. The purpose of this study was to investigate the potential of using remotely sensed surface temperatures and chlorophyll-a concentration to better understand the temporal and spatial variability of the body growth of the ecologically and economically important rocky intertidal mussel species, Mytilus californianus. Remotely sensed sea surface temperature (SST), land surface temperature (LST), intertidal surface temperature (IST), chlorophyll

  3. Sodium fluxes in sweet pepper exposed to varying sodium concentrations

    NARCIS (Netherlands)

    Blom-Zandstra, M.; Vogelzang, S.A.; Veen, B.W.

    1998-01-01

    The sodium transport and distribution of sweet pepper (Capsicum annuum L.) under saline conditions were studied after transferring the plants to a sodium-free nutrient solution. Sodium stress up to 60 mM did not affect the growth of sweet pepper, as it appears able to counteract the unfavourable

  4. Determination of plant growth rate and growth temperature range from measurement of physiological parameters

    Science.gov (United States)

    R. S. Criddle; B. N. Smith; L. D. Hansen; J. N. Church

    2001-01-01

    Many factors influence species range and diversity, but temperature and temperature variability are always major global determinants, irrespective of local constraints. On a global scale, the ranges of many taxa have been observed to increase and their diversity decrease with increasing latitude. On a local scale, gradients in species distribution are observable with...

  5. Effect of elevated temperature on soil hydrothermal regimes and growth of wheat crop.

    Science.gov (United States)

    Pramanik, P; Chakrabarti, Bidisha; Bhatia, Arti; Singh, S D; Maity, A; Aggarwal, P; Krishnan, P

    2018-03-14

    An attempt has been made to study the effect of elevated temperature on soil hydrothermal regimes and winter wheat growth under simulated warming in temperature gradient tunnel (TGT). Results showed that bulk density (BDs) of 0, 0.9, and 2.5 °C were significantly different whereas BDs of 2.8 and 3.5 °C were not significantly different. Water filled pore space (WFPS) was maximum at 3.5 °C temperature rise and varied between 43.80 and 98.55%. Soil surface temperature (ST) at different dates of sowing increased with rise in sensor temperature and highest ST was observed at S5 sensors (3.5 °C temperature rise). Temperature and its difference were high for the top soil, and were stable for the deep soil. Photosynthesis rate (μmol CO 2 m -2  s -1 ) of wheat was lower at higher temperature in different growth stages of wheat. In wheat, stomatal conductance declined from 0.67 to 0.44 mol m -2  s -1 with temperature rise. Stomatal conductance decreased with increase in soil temperature and gravimetric soil moisture content (SWC). In TGT, 0 °C temperature rise showed highest root weight density (RWD) (5.95 mg cm -3 ); whereas, 2.8 and 3.5 °C showed lowest RWD (4.90 mg cm -3 ). Harvest index was maximum (0.37) with 0 °C temperature rise, and it decreased with increase in temperature, which indicated that both grain and shoot biomass decreased with increase in temperature. Intensive studies are needed to quantify the soil hydrothermal regimes inside TGT along with the crop growth parameters.

  6. Methodology for Extraction of Remaining Sodium of Used Sodium Containers

    International Nuclear Information System (INIS)

    Jung, Minhwan; Kim, Jongman; Cho, Youngil; Jeong, Jiyoung

    2014-01-01

    Sodium used as a coolant in the SFR (Sodium-cooled Fast Reactor) reacts easily with most elements due to its high reactivity. If sodium at high temperature leaks outside of a system boundary and makes contact with oxygen, it starts to burn and toxic aerosols are produced. In addition, it generates flammable hydrogen gas through a reaction with water. Hydrogen gas can be explosive within the range of 4.75 vol%. Therefore, the sodium should be handled carefully in accordance with standard procedures even though there is a small amount of target sodium remainings inside the containers and drums used for experiment. After the experiment, all sodium experimental apparatuses should be dismantled carefully through a series of draining, residual sodium extraction, and cleaning if they are no longer reused. In this work, a system for the extraction of the remaining sodium of used sodium drums has been developed and an operation procedure for the system has been established. In this work, a methodology for the extraction of remaining sodium out of the used sodium container has been developed as one of the sodium facility maintenance works. The sodium extraction system for remaining sodium of the used drums was designed and tested successfully. This work will contribute to an establishment of sodium handling technology for PGSFR. (Prototype Gen-IV Sodium-cooled Fast Reactor)

  7. The dynamics of temperature and light on the growth of phytoplankton.

    Science.gov (United States)

    Chen, Ming; Fan, Meng; Liu, Rui; Wang, Xiaoyu; Yuan, Xing; Zhu, Huaiping

    2015-11-21

    Motivated by some lab and field observations of the hump shaped effects of water temperature and light on the growth of phytoplankton, a bottom-up nutrient phytoplankton model, which incorporates the combined effects of temperature and light, is proposed and analyzed to explore the dynamics of phytoplankton bloom. The population growth model reasonably captures such observed dynamics qualitatively. An ecological reproductive index is defined to characterize the growth of the phytoplankton which also allows a comprehensive analysis of the role of temperature and light on the growth and reproductive characteristics of phytoplankton in general. The model provides a framework to study the mechanisms of phytoplankton dynamics in shallow lake and may even be employed to study the controlled phytoplankton bloom. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Study of graphene growth on copper foil by pulsed laser deposition at reduced temperature

    Science.gov (United States)

    Abd Elhamid, Abd Elhamid M.; Hafez, Mohamed A.; Aboulfotouh, Abdelnaser M.; Azzouz, Iftitan M.

    2017-01-01

    Graphene has been successfully grown on commercial copper foil at low temperature of 500 °C by pulsed laser deposition (PLD). X-ray diffraction patterns showed that films have been grown in the presence of Cu(111) and Cu(200) facets. Raman spectroscopy was utilized to study the effects of temperature, surface structure, and cooling rate on the graphene growth. Raman spectra indicate that the synthesis of graphene layers rely on the surface quality of the Cu substrate together with the proper cooling profile coupled with graphene growth temperature. PLD-grown graphene film on Cu has been verified by transmission electron microscopy. Surface mediated growth of graphene on Cu foil substrate revealed to have a favorable catalytic effect. High growth rate of graphene and less defects can be derived using fast cooling rate.

  9. Compensation for spindle’s axial thermal growth based on temperature variation on vertical machine tools

    Directory of Open Access Journals (Sweden)

    Kuo Liu

    2016-08-01

    Full Text Available A new spindle’s axial thermal growth model based on temperature variation is proposed considering the limitations of spindle’s axial thermal growth model based on rotating speed. The model based on temperature variation is thereafter derived, and its mechanism is analyzed. It is found that model based on temperature variation is more robust. In the proposed model, a filtering method for calculating error and the identification process for parameters are also presented. The environmental temperature variation error and the repeatability of thermal growth at a constant rotating speed were investigated using a drilling center. Thereafter, the thermal growths at different rotating speeds were investigated using the same drilling center. Furthermore, the thermal growth with the disturbance of cooler was investigated using a milling center. The comparison of model based on rotating speed and model based on temperature variation is simulated, and the results indicate that the robustness of model based on temperature variation for rotating speeds and disturbance of cooler is stronger than model based on rotating speed. Finally, the experimental verification is carried out.

  10. Computer simulation of temperature-dependent growth of fractal and compact domains in diluted Ising models

    DEFF Research Database (Denmark)

    Sørensen, Erik Schwartz; Fogedby, Hans C.; Mouritsen, Ole G.

    1989-01-01

    temperature are studied as functions of temperature, time, and concentration. At zero temperature and high dilution, the growing solid is found to have a fractal morphology and the effective fractal exponent D varies with concentration and ratio of time scales of the two dynamical processes. The mechanism...... responsible for forming the fractal solid is shown to be a buildup of a locally high vacancy concentration in the active growth zone. The growth-probability measure of the fractals is analyzed in terms of multifractality by calculating the f(α) spectrum. It is shown that the basic ideas of relating...... probability measures of static fractal objects to the growth-probability distribution during formation of the fractal apply to the present model. The f(α) spectrum is found to be in the universality class of diffusion-limited aggregation. At finite temperatures, the fractal solid domains become metastable...

  11. Effects of storage temperature on bacterial growth rates and community structure in fresh retail sushi.

    Science.gov (United States)

    Hoel, S; Jakobsen, A N; Vadstein, O

    2017-09-01

    This study was conducted to assess the effects of different storage temperatures (4-20°C), on bacterial concentrations, growth rates and community structure in fresh retail sushi, a popular retail product with a claimed shelf life of 2-3 days. The maximum specific growth rate based on aerobic plate count (APC) at 4°C was 0·06 h -1 and displayed a sixfold increase (0·37 h -1 ) at 20°C. Refrigeration resulted in no growth of hydrogen sulphide (H 2 S)-producing bacteria, but this group had the strongest temperature response. The bacterial community structure was determined by PCR/DGGE (denaturing gradient gel electrophoresis). Multivariate analysis based on Bray-Curtis similarities demonstrated that temperature alone was not the major determinant for the bacterial community structure. The total concentration of aerobic bacteria was the variable that most successfully explained the differences between the communities. The dominating organisms, detected by sequencing of DNA bands excised from the DGGE gel, were Brochothrix thermosphacta and genera of lactic acid bacteria (LAB). The relationship between growth rates and storage temperatures clearly demonstrates that these products are sensitive to deviations from optimal storage temperature, possibly resulting in loss of quality during shelf life. Regardless of the storage temperature, the bacterial communities converged towards a similar structure and density, but the storage temperature determined how fast the community reached its carrying capacity. Little information is available on the microbial composition of ready-to-eat food that are prepared with raw fish, subjected to contamination during handling, and susceptible to microbial growth during cold storage. Moreover, the data are a good first possibility to simulate growth of APC, H 2 S-producing bacteria and LAB under different temperature scenarios that might occur during production, distribution or storage. © 2017 The Society for Applied Microbiology.

  12. Bi-phasic growth of Listeria monocytogenes in chemically defined medium at low temperatures.

    Science.gov (United States)

    Tyrovouzis, Nikolaos A; Angelidis, Apostolos S; Stoforos, Nikolaos G

    2014-09-01

    The present work reports a novel observation regarding the growth of L. monocytogenes in modified Welshimer's broth (MWB) at low temperatures. Specifically, the direct monitoring of the growth of L. monocytogenes Scott A using plate count data revealed that the pathogen displays a bi-phasic growth pattern in MWB at 7 °C. This bi-phasic growth pattern is masked (not observed) when optical density (OD) measurements are used to monitor growth due to the inability of OD readings to detect L. monocytogenes population density increases up to 10(7) CFU/mL. This bi-phasic growth phenomenon was further investigated as a function of growth temperature (4 °C, 7 °C, 10 °C, 14 °C and 18 °C), medium composition (by altering the MWB composition by ten-fold increases in different sets of medium constituents), inoculum level (10(2), 10(3), 10(4), 10(5), 10(6), and 10(7) CFU/mL) and L. monocytogenes strain (10 strains). The growth of L. monocytogenes Scott A in MWB at 7 °C, 10 °C and 14 °C was consistently bi-phasic and independent of growth rate; at 18 °C, growth was consistently mono-phasic (single-phase, typical sigmoid growth curves), whereas no growth was observed at 4 °C. The tested modifications in the composition of MWB did not influence the bi-phasic nature of L. monocytogenes Scott A growth at 7 °C, and, overall, we could not point out any strain-, or serotype-specific effects. On the other hand, the initial inoculum level appears to affect the form of the growth curve, as there was a shift towards mono-phasic growth in trials with increasing initial inocula. A mathematical model, based on a stepwise response and described through two sequential sigmoid curves, was used to describe bi-phasic growth and estimate the kinetic parameters of L. monocytogenes growth. An alternative hypothesis, based on the assumption of the existence of two subpopulations, possessing different growth kinetics, materialized under the stress imposed on L. monocytogenes cells due to the

  13. Uniform shrub growth response to June temperature across the North Slope of Alaska

    Science.gov (United States)

    Ackerman, Daniel E.; Griffin, Daniel; Hobbie, Sarah E.; Popham, Kelly; Jones, Erin; Finlay, Jacques C.

    2018-04-01

    The expansion of woody shrubs in arctic tundra alters many aspects of high-latitude ecosystems, including carbon cycling and wildlife habitat. Dendroecology, the study of annual growth increments in woody plants, has shown promise in revealing how climate and environmental conditions interact with shrub growth to affect these key ecosystem properties. However, a predictive understanding of how shrub growth response to climate varies across the heterogeneous landscape remains elusive. Here we use individual-based mixed effects modeling to analyze 19 624 annual growth ring measurements in the stems of Salix pulchra (Cham.), a rapidly expanding deciduous shrub. Stem samples were collected at six sites throughout the North Slope of Alaska. Sites spanned four landscapes that varied in time since glaciation and hence in soil properties, such as nutrient availability, that we expected would modulate shrub growth response to climate. Ring growth was remarkably coherent among sites and responded positively to mean June temperature. The strength of this climate response varied slightly among glacial landscapes, but in contrast to expectations, this variability was not systematically correlated with landscape age. Additionally, shrubs at all sites exhibited diminishing marginal growth gains in response to increasing temperatures, indicative of alternative growth limiting mechanisms in particularly warm years, such as temperature-induced moisture limitation. Our results reveal a regionally-coherent and robust shrub growth response to early season growing temperature, with local soil properties contributing only a minor influence on shrub growth. Our conclusions strengthen predictions of changes to wildlife habitat and improve the representation of tundra vegetation dynamics in earth systems models in response to future arctic warming.

  14. Speed over efficiency: locusts select body temperatures that favour growth rate over efficient nutrient utilization

    DEFF Research Database (Denmark)

    Miller, Gabriel A; Clissold, Fiona J; Mayntz, David

    2009-01-01

    Ectotherms have evolved preferences for particular body temperatures, but the nutritional and life-history consequences of such temperature preferences are not well understood. We measured thermal preferences in Locusta migratoria (migratory locusts) and used a multi-factorial experimental design...... to investigate relationships between growth/development and macronutrient utilization (conversion of ingesta to body mass) as a function of temperature. A range of macronutrient intake values for insects at 26, 32 and 38°C was achieved by offering individuals high-protein diets, high-carbohydrate diets...... or a choice between both. Locusts placed in a thermal gradient selected temperatures near 38°C, maximizing rates of weight gain; however, this enhanced growth rate came at the cost of poor protein and carbohydrate utilization. Protein and carbohydrate were equally digested across temperature treatments...

  15. Sodium fire protection

    International Nuclear Information System (INIS)

    Raju, C.; Kale, R.D.

    1979-01-01

    Results of experiments carried out with sodium fires to develop extinguishment techniques are presented. Characteristics, ignition temperature, heat evolution and other aspects of sodium fires are described. Out of the powders tested for extinguishment of 10 Kg sodium fires, sodium bi-carbonate based dry chemical powder has been found to be the best extinguisher followed by large sized vermiculite and then calcium carbonate powders distributed by spray nozzles. Powders, however, do not extinguish large fires effectively due to sodium-concrete reaction. To control large scale fires in a LMFBR, collection trays with protective cover have been found to cause oxygen starvation better than flooding with inert gas. This system has an added advantage in that there is no damage to the sodium facilities as has been in the case of powders which often contain chlorine compounds and cause stress corrosion cracking. (M.G.B.)

  16. Growth responses to elevated temperatures and the importance of ontogenetic niche shifts in Bromeliaceae.

    Science.gov (United States)

    Müller, Lilian-Lee B; Albach, Dirk C; Zotz, Gerhard

    2018-01-01

    Epiphytic bromeliads represent a major component of Neotropical forests, but the potential effect of climate change on these plants is unclear. We investigated whether and how bromeliads are affected by the predicted 3°C temperature rise by the end of the century. We conducted growth experiments with 17 epiphytic bromeliad species at different temperatures to determine their fundamental thermal niches. By comparing those with niches for germination, we tested whether ontogenetic niche shift or niche contraction occurs in Bromeliaceae. Applying a classical growth analysis, we assessed the relative importance of the underlying growth components on interspecific variations in growth. Members of two bromeliad subfamilies differed in their response to elevated temperatures: Tillandsioideae may be negatively affected, whereas Bromelioideae moved closer to their thermal optimum. Across different ontogenetic stages, thermal niche characteristics revealed both niche shift and niche contraction. Interspecific variation in growth was driven almost exclusively by net assimilation rate at all temperatures. We conclude that the vulnerability of tropical plants to a future increase in temperature may be more variable than suggested by previous studies. We emphasize the importance of assessing niche breadth over multiple life stages and the need for better microclimatic data to link laboratory data with field conditions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. Temperature-dependent growth of Geomyces destructans, the fungus that causes bat white-nose syndrome

    Science.gov (United States)

    Verant, Michelle L.; Boyles, Justin G.; Waldrep, William; Wibbelt, Gudrun; Blehert, David S.

    2012-01-01

    White-nose syndrome (WNS) is an emergent disease estimated to have killed over five million North American bats. Caused by the psychrophilic fungus Geomyces destructans, WNS specifically affects bats during hibernation. We describe temperature-dependent growth performance and morphology for six independent isolates of G. destructans from North America and Europe. Thermal performance curves for all isolates displayed an intermediate peak with rapid decline in performance above the peak. Optimal temperatures for growth were between 12.5 and 15.8°C, and the upper critical temperature for growth was between 19.0 and 19.8°C. Growth rates varied across isolates, irrespective of geographic origin, and above 12°C all isolates displayed atypical morphology that may have implications for proliferation of the fungus. This study demonstrates that small variations in temperature, consistent with those inherent of bat hibernacula, affect growth performance and physiology of G. destructans, which may influence temperature-dependent progression and severity of WNS in wild bats.

  18. Temperature effects on recovery time of bacterial growth after rewetting dry soil.

    Science.gov (United States)

    Maienza, Anita; Bååth, Erland

    2014-11-01

    The effect of temperature on the recovery of bacterial growth after rewetting dry soil was measured in a soil that responded with bacterial growth increasing immediately upon rewetting in a linear fashion (type (i) response sensu Meisner et al. (Soil Biol Biochem 66: 188-192, 2013)). The soil was air-dried for 4 days and then rewetted at different temperatures. Bacterial growth over time was then estimated using the leucine incorporation method. At 25 °C, the recovery of bacterial growth to levels of a wet control soil was rapid, within 6 h, while at 15 °C, recovery time increased to around 60 h, becoming more than a week at 5 °C. The temperature dependency of the recovery time was well modeled by a square root function. Thus, temperature will not only directly affect growth rates but also affect length of transition periods, like resuscitation after a drying event. The temperature during the rewetting event thus has to be taken into consideration when analyzing the microbial response dynamics.

  19. Crack embryo formation before crack initiation and growth in high temperature water

    International Nuclear Information System (INIS)

    Arioka, Koji; Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki

    2008-01-01

    Crack growth measurements were performed in high temperature water and in air to examine the role of creep on IGSCC growth using cold rolled non-sensitized Type316(UNS S31600), TT690 alloy, MA600 alloy, and Carbon steel (STPT42). In addition, crack initiation tests were performed also in high temperature water and in air using specially designed CT specimen. The obtained major results are as follows: (1) TT690 did crack in intergranularly in hydrogenated high temperature water if material is cold worked in heavily. (2) Cold worked carbon steel also cracked in intergranularly in dearated high temperature water. (3) Intergranular crack growth was recognized on cold worked 316, TT690, MA600, and carbon steel even in air which might be crack embryo of IGSCC. (4) Simple Arrhenius type temperature dependence was observed on IGSCC in high temperature water and creep crack growth in air. This suggested that intergranular crack growth rate was determined by some thermal activated reaction. (5) Vacancy condensation was recognized at just ahead of the crack tips of IGSCC and creep crack of cold worked steel. This showed that IGSCC and creep crack growth was controlled by same mechanism. (6) Clear evidence of vacancies condensation was recognized at just beneath the surface before crack initiation. This proved that crack did initiate as the result of diffusion of vacancies in the solid. And the incubation time seems to be controlled by the required time for the condensation of vacancies to the stress concentrated zone. (7) Diffusion of subsituational atoms was also driven by stress gradient. This is the important knowledge to evaluate the SCC initiation after long term operation in LWR's. Based on the observed results, IGSCC initiation and growth mechanism were proposed considering the diffusion process of cold worked induced vacancies. (author)

  20. Effects of incubation temperature on growth and performance of the veiled chameleon (Chamaeleo calyptratus).

    Science.gov (United States)

    Andrews, Robin M

    2008-10-01

    I evaluated the effect of incubation temperature on phenotypes of the veiled chameleon, Chamaeleo calyptratus. I chose this species for study because its large clutch size (30-40 eggs or more) allows replication within clutches both within and among experimental treatments. The major research objectives were (1) to assess the effect of constant low, moderate, and high temperatures on embryonic development, (2) to determine whether the best incubation temperature for embryonic development also produced the "best" hatchlings, and (3) to determine how a change in incubation temperature during mid-development would affect phenotype. To meet these objectives, I established five experimental temperature regimes and determined egg survival and incubation length and measured body size and shape, selected body temperatures, and locomotory performance of lizards at regular intervals from hatching to 90 d, or just before sexual maturity. Incubation temperature affected the length of incubation, egg survival, and body mass, but did not affect sprint speed or selected body temperature although selected body temperature affected growth in mass independently of treatment and clutch. Incubation at moderate temperatures provided the best conditions for both embryonic and post-hatching development. The highest incubation temperatures were disruptive to development; eggs had high mortality, developmental rate was low, and hatchlings grew slowly. Changes in temperature during incubation increased the among-clutch variance in incubation length relative to that of constant temperature treatments. Copyright 2008 Wiley-Liss, Inc.

  1. Seed Germination and Early Growth Responses of Hyssop, Sweet Basil and Oregano to Temperature Levels

    Directory of Open Access Journals (Sweden)

    Sajad MIJANI

    2013-12-01

    Full Text Available The objectives of this survey were to determine the effect of temperature on germination and seedling growth of Hyssop (Hyssopus officinalis L., Sweet basil (Ocimum basilicum L. and Oregano (Origanum vulgare L. (Lamiaceae family as well as comparing species regarding germination behavior and growth characteristics. Seeds were germinated on a temperature-gradient bar varying between 5 and 40 °C (with 5 °C intervals. Results indicated that the highest germination percentage of hyssop (92-98%, sweet basil (86-90% and oregano (74-77% occurred at 20-30 °C, 25-30 °C and 20-30 °C, respectively; therefore, moderate and warm temperatures are proper for germination of all species. In all species the maximum germination rate obtained at 30 °C. Among all species, Day 10 % of Sweet basil Germination had the lowest value, which indicates faster germination. The cardinal temperatures (base, optimum and ceiling or maximum were estimated by the segmented model. Base temperature (Tb was calculated for hyssop, sweet basil and oregano as 3.42, 5.70 and 5.46 °C, respectively. Optimal temperature (To calculated for all species was approximately 30°C, So warmer temperatures are much more proper for them. The species showed different maximum temperatures (Tm from 42.91 (Oregano to 48.05 °C (Hyssop. In Hyssop and Sweet basil optimum growth of seedlings were observed at 30°C while Oregano reached its best growth at 25°C. The difference between maximum and minimum temperatures of germination knowing as temperature range (TR index could show adaptation capability to broad sites for planting and domestication. Regarding this index Hyssop stood in the first place.

  2. Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO₂.

    Directory of Open Access Journals (Sweden)

    Scarlett Sett

    Full Text Available Increasing atmospheric CO₂ concentrations are expected to impact pelagic ecosystem functioning in the near future by driving ocean warming and acidification. While numerous studies have investigated impacts of rising temperature and seawater acidification on planktonic organisms separately, little is presently known on their combined effects. To test for possible synergistic effects we exposed two coccolithophore species, Emiliania huxleyi and Gephyrocapsa oceanica, to a CO₂ gradient ranging from ∼0.5-250 µmol kg⁻¹ (i.e. ∼20-6000 µatm pCO₂ at three different temperatures (i.e. 10, 15, 20°C for E. huxleyi and 15, 20, 25°C for G. oceanica. Both species showed CO₂-dependent optimum-curve responses for growth, photosynthesis and calcification rates at all temperatures. Increased temperature generally enhanced growth and production rates and modified sensitivities of metabolic processes to increasing CO₂. CO₂ optimum concentrations for growth, calcification, and organic carbon fixation rates were only marginally influenced from low to intermediate temperatures. However, there was a clear optimum shift towards higher CO₂ concentrations from intermediate to high temperatures in both species. Our results demonstrate that the CO₂ concentration where optimum growth, calcification and carbon fixation rates occur is modulated by temperature. Thus, the response of a coccolithophore strain to ocean acidification at a given temperature can be negative, neutral or positive depending on that strain's temperature optimum. This emphasizes that the cellular responses of coccolithophores to ocean acidification can only be judged accurately when interpreted in the proper eco-physiological context of a given strain or species. Addressing the synergistic effects of changing carbonate chemistry and temperature is an essential step when assessing the success of coccolithophores in the future ocean.

  3. Temperature acclimation of growth, photosynthesis and respiration in two mesophilic phytoplankton species

    DEFF Research Database (Denmark)

    Stæhr, P. A.; Birkeland, M. J.

    2006-01-01

    . aeruginosa showed the same overall pattern of metabolic acclimation to increasing temperatures: (1) overall higher GP and NP but lower R; (2) increasing optimum temperatures for GP, NP and R and (3) higher metabolic rates at supraoptimal temperatures. Microcystis aeruginosa showed several warm-loving traits....... It was more sensitive to increasing temperatures (higher Q10 values), had higher metabolic rates and optimum temperatures and performed better at high incubation temperatures than S. acutus did. This study shows that phytoplankton have a considerable and rapid ability to adjust cellular physiology, metabolism......Temperature acclimation in two mesophilic microalgae, Microcystis aeruginosa (Cyanobacteriales) and Scenedesmus acutus (Chlorococcales), was studied by measuring growth rate, photosynthesis, respiration, cell size, cellular pigment content and Chl a-specific light absorption. Phytoplankton were...

  4. Increased Temperatures Have Dramatic Effects on Growth and Grain Yield of Three Maize Hybrids

    Directory of Open Access Journals (Sweden)

    Jerry L. Hatfield

    2016-02-01

    Full Text Available Rising temperatures under climate change are projected to have negative impacts on crop growth and production. These conclusions are not based on direct observations but on projected model results. A study conducted comparing normal seasonal temperatures (1980–2010 for Ames, IA, to a normal + 4°C environment with the same water vapor deficit evaluated the impacts of temperature on maize ( L. development and production. The rate of phenological development increased at higher temperatures; however, the relationship of leaf collar and leaf tip appearance to growing degree days was the same between temperature regimes. There was no effect on total leaf area or vegetative dry matter production, but grain yields decreased from 84 to 100% because of exposure to high nighttime temperatures and disruption of the pollination process as evidenced by the large reduction in kernels per ear. Projected increases in temperature will negatively affect grain production and threaten food security.

  5. Comparison of Simulated Stem Temperatures and Observed Air Temperatures with Observed Stem Growth in Forest Openings

    Science.gov (United States)

    Brian E. Potter; Terry Strong

    2002-01-01

    Phenology, the study of how plant or animal developmental stages relate to the organism's surrounding climate, is a well established discipline with roots dating back more than 2000 years (Hopp and Blair, 1973). For example, correlations are often noted between budbreak or first blossom and integrated air temperature (commonly referred to as heat sums.) The...

  6. Nucleation and droplet growth from supersaturated vapor at temperatures below the triple point temperature

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2016-01-01

    nucleation without the use of a thermostat. The simulations of homogeneous nucleation in a Lennard-Jones system from supersaturated vapor at temperatures below Ttr.p. reveals that the nucleation to a liquid-like critical nucleus is initiated by a small cold cluster [S. Toxvaerd, J. Chem. Phys. \\textbf{143...

  7. Wood chip mulch thickness effects on soil water, soil temperature, weed growth, and landscape plant growth

    Science.gov (United States)

    Wood chip mulches are used in landscapes to reduce soil water evaporation and competition from weeds. A study was conducted over a three-year period to determine soil water content at various depths under four wood chip mulch treatments and to evaluate the effects of wood chip thickness on growth of...

  8. The effects of dietary kefir and low molecular weight sodium alginate on serum immune parameters, resistance against Streptococcus agalactiae and growth performance in Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Van Doan, Hien; Hoseinifar, Seyed Hossein; Tapingkae, Wanaporn; Khamtavee, Pimporn

    2017-03-01

    The present study evaluates the effects of dietary kefir and low molecular weight sodium alginate (LWMSA) (singular or combined) on non-specific immune response, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus). Fish with average weight of 18.60 ± 0.04 g were supplied and randomly stocked in sixteen glass tanks (150 L) at density of 20 fish per tank. Fish were fed experimental diets as follows: 0 g kg -1 LMWSA (Control, Diet 1), 10 g kg -1 LMWSA (Diet 2), 40 g kg -1 kefir (Diet 3), and 10 g kg -1 LMWSA + 40 g kg -1 kefir (Diet 4) for 50 days. At the end of the feeding trial, serum lysozyme (SL), phagocytosis (PI), respiratory burst (RB), and alternative complement (ACH50) activities as well as growth performance were measured. Singular and combined administration of kefir and low molecular weight sodium alginate (LMWSA) significantly increased serum SL, PI, RB, and ACH50 activities compared control group (P kefir + LMWSA) (P kefir and LMWSA can be considered for improving immune response, disease resistance and growth performance of Nile tilapia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Growth Performance, Carcass Traits and Serum Mineral Chemistry as Affected by Dietary Sodium and Sodium Salts Fed to Broiler Chickens Reared under Phase Feeding System

    Directory of Open Access Journals (Sweden)

    M. M. H. Mushtaq

    2013-12-01

    Full Text Available A basal diet (0.8 g/kg dNa was formulated in which each of the two sources (NaHCO3 and Na2SO4 were supplemented in such a way to attain four levels (1.7, 2.6, 3.5, and 4.4 g/kg of total dNa, respectively, under 4×2 factorial arrangement. Eight dietary treatments were replicated four times, with 40 birds in each replicate (n = 1,280. The diets supplemented with Na2SO4 to attain higher levels of dNa showed highest BW gain and feed intake (FI during d 1 to 10 (interaction effects while 2.6 g/kg dNa exhibited improved BW gain and gain:feed (FG during d 11 to 20. Linear rise in daily water intake (DWI was associated with diets containing increasing dNa during d 1 to 42 (p≤0.036. During the first 10 d, DWI:FI was found highest in NaHCO3 diets while Na2SO4 diets showed highest DWI:FI during last 10 d of the experiment (p≤0.036. Increasing dNa and changing Na2SO4 with NaHCO3 salt increased pH and resulted in poor growth performance. Dressing weight (p≤0.001 and abdominal fat (p≤0.001; quadratic effect were reduced, whereas breast (p≤0.001 and thigh (p<0.001 weights were aggravated with increasing dNa (linear effects. Present findings suggested higher levels of dNa from Na2SO4 as the supplemental salt in broiler diets would produce better growth performance, especially in first ten days of life, and improve carcass and body organ characteristics.

  10. Global warming and coral reefs: modelling the effect of temperature on Acropora palmata colony growth.

    Science.gov (United States)

    Crabbe, M James C

    2007-08-01

    Data on colony growth of the branching coral Acropora palmata from fringing reefs off Discovery Bay on the north coast of Jamaica have been obtained over the period 2002-2007 using underwater photography and image analysis by both SCUBA and remotely using an ROV incorporating twin lasers. Growth modelling shows that while logarithmic growth is an approximate model for growth, a 3:3 rational polynomial function provides a significantly better fit to growth data for this coral species. Over the period 2002-2007, involving several cycles of sea surface temperature (SST) change, the rate of growth of A. palmata was largely proportional to rate of change of SST, with R(2)=0.935. These results have implications for the influence of global warming and climate change on coral reef ecosystems.

  11. Experimental determination of local temperature field variations due to spacer grids in the cladding tubes of a rod cluster flowed through by sodium

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.

    1978-01-01

    If spacer grids are used to keep the fuel rods in their places - as in the fuel elements of the SNR series, exact tests are necessary to find out whether and to what extent temperature peaks near the supporting points affect cladding tube design. To clarify this special problem, experimental investigations have been carried out for the first time in a rod cluster model of the SNR-300 fuel element cross-flowed with sodium. The investigations and findings so far are reported on. (orig./RW) [de

  12. Concentration and application order effects of sodium benzoate and eugenol mixtures on the growth inhibition of Saccharomyces cerevisiae and Zygosaccharomyces bailii.

    Science.gov (United States)

    Dai, Yumei; McLandsborough, Lynne A; Weiss, Jochen; Peleg, Micha

    2010-09-01

    Growth of Saccharomyces cerevisiae and Zygosaccharomyces bailii cells was monitored in the presence of sodium benzoate and eugenol alone or combined. The two antimicrobials' concentration, addition order, and timing were varied to determine and quantify any additive inhibitory effect on the yeasts. The yeast growth was also followed in the presence of ethanol, which served as solubilizer, at pertinent concentrations. The growth patterns are depicted as adjusted optical density compared with time curves. They all had sigmoid shape, described mathematically by a shifted logistic model that had an almost perfect fit to the data. The model's 3 parameters accounted for the curve's asymptote, the location of its inflection point and slope, which are rough measures of the overall growth level and its degree of suppression, the time to reach the peak growth rate and its retardation, and the overall growth rate, respectively. Maximum growth inhibition was achieved when the sodium benzoate and eugenol were administered together or alone in full dose. When each was administered alone but in 2 half dose additions, their efficacy dropped. When they were used together but added sequentially with a 24 h pause, their administration order had a noticeable effect on the treatment's efficacy, which depended on their respective concentrations. These observations are presented in a slightly modified version of the "hurdle" ideogram. They suggest that sequencing the administration of antimicrobials can be a simple tool to probe their mode of activity and quantify their efficacy. Reducing the amount of additives in foods is a goal pursued by many branches of the food industry. In microbial growth suppression, a promising way to accomplish such a reduction is through the administration of 2 or more antimicrobials, preferably natural, exploiting their synergism. To search for effective combinations, in respect to type and concentration, one needs an insight into their mode of activity

  13. Temperature modulates dengue virus epidemic growth rates through its effects on reproduction numbers and generation intervals.

    Science.gov (United States)

    Siraj, A. S.; Oidtman, R. J.; Huber, J. H.; Kraemer, M. U.; Brady, O. J.; Johansson, M. A.; Perkins, T. A.

    2017-12-01

    Epidemic growth rate, r, provides a more complete description of the potential for epidemics than the more commonly studied basic reproduction number, R0, yet the former has never been described as a function of temperature for dengue virus or other pathogens with temperature-sensitive transmission. The need to understand the drivers of epidemics of these pathogens is acute, with arthropod-borne virus epidemics becoming increasingly problematic. We addressed this need by developing temperature-dependent descriptions of the two components of r—R0 and the generation interval—to obtain a temperature-dependent description of r. Our results show that the generation interval is highly sensitive to temperature, decreasing twofold between 25 and 35 °C and suggesting that dengue virus epidemics may accelerate as temperatures increase, not only because of more infections per generation but also because of faster generations. Under the empirical temperature relationships that we considered, we found that r peaked at a temperature threshold that was robust to uncertainty in model parameters that do not depend on temperature. Although the precise value of this temperature threshold could be refined following future studies of empirical temperature relationships, the framework we present for identifying such temperature thresholds offers a new way to classify regions in which dengue virus epidemic intensity could either increase or decrease under future climate change.

  14. Increases in plasma sheet temperature with solar wind driving during substorm growth phases

    Science.gov (United States)

    Forsyth, C; Watt, C E J; Rae, I J; Fazakerley, A N; Kalmoni, N M E; Freeman, M P; Boakes, P D; Nakamura, R; Dandouras, I; Kistler, L M; Jackman, C M; Coxon, J C; Carr, C M

    2014-01-01

    During substorm growth phases, magnetic reconnection at the magnetopause extracts ∼1015 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase. PMID:26074645

  15. Growth and photosynthesis of Chlorella strains from polar, temperate and tropical freshwater environments under temperature stress

    Science.gov (United States)

    Lee, Kok-Keong; Lim, Phaik-Eem; Poong, Sze-Wan; Wong, Chiew-Yen; Phang, Siew-Moi; Beardall, John

    2017-09-01

    Elevated temperatures as a consequence of global warming have significant impacts on the adaptation and survival of microalgae which are important primary producers in many ecosystems. The impact of temperature on the photosynthesis of microalgae is of great interest as the primary production of algal biomass is strongly dependent on the photosynthetic rates in a dynamic environment. Here, we examine the effects of elevated temperature on Chlorella strains originating from different latitudes, namely Antarctic, Arctic, temperate and tropical regions. Chlorophyll fluorescence was used to assess the photosynthetic responses of the microalgae. Rapid light curves (RLCs) and maximum quantum yield (F v/F m) were recorded. The results showed that Chlorella originating from different latitudes portrayed different growth trends and photosynthetic performance. The Chlorella genus is eurythermal, with a broad temperature tolerance range, but with strain-specific characteristics. However, there was a large overlap between the tolerance range of the four strains due to their "eurythermal adaptivity". Changes in the photosynthetic parameters indicated temperature stress. The ability of the four strains to reactivate photosynthesis after inhibition of photosynthesis under high temperatures was also studied. The Chlorella strains were shown to recover in terms of photosynthesis and growth (measured as Chl a) when they were returned to their ambient temperatures. Polar strains showed faster recovery in their optimal temperature compared to that under the ambient temperature from which they were isolated.

