WorldWideScience

Sample records for growth substrate depending

  1. Temperature dependence of ordered GeSi island growth on patterned Si (001) substrates

    International Nuclear Information System (INIS)

    ZhongZhenyang; Chen Peixuan; Jiang Zuimin; Bauer, Guenther

    2008-01-01

    Statistical information on GeSi islands grown on two-dimensionally pit-patterned Si substrates at different temperatures is presented. Three growth regimes on patterned substrates are identified: (i) kinetically limited growth at low growth temperatures, (ii) ordered island growth in an intermediate temperature range, and (iii) stochastic island growth within pits at high temperatures. A qualitative model based on growth kinetics is proposed to explain these phenomena. It can serve as a guidance to realize optimum growth conditions for ordered islands on patterned substrates

  2. Effect of Trichoderma on horticultural seedlings' growth promotion depending on inoculum and substrate type.

    Science.gov (United States)

    Marín-Guirao, J I; Rodríguez-Romera, P; Lupión-Rodríguez, B; Camacho-Ferre, F; Tello-Marquina, J C

    2016-10-01

    The biostimulant effect of Trichoderma spp. on horticultural crops are highly variable. Thus, practical use of Trichoderma sp. requires feasible formulated products and suitable substrates. This study evaluates the survival and the growth-promotion effect of a Trichoderma saturnisporum rice formulation compared with a nonformulated conidia suspension (seven treatments in total), on tomato, pepper and cucumber seedlings grown in two substrates: (i) rich in organic matter (OM) and (ii) mineral substrate without OM. The results showed beneficial effects on seedling growth in the OM-rich substrate when T. saturnisporum rice formulation (mainly at maximum concentration) was applied, but the effects were opposite when the mineral substrate without OM was used. The effects were closely linked to the level of inoculum in the substrate, which was greater upon application of the formulated inoculum as opposed to the nonformulated one. The use of rice to prepare the inoculum of T. saturnisporum seems to be promising for seedling growth in the nursery when it is applied in a substrate that is rich in organic matter, but it must be considered that under certain conditions of food shortage, Trichoderma sp. could show pathogenicity to seedlings. This study provides evidence of the complexity inherent in the use of micro-organisms in agriculture, while also confirming that the activity of the biofertilizers based on Trichoderma depends on the type of inoculum and its concentration, as well as the properties of the medium in which the fungi develop. Further studies assessing the effectiveness or possible pathogenicity of Trichoderma in different soils under greenhouse conditions must be addressed. © 2016 The Society for Applied Microbiology.

  3. Growth and flowering of Helleborus argutifolius (Viviani grown in pots depending on substrate type

    Directory of Open Access Journals (Sweden)

    Monika Henschke

    2014-09-01

    Full Text Available An experiment was conducted on the effect of substrate type on growth of Corsican hellebore (Helleborus argutifolius Viviani. Plants were grown for two years in pots with substrates whose components included Klasmann highmoor peat and Hartmann highmoor peat, mineral soil, expanded clay and perlite at various volumetric ratios. Vegetative growth and flowering were observed in hellebores. It was shown that substrates exhibited a varied effect on plant growth. Corsican hellebore in a substrate with a considerable addition of mineral soil was lower, but more branched, and it did not form inflorescences. An optimal medium for growing H. argutifolius in pots was Hartmann’s de-acidified peat + mineral soil (1:1 v:v. In this medium vegetative growth of plants was extensive, flowering was early and abundant, and long peduncles were produced.

  4. Substrate structure dependence of the growth modes of p-quaterphenyl thin films on gold

    International Nuclear Information System (INIS)

    Muellegger, S.; Mitsche, S.; Poelt, P.; Haenel, K.; Birkner, A.; Woell, C.; Winkler, A.

    2005-01-01

    The variably oriented crystallite surfaces of a recrystallized polycrystalline gold sample served as substrates for the investigation of the structure dependence of p-quaterphenyl (4P) thin film growth. The films were prepared in ultrahigh vacuum by organic molecular beam evaporation. Optical microscopy, scanning electron microscopy, combined with laterally resolved electron backscatter diffraction and scanning tunnelling microscopy have been applied to determine the correlation between the substrate surface structure and 4P film morphology. Crystallite surfaces consisting of (110) terraces favour highly anisotropic needle-like 4P growth with the needle orientation normal to the Au directions. Atomic steps on vicinal planes with narrow terraces (< 2 nm) can also induce anisotropy in the 4P thin film growth, in particular elongated 4P islands normal to the step direction. In contrast to that, a nearly isotropic distribution of the needle orientations is observed on Au grains terminated by highly symmetric (111) or (100) crystal planes. Additionally, patches of continuous 4P layers can be found on these surfaces. There is strong evidence that the 4P molecules within the needle-like crystallites are oriented parallel to the Au surface, whereas for the continuous layers the 4P molecules are oriented nearly upright on the surface

  5. Substrate Dependence of the Freezing Dynamics of Supercooled Water Films: A High-Speed Optical Microscope Study.

    Science.gov (United States)

    Pach, E; Rodriguez, L; Verdaguer, A

    2018-01-18

    The freezing of supercooled water films on different substrates was investigated using a high-speed camera coupled to an optical microscope, obtaining details of the freezing process not described in the literature before. We observed the two well known freezing stages (fast dendritic growth and slow freezing of the water liquid left after the dendritic growth), but we separated the process into different phenomena that were studied separately: two-dimensional dendrite growth on the substrate interface, vertical dendrite growth, formation and evolution of ice domains, trapping of air bubbles and freezing of the water film surface. We found all of these processes to be dependent on both the supercooling temperature and the substrate used. Ice dendrite (or ice front) growth during the first stage was found to be dependent on thermal properties of the substrate but could not be unequivocally related to them. Finally, for low supercooling, a direct relationship was observed between the morphology of the dendrites formed in the first stage, which depends on the substrate, and the roughness and the shape of the surface of the ice, when freezing of the film was completed. This opens the possibility of using surfaces and coatings to control ice morphology beyond anti-icing properties.