  16. Effect of water activity and temperature on the growth of Eurotium species isolated from animal feeds.

    Science.gov (United States)

    Greco, Mariana; Pardo, Alejandro; Pose, Graciela; Patriarca, Andrea

    Xerophilic fungi represent a serious problem due to their ability to grow at low water activities causing the spoiling of low and intermediate moisture foods, stored goods and animal feeds, with the consequent economic losses. The combined effect of water activity and temperature of four Eurotium species isolated from animal feeds was investigated. Eurotium amstelodami, Eurotium chevalieri, Eurotium repens and Eurotium rubrum were grown at 5, 15, 25, 37 and 45°C on malt extract agar adjusted with glycerol in the range 0.710-0.993 of water activities. The cardinal model proposed by Rosso and Robinson (2001) was applied to fit growth data, with the variable water activity at fixed temperatures, obtaining three cardinal water activities (a wmin , a wmax , a wopt ) and the specific growth rate at the optimum a w (μ opt ). A probabilistic model was also applied to define the interface between growth and no-growth. The cardinal model provided an adequate estimation of the optimal a w to grow and the maximum growth rate. The probabilistic model showed a good performance to fit growth/no-growth cases in the predicted range. The results presented here could be applied to predict Eurotium species growth in animal feeds. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. The low-temperature- and salt-induced RCI2A gene of Arabidopsis complements the sodium sensitivity caused by a deletion of the homologous yeast gene SNA1.

    Science.gov (United States)

    Nylander, M; Heino, P; Helenius, E; Palva, E T; Ronne, H; Welin, B V

    2001-02-01

    Two closely related, tandemly arranged, low-temperature- and salt-induced Arabidopsis genes, corresponding to the previously isolated cDNAs RCI2A and RCI2B, were isolated and characterized. The RCI2A transcript accumulated primarily in response to low temperature or high salinity, and to a lesser extent in response to ABA treatment or water deficit stress. The RCI2B transcript was present at much lower levels than RCI2A, and could only be detected by reverse transcription-PCR amplification. The predicted 6 kDa RCI2 proteins are highly hydrophobic and contain two putative membrane-spanning regions. The polypeptides exhibit extensive similarity to deduced low-temperature- and/or salt-induced proteins from barley, wheat grass and strawberry, and to predicted proteins from bacteria, fungi, nematodes and yeast. Interestingly, we found that a deletion of the RCI2 homologous gene, SNA1 (YRD276c), in yeast causes a salt-sensitive phenotype. This effect is specific for sodium, since no growth defect was observed for the sna1 mutant on 1.7 M sorbitol, 1 M KCl or 0.6 M LiCl. Finally, we found that the Arabidopsis RCI2A cDNA can complement the sna1 mutant when expressed in yeast, indicating that the plant and yeast proteins have similar functions during high salt stress.

  18. High growth rate hydride vapor phase epitaxy at low temperature through use of uncracked hydrides

    Science.gov (United States)

    Schulte, Kevin L.; Braun, Anna; Simon, John; Ptak, Aaron J.

    2018-01-01

    We demonstrate hydride vapor phase epitaxy (HVPE) of GaAs with unusually high growth rates (RG) at low temperature and atmospheric pressure by employing a hydride-enhanced growth mechanism. Under traditional HVPE growth conditions that involve growth from Asx species, RG exhibits a strong temperature dependence due to slow kinetics at the surface, and growth temperatures >750 °C are required to obtain RG > 60 μm/h. We demonstrate that when the group V element reaches the surface in a hydride, the kinetic barrier is dramatically reduced and surface kinetics no longer limit RG. In this regime, RG is dependent on mass transport of uncracked AsH3 to the surface. By controlling the AsH3 velocity and temperature profile of the reactor, which both affect the degree of AsH3 decomposition, we demonstrate tuning of RG. We achieve RG above 60 μm/h at temperatures as low as 560 °C and up to 110 μm/h at 650 °C. We incorporate high-RG GaAs into solar cell devices to verify that the electronic quality does not deteriorate as RG is increased. The open circuit voltage (VOC), which is a strong function of non-radiative recombination in the bulk material, exhibits negligible variance in a series of devices grown at 650 °C with RG = 55-110 μm/h. The implications of low temperature growth for the formation of complex heterostructure devices by HVPE are discussed.

  19. Evidence that higher CO2 increases tree growth sensitivity to temperature: a comparison of modern and paleo oaks

    Science.gov (United States)

    Aim: To test the growth-sensitivity to temperature under different ambient CO2 concentrations, we determined paleo tree growth rates as they relate to variation in temperature during the last deglacial period, and compare these to modern tree growth rates as they relate to spatia...

  20. Correlation of growth with solar radiation and air temperature on potted miniature rose

    International Nuclear Information System (INIS)

    Yu, W.; Arai, K.; Kato, K.; Imaida, K.; Nishimura, N.; Li, L.; Fukui, H.

    2006-01-01

    To establish systematic year-round production of potted miniature rose, rose growth and environmental factors such as solar radiation and air temperature were investigated for one year and the relationships of growth to these factors were analyzed. The period from the start to end of cultivation was longer in order of summer, spring and autumn cultivation. Leaf area, fresh weight of leaf and plant, leaf number and plant height as response variables were analyzed to explain the relation to environmental factors as explanatory variables using multiple linear regression analysis. The cumulative daily mean solar radiation, cumulative daytime and nighttime temperature within explanatory variables were significant main explanatory variables. Rose growth factors; leaf area, fresh weight of leaf and plant, leaf number and plant height showed close correlation with three environmental factors, respectively. Rose growth factors demonstrated significant multiple linear regressions using three environmental factors, and the parameters in multiple linear regression equations were also significant. Therefore, we demonstrated that the rose growth could be predicted using cumulative daily mean solar radiation, cumulative daytime and nighttime temperature and could be controlled by changing solar radiation and temperature

  1. Metabolic efficiency in yeast Saccharomyces cerevisiae in relation to temperature dependent growth and biomass yield.

    Science.gov (United States)

    Zakhartsev, Maksim; Yang, Xuelian; Reuss, Matthias; Pörtner, Hans Otto

    2015-08-01

    Canonized view on temperature effects on growth rate of microorganisms is based on assumption of protein denaturation, which is not confirmed experimentally so far. We develop an alternative concept, which is based on view that limits of thermal tolerance are based on imbalance of cellular energy allocation. Therefore, we investigated growth suppression of yeast Saccharomyces cerevisiae in the supraoptimal temperature range (30-40°C), i.e. above optimal temperature (Topt). The maximal specific growth rate (μmax) of biomass, its concentration and yield on glucose (Yx/glc) were measured across the whole thermal window (5-40°C) of the yeast in batch anaerobic growth on glucose. Specific rate of glucose consumption, specific rate of glucose consumption for maintenance (mglc), true biomass yield on glucose (Yx/glc(true)), fractional conservation of substrate carbon in product and ATP yield on glucose (Yatp/glc) were estimated from the experimental data. There was a negative linear relationship between ATP, ADP and AMP concentrations and specific growth rate at any growth conditions, whilst the energy charge was always high (~0.83). There were two temperature regions where mglc differed 12-fold, which points to the existence of a 'low' (within 5-31°C) and a 'high' (within 33-40°C) metabolic mode regarding maintenance requirements. The rise from the low to high mode occurred at 31-32°C in step-wise manner and it was accompanied with onset of suppression of μmax. High mglc at supraoptimal temperatures indicates a significant reduction of scope for growth, due to high maintenance cost. Analysis of temperature dependencies of product formation efficiency and Yatp/glc revealed that the efficiency of energy metabolism approaches its lower limit at 26-31°C. This limit is reflected in the predetermined combination of Yx/glc(true), elemental biomass composition and degree of reduction of the growth substrate. Approaching the limit implies a reduction of the safety margin

  2. Varying temperature and silicon content in nanodiamond growth: effects on silicon-vacancy centres.

    Science.gov (United States)

    Choi, Sumin; Leong, Victor; Davydov, Valery A; Agafonov, Viatcheslav N; Cheong, Marcus W O; Kalashnikov, Dmitry A; Krivitsky, Leonid A

    2018-02-28

    Nanodidamonds containing colour centres open up many applications in quantum information processing, metrology, and quantum sensing. However, controlling the synthesis of nanodiamonds containing silicon vacancy (SiV) centres is still not well understood. Here we study nanodiamonds produced by a high-pressure high-temperature method without catalyst metals, focusing on two samples with clear SiV signatures. Different growth temperatures and relative content of silicon in the initial compound between the samples altered their nanodiamond size distributions and abundance of SiV centres. Our results show that nanodiamond growth can be controlled and optimised for different applications.

  3. Germination response of Ajowan, Fennel and Dill to osmotic potential of sodium chloride and polyethylene glycol 6000 in different temperature regimes

    Directory of Open Access Journals (Sweden)

    zinat booroomand zade

    2009-06-01

    Full Text Available In order to study the germination response of three medicinal plants’ seeds, Ajowan (Trachyspermum ammi, Fennel (Foeniculum vulgare and Dill (Anethum graveolens to osmotic potential of sodium chloride and polyethylene glycol 6000 under different temperature regimes, two separate experiments were carried out in a factorial arrangement based on completely randomized design with three replications. Levels of temperatures were 5, 10, 15, 20, 25, 30 and 35ºC and osmotic potential with four levels of (0, -5, -10 and -15 bars. Results indicated that the effects of species, temperature and osmotic potential and also interactions of species and temperature with stress were significant. Germination rate and percentage and also length of radicle and plumule were decreased as stress intensity increased. Optimum temperature for germination percentage was 15ºC and for germination rate, length of radicle and plumule was 20ºC. Ajowan and dill seeds showed the highest and lowest resistance to temperature change and osmotic potential. Water deficit had more inhibitory effects on germination rate and percentage and -15 bar caused complete failure in germination. Effect of salinity was more pronounced on length of radicle and plumule compared with the effects of water deficit. In both drought and salinity percentage reduction for plumule length was higher which indicate the higher sensitivity of this trait to stress in comparison with radicle length.

  4. Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Pizarra, Francisco J.; Jewett, Michael Christopher; Nielsen, Jens

    2008-01-01

    exhibited higher fermentation rates. To elucidate mechanistic differences controlling the growth temperature response and underlying adaptive mechanisms between the strains, DNA microarrays and targeted metabolome analysis were used. We identified 1,007 temperature-dependent genes and 473 strain......-dependent genes. The transcriptional response was used to identify highly correlated gene expression subnetworks within yeast metabolism. We showed that temperature differences most strongly affect nitrogen metabolism and the heat shock response. A lack of stress response element-mediated gene induction, coupled...... environmental conditions and the organoleptic properties that they confer to wine. Here, we used a two-factor design to study the responses of a standard laboratory strain, CEN.PK113-7D, and an industrial wine yeast strain, EC1118, to growth temperatures of 15 degrees C and 30 degrees C in nitrogen...

  5. Microzooplankton growth rates examined across a temperature gradient in the Barents Sea.

    Science.gov (United States)

    Franzè, Gayantonia; Lavrentyev, Peter J

    2014-01-01

    Growth rates (µ) of abundant microzooplankton species were examined in field experiments conducted at ambient sea temperatures (-1.8-9.0°C) in the Barents Sea and adjacent waters (70-78.5°N). The maximum species-specific µ of ciliates and athecate dinoflagellates (0.33-1.67 d(-1) and 0.52-1.14 d(-1), respectively) occurred at temperatures below 5°C and exceeded the µmax predicted by previously published, laboratory culture-derived equations. The opposite trend was found for thecate dinoflagellates, which grew faster in the warmer Atlantic Ocean water. Mixotrophic ciliates and dinoflagellates grew faster than their heterotrophic counterparts. At sub-zero temperatures, microzooplankton µmax matched those predicted for phytoplankton by temperature-dependent growth equations. These results indicate that microzooplankton protists may be as adapted to extreme Arctic conditions as their algal prey.

  6. Evidence for Divergent Evolution of Growth Temperature Preference in Sympatric Saccharomyces Species

    Science.gov (United States)

    Gonçalves, Paula; Valério, Elisabete; Correia, Cláudia; de Almeida, João M. G. C. F.; Sampaio, José Paulo

    2011-01-01

    The genus Saccharomyces currently includes eight species in addition to the model yeast Saccharomyces cerevisiae, most of which can be consistently isolated from tree bark and soil. We recently found sympatric pairs of Saccharomyces species, composed of one cryotolerant and one thermotolerant species in oak bark samples of various geographic origins. In order to contribute to explain the occurrence in sympatry of Saccharomyces species, we screened Saccharomyces genomic data for protein divergence that might be correlated to distinct growth temperature preferences of the species, using the dN/dS ratio as a measure of protein evolution rates and pair-wise species comparisons. In addition to proteins previously implicated in growth at suboptimal temperatures, we found that glycolytic enzymes were among the proteins exhibiting higher than expected divergence when one cryotolerant and one thermotolerant species are compared. By measuring glycolytic fluxes and glycolytic enzymatic activities in different species and at different temperatures, we subsequently show that the unusual divergence of glycolytic genes may be related to divergent evolution of the glycolytic pathway aligning its performance to the growth temperature profiles of the different species. In general, our results support the view that growth temperature preference is a trait that may have undergone divergent selection in the course of ecological speciation in Saccharomyces. PMID:21674061

  7. Silicon thin film growth by low temperature liquid phase epitaxy for photovoltaic applications

    International Nuclear Information System (INIS)

    Abdo, F.

    2007-03-01

    In this thesis is presented an economic, clean and innovating way to carry out silicon substrate in thin layer for photovoltaic applications. It is based on layer growth by low temperature liquid phase epitaxy on silicon substrates embrittled by ion implantation. The aim of this work is to find experimental conditions to decrease the epitaxy temperature (≤800 C instead of 1050 C) while conserving a relatively high growth velocity. An innovating method has been implemented; it consists to use two different baths: the first one Al-Sn-Si allows to de-oxidize the silicon substrate surface without using hydrogen and the second one containing Sn-Si allows the growth of a thick layer of silicon. Uniform layers of a thickness of 15μm have been obtained after three hours of growth. Thermodynamic studies exploiting the phase diagrams of ternary or quaternary mixtures have been carried out to reach high growth velocity. Tin and copper based alloys have been chosen, tin for lowering the temperature and copper for increasing the silicon solubility. Layers of 30 μm have been obtained after two hours of growth. It has been shown too that this epitaxy step could be compatible with the technology of ion implantation embrittlement. (O.M.)

  8. Temperature-dependent respiration-growth relations in ancestral maize cultivars

    Science.gov (United States)

    Bruce N. Smith; Jillian L. Walker; Rebekka L. Stone; Angela R. Jones; Lee D. Hansen

    2001-01-01

    Shoots from 4- to 6-day old seedlings of seven ancestral or old cultivars of Zea mays L. were placed in a calorimeter. Dark metabolic heat rate (q) and CO2 production rate (RCO2) were measured at nine temperatures (5, 10, 15, 20, 25, 30, 35, 40, and 45 °C). Temperature dependencies of q and RCO2 were used to model response of both growth and substrate carbon conversion...

  9. Drought-induced weakening of growth-temperature associations in high-elevation Iberian pines

    Czech Academy of Sciences Publication Activity Database

    Diego Galvan, J.; Büntgen, Ulf; Ginzler, Ch.; Grudd, H.; Gutierrez, E.; Labuhn, I.; Julio Camarero, J.

    2015-01-01

    Roč. 124, JAN (2015), s. 95-106 ISSN 0921-8181 Institutional support: RVO:67179843 Keywords : tree-ring chronologies * regional curve standardization * pinus-uncinata * european alps * spatial variability * summer temperatures * divergence problem * spanish pyrenees * fagus-sylvatica * large-scale * Climate change * Drought * Growth response * High-elevation forest * Pyrenees * Summer temperature Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.548, year: 2015

  10. Constant and alternating temperature effects on germination and early growth of scorzonera

    OpenAIRE

    Dias, A.S.; Dias, L.S.; Pereira, I.P.

    2013-01-01

    Scorzonera is a threatened species in Portugal. Given the role of temperature in germination and seedling recruitment, the performance of total germination, lag of germination, duration of germination, shape of germination, root and hypocotyl length, and relative root growth of scorzonera was investigated under constant and alternating temperatures between 10 and 25ºC. Because of scorzonera’s rarity and threatened status, seeds of cultivated scorzonera were used, providing the framework for h...

  11. Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature

    Science.gov (United States)

    Kokolus, Kathleen M.; Capitano, Maegan L.; Lee, Chen-Ting; Eng, Jason W.-L.; Waight, Jeremy D.; Hylander, Bonnie L.; Sexton, Sandra; Hong, Chi-Chen; Gordon, Christopher J.; Abrams, Scott I.; Repasky, Elizabeth A.

    2013-01-01

    We show here that fundamental aspects of antitumor immunity in mice are significantly influenced by ambient housing temperature. Standard housing temperature for laboratory mice in research facilities is mandated to be between 20–26 °C; however, these subthermoneutral temperatures cause mild chronic cold stress, activating thermogenesis to maintain normal body temperature. When stress is alleviated by housing at thermoneutral ambient temperature (30–31 °C), we observe a striking reduction in tumor formation, growth rate and metastasis. This improved control of tumor growth is dependent upon the adaptive immune system. We observe significantly increased numbers of antigen-specific CD8+ T lymphocytes and CD8+ T cells with an activated phenotype in the tumor microenvironment at thermoneutrality. At the same time there is a significant reduction in numbers of immunosuppressive MDSCs and regulatory T lymphocytes. Notably, in temperature preference studies, tumor-bearing mice select a higher ambient temperature than non-tumor-bearing mice, suggesting that tumor-bearing mice experience a greater degree of cold-stress. Overall, our data raise the hypothesis that suppression of antitumor immunity is an outcome of cold stress-induced thermogenesis. Therefore, the common approach of studying immunity against tumors in mice housed only at standard room temperature may be limiting our understanding of the full potential of the antitumor immune response. PMID:24248371

  12. Sodium sulfate crystallisation monitoring using IR thermography

    Science.gov (United States)

    Vazquez, P.; Thomachot-Schneider, C.; Mouhoubi, K.; Bodnar, J.-L.; Avdelidis, N. P.; Charles, D.; Benavente, D.

    2018-03-01

    In this work, the evaporation of sodium sulfate droplets with different concentrations and at different temperatures were studied using infrared thermography (IRT). IRT allows to detect the evaporation evolution, the crystal growth and for the first time, to observe in vivo the heat release related to sodium sulfate crystallisation. A detailed study revealed that dendritic Thenardite III crystals appeared at the edge of all the crystallised droplets, though they showed a fast increase of temperature related to crystallisation only when a hydrated phase crystallised also from the droplet. The observation of the heat of crystallisation is thus directly related to the supersaturation of the droplet and consequently to temperature. In addition, IRT detection is circumscribed by the location of crystallisation. The heat can be observed and measured only when the crystallisation occurs in the interface solution - air.

  13. Turgor, temperature and the growth of plant cells: using Chara corallina as a model system.

    Science.gov (United States)

    Proseus, T E; Zhu, G L; Boyer, J S

    2000-09-01

    Rapid changes in turgor pressure (P:) and temperature (T:) are giving new information about the mechanisms of plant growth. In the present work, single internode cells of the large-celled alga Chara corallina were used as a model for plant growth. P was changed without altering the chemical environment of the wall while observing growth without elastic changes. When P: was measured before any changes, the original growth rate bore no relationship to the original P. However, if P of growing cells was decreased, growth responded immediately without evidence for rapid changes in wall physical properties. Growth occurred only above a 0.3 MPa threshold, and increasing P caused small increases in growth that became progressively larger as P rose, resulting in a curvilinear response overall. The small changes in growth close to the threshold may explain early failures to detect these responses. When T was lowered, the elastic properties of the cell were unaffected, but growth was immediately inhibited. The lower T caused P to decrease, but returning P to its original value did not return growth to its original rate. The decreased P at low T occurred because of T effects on the osmotic potential of the cell. At above-normal P, growth partially resumed at low T Therefore, growth required a P-sensitive process that was also T-sensitive. Because elastic properties were little affected by T, but growth was markedly affected, the process is likely to involve metabolism. The rapidity of its response to P and T probably excludes the participation of changes in gene expression.

  14. The effect of temperature and bacterial growth phase on protein extraction by means of electroporation.

    Science.gov (United States)

    Haberl-Meglič, Saša; Levičnik, Eva; Luengo, Elisa; Raso, Javier; Miklavčič, Damijan

    2016-12-01

    Different chemical and physical methods are used for extraction of proteins from bacteria, which are used in variety of fields. But on a large scale, many methods have severe drawbacks. Recently, extraction by means of electroporation showed a great potential to quickly obtain proteins from bacteria. Since many parameters are affecting the yield of extracted proteins, our aim was to investigate the effect of temperature and bacterial growth phase on the yield of extracted proteins. At the same time bacterial viability was tested. Our results showed that the temperature has a great effect on protein extraction, the best temperature post treatment being 4°C. No effect on bacterial viability was observed for all temperatures tested. Also bacterial growth phase did not affect the yield of extracted proteins or bacterial viability. Nevertheless, further experiments may need to be performed to confirm this observation, since only one incubation temperature (4°C) and one incubation time before and after electroporation (0.5 and 1h) were tested for bacterial growth phase. Based on our results we conclude that temperature is a key element for bacterial membrane to stay in a permeabilized state, so more proteins flow out of bacteria into surrounding media. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The effects of sodium azide on seed germination and seedling growth of chili pepper (Capsicum annum L. cv. Landung)

    Science.gov (United States)

    Yafizham; Herwibawa, B.

    2018-01-01

    This study was aimed to determine the effects of sodium azide on the performance of chili pepper. Dry seeds from pure lines of chili pepper cv. Landung were used in this experiment. Each set containing 50 seeds was placed in nylon fishner bags, washed in flowing water and soaked in distilled water for four hours. After soaking, four sets of seeds were dabbed dry with tissue paper and were treated for two hours at 30 0C in appropriate solution of 0, 0.10, 0.20, 0.40, 0.80, 1.60 mM sodium azide with phosphate buffer at pH 3. After treatment, the seeds were germinated in plastic boxes containing sterilized sand and kept under laboratory condition by supplied with water everyday. The seeds for M1 germination percentage, seedling height, plant height and number of leaves were recorded 30 days and 60 days after treatment, respectively. Seeds which radicle emerged were considered germinated, the seedling and plant height were measured from the tip of primary root to the base of the first leaf pair, and the number of leaves were counted for only fully expanded leaves. A completely randomized block design in four replicates was used throughout the experiment. Data obtained were analysed for range, mean, standard of deviation, and percent of control using Microsoft Office Excel 2007 software. It was concluded that different doses of sodium azide influenced the performances of chili pepper cv. Landung. Very low doses of sodium azide (0-1.60 mM) might be used to study the improvement of chili pepper diversity.

  16. Structural studies of the high-temperature modifications of sodium and silver orthophosphates, II-Na3PO4 and II-Ag3PO4, and of the low-temperature form I-Ag3PO4

    International Nuclear Information System (INIS)

    Newsam, J.M.; Cheetham, A.K.; Tofield, B.C.

    1980-01-01

    The crystal structures of the high-temperature modifications of sodium and silver orthophosphates have been determined using powder neutron diffraction (PND) data. II-Na 3 PO 4 adopts the space group Fm3m with a = 7.512(3) A at 400 0 C. The PO 4 3- group is centred around the origin, but it shows high orientational disorder. The sodium ions occupy the (1/4, 1/4, 1/4) and (1/2, 1/2, 1/2) sites. II-Ag 3 PO 4 , at 650 0 C, is similar with a = 7.722 (5) A. The structure of I-Ag 3 PO 4 at room temperature (P4 - 3n, a = 6.0095 (6) A) has been re-examined by single-crystal X-ray diffraction. The derived model, with R = 0.019 for 116 independent reflections, is in agreement with the latest work reported in the literature. The structure of I-Ag 3 PO 4 at 375 0 C, as determined by PND, has a = 6.061(1) A, and displays no gross modifications from that observed at 25 0 C, although the anisotropic nature of the silver sites is markedly more pronounced at this higher temperature. The cation mobility is discussed in relation to the high-temperature structures. (Auth.)

  17. Self-welding evaluation of type 304 and A286 stainless steel in the temperature range 800/sup 0/-1140/sup 0/F in flowing sodium

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.Y.; Flagella, P.N.; Schrock, S.L.

    1976-01-01

    This paper covers two material combinations, Type 304 SS vs Type 304 SS and Type 304 SS vs A286, tested at temperatures from 800 to 1140/sup 0/F for time periods up to six months in flowing sodium. Contact stresses ranged from 2 to 30 ksi on contact areas for 0.63 to 1.00 in./sup 2/. Tests were performed in either tensile or shear modes on the flat-on-flat samples. Surface morphologies of the sample before and after the test were presented. Self-welding of Type 304 SS was significant at temperatures above 1080/sup 0/F while no self-welding was detected at 800/sup 0/F. Sliding friction coefficient (..mu..) data for a Type 304 SS couple at 800/sup 0/F under compressive stresses from 2000 to 30,000 psi in sodium could be correlated quite accurately by W/sigma = 0.08e/sup 9..mu../, where W is the waviness height in microinches and sigma is the compressive stress in kilo-pound per square inch. One self-weld couple of Type 304 SS/Type 304 SS exposed at 1080/sup 0/F for 3 months was not separated but rather removed intact from the test apparatus and examined in cross-section. Scanning electron micrographs of the contacted area revealed that portions of the original interface were no longer discernible. (auth)

  18. Catalytic CVD Synthesis of Carbon Nanotubes: Towards High Yield and Low Temperature Growth.

    Science.gov (United States)

    Magrez, Arnaud; Seo, Jin Won; Smajda, Rita; Mionić, Marijana; Forró, László

    2010-11-01

    The catalytic chemical vapor deposition (CCVD) is currently the most flexible and economically attractive method for the growth of carbon nanotubes. Although its principle is simple, the precisely controlled growth of carbon nanotubes remains very complex because many different parameters influence the growth process. In this article, we review our recent results obtained on the synthesis of carbon nanotubes via CCVD. We discuss the role of the catalyst and the catalyst support. Our recent results obtained from the water assisted growth and the equimolar C₂H₂-CO₂ reaction are also discussed. Both procedures lead to significantly enhanced carbon nanotube growth. In particular, the latter allows growing carbon nanotubes on diverse substrate materials at low temperatures.

  19. Consequences of complex environments: Temperature and energy intake interact to influence growth and metabolic rate.

    Science.gov (United States)

    Stahlschmidt, Zachary R; Jodrey, Alicia D; Luoma, Rachel L

    2015-09-01

    The field of comparative physiology has a rich history of elegantly examining the effects of individual environmental factors on performance traits linked to fitness (e.g., thermal performance curves for locomotion). However, animals live in complex environments wherein multiple environmental factors co-vary. Thus, we investigated the independent and interactive effects of temperature and energy intake on the growth and metabolic rate of juvenile corn snakes (Pantherophis guttatus) in the context of shifts in complex environments. Unlike previous studies that imposed constant or fluctuating temperature regimes, we manipulated the availability of preferred thermal microclimates (control vs. relatively warm regimes) for eight weeks and allowed snakes to behaviorally thermoregulate among microclimates. By also controlling for energy intake, we demonstrate an interactive effect of temperature and energy on growth-relevant temperature shifts had no effect on snakes' growth when energy intake was low and a positive effect on growth when energy intake was high. Thus, acclimation to relatively warm thermal options can result in increased rates of growth when food is abundant in a taxon in which body size confers fitness advantages. Temperature and energy also interactively influenced metabolic rate-snakes in the warmer temperature regime exhibited reduced metabolic rate (O2 consumption rate at 25 °C and 30 °C) if they had relatively high energy intake. Although we advocate for continued investigation into the effects of complex environments on other traits, our results indicate that warming may actually benefit important life history traits in some taxa and that metabolic shifts may underlie thermal acclimation. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Psychrobacter arcticus 273-4 uses resource efficiency and molecular motion adaptations for subzero temperature growth.

    Science.gov (United States)

    Bergholz, Peter W; Bakermans, Corien; Tiedje, James M

    2009-04-01

    Permafrost soils are extreme environments that exert low-temperature, desiccation, and starvation stress on bacteria over thousands to millions of years. To understand how Psychrobacter arcticus 273-4 survived for >20,000 years in permafrost, transcriptome analysis was performed during growth at 22 degrees C, 17 degrees C, 0 degrees C, and -6 degrees C using a mixed-effects analysis of variance model. Genes for transcription, translation, energy production, and most biosynthetic pathways were downregulated at low temperatures. Evidence of isozyme exchange was detected over temperature for D-alanyl-D-alanine carboxypeptidases (dac1 and dac2), DEAD-box RNA helicases (csdA and Psyc_0943), and energy-efficient substrate incorporation pathways for ammonium and acetate. Specific functions were compensated by upregulation of genes at low temperature, including genes for the biosynthesis of proline, tryptophan, and methionine. RNases and peptidases were generally upregulated at low temperatures. Changes in energy metabolism, amino acid metabolism, and RNase gene expression were consistent with induction of a resource efficiency response. In contrast to results observed for other psychrophiles and mesophiles, only clpB and hsp33 were upregulated at low temperature, and there was no upregulation of other chaperones and peptidyl-prolyl isomerases. relA, csdA, and dac2 knockout mutants grew more slowly at low temperature, but a dac1 mutant grew more slowly at 17 degrees C. The combined data suggest that the basal biological machinery, including translation, transcription, and energy metabolism, is well adapted to function across the growth range of P. arcticus from -6 degrees C to 22 degrees C, and temperature compensation by gene expression was employed to address specific challenges to low-temperature growth.

  1. Effect of salt and sodium nitrite on growth and enterotoxin production of Staphylococcus aureus during the production of air-dried fresh pork sausage.

    Science.gov (United States)

    Bang, W; Hanson, D J; Drake, M A

    2008-01-01

    Staphylococcus aureus contamination and enterotoxin production is a potential food safety hazard during the drying step of production of air-dried fresh country sausage. The growth characteristics and enterotoxin production of S. aureus during the drying step of this product with and without added sodium nitrite were evaluated. Three strains of S. aureus were grown to stationary phase and inoculated (10(4) CFU/g) into sausage ingredients. Fresh pork sausages were stuffed into natural casings and allowed to dry for 10 days at 21 degrees C with 60% relative humidity (RH). In control sausage (1.76% [wt/wt] salt) with no S. aureus, aerobic plate counts increased by 5.5 log/g during the 10-day drying period, and coliforms increased by 4.8 log/g. The addition of sodium nitrite (154 ppm of nitrite, 2.24% [wt/wt] salt) or increased salt (3.64%, wt/wt) to sausage limited the growth of coliform bacteria (P 0.05). Staphylococcal enterotoxin (SE) was not detected in air-dried fresh sausages at any time. Our results suggest that drying of fresh pork sausage under similar parameters listed in this study does not support SE production.

  2. Effects of sodium bicarbonate concentration on growth, photosynthesis, and carbonic anhydrase activity of macroalgae Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae (Gracilariales, Rhodophyta).

    Science.gov (United States)

    Zhou, Wei; Sui, Zhenghong; Wang, Jinguo; Hu, Yiyi; Kang, Kyoung Ho; Hong, Hye Ran; Niaz, Zeeshan; Wei, Huihui; Du, Qingwei; Peng, Chong; Mi, Ping; Que, Zhou

    2016-06-01

    There is potential for bicarbonate to improve crop yields and economic efficiency of marine algae. However, few studies have focused on the effect of bicarbonate on the growth, photosynthesis, and enzyme activity associated with carbon utilization, especially in commercial macroalgae. Here, the addition of bicarbonate (up to 420 mg L(-1)) to macroalgal cultures has been evaluated for Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae with respect to growth rate, photosynthetic activity, carbonic anhydrase activity, and biochemical composition. The results showed that the effects of NaHCO3 on growth, chlorophyll a, phycoerythrin, photosynthetic oxygen evolution, photochemical parameters of PSI and PSII, carbonic anhydrase activity, and nitrogen content were significant (P 336 mg L(-1) for Gp. lemaneiformis and >420 mg L(-1) for the other two species). Moreover, species-specific differences induced by supplementation with bicarbonate were discovered during culture. Optimal concentrations of NaHCO3 used in this study were 252 mg L(-1) for Gp. lemaneiformis and 336 mg L(-1) for G. vermiculophylla and G. chouae. These results suggest that an adequate supplementation of sodium bicarbonate is a viable strategy for promoting growth and photosynthetic activity in some macroalgae as well as for improving biochemical composition. The study will help to accelerate the growth rate of algae and improve the quality of thalli, and will also be useful for enhancing the understanding of carbon utilization in macroalgae.

  3. The Effect of Fermentation Temperature on the Growth Kinetics of Wine Yeast Species

    OpenAIRE

    ŞENER, Aysun; CANBAŞ, Ahmet; ÜNAL, M. Ümit

    2014-01-01

    The effect of fermentation temperature (18 and 25 °C) on kinetic and yield parameters of ethanol fermentation by Saccharomyces cerevisiae (Zymaflore VL1) and Saccharomyces cerevisiae (Uvaferm CM) was examined using the white Emir grape that is grown in the Nevşehir-Ürgüp region of Turkey. Growth of both yeast species varied according to temperature. Kinetic and yield parameters were both temperature dependent. Sensory evaluation showed that the taste panel was able to discern the wines fermen...

  4. Influence of fuel pin bowing on the temperature distribution in fuel pin cladding tubes in case of sodium cooling; experimental results

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.; Kolodziej, M.

    1978-09-01

    The influence of rod bowing on the local temperature distribution was measured with turbulent sodium flow in the cladding tubes of a 19-rod bundle mock-up of the SNR 300 Mark Ia fuel element. Such measurements have been carried out for the first time. The results presented in this report are part 1 of the experimental evaluation not yet completed. The major results are: 1. When a rod on the first ring gets deformed towards a neighbour on the second ring with a gap reduction from the nominal value of 100 % down to 20 %, the maximum azimuthal temperature difference of the outer rod increases by about 60 %. 2. The maximum azimuthal temperature difference of a rod on the first ring increases by a factor of 2, if it is approached by a neighbour on the same ring. 3. The reduction in cross section of a subchannel by rod bowing results only locally in distinct temperature rises, i.e. in the adjacent cladding tubes. Rods of the next but one row are no more subject to noticeable changes in temperature [de

  5. Effects of temperature, pH-values and sodium chloride concentrations on the glucose-6-phosphate dehydrogenase activity by thermotolerant Bacillus strains

    Directory of Open Access Journals (Sweden)

    HAZEM AQEL

    2012-01-01

    Full Text Available Thirteen new isolated thermotolerant Bacillus strains and four known Bacillus species were used to evaluate the effect of growth temperature, pH-values and NaCl concentrations on the intracellular glucose-6-phosphate dehydrogenase (G6PDH activity. Results had shown a significant difference in G6PDH production among all species at all used temperatures (p<0.05. The response of individual new isolates and controls for production of G6PDH under growth conditions was variable. The optimal growth conditions did not correspond to the optimal cultivation conditions for maximum G6PDH production. The growth temperature showed the most significant effect on G6PDH activity. The combined effect of temperature and NaCl on the G6PDH activity was strongly pronounced in comparison with the combined effect of temperature and pH or pH and NaCl. Thermal stability at 53ºC and electrophoretic mobility were also investigated. G6PDH from HUTB41 was the most thermostable G6PDH enzyme with T50% of more than 360 minutes. Electrophoretic study demonstrated that G6PDH was composed of two isoenzymes for all strains except B. marinus and B. schlegelii that had three isoenzymes.

  6. Effect of Growth Temperature on Bamboo-shaped Carbon–Nitrogen (C–N Nanotubes Synthesized Using Ferrocene Acetonitrile Precursor

    Directory of Open Access Journals (Sweden)

    Dobal PramodSingh

    2008-01-01

    Full Text Available Abstract This investigation deals with the effect of growth temperature on the microstructure, nitrogen content, and crystallinity of C–N nanotubes. The X-ray photoelectron spectroscopic (XPS study reveals that the atomic percentage of nitrogen content in nanotubes decreases with an increase in growth temperature. Transmission electron microscopic investigations indicate that the bamboo compartment distance increases with an increase in growth temperature. The diameter of the nanotubes also increases with increasing growth temperature. Raman modes sharpen while the normalized intensity of the defect mode decreases almost linearly with increasing growth temperature. These changes are attributed to the reduction of defect concentration due to an increase in crystal planar domain sizes in graphite sheets with increasing temperature. Both XPS and Raman spectral observations indicate that the C–N nanotubes grown at lower temperatures possess higher degree of disorder and higher N incorporation.

  7. Effect of reactor temperature on direct growth of carbon nanomaterials on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Edzatty, A. N., E-mail: nuredzatty@gmail.com; Syazwan, S. M., E-mail: mdsyazwan.sanusi@gmail.com; Norzilah, A. H., E-mail: norzilah@unimap.edu.my; Jamaludin, S. B., E-mail: sbaharin@unimap.edu.my [Centre of Excellence for Frontier Materials Research, School of Materials Engineering, University Malaysia Perlis (Malaysia)

    2016-07-19

    Currently, carbon nanomaterials (CNMs) are widely used for various applications due to their extraordinary electrical, thermal and mechanical properties. In this work, CNMs were directly grown on the stainless steel (SS316) via chemical vapor deposition (CVD). Acetone was used as a carbon source and argon was used as carrier gas, to transport the acetone vapor into the reactor when the reaction occurred. Different reactor temperature such as 700, 750, 800, 850 and 900 °C were used to study their effect on CNMs growth. The growth time and argon flow rate were fixed at 30 minutes and 200 ml/min, respectively. Characterization of the morphology of the SS316 surface after CNMs growth using Scanning Electron Microscopy (SEM) showed that the diameter of grown-CNMs increased with the reactor temperature. Energy Dispersive X-ray (EDX) was used to analyze the chemical composition of the SS316 before and after CNMs growth, where the results showed that reduction of catalyst elements such as iron (Fe) and nickel (Ni) at high temperature (700 – 900 °C). Atomic Force Microscopy (AFM) analysis showed that the nano-sized hills were in the range from 21 to 80 nm. The best reactor temperature to produce CNMs was at 800 °C.