  6. Temperature dependence of InN growth on (0001) sapphire substrates by atmospheric pressure hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Kumagai, Yoshinao; Adachi, Hirokazu; Otake, Aya; Higashikawa, Yoshihiro; Togashi, Rie; Murakami, Hisashi; Koukitu, Akinori

    2010-01-01

    The temperature dependence of InN growth on (0001) sapphire substrates by atmospheric pressure hydride vapor phase epitaxy (HVPE) was investigated. N-polarity single-crystal InN layers were successfully grown at temperatures ranging from 400 to 500 C. The a and c lattice constants of InN layers grown at 450 C or below were slightly larger than those of InN layers grown above 450 C due to oxygen incorporation that also increased the carrier concentration. The optical absorption edge of the InN layer decreased from above 2.0 to 0.76 eV when the growth temperature was increased from 450 to 500 C. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Maintenance-energy-dependent dynamics of growth and poly(3-hydroxybutyrate [P(3HB] production by Azohydromonas lata MTCC 2311 using simple and renewable carbon substrates

    Directory of Open Access Journals (Sweden)

    M. Zafar

    2014-06-01

    Full Text Available The dynamics of microbial growth and poly(3-hydroxybutyrate [P(3HB] production in growth/ non-growth phases of Azhohydromonas lata MTCC 2311 were studied using a maintenance-energy-dependent mathematical model. The values of calculated model kinetic parameters were: m s1 = 0.0005 h-1, k = 0.0965, µmax = 0.25 h-1 for glucose; m s1 = 0.003 h-1, k = 0.1229, µmax = 0.27 h-1 for fructose; and m s1 = 0.0076 h-1, k = 0.0694, µmax = 0.25 h-1 for sucrose. The experimental data of biomass growth, substrate consumption, and P(3HB production on different carbon substrates were mathematically fitted using non-linear least square optimization technique and similar trends, but different levels were observed at varying initial carbon substrate concentration. Further, on the basis of substrate assimilation potential, cane molasses was used as an inexpensive and renewable carbon source for P(3HB production. Besides, the physico-chemical, thermal, and material properties of synthesized P(3HB were determined which reveal its suitability in various applications.

  8. Catalyst–substrate interaction and growth delay in vapor–liquid–solid nanowire growth

    Science.gov (United States)

    Kolíbal, Miroslav; Pejchal, Tomáš; Musálek, Tomáš; Šikola, Tomáš

    2018-05-01

    Understanding of the initial stage of nanowire growth on a bulk substrate is crucial for the rational design of nanowire building blocks in future electronic and optoelectronic devices. Here, we provide in situ scanning electron microscopy and Auger microscopy analysis of the initial stage of Au-catalyzed Ge nanowire growth on different substrates. Real-time microscopy imaging and elementally resolved spectroscopy clearly show that the catalyst dissolves the underlying substrate if held above a certain temperature. If the substrate dissolution is blocked (or in the case of heteroepitaxy) the catalyst needs to be filled with nanowire material from the external supply, which significantly increases the initial growth delay. The experiments presented here reveal the important role of the substrate in metal-catalyzed nanowire growth and pave the way for different growth delay mitigation strategies.

  9. Influence of nutrition and various substrates on spruce seedling growth

    Directory of Open Access Journals (Sweden)

    Đukić Matilda

    2004-01-01

    Full Text Available The results of the influence of main macronutrients (N, P, and K on growth and development of spruce (Picea abies L. Karst one-year old seedlings are presented. They were grown in containers, in nursery conditions, on four different substrates. There is a good influence on biogenous element contents, height, root collar diameter, needle length and mass, root mass as well as physiological vitality of spruce seedlings. It was observed that the effect of nutrition depends also on the type of substrate.

  10. Distinction of [220] and [204] textures of Cu(In,Ga)Se{sub 2} film and their growth behaviors depending on substrate nature and Na incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dae-Hyung, E-mail: dhcho@etri.re.kr [IT Components and Materials Industry Technology Research Department, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeongno, Yuseong-gu, Daejeon 305-700 (Korea, Republic of); Kim, Jeha [Department of Solar & Energy Engineering, Cheongju University, 298 Daeseongro, Sangdang-gu, Cheongju, Chungbuk 360-764 (Korea, Republic of); Chung, Yong-Duck [IT Components and Materials Industry Technology Research Department, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeongno, Yuseong-gu, Daejeon 305-700 (Korea, Republic of); Korea University of Science and Technology (UST), 217 Gajeongno, Yuseong-gu, Daejeon 305-350 (Korea, Republic of)

    2015-08-31

    For better understanding of the structural property of polycrystalline tetragonal Cu(In,Ga)Se{sub 2} (CIGS) thin films grown on soda-lime glass, it is necessary to characterize the [220]- and [204]-oriented textures clearly that are related to the different physical properties. However, the distinction between the [220]- and [204]-oriented textures is very difficult because of their nearly identical plane spacings and atomic arrangements. Using X-ray diffraction techniques of high resolution θ–2θ scanning and reciprocal space mapping, we distinguished the [220]- and [204]-oriented textures of CIGS films and observed that the behaviors of [220] and [204] textures independently depended on both substrate nature and Na presence. We report the Na- and substrate-related dependence of the physical properties of the CIGS film was attributed to the independent growth behaviors of the [220] and [204] textures in the CIGS. - Highlights: • We investigated [220]- and [204]-oriented textures of Cu(In,Ga)Se{sub 2} (CIGS) films. • X-ray diffraction methods distinguished two textures. • The growth behaviors were influenced by underlying substrate and Na. • The [220] and [204] textures in CIGS should be differentially observed.

  11. Molecular beam epitaxial growth and characterization of GaSb layers on GaAs (0 0 1) substrates

    International Nuclear Information System (INIS)

    Li Yanbo; Zhang Yang; Zhang Yuwei; Wang Baoqiang; Zhu Zhanping; Zeng Yiping

    2012-01-01

    We report on the growth of GaSb layers on GaAs (0 0 1) substrates by molecular beam epitaxy (MBE). We investigate the influence of the GaAs substrate surface treatment, growth temperature, and V/III flux ratios on the crystal quality and the surface morphology of GaSb epilayers. Comparing to Ga-rich GaAs surface preparation, the Sb-rich GaAs surface preparation can promote the growth of higher-quality GaSb material. It is found that the crystal quality, electrical properties, and surface morphology of the GaSb epilayers are highly dependent on the growth temperature, and Sb/Ga flux ratios. Under the optimized growth conditions, we demonstrate the epitaxial growth of high quality GaSb layers on GaAs substrates. The p-type nature of the unintentionally doped GaSb is studied and from the growth conditions dependence of the hole concentrations of the GaSb, we deduce that the main native acceptor in the GaSb is the Ga antisite (Ga Sb ) defect.

  12. The role of the substrate surface morphology and water in growth of vertically aligned single-walled carbon nanotubes.

    Science.gov (United States)

    Pint, Cary; Pheasant, Sean; Nicholas, Nolan; Horton, Charles; Hauge, Robert

    2008-11-01

    Growth of high quality, vertically aligned single-walled carbon nanotubes (carpets) is achieved using a rapid insertion hot filament chemical vapor deposition (HF-CVD) technique. The effect of the substrate morphology on growth is explored by comparing carpets grown on epitaxially polished MgO substrates to those grown on "as-cut", macroscopically rough MgO substrates. Depending on the substrate morphology, we observe differences in both the overall carpet morphology as well as the diameter distribution of nanotubes grown in the carpet based on optical measurements. In addition, we explore the role of water in the growth of carpets on MgO and the conventional Al2O3 coated Si substrates. We find that the addition of a small amount of water is beneficial to the growth rates of the SWNT carpets, enhancing the growth rates by up to eight times.