  8. Water activity and temperature effects on growth of Alternaria arborescens on tomato medium.

    Science.gov (United States)

    Vaquera, Sandra; Patriarca, Andrea; Fernández Pinto, Virginia

    2014-08-18

    Alternaria arborescens is the causal agent of tomato stem canker, a disease frequently responsible of substantial economic losses. A. arborescens can produce several mycotoxins, such as alternariol, alternariol monomethyl ether and tenuazonic acid and phytotoxins such as the AAL toxins. The objective of this study was to determine the effect of water activity (aw, 0.950, 0.975, 0.995) and temperature (6, 15, 20, 25 and 30°C) on the germination and radial growth rate of A. arborescens on a synthetic tomato medium. Germination followed by growth was observed at all temperatures and aw levels analyzed. The shortest germination time (0.5 days) was observed at 0.995 aw, both at 25°C and at 30°C. The germination time increased with a reduction of aw and temperature. The highest growth rate was registered at 0.995 aw and 30°C (7.21 mm/day) while the lowest occurred at 0.950 aw and 6°C (0.52 mm/day), conditions at which the longest lag phase was observed (8 days). Growth rates increased with aw and temperature. Knowledge of the ecophysiology of the fungus in this substrate is necessary to formulate future strategies to prevent its development and evaluate the consumer health risk posed by potential exposure to the toxins. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effect of temperature on the growth rate of Griffithsia tenuis c. agardh (Rhodophyta: ceramiales)

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, W.W.; Casterlin, M.E.

    1977-01-01

    Clonal cultures of Griffithsia tenuis were grown for 18 days (Erdschreiber solution, LD 12 : 12, 2200 lux) at 13, 18, 22 and 25/sup 0/C. The optimum temperature for growth (increase in number of cells) under these conditions was 22/sup 0/C.

  10. Effects of transverse temperature field nonuniformity on stress in silicon sheet growth

    Science.gov (United States)

    Mataga, P. A.; Hutchinson, J. W.; Chalmers, B.; Bell, R. O.; Kalejs, J. P.

    1987-01-01

    Stress and strain rate distributions are calculated using finite element analysis for steady-state growth of thin silicon sheet temperature nonuniformities imposed in the transverse (sheet width) dimension. Significant reductions in residual stress are predicted to occur for the case where the sheet edge is cooled relative to its center provided plastic deformation with high creep rates is present.

  11. Growth of Cronobacter spp. under Dynamic Temperature Conditions Occurring during Cooling of Reconstituted Powdered Infant Formula

    NARCIS (Netherlands)

    Kandhai, M.C.; Breeuwer, P.; Gorris, L.G.M.; Zwietering, M.H.; Reij, M.W.

    2009-01-01

    Reconstituted infant formulae are excellent growth media for Cronobacter spp. (formerly Enterobacter sakazakii) and other microorganisms that may be present in such products. Immediate consumption or rapid cooling and storage at a low temperature are therefore recommended as control measures to

  12. GROWTH RESPONSE OF SYMBODINIUM SPP. TO COMBINED TEMPERATURE AND UV RADIATION

    Science.gov (United States)

    Rogers, J.E. and D. Marcovich. In press. Growth Response of a Coral Symbiont, Symbiodinium sp., to Combined Temperature and UV Radiation Exposure (Abstract). To be presented at the ASLO 2004 Summer Meeting: The Changing Landscapes of Oceans and Freshwater, 13-18 June 2004, Savann...

  13. Effect of growth temperature on polytype transition of GaN from zincblende to wurtzite

    Energy Technology Data Exchange (ETDEWEB)

    Suandon, Siripen [Department of Physics, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330 (Thailand); Sanorpim, Sakuntam [Department of Physics, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330 (Thailand)]. E-mail: Sakuntam.S@chula.ac.th; Yoodee, Kajornyod [Department of Physics, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330 (Thailand); Onabe, Kentaro [Department of Advanced Materials Science, Graduate Schools of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561 (Japan)

    2007-03-26

    We have investigated effect of growth temperature on the polytype conversion of cubic GaN (c-GaN) grown on GaAs (001) substrates by MOVPE. It was found that the polytype transition of GaN from zincblende (cubic) to wurtzite (hexagonal) structures is much dependent on the growth temperature. Transmission electron microscopy (TEM) observations demonstrate that the GaN grown layers have the cubic structure (c-GaN) and contain bands of stacking faults (SFs) parallels to {l_brace}111{r_brace} planes. For low growth temperatures ({approx} 900 deg. C), XRD results demonstrate that the GaN grown layers with the cubic phase purity higher than 85% were obtained. No different types of single diffraction spots, indicating the incorporation of single-crystal h-GaN, on the selected area diffraction (SAD) pattern was observed. It is also found that a density of SFs decreases with the distance from the interface of c-GaN/GaAs. On the other hand, GaN layers exhibited a transition from cubic to mixed cubic/hexagonal phase under conditions of increasing growth temperature ({approx} 960 deg. C) as determined using TEM-SAD technique with complementary XRD and PL observations. In addition, the optical characteristics of c-GaN layers are shown to be very sensitive to the presence of the single-crystal h-GaN.

  14. Effect of temperature on microbial growth rate - thermodynamic analysis, the arrhenius and eyring-polanyi connection

    Science.gov (United States)

    The objective of this work is to develop a new thermodynamic mathematical model for evaluating the effect of temperature on the rate of microbial growth. The new mathematical model is derived by combining the Arrhenius equation and the Eyring-Polanyi transition theory. The new model, suitable for ...

  15. Temperature Effects on the Growth Rates and Photosynthetic Activities of Symbiodinium Cells

    Directory of Open Access Journals (Sweden)

    Widiastuti Karim

    2015-06-01

    Full Text Available Coral bleaching is caused by environmental stress and susceptibility to bleaching stress varies among types of coral. The physiological properties of the algal symbionts (Symbiodinium spp., especially extent of damage to PSII and its repair capacity, contribute importantly to this variability in stress susceptibility. The objective of the present study was to investigate the relationship between the growth rates and photosynthetic activities of six cultured strains of Symbiodinium spp. (clades A, B, C, D, and F at elevated temperature (33 °C. We also observed the recovery of photodamaged-PSII in the presence or absence of a chloroplast protein synthesis inhibitor (lincomycin. The growth rates and photochemical efficiencies of PSII (Fv/Fm decreased in parallel at high temperature in thermally sensitive strains, B-K100 (clade B followed by culture name and A-Y106, but not in thermally tolerant strains, F-K102 and D-K111. In strains A-KB8 and C-Y103, growth declined markedly at high temperature, but Fv/Fm decreased only slightly. These strains may reallocate energy from growth to the repair of damaged photosynthetic machineries or protection pathways. Alternatively, since recoveries of photo-damaged PSII at 33 °C were modest in strains A-KB8 and C-Y103, thermal stressing of other metabolic pathways may have reduced growth rates in these two strains. This possibility should be explored in future research efforts.

  16. Exogenous estradiol alters gonadal growth and timing of temperature sex determination in gonads of sea turtle.

    Science.gov (United States)

    Díaz-Hernández, Verónica; Marmolejo-Valencia, Alejandro; Merchant-Larios, Horacio

    2015-12-01

    Temperature sex determining species offer a model for investigating how environmental cues become integrated to the regulation of patterning genes and growth, among bipotential gonads. Manipulation of steroid hormones has revealed the important role of aromatase in the regulation of the estrogen levels involved in temperature-dependent sex determination. Estradiol treatment counteracts the effect of male-promoting temperature, but the resulting ovarian developmental pattern differs from that manifested with the female-promoting temperature. Hypoplastic gonads have been reported among estradiol-treated turtles; however the estradiol effect on gonadal size has not been examined. Here we focused on the sea turtle Lepidochelys olivacea, which develops hypoplastic gonads with estradiol treatment. We studied the effect of estradiol on cell proliferation and on candidate genes involved in ovarian pattern. We found this effect is organ specific, causing a dramatic reduction in gonadal cell proliferation during the temperature-sensitive period. Although the incipient gonads resembled tiny ovaries, remodeling of the medullary cords and down-regulation of testicular factor Sox9 were considerably delayed. Contrastingly, with ovarian promoting temperature as a cue, exogenous estradiol induced the up-regulation of the ovary factor FoxL2, prior to the expression of aromatase. The strong expression of estrogen receptor alpha at the time of treatment suggests that it mediates estradiol effects. Overall results indicate that estradiol levels required for gonadal growth and to establish the female genetic network are delicately regulated by temperature. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Growth and lipid accumulation in response to different cultivation temperatures in Nannochloropsis oculata for biodiesel production

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2016-03-01

    Full Text Available Background: Microalgal lipid is a promising feedstock for biodiesel production. The aim of the present study was to investigate the effects of cultivation temperature on the growth and lipid accumulation properties of Nannochloropsis oculata microalgae. Methods: Nannochloropsis oculatacan grow in a wide range of temperatures (5 ~ 35°C. Late in the stationary growth phase of microalgae, biomass production and lipid accumulation were measured. The methanol-chloroform extraction method was used to extract total lipids from dried cells. The direct esterification method was used to measure fatty acids. Constituents were identified by gas chromatography. Results: The results show that the maximum specific growth rate at 20°C was 0.1569 day-1, and the maximum biomass production of microalgae at 25°C was 2.2667 g/L. The highest percentage of biomass conversion into lipid (35.71% occurred at 30°C. Maximum lipid productivity was seen at temperatures of 15°C, 20°C, and 25°C, but the analysis of fatty acids in the three temperatures shownare maximum accumulations of triglycerides in the microalgae cells at 20°C and 25°C. Conclusion: In the cultivation of Nannochloropsis oculata, the optimal temperature range for maximum efficiency in biodiesel production from lipids is 20°C to 25°C.

  18. Effect of temperature on growth of psychrophilic and psychrotrophic members of Rhodotorula aurantiaca.

    Science.gov (United States)

    Sabri, A; Jacques, P; Weekers, F; Baré, G; Hiligsmann, S; Moussaïf, M; Thonart, P

    2000-01-01

    The thermo-dependence of growth kinetic parameters was investigated for the Antarctic psychrophilic strain Rhodotorula aurantiaca and a psychrotrophic strain of the same species isolated in Belgium (Ardennes area). Cell production, maximum growth rate (mu max), and half-saturation constant for glucose uptake (Ks) of both yeasts were temperature dependent. For the two yeasts, a maximum cell production was observed at about 0 degree C, and cell production decreased when temperature increased. The mu max values for both strains increased with temperature up to a maximum of 10 degrees C for the psychrophilic strain and 17 degrees C for the psychrotrophic strain. For both yeasts, Ks for glucose was relatively constant at low temperatures. It increased at temperatures above 10 degrees C for the psychrophilic strain and 17 degrees C for the psychrotrophic strain. Although its glucose affinity was lower, the psychrotrophic strain grew more rapidly than the psychrophilic one. The difference in growth rate and substrate affinity was related to the origin of the strain and the adaptation strategy of R. aurantiaca to environmental conditions.

  19. The effect of housing temperature on the growth of CT26 tumor expressing fluorescent protein EGFP

    Science.gov (United States)

    Yuzhakova, Diana V.; Shirmanova, Marina V.; Lapkina, Irina V.; Serebrovskaya, Ekaterina O.; Lukyanov, Sergey A.; Zagaynova, Elena V.

    2016-04-01

    To date, the effect of housing temperature on tumor development in the immunocompetent mice has been studied on poorly immunogenic cancer models. Standard housing temperature 20-26°C was shown to cause chronic metabolic cold stress and promote tumor progression via suppression of the antitumor immune response, whereas a thermoneutral temperature 30-31°C was more preferable for normal metabolism of mice and inhibited tumor growth. Our work represents the first attempt to discover the potential effect of housing temperature on the development of highly immunogenic tumor. EGFP-expressing murine colon carcinoma CT26 generated in Balb/c mice was used as a tumor model. No statistically significant differences were shown in tumor incidences and growth rates at 20°C, 25°C and 30°C for non-modified CT26. Maintaining mice challenged with CT26-EGFP cells at 30°C led to complete inhibition of tumor development. In summary, we demonstrated that the housing temperature is important for the regulation of growth of highly immunogenic tumors in mice through antitumor immunity.

  20. Sodium Oxybate

    Science.gov (United States)

    Sodium oxybate is used to prevent attacks of cataplexy (episodes of muscle weakness that begin suddenly and ... urge to sleep during daily activities, and cataplexy). Sodium oxybate is in a class of medications called ...

  1. Sodium Phosphate

    Science.gov (United States)

    Sodium phosphate is used in adults 18 years of age or older to empty the colon (large intestine, bowel) ... view of the walls of the colon. Sodium phosphate is in a class of medications called saline ...

  2. Long-term prediction of fish growth under varying ambient temperature using a multiscale dynamic model

    Directory of Open Access Journals (Sweden)

    Radde Nicole

    2009-11-01

    Full Text Available Abstract Background Feed composition has a large impact on the growth of animals, particularly marine fish. We have developed a quantitative dynamic model that can predict the growth and body composition of marine fish for a given feed composition over a timespan of several months. The model takes into consideration the effects of environmental factors, particularly temperature, on growth, and it incorporates detailed kinetics describing the main metabolic processes (protein, lipid, and central metabolism known to play major roles in growth and body composition. Results For validation, we compared our model's predictions with the results of several experimental studies. We showed that the model gives reliable predictions of growth, nutrient utilization (including amino acid retention, and body composition over a timespan of several months, longer than most of the previously developed predictive models. Conclusion We demonstrate that, despite the difficulties involved, multiscale models in biology can yield reasonable and useful results. The model predictions are reliable over several timescales and in the presence of strong temperature fluctuations, which are crucial factors for modeling marine organism growth. The model provides important improvements over existing models.

  3. Fatigue crack growth behaviour of 21/4Cr1Mo steel tube at elevated temperature

    International Nuclear Information System (INIS)

    Bulloch, J.H.; Buchanan, L.W.

    1987-01-01

    The fatigue crack growth characteristics of 21/4Cr1Mo steel tube have been examined at 588 0 C over the frequency range 0.02-20 Hz and dwell time range 10-960 min. All tests were conducted under load control in laboratory air at an R-ratio of 0.5. The elevated temperature fatigue crack growth characteristics were adequately described in terms of the stress intensity range ΔKAPPA. The continuous cyclic test data exhibited a significant effect of frequency that agreed well with predicted effects using a simple mathematical model of the high temperature fatigue process. With the dwell time range of 10-100 min there was a significant dwell time effect on the critical ΔKAPPA level for creep-fatigue interactive growth. At dwell times > 100 min the dwell time effect saturates. When creep-fatigue interactive growth occurs, growth rates reside above the maximum for continuum-controlled fatigue crack growth, and exhibit a da/dN varies as ΔKAPPA 10 dependence; failure is then intergranular in nature. (author)

  4. Exploring the effects of temperature and resource limitation on mercury bioaccumulation, growth and energetics, and behavior in Fundulus heteroclitus

    Science.gov (United States)

    Aquatic ecosystems are affected by changes in both temperature and resource availability. While higher temperatures may result in increased food consumption and increased mercury (Hg) accumulation, they may also increase growth and reduce Hg tissue concentration through somatic d...

  5. Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in kale.

    Science.gov (United States)

    Steindal, Anne Linn Hykkerud; Rødven, Rolf; Hansen, Espen; Mølmann, Jørgen

    2015-05-01

    Curly kale is a robust, cold tolerant plant with a high content of health-promoting compounds, grown at a range of latitudes. To assess the effects of temperature, photoperiod and cold acclimatisation on levels of glucosinolates, fatty acids and soluble sugars in kale, an experiment was set up under controlled conditions. Treatments consisted of combinations of the temperatures 15/9 or 21/15 °C, and photoperiods of 12 or 24h, followed by a cold acclimatisation period. Levels of glucosinolates and fatty acid types in leaves were affected by growth conditions and cold acclimatisation, being generally highest before acclimatisation. The effects of growth temperature and photoperiod on freezing tolerance were most pronounced in plants grown without cold acclimatisation. The results indicate that cold acclimatisation can increase the content of soluble sugar and can thereby improve the taste, whilst the content of unsaturated fatty and glucosinolates acids may decrease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Adaptation of root growth to increased ambient temperature requires auxin and ethylene coordination in Arabidopsis

    DEFF Research Database (Denmark)

    Fei, Qionghui; Wei, Shaodong; Zhou, Zhaoyang

    2017-01-01

    Key message: A fresh look at the roles of auxin, ethylene, and polar auxin transport during the plant root growth response to warmer ambient temperature (AT). Abstract: The ambient temperature (AT) affects plant growth and development. Plants can sense changes in the AT, but how this change......-naphthaleneacetic acid, but not indole-3-acetic acid (IAA). AUX1, PIN1, and PIN2 are involved in the ckrc1-1 root gravity response under increased AT. Furthermore, CKRC1-dependent auxin biosynthesis was critical for maintaining PIN1, PIN2, and AUX1 expression at elevated temperatures. Ethylene was also involved...... in this regulation through the ETR1 pathway. Higher AT can promote CKRC1-dependent auxin biosynthesis by enhancing ETR1-mediated ethylene signaling. Our research suggested that the interaction between auxin and ethylene and that the interaction-mediated polar auxin transport play important roles during the plant...

  7. The Effects of Temperature and Growth Phase on the Lipidomes of Sulfolobus islandicus and Sulfolobus tokodaii

    DEFF Research Database (Denmark)

    Jensen, Sara Munk; Neesgaard, Vinnie Lund; Skjoldbjerg, Sandra Landbo Nedergaard

    2015-01-01

    The functionality of the plasma membrane is essential for all organisms. Adaption to high growth temperatures imposes challenges and Bacteria, Eukarya, and Archaea have developed several mechanisms to cope with these. Hyperthermophilic archaea have earlier been shown to synthesize tetraether...... at three different temperatures, with samples withdrawn during lag, exponential, and stationary phases. Three abundant tetraether lipid classes and one diether lipid class were monitored. Beside the expected increase in the number of cyclopentane moieties with higher temperature in both archaea, we...... observed previously unreported changes in the average cyclization of the membrane lipids throughout growth. The average number of cyclopentane moieties showed a significant dip in exponential phase, an observation that might help to resolve the currently debated biosynthesis pathway of tetraether lipids....

  8. Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae.

    Science.gov (United States)

    Pizarro, Francisco J; Jewett, Michael C; Nielsen, Jens; Agosin, Eduardo

    2008-10-01

    Laboratory strains of Saccharomyces cerevisiae have been widely used as a model for studying eukaryotic cells and mapping the molecular mechanisms of many different human diseases. Industrial wine yeasts, on the other hand, have been selected on the basis of their adaptation to stringent environmental conditions and the organoleptic properties that they confer to wine. Here, we used a two-factor design to study the responses of a standard laboratory strain, CEN.PK113-7D, and an industrial wine yeast strain, EC1118, to growth temperatures of 15 degrees C and 30 degrees C in nitrogen-limited, anaerobic, steady-state chemostat cultures. Physiological characterization revealed that the growth temperature strongly impacted the biomass yield of both strains. Moreover, we found that the wine yeast was better adapted to mobilizing resources for biomass production and that the laboratory yeast exhibited higher fermentation rates. To elucidate mechanistic differences controlling the growth temperature response and underlying adaptive mechanisms between the strains, DNA microarrays and targeted metabolome analysis were used. We identified 1,007 temperature-dependent genes and 473 strain-dependent genes. The transcriptional response was used to identify highly correlated gene expression subnetworks within yeast metabolism. We showed that temperature differences most strongly affect nitrogen metabolism and the heat shock response. A lack of stress response element-mediated gene induction, coupled with reduced trehalose levels, indicated that there was a decreased general stress response at 15 degrees C compared to that at 30 degrees C. Differential responses among strains were centered on sugar uptake, nitrogen metabolism, and expression of genes related to organoleptic properties. Our study provides global insight into how growth temperature affects differential physiological and transcriptional responses in laboratory and wine strains of S. cerevisiae.

  9. Effect of season on milk temperature, milk growth hormone, prolactin, and somatic cell counts of lactating cattle

    Science.gov (United States)

    Igono, M. O.; Johnson, H. D.; Steevens, B. J.; Hainen, W. A.; Shanklin, M. D.

    1988-09-01

    Monthly fluctuations in milk temperature, somatic cell counts, milk growth hormone and prolactin of lactating cows were measured in milk samples over a 1 year period. The seasonal patterns in milk temperature, somatic cell count and milk prolactin concentration showed a positive trend with increasing environmental temperatures. Milk growth hormone concentration increased with lactation level and declined significantly during summer heat. Milk temperature and the measured hormonal levels may serve as indicators of the impact of the climatic environment on lactating cattle.

  10. Down-conversion luminescence and its temperature-sensing properties from Er3+-doped sodium bismuth titanate ferroelectric thin films

    Science.gov (United States)

    Wang, Shanshan; Zheng, Shanshan; Zhou, Hong; Pan, Anlian; Wu, Guangheng; Liu, Jun-ming

    2015-11-01

    Here, we demonstrate outstanding temperature-sensing properties from Na0.5Bi0.49Er0.01TiO3 (NBT:Er) thin films. The perovskite phase for them is stable in the temperature range from 80 to 440 K. Interestingly, the Er doping enhances the ferroelectric polarization and introduces local dipolar, which are positive for temperature sensing. Pumped by a 488-nm laser, the NBT:Er thin films show strong green luminescence with two bands around 525 and 548 nm. The intensity ratio I 525/ I 548 can be used for temperature sensing, and the maximum sensitivity is about 2.3 × 10-3 K-1, higher than that from Er-doped silicon oxide. These suggest NBT:Er thin film is a promising candidate for temperature sensor.

  11. Grain-boundary engineering applied to grain growth in a high temperature material

    International Nuclear Information System (INIS)

    Huda, Z.

    1993-01-01

    Crystallography of grain boundaries are determined for a high temperature material, before and after grain growth processes, so as to study the induction of special properties useful for application in components of a gas-turbine engine. The philosophy of grain-boundary engineering is applied to grain growth in APK-6, a powder formed nickel-base superalloy so as to establish the possible structure/property relationships. The alloy in the as received condition is shown to possess a strong texture and contained coincident site lattices (CSL) boundaries with most boundaries having sigma values in the range of 3 > sigma > 25. A normal grain-growth heat treatment result in a good population of low angle grain boundaries, and drastically reduces the proportion of CSL boundaries. A strong [011] annealing texture is observed after an intermediate grain growth; most grain boundaries, here, tend to be high angle indicating a possibility of possessing special properties. (author)

  12. The residual C concentration control for low temperature growth p-type GaN

    International Nuclear Information System (INIS)

    Liu Shuang-Tao; Zhao De-Gang; Yang Jing; Jiang De-Sheng; Liang Feng; Chen Ping; Zhu Jian-Jun; Liu Zong-Shun; Li Xiang; Liu Wei; Xing Yao; Zhang Li-Qun

    2017-01-01

    In this work, the influence of C concentration to the performance of low temperature growth p-GaN is studied. Through analyses, we have confirmed that the C impurity has a compensation effect to p-GaN. At the same time we have found that several growth and annealing parameters have influences on the residual C concentration: (i) the C concentration decreases with the increase of growth pressure; (ii) we have found there exists a Ga memory effect when changing the Cp 2 Mg flow which will lead the growth rate and C concentration increase along the increase of Cp 2 Mg flow; (iii) annealing outside of metal–organic chemical vapor deposition (MOCVD) could decrease the C concentration while in situ annealing in MOCVD has an immobilization role to C concentration. (paper)

  13. Experimental determination of the local temperature distribution in the cladding tubes of a sodium-cooled pin bundle caused by grid spacers

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.

    1980-01-01

    The cladding tubes of reactor core elements are highly stressed structural elements. Their careful design includes the following: (a) the mathematical determination of the maximum cladding tube temperatures; (b) the determination of the maximum permissible fatigue strengths and creep strains of the materials; and (c) the safety distance between the nominal cladding tube hot spots and the permissible extreme cladding tube temperature. The maximum cladding tube temperatures occur on the top edge of the core and, due to radial power gradients, in the wrapper-wall region of a pin bundle. If grid spacers are now used for fixing the pins as in the SNR fuel elements, a careful check must be made of whether and to what degree temperature peaks in the region of the supports have an influence on the cladding tube design. Initial experimental investigations on a sodium-cooled pin bundle model of the SNR-300 fuel element were carried out to throw light on these special problems. This is reported in the following together with the results so far obtained. (U.K.)

  14. Low Temperature Graphene Growth and Its Applications in Electronic and Optical Devices

    Science.gov (United States)

    Chugh, Sunny

    Graphene, a two dimensional allotrope of carbon in a honeycomb lattice, has gathered wide attention due to its excellent electrical, thermal, optical and mechanical properties. It has extremely high electron/hole mobility, very high thermal conductivity and fascinating optical properties, and combined with its mechanical strength and elasticity, graphene is believed to find commercial applications in existing as well as novel technologies. One of the biggest reasons behind the rapid development in graphene research during the last decade is the fact that laboratory procedures to obtain high quality graphene are rather cheap and simple. However, any new material market is essentially driven by the progress in its large scale commercial production with minimal costs, with properties that are suited for different applications. And it is in this aspect that graphene is still required to make a huge progress before its commercial benefits can be derived. Laboratory graphene synthesis techniques such as mechanical exfoliation, liquid phase exfoliation and SiC graphene growth pose several challenges in terms of cost, reliability and scalability. To this end, Chemical Vapor Deposition (CVD) growth of graphene has emerged as a widely used synthesis method that overcomes these problems. Unfortunately, conventional thermal CVD requires a high temperature of growth and a catalytic metal substrate, making the undesirable step of graphene transfer a necessity. Besides requiring a catalyst, the high temperature of growth also limits the range of growth substrates. In this work, I have successfully demonstrated low temperature ( 550 °C) growth of graphene directly on dielectric materials using a Plasma-Enhanced CVD (PECVD) process. The PECVD technique described here solves the issues faced by conventional CVD methods and provides a direct route for graphene synthesis on arbitrary materials at relatively low temperatures. Detailed growth studies, as described here, illustrate the

  15. Increased temperatures combined with lowered salinities differentially impact oyster size class growth and mortality

    Science.gov (United States)

    LaPeyre, Megan K.; Rybovich, Molly; Hall, Steven G.; La Peyre, Jerome F.

    2016-01-01

    Changes in the timing and interaction of seasonal high temperatures and low salinities as predicted by climate change models could dramatically alter oyster population dynamics. Little is known explicitly about how low salinity and high temperature combinations affect spat (75mm) oyster growth and mortality. Using field and laboratory studies, this project quantified the combined effects of extremely low salinities (30°C) on growth and survival of spat, seed, andmarket-sized oysters. In 2012 and 2013, hatchery-produced oysters were placed in open and closed cages at three sites in Breton Sound, LA, along a salinity gradient that typically ranged from 5 to 20. Growth and mortality were recorded monthly. Regardless of size class, oysters at the lowest salinity site (annualmean = 4.8) experienced significantly highermortality and lower growth than oysters located in higher salinity sites (annual means = 11.1 and 13.0, respectively); furthermore, all oysters in open cages at the two higher salinity sites experienced higher mortality than in closed cages, likely due to predation. To explicitly examine oyster responses to extreme low salinity and high temperature combinations, a series of laboratory studies were conducted. Oysters were placed in 18 tanks in a fully crossed temperature (25°C, 32°C) by salinity (1, 5, and 15) study with three replicates, and repeated at least twice for each oyster size class. Regardless of temperature, seed and market oysters held in low salinity tanks (salinity 1) experienced 100% mortality within 7 days. In contrast, at salinity 5, temperature significantly affected mortality; oysters in all size classes experienced greater than 50%mortality at 32°C and less than 40%mortality at 25°C. At the highest salinity tested (15), only market-sized oysters held at 32°C experienced significant mortality (>60%). These studies demonstrate that high water temperatures (>30°C) and low salinities (<5) negatively impact oyster growth and survival

  16. Uptake of inorganic phosphate is a limiting factor for Saccharomyces cerevisiae during growth at low temperatures.

    Science.gov (United States)

    Vicent, Isabel; Navarro, Alfonso; Mulet, Jose M; Sharma, Sukesh; Serrano, Ramón

    2015-05-01

    The fermenting ability of Saccharomyces at low temperatures is crucial for the development of alcoholic beverages, but the key factors for the cold tolerance of yeast are not well known. In this report, we present the results of a screening for genes able to confer cold tolerance by overexpression in a laboratory yeast strain auxotrophic for tryptophan. We identified genes of tryptophan permeases (TAT1 and TAT2), suggesting that the first limiting factor in the growth of tryptophan auxotrophic yeast at low temperatures is tryptophan uptake. This fact is of little relevance to industrial strains which are prototrophic for tryptophan. Then, we screened for genes able to confer growth at low temperatures in tryptophan-rich media and found several genes related to phosphate uptake (PHO84, PHO87, PHO90 and GTR1). This suggests that without tryptophan limitation, uptake of inorganic phosphate becomes the limiting factor. We have found that overexpression of the previously uncharacterized ORF YCR015c/CTO1 increases the uptake of inorganic phosphate. Also, genes involved in ergosterol biosynthesis (NSG2) cause improvement of growth at 10°C, dependent on tryptophan uptake, while the gluconeogenesis gene PCK1 and the proline biosynthesis gene PRO2 cause an improvement in growth at 10°C, independent of tryptophan and phosphate uptake. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Low-Temperature Growth of Two-Dimensional Layered Chalcogenide Crystals on Liquid.

    Science.gov (United States)

    Zhou, Yubing; Deng, Bing; Zhou, Yu; Ren, Xibiao; Yin, Jianbo; Jin, Chuanhong; Liu, Zhongfan; Peng, Hailin

    2016-03-09

    The growth of high-quality two-dimensional (2D) layered chalcogenide crystals is highly important for practical applications in future electronics, optoelectronics, and photonics. Current route for the synthesis of 2D chalcogenide crystals by vapor deposition method mainly involves an energy intensive high-temperature growth process on solid substrates, often suffering from inhomogeneous nucleation density and grain size distribution. Here, we first demonstrate a facile vapor-phase synthesis of large-area high-quality 2D layered chalcogenide crystals on liquid metal surface with relatively low surface energy at a growth temperature as low as ∼100 °C. Uniform and large-domain-sized 2D crystals of GaSe and GaxIn1-xSe were grown on liquid metal surface even supported on a polyimide film. As-grown 2D GaSe crystals have been fabricated to flexible photodetectors, showing high photoresponse and excellent flexibility. Our strategy of energy-sustainable low-temperature growth on liquid metal surface may open a route to the synthesis of high-quality 2D crystals of Ga-, In-, Bi-, Hg-, Pb-, or Sn-based chalcogenides and halides.

  18. Growth characteristics of (100)HgCdTe layers in low-temperature MOVPE with ditertiarybutyltelluride

    Science.gov (United States)

    Yasuda, K.; Hatano, H.; Ferid, T.; Minamide, M.; Maejima, T.; Kawamoto, K.

    1996-09-01

    Low-temperature growth of (100)HgCdTe (MCT) layers in MOVPE has been studied using ditertiarybutyltelluride (DtBTe), dimethylcadmium (DMCd), and elementary mercury as precursors. MCT layers were grown at 275°C on (100)GaAs substrates. Growths were carried out in a vertical growth cell which has a narrow spacing between the substrate and cell ceiling. Using the growth cell, the Cd-composition ( x) of MCT layers was controlled over a wide range from 0 to 0.98 by the DMCd flow. The growth rate of the MCT layers was constant at 5 μm h -1 for the increased DMCd flow. Preferential Cd-incorporation into MCT layers and an increase of the growth rate were observed in the presence of mercury vapor. The growth characteristics were considered to be due to the alkyl-exchange reaction between DMCd and mercury. The electrical properties and crystallinity of grown layers were also evaluated, which showed that layers with high quality can be grown at 275°C.

  19. Temperature Shift Experiments Suggest That Metabolic Impairment and Enhanced Rates of Photorespiration Decrease Organic Acid Levels in Soybean Leaflets Exposed to Supra-Optimal Growth Temperatures

    Directory of Open Access Journals (Sweden)

    Richard C. Sicher

    2015-08-01

    Full Text Available Elevated growth temperatures are known to affect foliar organic acid concentrations in various plant species. In the current study, citrate, malate, malonate, fumarate and succinate decreased 40 to 80% in soybean leaflets when plants were grown continuously in controlled environment chambers at 36/28 compared to 28/20 °C. Temperature effects on the above mentioned organic acids were partially reversed three days after plants were transferred among optimal and supra-optimal growth temperatures. In addition, CO2 enrichment increased foliar malate, malonate and fumarate concentrations in the supra-optimal temperature treatment, thereby mitigating effects of high temperature on respiratory metabolism. Glycerate, which functions in the photorespiratory pathway, decreased in response to CO2 enrichment at both growth temperatures. The above findings suggested that diminished levels of organic acids in soybean leaflets upon exposure to high growth temperatures were attributable to metabolic impairment and to changes of photorespiratory flux. Leaf development rates differed among temperature and CO2 treatments, which affected foliar organic acid levels. Additionally, we report that large decreases of foliar organic acids in response to elevated growth temperatures were observed in legume species.

  20. Crystal grain growth during room temperature high pressure Martensitic alpha to omega transformation in zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Velisavljevic, Nenad [Los Alamos National Laboratory; Chesnut, Gary N [Los Alamos National Laboratory; Stevens, Lewis L [Los Alamos National Laboratory; Dattelbaum, Dana M [Los Alamos National Laboratory

    2008-01-01

    Systematic increase in transition pressure with increase in interstitial impurities is observed for the martensitic {alpha} {yields} {omega} structural phase transition in Zr. Significant room temperature crystal grain growth is also observed for the two highest purity samples at this transition, while in the case of the lowest purity sample interstitial impurities obstruct grain growth even as the sample is heated to 1279 K. Our results show the importance of impurities in controlling structural phase stability and other mechanical properties associated with the {alpha} {yields} {omega} structural phase transition.

  1. Genotype-temperature interaction in the regulation of development, growth, and morphometrics in wild-type, and growth-hormone transgenic coho salmon.

    Directory of Open Access Journals (Sweden)

    Mare Lõhmus

    2010-04-01

    Full Text Available The neuroendocrine system is an important modulator of phenotype, directing cellular genetic responses to external cues such as temperature. Behavioural and physiological processes in poikilothermic organisms (e.g. most fishes, are particularly influenced by surrounding temperatures.By comparing the development and growth of two genotypes of coho salmon (wild-type and transgenic with greatly enhanced growth hormone production at six different temperatures, ranging between 8 degrees and 18 degrees C, we observed a genotype-temperature interaction and possible trend in directed neuroendocrine selection. Differences in growth patterns of the two genotypes were compared by using mathematical models, and morphometric analyses of juvenile salmon were performed to detect differences in body shape. The maximum hatching and alevin survival rates of both genotypes occurred at 12 degrees C. At lower temperatures, eggs containing embryos with enhanced GH production hatched after a shorter incubation period than wild-type eggs, but this difference was not apparent at and above 16 degrees C. GH transgenesis led to lower body weights at the time when the yolk sack was completely absorbed compared to the wild genotype. The growth of juvenile GH-enhanced salmon was to a greater extent stimulated by higher temperatures than the growth of the wild-type. Increased GH production significantly influenced the shape of the salmon growth curves.Growth hormone overexpression by transgenesis is able to stimulate the growth of coho salmon over a wide range of temperatures. Temperature was found to affect growth rate, survival, and body morphology between GH transgenic and wild genotype coho salmon, and differential responses to temperature observed between the genotypes suggests they would experience different selective forces should they ever enter natural ecosystems. Thus, GH transgenic fish would be expected to differentially respond and adapt to shifts in environmental

  2. Effects of curing sodium nitrite additive and natural meat fat on growth control of Listeria monocytogenes by the bacteriocin-producing Lactobacillus curvatus strain CWBI-B28.

    Science.gov (United States)

    Kouakou, P; Ghalfi, H; Destain, J; Dubois-Dauphin, R; Evrard, P; Thonart, P

    2009-09-01

    In realistic model meat systems, the separate and combined effects of fat content and sodium nitrite on the antilisterial activity of the bacteriocin of Lactobacillus curvatus CWBI-B28 were studied. In laboratory fermentations where Listeria monocytogenes was co-cultured at 4 degrees C with bacteriocin-producing CWBI-B28 in lean pork meat (fat content: 13%) without added nitrite, a strong antilisterial effect was observed after one week. The effect was maintained for an additional week, after which a slight and very gradual rebound was observed. Both added nitrite (20 ppm) and a high-fat content (43%) were found to antagonise this antilisterial effect, the Listeria cfu count reached after six weeks being 200 times as high in high-fat meat with added nitrite than in lean meat without nitrite. This antagonism could not be attributed to slower growth of the bacteriocin-producing strain, since CWBI-B28 grew optimally in fat-rich meat with 20 ppm sodium nitrite. Bacteriocin activity was also measured in the samples. The observed activity levels are discussed in relation to the degree of antilisterial protection conferred.

  3. Using a laboratory-based growth model to estimate mass- and temperature-dependent growth parameters across populations of juvenile Chinook Salmon

    Science.gov (United States)

    Perry, Russell W.; Plumb, John M.; Huntington, Charles

    2015-01-01

    To estimate the parameters that govern mass- and temperature-dependent growth, we conducted a meta-analysis of existing growth data from juvenile Chinook Salmon Oncorhynchus tshawytscha that were fed an ad libitum ration of a pelleted diet. Although the growth of juvenile Chinook Salmon has been well studied, research has focused on a single population, a narrow range of fish sizes, or a narrow range of temperatures. Therefore, we incorporated the Ratkowsky model for temperature-dependent growth into an allometric growth model; this model was then fitted to growth data from 11 data sources representing nine populations of juvenile Chinook Salmon. The model fit the growth data well, explaining 98% of the variation in final mass. The estimated allometric mass exponent (b) was 0.338 (SE = 0.025), similar to estimates reported for other salmonids. This estimate of b will be particularly useful for estimating mass-standardized growth rates of juvenile Chinook Salmon. In addition, the lower thermal limit, optimal temperature, and upper thermal limit for growth were estimated to be 1.8°C (SE = 0.63°C), 19.0°C (SE = 0.27°C), and 24.9°C (SE = 0.02°C), respectively. By taking a meta-analytical approach, we were able to provide a growth model that is applicable across populations of juvenile Chinook Salmon receiving an ad libitum ration of a pelleted diet.

  4. New Crystal-Growth Methods for Producing Lattice-Matched Substrates for High-Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Boatner, L.A.

    2008-06-24

    This effort addressed the technical problem of identifying and growing, on a commercial scale, suitable single-crystal substrates for the subsequent deposition of epitaxial thin films of high temperature semiconductors such as GaN/AlN. The lack of suitable lattice-matched substrate materials was one of the major problem areas in the development of semiconducting devices for use at elevated temperatures as well as practical opto-electronic devices based on Al- and GaN technology. Such lattice-matched substrates are necessary in order to reduce or eliminate high concentrations of defects and dislocations in GaN/AlN and related epitaxial thin films. This effort concentrated, in particular, on the growth of single crystals of ZnO for substrate applications and it built on previous ORNL experience in the chemical vapor transport growth of large single crystals of zinc oxide. This combined expertise in the substrate growth area was further complemented by the ability of G. Eres and his collaborators to deposit thin films of GaN on the subject substrates and the overall ORNL capability for characterizing the quality of such films. The research effort consisted of research on the growth of two candidate substrate materials in conjunction with concurrent research on the growth and characterization of GaN films, i.e. the effort combined bulk crystal growth capabilities in the area of substrate production at both ORNL and the industrial partner, Commercial Crystal Growth Laboratories (CCL), Naples, Florida, with the novel thin-film deposition techniques previously developed in the ORNL SSD.

  5. Effect of temperature on growth and reproduction of the epigeic earthworm, Eudrilus Eugeniae (Kinberg).

    Science.gov (United States)

    Shagoti, U M; Amoji, S D; Biradar, V A; Biradar, P M

    2001-07-01

    Influence of temperature on growth and reproduction of Eudrilus eugeniae has been investigated by laboratory culturing at regulated 25.0 degrees C, 30.0 degrees C, 37.5 degrees C and 40.0 degrees C and in fluctuating (22.7-27.3 degrees C) room temperature of prevailing (winter) season over 16 weeks. All worms died during first and tenth week at 40.0 degrees C and 37.5 degrees C respectively. Weight (biomass) and growth of worms cultured at different temperature varied significantly (Pwom/week and the cumulative cocoon number of 10.8 and 14.7/worm over 16th week respectively. The fluctuating temperature of uncontrolled room environment and 30.0 degrees C were favorable for various life activities of the worms. Eudrilus eugeniae appears to have range of temperature optima more than 25.0 degrees C and less than 28 degrees C. The climatic conditions prevailing in whole of the peninsular India during winter season are favourable for employing this worm in intensive field scale vermiculturing practices.

  6. A global review of freshwater crayfish temperature tolerance, preference, and optimal growth

    Science.gov (United States)

    Westhoff, Jacob T.; Rosenberger, Amanda E.

    2016-01-01

    Conservation efforts, environmental planning, and management must account for ongoing ecosystem alteration due to a changing climate, introduced species, and shifting land use. This type of management can be facilitated by an understanding of the thermal ecology of aquatic organisms. However, information on thermal ecology for entire taxonomic groups is rarely compiled or summarized, and reviews of the science can facilitate its advancement. Crayfish are one of the most globally threatened taxa, and ongoing declines and extirpation could have serious consequences on aquatic ecosystem function due to their significant biomass and ecosystem roles. Our goal was to review the literature on thermal ecology for freshwater crayfish worldwide, with emphasis on studies that estimated temperature tolerance, temperature preference, or optimal growth. We also explored relationships between temperature metrics and species distributions. We located 56 studies containing information for at least one of those three metrics, which covered approximately 6 % of extant crayfish species worldwide. Information on one or more metrics existed for all 3 genera of Astacidae, 4 of the 12 genera of Cambaridae, and 3 of the 15 genera of Parastacidae. Investigations employed numerous methodological approaches for estimating these parameters, which restricts comparisons among and within species. The only statistically significant relationship we observed between a temperature metric and species range was a negative linear relationship between absolute latitude and optimal growth temperature. We recommend expansion of studies examining the thermal ecology of freshwater crayfish and identify and discuss methodological approaches that can improve standardization and comparability among studies.

  7. The effect of S-(ferrocenylmethyl-thiosalicylic acid sodium salt on the germination and growth of cereal grains and seedlings and on the development of pathogenic fungi

    Directory of Open Access Journals (Sweden)

    Jan Michalczyk

    2014-01-01

    Full Text Available The sodium salt of S-(ferrocenylmethyl-thiosalicylic acid was studied in the context of its possible use as a systemic fungicide and, concurrently, as a source of physiologically active iron fur crop plants. It was found that this metallocene was taken up by maize seedlings growing in liquid mediums, and used for chlorophyll synthesis, in a concentration range as low as 0.05-0.08 mM dm-3. In the concentration range of 0.05-1.5 mM dm-3, it inhibited germination, seedling growth and Y-amylase activity while it stimulated the activities of proteinases, catalase and peroxidase. When sprayed on cereal leaves at a concentration of 1.0-2.0 mM dm-3, it exhibited fungicidal properties: inhibition of fungus development without harming cereal plant leaves and stimulated chlorophyll synthesis.

  8. Influence of refreshment/activation cycles and temperature rise on the reaction rate of sodium hypochlorite with bovine dentine during ultrasonic activated irrigation.

    Science.gov (United States)

    Macedo, R G; Verhaagen, B; Wesselink, P R; Versluis, M; van der Sluis, L W M

    2014-02-01

    To evaluate the effect of multiple refreshment/activation cycles and temperature on the reaction rate of sodium hypochlorite (NaOCl) with bovine dentine during ultrasonic activated irrigation (UAI) under laboratory conditions. The root canal walls of 24 standardized root canals in bovine incisors were exposed to a standardized volume of NaOCl at different temperatures (24 °C and 38 °C) and exposure times (20, 60 and 180 s). The irrigant was refreshed and ultrasonically activated four times for 20 s followed by a 40 s rest interval, with no refreshment and no activation as the controls. The reaction rate was determined by measuring the amount of active chlorine in the NaOCl solution before and after being exposed to dentine during the specific experimental conditions. Calorimetry was used to measure the electrical-to-sonochemical conversion efficiency during ultrasonic activation. Refreshment, activation and exposure time all increased the reaction rate of NaOCl (P reaction rate of NaOCl (P > 0.125). The reaction rate of NaOCl with dentine is enhanced by refreshment, ultrasonic activation and exposure time. Temperature rise of irrigant during ultrasonic activation was not sufficient to alter the reaction rate. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  9. Effect of Initial Backfill Temperature on the Deformation Behavior of Early Age Cemented Paste Backfill That Contains Sodium Silicate

    Directory of Open Access Journals (Sweden)

    Aixiang Wu

    2016-01-01

    Full Text Available Enhancing the knowledge on the deformation behavior of cemented paste backfill (CPB in terms of stress-strain relations and modulus of elasticity is significant for economic and safety reasons. In this paper, the effect of the initial backfill temperature on the CPB’s stress-strain behavior and modulus of elasticity is investigated. Results show that the stress-strain relationship and the modulus of elasticity behavior of CPB are significantly affected by the curing time and initial temperature of CPB. Additionally, the relationship between the modulus of elasticity and unconfined compressive strength (UCS and the degree of hydration was evaluated and discussed. The increase of UCS and hydration degree leads to an increase in the modulus of elasticity, which is not significantly affected by the initial temperature.

  10. High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics.

    Science.gov (United States)

    Yang, Haibo; Yan, Fei; Lin, Ying; Wang, Tong; Wang, Fen

    2017-08-18

    A series of (1-x)Bi 0.48 La 0.02 Na 0.48 Li 0.02 Ti 0.98 Zr 0.02 O 3 -xNa 0.73 Bi 0.09 NbO 3 ((1-x)LLBNTZ-xNBN) (x = 0-0.14) ceramics were designed and fabricated using the conventional solid-state sintering method. The phase structure, microstructure, dielectric, ferroelectric and energy storage properties of the ceramics were systematically investigated. The results indicate that the addition of Na 0.73 Bi 0.09 NbO 3 (NBN) could decrease the remnant polarization (P r ) and improve the temperature stability of dielectric constant obviously. The working temperature range satisfying TCC 150  °C  ≤±15% of this work spans over 400 °C with the compositions of x ≥ 0.06. The maximum energy storage density can be obtained for the sample with x = 0.10 at room temperature, with an energy storage density of 2.04 J/cm 3 at 178 kV/cm. In addition, the (1-x)LLBNTZ-xNBN ceramics exhibit excellent energy storage properties over a wide temperature range from room temperature to 90 °C. The values of energy storage density and energy storage efficiency is 0.91 J/cm 3 and 79.51%, respectively, for the 0.90LLBNTZ-0.10NBN ceramic at the condition of 100 kV/cm and 90 °C. It can be concluded that the (1-x)LLBNTZ-xNBN ceramics are promising lead-free candidate materials for energy storage devices over a broad temperature range.

  11. Controlled-Growth of ZnO Nano wires with Different Processing Temperature

    International Nuclear Information System (INIS)

    Yap Chi Chin; Muhammad Yahaya; Muhamad Mat Salleh; Dee Chang Fu

    2008-01-01

    ZnO nano wires have been synthesized using a catalyst-free carbothermal reduction approach on SiO 2 -coated Si substrates in a flowing nitrogen atmosphere with a mixture of ZnO and graphite as reactants. The collected ZnO nano wires have been characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and photoluminescence spectroscopy. Controlled growth of the ZnO nano wires was achieved by manipulating the reactants heating temperature from 700 to 1000 degree Celsius. It was found that the optimum temperature to synthesize high density and long ZnO nano wires was about 800 degree Celsius. The possible growth mechanism of ZnO nano wires is also proposed. (author)

  12. Effect of Temperature and light intensity on growth and Photosynthetic Activity of Chlamydomonas reinhard II

    International Nuclear Information System (INIS)

    Alfonsel Jaen, M.; Fernandez Gonzalez, J.

    1985-01-01

    The effect of five temperatures (15,20,25,30 and 35 degree centigree) and two levels of illumination on growth and photosynthetic activity of Chlamydomonas reinhard II has been studied. The growth of the cultures was evaluated by optical density. Photosynthetic activity has been carried out studying either the assimilation rate of C0 2 labelled with C-14 or the oxygen evolution by means of polarographic measurements. The maximum photosynthetic rate has been obtained at 25 degree centigree for the lower level of illumination (2400 lux) and at 35 degree centigree for the higher one (13200 lux) and at 35 degree centigree for the higher ono (13200 lux). These results suggest an interaction of temperature and illumination on photosynthetic activity. (Author) 37 refs

  13. Comparison of Two Mechanistic Microbial Growth Models to Estimate Shelf Life of Perishable Food Package under Dynamic Temperature Conditions

    Directory of Open Access Journals (Sweden)

    Dong Sun Lee

    2014-01-01

    Full Text Available Two mechanistic microbial growth models (Huang’s model and model of Baranyi and Roberts given in differential and integrated equation forms were compared in predicting the microbial growth and shelf life under dynamic temperature storage and distribution conditions. Literatures consistently reporting the microbial growth data under constant and changing temperature conditions were selected to obtain the primary model parameters, set up the secondary models, and apply them to predict the microbial growth and shelf life under fluctuating temperatures. When evaluated by general estimation behavior, bias factor, accuracy factor, and root-mean-square error, Huang’s model was comparable to Baranyi and Roberts’ model in the capability to estimate microbial growth under dynamic temperature conditions. Its simple form of single differential equation incorporating directly the growth rate and lag time may work as an advantage to be used in online shelf life estimation by using the electronic device.

  14. Effects of seawater salinity and temperature on growth and pigment contents in Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta).

    Science.gov (United States)

    Ding, Lanping; Ma, Yuanyuan; Huang, Bingxin; Chen, Shanwen

    2013-01-01

    This study simulated outdoor environmental living conditions and observed the growth rates and changes of several photosynthetic pigments (Chl a, Car, PE, and PC) in Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta) by setting up different ranges of salinity (25, 30, 35, 40, 45, and 50) and temperature (15, 20, 25, and 30°C). At conditions of culture, the results are as follows. (1) Changes in salinity and temperature have significant effects on the growth of H. cervicornis. The growth rates first increase then decrease as the temperature increases, while growth tends to decline as salinity increases. The optimum salinity and temperature conditions for growth are 25 and 25°C, respectively. (2) Salinity and temperature have significant or extremely significant effects on photosynthetic pigments (Chl a, Car, PE, and PC) in H. cervicornis. The results of this study are advantageous to ensure propagation and economic development of this species in the southern sea area of China.

  15. Biogeochemical anomaly above oil-containing structures in an arid zone. [Growth stimulation of plants by sodium naphthenate used for prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Grishchenko, O.M.

    1983-01-01

    Visual biological anomalies above the oil-containing structures are characterized by bright green coloring of the vegetation cover, gigantism of the plants, extended vegetation period of the plants, deformity of the plants, etc. Biological anomalies are associated with geological features and are observed only above the zone of fault disorders of the earth's crust, above deep faults. A conclusion is drawn about the presence above the oil-bearing structures in the arid zone of a biogeochemical anomaly whose origin is explained by the biological activity of oil and its derivatives. The petroleum growth matter is the sodium salt of naphthene acid, a growth stimulator of plants and animals. The oils of the USSR contain 0.8-4.8% naphthene acids, which effuse through the faults into the root area levels of the soil. As a result of stimulation of growth and development by the petroleum growth matter, the vegetation period of the plants is prolonged. Under the influence of natural petroleum growth substances, the height and productivity of the anomalous plants increases 2-3-fold. Formation and manifestation of signs of biogeochemical anomalies above the oil-bearing structures in the arid zone predetermine the following conditions: presence of fault disorders of the earth's crust; salinity of the root area of the soil layer necessary for neutralization of the naphthene acids with subsequent formation of the biologically active naphthenates; aridity of the desert landscape; plain relief excluding color diversity in vegetation cover because of nonuniform wetting, etc. The established biogeochemical anomaly can be used in prospecting and exploration of oil, gas and bitumen, and also in determining the fault disorders of the earth's crust.

  16. Effect of agrowastes, pH and temperature variation on the growth of ...

    African Journals Online (AJOL)

    The effect of pH and temperature variations on the growth of Volvariella volvacea cultivated on various agricultural wastes singly and in various combinations was studied. A pH range of 5.5 to 8.5 recorded the maximum mycelia yield and the highest mycelia weight was recorded at pH 6.5. The mycelia yield decreased at pH ...

  17. Low temperature diamond growth by linear antenna plasma CVD over large area

    Czech Academy of Sciences Publication Activity Database

    Ižák, Tibor; Babchenko, Oleg; Varga, Marián; Potocký, Štěpán; Kromka, Alexander

    2012-01-01

    Roč. 249, č. 12 (2012), s. 2600-2603 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional research plan: CEZ:AV0Z10100522 Keywords : activation energy * growth kinetics * linear antenna microwave CVD * low temperature * polycrystalline diamond films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.489, year: 2012 http://onlinelibrary.wiley.com/doi/10.1002/pssb.201200103/abstract

  18. Growth and functioning of the microbial plankton community: effects of temperature, nutrients and light

    OpenAIRE

    Brauer, V.S.

    2015-01-01

    Microbial plankton form the basis of the food web in aquatic habitats. Due to their vast abundances they influence the cycling of elements and the Earth’s climate at a global scale. This thesis aims at a better understanding of how environmental factors such as temperature and the availability of nutrients and light affect the growth and functioning of microbial plankton communities. The thesis combines experimental studies and mathematical modelling to address open questions in community eco...

  19. Effects of Photoperiod and Temperature on Growth and Development in Clouded Salamander (Hynobius nebulosus) Larvae.

    Science.gov (United States)

    Kukita, Sayuri; Gouda, Mika; Ikeda, Sakiko; Ishibashi, Sakiko; Furuya, Tatsunori; Nakamura, Keiji

    2015-06-01

    Day length is one of the most important factors that organisms use to predict seasonal changes in their environment. Several amphibians regulate their growth and development in response to photoperiod. However, many studies have not focused on the ecological effects of the photoperiodic response on growth and development because they use tropical animals, animals from a commercial source or from unknown localities, or extreme light regimens for experiments. In the present study, we examined the effects of photoperiod on growth and development in the clouded salamander (Hynobius nebulosus) by raising larvae under different photoperiods and at different temperatures in the laboratory. The average larval period under a long-day photoperiod of L16:D8 was longer than that under L12:D12 at 15°C or 20°C, although the difference between the photoperiods was only significant for 15°C. Juveniles weighed more at metamorphosis under L16:D8 than those under L12:D12, irrespective of temperature, suggesting that a longer developmental period results in a heavier body weight. The head width of juveniles did not differ for different photoperiods at either temperature. However, the growth rate of the head width under L12:D12 was faster than that under L16:D8 at 15°C. Long day length appears to produce larger H. nebulosus juveniles in a relatively stable aquatic environment with a low population density. Thus, development may be accelerated when the day length becomes shorter as winter approaches, and larvae may have increased the growth rate of their head widths to compensate for the shorter growing period under shorter day lengths.

  20. Global differential gene expression in response to growth temperature alteration in group A Streptococcus.

    Science.gov (United States)

    Smoot, L M; Smoot, J C; Graham, M R; Somerville, G A; Sturdevant, D E; Migliaccio, C A; Sylva, G L; Musser, J M

    2001-08-28

    Pathogens are exposed to different temperatures during an infection cycle and must regulate gene expression accordingly. However, the extent to which virulent bacteria alter gene expression in response to temperatures encountered in the host is unknown. Group A Streptococcus (GAS) is a human-specific pathogen that is responsible for illnesses ranging from superficial skin infections and pharyngitis to severe invasive infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. GAS survives and multiplies at different temperatures during human infection. DNA microarray analysis was used to investigate the influence of temperature on global gene expression in a serotype M1 strain grown to exponential phase at 29 degrees C and 37 degrees C. Approximately 9% of genes were differentially expressed by at least 1.5-fold at 29 degrees C relative to 37 degrees C, including genes encoding transporter proteins, proteins involved in iron homeostasis, transcriptional regulators, phage-associated proteins, and proteins with no known homologue. Relatively few known virulence genes were differentially expressed at this threshold. However, transcription of 28 genes encoding proteins with predicted secretion signal sequences was altered, indicating that growth temperature substantially influences the extracellular proteome. TaqMan real-time reverse transcription-PCR assays confirmed the microarray data. We also discovered that transcription of genes encoding hemolysins, and proteins with inferred roles in iron regulation, transport, and homeostasis, was influenced by growth at 40 degrees C. Thus, GAS profoundly alters gene expression in response to temperature. The data delineate the spectrum of temperature-regulated gene expression in an important human pathogen and provide many unforeseen lines of pathogenesis investigation.

  1. Microwave assisted low temperature synthesis of sodium zirconium phosphate (NZP) and the leachability of some selected fission products incorporated in its structure

    International Nuclear Information System (INIS)

    Dharwadkar, S.R.

    2008-01-01

    Full text: Microwave assisted procedure for low temperature solid state synthesis of sodium zirconium phosphate (NZP), a material with the potential for immobilization and disposal of high level nuclear waste, was developed. Four selected fission products, namely cesium, strontium, tellurium and ruthenium were introduced (substituted) in the NZP matrix during its synthesis at 450 deg C. More than 85% of these elements incorporated at this temperature could be retained in the NZP compacts, sintered in air at 1000 deg C to nearly 90% of the theoretical density of pure sodium zirconium phosphate. Leaching studies were carried out on the fission product substituted sintered NZP compacts in pure de-ionized water and 80% saturated brine solution at the ambient temperatures of 30 deg C and 90 deg C for four weeks. The major part of leaching in all the cases was observed in the first week. The maximum amount of the substituted element leached in the liquid media after four weeks, however did not exceed 12% of the total amount originally present in the sample before leaching. No significant leaching was observed for any of the dopant elements after four weeks. Among the substituted elements maximum leaching was observed for tellurium followed by cesium and strontium. Ruthenium showed virtually no leaching under the conditions employed. Leaching was found to decrease considerably in multiple element substituted NZP. The effect of temperature on the leaching rate was marginal but substantial difference was observed when the leachant was changed from pure de-ionized water to brine solution. Tellurium and strontium exhibited three and two fold decrease in the leaching rate respectively on changing the leachant from pure de-ionized water to 80% saturated brine solution. The leach rate of Cs however remained virtually unaffected by this change. The SEM and EDX analysis of the surfaces of the leached pellets showed virtual absence of the dopants introduced in the NZP matrix

  2. Application of temperature control strategies to the growth of hen egg-white lysozyme crystals

    Science.gov (United States)

    Schall, Constance A.; Riley, Jill S.; Li, Edwin; Arnold, Edward; Wiencek, John M.

    1996-08-01

    Solubility data were combined with mass balances and growth kinetics to derive a temperature control algorithm which maintains a constant level of supersaturation. This constant supersaturation control (CSC) algorithm attempts to maximize the size of protein crystals by maintaining the growth conditions in the metastable zone. Using hen egg-white lysozyme as a model protein system, four temperature programming strategies were employed in seeded and unseeded systems: the CSC algorithm, a linear ramp derived from the CSC algorithm, isothermal 20°C, and isothermal 4°C. Both the CSC-derived linear and the CSC temperature programs yielded large, well-formed crystals which were significantly larger than crystals grown isothermally at 20 and 4°C. The isothermal 4°C program resulted in poorly formed crystals due to the high initial growth rates. The seeded systems displayed much higher levels of nucleation than the unseeded systems which is attributed to secondary nucleation. The results indicate that moderate deviations (˜ 20%) from constant supersaturation can be tolerated, while still producing large, well-formed crystals appropriate for X-ray crystallography.

  3. Silicon enhances the growth of Phaeodactylum tricornutum Bohlin under green light and low temperature

    Science.gov (United States)

    Zhao, Peipei; Gu, Wenhui; Wu, Songcui; Huang, Aiyou; He, Linwen; Xie, Xiujun; Gao, Shan; Zhang, Baoyu; Niu, Jianfeng; Peng Lin, A.; Wang, Guangce

    2014-01-01

    Phaeodactylum tricornutum Bohlin is an ideal model diatom; its complete genome is known, and it is an important economic microalgae. Although silicon is not required in laboratory and factory culture of this species, previous studies have shown that silicon starvation can lead to differential expression of miRNAs. The role that silicon plays in P. tricornutum growth in nature is poorly understood. In this study, we compared the growth rate of silicon starved P. tricornutum with that of normal cultured cells under different culture conditions. Pigment analysis, photosynthesis measurement, lipid analysis, and proteomic analysis showed that silicon plays an important role in P. tricornutum growth and that its presence allows the organism to grow well under green light and low temperature. PMID:24492482

  4. Sodium butyrate induces growth inhibition and apoptosis in human prostate cancer DU145 cells by up-regulation of the expression of annexin A1.

    Directory of Open Access Journals (Sweden)

    Dawei Mu

    Full Text Available BACKGROUND: Sodium butyrate, a histone deacetylase inhibitor, has emerged as a promising anticancer drug for multiple cancers. Recent studies have indicated that sodium butyrate could inhibit the progression of prostate cancer; however, the exact mechanism is still unclear. The aim of this study was to investigate the mechanism of sodium butyrate action in prostate cancer DU145 cells. METHODS: The inhibitory effects of NaB on cell growth were detected by the 3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyltetrrazolium bromide assay. Cell apoptosis was determined by flow cytometric analysis of DU145 cells stained with annexin V and PI. Hoechst 33258 and fluorescence microscopes were used to observe the nuclear morphology of DU145 cells after treatment with NaB. ANXA1 knockdown cells were established through transfection with ANXA1 siRNA. ANXA1 mRNA levels were measured by qRT-PCR. Bcl-2, Bax, ANXA1, ERK1/2 and pERK1/2 were detected by western blot. RESULTS: NaB significantly inhibited the growth and induction apoptosis of DU145 and PC3 cells in a dose-dependent manner. Expression of the anti-apoptosis gene Bcl-xl and Bcl-2 in DU145 cells are decreased and expression of the pro-apoptosis gene Bax and Bak increased after NaB treatment. Further studies have demonstrated that NaB up-regulated the expression of ANXA1 and that the tumor inhibition action of NaB was reduced markedly through knockdown of the ANXA1 gene in DU145 cells. Moreover, the siANXA1 cells showed that cell proliferation increased and cell apoptosis was induced by the inactivation of extracellular regulated kinase (ERK. CONCLUSION: Our results support a significant correlation between NaB functions and ANXA1 expression in prostate cancer, and pave the way for further studying the molecular mechanism of NaB actions in cancers.

  5. Effect of deletion and overexpression of tryptophan metabolism genes on growth and fermentation capacity at low temperature in wine yeast

    OpenAIRE

    Martí-Raga, M.; Guillamon, J.M.; Chiva, R.; García-Rios, E.; López-Malo, M.

    2014-01-01

    10.1002/btpr.1915 Low-temperature fermentations produce wines with greater aromatic complexity, but the success of these fermentations greatly depends on the adaptation of yeast cells to cold. Tryptophan has been previously reported to be a limiting amino acid during Saccharomyces cerevisiae growth at low temperature. The objective of this study was to determine the influence of the tryptophan metabolism on growth and fermentation performance during low-temperature wine fermentation. To t...

  6. Effect of temperature on growth and fatty acids profile of the biodiesel producing microalga Scenedesmus acutus

    Directory of Open Access Journals (Sweden)

    El-Sheekh, M.

    2017-01-01

    Full Text Available Description of the subject. The present study examined the effect of temperature (15, 20, 25, 30, 35 and 40 °C on biomass, esterified fatty acids content and fatty acid productivity of Scenedesmus acutus. Objectives. This work aimed to study the effect of variation in temperature on lipid productivity and fatty acid profiles of S. acutus as a feedstock for biodiesel production. Method. The alga was grown under different temperatures and its biomass, as well as fatty acid content and composition, were determined. Results. The maximum growth rate of S. acutus was achieved at 30 °C , but there was no significant difference in biomass productivity at 25 and 30 °C (0.41 and 0.42 g·l-1·d-1, respectively. The highest fatty acid content (104.1 mg·g-1 CDW was recorded at low temperature (15 °C and decreased with increasing temperature. As a result of high biomass production, fatty acids productivity showed the highest values (41.27 and 42.10 mg·l-1·d-1 at 25 and 30 °C, respectively. The proportion of saturated and mono-unsaturated fatty acids increased from 13.72 to 23.79% and from 11.13 to 33.10% of total fatty acids when the incubation temperature was raised from 15 to 40 °C, respectively. The increase of temperature from 15 to 40 °C decreased the poly-unsaturated fatty acids from 75.15% to 43.10% of total fatty acids, respectively. Conclusions. The present study concluded that incubation temperature was a critical parameter for quantitative and qualitative fatty acid compositions of S. acutus. In addition, the type and proportion of individual fatty acids, which interfere with biodiesel quality, can be modified using different incubation temperatures in order to meet the biodiesel international standards.

  7. Defining the response of a microorganism to temperatures that span its complete growth temperature range (-2°C to 28°C) using multiplex quantitative proteomics.

    Science.gov (United States)

    Williams, Timothy J; Lauro, Federico M; Ertan, Haluk; Burg, Dominic W; Poljak, Anne; Raftery, Mark J; Cavicchioli, Ricardo

    2011-08-01

    The growth of all microorganisms is limited to a specific temperature range. However, it has not previously been determined to what extent global protein profiles change in response to temperatures that incrementally span the complete growth temperature range of a microorganism. As a result it has remained unclear to what extent cellular processes (inferred from protein abundance profiles) are affected by growth temperature and which, in particular, constrain growth at upper and lower temperature limits. To evaluate this, 8-plex iTRAQ proteomics was performed on the Antarctic microorganism, Methanococcoides burtonii. Methanococcoides burtonii was chosen due to its importance as a model psychrophilic (cold-adapted) member of the Archaea, and the fact that proteomic methods, including subcellular fractionation procedures, have been well developed. Differential abundance patterns were obtained for cells grown at seven different growth temperatures (-2°C, 1°C, 4°C, 10°C, 16°C, 23°C, 28°C) and a principal component analysis (PCA) was performed to identify trends in protein abundances. The multiplex analysis enabled three largely distinct physiological states to be described: cold stress (-2°C), cold adaptation (1°C, 4°C, 10°C and 16°C), and heat stress (23°C and 28°C). A particular feature of the thermal extremes was the synthesis of heat- and cold-specific stress proteins, reflecting the important, yet distinct ways in which temperature-induced stress manifests in the cell. This is the first quantitative proteomic investigation to simultaneously assess the response of a microorganism to numerous growth temperatures, including the upper and lower growth temperatures limits, and has revealed a new level of understanding about cellular adaptive responses. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  8. Effect of surfactants and temperature on germination and vegetative growth of Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    Lizzy A. Mwamburi

    2015-03-01

    Full Text Available Three non-ionic surfactants: Tween20, Tween80 and Breakthru® were screened for their effects on spore germination and mycelial growth rates and for their influence on three isolates of Beauveria bassianaspore germination at various temperatures. Tween20 and Tween80 were compatible with all the B. bassiana isolates in the germination studies, but inhibited germination at higher surfactant concentrations, irrespective of the conidial concentrations. Breakthru® had an inhibitory effect on germination even at the lowest concentration of 0.1% on all the B. bassiana isolates. The effects of the surfactants on spore germination did not correspond with their effects on colony growth. Conidial viability within the same formulation declined significantly with increases in temperature, irrespective of the surfactant. The optimal temperature for conidial germination of B. bassiana isolates was approximately 25 °C with an upper limit at 30 °C. Isolate 7320 was identified as the least affected by the different surfactants. This isolate was able to germinate rapidly in a broad temperature range of 25–30 °C after 24 h, this characteristic being an essential factor in controlling house fly populations in poultry houses.

  9. Interaction of Temperature and Photoperiod Increases Growth and Oil Content in the Marine Microalgae Dunaliella viridis.

    Directory of Open Access Journals (Sweden)

    Soundarya Srirangan

    Full Text Available Eukaryotic marine microalgae like Dunaliella spp. have great potential as a feedstock for liquid transportation fuels because they grow fast and can accumulate high levels of triacylgycerides with little need for fresh water or land. Their growth rates vary between species and are dependent on environmental conditions. The cell cycle, starch and triacylglycerol accumulation are controlled by the diurnal light:dark cycle. Storage compounds like starch and triacylglycerol accumulate in the light when CO2 fixation rates exceed the need of assimilated carbon and energy for cell maintenance and division during the dark phase. To delineate environmental effects, we analyzed cell division rates, metabolism and transcriptional regulation in Dunaliella viridis in response to changes in light duration and growth temperatures. Its rate of cell division was increased under continuous light conditions, while a shift in temperature from 25 °C to 35 °C did not significantly affect the cell division rate, but increased the triacylglycerol content per cell several-fold under continuous light. The amount of saturated fatty acids in triacylglycerol fraction was more responsive to an increase in temperature than to a change in the light regime. Detailed fatty acid profiles showed that Dunaliella viridis incorporated lauric acid (C12:0 into triacylglycerol after 24 hours under continuous light. Transcriptome analysis identified potential regulators involved in the light and temperature-induced lipid accumulation in Dunaliella viridis.

  10. Alkyl hydroperoxide reductase enhances the growth of Leuconostoc mesenteroides lactic acid bacteria at low temperatures.

    Science.gov (United States)

    Goto, Seitaro; Kawamoto, Jun; Sato, Satoshi B; Iki, Takashi; Watanabe, Itaru; Kudo, Kazuyuki; Esaki, Nobuyoshi; Kurihara, Tatsuo

    2015-01-01

    Lactic acid bacteria (LAB) can cause deterioration of food quality even at low temperatures. In this study, we investigated the cold-adaptation mechanism of a novel food spoilage LAB, Leuconostoc mesenteroides NH04 (NH04). L. mesenteroides was isolated from several spoiled cooked meat products at a high frequency in our factories. NH04 grew rapidly at low temperatures within the shelf-life period and resulted in heavy financial losses. NH04 grew more rapidly than related strains such as Leuconostoc mesenteroides NBRC3832 (NBRC3832) at 10°C. Proteome analysis of NH04 demonstrated that this strain produces a homolog of alkyl hydroperoxide reductase--AhpC--the expression of which can be induced at low temperatures. The expression level of AhpC in NH04 was approximately 6-fold higher than that in NBRC3832, which was grown under the same conditions. Although AhpC is known to have an anti-oxidative role in various bacteria by catalyzing the reduction of alkyl hydroperoxide and hydrogen peroxide, the involvement of AhpC in cold adaptation of food spoilage bacteria was unclear. We introduced an expression plasmid containing ahpC into NBRC3832, which grows slower than NH04 at 10°C, and found that expression of AhpC enhanced growth. These results demonstrated that AhpC, which likely increases anti-oxidative capacity of LAB, plays an important role in their rapid growth at low temperatures.

  11. Temperature dependences of growth rates and carrying capacities of marine bacteria depart from metabolic theoretical predictions

    KAUST Repository

    Huete-Stauffer, Tamara Megan

    2015-09-11

    Using the metabolic theory of ecology (MTE) framework, we evaluated over a whole annual cycle the monthly responses to temperature of the growth rates (μ) and carrying capacities (K) of heterotrophic bacterioplankton at a temperate coastal site. We used experimental incubations spanning 6oC with bacterial physiological groups identified by flow cytometry according to membrane integrity (live), nucleic acid content (HNA and LNA) and respiratory activity (CTC+). The temperature dependence of μat the exponential phase of growth was summarized by the activation energy (E), which was variable (-0.52 to 0.72 eV) but followed a seasonal pattern, only reaching the hypothesized value for aerobic heterotrophs of 0.65 eV during the spring bloom for the most active bacterial groups (live, HNA, CTC+). K (i.e. maximum experimental abundance) peaked at 4 × 106 cells mL-1 and generally covaried with μbut, contrary to MTE predictions, it did not decrease consistently with temperature. In the case of live cells, the responses of μand K to temperature were positively correlated and related to seasonal changes in substrate availability, indicating that the responses of bacteria to warming are far from homogeneous and poorly explained by MTE at our site. © FEMS 2015.

  12. Engineered Photorespiratory Bypass Pathways Improve Photosynthetic Efficiency and Growth as Temperature Increases

    Science.gov (United States)

    Cavanagh, A. P.; South, P. F.; Ort, D. R.; Bernacchi, C.

    2017-12-01

    In C3 plants grown under ambient [CO2] at 25°C, 23% of the fixed carbon dioxide is lost to photorespiration, the energy expensive metabolic pathway that recycles toxic compounds produced by Rubisco oxygenation reactions. Furthermore, rates of photorespiration increase with rising temperature, as higher temperatures favor increased Rubisco oxygenation. Modelling suggests that the absence of photorespiration could improve gross photosynthesis by 12-55% under projected climate conditions; however, this is difficult to measure empirically, as photorespiration interacts with several metabolic pathways and is an essential process for all C3 plants grown at ambient [O2]. Introduced biochemical bypasses to the native photorespiration pathway hold promise as a strategy to mitigate the impact of temperature on photorespiratory losses. We grew tobacco containing engineered pathways to bypass photorespiration under ambient and elevated temperatures (+5°C) in the field to determine if bypassing photorespiration could mitigate high temperature induced losses in growth and physiology. Our preliminary results show that engineered plants have a higher quantum efficiency under heated conditions than do non-engineered plants, resulting in up to 20% lower yield losses under heated conditions compared to non-engineered plants. These results support the theoretical modelling of temperature impacts on photorespiratory losses, and suggest the bypassing photorespiration could be an important strategy to increase crop yields.

  13. Nucleation of two-dimensional islands on Si (111) during high-temperature epitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Sitnikov, S. V., E-mail: sitnikov@isp.nsc.ru; Kosolobov, S. S.; Latyshev, A. V. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2017-02-15

    The process of two-dimensional island nucleation at the surface of ultra large Si (111) during hightemperature epitaxial growth is studied by in situ ultrahigh-vacuum reflection electron microscopy. The critical terrace size D{sub crit}, at which a two-dimensional island is nucleated in the center, is measured in the temperature range 900–1180°C at different silicon fluxes onto the surface. It is found that the parameter D{sub crit}{sup 2} is a power function of the frequency of island nucleation, with the exponent χ = 0.9 ± 0.05 in the entire temperature range under study. It is established that the kinetics of nucleus formation is defined by the diffusion of adsorbed silicon atoms at temperatures of up to 1180°C and the minimum critical nucleus size corresponds to 12 silicon atoms.

  14. Temperature fluctuations in a LiNbO 3 melt during crystal growth

    Science.gov (United States)

    Suzuki, Tetsuro

    2004-10-01

    Variations in temperature induced by forced convection on the surface of a LiNbO3 melt during crystal growth have been studied. Temperature measurements on the melt surface of single crystals growing (∅ 50 mm) at rotation rates of 15-40 rpm on an RF-heated Czochralski puller has revealed that the melt surface continuously alternates between a steady and unsteady state of flow. This was attributed to the intermittently turbulent flow mode at intermediate rotation rates. The fluctuation period is thought to depend on the thickness of its boundary layer. The boundary layer varies in thickness due to the melt flow, which stops as the interface moves toward the crystal and resumes once the interface reverts to its former position. By contrast, at above 60 rpm, the melt surface temperature drops without fluctuation, indicating that turbulent flow is dominant at faster rotation rates.

  15. Effect of Initial Backfill Temperature on the Deformation Behavior of Early Age Cemented Paste Backfill That Contains Sodium Silicate

    OpenAIRE

    Wu, Aixiang; Wang, Yong; Zhou, Bo; Shen, Jiahua

    2016-01-01

    Enhancing the knowledge on the deformation behavior of cemented paste backfill (CPB) in terms of stress-strain relations and modulus of elasticity is significant for economic and safety reasons. In this paper, the effect of the initial backfill temperature on the CPB’s stress-strain behavior and modulus of elasticity is investigated. Results show that the stress-strain relationship and the modulus of elasticity behavior of CPB are significantly affected by the curing time and initial temperat...

  16. Test Standard Developed for Determining the Slow Crack Growth of Advanced Ceramics at Ambient Temperature

    Science.gov (United States)

    Choi, Sung R.; Salem, Jonathan A.