  13. Epitaxial growth of ZnO layers on (111) GaAs substrates by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Ding Jian; Zhang Di; Konomi, Takaharu; Saito, Katsuhiko; Guo Qixin

    2012-01-01

    ZnO layers were grown on (111) GaAs substrates by laser molecular epitaxy at substrate temperatures between 200 and 550 °C. X-ray diffraction analysis revealed that c-axis of ZnO epilayer with a wurtzite structure is perpendicular to the substrate surface. X-ray rocking curves and Raman spectroscopy showed that the crystal quality of ZnO epilayers depends on the substrate temperature during the growth. Strong near-band-edge emission in the UV region without any deep-level emissions was observed from the ZnO epilayers at room temperature. The results indicate that laser molecular beam epitaxy is a promising growth method for obtaining high-quality ZnO layers on (111) GaAs substrates.

  14. Temperature-dependent evolution of chemisorbed digermane in Ge thin film growth

    International Nuclear Information System (INIS)

    Eres, D.; Sharp, J.W.

    1992-01-01

    The formation and evolution of chemisorbed digermane layers in context with germanium thin film growth was investigated by time- resolved surface reflectometry. Modulation of the source gas supply made possible the separation and independent study of the temperature dependence of the adsorption and desorption processes. The regeneration of active sites by molecular hydrogen desorption was identified as the rate-limiting step at low substrate temperatures. A dynamic method of thin film growth was demonstrated by repetitively replenishing the active film growth sites regenerated between two successive source gas pulses. The film growth rate was shown to be related to the substrate temperature and the delay time between successive source gas pulses

  15. Molecular Beam Epitaxial Growth of GaAs on (631) Oriented Substrates

    International Nuclear Information System (INIS)

    Cruz Hernandez, Esteban; Rojas Ramirez, Juan-Salvador; Contreras Hernandez, Rocio; Lopez Lopez, Maximo; Pulzara Mora, Alvaro; Mendez Garcia, Victor H.

    2007-01-01

    In this work, we report the study of the homoepitaxial growth of GaAs on (631) oriented substrates by molecular beam epitaxy (MBE). We observed the spontaneous formation of a high density of large scale features on the surface. The hilly like features are elongated towards the [-5, 9, 3] direction. We show the dependence of these structures with the growth conditions and we present the possibility of to create quantum wires structures on this surface

  16. Impact of the silicon substrate resistivity and growth condition on the deep levels in Ni-Au/AlN/Si MIS Capacitors

    Science.gov (United States)

    Wang, Chong; Simoen, Eddy; Zhao, Ming; Li, Wei

    2017-10-01

    Deep levels formed under different growth conditions of a 200 nm AlN buffer layer on B-doped Czochralski Si(111) substrates with different resistivity were investigated by deep-level transient spectroscopy (DLTS) on metal-insulator-semiconductor capacitors. Growth-temperature-dependent Al diffusion in the Si substrate was derived from the free carrier density obtained by capacitance-voltage measurement on samples grown on p- substrates. The DLTS spectra revealed a high concentration of point and extended defects in the p- and p+ silicon substrates, respectively. This indicated a difference in the electrically active defects in the silicon substrate close to the AlN/Si interface, depending on the B doping concentration.

  17. Graphene growth on Ge(100)/Si(100) substrates by CVD method.

    Science.gov (United States)

    Pasternak, Iwona; Wesolowski, Marek; Jozwik, Iwona; Lukosius, Mindaugas; Lupina, Grzegorz; Dabrowski, Pawel; Baranowski, Jacek M; Strupinski, Wlodek

    2016-02-22

    The successful integration of graphene into microelectronic devices is strongly dependent on the availability of direct deposition processes, which can provide uniform, large area and high quality graphene on nonmetallic substrates. As of today the dominant technology is based on Si and obtaining graphene with Si is treated as the most advantageous solution. However, the formation of carbide during the growth process makes manufacturing graphene on Si wafers extremely challenging. To overcome these difficulties and reach the set goals, we proposed growth of high quality graphene layers by the CVD method on Ge(100)/Si(100) wafers. In addition, a stochastic model was applied in order to describe the graphene growth process on the Ge(100)/Si(100) substrate and to determine the direction of further processes. As a result, high quality graphene was grown, which was proved by Raman spectroscopy results, showing uniform monolayer films with FWHM of the 2D band of 32 cm(-1).

  18. Rayleigh-Taylor instability under curved substrates: An optimal transient growth analysis

    Science.gov (United States)

    Balestra, Gioele; Brun, P.-T.; Gallaire, François

    2016-12-01

    We investigate the stability of thin viscous films coated on the inside of a horizontal cylindrical substrate. In such a case, gravity acts both as a stabilizing force through the progressive drainage of the film and as a destabilizing force prone to form droplets via the Rayleigh-Taylor instability. The drainage solution, derived from lubrication equations, is found asymptotically stable with respect to infinitesimally small perturbations, although in reality, droplets often form. To resolve this paradox, we perform an optimal transient growth analysis for the first-order perturbations of the liquid's interface, generalizing the results of Trinh et al. [Phys. Fluids 26, 051704 (2014), 10.1063/1.4876476]. We find that the system displays a linear transient growth potential that gives rise to two different scenarios depending on the value of the Bond number (prescribing the relative importance of gravity and surface tension forces). At low Bond numbers, the optimal perturbation of the interface does not generate droplets. In contrast, for higher Bond numbers, perturbations on the upper hemicircle yield gains large enough to potentially form droplets. The gain increases exponentially with the Bond number. In particular, depending on the amplitude of the initial perturbation, we find a critical Bond number above which the short-time linear growth is sufficient to trigger the nonlinear effects required to form dripping droplets. We conclude that the transition to droplets detaching from the substrate is noise and perturbation dependent.

  19. Microbial growth and substrate utilization kinetics | Okpokwasili ...

    African Journals Online (AJOL)

    Microbial growth on and utilization of environmental contaminants as substrates have been studied by many researchers. Most times, substrate utilization results in removal of chemical contaminant, increase in microbial biomass and subsequent biodegradation of the contaminant. These are all aimed at detoxification of the ...

  20. Effect of Growth Pressure on Epitaxial Graphene Grown on 4H-SiC Substrates by Using Ethene Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Shuxian Cai

    2015-08-01

    Full Text Available The Si(0001 face and C(000-1 face dependences on growth pressure of epitaxial graphene (EG grown on 4H-SiC substrates by ethene chemical vapor deposition (CVD was studied using atomic force microscopy (AFM and micro-Raman spectroscopy (μ-Raman. AFM revealed that EGs on Si-faced substrates had clear stepped morphologies due to surface step bunching. However, This EG formation did not occur on C-faced substrates. It was shown by μ-Raman that the properties of EG on both polar faces were different. EGs on Si-faced substrates were relatively thinner and more uniform than on C-faced substrates at low growth pressure. On the other hand, D band related defects always appeared in EGs on Si-faced substrates, but they did not appear in EG on C-faced substrate at an appropriate growth pressure. This was due to the μ-Raman covering the step edges when measurements were performed on Si-faced substrates. The results of this study are useful for optimized growth of EG on polar surfaces of SiC substrates.