    1998-01-01

    The service life of structural ceramic components is often limited by the process of slow crack growth. Therefore, it is important to develop an appropriate testing methodology for accurately determining the slow crack growth design parameters necessary for component life prediction. In addition, an appropriate test methodology can be used to determine the influences of component processing variables and composition on the slow crack growth and strength behavior of newly developed materials, thus allowing the component process to be tailored and optimized to specific needs. At the NASA Lewis Research Center, work to develop a standard test method to determine the slow crack growth parameters of advanced ceramics was initiated by the authors in early 1994 in the C 28 (Advanced Ceramics) committee of the American Society for Testing and Materials (ASTM). After about 2 years of required balloting, the draft written by the authors was approved and established as a new ASTM test standard: ASTM C 1368-97, Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Flexural Testing at Ambient Temperature. Briefly, the test method uses constant stress-rate testing to determine strengths as a function of stress rate at ambient temperature. Strengths are measured in a routine manner at four or more stress rates by applying constant displacement or loading rates. The slow crack growth parameters required for design are then estimated from a relationship between strength and stress rate. This new standard will be published in the Annual Book of ASTM Standards, Vol. 15.01, in 1998. Currently, a companion draft ASTM standard for determination of the slow crack growth parameters of advanced ceramics at elevated temperatures is being prepared by the authors and will be presented to the committee by the middle of 1998. Consequently, Lewis will maintain an active leadership role in advanced ceramics standardization within ASTM

  17. Sodium in diet

    Science.gov (United States)

    Diet - sodium (salt); Hyponatremia - sodium in diet; Hypernatremia - sodium in diet; Heart failure - sodium in diet ... The body uses sodium to control blood pressure and blood volume. Your body also needs sodium for your muscles and nerves to work ...

  18. The mechanism for low temperature growth of vertically aligned boron nitride nanotubes

    Science.gov (United States)

    Wang, Jiesheng; Xie, Ming; Khin Yap, Yoke

    2006-03-01

    Boron nitride nanotubes (BNNTs) are well recognized as the candidate that will complement the uses of carbon nanotubes (CNTs) in nanotechnology. However, high growth temperatures (>1100 ^oC), low production yield, and impurities have prevented effective synthesis and applications of boron nitride nanotubes (BNNTs) in the past ten years. For the first time, we have succeeded on the growth of pure BNNTs on substrates [1, 2]. This has been realized based on our experiences of growing CNTs and boron nitride (BN) phases (cubic phase BN, hexagonal phase BN). According to our hypothetical model, energetic growth species play an important role on controlling the phases of BN solids. We have experimentally verified that BNNTs can be grown by energetic growth species by a plasma-enhanced pulsed laser deposition (PEPLD) technique. These BNNTs can be grown vertically aligned into arrays of regular patterns at 600 ^oC, and can be used for applications without purification. The growth mechanism of thee BNNTs will be discussed. [1]. Yap et al., Bull APS Vol 50, 1346-1347 (March 2005). [2]. Wang et al., nano Letters (2005) ASAP, DOI: 10.1021/nl051859n.

  19. Antimicrobial Effects of Sodium Fluoride, Xylitol and Metals Salts on in Vitro Growth Inhibition, Acid Production and Ultrastructure of Streptococcus mutans

    International Nuclear Information System (INIS)

    El-Mongy, T.M.; Abd EI-Aziz, A.B.

    2009-01-01

    This study aimed to evaluate the effects of sodium fluoride (NaF), dietary sugars, sugar alcohols (xylitol and sorbitol) and different metals salts either separately or in combination, by different concentrations at different ph, on the growth inhibition, acid production and ultra structure of Streptococcus mutans. NaF was more effective at low ph, when NaF was added to actively growing Streptococcus mutans broth culture, the growth rate was unaffected by 75 ppm F-, slowed by 150 ppm F-, and immediately arrested by 300 or 600 ppm F-. On the other hand, the best effect of xylitol was at high ph. The effect of xylitol was more marked in the presence of NaF as the acid production was inhibited and the ph did not fall to 5.0. The response of Streptococcus mutans to metals salts was typical of this organism's response to a number of trace metals above optimum concentrations of which may be inhibitory. Synergistic effect observed by addition of metals salts by concentration ranged from 0.2 to 5.0 mML-1, 300 ppm NaF and 5% xylitol. This formula can work at any ph value and causes no drop of the broth culture ph to below 5.0 which is the optimal ph for growth and multiplication of Streptococcus mutans, so this formula worked as ph buffer regulation and growth inhibition for S. mutans. Low concentration of this combined formula after 5 min only at 5.0 and 7.0 ph values caused effective complete destruction of the bacterial viable cells and this effect was observed clearly by Electron Microscope photo graph

  20. Growth responses, biomass partitioning, and nitrogen isotopes of prairie legumes in response to elevated temperature and varying nitrogen source in a growth chamber experiment.

    Science.gov (United States)

    Whittington, Heather R; Deede, Laura; Powers, Jennifer S

    2012-05-01

    Because legumes can add nitrogen (N) to ecosystems through symbiotic fixation, they play important roles in many plant communities, such as prairies and grasslands. However, very little research has examined the effect of projected climate change on legume growth and function. Our goal was to study the effects of temperature on growth, nodulation, and N chemistry of prairie legumes and determine whether these effects are mediated by source of N. We grew seedlings of Amorpha canescens, Dalea purpurea, Lespedeza capitata, and Lupinus perennis at 25/20°C (day/night) or 28/23°C with and without rhizobia and mineral N in controlled-environment growth chambers. Biomass, leaf area, nodule number and mass, and shoot N concentration and δ(15)N values were measured after 12 wk of growth. Both temperature and N-source affected responses in a species-specific manner. Lespedeza showed increased growth and higher shoot N content at 28°C. Lupinus showed decreases in nodulation and lower shoot N concentration at 28°C. The effect of temperature on shoot N concentration occurred only in individuals whose sole N source was N(2)-fixation, but there was no effect of temperature on δ(15)N values in these plants. Elevated temperature enhanced seedling growth of some species, while inhibiting nodulation in another. Temperature-induced shifts in legume composition or nitrogen dynamics may be another potential mechanism through which climate change affects unmanaged ecosystems.

  1. Effect of Temperature on Biochemical Composition, Growth and Reproduction of the Ornamental Red Cherry Shrimp Neocaridina heteropoda heteropoda (Decapoda, Caridea)

    Science.gov (United States)

    Tropea, Carolina; Stumpf, Liane; López Greco, Laura Susana

    2015-01-01

    The effect of water temperature on biochemical composition, growth and reproduction of the ornamental shrimp, Neocaridina heteropoda heteropoda, was investigated to determine the optimum temperature for its culture. The effect of embryo incubation temperature on the subsequent performance of juveniles was also evaluated. Ovigerous females and recently hatched juveniles (JI) were maintained during egg incubation and for a 90-day period, respectively, at three temperatures (24, 28 and 32°C). Incubation period increased with decreasing water temperature, but the number and size of JI were similar among treatments. At day 30 of the 90-day period, body weight and growth increment (GI) at 24°C were lower than those at 28 and 32°C. On subsequent days, GI at 24°C exceeded that at 28 and 32°C, leading to a similar body weight among treatments. These results suggest growth was delayed at 24°C, but only for 30 days after hatching. The lipid concentration tended to be lowest, intermediate and highest at 28, 32 and 24°C, respectively, possibly as a consequence of the metabolic processes involved in growth and ovarian maturation. Protein and glycogen concentrations were similar among treatments. Both the growth trajectory and biochemical composition of shrimps were affected by the temperature experienced during the 90-day growth period independently of the embryo incubation temperature. During the growth period, shrimps reached sexual maturity and mated, with the highest proportion of ovigerous females occurring at 28°C. All the females that matured and mated at 32°C lost their eggs, indicating a potentially stressful effect of high temperature on ovarian maturation. Based on high survival and good growth performance of shrimps at the three temperatures tested over the 90-day period it is concluded that N. heteropoda heteropoda is tolerant to a wide range of water temperatures, with 28°C being the optimum temperature for its culture. PMID:25768918

  2. Mathematical modelling of temperature effect on growth kinetics of Pseudomonas spp. on sliced mushroom (Agaricus bisporus).

    Science.gov (United States)

    Tarlak, Fatih; Ozdemir, Murat; Melikoglu, Mehmet

    2018-02-02

    The growth data of Pseudomonas spp. on sliced mushrooms (Agaricus bisporus) stored between 4 and 28°C were obtained and fitted to three different primary models, known as the modified Gompertz, logistic and Baranyi models. The goodness of fit of these models was compared by considering the mean squared error (MSE) and the coefficient of determination for nonlinear regression (pseudo-R 2 ). The Baranyi model yielded the lowest MSE and highest pseudo-R 2 values. Therefore, the Baranyi model was selected as the best primary model. Maximum specific growth rate (r max ) and lag phase duration (λ) obtained from the Baranyi model were fitted to secondary models namely, the Ratkowsky and Arrhenius models. High pseudo-R 2 and low MSE values indicated that the Arrhenius model has a high goodness of fit to determine the effect of temperature on r max . Observed number of Pseudomonas spp. on sliced mushrooms from independent experiments was compared with the predicted number of Pseudomonas spp. with the models used by considering the B f and A f values. The B f and A f values were found to be 0.974 and 1.036, respectively. The correlation between the observed and predicted number of Pseudomonas spp. was high. Mushroom spoilage was simulated as a function of temperature with the models used. The models used for Pseudomonas spp. growth can provide a fast and cost-effective alternative to traditional microbiological techniques to determine the effect of storage temperature on product shelf-life. The models can be used to evaluate the growth behaviour of Pseudomonas spp. on sliced mushroom, set limits for the quantitative detection of the microbial spoilage and assess product shelf-life. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Sodium salt medium-chain fatty acids and Bacillus-based probiotic strategies to improve growth and intestinal health of gilthead sea bream (Sparus aurata

    Directory of Open Access Journals (Sweden)

    Paula Simó-Mirabet

    2017-12-01

    Full Text Available Background The increased demand for fish protein has led to the intensification of aquaculture practices which are hampered by nutritional and health factors affecting growth performance. To solve these problems, antibiotics have been used for many years in the prevention, control and treatment against disease as well as growth promoters to improve animal performance. Nowadays, the use of antibiotics in the European Union and other countries has been completely or partially banned as a result of the existence of antibiotic cross-resistance. Therefore, a number of alternatives, including enzymes, prebiotics, probiotics, phytonutrients and organic acids used alone or in combination have been proposed for the improvement of immunological state, growth performance and production in livestock animals. The aim of the present study was to evaluate two commercially available feed additives, one based on medium-chain fatty acids (MCFAs from coconut oil and another with a Bacillus-based probiotic, in gilthead sea bream (GSB, Sparus aurata, a marine farmed fish of high value in the Mediterranean aquaculture. Methods The potential benefits of adding two commercial feed additives on fish growth performance and intestinal health were assessed in a 100-days feeding trial. The experimental diets (D2 and D3 were prepared by supplementing a basal diet (D1 with MCFAs in the form of a sodium salt of coconut fatty acid distillate (DICOSAN®; Norel, Madrid, Spain, rich on C-12, added at 0.3% (D2 or with the probiotic Bacillus amyloliquefaciens CECT 5940, added at 0.1% (D3. The study integrated data on growth performance, blood biochemistry, histology and intestinal gene expression patterns of selected markers of intestinal function and architecture. Results MCFAs in the form of a coconut oil increased feed intake, growth rates and the surface of nutrient absorption, promoting the anabolic action of the somatotropic axis. The probiotic (D3 induced anti

  4. Temperature effect on bacterial growth rate: quantitative microbiology approach including cardinal values and variability estimates to perform growth simulation on/in food

    NARCIS (Netherlands)

    Membré, J.M.; Leporq, B.; Vialette, M.; Mettler, E.; Perrier, L.; Thuault, D.; Zwietering, M.H.

    2005-01-01

    Temperature effect on growth rates of Listeria monocytogenes, Salmonella, Escherichia coli, Clostridium perfringens and Bacillus cereus, was studied. Growth rates were obtained in laboratory medium by using a binary dilutions method in which 15 optical density curves were generated to determine one

  5. The effect of temperature on growth and competition between Sphagnum species.

    Science.gov (United States)

    Breeuwer, Angela; Heijmans, Monique M P D; Robroek, Bjorn J M; Berendse, Frank

    2008-05-01

    Peat bogs play a large role in the global sequestration of C, and are often dominated by different Sphagnum species. Therefore, it is crucial to understand how Sphagnum vegetation in peat bogs will respond to global warming. We performed a greenhouse experiment to study the effect of four temperature treatments (11.2, 14.7, 18.0 and 21.4 degrees C) on the growth of four Sphagnum species: S. fuscum and S. balticum from a site in northern Sweden and S. magellanicum and S. cuspidatum from a site in southern Sweden. In addition, three combinations of these species were made to study the effect of temperature on competition. We found that all species increased their height increment and biomass production with an increase in temperature, while bulk densities were lower at higher temperatures. The hollow species S. cuspidatum was the least responsive species, whereas the hummock species S. fuscum increased biomass production 13-fold from the lowest to the highest temperature treatment in monocultures. Nutrient concentrations were higher at higher temperatures, especially N concentrations of S. fuscum and S. balticum increased compared to field values. Competition between S. cuspidatum and S. magellanicum was not influenced by temperature. The mixtures of S. balticum with S. fuscum and S. balticum with S. magellanicum showed that S. balticum was the stronger competitor, but it lost competitive advantage in the highest temperature treatment. These findings suggest that species abundances will shift in response to global warming, particularly at northern sites where hollow species will lose competitive strength relative to hummock species and southern species.

  6. THE EFFECT OF LOW ROOT TEMPERATURE ON GROWTH AND LIPID-COMPOSITION OF LOW-TEMPERATURE TOLERANT ROOTSTOCK GENOTYPES FOR CUCUMBER

    NARCIS (Netherlands)

    BULDER, HAM; DENNIJS, APM; SPEEK, EJ; VANHASSELT, PR; KUIPER, PJC

    1991-01-01

    In the framework of research directed to diminish energy consumption of glasshouse cucumber production, three low temperature tolerant rootstock genotypes for cucumber were compared. Firstly, growth at low root temperature of one Cucurbita ficifolia and two Sicyos angulatus genotypes was studied to

  7. Low-temperature catalyst activator: mechanism of dense carbon nanotube forest growth studied using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Akito Takashima

    2014-07-01

    Full Text Available The mechanism of the one-order-of-magnitude increase in the density of vertically aligned carbon nanotubes (CNTs achieved by a recently developed thermal chemical vapor deposition process was studied using synchrotron radiation spectroscopic techniques. In the developed process, a Ti film is used as the underlayer for an Fe catalyst film. A characteristic point of this process is that C2H2 feeding for the catalyst starts at a low temperature of 450°C, whereas conventional feeding temperatures are ∼800°C. Photoemission spectroscopy using soft and hard X-rays revealed that the Ti underlayer reduced the initially oxidized Fe layer at 450°C. A photoemission intensity analysis also suggested that the oxidized Ti layer at 450°C behaved as a support for nanoparticle formation of the reduced Fe, which is required for dense CNT growth. In fact, a CNT growth experiment, where the catalyst chemical state was monitored in situ by X-ray absorption spectroscopy, showed that the reduced Fe yielded a CNT forest at 450°C. Contrarily, an Fe layer without the Ti underlayer did not yield such a CNT forest at 450°C. Photoemission electron microscopy showed that catalyst annealing at the conventional feeding temperature of 800°C caused excess catalyst agglomeration, which should lead to sparse CNTs. In conclusion, in the developed growth process, the low-temperature catalyst activation by the Ti underlayer before the excess Fe agglomeration realised the CNT densification.

  8. A study of sodium-cooled fast breeder reactor with thorium blanket for supply of U-233 to high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Yoshida, H.; Nishimura, H.; Osugi, T.

    1978-08-01

    Symbiotic energy system between fast breeder reactor and thermal reactor would have a potential merit for nuclear proliferation problem. And when using HTGR as the thermal reactor in the system, the energy system appears to be promising as an energy system self-sufficient in fuels, which can generate both electricity and high temperature process heat. In the system the fast breeder reactor has to supply sufficient amount of fissile plutonium to keep the reactor going, and also produce U-233 necessary to the associated U-233 fuelled process heat production HTGR. Three types of LMFBR concepts with thorium blanket, conventional homogeneous core LMFBR, and axial and radial parfait heterogeneous core LMFBRs, have been investigated to find out suitable configurations of LMFBR for supply of U-233 to the HTGR with relatively high conversion ratio of 0.85, in the symbiotic energy system between LMFBR and HTGR. The investigation on LMFBR has been made on fuel sufficiency of the system, inherent safety such as sodium-void and Doppler coefficients, and fuel cycle cost. The followings were revealed; (1) Conventional homogeneous core LMFBR with thorium radial blanket well satisfies the condition of fuel sufficiency, if adequate radial blanket thickness is chosen. However, the sodium-void coefficient and fuel cycle cost are inferior to the other concepts. (2) Axial parfait heterogeneous core LMFBR can be regarded as one of the best LMFBR concepts installed in the symbiotic energy system, from the viewpoints of fuel sufficiency, inherent safety and fuel cycle cost. However, further investigations should be needed on reliability and operationability of the concept. (3) Radial parfait heterogeneous core LMFBR seems inadequate as the LMFBR in the system, because the configurations based on this concept does not satisfy plutonium and U-233 breedings, simultaneously. This LMFBR concept, however, has excellent breeding performance in the internal radial blanket. So further

  9. Physical properties of liquid sodium

    International Nuclear Information System (INIS)

    Alberdi Primicia, J.; Martinez Piquer, T.A.

    1977-01-01

    The molten sodium has been the more accepted coolant for the first generation of FBR, by this reason the knowledge of its technology is needed for the development of the next LMFBR. A series of necessary data for designing sodium liquid systems are given. Tables and graphics about the most important physical sodium properties between 1200-1400 degC are gathered. The results have been obtained from equations that relate the properties with temperature using a Fortran IV program. (author) [es

  10. Growth of filamentous blue-green algae at high temperatures: a source of biomass for renewable fuels

    Energy Technology Data Exchange (ETDEWEB)

    Timourian, H.; Ward, R.L.; Jeffries, T.W.

    1977-08-17

    The growth of filamentous blue-green algae (FBGA) at high temperatures in outdoor, shallow solar ponds is being investigated. The temperature of the 60-m/sup 2/ ponds can be controlled to an average temperature of 45/sup 0/C. The growth of FBGA at high temperatures offers an opportunity, not presently available from outdoor algal ponds or energy farms, to obtain large amounts of biomass. Growth of algae at high temperatures results in higher yields because of increased growth rate, the higher light intensity that can be used before saturating the photosynthetic process, easier maintenance of selected FBGA strains, and fewer predators to decimate culture. Additional advantages of growing FBGA as a source of biomass include: bypassing the limitations of nutrient sources, because FBGA fix their own nitrogen and require only CO/sub 2/ when inorganic nutrients are recycled; toleration of higher salinity and metal ion concentrations; and easier and less expensive harvesting procedures.

  11. Arabidopsis ZED1-related kinases mediate the temperature-sensitive intersection of immune response and growth homeostasis.

    Science.gov (United States)

    Wang, Zhicai; Cui, Dayong; Liu, Jing; Zhao, Jingbo; Liu, Cheng; Xin, Wei; Li, Yuan; Liu, Na; Ren, Dongtao; Tang, Dingzhong; Hu, Yuxin

    2017-07-01

    Activation of the immune response in plants antagonizes growth and development in the absence of pathogens, and such an autoimmune phenotype is often suppressed by the elevation of ambient temperature. However, molecular regulation of the ambient temperature-sensitive intersection of immune response and growth is largely elusive. A genetic screen identified an Arabidopsis mutant, zed1-D, by its high temperature-dependent growth retardation. A combination of molecular, cytological and genetic approaches was used to investigate the molecular basis behind the temperature-sensitive growth and immune response in zed1-D. A dominant mutation in HOPZ-ETI-DEFICIENT 1 (ZED1) is responsible for a high temperature-dependent autoimmunity and growth retardation in zed1-D. The autoimmune phenotype in zed1-D is dependent on the HOPZ-ACTIVATED RESISTANCE 1 (ZAR1). ZED1 and some ZED1-related kinases (ZRKs) are induced by elevated temperature and function cooperatively to suppress the immune response by modulating the transcription of SUPPRESSOR OF NPR1-1 CONSTITUTIVE 1 (SNC1) in the absence of pathogens. Our data reveal a previously unidentified role of ZRKs in the ambient temperature-sensitive immune response in the absence of pathogens, and thus reveals a possible molecular mechanism underlying the temperature-mediated intersection of immune response and growth in plants. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. Hidden Sodium

    Centers for Disease Control (CDC) Podcasts

    2013-03-04

    In this podcast, learn about reducing sodium intake by knowing what to eat and the main sources of sodium in the diet. It's important for a healthy lifestyle.  Created: 3/4/2013 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 3/4/2013.

  13. The effect of covering and mulching on the soil temperature, growth and yield of tomato

    Directory of Open Access Journals (Sweden)

    Kosterna Edyta

    2014-12-01

    Full Text Available By improving the thermal and moisture conditions in the immediate vicinity of plants, plastic covers influenced the growth and development and increased the yield of vegetables. Soil mulching with organic material is one method of soil water protection and also helps maintain a constant soil temperature within the root system of crops. This study investigated the effect of plant covering and the type of straw applied to soil mulching (rye, corn, rape or buckwheat on the soil temperature, development of the plant and the yield of ‘Polfast’ F1 tomato. The effect of the straw was compared to a control plot without mulch. Soil temperature at a depth of 10 cm was higher in covered plots than in the plot without covers. The increase in soil temperature as a result of covering amounted to 1.3°C at 8:00 a.m. and 1.7°C at 2:00 p.m. Both in the morning and in the afternoon, the soil temperature in the plots without straw and without covers and under polypropylene fibre was higher than in the plots with straw. The application of covers resulted in higher aboveground parts of plants and higher leaf area compared to cultivation without covers. Irrespective of whether a covering was used, all of the types of straw investigated in the experiment caused the acceleration of growth and development of tomato plants. Simultaneous plant covering and soil mulching increased the total yield of fruits but did not have an influence on the share of marketable yield of the total yield.

  14. Combined effects of elevated temperature and CO2 enhance threat from low temperature hazard to winter wheat growth in North China.

    Science.gov (United States)

    Tan, Kaiyan; Zhou, Guangsheng; Lv, Xiaomin; Guo, Jianping; Ren, Sanxue

    2018-03-12

    We examined the growth and yield of winter wheat (Triticum aestivum) in response to the predicted elevated CO 2 concentration and temperature to determine the mechanism of the combined impacts in North China Plain. An elevated treatment (CO 2 : 600 μmol mol -1 , temperature: +2.5~3.0 °C, ECTI) and a control treatment (ambient CO 2 and temperature, CK) were conducted in open-top chambers from October 2013 to June 2016. Post-winter growth stages of winter wheat largely advanced and shifted to a cooler period of nature season under combined impact of elevated CO 2 and temperature during the entire growing season. The mean temperature and accumulated photosynthetic active radiations (PAR) over the post-winter growing period in ECTI decreased by 0.8-1.5 °C and 10-13%, respectively compared with that in CK, negatively impacted winter wheat growth. As a result, winter wheat in ECTI suffered from low temperature hazards during critical period of floret development and anthesis and grain number per ear was reduced by 10-31% in the three years. Although 1000-kernel weight in ECTI increased by 8-9% mainly due to elevated CO 2 , increasing CO 2 concentration from 400 to 600 μmol mol -1 throughout the growth stage was not able to offset the adverse effect of warming on winter wheat growth and yield.

  15. Dietary sodium

    DEFF Research Database (Denmark)

    Graudal, Niels

    2015-01-01

    The 2013 Institute of Medicine (IOM) report "Sodium Intake in Populations: Assessment of Evidence" did not support the current recommendations of the IOM and the American Heart Association (AHA) to reduce daily dietary sodium intake to below 2,300 mg. The report concluded that the population......-based health outcome evidence was not sufficient to define a safe upper intake level for sodium. Recent studies have extended this conclusion to show that a sodium intake below 2,300 mg/day is associated with increased mortality. In spite of this increasing body of evidence, the AHA, Centers for Disease...... Control (CDC), other public health advisory bodies, and major medical journals have continued to support the current policy of reducing dietary sodium....

  16. Effects of temperature on embryonic and early larval growth and development in the rough-skinned newt (Taricha granulosa).

    Science.gov (United States)

    Smith, Geoffrey D; Hopkins, Gareth R; Mohammadi, Shabnam; M Skinner, Heather; Hansen, Tyler; Brodie, Edmund D; French, Susannah S

    2015-07-01

    We investigated the effects of temperature on the growth and development of embryonic and early larval stages of a western North American amphibian, the rough-skinned newt (Taricha granulosa). We assigned newt eggs to different temperatures (7, 14, or 21°C); after hatching, we re-assigned the newt larvae into the three different temperatures. Over the course of three to four weeks, we measured total length and developmental stage of the larvae. Our results indicated a strong positive relationship over time between temperature and both length and developmental stage. Importantly, individuals assigned to cooler embryonic temperatures did not achieve the larval sizes of individuals from the warmer embryonic treatments, regardless of larval temperature. Our investigation of growth and development at different temperatures demonstrates carry-over effects and provides a more comprehensive understanding of how organisms respond to temperature changes during early development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Properties of ZnO Nano rods Arrays Growth via Low Temperature Hydrothermal Reaction

    International Nuclear Information System (INIS)

    Nur Syafinaz Ridhuan; Zainovia Lockman; Azlan Abdul Aziz; Azlan Abdul Aziz; Khairunisak Abdul Razak; Khairunisak Abdul Razak

    2011-01-01

    This work describes properties of 1- D ZnO nano rods (NRs) arrays growth using low temperature hydrothermal method on seeded substrate. The properties of ZnO seed were studied by varying annealed temperature from 250-450 degree Celsius. The optimum oxidation temperature to produce seeded ZnO template was 400 degree Celsius. The formations of ZnO NRs were further studied by varying hydrothermal reaction growth time from 1 to 24 hours. I-V characteristic of ZnO NRs photodetector in dark, ambient light and UV light were also studied. The change in the photoconductivity under UV illumination was found to be 1 order higher in magnitude compared to dark current and ambient light. With an incident wavelength of 370 nm and applied bias of 3V, the responsivity of photodetector was 5.0 mA/ W, which was higher compared to other reported works. The increase of photosensitivity indicated that the produced ZnO NRs were suitable for UV photodetector applications.(author)

  18. Advances in crystal growth, device fabrication and characterization of thallium bromide detectors for room temperature applications

    Science.gov (United States)

    Datta, Amlan; Moed, Demi; Becla, Piotr; Overholt, Matthew; Motakef, Shariar

    2016-10-01

    Thallium bromide (TlBr) is a promising room-temperature radiation detector candidate with excellent charge transport properties. However, several critical issues need to be addressed before deployment of this material for long-term field applications can be realized. In this paper, progress made towards solving some of these challenges is discussed. The most significant factors for achieving long-term performance stability for TlBr devices include residual stress as generated during crystal growth and fabrication processes, surface conditions, and the choice of contact metal. Modifications to the commonly used traveling molten zone growth technique for TlBr crystals can significantly minimize the stresses generated by large temperature gradients near the melt-solid interface of the growing crystal. Plasma processing techniques were introduced for the first time to modify the Br-etched TlBr surfaces, which resulted in improvements to the surface conditions, and consequently the spectroscopic response of the detectors. Palladium electrodes resulted a 20-fold improvement in the room-temperature device lifetime when compared to its Br-etched Pt counterpart.

  19. Role of Temperature in the Growth of Silver Nanoparticles Through a Synergetic Reduction Approach

    Directory of Open Access Journals (Sweden)

    Jiang XC

    2011-01-01

    Full Text Available Abstract This study presents the role of reaction temperature in the formation and growth of silver nanoparticles through a synergetic reduction approach using two or three reducing agents simultaneously. By this approach, the shape-/size-controlled silver nanoparticles (plates and spheres can be generated under mild conditions. It was found that the reaction temperature could play a key role in particle growth and shape/size control, especially for silver nanoplates. These nanoplates could exhibit an intensive surface plasmon resonance in the wavelength range of 700–1,400 nm in the UV–vis spectrum depending upon their shapes and sizes, which make them useful for optical applications, such as optical probes, ionic sensing, and biochemical sensors. A detailed analysis conducted in this study clearly shows that the reaction temperature can greatly influence reaction rate, and hence the particle characteristics. The findings would be useful for optimization of experimental parameters for shape-controlled synthesis of other metallic nanoparticles (e.g., Au, Cu, Pt, and Pd with desirable functional properties.

  20. Identification of Bacillus cereus genes specifically expressed during growth at low temperatures.

    Science.gov (United States)

    Brillard, Julien; Jéhanno, Isabelle; Dargaignaratz, Claire; Barbosa, Isabelle; Ginies, Christian; Carlin, Frédéric; Fedhila, Sinda; Nguyen-the, Christophe; Broussolle, Véronique; Sanchis, Vincent

    2010-04-01

    The mechanisms involved in the ability of Bacillus cereus to multiply at low temperatures were investigated. It was assumed that many genes involved in cold acclimation would be upregulated at low temperatures. Recombinase-based in vivo expression technology (IVET) was adapted to the detection of the transient activation of B. cereus promoters during growth at 10 degrees C. Four independent screenings of a promoter library from type strain ATCC 14579 were performed, and 17 clones were isolated. They corresponded to 17 promoter regions that displayed reproducibly elevated expression at 10 degrees C relative to expression at 30 degrees C. This analysis revealed several genes that may be important for B. cereus to grow successfully under the restrictive conditions of cold habitats. Among them, a locus corresponding to open reading frames BC5402 to BC5398, harboring a lipase-encoding gene and a putative transcriptional regulator, was identified three times. While a mutation in the putative regulator-encoding gene did not cause any particular phenotype, a mutant deficient in the lipase-encoding gene showed reduced growth abilities at low temperatures compared with the parental strain. The mutant did not change its fatty acid profiles in the same way as the wild type when grown at 12 degrees C instead of 37 degrees C. This study demonstrates the feasibility of a promoter trap strategy for identifying cold-induced genes. It outlines a first picture of the different processes involved in B. cereus cold acclimation.

  1. Low Temperature Flux Growth of 2H-SiC and Beta-Gallium Oxide

    Science.gov (United States)

    Singh, N. B.; Choa, Fow-Sen; Su, Ching-Hua; Arnold, Bradley; Kelly, Lisa

    2016-01-01

    We present brief overview of our study on the low temperature flux growth of two very important novel wide bandgap materials 2H-SiC and Beta-gallium oxide (Beta-Ga2O3). We have synthesized and grown 5 millimeter to 1 centimeter size single crystals of Beta-gallium oxide (Beta-Ga2O3). We used a flux and semi wet method to grow transparent good quality crystals. In the semi-wet method Ga2O3 was synthesized with starting gallium nitrate solution and urea as a nucleation agent. In the flux method we used tin and other metallic flux. This crystal was placed in an alumina crucible and temperature was raised above 1050 degrees Centigrade. After a time period of thirty hours, we observed prismatic and needle shaped crystals of gallium oxide. Scanning electron microscopic studies showed step growth morphology. Crystal was polished to measure the properties. Bandgap was measured 4.7electronvolts using the optical absorption curve. Another wide bandgap hexagonal 2H-SiC was grown by using Si-Al eutectic flux in the graphite crucible. We used slight AlN also as the impurity in the flux. The temperature was raised up to 1050 degrees Centigrade and slowly cooled to 850 degrees Centigrade. Preliminary characterization results of this material are also reported.

  2. Role of temperature on growth and metabolic rate in the tenebrionid beetles Alphitobius diaperinus and Tenebrio molitor.

    Science.gov (United States)

    Bjørge, Julie Dahl; Overgaard, Johannes; Malte, Hans; Gianotten, Natasja; Heckmann, Lars-Henrik

    2018-03-10

    Insects are increasingly used as a dietary source for food and feed and it is therefore important to understand how rearing conditions affect growth and development of these agricultural animals. Temperature is arguably the most important factor affecting metabolism and growth rate in insects. Here, we investigated how rearing temperature affected growth rate, growth efficiency and macronutrient composition in two species of edible beetle larvae: Alphitobius diaperinus and Tenebrio molitor. Growth rates of both species were quantified at temperatures ranging from 15.2 to 38.0 °C after which we measured protein and lipid content of the different treatment groups. Metabolic rate was measured in a similar temperature range by measuring the rate of O 2 consumption (V·O 2 ) and CO 2 production (V·CO 2 ) using repeated measures closed respirometry. Using these measurements, we calculated the growth efficiency of mealworms by relating the energy assimilation rate to the metabolic rate. Maximum daily growth rates were 18.3% and 16.6% at 31 °C, for A. diaperinus and T. molitor respectively, and we found that A. diaperinus was better at maintaining growth at high temperatures while T. molitor had superior growth at lower temperatures. Both species had highest efficiencies of energy assimilation in the temperature range of 23.3-31.0 °C, with values close to 2 J assimilated/J metabolised in A. diaperinus and around 4 J assimilated/J metabolised in T. molitor. Compared to "conventional" terrestrial livestock, both species of insects were characterised by high growth rates and very high energy conversion efficiency at most experimental temperatures. For A. diaperinus, lipid content was approximately 30% of dry mass and protein content approximately 50% of dry mass across most temperatures. Temperature had a greater influence on the body composition of T. molitor. At 31.0 °C the lipid and protein content was measured to 47.4% and 37.9%, respectively but lipid

  3. Development temperature has persistent effects on muscle growth responses in gilthead sea bream.

    Directory of Open Access Journals (Sweden)

    Daniel Garcia de la serrana

    Full Text Available Initially we characterised growth responses to altered nutritional input at the transcriptional and tissue levels in the fast skeletal muscle of juvenile gilthead sea bream. Fish reared at 21-22°C (range were fed a commercial diet at 3% body mass d(-1 (non-satiation feeding, NSF for 4 weeks, fasted for 4d (F and then fed to satiation (SF for 21d. 13 out of 34 genes investigated showed consistent patterns of regulation between nutritional states. Fasting was associated with a 20-fold increase in MAFbx, and a 5-fold increase in Six1 and WASp expression, which returned to NSF levels within 16h of SF. Refeeding to satiation was associated with a rapid (<24 h 12 to 17-fold increase in UNC45, Hsp70 and Hsp90α transcripts coding for molecular chaperones associated with unfolded protein response pathways. The growth factors FGF6 and IGF1 increased 6.0 and 4.5-fold within 16 h and 24 h of refeeding respectively. The average growth in diameter of fast muscle fibres was checked with fasting and significant fibre hypertrophy was only observed after 13d and 21d SF. To investigate developmental plasticity in growth responses we used the same experimental protocol with fish reared at either 17.5-18.5°C (range (LT or 21-22°C (range (HT to metamorphosis and then transferred to 21-22°C. There were persistent effects of development temperature on muscle growth patterns with 20% more fibres of lower average diameter in LT than HT group of similar body size. Altering the nutritional input to the muscle to stimulate growth revealed cryptic changes in the expression of UNC45 and Hsp90α with higher transcript abundance in the LT than HT groups, whereas there were no differences in the expression of MAFbx and Six1. It was concluded that myogenesis and gene expression patterns during growth are not fixed, but can be modified by temperature during the early stages of the life cycle.

  4. Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field.

    Science.gov (United States)

    Locke, Anna M; Sack, Lawren; Bernacchi, Carl J; Ort, Donald R

    2013-09-01

    Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status. Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming. In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility. Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change.

  5. Effects of concentrations of sodium chloride on photosynthesis, antioxidative enzymes, growth and fiber yield of hybrid ramie.

    Science.gov (United States)

    Huang, Chengjian; Wei, Gang; Jie, Yucheng; Wang, Longchang; Zhou, Hangfei; Ran, Chunyan; Huang, Zaocun; Jia, Huijuan; Anjum, Shakeel Ahmad

    2014-03-01

    Ramie (Boehmeria nivea L.) is one of the oldest and most important fiber crops in China due to the comfortable textile of its fine fiber. Increased ramie fiber demand brings ramie cultivation to salt-affected regions. The aim of this research was to determine morphological, physiological and biochemical responses of ramie by subjecting plants to varying concentrations of NaCl (0, 2, 4, 6 and 8 g NaCl/kg dry soil) at vigorous growth stage for 10 and 20 days. Results indicated that salinity stress substantially inhibited the growth of hybrid ramie plants and led to remarkable decline in fiber yield. However, when grown at 2 g NaCl/kg growth and fiber yield were similar to non-saline control. In addition, chlorophyll fluorescence and gas exchange parameters were correlated with growth and yield response. Salt treatments promoted a subsequent decrease in maximum quantum efficiency of PSII photochemistry (Fv/Fm), quantum efficiency of open PSII reaction centers (Fv'/Fm') and quantum yield of PSII (φPSII) while non-photochemical quenching (NPQ) changed conversely. Photochemical quenching (qP) and electron transport rate of PSII (ETR) increased at 2 and 4 g NaCl/kg then decreased at 6 and 8 g NaCl/kg. Substantial decline in the PSII activity at high salinity was associated with the loss of chlorophyll contents. Moreover, marked decrease in net photosynthetic rate (A), transpiration rate (E), stomatal conductance (gs) was also recorded. Nonetheless, intercellular CO2 (Ci) decreased at low salt stress, subsequently increased at high salt stress while water use efficiency (WUE) and instantaneous water use efficiency (WUEi) altered in opposite direction. Substantial decrease of photosynthesis at high salinity was due to non-stomatal factors. Furthermore, salinity stress led to decrease of proteins and accumulation of proline and malondialdehyde (MDA), as well as enhanced activities of superoxide dismutase (SOD, EC 1.15.1.1) and peroxidase (POD, EC 1.11.1.6), whereas

  6. The Effect of Growth Temperature and V/III Flux Ratio of MOCVD Antimony Based Semiconductors on Growth Rate and Surface Morphology

    Directory of Open Access Journals (Sweden)

    Ramelan Ari Handono

    2017-01-01

    Full Text Available Epitaxial Alx Ga1-x Sb layers on GaSb and GaAs substrates have been grown by atmospheric pressure metalorganic chemical vapor deposition using TMAl, TMGa and TMSb. Nomarski microscope and a profiler were employed to examine the surface morphology and growth rate of the samples. We report the effect of growth temperature and V/III flux ratio on growth rate and surface morphology. Growth temperatures in the range of 520°C and 680°C and V/III ratios from 1 to 5 have been investigated. A growth rate activation energy of 0.73 eV was found. At low growth temperatures between 520 and 540°C, the surface morphology is poor due to antimonide precipitates associated with incomplete decomposition of the TMSb. For layers grown on GaAs at 580°C and 600°C with a V/III ratio of 3 a high quality surface morphology is typical, with a mirror-like surface and good composition control. It was found that a suitable growth temperature and V/III flux ratio was beneficial for producing good AlGaSb layers. Undoped AlGaSb grown at 580°C with a V/III flux ratio of 3 at the rate of 3.5 μm/hour shows p-type conductivity with smooth surface morphology

  7. Responses of crop yield growth to global temperature and socioeconomic changes.

    Science.gov (United States)

    Iizumi, Toshichika; Furuya, Jun; Shen, Zhihong; Kim, Wonsik; Okada, Masashi; Fujimori, Shinichiro; Hasegawa, Tomoko; Nishimori, Motoki

    2017-08-10

    Although biophysical yield responses to local warming have been studied, we know little about how crop yield growth-a function of climate and technology-responds to global temperature and socioeconomic changes. Here, we present the yield growth of major crops under warming conditions from preindustrial levels as simulated by a global gridded crop model. The results revealed that global mean yields of maize and soybean will stagnate with warming even when agronomic adjustments are considered. This trend is consistent across socioeconomic assumptions. Low-income countries located at low latitudes will benefit from intensive mitigation and from associated limited warming trends (1.8 °C), thus preventing maize, soybean and wheat yield stagnation. Rice yields in these countries can improve under more aggressive warming trends. The yield growth of maize and soybean crops in high-income countries located at mid and high latitudes will stagnate, whereas that of rice and wheat will not. Our findings underpin the importance of ambitious climate mitigation targets for sustaining yield growth worldwide.

  8. Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils.

    Science.gov (United States)

    Zhang, Bin; Lee, Wi Hyoung; Piner, Richard; Kholmanov, Iskandar; Wu, Yaping; Li, Huifeng; Ji, Hengxing; Ruoff, Rodney S

    2012-03-27

    A two-step CVD route with toluene as the carbon precursor was used to grow continuous large-area monolayer graphene films on a very flat, electropolished Cu foil surface at 600 °C, lower than any temperature reported to date for growing continuous monolayer graphene. Graphene coverage is higher on the surface of electropolished Cu foil than that on the unelectropolished one under the same growth conditions. The measured hole and electron mobilities of the monolayer graphene grown at 600 °C were 811 and 190 cm(2)/(V·s), respectively, and the shift of the Dirac point was 18 V. The asymmetry in carrier mobilities can be attributed to extrinsic doping during the growth or transfer. The optical transmittance of graphene at 550 nm was 97.33%, confirming it was a monolayer, and the sheet resistance was ~8.02 × 10(3) Ω/□. © 2012 American Chemical Society

  9. Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports

    International Nuclear Information System (INIS)

    Sugime, Hisashi; Esconjauregui, Santiago; Yang, Junwei; D'Arsié, Lorenzo; Robertson, John; Oliver, Rachel A.; Bhardwaj, Sunil; Cepek, Cinzia

    2013-01-01

    We grow ultra-high mass density carbon nanotube forests at 450 °C on Ti-coated Cu supports using Co-Mo co-catalyst. X-ray photoelectron spectroscopy shows Mo strongly interacts with Ti and Co, suppressing both aggregation and lifting off of Co particles and, thus, promoting the root growth mechanism. The forests average a height of 0.38 μm and a mass density of 1.6 g cm −3 . This mass density is the highest reported so far, even at higher temperatures or on insulators. The forests and Cu supports show ohmic conductivity (lowest resistance ∼22 kΩ), suggesting Co-Mo is useful for applications requiring forest growth on conductors

  10. The growth of single crystals of Ni-W alloy under conditions of high temperature gradient

    International Nuclear Information System (INIS)

    Azhazha, V.M.; Gorbenko, Yu.V.; Kovtun, G.P.; Ladygin, A.N.; Malykhin, D.G.; Rudycheva, T.Yu.; Sverdlov, V.Ya.; Shcherban', A.P.; Zhemanyuk, P.D.; Klochikhin, V.V.

    2004-01-01

    The structure of single crystals of the NV-4 nickel alloy containing 32-36 wt % W is investigated. The temperature gradient at the crystallization front and the velocity of the crystallization front are the variable parameters of directional crystallization. The degrees of structural perfection of the single crystals grown under different conditions are compared. The crystallization parameters providing growth of single crystals that have high structural perfection and can be successfully used as seeds for the growth of single-crystal blades are determined. Typical defects formed upon directional crystallization of single crystals of the Ni-W (35 wt %) alloy are examined. The studied defects are classified, and the factors responsible for the disturbance of the single-crystal structure are analyzed

  11. Comparison of Growth of Borrelia afzelii, Borrelia garinii, and Borrelia burgdorferi Sensu Stricto at Five Different Temperatures.

    Directory of Open Access Journals (Sweden)

    Gorana Veinović

    Full Text Available Lyme borreliosis is caused by the spirochete Borrelia burgdorferi sensu lato, a fastidious bacterium that replicates slowly and requires special conditions to grow in the laboratory. Borrelia isolation from clinical material is a golden standard for microbiological diagnosis of borrelial infection. Important factors that affect in vitro borrelia growth are temperature of incubation and number of borrelia cells in the sample. The aim of the study was to assess the influence of temperature on borrelia growth and survival by evaluation and comparison of growth of 31 different borrelia strains at five different temperatures and to determine the influence of different inoculums on borrelia growth at different temperatures. Borreliae were cultured in the MKP medium; the initial and final number of spirochetes was determined by dark field microscopy using Neubauer counting chamber. The growth of borrelia was defined as final number of cells/mL after three days of incubation. For all three Borrelia species, the best growth was found at 33°C, followed by 37, 28, and 23°C, while no growth was detected at 4°C (P0.05, respectively. Inoculum had statistically significant influence on growth of all three Borrelia species at all tested temperatures except at 4°C.

  12. Comparison of Growth of Borrelia afzelii, Borrelia garinii, and Borrelia burgdorferi Sensu Stricto at Five Different Temperatures

    Science.gov (United States)

    Veinović, Gorana; Ružić-Sabljić, Eva; Strle, Franc; Cerar, Tjaša

    2016-01-01

    Lyme borreliosis is caused by the spirochete Borrelia burgdorferi sensu lato, a fastidious bacterium that replicates slowly and requires special conditions to grow in the laboratory. Borrelia isolation from clinical material is a golden standard for microbiological diagnosis of borrelial infection. Important factors that affect in vitro borrelia growth are temperature of incubation and number of borrelia cells in the sample. The aim of the study was to assess the influence of temperature on borrelia growth and survival by evaluation and comparison of growth of 31 different borrelia strains at five different temperatures and to determine the influence of different inoculums on borrelia growth at different temperatures. Borreliae were cultured in the MKP medium; the initial and final number of spirochetes was determined by dark field microscopy using Neubauer counting chamber. The growth of borrelia was defined as final number of cells/mL after three days of incubation. For all three Borrelia species, the best growth was found at 33°C, followed by 37, 28, and 23°C, while no growth was detected at 4°C (P0.05), respectively. Inoculum had statistically significant influence on growth of all three Borrelia species at all tested temperatures except at 4°C. PMID:27310556

  13. Investigation of the coupled effects of temperature and partial pressure on catalytic growth of carbon nanotubes using a modified growth rate model

    Science.gov (United States)

    Zainal, M. T.; Mohd Yasin, M. F.; Wahid, M. A.

    2016-10-01

    An accurate modelling of catalytic growth of carbon nanotubes (CNTs) is needed to model the physics of carbon adsorption and diffusion into the catalyst surface along with the catalyst deactivation. The model should be able to provide a physical response towards the change of temperature and partial pressure. Though the effects of temperature and partial pressure on the growth rate has been studied individually, the coupled effects of the two parameters has yet to be emphasized. A modified growth rate model that unified the terms from previously developed models successfully captured the essential physics during the growth and provided physical response towards the change of temperature and partial pressure. The model validation was done against a chemical vapour deposition (CVD) experiment that employed acetylene and cobalt as the carbon source and the catalyst respectively where the modified model managed to predict the CNT terminal length more accurately compared to the standard model with 5% maximum error. A comprehensive parametric study on the effects of temperature and partial pressure on the growth rate and terminal length successfully reveals the minimum partial pressure of 5 Torr for a given operating condition below which the growth rate is significantly low regardless of any increase of temperature. Three regions of growth in the partial pressure-temperature domain are identified based on the magnitude of terminal length. The model can serve as a guideline for the determination and optimisation of the baseline operating conditions in future experiments on catalytic growth of CNT, with emphasis on the CVD and flame synthesis techniques.

  14. The effect of water sodium on the chick requirement for dietary sodium.

    Science.gov (United States)

    Ross, E

    1979-05-01

    Two strains of broiler chicks fed a basal wheat-soybean diet designed to be complete in all known nutrients failed to achieve optimal growth at 3 weeks of age. Increments of dietary sodium resulted in increased growth responses and improved feed efficiencies (P less than .05) which were not related to genotype. The sodium requirements for optimum weight gain was found to be greater than the NRC (1971) requirement when the water sodium level was 3 ppm. The addition of 50 ppm of sodium to the drinking water improved growth and feed efficiency (P less than .05) of birds fed the basal diet. When 100 ppm of sodium was added to the drinking water, a further increase in growth was obtained equivalent to that of birds receiving the basal diet to which increments of sodium were added up to .15%. Sodium in the drinking water was shown to be utilized more effectively than was sodium in the feed.

  15. Effect of deletion and overexpression of tryptophan metabolism genes on growth and fermentation capacity at low temperature in wine yeast.

    Science.gov (United States)

    López-Malo, María; García-Rios, Estefani; Chiva, Rosana; Guillamon, José Manuel; Martí-Raga, María

    2014-01-01

    Low-temperature fermentations produce wines with greater aromatic complexity, but the success of these fermentations greatly depends on the adaptation of yeast cells to cold. Tryptophan has been previously reported to be a limiting amino acid during Saccharomyces cerevisiae growth at low temperature. The objective of this study was to determine the influence of the tryptophan metabolism on growth and fermentation performance during low-temperature wine fermentation. To this end, we constructed the deletion mutants of the TRP1 and TAT2 genes in a derivative haploid of a commercial wine strain, and the TAT2 gene was overexpressed in the prototroph and auxotroph (Δtrp1) backgrounds. Then we characterized growth and fermentation activity during wine fermentation at low and optimum temperatures. Our results partially support the role of this amino acid in cold yeast growth. Although deletion of TRP1 impaired amino acid uptake and the growth rate at low temperature in synthetic must, this growth impairment did not affect the fermentation rate. Deletion of TAT2 endorsed this strain with the highest nitrogen consumption capacity and the greatest fermentation activity at low temperature. Our results also evidenced reduced ammonium consumption in all the strains at low temperature. © 2014 American Institute of Chemical Engineers.

  16. Microculture model studies on the effect of various gas atmospheres on microbial growth at different temperatures.

    Science.gov (United States)

    Eklund, T; Jarmund, T

    1983-08-01

    A microculture technique, employing 96-well tissue culture plates in plastic bags, was used to test the effect of different gas atmospheres (vacuum, air, nitrogen, and carbon dioxide) on the growth of Escherichia coli, Bacillus macerans, Salmonella typhimurium. Candida albicans, Lactobacillus plantarum, Pseudomonas/Acinetobacter/moraxella-group, Brochothrix thermosphacta and Yersinia enterocolitica at 2, 6, and 20 degrees C. In general, carbon dioxide was the most effective inhibitor. The inhibition increased with decreasing temperature. Only the combination of carbon dioxide and 2 degrees C provided complete inhibition of Broch. thermosphacta and Y. enterocolitica.

  17. Modeling the microbial growth and temperature profile in a fixed-bed bioreactor.

    Science.gov (United States)

    da Silveira, Christian L; Mazutti, Marcio A; Salau, Nina P G

    2014-10-01

    Aiming to scale up and apply control and optimization strategies, currently is required the development of accurate plant models to forecast the process nonlinear dynamics. In this work, a mathematical model to predict the growth of the Kluyveromyces marxianus and temperature profile in a fixed-bed bioreactor for solid-state fermentation using sugarcane bagasse as substrate was built up. A parameter estimation technique was performed to fit the mathematical model to the experimental data. The estimated parameters and the model fitness were evaluated with statistical analyses. The results have shown the estimated parameters significance, with 95 % confidence intervals, and the good quality of process model to reproduce the experimental data.

  18. Effect of Deforming Temperature and Strain on Abnormal Grain Growth of Extruded FGH96 Superalloy

    Directory of Open Access Journals (Sweden)

    WANG Chaoyuan

    2016-10-01

    Full Text Available Based on the experiments of isothermal forging wedge-shaped samples, Deform-3D numerical simulation software was used to confirm the strain distribution in the wedge-shaped samples. The effect of deforming temperature and strain on abnormal grain growth(AGG in extruded FGH96 superalloy was examined. It is found that when the forging speed is 0.04 mm/s,the critical AGG occurring temperature is 1100℃,and the critical strain is 2%.AGG does not occur within 1000-1070℃,but still shows the feature of ‘critical strain’,and the region with strain of 5%-10% has the largest average grain size.AGG can be avoided and the uniform fine grains can be gained when the strain is not less than 15%.

  19. Decomposition of Sodium Tetraphenylborate

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1998-01-01

    The chemical decomposition of aqueous alkaline solutions of sodium tetraphenylborate (NaTPB) has been investigated. The focus of the investigation is on the determination of additives and/or variables which influence NaTBP decomposition. This document describes work aimed at providing better understanding into the relationship of copper (II), solution temperature, and solution pH to NaTPB stability

  20. A multilevel analysis of fruit growth of two tomato cultivars in response to fruit temperature.

    Science.gov (United States)

    Okello, Robert C O; de Visser, Pieter H B; Heuvelink, Ep; Lammers, Michiel; de Maagd, Ruud A; Struik, Paul C; Marcelis, Leo F M

    2015-03-01

    Fruit phenotype is a resultant of inherent genetic potential in interaction with impact of environment experienced during crop and fruit growth. The aim of this study was to analyze the genetic and physiological basis for the difference in fruit size between a small ('Brioso') and intermediate ('Cappricia') sized tomato cultivar exposed to different fruit temperatures. It was hypothesized that fruit heating enhances expression of cell cycle and expansion genes, rates of carbon import, cell division and expansion, and shortens growth duration, whereas increase in cell number intensifies competition for assimilates among cells. Unlike previous studies in which whole-plant and fruit responses cannot be separated, we investigated the temperature response by varying fruit temperature using climate-controlled cuvettes, while keeping plant temperature the same. Fruit phenotype was assessed at different levels of aggregation (whole fruit, cell and gene) between anthesis and breaker stage. We showed that: (1) final fruit fresh weight was larger in 'Cappricia' owing to more and larger pericarp cells, (2) heated fruits were smaller because their mesocarp cells were smaller than those of control fruits and (3) no significant differences in pericarp carbohydrate concentration were detected between heated and control fruits nor between cultivars at breaker stage. At the gene level, expression of cell division promoters (CDKB2, CycA1 and E2Fe-like) was higher while that of the inhibitory fw2.2 was lower in 'Cappricia'. Fruit heating increased expression of fw2.2 and three cell division promoters (CDKB1, CDKB2 and CycA1). Expression of cell expansion genes did not corroborate cell size observations. © 2014 Scandinavian Plant Physiology Society.

  1. Sodium vapor deposition onto a horizontal flat plate above liquid sodium surface, (3)

    International Nuclear Information System (INIS)

    Kudo, Kazuhiko; Hirata, Masaru.

    1978-01-01

    Sodium vapour and sodium mist in the cover gas of a sodium system of a fast breeder reactor cause various problems. In this report, with the results of measurements of sodium mist concentration, the distribution of sodium mist diameter in cover gas was analytically obtained. The analysis was made by using the different nucleus model B. The measurement of the concentration of sodium mist was carried out with a sodium mist pot designed by the author. The experiment was done at the sodium temperature of 400 and 500 degree centigrade. The relations among sodium temperature, upper wall temperature, and the sodium mist concentration in cover gas were obtained. Evaluation of effective condensed nuclear radius in the cover gas was made by the comparison of analysis and experimental results. The results of this evaluation shows the following conclusions. It is impossible to express the distribution of sodium mist diameter by normal distribution or logarithmic normal distribution. Drop of sodium temperature results in the decrease of weight mean radius of generated sodium mist. Drop of upper wall temperature causes the decrease of weight mean radius, and increases sodium mist concentration. (Kato, T.)

  2. Preliminary data on growth and enzymatic abilities of soil fungus Humicolopsis cephalosporioides at different incubation temperatures.

    Science.gov (United States)

    Elíades, Lorena Alejandra; Cabello, Marta N; Pancotto, Verónica; Moretto, Alicia; Rago, María Melisa; Saparrat, Mario C N

    2015-01-01

    Nothofagus pumilio (Poepp & Endl.) Krasser, known as "lenga" is the most important timber wood species in southernmost Patagonia (Argentina). Humicolopsis cephalosporioides Cabral & Marchand is a soil fungus associated with Nothofagus pumilio forests, which has outstanding cellulolytic activity. However, there is no information about the ability of this fungus to use organic substrates other than cellulose, and its ability to produce different enzyme systems, as well as its response to temperature. The aim of this study was to examine the role of H. cephalosporioides in degradation processes in N. pumilio forests in detail by evaluating the in vitro ability of four isolates of this fungus to grow and produce different lytic enzyme systems, and their response to incubation temperature. The ability of the fungi to grow and produce enzyme systems was estimated by inoculating them on agar media with specific substrates, and the cultures were incubated at three temperatures. A differential behavior of each strain in levels of growth and enzyme activity was found according to the medium type and/or incubation temperature. A intra-specific variability was found in H. cephalosporioides. Likewise a possible link between the saprotrophic role of this fungus in N. pumilio forests and the degradation of organic matter under stress conditions, such as those from frosty environments, was also discussed. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  3. Inheritance of emergence time and seedling growth at low temperatures in four lines of maize.

    Science.gov (United States)

    Eagles, H A

    1982-03-01

    The improvement of rate of seedling emergence and early seedling growth of maize (Zea mays L.) under cool conditions has been an objective of breeding programs in cool regions for many years. To study inheritance of emergence time, and to determine if differences in emergence time were due to differences in seedling growth, F1, F2 and backcross generations of a diallel cross of two rapidly emerging lines from CIMMYT Pool 5, 5-113 and 5-154, and two elite Corn Belt Dent lines, A619 and A632, were grown in controlled environment rooms at low temperatures.The lines from Pool 5 emerged significantly faster than A619 and A632 over a range of low temperature conditions. This difference occurred both when the lines themselves were tested and when the lines were tested as male and female parents in crosses. The Pool 5 lines converted a higher proportion of their original seed to new root and shoot tissue than did A619 and A632, indicating that they had a faster seedling growth rate. Primarily this was due to a faster loss of seed reserve, rather than a more efficient conversion process.A significant difference occurred between A619 and A632 for emergence time, but this was not due to a difference in seedling growth rate.Reciprocal differences occurred only in the F1 generation in crosses involving A619, and then marked effects could be attributed to the male parent. Reciprocal differences tended to disappear in the F2. This suggested that the genotype of the embryo and endosperm was of much greater importance than the genotype of the maternal parent in determining differences of time to emergence and seedling growth.Mid-parent heterosis occurred for time to emergence and seed loss, a measure of mean rate of utilization of seed reserve, in all crosses. High parent heterosis occurred in several crosses for these traits. High parent heterosis occurred in all crosses for efficiency of utilization of seed reserve.A generation means analysis indicated that both additive and

  4. Effects of temperature and salinity on growth and survival of the Pacific red snapper Lutjanusperu (Pisces: Lutjanidae juvenile

    Directory of Open Access Journals (Sweden)

    Sergio Castillo-Vargasmachuca

    2013-11-01

    Full Text Available The present study evaluates the effects of temperature (25 and 30°C and salinity (25, 35 and 45 psu on juvenile growth and survival. All the experiments were carried out under rearing conditions. A total of 270 specimens were used for the experiments. The results showed that more than 86% of the snapper survived at 35 to 45 psu salinity. Significant differences in growth parameters, such as the specific growth rate and weight gain were observed in fish reared at temperatures of 25 and 30°C and salinities of 35 and 45 psu. Increased salinity beyond 45 psu negatively affected growth of the Pacific red snapper used in this trial. The effects of temperature and salinity on growth performance a survival rate indicated that red snapper is an euryhaline species, that may tolerate wide salinity ranges, showing that has a good potential to grow in waters of lower salinity than the sea.

  5. Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures.

    Science.gov (United States)

    Alvarez-Ordóñez, Avelino; Fernández, Ana; Bernardo, Ana; López, Mercedes

    2010-02-01

    The influence of growth temperature and acidification of the culture medium up to pH 4.25 with acetic, citric, lactic and hydrochloric acids on the growth and subsequent acid resistance at pH 3.0 of Salmonella typhimurium CECT 443 was studied. The minimum pH value which allowed for S. typhimurium growth within the temperature range of 25-37 degrees C was 4.5 when the pH was reduced using citric and hydrochloric acids, and 5.4 and 6.4 when lactic acid and acetic acid were used, respectively. At high (45 degrees C) or low (10 degrees C) temperatures, the growth pH boundary was increased about 1 pH unit. The growth temperature markedly modified the acid resistance of the resulting cells. In all cases, D-values were lower for cells grown at 10 degrees C and significantly increased with increasing growth temperature up to 37 degrees C, at which D-values obtained were up to 10 times higher. Cells grown at 45 degrees C showed D-values similar to those found for cells grown at 25 degrees C. The growth of cells in acidified media, regardless of the pH value, caused an increase in their acid resistance at the four incubation temperatures, although the magnitude of the Acid Tolerance Response (ATR) observed depended on the growth temperature. Acid adapted cultures at 10 degrees C showed D-values ranging from 5.75 to 6.91 min, which turned out to be about 2 times higher than those corresponding to non-acid adapted cultures, while higher temperatures induced an increase in D-values of at least 3.5 times. Another finding was that, while at 10 and 45 degrees C no significant differences among the effect of the different acids tested in inducing an ATR were observed, when cells were grown at 25 and 37 degrees C citric acid generally turned out to be the acid which induced the strongest ATR. Results obtained in this study show that growth temperature is an important factor affecting S. typhimurium acid resistance and could contribute to find new strategies based on intelligent

  6. Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments

    DEFF Research Database (Denmark)

    Knoblauch, C.; Jørgensen, BB

    1999-01-01

    and T(opt). For strains LSv21 and LSv514, however, growth yields were highest at the lowest temperatures, around 0 degrees C. The results indicate that psychrophilic sulphate-reducing bacteria are specially adapted to permanently low temperatures by high relative growth rates and high growth yields......Five psychrophilic sulphate-reducing bacteria (strains ASv26, LSv21, PSv29, LSv54 and LSv514) isolated from Arctic sediments were examined for their adaptation to permanently low temperatures, All strains grew at -1.8 degrees C, the freezing point of sea water, but their optimum temperature...... for growth (T(opt)) were 7 degrees C (PSv29), 10 degrees C (ASv26, LSv54) and 18 degrees C (LSv21, LSv514), Although T(opt) was considerably above the in situ temperatures of their habitats (-1.7 degrees C and 2.6 degrees C), relative growth rates were still high at 0 degrees C, accounting for 25...

  7. Effects of experimentally modified soil temperatures and nutrient availability on growth and mycorrhization of Pinus cembra at the alpine treeline

    Science.gov (United States)

    Gruber, Andreas; Peintner, Ursula; Wieser, Gerhard; Oberhuber, Walter

    2015-04-01

    Soil temperature affects litter decomposition, nutrient uptake, root growth and respiration and it is suggested that soil temperature has direct impact on tree growth at the alpine treeline. We have evaluated the impact of experimentally modified soil temperatures and nutrient availability on growth and mycorrhization of Pinus cembra at the treeline in the Central Eastern Alps (c. 2150 m a.s.l., Tyrol, Austria). Soil temperature in the rooting zone of naturally grown c. 25 year old trees (n=6 trees per treatment) was altered by shading and heat-trapping using non-transparent and glasshouse foils mounted c. 20 cm above soil surface. Additional trees were selected for a nitrogen fertilisation treatment and as controls. During the study period, mean soil temperatures at 10 cm depth were reduced by c. 3°C at the cooled vs. warmed plots. Soil moisture was not influenced due to soil water transport along the slope. Results revealed that changed soil temperatures did not significantly affect tree growth, gas exchange, needle nutrient content and specific leaf area. We also found no significant difference in degree of mycorrhization or number of mycorrhized root tips between treatments. On the other hand, nitrogen fertilization and a reduction of interspecific root competition led to significantly raised radial stem growth. Results indicate that tree growth at the selected study area was not limited by soil temperature, while interspecific competition for nutrients among trees and low stature vegetation (dwarf shrubs, grasses) had significant impact. Therefore, we suggest that root competition with alpine grassland and dwarf-shrub communities will hamper temperature driven advance of alpine treeline in the course of climate warming. Acknowledgements This work was funded by the Austrian Science Fund (FWF Project No. P22836-B16, 'Growth response of Pinus cembra to experimentally modified soil temperatures at the treeline').

  8. Gene expression profile indicates involvement of NO in Camellia sinensis pollen tube growth at low temperature.

    Science.gov (United States)

    Pan, Junting; Wang, Weidong; Li, Dongqin; Shu, Zaifa; Ye, Xiaoli; Chang, Pinpin; Wang, Yuhua

    2016-10-18

    Nitric oxide (NO) functions as a critical signaling molecule in the low-temperature stress responses in plants, including polarized pollen tube growth in Camellia sinensis. Despite this, the potential mechanisms underlying the participation of NO in pollen tube responses to low temperature remain unclear. Here, we investigate alterations to gene expression in C. sinensis pollen tubes exposed to low-temperature stress and NO using RNA-Seq technology, in order to find the potential candidate genes related to the regulation of pollen tube elongation by NO under low-temperature stress. Three libraries were generated from C. sinensis cv. 'Longjingchangye' pollen tubes cultured at 25 °C (CsPT-CK) and 4 °C (CsPT-LT) or with 25 μM DEA NONOate (CsPT-NO). The number of unigenes found for the three biological replications were 39,726, 40,440 and 41,626 for CsPT-CK; 36,993, 39,070 and 39,439 for CsPT-LT; and 39,514, 38,298 and 39,061 for CsPT-NO. A total of 36,097 unique assembled and annotated sequences from C. sinensis pollen tube reads were found in a BLAST search of the following databases: NCBI non-redundant nucleotide, Swiss-prot protein, Kyoto Encyclopedia of Genes and Genomes, Cluster of Orthologous Groups of proteins, and Gene Ontology. The absolute values of log 2 Ratio > 1 and probability > 0.7 were used as the thresholds for significantly differential gene expression, and 766, 497 and 929 differentially expressed genes (DEGs) were found from the comparison analyses of the CK-VS-LT, CK-VS-NO and LT-VS-NO libraries, respectively. Genes related to metabolism and signaling pathways of plant hormones, transcription factors (TFs), vesicle polarized trafficking, cell wall biosynthesis, the ubiquitination machinery of the ubiquitin system and species-specific secondary metabolite pathways were mainly observed in the CK-VS-LT and CK-VS-NO libraries. Differentially expressed unigenes related to the inhibition of C. sinensis pollen tube growth under low

  9. Observed Effects of Vegetation Growth on Temperature in the Early Summer over the Northeast China Plain

    Directory of Open Access Journals (Sweden)

    Xiaxiang Li

    2017-05-01

    Full Text Available The effect of vegetation on temperature is an emerging topic in the climate science community. Existing studies have mostly examined the effects of vegetation on daytime temperature (Tmax, whereas this study investigates the effects on nighttime temperature (Tmin. Ground measurements from 53 sites across northeastern China (NEC from 1982 to 2006 show that early summer (June Tmax and Tmin increased at mean rates of approximately 0.61 °C/10 year and 0.67 °C/10 year, respectively. Over the same period, the satellite-based Normalized Difference Vegetation Index (NDVI decreased by approximately 0.10 (accounting for 18% of the climatological NDVI for 1982–1991. It is highlighted that a larger increase in Tmax (Tmin co-occurred spatially with a larger (smaller decrease in NDVI. Deriving from such spatial co-occurrences, we found that the spatial variability of changes in Tmax (i.e., ΔTmax is negatively correlated with the spatial variability of changes in NDVI (i.e., ΔNDVI, while the spatial variability of changes in Tmin (i.e., ΔTmin is positively correlated (r2 = 0.10; p < 0.05 with that of ΔNDVI. Similarly, we detected significant positive correlations between the spatial variability of ΔNDVI and the change in surface latent heat flux (r2 = 0.16; p < 0.01 and in surface air specific humidity (r2 = 0.28; p < 0.001. These findings on the spatial co-occurrences suggest that the vegetation growth intensifies the atmospheric water vapor through evapotranspiration, which enhances the atmospheric downward longwave radiation and strengthens the greenhouse warming effects at night. Thereby, the positive correlation between ΔNDVI and ΔTmin is better understood. These results indicate that vegetation growth may not only exert effects on daytime temperature but also exert warming effects on nighttime temperature by increasing atmospheric water vapor and thus intensifying the local greenhouse effect. This study presents new observation evidence of the

  10. Regulation of voltage-gated sodium channel expression in cancer: hormones, growth factors and auto-regulation

    Science.gov (United States)

    Fraser, Scott P.; Ozerlat-Gunduz, Iley; Brackenbury, William J.; Fitzgerald, Elizabeth M.; Campbell, Thomas M.; Coombes, R. Charles; Djamgoz, Mustafa B. A.

    2014-01-01

    Although ion channels are increasingly being discovered in cancer cells in vitro and in vivo, and shown to contribute to different aspects and stages of the cancer process, much less is known about the mechanisms controlling their expression. Here, we focus on voltage-gated Na+ channels (VGSCs) which are upregulated in many types of carcinomas where their activity potentiates cell behaviours integral to the metastatic cascade. Regulation of VGSCs occurs at a hierarchy of levels from transcription to post-translation. Importantly, mainstream cancer mechanisms, especially hormones and growth factors, play a significant role in the regulation. On the whole, in major hormone-sensitive cancers, such as breast and prostate cancer, there is a negative association between genomic steroid hormone sensitivity and functional VGSC expression. Activity-dependent regulation by positive feedback has been demonstrated in strongly metastatic cells whereby the VGSC is self-sustaining, with its activity promoting further functional channel expression. Such auto-regulation is unlike normal cells in which activity-dependent regulation occurs mostly via negative feedback. Throughout, we highlight the possible clinical implications of functional VGSC expression and regulation in cancer. PMID:24493753

  11. The effect of temperature on the photosynthesis, growth and reproduction of a Mediterranean submerged macrophyte, Ruppia drepanensis

    NARCIS (Netherlands)

    Santamaria, L.; Hootsmans, M.

    1998-01-01

    The effect of different temperatures (14, 20 and 30 degrees C) and photoperiods (10 and 16 h) on the photosynthesis, growth and reproduction of Ruppia drepanensis Tineo plants from the Donana National Park (SW Spain) were studied. After 84-91 days of growth under a 16 h photoperiod, the plants

  12. Effects of temperature on domain-growth kinetics of fourfold-degenerate (2×1) ordering in Ising models

    DEFF Research Database (Denmark)

    Høst-Madsen, Anders; Shah, Peter Jivan; Hansen, Torben

    1987-01-01

    Computer-simulation techniques are used to study the domain-growth kinetics of (2×1) ordering in a two-dimensional Ising model with nonconserved order parameter and with variable ratio α of next-nearest- and nearest-neighbor interactions. At zero temperature, persistent growth characterized...

  13. Strain and growth temperature influence Listeria spp. attachment to intact and cut cabbage.

    Science.gov (United States)

    Ells, Timothy C; Truelstrup Hansen, Lisbeth

    2006-08-15

    Twenty four Listeria strains representing three different species and two serotypes of L. monocytogenes were investigated for their ability to attach to and colonize cabbage tissue. All strains exhibited a preference to attach to cut tissues compared to the intact leaf surfaces. Most strains attached to cut surfaces at levels 1.0 to 1.2 log CFU/cm(2) above numbers on intact tissue. Although all strains demonstrated the ability to colonize both intact and cut surfaces, some strains consistently exhibited higher levels of attachment. This attribute was independent of species or serotype. Scanning electron microscopy (SEM) revealed the presence of increased cell numbers on the cut edges with numerous cells located within folds and crevices. The distribution of cells found on the intact surfaces appeared to be randomly distributed with no apparent affinity for specialized surface structures such as stomata. SEM analysis also revealed the increased presence of large clusters of cells on leaf surfaces after 4 and 24 h. These cell aggregates appeared to be in the early stages of biofilm development. L. moncytogenes strain Scott A was used to examine the effect of prior growth temperature on attachment at 10 degrees C. Cells attached to intact cabbage surfaces within 5 min of exposure, with numbers reaching 4.3 log CFU/cm(2) for cells grown at 22 degrees C and 37 degrees C, and 3.8 log CFU/cm(2) for 10 degrees C cultures. The culture growth temperature was shown to significantly (P0.05) where more than 80% of cells, regardless of cultivation temperature, remained attached to the leaf surfaces following successive washes. Irrespectively of prior growth temperature, increasing exposure time to the cabbage resulted in increased attached cell numbers as well as increased binding strength. The increase in development of cell clusters and early biofilm structures may explain the decreased efficiency over time in removal of cells from the cabbage surfaces. The information

  14. High temperatures limit plant growth but hasten flowering in root chicory (Cichorium intybus) independently of vernalisation.

    Science.gov (United States)

    Mathieu, Anne-Sophie; Lutts, Stanley; Vandoorne, Bertrand; Descamps, Christophe; Périlleux, Claire; Dielen, Vincent; Van Herck, Jean-Claude; Quinet, Muriel

    2014-01-15

    An increase in mean and extreme summer temperatures is expected as a consequence of climate changes and this might have an impact on plant development in numerous species. Root chicory (Cichorium intybus L.) is a major crop in northern Europe, and it is cultivated as a source of inulin. This polysaccharide is stored in the tap root during the first growing season when the plant grows as a leafy rosette, whereas bolting and flowering occur in the second year after winter vernalisation. The impact of heat stress on plant phenology, water status, photosynthesis-related parameters, and inulin content was studied in the field and under controlled phytotron conditions. In the field, plants of the Crescendo cultivar were cultivated under a closed plastic-panelled greenhouse to investigate heat-stress conditions, while the control plants were shielded with a similar, but open, structure. In the phytotrons, the Crescendo and Fredonia cultivars were exposed to high temperatures (35°C day/28°C night) and compared to control conditions (17°C) over 10 weeks. In the field, heat reduced the root weight, the inulin content of the root and its degree of polymerisation in non-bolting plants. Flowering was observed in 12% of the heat stressed plants during the first growing season in the field. In the phytotron, the heat stress increased the total number of leaves per plant, but reduced the mean leaf area. Photosynthesis efficiency was increased in these plants, whereas osmotic potential was decreased. High temperature was also found to induced flowering of up to 50% of these plants, especially for the Fredonia cultivar. In conclusion, high temperatures induced a reduction in the growth of root chicory, although photosynthesis is not affected. Flowering was also induced, which indicates that high temperatures can partly substitute for the vernalisation requirement for the flowering of root chicory. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Carbonate clumped isotope variability in shallow water corals: Temperature dependence and growth-related vital effects

    Science.gov (United States)

    Saenger, Casey; Affek, Hagit P.; Felis, Thomas; Thiagarajan, Nivedita; Lough, Janice M.; Holcomb, Michael

    2012-12-01

    Geochemical variations in shallow water corals provide a valuable archive of paleoclimatic information. However, biological effects can complicate the interpretation of these proxies, forcing their application to rely on empirical calibrations. Carbonate clumped isotope thermometry (Δ47) is a novel paleotemperature proxy based on the temperature dependent "clumping" of 13C-18O bonds. Similar Δ47-temperature relationships in inorganically precipitated calcite and a suite of biogenic carbonates provide evidence that carbonate clumped isotope variability may record absolute temperature without a biological influence. However, large departures from expected values in the winter growth of a hermatypic coral provided early evidence for possible Δ47 vital effects. Here, we present the first systematic survey of Δ47 in shallow water corals. Sub-annual Red Sea Δ47 in two Porites corals shows a temperature dependence similar to inorganic precipitation experiments, but with a systematic offset toward higher Δ47 values that consistently underestimate temperature by ˜8 °C. Additional analyses of Porites, Siderastrea, Astrangia and Caryophyllia corals argue against a number of potential mechanisms as the leading cause for this apparent Δ47 vital effect including: salinity, organic matter contamination, alteration during sampling, the presence or absence of symbionts, and interlaboratory differences in analytical protocols. However, intra- and inter-coral comparisons suggest that the deviation from expected Δ47 increases with calcification rate. Theoretical calculations suggest this apparent link with calcification rate is inconsistent with pH-dependent changes in dissolved inorganic carbon speciation and with kinetic effects associated with CO2 diffusion into the calcifying space. However, the link with calcification rate may be related to fractionation during the hydration/hydroxylation of CO2 within the calcifying space. Although the vital effects we describe will

  16. Effects of salinity, light and temperature on growth rates of two species of Gracilaria (Rhodophyta)

    Science.gov (United States)

    Xu, Yongjian; Wei, Wei; Fang, Jianguang

    2009-05-01

    Effects of temperature, salinity and light intensity on growth rates of Gracilaria lichenoides and G. tenuistipitata var. liui Zhang et Xia were tested. Eight to ten levels of each factor were first tested separately. The best growth rate was obtained under the conditions of 32°C, 30 and 240 μmol/(m2·s) for G. lichenoides, and 24°C, 20 and 200 μmol/(m2·s) for G. tenuistipitata, respectively. Then a uniform design was used to evaluate the optimal combinations of the three factors. The best conditions for the highest daily specific growth rates (% increase in wet weight) are determined to be 31.30°C, 32.10, and 287.23 μmol/(m2·s) for G. lichenoides (16.26%/d), and 25.38°C, 21.10, and 229.07 μmol/(m2·s) for G. tenuistipitata (14.83%/d), respectively.