  1. Hydrogen-surfactant-assisted coherent growth of GaN on ZnO substrate

    Science.gov (United States)

    Zhang, Jingzhao; Zhang, Yiou; Tse, Kinfai; Zhu, Junyi

    2018-01-01

    Heterostructures of wurtzite based devices have attracted great research interest because of the tremendous success of GaN in light emitting diodes (LED) industry. High-quality GaN thin films on inexpensive and lattice matched ZnO substrates are both commercially and technologically desirable. Intrinsic wetting conditions, however, forbid such heterostructures as the energy of ZnO polar surfaces is much lower than that of GaN polar surfaces, resulting in 3D growth mode and poor crystal quality. Based on first-principles calculations, we propose the use of surfactant hydrogen to dramatically alter the growth mode of the heterostructures. Stable H-involved surface configurations and interfaces are investigated with the help of our newly developed modelling techniques. The temperature and chemical potential dependence of our proposed strategy, which is critical in experiments, is predicted by applying the experimental Gibbs free energy of H2. Our thermodynamic wetting condition analysis is a crucial step for the growth of GaN on ZnO, and we find that introducing H will not degrade the stability of ZnO substrate. This approach will allow the growth of high-quality GaN thin films on ZnO substrates. We believe that our new strategy may reduce the manufactory cost, improve the crystal quality, and improve the efficiency of GaN-based devices.

  2. Investment in secreted enzymes during nutrient-limited growth is utility dependent.

    Science.gov (United States)

    Cezairliyan, Brent; Ausubel, Frederick M

    2017-09-12

    Pathogenic bacteria secrete toxins and degradative enzymes that facilitate their growth by liberating nutrients from the environment. To understand bacterial growth under nutrient-limited conditions, we studied resource allocation between cellular and secreted components by the pathogenic bacterium Pseudomonas aeruginosa during growth on a protein substrate that requires extracellular digestion by secreted proteases. We identified a quantitative relationship between the rate of increase of cellular biomass under nutrient-limiting growth conditions and the rate of increase in investment in secreted proteases. Production of secreted proteases is stimulated by secreted signals that convey information about the utility of secreted proteins during nutrient-limited growth. Growth modeling using this relationship recapitulated the observed kinetics of bacterial growth on a protein substrate. The proposed regulatory strategy suggests a rationale for quorum-sensing-dependent stimulation of the production of secreted enzymes whereby investment in secreted enzymes occurs in proportion to the utility they confer. Our model provides a framework that can be applied toward understanding bacterial growth in many environments where growth rate is limited by the availability of nutrients.

  3. Epitaxial growth mechanisms of graphene and effects of substrates

    Science.gov (United States)

    Özçelik, V. Ongun; Cahangirov, S.; Ciraci, S.

    2012-06-01

    The growth process of single layer graphene with and without substrate is investigated using ab initio, finite temperature molecular dynamic calculations within density functional theory. An understanding of the epitaxial graphene growth mechanisms in the atomic level is provided by exploring the transient stages which occur at the growing edges of graphene. These stages are formation and collapse of large carbon rings together with the formation and healing of Stone-Wales like pentagon-heptagon defects. The activation barriers for the healing of these growth induced defects on various substrates are calculated using the climbing image nudge elastic band method and compared with that of the Stone-Wales defect. It is found that the healing of pentagon-heptagon defects occurring near the edge in the course of growth is much easier than that of Stone-Wales defect. The role of the substrate in the epitaxial growth and in the healing of defects are also investigated in detail, along with the effects of using carbon dimers as the building blocks of graphene growth.

  4. Growth, Plastochron, and the Final Number of Nodes of China Pink Seedlings Grown on Different Substrates

    Directory of Open Access Journals (Sweden)

    Marília Milani

    Full Text Available ABSTRACT The objective of this work was to plot the growth curves and determine the plastochron and the final number of nodes of China pink seedlings grown on different substrates. Thus, 392 China pink seedlings were grown on seven substrates under greenhouse conditions, in Santa Maria in the state of Rio Grande do Sul, Brazil. The growth curves were plotted using the logistic model. The plastochron was estimated by the inverse of the angular coefficient of the simple linear regression between the number of accumulated nodes and accumulated thermal sum from the subsampling of the seedlings. In all substrates, the logistic model fit better for the variable number of leaves than for the plant height. The plants in substrates with 50% of soil plus 50% of rice husk ash, and 80% of rice husk ash plus 20% earthworm humus had the longest cycles with 74 and 65 days, respectively. They completed the cycles with a thermal sum of 1317.9 ºC day for number of leaves and plant height. The growth curves that were plotted by the logistic model and the plastochron of the China pink seedlings are dependent on the type of substrate used. The commercial substrate Mecplant® had the best results. The average final number of nodes of the main stem of the plants was 14 for all substrates.

  5. Solution growth of microcrystalline silicon on amorphous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Heimburger, Robert

    2010-07-05

    This work deals with low-temperature solution growth of micro-crystalline silicon on glass. The task is motivated by the application in low-cost solar cells. As glass is an amorphous material, conventional epitaxy is not applicable. Therefore, growth is conducted in a two-step process. The first step aims at the spatial arrangement of silicon seed crystals on conductive coated glass substrates, which is realized by means of vapor-liquid-solid processing using indium as the solvent. Seed crystals are afterwards enlarged by applying a specially developed steady-state solution growth apparatus. This laboratory prototype mainly consists of a vertical stack of a silicon feeding source and the solvent (indium). The growth substrate can be dipped into the solution from the top. The system can be heated to a temperature below the softening point of the utilized glass substrate. A temperature gradient between feeding source and growth substrate promotes both, supersaturation and material transport by solvent convection. This setup offers advantages over conventional liquid phase epitaxy at low temperatures in terms of achievable layer thickness and required growth times. The need for convective solute transport to gain the desired thickness of at least 50 {mu}m is emphasized by equilibrium calculations in the binary system indium-silicon. Material transport and supersaturation conditions inside the utilized solution growth crucible are analyzed. It results that the solute can be transported from the lower feeding source to the growth substrate by applying an appropriate heating regime. These findings are interpreted by means of a hydrodynamic analysis of fluid flow and supporting FEM simulation. To ensure thermodynamic stability of all materials involved during steady-state solution growth, the ternary phase equilibrium between molybdenum, indium and silicon at 600 C was considered. Based on the obtained results, the use of molybdenum disilicide as conductive coating

  6. Simulation study of temperature-dependent diffusion behaviors of Ag/Ag(001) at low substrate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Danyun; Mo, Yunjie [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 (China); Feng, Xiaofang [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275 (China); He, Yingyou [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 (China); Jiang, Shaoji, E-mail: stsjsj@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275 (China)