  17. Contrasting shrub species respond to early summer temperatures leading to correspondence of shrub growth patterns

    Science.gov (United States)

    Weijers, Stef; Pape, Roland; Löffler, Jörg; Myers-Smith, Isla H.

    2018-03-01

    The Arctic-alpine biome is warming rapidly, resulting in a gradual replacement of low statured species by taller woody species in many tundra ecosystems. In northwest North America, the remotely sensed normalized difference vegetation index (NDVI), suggests an increase in productivity of the Arctic and alpine tundra and a decrease in productivity of boreal forests. However, the responses of contrasting shrub species growing at the same sites to climate drivers remain largely unexplored. Here, we test growth, climate, and NDVI relationships of two contrasting species: the expanding tall deciduous shrub Salix pulchra and the circumarctic evergreen dwarf shrub Cassiope tetragona from an alpine tundra site in the Pika valley in the Kluane Region, southwest Yukon Territories, Canada. We found that annual growth variability of both species at this site is strongly driven by early summer temperatures, despite their contrasting traits and habitats. Shrub growth chronologies for both species were correlated with the regional climate signal and showed spatial correspondence with interannual variation in NDVI in surrounding alpine and Arctic regions. Our results suggest that early summer warming represents a common driver of vegetation change for contrasting shrub species growing in different habitats in the same alpine environments.

  18. Growth of Cyanobacterium aponinum influenced by increasing salt concentrations and temperature.

    Science.gov (United States)

    Winckelmann, Dominik; Bleeke, Franziska; Bergmann, Peter; Klöck, Gerd

    2015-06-01

    The increasing requirement of food neutral biofuels demands the detection of alternative sources. The use of non-arable land and waste water streams is widely discussed in this regard. A Cyanobacterium was isolated on the area of a possible algae production side near a water treatment plant in the arid desert region al-Wusta. It was identified as Cyanobacterium aponinum PB1 and is a possible lipid source. To determine its suitability of a production process using this organism, a set of laboratory experiments were performed. Its growth behavior was examined in regard to high temperatures and increasing NaCl concentrations. A productivity of 0.1 g L -1 per day was measured at an alga density below 0.75 g L -1 . C. aponinum PB1 showed no sign of altered growth behavior in media containing 70 g L -1 NaCl or less. Detection of a negative effect of NaCl on the growth using Pulse-Amplitude-Modulation chlorophyll fluorescence analysis was not more sensitive than optical density measurement.

  19. Sodium metasilicate affects growth of Campylobacter jejuni in fresh, boneless, uncooked chicken breast fillets stored at 4 degrees Celsius for 7 days.

    Science.gov (United States)

    Sharma, C S; Williams, S K; Schneider, K R; Schmidt, R H; Rodrick, G E

    2012-09-01

    The objectives of this study were to determine the antimicrobial effects of sodium metasilicate (SMS) treatments against Campylobacter jejuni in fresh, boneless, uncooked chicken breast fillets and to ascertain the effects of SMS treatments on pH. The fillets were inoculated with C. jejuni, treated with 0% SMS and no inoculum (negative control), 0% SMS and inoculum (positive control), 1 and 2% SMS solutions, and stored at 4 ± 1°C. All samples were analyzed after 0, 1, 3, 5, and 7 d storage for C. jejuni, psychrotrophic organisms, and pH. Campylobacter jejuni and psychrotrophic counts for samples treated with 1 and 2% SMS solutions were similar (P > 0.05) to the positive control on all storage days. The pH values for 2% SMS marinade treatments were higher (P days. The pH values were higher (P < 0.05) for all SMS treatments when compared with the negative and positive controls. This study revealed that SMS, when used at elevated levels in excess of the USDA Food Safety and Inspection Service 2% approved level, could function to control Campylobacter jejuni and extend the shelf life of raw poultry by retarding the growth of psychrotrophic bacteria.

  20. Epidermal growth factor potentiates in vitro metastatic behaviour of human prostate cancer PC-3M cells: involvement of voltage-gated sodium channel

    Directory of Open Access Journals (Sweden)

    Uysal-Onganer Pinar

    2007-11-01

    Full Text Available Abstract Background Although a high level of functional voltage-gated sodium channel (VGSC expression has been found in strongly metastatic human and rat prostate cancer (PCa cells, the mechanism(s responsible for the upregulation is unknown. The concentration of epidermal growth factor (EGF, a modulator of ion channels, in the body is highest in prostatic fluid. Thus, EGF could be involved in the VGSC upregulation in PCa. The effects of EGF on VGSC expression in the highly metastatic human PCa PC-3M cell line, which was shown previously to express both functional VGSCs and EGF receptors, were investigated. A quantitative approach, from gene level to cell behaviour, was used. mRNA levels were determined by real-time PCR. Protein expression was studied by Western blots and immunocytochemistry and digital image analysis. Functional assays involved measurements of transverse migration, endocytic membrane activity and Matrigel invasion. Results Exogenous EGF enhanced the cells' in vitro metastatic behaviours (migration, endocytosis and invasion. Endogenous EGF had a similar involvement. EGF increased VGSC Nav1.7 (predominant isoform in PCa mRNA and protein expressions. Co-application of the highly specific VGSC blocker tetrodotoxin (TTX suppressed the effect of EGF on all three metastatic cell behaviours studied. Conclusion 1 EGF has a major involvement in the upregulation of functional VGSC expression in human PCa PC-3M cells. (2 VGSC activity has a significant intermediary role in potentiating effect of EGF in human PCa.

  1. Friction and wear in sodium

    International Nuclear Information System (INIS)

    Hoffman, N.J.; Droher, J.J.

    1973-01-01

    In the design of a safe and reliable sodium-cooled reactor one of the more important problem areas is that of friction and wear of components immersed in liquid sodium or exposed to sodium vapor. Sodium coolant at elevated temperatures may severely affect most oxide-bearing surface layers which provide corrosion resistance and, to some extent, lubrication and surface hardness. Consequently, accelerated deterioration may be experienced on engaged-motion contact surfaces, which could result in unexpected reactor shutdown from component malfunction or failure due to galling and seizure. An overall view of the friction and wear phenomena encountered during oscillatory rubbing of surfaces in high-temperature, liquid-sodium environments is presented. Specific data generated at the Liquid Metal Engineering Center (LMEC) on this subject is also presented. (U.S.)

  2. Effects of growth temperature and strictly anaerobic recovery on the survival of Listeria monocytogenes during pasteurization.

    Science.gov (United States)

    Knabel, S J; Walker, H W; Hartman, P A; Mendonca, A F

    1990-02-01

    Listeria monocytogenes F5069 was suspended in either Trypticase soy broth-0.6% yeast extract (TSBYE) or sterile, whole milk and heated at 62.8 degrees C in sealed thermal death time tubes. Severely heat-injured cells were recovered in TSBYE within sealed thermal death time tubes because of the formation of reduced conditions in the depths of the TSBYE. Also, the use of strictly anaerobic Hungate techniques significantly increased recovery in TSBYE containing 1.5% agar compared with aerobically incubated controls. The exogenous addition of catalase, but not superoxide dismutase, slightly increased the recovery of heat-injured cells in TSBYE containing 1.5% agar incubated aerobically. Growth of cells at 43 degrees C caused a greater increase in heat resistance as compared with cells heat shocked at 43 degrees C or cells grown at lower temperatures. Growth of L. monocytogenes at 43 degrees C and enumeration by the use of strictly anaerobic Hungate techniques resulted in D62.8 degrees C values that were at least sixfold greater than those previously obtained by using cells grown at 37 degrees C and aerobic plating. Results indicate that, under the conditions of the present study, high levels of L. monocytogenes would survive the minimum low-temperature, long-time treatment required by the U.S. Food and Drug Administration for pasteurizing milk. The possible survival of low levels of L. monocytogenes during high-temperature, short-time pasteurization and enumeration of injured cells by recovery on selective media under strictly anaerobic conditions are discussed.

  3. Influence of temperature, water activity and pH on growth of some xerophilic fungi.

    Science.gov (United States)

    Gock, Melissa A; Hocking, Ailsa D; Pitt, John I; Poulos, Peter G

    2003-02-25

    The combined effects of water activity (aw), pH and temperature on the germination and growth of seven xerophilic fungi important in the spoilage of baked goods and confectionery were examined. Eurotium rubrum, E. repens, Wallemia sebi, Aspergillus penicillioides, Penicillium roqueforti, Chrysosporium xerophilum and Xeromyces bisporus were grown at 25, 30 and 37 degrees C on media with pH values of 4.5, 5.5, 6.5 and 7.5 and a range of water activities (aw) from 0.92 to 0.70. The aw of the media was controlled with a mixture of equal parts of glucose and fructose. Temperature affected the minimum aw for germination for most species. For example, P. roqueforti germinated at 0.82 aw at 25 degrees C, 0.86 aw at 30 degrees C and was unable to germinate at 37 degrees C. E. repens germinated at 0.70 aw at 30 degrees C, but at 25 and 37 degrees C, its minimum aw for germination was 0.74. C. xerophilum and X. bisporus germinated at 0.70 aw at all three temperatures. The optimum growth occurred at 25 degrees C for P. roqueforti and W. sebi, at 30 degrees C for Eurotium species, A. penicillioides and X. bisporus and at 37 degrees C for C. xerophilum. These fungi all grew faster under acidic than neutral pH conditions. The data presented here provide a matrix that will be used in the development of a mathematical model for the prediction of the shelf life of baked goods and confectionery.

  4. A non-destructive selection method for faster growth at suboptimal temperature in common bean (Phaseolus vulgaris)

    NARCIS (Netherlands)

    Drijfhout, E.; Oeveren, J.C. van; Jansen, R.C.

    1991-01-01

    A non-destructive method has been developed to select common bean (Phaseolus vulgaris L.) plants whose growth is less effected at a suboptimal temperature. Shoot weight was determined at a suboptimal (14°C) and optimal temperature (20°C), 38 days after sowing and accessions identified with a

  5. Root temperature effects on growth and bud break of Rosa hybrida in relation to cytokinin concentrations in xylem sap.

    NARCIS (Netherlands)

    Dieleman, J.A.; Verstappen, F.W.A.; Kuiper, D.

    1998-01-01

    The effects of three divergent root temperatures (11°C, 20°C and 26°C) on growth and bud break of Rosa hybrida were studied. Root morphology was changed considerably with root temperature. Roots at 11°C were white, succulent, short and sparsely branched, whereas at 26°C roots were long, brown, thin

  6. Modelling of simultaneous effect of moisture and temperature on A. niger growth in solid-state fermentation

    NARCIS (Netherlands)

    Hamidi-Esfahani, Z.; Shojaosadati, S.A.; Rinzema, A.

    2004-01-01

    In the present work a two factorial design of experiments was applied to study the simultaneous effect of temperature and moisture on A. niger growth in the solid-state fermentation (SSF). The increase of water content to more than 55% at the temperatures 35 and 40degreesC decreases microorganism

  7. Creep in sodium

    International Nuclear Information System (INIS)

    Charnock, W.; Cordwell, J.E.

    1978-03-01

    Available information on the creep of austenitic, ferritic and Alloy-800 type steels in liquid sodium is critically reviewed. Creep properties of stainless steels can be affected by element transfer and corrosion. At reactor structural component temperatures environmental effects are likely to be less important than changes due to thermal ageing. At high clad temperatures (700 0 C) decarburisation may cause the loss of strength and ductility in unstabilised steels while cavity formation may cause embrittlement in stabilised steels. The properties of Alloy 800 are, in some experiments, found to deteriorate while in others they are enhanced. This may be a consequence of the metallurgical complexity of the material or arise from the nature of the various techniques employed. Low alloy ferritic steels tend to decarburise in sodium at temperatures greater than 500 0 C and this leads to loss of strength and an increase in ductility. High alloy ferritics are immune to this effect and appear to be able to tolerate a degree of carburisation. Although intergranular cracking may be enhanced in liquid sodium the mechanical consequences are not significant and evidence for the existence of an embrittlement effect not associated with element transfer or corrosion is weak. Stress and strain may enhance element transfer at crack tips. However in real cracks the gettering or supply action of the crack faces conditions the chemistry of the cracks in sodium and protects the crack tip from element transfer. Thus creep crack extension rates should be independent of changes in bulk coolant chemistry. (author)

  8. Growth morphology of CL-20/HMX cocrystal explosive: insights from solvent behavior under different temperatures.

    Science.gov (United States)

    Han, Gang; Li, Qi-Fa; Gou, Rui-Jun; Zhang, Shu-Hai; Ren, Fu-de; Wang, Li; Guan, Rong

    2017-11-28

    A 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) /1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX)-isopropanol (IPA) interfacial model was constructed to investigate the effect of temperature on cocrystal morphology. A constant volume and temperature molecular dynamics (NVT-MD) simulation was performed on the interfacial model at various temperatures (295-355 K, 20 K intervals). The surface electrostatic potential (ESP) of the CL-20/HMX cocrystal structure and IPA molecule were studied by the B3LYP method at 6-311++G (d, p) level. The surface energies, polarities, adsorption energy, mass density distribution, radial distribution function (RDF), mean square displacement (MSD) and relative changes of attachment energy were analyzed. The results show that polarities of (1 0 0) and (0 1 1) cocrystal surfaces may be more negative and affected by IPA solvent. The adsorption energy per area indicates that growth of the (1 0-2) face in IPA conditions may be more limited, while the (1 0 0) face tends to grow more freely. MSD and diffusion coefficient (D) analyses demonstrated that IPA molecules gather more easily on the cocrystal surface at lower temperatures, and hence have a larger effect on the growth of cocrystal faces. RDF analysis shows that, with the increasing of temperature, the strength of hydrogen bond interactions between cocrystal and solvent becomes stronger, being highest at 335 K for the (1 0 0) and (0 1 1) interfacial models. Results of relative changes of modified attachment energy show that (1 0 0) and (0 1 1) faces tends to be larger than other faces. Moreover, the predicted morphologies at 295 and 355 K are consistent with experimental values, proving that the CL-20/HMX-IPA interfacial model is a reasonable one for this study. Graphical Abstract Construction of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) /1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX)-isopropanol (IPA) interfacial model, analysis

  9. [Effects of different mulches on rhizosphere temperature, growth, and physiological properties of fluecured tobacco].

    Science.gov (United States)

    Jia, Zhihong; Yi, Jianhua; Sun, Zaijun

    2006-11-01

    With greenhouse plastic film, rice straw plus greenhouse plastic film, soil-mulching plastic film, rice straw, rice straw plus sun-shading net, and sun-shading net as test mulches, this paper studied their effects on the rhizosphere temperature, growth, and physiological properties of flue-cured tobacco. The results showed that after mulching for 22 days, the accumulative rhizosphere temperature at the depth of 5 cm was the highest (424.75 degrees C) for greenhouse plastic film and the lowest (378.75 degrees C) for rice straw plus sun-shading net, while that at the depth of 15 cm was the highest (396.75 degrees C) for greenhouse plastic film and the lowest (368.31 degrees C) for sun-shading net. With the increase of accumulative rhizosphere temperature, the dry weight of above- and underground parts, photosynthesis, and root vigor of flue-cured tobacco tended to increase, and at the 10th day after mulches removal, root biomass had the largest increment in the treatment of soil-mulching plastic film and the smallest increment in the treatment of rice straw plus sun-shading net.

  10. Differential stability of TATA box binding proteins from archaea with different optimal growth temperatures

    Science.gov (United States)

    Kopitz, Annette; Soppa, Jörg; Krejtschi, Carsten; Hauser, Karin

    2009-09-01

    The TATA box binding protein (TBP) is involved in promoter recognition, the first step of transcription initiation. TBP is universally conserved and essential in archaea and eukaryotes. In archaea, TBPs have to be stable and to function in species that cover an extremely wide range of optimal growth temperatures (OGTs), from below 0 °C to more than 100 °C. Thus, the archaeal TBP family is ideally suited to study the evolutionary adaptation of proteins to an extremely wide range of temperatures. We characterized the thermostability of one mesophilic and one thermophilic TBP by infrared spectroscopy. Transition temperatures ( Tms) of thermal unfolding have been determined using TBPs from Methanosarcina mazei (OGT 37 °C) and from Methanothermobacter thermautotrophicus (OGT 65 °C). Furthermore, the influence of protein and salt concentration on thermostability has been characterized. Together with previous studies, our results reveal that the Tms of archaeal TBPs are closely correlated with the OGTs of the respective species. Noteworthy, this is also true for the TBP from M. mazei representing the first characterized TBP from a mesophilic archaeon. In contrast, the only characterized eukaryotic TBP of the mesophilic plant Arabidopsis thaliana has a Tm more than 40 °C above the OGT.

  11. High-Precision Temperature Control of a Crystal Growth Furnace at 1,500 C

    Science.gov (United States)

    Stenzel, Ch.; Hess, A.; Croell, A.; Breuer, D.; Sauermann, H.

    2012-01-01

    For crystal growth of semiconductor materials a short-term temperature stability of 0.1 C at 1500 C is one of the essential parameters to be addressed for achieving high-quality crystals. Hence, for temperature monitoring and control with high precision in a floating zone furnace two sets of thermo-sensors, type B thermocouples and optical fibre thermometers, have been implemented and successfully operated in the furnace for more than 2000 h. The optical fibre thermometers consist of an optical system made of sapphire (two fibres plus a prism in between for deflection) and transmit the infra-red radiation of the heater to the outside of the hot core of the furnace for pyrometric temperature measurement. A dedicated control algorithm has been set up which controlled the power settings to the individual heaters. Both sensor types showed no degradation after this period and yielded a short-term stability at 1200 C of 0.05 C (optical fibre thermometers), respectively 0.08 C (thermocouples).

  12. Influence of water activity and temperature on the growth of Wallemia sebi: application of a predictive model.

    Science.gov (United States)

    Patriarca, A; Vaamonde, G; Fernández Pinto, V; Comerio, R

    2001-08-15

    Germination and growth of Wallemia sebi were examined on media of a(w) adjusted with glycerol in the range of 0.96-0.77, at 25 degrees C and 30 degrees C. The effect of temperature on the germination time was significant except between 0.95 and 0.88 a(w). At low a(w) levels as well as above 0.95, the increase of temperature produced an increment in the germination time. The minimum a(w) for germination was also affected by temperature, being lower at 25 degrees C (0.80 a(w)) than at 30 degrees C (0.82 a(w)). Radial growth rates at 25 degrees C were higher than at 30 degrees C. The optimum a(w) value for growth of W. sebi was 0.94 at both temperatures. The minimum a(w) for growth was higher than minimum for germination and was also dependent on temperature (0.84 at 25 degrees C and 0.86 at 30 degrees C). An empirical mathematical model was fitted to the measured growth data, providing a good approach to the description of the effect of a(w) on the radial growth rate of W. sebi.

  13. Heat stress and recovery of photosystem II efficiency in wheat (Triticum aestivum L.) cultivars acclimated to different growth temperatures

    DEFF Research Database (Denmark)

    Haque, Sabibul; Kjær, Katrine Heinsvig; Rosenqvist, Eva

    2014-01-01

    The effect of heat stress on photosystem II (PS II) efficiency and post-stress recovery was studied in four wheat cultivars using chlorophyll fluorescence. The main aim was to examine the cultivar differences in relation to inhibition and recovery of PSII functionality after heat stress...... at different growth stages. The secondary aim was to investigate whether a pre-acclimation of plants to elevated temperature during the growth period induces a better tolerance to heat stress than for plants grown in ambient temperature or not. The plants were grown in two growth temperature conditions (15 °C...... and 25 °C) and subjected to heat stress (40 °C) for two days at early tillering and three days at anthesis and early grain development stages. The plants were returned to their original growth conditions after heat stress and recovery was observed for three days. The maximum photochemical efficiency (Fv...

  14. Effects of lighting and air movement on temperatures in reproductive organs of plants in a closed plant growth facility

    Science.gov (United States)

    Kitaya, Y.; Hirai, H.

    Temperature increases in plant reproductive organs such as anthers and stigmas could cause fertility impediments and thus produce sterile seeds under artificial lighting conditions without adequately controlled environments in closed plant growth facilities. There is a possibility such a situation could occur in Bioregenerative Life Support Systems under microgravity conditions in space because there will be little natural convective or thermal mixing. This study was conducted to determine the temperature of the plant reproductive organs as affected by illumination and air movement under normal gravitational forces on the earth and to make an estimation of the temperature increase in reproductive organs in closed plant growth facilities under microgravity in space. Thermal images of reproductive organs of rice and strawberry were captured using infrared thermography at air temperatures of 10 11 °C. Compared to the air temperature, temperatures of petals, stigmas and anthers of strawberry increased by 24, 22 and 14 °C, respectively, after 5 min of lighting at an irradiance of 160 W m-2 from incandescent lamps. Temperatures of reproductive organs and leaves of strawberry were significantly higher than those of rice. The temperatures of petals, stigmas, anthers and leaves of strawberry decreased by 13, 12, 13 and 14 °C, respectively, when the air velocity was increased from 0.1 to 1.0 ms-1. These results show that air movement is necessary to reduce the temperatures of plant reproductive organs in plant growth facilities.

  15. The effects of storage temperature on the growth of Vibrio parahaemolyticus and organoleptic properties in oysters

    Directory of Open Access Journals (Sweden)

    Meshack eMudoh

    2014-05-01

    Full Text Available During harvesting and storage, microbial pathogens and natural spoilage flora may grow, negatively affecting the composition and texture of oysters and posing a potential health threat to susceptible consumers. A solution to these problems would mitigate associated damaging effects on the seafood industry. The purpose of this study was to investigate the effects of storage temperature on growth of Vibrios as well as other microbial, sensory and textural characteristics of post-harvest shellstock Eastern oysters (Crassostrea virginica. Oysters harvested from the Chesapeake Bay, Maryland, during summer months (June, July, and August, 2010 were subjected to three storage temperatures (5, 10, and 20ºC over a 10 day period. At selected time intervals (0, 1, 3, 7, 10 days two separate samples of 6 oysters each were homogenated and analyzed for pH, halophilic plate counts (HPC, total Vibrios, and Vibrio parahaemolyticus (Vp. Oyster meats shucked after storage were also organoleptically evaluated (acceptability, appearance, and odor. Texture analysis was performed using a texture analyzer on meats shucked from oysters held under the same conditions. The pH of the oyster homogenates showed no consistent pattern with storage time and temperature. The HPC (4.5 to 9.4log CFU/g were highest on day 7 at 20C while olfactory acceptance reduced with time and increasing storage temperatures. The Vp counts increased over time from 3.5 to7.5 log MPN/g by day10. Loss of freshness as judged by appearance and odor was significant over time (p

  16. Growth and production kinetics of human x mouse and mouse hybridoma cells at reduced temperature and serum content.

    Science.gov (United States)

    Borth, N; Heider, R; Assadian, A; Katinger, H

    1992-09-01

    The growth and production kinetics of a mouse hybridoma cell line and a human-mouse heterohybridoma were analyzed under conditions of reduced temperature and serum content. The mouse hybridoma P24 had a constant cell specific production rate and RNA content, while the heterohybridoma 3D6-LC4 showed growth associated production kinetics and an increased RNA content at higher growth rates. This behaviour of 3D6-LC4 cells can be explained by the unusual cell cycle kinetics of this line, which can be arrested in any phase under growth limiting conditions, so that a low growth rate does not result in a greater portion of high producing G1-phase cells. Substrate limitation changes the cell cycle distribution of this cell line to a greater extent than low temperature or serum content, which indicates that this stress factor exerts a greater physiological control than assumed.

  17. Microbial growth in the polar oceans - role of temperature and potential impact of climate change.

    Science.gov (United States)

    Kirchman, David L; Morán, Xosé Anxelu G; Ducklow, Hugh

    2009-06-01

    Heterotrophic bacteria are the most abundant organisms on the planet and dominate oceanic biogeochemical cycles, including that of carbon. Their role in polar waters has been enigmatic, however, because of conflicting reports about how temperature and the supply of organic carbon control bacterial growth. In this Analysis article, we attempt to resolve this controversy by reviewing previous reports in light of new data on microbial processes in the western Arctic Ocean and by comparing polar waters with low-latitude oceans. Understanding the regulation of in situ microbial activity may help us understand the response of the Arctic Ocean and Antarctic coastal waters over the coming decades as they warm and ice coverage declines.

  18. Low temperature growth and optical properties of ZnO nanowires using an aqueous solution method.

    Science.gov (United States)

    Chu, Manh-Hung; Lee, Joon-Hyung; Kim, Jeong-Joo; Kim, Kyeong-Won; Norton, D P; Heo, Young-Woo

    2012-02-01

    ZnO nanowires were grown on indium tin oxide (ITO) coated glass substrates at a low temperature of 90 degrees C using an aqueous solution method. The ZnO seeds were coated on the ITO thin films by using a spin coater. ZnO nanowires were formed in an aqueous solution containing zinc nitrate hexahydrate (Zn(NO3)2 x 6H2O) and hexamethylenetetramine (C6H12N4). The pH value and concentration of the solution play an important role in the growth and morphologies of ZnO nanowires. The size of ZnO naonowires increased as the concentration of the solution increased. It was formed with a top surface of hexagonal and tapered shape at low and high pH values respectively. Additionally, the single crystalline structure and optical property of the ZnO nanowires were investigated using high-resolution transmission electron microscopy and photoluminescence spectroscopy.

  19. Purification and growth of LiF by induction heating furnace with electronic temperature control

    International Nuclear Information System (INIS)

    Faria Junior, R.N. de

    1985-01-01

    An eletronic power control system for a radio frequency generator and a quartz vacuum furnace heated by induction were developed. This furnace was employed for the growth of single crystals and purification of starting materials. A lithium fluoride single crystal was grown by the Czochralski technique in order to test the temperature control and the quartz furnace. An X-ray diffraction analysis of the crystal revealed the monocrystallinity high optical quality of the crystal obtained. Lithium fluoride of 95% purity prepared by Nuclemon starting material was purified by a vertical Bridgmann method. The emission spectrographic analysis of the purified crystal demonstrated the segregation of impurities. This study showed that the purification by this method of starting materials produced by local industry resulted in a crystal 99.9% pure in the first crystallization. (Author) [pt

  20. Room-temperature phosphorescent discrimination of catechol from resorcinol and hydroquinone based on sodium tripolyphosphate capped Mn-doped ZnS quantum dots.

    Science.gov (United States)

    Wang, He-Fang; Wu, Ye-Yu; Yan, Xiu-Ping

    2013-02-05

    A room-temperature phosphorescence (RTP) strategy was developed for direct, additive-free discrimination of catechol from resorcinol and hydroquinone based on sodium tripolyphosphate capped Mn-doped ZnS quantum dots (STPP-Mn-ZnS QDs). The RTP response of STPP-Mn-ZnS QDs to the three isomers was pH-dependent, and the greatest difference in the RTP response to the isomers was observed at pH 8.0: catechol enhanced the RTP intensity of the QDs, while resorcinol and hydroquinone had little effect on the RTP intensity of the QDs. The enhanced RTP intensity of 1 μM catechol was not affected by the coexistence of 30 μM resorcinol and 50 μM hydroquinone at pH 8.0. The detection limit of this RTP method was 53 nM catechol, and the precision was 3.2% (relative standard deviation) for five replicate detections of 1 μM catechol. The discrimination mechanism was ascribed to the weak bonded ligand of STPP-Mn-ZnS QDs and the different interaction between the three isomers and STPP-Mn-ZnS QDs. The strong binding of catechol to Zn resulted in the extraction of Zn from the surface of STPP-Mn-ZnS QDs and the generation of holes that were trapped by Mn(2+) to form Mn(3+). Catechol also promoted the reduction of Mn(3+) into Mn(2+) excited state, thus ultimately inducing the enhanced RTP response of STPP-Mn-ZnS QDs.

  1. Joint effect of phosphorus limitation and temperature on alkaline phosphatase activity and somatic growth in Daphnia magna.

    Science.gov (United States)

    Wojewodzic, Marcin W; Kyle, Marcia; Elser, James J; Hessen, Dag O; Andersen, Tom

    2011-04-01

    Alkaline phosphatase (AP) is a potential biomarker for phosphorus (P) limitation in zooplankton. However, knowledge about regulation of AP in this group is limited. In a laboratory acclimation experiment, we investigated changes in body AP concentration for Daphnia magna kept for 6 days at 10, 15, 20 and 25 °C and fed algae with 10 different molar C:P ratios (95-660). In the same experiment, we also assessed somatic growth of the animals since phosphorus acquisition is linked to growth processes. Overall, non-linear but significant relationships of AP activity with C:P ratio were observed, but there was a stronger impact of temperature on AP activity than of P limitation. Animals from the lowest temperature treatment had higher normalized AP activity, which suggests the operation of biochemical temperature compensation mechanisms. Body AP activity increased by a factor of 1.67 for every 10 °C decrease in temperature. These results demonstrate that temperature strongly influences AP expression. Therefore, using AP as a P limitation marker in zooplankton needs to consider possible confounding effects of temperature. Both temperature and diet affected somatic growth. The temperature effect on somatic growth, expressed as the Q (10) value, responded non-linearly with C:P, with Q(10) ranging between 1.9 for lowest food C:P ratio and 1.4 for the most P-deficient food. The significant interaction between those two variables highlights the importance of studying temperature-dependent changes of growth responses to food quality.

  2. High temperature cracking of steels: effect of geometry on creep crack growth laws

    International Nuclear Information System (INIS)

    Kabiri, M.R.

    2003-12-01

    This study was performed at Centre des Materiaux de l'Ecole des Mines de Paris. It deals with identification and transferability of high temperature creep cracking laws of steels. A global approach, based on C * and J non-linear fracture mechanics parameters has been used to characterize creep crack initiation and propagation. The studied materials are: the ferritic steels 1Cr-1Mo-1/4V (hot and cold parts working at 540 and 250 C) used in the thermal power stations and the austenitic stainless steel 316 L(N) used in the nuclear power stations. During this thesis a data base was setting up, it regroups several tests of fatigue, creep, creep-fatigue, and relaxation. Its particularity is to contain several creep tests (27 tests), achieved at various temperatures (550 to 650 C) and using three different geometries. The relevance of the C * parameter to describe the creep crack propagation was analysed by a means of systematic study of elasto-viscoplastic stress singularities under several conditions (different stress triaxiality). It has been shown that, besides the C * parameter, a second non singular term, denoted here as Q * , is necessary to describe the local variables in the vicinity of the crack tip. Values of this constraint parameter are always negative. Consequently, application of typical creep crack growth laws linking the creep crack growth rate to the C * parameter (da/dt - C * ), will be conservative for industrial applications. Furthermore, we showed that for ferritic steels, crack incubation period is important, therefore a correlation of Ti - C * type has been kept to predict crack initiation time Ti. For the austenitic stainless steel, the relevant stage is the one of the crack propagation, so that a master curve (da/dt - C * ), using a new data analysis method, was established. Finally, the propagation of cracks has been simulated numerically using the node release technique, allowing to validate analytical expressions utilised for the experimental

  3. Growth of oxide particles in FeCrAl- oxide dispersion strengthened steels at high temperature

    Science.gov (United States)

    Oono, N. H.; Ukai, S.; Hayashi, S.; Ohtsuka, S.; Kaito, T.; Kimura, A.; Torimaru, T.; Sakamoto, K.

    2017-09-01

    The growth of oxide particles in FeCrAl- oxide dispersion strengthened steel (ODSS) considering an accident condition of the light-water reactor at above 1500 K was studied by using a high-temperature annealing. Oxide particles grew from 9 nm to more than 50 nm as maximum at 1623 K for 27 h, with decreasing their number density in two orders of magnitude. Most of the oxide particles in 15Cr-7Al were identified as YAM or YAP, while the oxide particles in 15Cr-7Al-0.4Zr were identified trigonal Y4Zr3O12. Zr addition to 15Cr-7Al ODSS accelerated the growth of the oxide particles, which is quite contrary to the effect of Zr addition during sintering as suggested in the literature. The kinetics of coarsening was characterized by an equation of Ostwald ripening. The diffusion activation energies obtained in the present materials were quite larger than the conventional diffusion activation energy of Y in alpha-iron. Gibbs free energy of oxides should be considered to discuss the coarsening.

  4. Simultaneous determination of plant growth regulators 1-naphthylacetic acid and 2-naphthoxyacetic acid in fruit and vegetable samples by room temperature phosphorescence.

    Science.gov (United States)

    Murillo Pulgarín, José A; García Bermejo, Luisa F; Sánchez-Ferrer Robles, Ignacio; Becedas Rodríguez, Sonia

    2012-01-01

    1-Naphthylacetic and 2-naphthoxyacetic acids belong to the synthetic branch of auxins. Auxins have attracted considerable interest as a subject of study by virtue of their biological and physiological significance. Their broad use as plant growth regulators has raised the need for simple, rapid, sensitive and selective analytical methods for their determination in real samples. The primary aim of this work was to develop an analytical method for the simultaneous determination of 1-naphthylacetic acid and 2-naphthoxyacetic acid in commercial technical formulations, tomato and various fruit types (apple, strawberry, orange and plum) by room temperature phosphorescence. Filtrated solutions of aqueous slurries from ecological fruit and tomato samples are acidified and then extracted with dichloromethane. Once the solvent is evaporated, the dried residue is dissolved in sodium dodecyl sulphate (a micellar agent), and supplied with thallium (I) nitrate as an external heavy atom source and sodium sulphite as deoxygenation agent to enhance the ensuing phosphorescence. The broad-band overlapping spectra for the two analytes were resolved by first- and second-derivative phosphorescence spectrometry. Zero-crossing measurements at 488.5 nm in the first-derivative spectrum and 469.5 nm in the second derivative spectrum exhibited a linear dependence on the 2-naphthoxyacetic acid and 1-naphthylacetic acid concentration, respectively. The detection limits as determined in accordance with the error propagation theory were 11.5 ng/mL for 1-naphthylacetic acid and 15.6 ng/mL for 2-naphthoxyacetic acid. The proposed method affords the determination of 1-naphthylacetic acid and 2-naphthoxyacetic acid in real samples with near-quantitative recoveries from agricultural products. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Dynamic Carbohydrate Supply and Demand Model of Vegetative Growth: Response to Temperature, Light, Carbon Dioxide, and Day Length

    Directory of Open Access Journals (Sweden)

    Martin P. N. Gent

    2018-02-01

    Full Text Available Predicting the growth response of seedlings from the environmental responses of photosynthesis and metabolism may be improved by considering the dynamics of non-structural carbohydrate (NSC over a diurnal cycle. Attenuation of growth metabolism when NSC content is low could explain why some NSC is conserved through the night. A dynamic model, incorporating diurnal variation in NSC, is developed to simulate growth of seedlings hour-by-hour. I compare predictions of this model to published growth and NSC data for seedlings that varied according to temperature, light, day length, or CO2. Prolonged-darkness experiments show a temperature dependent upper limit on the respiration capacity. Respiration is attenuated as NSC is depleted. Furthermore, when NSC is high at dawn, inhibition of photosynthesis could attenuate the accumulation of NSC under low temperature, high light, or high CO2. These concepts are used to simulate plant metabolism and growth rates and diurnal variation of NSC in tomato seedlings under two light levels and various temperatures. Comparison of other results using the same model parameters show the dynamic model could predict results for starch and starch-less plants, and when growth was affected by CO2 enrichment and day length.

  6. High temperature growth kinetics and texture of surface-oxidised NiO for coated superconductor applications

    Energy Technology Data Exchange (ETDEWEB)

    Kursumovic, A.; Tomov, R.; Huehne, R.; Glowacki, B.A.; Everts, J.E.; Tuissi, A.; Villa, E.; Holzapfel, B

    2003-03-15

    Thick NiO films were grown in air, on biaxially textured (0 0 1) Ni and as-rolled Ni tapes, at temperatures from 1050 to 1350 deg. C. Ni diffusion through the NiO film mainly contributes to the growth since is much faster than oxygen diffusion and occurs by a vacancy diffusion mechanism in the lattice at high temperatures. Parabolic growth kinetics were found for both NiO film thickness and grain growth, and compared with the literature data. Competitive growth of (1 1 1) and (0 0 1) oriented grains establishes the final NiO orientation at temperatures below 1250 deg. C, while at higher temperatures leakage diffusion at/towards grain boundaries, grain coarsening and (1 1 0) oriented grains disrupt the (1 0 0) texture. Hence, development of epitaxy of NiO on textured Ni tapes was found to be largely due to growth kinetics depending on both, time and temperature. We report here a systematic study of the microstructure and kinetics of formation of textured NiO substrate for application as a buffer layer in coated conductor technology.

  7. Effect of temperature rise and ocean acidification on growth of calcifying tubeworm shells (Spirorbis spirorbis): an in situ benthocosm approach

    Science.gov (United States)

    Ni, Sha; Taubner, Isabelle; Böhm, Florian; Winde, Vera; Böttcher, Michael E.