    2017-06-01

    Highlights: • The model of combinations of nearest-neighbor atoms of adatom was built to calculate the diffusion barrier of every configuration for Ag/Ag(001). • The complete potential energy curve of a specific diffusion path on the surface was worked out with the help of elementary diffusion behaviors. • The non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) was demonstrated. • A theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature was presented. - Abstract: In this study, a model based on the First Principles calculations and Kinetic Monte Carlo simulation were established to study the growth characteristic of Ag thin film at low substrate temperature. On the basis of the interaction between the adatom and nearest-neighbor atoms, some simplifications and assumptions were made to categorize the diffusion behaviors of Ag adatoms on Ag(001). Then the barriers of all possible diffusion behaviors were calculated using the Climbing Image Nudged Elastic Band method (CI-NEB). Based on the Arrhenius formula, the morphology variation, which is attributed to the surface diffusion behaviors during the growth, was simulated with a temperature-dependent KMC model. With this model, a non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) were discovered. The analysis of the temperature dependence on diffusion behaviors presents a theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature.

  7. Simulation study of temperature-dependent diffusion behaviors of Ag/Ag(001) at low substrate temperature

    International Nuclear Information System (INIS)

    Cai, Danyun; Mo, Yunjie; Feng, Xiaofang; He, Yingyou; Jiang, Shaoji

    2017-01-01

    Highlights: • The model of combinations of nearest-neighbor atoms of adatom was built to calculate the diffusion barrier of every configuration for Ag/Ag(001). • The complete potential energy curve of a specific diffusion path on the surface was worked out with the help of elementary diffusion behaviors. • The non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) was demonstrated. • A theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature was presented. - Abstract: In this study, a model based on the First Principles calculations and Kinetic Monte Carlo simulation were established to study the growth characteristic of Ag thin film at low substrate temperature. On the basis of the interaction between the adatom and nearest-neighbor atoms, some simplifications and assumptions were made to categorize the diffusion behaviors of Ag adatoms on Ag(001). Then the barriers of all possible diffusion behaviors were calculated using the Climbing Image Nudged Elastic Band method (CI-NEB). Based on the Arrhenius formula, the morphology variation, which is attributed to the surface diffusion behaviors during the growth, was simulated with a temperature-dependent KMC model. With this model, a non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) were discovered. The analysis of the temperature dependence on diffusion behaviors presents a theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature.

  8. Growth orientation dependence of Si doping in GaAsN

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xiuxun, E-mail: xxhan@semi.ac.cn [Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Dong, Chen [Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Feng, Qiang [Optoelectronic Department, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China); Ohshita, Yoshio; Yamaguchi, Masafumi [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya, 468-8511 (Japan)

    2015-02-07

    The incorporation of Si in GaAsN alloys grown simultaneously on (100), (311)A, (311)B, and (211)B GaAs substrates by the chemical beam epitaxy has been investigated. The decrease in electron concentration with the increasing N composition suggests the occurrence of N and Si interaction, whereas the interaction exhibits evidently different extent depending on the growth orientation. Combined with the secondary ion mass spectrometry and photoluminescence measurements, it is revealed that (311)B and (211)B are the promising substrate orientations to reduce the N-Si passivation and improve n-type Si doping in GaAsN over a wider N composition range. A surface bonding model is utilized to explain the plane polarity dependent incorporation behaviors of Si and N.

  9. Substrate engineering for Ni-assisted growth of carbon nano-tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kolahdouz, Z.; Kolahdouz, M. [Department of Electrical and Computer Engineering, Nano-electronic Laboratory, University of Tehran, Tehran (Iran, Islamic Republic of); Ghanbari, H. [Tarbiat Modarres University, Tehran (Iran, Islamic Republic of); Mohajerzadeh, S. [Department of Electrical and Computer Engineering, Nano-electronic Laboratory, University of Tehran, Tehran (Iran, Islamic Republic of); Naureen, S. [School of Information and Communication Technology, KTH (Royal Institute of Technology) Kista (Sweden); Radamson, H.H., E-mail: rad@kth.se [School of Information and Communication Technology, KTH (Royal Institute of Technology) Kista (Sweden)

    2012-10-01

    The growth of carbon multi-walled nano-tubes (MWCNTs) using metal catalyst (e.g. Ni, Co, and Fe) has been extensively investigated during the last decade. In general, the physical properties of CNTs depend on the type, quality and diameter of the tubes. One of the parameters which affects the diameter of a MWCNT is the size of the catalyst metal islands. Considering Ni as the metal catalyst, the formed silicide layer agglomerates (island formation) after a thermal treatment. One way to decrease the size of Ni islands is to apply SiGe as the base for the growth. In this study, different methods based on substrate engineering are proposed to change/control the MWCNT diameters. These include (i) well-controlled oxide openings containing Ni to miniaturize the metal island size, and (ii) growth on strained or partially relaxed SiGe layers for smaller Ni silicide islands.

  10. Growth and properties of blue/green InGaN/GaN MQWs on Si(111) substrates

    International Nuclear Information System (INIS)

    Lee, Kang Jea; Oh, Tae Su; Kim, Tae Ki; Yang, Gye Mo; Lim, Kee Young

    2005-01-01

    InGaN/GaN multiple quantum wells (MQWs) were grown on highly tensile-strained GaN films on Si(111) substrate by metalorganic chemical vapor deposition. Due to the large difference of lattice constant and thermal expansion coefficient between GaN and Si, GaN growth on Si(111) substrate usually leads to an initially high dislocation density and cracks. We demonstrate low dislocation-density and crack-free GaN films grown on Si(111) substrate by introducing an AlN/GaN strain-compensation layer and Si x N y dislocation masking layer. Blue/green-emitting InGaN/GaN MQW heterostructures have been successfully grown on Si(111) substrates. Two sets of InGaN/GaN MQWs with different In solid composition and number of pairs grown between 820 .deg. C and 900 .deg. C were studied by high-resolution X-ray diffraction and photoluminescence spectroscopy. The emission wavelengths of InGaN MQW structures were significantly dependent on growth temperature.

  11. High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate

    International Nuclear Information System (INIS)

    Guzman de Villoria, R; Hart, A J; Steiner, S A III; Wardle, B L; Figueredo, S L; Slocum, A H

    2009-01-01

    Vertically aligned carbon nanotube (CNT) arrays are grown on a moving substrate, demonstrating continuous growth of nanoscale materials with long-range order. A cold-wall chamber with an oscillating moving platform is used to locally heat a silicon growth substrate coated with an Fe/Al 2 O 3 catalyst film for CNT growth via chemical vapor deposition. The reactant gases are introduced over the substrate through a directed nozzle to attain high-yield CNT growth. Aligned multi-wall carbon nanotube arrays (or 'forests') with heights of ∼1 mm are achieved at substrate speeds up to 2.4 mm s -1 . Arrays grown on moving substrates at different velocities are studied in order to identify potential physical limitations of repeatable and fast growth on a continuous basis. No significant differences are noted between static and moving growth as characterized by scanning electron microscopy and Raman spectroscopy, although overall growth height is marginally reduced at the highest substrate velocity. CNT arrays produced on moving substrates are also found to be comparable to those produced through well-characterized batch processes consistent with a base-growth mechanism. Growth parameters required for the moving furnace are found to differ only slightly from those used in a comparable batch process; thermal uniformity appears to be the critical parameter for achieving large-area uniform array growth. If the continuous-growth technology is combined with a reaction zone isolation scheme common in other types of processing (e.g., in the manufacture of carbon fibers), large-scale dense and aligned CNT arrays may be efficiently grown and harvested for numerous applications including providing interlayers for advanced composite reinforcement and improved electrical and thermal transport.

  12. High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate.

    Science.gov (United States)

    Guzmán de Villoria, R; Figueredo, S L; Hart, A J; Steiner, S A; Slocum, A H; Wardle, B L

    2009-10-07

    Vertically aligned carbon nanotube (CNT) arrays are grown on a moving substrate, demonstrating continuous growth of nanoscale materials with long-range order. A cold-wall chamber with an oscillating moving platform is used to locally heat a silicon growth substrate coated with an Fe/Al2O3 catalyst film for CNT growth via chemical vapor deposition. The reactant gases are introduced over the substrate through a directed nozzle to attain high-yield CNT growth. Aligned multi-wall carbon nanotube arrays (or 'forests') with heights of approximately 1 mm are achieved at substrate speeds up to 2.4 mm s(-1). Arrays grown on moving substrates at different velocities are studied in order to identify potential physical limitations of repeatable and fast growth on a continuous basis. No significant differences are noted between static and moving growth as characterized by scanning electron microscopy and Raman spectroscopy, although overall growth height is marginally reduced at the highest substrate velocity. CNT arrays produced on moving substrates are also found to be comparable to those produced through well-characterized batch processes consistent with a base-growth mechanism. Growth parameters required for the moving furnace are found to differ only slightly from those used in a comparable batch process; thermal uniformity appears to be the critical parameter for achieving large-area uniform array growth. If the continuous-growth technology is combined with a reaction zone isolation scheme common in other types of processing (e.g., in the manufacture of carbon fibers), large-scale dense and aligned CNT arrays may be efficiently grown and harvested for numerous applications including providing interlayers for advanced composite reinforcement and improved electrical and thermal transport.

  13. GaN growth via HVPE on SiC/Si substrates: growth mechanisms

    Science.gov (United States)

    Sharofidinov, Sh Sh; Redkov, A. V.; Osipov, A. V.; Kukushkin, S. A.

    2017-11-01

    The article focuses on the study of GaN thin film growth via chloride epitaxy on SiC/Si hybrid substrate. SiC buffer layer was grown by a method of substitution of atoms, which allows one to reduce impact of mechanical stress therein on subsequent growth of III-nitride films. It is shown, that change in GaN growth conditions leads to change in its growth mechanism. Three mechanisms: epitaxial, spiral and stepwise growth are considered and mechanical stresses are estimated via Raman spectroscopy.

  14. Selective-area growth and controlled substrate coupling of transition metal dichalcogenides

    Science.gov (United States)

    Bersch, Brian M.; Eichfeld, Sarah M.; Lin, Yu-Chuan; Zhang, Kehao; Bhimanapati, Ganesh R.; Piasecki, Aleksander F.; Labella, Michael, III; Robinson, Joshua A.

    2017-06-01

    Developing a means for true bottom-up, selective-area growth of two-dimensional (2D) materials on device-ready substrates will enable synthesis in regions only where they are needed. Here, we demonstrate seed-free, site-specific nucleation of transition metal dichalcogenides (TMDs) with precise control over lateral growth by utilizing an ultra-thin polymeric surface functionalization capable of precluding nucleation and growth. This polymer functional layer (PFL) is derived from conventional photoresists and lithographic processing, and is compatible with multiple growth techniques, precursors (metal organics, solid-source) and TMDs. Additionally, we demonstrate that the substrate can play a major role in TMD transport properties. With proper TMD/substrate decoupling, top-gated field-effect transistors (FETs) fabricated with selectively-grown monolayer MoS2 channels are competitive with current reported MoS2 FETs. The work presented here demonstrates that substrate surface engineering is key to realizing precisely located and geometrically-defined 2D layers via unseeded chemical vapor deposition techniques.

  15. Growth and properties of ZnO films on polymeric substrate by spray pyrolysis method

    Energy Technology Data Exchange (ETDEWEB)

    Kriisa, Merike; Kärber, Erki [Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Krunks, Malle, E-mail: malle.krunks@ttu.ee [Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Mikli, Valdek [Centre for Materials Research, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Unt, Tarmo; Kukk, Mart; Mere, Arvo [Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia)

    2014-03-31

    The growth of ZnO layers deposited by spray pyrolysis on polymeric substrate was studied. Zinc acetate precursor solution was sprayed onto preheated polyimide (PI) and glass reference substrates at 380 °C. The structural, morphological, optical and electrical properties of the layers were measured by X-ray diffraction, scanning electron microscopy, optical spectroscopy and van der Pauw and Hall method. ZnO:In layers could be grown on PI when deposited onto undoped ZnO layer acting as a buffer layer on PI. Independent of the substrate type, the ZnO/ZnO:In bilayer showed a mixed morphology from smooth canvas-like surface to large scrolled belt grains dependent on buffer layer morphology. Due to the formation of scrolled belts, the ZnO:In layer shows no preferential orientation, yet the preferred orientation of the ZnO buffer crystallites is (100) plane parallel to the substrate. The bilayers deposited on PI exhibit high light scattering capability (haze factor of 85–95% in the spectral region of 350–1500 nm). The resistivity of the ZnO:In film in bilayer on PI is 4.4 × 10{sup −2} Ω cm mainly due to low carrier mobility of 1.5 cm{sup 2}/Vs, the carrier concentration is 10{sup 20} cm{sup −3}. - Highlights: • ZnO:In layers were grown on polyimide substrate by spray pyrolysis. • The buffer layer morphology is controlled by the layer thickness and spray rate. • ZnO/ZnO:In bilayer morphology is dependent on the surface of buffer layer. • Rough buffer layer leads to rough bilayer with scrolled belts (diameter of 2–6 μm). • Due to scrolled belts layers show no preferential growth yet highly scatter light.

  16. New Crystal-Growth Methods for Producing Lattice-Matched Substrates for High-Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Boatner, L.A.