    2018-03-01

    The calcareous tubeworm Spirorbis spirorbis is a widespread serpulid species in the Baltic Sea, where it commonly grows as an epibiont on brown macroalgae (genus Fucus). It lives within a Mg-calcite shell and could be affected by ocean acidification and temperature rise induced by the predicted future atmospheric CO2 increase. However, Spirorbis tubes grow in a chemically modified boundary layer around the algae, which may mitigate acidification. In order to investigate how increasing temperature and rising pCO2 may influence S. spirorbis shell growth we carried out four seasonal experiments in the Kiel Outdoor Benthocosms at elevated pCO2 and temperature conditions. Compared to laboratory batch culture experiments the benthocosm approach provides a better representation of natural conditions for physical and biological ecosystem parameters, including seasonal variations. We find that growth rates of S. spirorbis are significantly controlled by ontogenetic and seasonal effects. The length of the newly grown tube is inversely related to the initial diameter of the shell. Our study showed no significant difference of the growth rates between ambient atmospheric and elevated (1100 ppm) pCO2 conditions. No influence of daily average CaCO3 saturation state on the growth rates of S. spirorbis was observed. We found, however, net growth of the shells even in temporarily undersaturated bulk solutions, under conditions that concurrently favoured selective shell surface dissolution. The results suggest an overall resistance of S. spirorbis growth to acidification levels predicted for the year 2100 in the Baltic Sea. In contrast, S. spirorbis did not survive at mean seasonal temperatures exceeding 24 °C during the summer experiments. In the autumn experiments at ambient pCO2, the growth rates of juvenile S. spirorbis were higher under elevated temperature conditions. The results reveal that S. spirorbis may prefer moderately warmer conditions during their early life stages

  8. Temperature-sensitive Tien Shan tree ring chronologies show multi-centennial growth trends

    Energy Technology Data Exchange (ETDEWEB)

    Esper, J. [Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Shiyatov, S.G.; Mazepa, V.S. [Institute of Plant and Animal Ecology, Ural Division of Russian Academy of Sciences, 8 Marta Street 202, 620144 Ekaterinburg (Russian Federation); Wilson, R.J.S. [School of GeoSciences, Grant Institute, Edinburgh University, West Mains Road, Edinburgh EH9 3JW (United Kingdom); Graybill, D.A.; Funkhouser, G. [Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona 85721 (United States)

    2003-12-01

    Two millennia-length juniper ring width chronologies, processed to preserve multi-centennial growth trends, are presented for the Alai Range of the western Tien Shan in Kirghizia. The chronologies average the information from seven near-timberline sampling sites, and likely reflect summer temperature variation. For comparison, chronologies are also built using standard dendrochronological techniques. We briefly discuss some qualities of these ''inter-decadal'' records, and show the low frequency components removed by the standardization process include a long-term negative trend in the first half of the last millennium and a long-term positive trend since about AD 1800. The multi-centennial scale Alai Range chronologies, where these trends are retained, are both systematically biased (but in an opposite sense) in their low frequency domains. Nevertheless, they represent the best constraints and estimates of long-term summer temperature variation, and reflect the Medieval Warm Period, the Little Ice Age, and a period of warming since about the middle of the nineteenth century. (orig.)

  9. Epitaxial growth of higher transition-temperature VO2 films on AlN/Si

    Directory of Open Access Journals (Sweden)

    Tetiana Slusar

    2016-02-01

    Full Text Available We report the epitaxial growth and the mechanism of a higher temperature insulator-to-metal-transition (IMT of vanadium dioxide (VO2 thin films synthesized on aluminum nitride (AlN/Si (111 substrates by a pulsed-laser-deposition method; the IMT temperature is TIMT ≈ 350 K. X-ray diffractometer and high resolution transmission electron microscope data show that the epitaxial relationship of VO2 and AlN is VO2 (010 ‖ AlN (0001 with VO2 [101] ‖   AlN   [ 2 1 ̄ 1 ̄ 0 ] zone axes, which results in a substrate-induced tensile strain along the in-plane a and c axes of the insulating monoclinic VO2. This strain stabilizes the insulating phase of VO2 and raises TIMT for 10 K higher than TIMT single crystal ≈ 340 K in a bulk VO2 single crystal. Near TIMT, a resistance change of about four orders is observed in a thick film of ∼130 nm. The VO2/AlN/Si heterostructures are promising for the development of integrated IMT-Si technology, including thermal switchers, transistors, and other applications.

  10. Effect of temperature on mycelial growth of Trichoderma, Sclerotinia minor and S. sclerotiorum, as well as on mycoparasitism

    Directory of Open Access Journals (Sweden)

    Manuel Victor Pessoni Fernandes Domingues

    Full Text Available ABSTRACT Environmental conditions are very important for the biological control of plant diseases. In a previous study, isolates of Trichoderma asperellum (IBLF 897, IBLF 904 and IBLF 914 and T. asperelloides (IBLF 908 were selected as antagonists of S. minor and S. sclerotiorum, causal agents of lettuce drop, one of the most relevant diseases affecting the lettuce crop. In this subsequent study, the mycelial growth of these isolates and pathogens, as well as the mycoparasitism of isolate IBLF 914, was evaluated at different temperatures. The mycelial growth of the isolates of T. asperellum and T. asperelloides, as well as of S. minor and S. sclerotiorum, was evaluated at temperatures ranging from 7 to 42oC. The parasitism of propagules of S. minor and S. sclerotiorum by the isolate IBLF 914, as well as the number of lettuce seedlings surviving drop, was evaluated at 12, 17, 22, 27 and 32oC, in gerboxes containing substrate. S. minor and S. sclerotiorum showed mycelial growth at temperatures ranging from 7 to 27°C, but no growth occurred at 32 °C, and both pathogens had greater mycelial growth at 22°C. The isolates of Trichoderma grew at temperatures ranging from 12 to 37°C, with maximum growth at 27°C. The isolate IBLF 914 had mycoparasitism and reduced the disease in lettuce seedlings at temperatures ranging from 22 to 32°C. Since lettuce drop occurs when mild temperatures and high humidity prevail and the antagonist was more effective at higher temperatures, it is recommended that Trichoderma is applied in lettuce fields in Brazil also during warmer months of the year to reduce the inoculum remaining in the soil before planting the winter crop, which is more affected by the disease.

  11. Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression.

    Science.gov (United States)

    Ruiz-Carrasco, Karina; Antognoni, Fabiana; Coulibaly, Amadou Konotie; Lizardi, Susana; Covarrubias, Adriana; Martínez, Enrique A; Molina-Montenegro, Marco A; Biondi, Stefania; Zurita-Silva, Andrés

    2011-11-01

    Chenopodium quinoa (Willd.) is an Andean plant showing a remarkable tolerance to abiotic stresses. In Chile, quinoa populations display a high degree of genetic distancing, and variable tolerance to salinity. To investigate which tolerance mechanisms might account for these differences, four genotypes from coastal central and southern regions were compared for their growth, physiological, and molecular responses to NaCl at seedling stage. Seeds were sown on agar plates supplemented with 0, 150 or 300mM NaCl. Germination was significantly reduced by NaCl only in accession BO78. Shoot length was reduced by 150mM NaCl in three out of four genotypes, and by over 60% at 300mM (except BO78 which remained more similar to controls). Root length was hardly affected or even enhanced at 150mM in all four genotypes, but inhibited, especially in BO78, by 300mM NaCl. Thus, the root/shoot ratio was differentially affected by salt, with the highest values in PRJ, and the lowest in BO78. Biomass was also less affected in PRJ than in the other accessions, the genotype with the highest increment in proline concentration upon salt treatment. Free putrescine declined dramatically in all genotypes under 300mM NaCl; however (spermidine+spermine)/putrescine ratios were higher in PRJ than BO78. Quantitative RT-PCR analyses of two sodium transporter genes, CqSOS1 and CqNHX, revealed that their expression was differentially induced at the shoot and root level, and between genotypes, by 300mM NaCl. Expression data are discussed in relation to the degree of salt tolerance in the different accessions. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  12. Influence of water activity and temperature on growth and mycotoxin production by Alternaria alternata on irradiated soya beans.

    Science.gov (United States)

    Oviedo, Maria Silvina; Ramirez, Maria Laura; Barros, Germán Gustavo; Chulze, Sofia Noemi

    2011-09-15

    The aim of this study was to determine the effects of water activity (a(w)) (0.99-0.90), temperature (15, 25 and 30°C) and their interactions on growth and alternariol (AOH) and alternariol monomethyl ether (AME) production by Alternaria alternata on irradiated soya beans. Maximum growth rates were obtained at 0.980 a(w) and 25°C. Minimum a(w) level for growth was dependent on temperature. Both strains were able to grow at the lowest a(w) assayed (0.90). Maximum amount of AOH was produced at 0.98 a(w) but at different temperatures, 15 and 25°C, for the strains RC 21 and RC 39 respectively. Maximum AME production was obtained at 0.98 a(w) and 30°C for both strains. The concentration range of both toxins varied considerably depending on a(w) and temperature interactions. The two metabolites were produced over the temperature range 15 to 30°C and a(w) range 0.99 to 0.96. The limiting a(w) for detectable mycotoxin production is slightly greater than that for growth. Two-dimensional profiles of a(w)× temperature were developed from these data to identify areas where conditions indicate a significant risk from AOH and AME accumulation on soya bean. Knowledge of AOH and AME production under marginal or sub-optimal temperature and a(w) conditions for growth can be important since improper storage conditions accompanied by elevated temperature and moisture content in the grain can favour further mycotoxin production and lead to reduction in grain quality. This could present a hazard if the grain is used for human consumption or animal feedstuff. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. TEMPERATURE-DEPENDENCE OF CHLOROPHYLL FLUORESCENCE INDUCTION AND PHOTOSYNTHESIS IN TOMATO AS AFFECTED BY TEMPERATURE AND LIGHT CONDITIONS DURING GROWTH

    NARCIS (Netherlands)

    JANSSEN, LHJ; WAMS, HE; VANHASSELT, PR

    The temperature dependence of chlorophyll fluorescence induction and photosynthesis of tomato plants grown at different temperatures and light intensities was studied. Chlorophyll fluorescence induction and photosynthetic activity of leaf discs was determined between 0-degrees and 30-degrees-C. Two

  14. Development of sodium technology

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Tai; Nam, H. Y.; Choi, Y. D. [and others

    2000-05-01

    The objective of present study is to produce the experimental data for development and verification of computer codes for development of LMR and to develop the preliminary technologies for the future large scale verification experiments. A MHD experimental test loop has been constructed for the quantitative analysis of the effect of magnetic field on the sodium flow and experiments are carried out for three EM pumps. The previous pressure drop correlations are evaluated using the experimental data obtained from the pressure drop experiment in a 19-pin fuel assembly with wire spacer. An dimensionless variable is proposed to describe the amplitude and frequency of the fluctuation of free surface using the experimental data obtained from free surface experimental apparatus and an empirical correlation is developed using this dimensionless variable. An experimental test loop is constructed to measure the flow characteristics in IHX shell side and the local pressure drop in fuel assembly, and to test the vibration behaviour of fuel pins due to flow induced vibration. The sodium two-phase flow measuring technique using the electromagnetic flowmeter is developed and the sodium differential pressure drop measuring technique using the method of direct contact of sodium and oil is established. The work on the analysis of sodium fire characteristics and produce data for vlidation of computer code is performed. Perfect reopen time of self plugged leak path was observed to be about 130 minutes after water leak initiation. Reopen shape of a specimen appeared to be double layer of circular type, and reopen size of this specimen surface was about 2mm diameter on sodium side. In small water leakage experiments, the following correlation equation about the reopen time between sodium temperature and initial leak rate was obtained, {tau}{sub c} = {delta}{center_dot}g{sup -0.83}{center_dot}10{sup (3570/T{sub Na}-3.34)}, in 400-500 deg C of liquid sodium atmosphere. The characteristics

  15. Development of sodium technology

    International Nuclear Information System (INIS)

    Hwang, Sung Tai; Nam, H. Y.; Choi, Y. D.

    2000-05-01

    The objective of present study is to produce the experimental data for development and verification of computer codes for development of LMR and to develop the preliminary technologies for the future large scale verification experiments. A MHD experimental test loop has been constructed for the quantitative analysis of the effect of magnetic field on the sodium flow and experiments are carried out for three EM pumps. The previous pressure drop correlations are evaluated using the experimental data obtained from the pressure drop experiment in a 19-pin fuel assembly with wire spacer. An dimensionless variable is proposed to describe the amplitude and frequency of the fluctuation of free surface using the experimental data obtained from free surface experimental apparatus and an empirical correlation is developed using this dimensionless variable. An experimental test loop is constructed to measure the flow characteristics in IHX shell side and the local pressure drop in fuel assembly, and to test the vibration behaviour of fuel pins due to flow induced vibration. The sodium two-phase flow measuring technique using the electromagnetic flowmeter is developed and the sodium differential pressure drop measuring technique using the method of direct contact of sodium and oil is established. The work on the analysis of sodium fire characteristics and produce data for vlidation of computer code is performed. Perfect reopen time of self plugged leak path was observed to be about 130 minutes after water leak initiation. Reopen shape of a specimen appeared to be double layer of circular type, and reopen size of this specimen surface was about 2mm diameter on sodium side. In small water leakage experiments, the following correlation equation about the reopen time between sodium temperature and initial leak rate was obtained, τ c = δ·g -0.83 ·10 (3570/T Na -3.34) , in 400-500 deg C of liquid sodium atmosphere. The characteristics of pressure propagation and gas flow, and

  16. Effect of temperature on growth, mortality, reproduction, and production of adult Lymnaea obrussa Say (Mollusca:Gastropoda)

    International Nuclear Information System (INIS)

    Mattice, J.S.

    1975-01-01

    Shell lengths and egg production were measured weekly under constant (K; 10, 15, 20, 25 0 C) and varying temperature regimes during the reproductive period. Varying regimes included natural field temperature in a pond (F; diurnal and seasonal), mean daily field temperature (anti F; seasonal) and 5 and 10 0 C above anti F. Growth rate of large snails (>10 mm) was unaffected by temperature, but small snails (6 to 10 mm) grew fastest at 15 0 C(K). Growth and reproductive periods were longest, production was highest, and mortality rate was lowest at 15 0 C(K). Rate (per snail) of egg production increased with temperature. At equal mean temperature, regime affected growth rate only at anti F. Regime affected the following values as shown: mortality rate,F > anti F = K; rate of reproduction, F > K > anti F; and total production, K > anti F = F. The validity of extrapolation of energetic data from laboratory to field is discussed. Data relating production and temperature are valuable in thermal impact analysis. (U.S.)

  17. Sodium ionization detector and sensor

    International Nuclear Information System (INIS)

    Hrizo, J.; Bauerle, J.E.

    1979-01-01

    Work conducted on a basic technology development effort with the Westinghouse Sodium Ionization Detector (SID) sensor is reported. Included are results obtained for three task areas: (1) On-line operational response testing - in-situ calibration techniques; (2) Performance-reliability characteristics of aged filaments; and (3) Evaluation of chemical interference effects. The results showed that a calibrator filament coated with a sodium compound, when activated, does supply the necessary sodium atoms to provide a valid operational in-situ test. The life time of new Cr 2 0 3 -protected SID sensor filaments can be extended by operating at a reduced temperature. However, there also is a reduction in the sensitivity. Non-sodium species, such as products from a smoldering fire and organic aerosols, produce an interference response from the sensor comparable to a typical sodium response

  18. Effect of Irrigation Timing on Root Zone Soil Temperature, Root Growth and Grain Yield and Chemical Composition in Corn

    Directory of Open Access Journals (Sweden)

    Xuejun Dong

    2016-05-01

    Full Text Available High air temperatures during the crop growing season can reduce harvestable yields in major agronomic crops worldwide. Repeated and prolonged high night air temperature stress may compromise plant growth and yield. Crop varieties with improved heat tolerance traits as well as crop management strategies at the farm scale are thus needed for climate change mitigation. Crop yield is especially sensitive to night-time warming trends. Current studies are mostly directed to the elevated night-time air temperature and its impact on crop growth and yield, but less attention is given to the understanding of night-time soil temperature management. Delivering irrigation water through drip early evening may reduce soil temperature and thus improve plant growth. In addition, corn growers typically use high-stature varieties that inevitably incur excessive respiratory carbon loss from roots and transpiration water loss under high night temperature conditions. The main objective of this study was to see if root-zone soil temperature can be reduced through drip irrigation applied at night-time, vs. daytime, using three corn hybrids of different above-ground architecture in Uvalde, TX where day and night temperatures during corn growing season are above U.S. averages. The experiment was conducted in 2014. Our results suggested that delivering well-water at night-time through drip irrigation reduced root-zone soil temperature by 0.6 °C, increase root length five folds, plant height 2%, and marginally increased grain yield by 10%. However, irrigation timing did not significantly affect leaf chlorophyll level and kernel crude protein, phosphorous, fat and starch concentrations. Different from our hypothesis, the shorter, more compact corn hybrid did not exhibit a higher yield and growth as compared with taller hybrids. As adjusting irrigation timing would not incur an extra cost for farmers, the finding reported here had immediate practical implications for farm

  19. Strain specific variation of outer membrane proteins of wild Yersinia pestis strains subjected to different growth temperatures

    Directory of Open Access Journals (Sweden)

    Frederico Guilherme Coutinho Abath

    1990-03-01

    Full Text Available Three Yersinia pestis strains isolated from humans and one laboratory strain (EV76 were grown in rich media at 28§C and 37§C and their outer membrane protein composition compared by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-Page. Several proteins with molecular weights ranging from 34 kDa to 7 kDa were observed to change in relative abundance in samples grown at different temperatures. At least seven Y. pestis outer membrane proteins showed a temperature-dependent and strain-specific behaviour. Some differences between the outer membrane proteins of full-pathogenic wild isolates and the EV76 strain could aldso be detected and the relevance of this finding on the use of laboratory strains as a reference to the study of Y. pestis biological properties is discuted.

  20. Comparison of primary predictive models to study the growth of Listeria monocytogenes at low temperatures in liquid cultures and selection of fastest growing ribotypes in meat and turkey product slurries.

    Science.gov (United States)

    Pal, Amit; Labuza, Theodore P; Diez-Gonzalez, Francisco

    2008-05-01

    This study compared the performance of four primary mathematical models to study the growth kinetics of Listeria monocytogenes ribotypes grown at low temperature so as to identify the best predictive model. The parameters of the best-fitting model were used to select the fastest growing strains with the shortest lag time and greatest growth rate. Nineteen food, human and animal L. monocytogenes isolates with distinct ribotype were grown at 4, 8, and 12 degrees C in tryptic soy broth and slurries prepared from cooked uncured sliced turkey breasts (with or without potassium lactate and sodium diacetate, PL/SD) and cooked cured frankfurters (with or without PL/SD). Separate regressions were performed on semi-logarithm growth curves to fit linear (based on Monod) and non-linear (Gompertz, Baranyi-Roberts, and Logistic) equations and performance of each model was evaluated using an F-test. No significant differences were found in the performance of linear and non-linear models, but the Baranyi model had the best fit for most growth curves. The maximum growth rate (MGR) of Listeria strains increased with the temperature. Similarly MGR was found significantly greater when no antimicrobials were present in the formulation of turkey or frankfurter products. The variability in lag times and MGRs in all media as determined by the Baranyi model was not consistent among strains. No single strain consistently had the fastest growth (shortest lag time, fastest MGR, or shortest time to increase 100-fold), but nine strains were identified as fastest growing strains under most growth conditions. The lack of association between serotype and fastest strain was also observed in the slurry media study. The fastest growing strains resulting from this study can be recommended for future use in L. monocytogenes challenge studies in delicatessen meat and poultry food matrices, so as to develop conservative pathogen growth predictions.

  1. Integrated combined effects of temperature, pH and sodium chloride concentration on biofilm formation by Salmonella enterica ser. Enteritidis and Typhimurium under low nutrient food-related conditions.

    Science.gov (United States)

    Iliadis, Ioannis; Daskalopoulou, Aikaterini; Simões, Manuel; Giaouris, Efstathios

    2018-05-01

    Salmonella enterica is a major foodborne bacterial pathogen. This forms biofilms on surfaces and persists, depending on the strain and the environment. The integrative interaction of temperature (T; 13-39 °C), pH (5-8) and sodium chloride (NaCl) concentration (0.5-8.5%) on biofilm formation by two S. enterica strains (ser. Enteritidis and Typhimurium) was here evaluated under low nutrient conditions. This was achieved using response surface methodology to model the combined effect of each factor on the response, through mathematical quadratic fitting of the outcomes of a sequence of designed experiments. These last were executed by incubating stainless steel coupons carrying sessile bacteria, for 24 h, in 1:10 diluted tryptone soya broth, under 15 different combinations of three independent factors (T, pH and NaCl). For each strain, a second order polynomial model, describing the relationship between biofilm formation (log CFU/cm 2 ) and the factors (T, pH and NaCl), was developed using least square regression analysis. Both derived models predicted the combined influences of these factors on biofilm formation, with agreement between predictions and experimental observations (R 2  ≥ 0.96, P ≤ 0.0001). For both strains, the increase of NaCl content restricted their sessile growth, while under low salinity conditions (NaCl formation was favored as pH increased, regardless of T. Interestingly, under low salt content, and depending on the strain, biofilm formation was either favored or hindered by increasing T. Thus, 34.5 and 13 °C were the T predicted to maximize biofilm formation by strains Enteritidis and Typhimurium, respectively, something which was also experimentally verified. To sum, these models can predict the interactive influences of crucial food-related factors on biofilm growth of a significant foodborne pathogen towards the efforts to limit its persistence in food industry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Temperature Effect Study on Growth and Survival of Pathogenic Vibrio parahaemolyticus in Jinjiang Oyster (Crassostrea rivularis with Rapid Count Method

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2018-01-01

    Full Text Available The growth of Vibrio parahaemolyticus (V. parahaemolyticus in oysters during postharvest storage increases the possibility of its infection in humans. In this work, to investigate the growth or survival profiles in different media, pathogenic V. parahaemolyticus in APW, Jinjiang oyster (JO, Crassostrea rivularis slurry, and live JO were studied under different temperatures. All the strain populations were counted through our double-layer agar plate (DLAP method. In APW, the pathogenic V. parahaemolyticus showed continuous growth under 15, 25, and 35°C, while a decline in behavior was displayed under 5°C. The similar survival trend of pathogenic V. parahaemolyticus in JO slurry and live JO was observed under 5, 25, and 35°C, except the delayed growth or decline profile compared to APW. Under 15°C, they displayed decline and growth profile in JO slurry and live JO, respectively. These results indicate the different sensitivity of pathogenic V. parahaemolyticus in these matrices to temperature variation. Furthermore, nonpathogenic V. parahaemolyticus displayed little difference in survival profiles when inoculated in live JO under corresponding temperatures. The results indicate that inhibition or promotion effect could be regulated under different storage temperature for both pathogenic and nonpathogenic strains. Besides, the DLAP method showed the obvious quickness and efficiency during the bacteria count.

  3. Surface evolution during crystalline silicon film growth by low-temperature hot-wire chemical vapor deposition on silicon substrates

    Science.gov (United States)

    Richardson, Christine Esber; Park, Young-Bae; Atwater, Harry A.

    2006-06-01

    We investigate the low-temperature growth of crystalline thin silicon films: epitaxial, twinned, and polycrystalline, by hot-wire chemical vapor deposition (HWCVD). Using Raman spectroscopy, spectroscopic ellipsometry, and atomic force microscopy, we find the relationship between surface roughness evolution and (i) the substrate temperature (230-350°C) and (ii) the hydrogen dilution ratio (H2/SiH4=0-480) . The absolute silicon film thickness for fully crystalline films is found to be the most important parameter in determining surface roughness, hydrogen being the second most important. Higher hydrogen dilution increases the surface roughness as expected. However, surface roughness increases with increasing substrate-temperature, in contrast to previous studies of crystalline Si growth. We suggest that the temperature-dependent roughness evolution is due to the role of hydrogen during the HWCVD process, which in this high hydrogen dilution regime allows for epitaxial growth on the rms roughest films through a kinetic growth regime of shadow-dominated etch and desorption and redeposition of growth species.

  4. The effects of CO2 and nutrient fertilisation on the growth and temperature response of the mangrove Avicennia germinans.

    Science.gov (United States)

    Reef, Ruth; Slot, Martijn; Motro, Uzi; Motro, Michal; Motro, Yoav; Adame, Maria F; Garcia, Milton; Aranda, Jorge; Lovelock, Catherine E; Winter, Klaus

    2016-08-01

    In order to understand plant responses to both the widespread phenomenon of increased nutrient inputs to coastal zones and the concurrent rise in atmospheric CO2 concentrations, CO2-nutrient interactions need to be considered. In addition to its potential stimulating effect on photosynthesis and growth, elevated CO2 affects the temperature response of photosynthesis. The scarcity of experiments testing how elevated CO2 affects the temperature response of tropical trees hinders our ability to model future primary productivity. In a glasshouse study, we examined the effects of elevated CO2 (800 ppm) and nutrient availability on seedlings of the widespread mangrove Avicennia germinans. We assessed photosynthetic performance, the temperature response of photosynthesis, seedling growth and biomass allocation. We found large synergistic gains in both growth (42 %) and photosynthesis (115 %) when seedlings grown under elevated CO2 were supplied with elevated nutrient concentrations relative to their ambient growing conditions. Growth was significantly enhanced under elevated CO2 only under high-nutrient conditions, mainly in above-ground tissues. Under low-nutrient conditions and elevated CO2, root volume was more than double that of seedlings grown under ambient CO2 levels. Elevated CO2 significantly increased the temperature optimum for photosynthesis by ca. 4 °C. Rising CO2 concentrations are likely to have a significant positive effect on the growth rate of A. germinans over the next century, especially in areas where nutrient availability is high.

  5. Effect of Temperature and pH on Formulating the Kinetic Growth Parameters and Lactic Acid Production of Lactobacillus bulgaricus

    Directory of Open Access Journals (Sweden)

    Marzieh Aghababaie

    2014-09-01

    Results: Second order model for Xmax, μmax, P and K was significant but product formation parameters were almost constant. The optimum values of temperature and pH for attaining maximum biomass, maximum specific growth rate, and maximum acid production were obtained at 44 °C and 5.7, respectively. Conclusions: The attained empirical mathematical correlations of RSM alongside the kinetic equations could be used to determine growth conditions under predefined temperature and pH in the fermentation process. Keywords: Lactobacillus bulgaricus, Richards model, Response surface methodology, Lactic acid production, Luedeking-Piret model

  6. Effects of Temperature, pH, and NaCl on Growth and Pectinolytic Activity of Pseudomonas marginalis

    OpenAIRE

    Membré, J. M.; Burlot, P. M.

    1994-01-01

    The interaction of temperature (4, 10, 18, and 30°C), pH (6, 7, and 8), and NaCl (0, 2.5, and 5%) and their effects on specific growth rate, lag phase, and pectinolytic enzymes of Pseudomonas marginalis were evaluated. Response surface methodology was adapted to describe the response of growth parameters to environmental changes. To obtain good conditions of storage, the combined action of salt and temperature is necessary. At 4°C with an NaCl concentration of 5% and a pH of 7, the lag time w...

  7. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress*

    OpenAIRE

    Guan, Ya-jing; Hu, Jin; Wang, Xian-ju; Shao, Chen-xia

    2009-01-01

    Low temperature stress during germination and early seedling growth is an important constraint of global production of maize. The effects of seed priming with 0.25%, 0.50%, and 0.75% (w/v) chitosan solutions at 15 °C on the growth and physiological changes were investigated using two maize (Zea mays L.) inbred lines, HuangC (chilling-tolerant) and Mo17 (chilling-sensitive). While seed priming with chitosan had no significant effect on germination percentage under low temperature stress, it en...

  8. Influence of Synthesis Temperature on the Growth and Surface Morphology of Co3O4 Nanocubes for Supercapacitor Applications

    Science.gov (United States)

    Samal, Rashmirekha; Dash, Barsha; Sarangi, Chinmaya Kumar; Subbaiah, Tondepu; Senanayake, Gamini; Minakshi, Manickam

    2017-01-01

    A facile hydrothermal route to control the crystal growth on the synthesis of Co3O4 nanostructures with cube-like morphologies has been reported and tested its suitability for supercapacitor applications. The chemical composition and morphologies of the as-prepared Co3O4 nanoparticles were extensively characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Varying the temperature caused considerable changes in the morphology, the electrochemical performance increased with rising temperature, and the redox reactions become more reversible. The results showed that the Co3O4 synthesized at a higher temperature (180 °C) demonstrated a high specific capacitance of 833 F/g. This is attributed to the optimal temperature and the controlled growth of nanocubes. PMID:29088061

  9. Influence of AlGaN Buffer Growth Temperature on GaN Epilayer based on Si(lll) Substrate

    International Nuclear Information System (INIS)

    Wei Meng; Wang Xiaoliang; Pan Xu; Xiao Hongling; Wang Cuimei; Zhang Minglan; Wang Zhanguo

    2011-01-01

    This paper investigated the influence of AlGaN buffer growth temperature on strain status and crystal quality of the GaN film on Si(111) sbustrates by metal organic chemical vapor deposition. It was demonstrated by the optical microscopy that AlGaN buffer gorwth temperature had a remarkable effect on compensating tensil stress in top GaN layer and preventing the formation of cracks. X-ray diffraction and atomic force microscopy analysis showed crystal quality and surface morphology of the GaN epilayer could be improved through increasing AlGaN buffer growth temperature. 1μm crack-free GaN epilayer on Si (111) substrates was obtained with graded AlGaN buffer layer at optimized temperature of 1050 deg. C. Transmission electron microscopy analysis revealed that a significant reduction in threading dislocations was achieved in GaN epilayer.

  10. Applications of Optical Interferometer Techniques for Precision Measurements of Changes in Temperature, Growth and Refractive Index of Materials

    Directory of Open Access Journals (Sweden)

    Rami Reddy Bommareddi

    2014-05-01

    Full Text Available Optical metrology techniques used to measure changes in thickness; temperature and refractive index are surveyed. Optical heterodyne detection principle and its applications for precision measurements of changes in thickness and temperature are discussed. Theoretical formulations are developed to estimate crystal growth rate, surface roughness and laser cooling/heating of solids. Applications of Michelson and Mach-Zehnder interferometers to measure temperature changes in laser heating of solids are described. A Mach-Zehnder interferometer is used to measure refractive index and concentration variations of solutions in crystal growth experiments. Additionally, fluorescence lifetime sensing and fluorescence ratio method are described for temperature measurement. For all the above techniques, uncertainty calculations are included.

  11. The effect of changes in sea surface temperature on linear growth of Porites coral in Ambon Bay

    Energy Technology Data Exchange (ETDEWEB)

    Corvianawatie, Corry, E-mail: corvianawatie@students.itb.ac.id; Putri, Mutiara R., E-mail: mutiara.putri@fitb.itb.ac.id [Oceanography Study Program, Bandung Institute of Technology (ITB), Jl. Ganesha 10 Bandung (Indonesia); Cahyarini, Sri Y., E-mail: yuda@geotek.lipi.go.id [Research Center for Geotechnology, Indonesian Institute of Sciences (LIPI), Bandung (Indonesia)

    2015-09-30

    Coral is one of the most important organisms in the coral reef ecosystem. There are several factors affecting coral growth, one of them is changes in sea surface temperature (SST). The purpose of this research is to understand the influence of SST variability on the annual linear growth of Porites coral taken from Ambon Bay. The annual coral linear growth was calculated and compared to the annual SST from the Extended Reconstructed Sea Surface Temperature version 3b (ERSST v3b) model. Coral growth was calculated by using Coral X-radiograph Density System (CoralXDS) software. Coral sample X-radiographs were used as input data. Chronology was developed by calculating the coral’s annual growth bands. A pair of high and low density banding patterns observed in the coral’s X-radiograph represent one year of coral growth. The results of this study shows that Porites coral extents from 2001-2009 and had an average growth rate of 1.46 cm/year. Statistical analysis shows that the annual coral linear growth declined by 0.015 cm/year while the annual SST declined by 0.013°C/year. SST and the annual linear growth of Porites coral in the Ambon Bay is insignificantly correlated with r=0.304 (n=9, p>0.05). This indicates that annual SST variability does not significantly influence the linear growth of Porites coral from Ambon Bay. It is suggested that sedimentation load, salinity, pH or other environmental factors may affect annual linear coral growth.

  12. Phenotypic analysis of mutant and overexpressing strains of lipid metabolism genes in Saccharomyces cerevisiae: implication in growth at low temperatures.

    Science.gov (United States)

    López-Malo, María; Chiva, Rosana; Rozes, Nicolas; Guillamon, José Manuel

    2013-03-01

    The growing demand for wines with a more pronounced aromatic profile calls for low temperature alcoholic fermentations (10-15°C). However, there are certain drawbacks to low temperature fermentations such as reduced growth rate, long lag phase and sluggish or stuck fermentations. The lipid metabolism of Saccharomyces cerevisiae plays a central role in low temperature adaptation. The aim of this study was to detect lipid metabolism genes involved in cold adaptation. To do so, we analyzed the growth of knockouts in phospholipids, sterols and sphingolipids, from the EUROSCARF collection S. cerevisiae BY4742 strain at low and optimal temperatures. Growth rate of these knockouts, compared with the control, enabled us to identify the genes involved, which were also deleted or overexpressed in a derivative haploid of a commercial wine strain. We identified genes involved in the phospholipid (PSD1 and OPI3), sterol (ERG3 and IDI1) and sphingolipid (LCB3) pathways, whose deletion strongly impaired growth at low temperature and whose overexpression reduced generation or division time by almost half. Our study also reveals many phenotypic differences between the laboratory strain and the commercial wine yeast strain, showing the importance of constructing mutant and overexpressing strains in both genetic backgrounds. The phenotypic differences in the mutant and overexpressing strains were correlated with changes in their lipid composition. Copyright © 2013. Published by Elsevier B.V.

  13. Fatigue crack growth control in pressure vessel using single peak overload and load hold at elevated temperatures

    International Nuclear Information System (INIS)

    Chen, Ling; Nakamura, Haruo; Kobayashi, Hideo

    1995-01-01

    Pressure vessels are periodically subjected to a proof test to assure structural integrity. During that period, it may be possible to control the fatigue crack growth by simultaneous heating globally or locally around a crack tip. From this viewpoint, retardation behavior of a fatigue crack due to a single peak overload at a high temperature (∼300degC) was examined in an A 533 B-1 steel. Parameters investigated were overload ratio, applied temperature, hold time at higher temperature, and unloading temperature of overload. The higher the applied temperature, the greater the effect of retardation especially when unloading of the overload is done at lower temperatures. Also, the hold time at maximum load promotes oxide-film-induced crack closure. To evaluate those effects, a simple model is proposed based on the Dugdale model. (author)

  14. Modeling growth of three bakery product spoilage molds as a function of water activity, temperature and pH.

    Science.gov (United States)

    Dagnas, Stéphane; Onno, Bernard; Membré, Jeanne-Marie

    2014-09-01

    The objective of this study was to quantify the effect of water activity, pH and storage temperature on the growth of Eurotium repens, Aspergillus niger and Penicillium corylophilum, isolated from spoiled bakery products. Moreover, the behaviors of these three mold species were compared to assess whether a general modeling framework may be set and re-used in future research on bakery spoilage molds. The mold growth was modeled by building two distinct Gamma-type secondary models: one on the lag time for growth and another one on the radial growth rate. A set of 428 experimental growth curves was generated. The effect of temperature (15-35 °C), water activity (0.80-0.98) and pH (3-7) was assessed. Results showed that it was not possible to apply the same set of secondary model equations to the three mold species given that the growth rate varied significantly with the factors pH and water activity. In contrast, the temperature effect on both growth rate and lag time of the three mold species was described by the same equation. The equation structure and model parameter values of the Gamma models were also compared per mold species to assess whether a relationship between lag time and growth rate existed. There was no correlation between the two growth responses for E. repens, but a slight one for A. niger and P. corylophilum. These findings will help in determining bakery product shelf-life and guiding future work in the predictive mycology field. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Influence of growth morphology on the Neel temperature of CrRu thin films and heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Prinsloo, A.R.E., E-mail: alettap@uj.ac.z [Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006 (South Africa); Derrett, H.A. [Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006 (South Africa); Hellwig, O. [San Jose Research Center, Hitachi Global Storage Technologies, 3403 Yerba Buena Road, San Jose, CA 95135 (United States); Fullerton, E.E. [University of California, San Diego, La Jolla, CA (United States); Alberts, H.L. [Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006 (South Africa); Berg, N. van den [Department of Physics, University of Pretoria, Lynwood road, Pretoria (South Africa)

    2010-05-15

    Dimensionality effects on epitaxial and polycrystalline Cr{sub 1-x}Ru{sub x} alloy thin films and in Cr/Cr-Ru heterostructures are reported. X-ray analysis on Cr{sub 0.9965}Ru{sub 0.0035} epitaxial films indicates an increase in the coherence length in growth directions (1 0 0) and (1 1 0) with increasing thickness (d), in the range 20<=d<=300 nm. Atomic force microscopy studies on these films shows pronounced vertical growth for d>50 nm, resulting in the formation of columnar structures. The Neel temperatures (T{sub N}) of the Cr{sub 0.9965}Ru{sub 0.0035} films show anomalous behaviour as a function of d at thickness dapprox50 nm. It is interesting to note that this thickness corresponds to that for which a change in film morphology occurs. Experiments on epitaxial Cr{sub 1-x}Ru{sub x} thin films, with 0<=x<=0.013 and d=50 nm, give T{sub N}-x curves that correspond well with that of bulk Cr{sub 1-x}Ru{sub x} alloys. Studies on Cr/Cr{sub 0.9965}Ru{sub 0.0035} superlattices prepared on MgO(1 0 0), with the Cr layer thickness varied between 10 and 50 nm, keeping the Cr{sub 0.9965}Ru{sub 0.0035} thickness constant at 10 nm, indicate a sharp decrease in T{sub N} as the Cr separation layers reaches a thickness of 30 nm; ascribed to spin density wave pinning in the Cr layers for d<30 nm by the adjacent CrRu layers.

  16. Test Your Sodium Smarts

    Science.gov (United States)

    ... You may be surprised to learn how much sodium is in many foods. Sodium, including sodium chloride ... foods with little or no salt. Test your sodium smarts by answering these 10 questions about which ...

  17. Development of a transfer model for design of sodium purification systems for Fast Breeder Reactors

    International Nuclear Information System (INIS)

    Khatcheressian, N.

    2013-01-01

    Operating a Sodium Fast Reactor (SFR) in reliable and safe conditions requires to master the quality of the sodium fluid coolant, regarding oxygen and hydrogen impurities contents. A cold trap is a purification unit in SFR, designed for maintaining oxygen and hydrogen contents within acceptable limits. The purification of these impurities is based on crystallization of sodium hydride on cold walls and sodium oxide or hydride on wire mesh packing. Indeed, as oxygen and hydrogen solubilities are nearly nil at temperatures close to the sodium fusion point, i.e. 97.8 C, on line sodium purification can be performed by crystallization of sodium oxide and hydride from liquid sodium flows. However, the management of cold trap performances is necessary to prevent from unforeseen maintenance operations, which could induce shut-down of the reactor. It is thus essential to understand