    2008-06-24

    This effort addressed the technical problem of identifying and growing, on a commercial scale, suitable single-crystal substrates for the subsequent deposition of epitaxial thin films of high temperature semiconductors such as GaN/AlN. The lack of suitable lattice-matched substrate materials was one of the major problem areas in the development of semiconducting devices for use at elevated temperatures as well as practical opto-electronic devices based on Al- and GaN technology. Such lattice-matched substrates are necessary in order to reduce or eliminate high concentrations of defects and dislocations in GaN/AlN and related epitaxial thin films. This effort concentrated, in particular, on the growth of single crystals of ZnO for substrate applications and it built on previous ORNL experience in the chemical vapor transport growth of large single crystals of zinc oxide. This combined expertise in the substrate growth area was further complemented by the ability of G. Eres and his collaborators to deposit thin films of GaN on the subject substrates and the overall ORNL capability for characterizing the quality of such films. The research effort consisted of research on the growth of two candidate substrate materials in conjunction with concurrent research on the growth and characterization of GaN films, i.e. the effort combined bulk crystal growth capabilities in the area of substrate production at both ORNL and the industrial partner, Commercial Crystal Growth Laboratories (CCL), Naples, Florida, with the novel thin-film deposition techniques previously developed in the ORNL SSD.

  17. Alloyed surfaces: New substrates for graphene growth

    Science.gov (United States)

    Tresca, C.; Verbitskiy, N. I.; Fedorov, A.; Grüneis, A.; Profeta, G.

    2017-11-01

    We report a systematic ab-initio density functional theory investigation of Ni(111) surface alloyed with elements of group IV (Si, Ge and Sn), demonstrating the possibility to use it to grow high quality graphene. Ni(111) surface represents an ideal substrate for graphene, due to its catalytic properties and perfect matching with the graphene lattice constant. However, Dirac bands of graphene growth on Ni(111) are completely destroyed due to the strong hybridization between carbon pz and Ni d orbitals. Group IV atoms, namely Si, Ge and Sn, once deposited on Ni(111) surface, form an ordered alloyed surface with √{ 3} ×√{ 3} -R30° reconstruction. We demonstrate that, at variance with the pure Ni(111) surface, alloyed surfaces effectively decouple graphene from the substrate, resulting unstrained due to the nearly perfect lattice matching and preserves linear Dirac bands without the strong hybridization with Ni d states. The proposed surfaces can be prepared before graphene growth without resorting on post-growth processes which necessarily alter the electronic and structural properties of graphene.

  18. Temperature-dependent respiration-growth relations in ancestral maize cultivars

    Science.gov (United States)

    Bruce N. Smith; Jillian L. Walker; Rebekka L. Stone; Angela R. Jones; Lee D. Hansen

    2001-01-01

    Shoots from 4- to 6-day old seedlings of seven ancestral or old cultivars of Zea mays L. were placed in a calorimeter. Dark metabolic heat rate (q) and CO2 production rate (RCO2) were measured at nine temperatures (5, 10, 15, 20, 25, 30, 35, 40, and 45 °C). Temperature dependencies of q and RCO2 were used to model response of both growth and substrate carbon conversion...

  19. Three-dimensionally structured silicon as a substrate for the MOVPE growth of GaN nanoLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Fuendling, Soenke; Li, Shunfeng; Soekmen, Uensal; Merzsch, Stephan; Peiner, Erwin; Wehmann, Hergo-Heinrich; Waag, Andreas [Institut fuer Halbleitertechnik, TU Braunschweig, Braunschweig (Germany); Hinze, Peter; Weimann, Thomas [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany); Jahn, Uwe; Trampert, Achim; Riechert, Henning [Paul-Drude-Institut fuer Festkoerperelektronik, Berlin (Germany)

    2009-06-15

    Three-dimensionally patterned Si(111) substrates are used to grow GaN based heterostructures by metalorganic vapour phase epitaxy, with the goal of fabricating well controlled, defect reduced GaN-based nanoLEDs. In contrast to other approaches to achieve GaN nanorods, we employed silicon substrates with deep etched nanopillars to control the GaN nanorods growth by varying the size and distance of the Si pillars. The small footprint of GaN nanorods grown on Si pillars minimise the influence of the lattice mismatched substrate and improve the material quality. For the Si pillars an inductively coupled plasma dry-etching process at cryogenic temperature has been developed. An InGaN/GaN multi quantum well (MQW) structure has been incorporated into the GaN nanorods. We found GaN nanostructures grown on top of the silicon pillars with a pyramidal shape. This shape results from a competitive growth on different facets as well as from surface diffusion of the growth species. Spatially resolved optical properties of the structures are analysed by cathodoluminescence. Strongly spatial-dependent MQW emission spectra indicate the growth rate differences on top of the rods. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. The Aspergillus niger growth on the treated concrete substrate using variable antifungals

    Science.gov (United States)

    Parjo, U. K.; Sunar, N. M.; Leman, A. M.; Gani, P.; Embong, Z.; Tajudin, S. A. A.

    2016-11-01

    The aim of this study was to evaluate the Aspergillus niger (A. niger) growth on substrates after incorporates with different compounds of antifungals which is normally used in food industry. The antifungals named as potassium sorbate (PS), calcium benzoate (CB) and zinc salicylate (ZS) were applied on concrete substrate covered with different wall finishing such as acrylic paint (AP), glycerol based paint (GBP), thin wallpaper (THIN) and thick wallpaper (THICK). The concrete substrate were inoculated with spore suspension, incubated at selected temperature (30oC) and relative humidity (90%)in plant growth chamber. The observations were done from the Day 3 until Day 27. The results showed that the growth of the A. niger for concrete treated by PS for AP, GBP, THIN, and THICK were 64%, 32%, 11% and 100%, respectively. Meanwhile for CB, the growth of A. niger on AP, GBP, THIN, and THICK were 100%, 12%, 41%, and 13%, respectively. Similarly, treated concrete by ZS revealed that the growth of A. niger on the same substrate cover were 33%, 47%, 40%, and 39%, respectively. The results obtained in this study provide a valuable knowledge on the abilities of antifungals to remediate A. niger that inoculated on the concrete substrate. Consequently, this study proved that the PS covering with THIN more efficiency compares CB and ZS to prevent A. niger growth.

  1. Cell-substrate interaction with cell-membrane-stress dependent adhesion.

    Science.gov (United States)

    Jiang, H; Yang, B

    2012-01-10

    Cell-substrate interaction is examined in a two-dimensional mechanics model. The cell and substrate are treated as a shell and an elastic solid, respectively. Their interaction through adhesion is treated using nonlinear springs. Compared to previous cell mechanics models, the present model introduces a cohesive force law that is dependent not only on cell-substrate distance but also on internal cell-membrane stress. It is postulated that a living cell would establish focal adhesion sites with density dependent on the cell-membrane stress. The formulated mechanics problem is numerically solved using coupled finite elements and boundary elements for the cell and the substrate, respectively. The nodes in the adhesion zone from either side are linked by the cohesive springs. The specific cases of a cell adhering to a homogeneous substrate and a heterogeneous bimaterial substrate are examined. The analyses show that the substrate stiffness affects the adhesion behavior significantly and regulates the direction of cell adhesion, in good agreement with the experimental results in the literature. By introducing a reactive parameter (i.e., cell-membrane stress) linking biological responses of a living cell to a mechanical environment, the present model offers a unified mechanistic vehicle for characterization and prediction of living cell responses to various kinds of mechanical stimuli including local extracellular matrix and neighboring cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Identification of secreted proteins of Aspergillus oryzae associated with growth on solid cereal substrates

    NARCIS (Netherlands)

    Biesebeke, R. te; Boussier, A.; Biezen, N. van; Hondel, C.A.M.J.J. van den; Punt, P.J.

    2006-01-01

    Filamentous growth of Aspergillus oryzae on solid cereal substrates involves secretion of substrate converting enzymes and a solid substrate specific polarised hyphal growth phenotype. To identify proteins produced under these specific conditions, the extracts of A. oryzae grown on wheat-based media

  3. Microbial uptake of radiolabeled substrates: estimates of growth rates from time course measurements

    International Nuclear Information System (INIS)

    Li, W.K.W.

    1984-01-01

    The uptake of [ 3 H]glucose and a mixture of 3 H-labeled amino acids was measured, in time course fashion, in planktonic microbial assemblages of the eastern tropical Pacific Ocean. The average generation times of those portions of the assemblages able to utilize these substrates were estimated from a simple exponential growth model. Other workers have independently used this model in its integrated or differential form. A mathematical verification and an experimental demonstration of the equivalence of the two approaches are presented. A study was made of the size distribution of heterotrophic activity, using time course measurements. It was found that the size distribution and the effect of sample filtration before radiolabeling were dependent on time of incubation. In principle, it was possible to ascribe these time dependences to differences in th specific growth rate and initial standing stock of the microbial assemblages. 33 references

  4. Growth-dependent modulation of casein kinase II and its substrate nucleolin in primary human cell cultures and HeLa cells

    DEFF Research Database (Denmark)

    Schneider, H R; Issinger, O G

    1989-01-01

    We have previously provided evidence that casein kinase II (CKII) and its substrate nucleolin increase concomitantly during certain development stages during embryogenesis (Schneider et al., Eur. J. Biochem. 161, 733-738). We now show that during normal growth of primary cell cultures and He...

  5. Selective growth of carbon nanotube on silicon substrates

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiao-ping; H. ABE; T. SHIMIZU; A. ANDO; H. TOKUMOT; ZHU Shen-ming; ZHOU Hao-shen

    2006-01-01

    The carbon nanotube (CNT) growth of iron oxide-deposited trench-patterns and the locally-ordered CNT arrays on silicon substrate were achieved by simple thermal chemical vapor deposition(STCVD) of ethanol vapor. The CNTs were uniformly synthesized with good selectivity on trench-patterned silicon substrates. This fabrication process is compatible with currently used semiconductor-processing technologies,and the carbon-nanotube fabrication process can be widely applied for the development of electronic devices using carbon-nanotube field emitters as cold cathodes and can revolutionize the area of field-emitting electronic devices. The site-selective growth of CNT from an iron oxide nanoparticle catalyst patterned were also achieved by drying-mediated self-assembly technique. The present method offers a simple and cost-effective method to grow carbon nanotubes with self-assembled patterns.

  6. Growth on nonpolar and semipolar GaN: The substrate dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Wernicke, T.; Weyers, M. [Ferdinand-Braun-Institute, Berlin (Germany); Kneissl, M. [Ferdinand-Braun-Institute, Berlin (Germany); Institute of Solid State Physics, TU Berlin (Germany)

    2009-07-01

    Growth of nonpolar and semipolar GaN is very promising for achieving green laser diodes (LDs). However, the choice of the substrate is a difficult one: Heteroepitaxial growth on sapphire, SiC, LiAlO{sub 2} yields GaN films with a poor surface quality and high defect densities. On the other hand non- and semipolar bulk GaN substrates provide excellent crystal quality, but are so far only available in very small sizes. In this paper hetero- and homoepitaxial growth is compared. For all heteroepitaxially grown semi- and nonpolar GaN layers threading dislocations (TD) and basal plane stacking faults (BSF) can be found. There are four possible mechanisms for the generation of BSF: Growth of the N-polar basal plane, formation during nucleation at substrate steps, formation at the coalescence front of differently stacked nucleation islands, and generation at planar defects occurring in m-plane GaN on LiAlO{sub 2}. BSF induce surface roughening and are associated with partial dislocations causing nonradiative recombination. Thus they affect the performance of devices. We show that BSFs and TDs can be reduced by epitaxial lateral overgrowth resulting in several micrometer wide defect free areas. However, for LEDs larger defect-free areas are required. GaN layers grown on bulk GaN substrates exhibit a high crystal quality, but show in many cases long-range surface structures with a height of {approx}1{mu}m.

  7. Substrate dependent morphologies of self-assembled nanocrystalline manganite films: An atomic force microscopy study

    International Nuclear Information System (INIS)

    Kale, S.N.; Mona, J.; Ganesan, V.; Choudhary, R.J.; Phase, D.M.

    2009-06-01

    Thin films of La 0 .7Sr 0 .3MnO 3 (LSMO) have been deposited on different substrates: Si (001), Al 2 O 3 (AlO) (0001) and LaAlO 3 (LAO) (001), using a pulsed laser deposition system. 100 nm films have been deposited at substrate temperature of 700 deg C and oxygen partial pressure of 400 mTorr. X-Ray diffraction analysis shows a polycrystalline growth of both layers on Si and Al 2 O 3 substrates, while a c-axis oriented growth on LAO substrate. Atomic force microscopy images exhibit interesting island-like morphology of grain size ∼ 250 nm on Si substrate. Similar morphology with much smaller (∼ 150 nm), closely packed islands are seen to grow on AlO substrate. Films on LAO show comparatively a smooth morphology with the grains size less than 100 nm, decorated by characteristic depressions at the grain boundaries. The formation of self-assembled nanostructures can be understood on the basis of film-substrate lattice misfit, strains in the systems and eventual growth of the films to attain energy minimization (author)

  8. Epitaxial growth of AlN on single crystal Mo substrates

    International Nuclear Information System (INIS)

    Okamoto, Koichiro; Inoue, Shigeru; Nakano, Takayuki; Kim, Tae-Won; Oshima, Masaharu; Fujioka, Hiroshi

    2008-01-01

    We have grown AlN films on single-crystalline Mo(110), (100), and (111) substrates using a low temperature pulsed laser deposition (PLD) growth technique and investigated their structural properties. Although c-axis oriented AlN films grow on Mo(100), the films contain 30 o rotated domains due to the difference in the rotational symmetry between AlN(0001) and Mo(100). AlN films with only poor crystalline quality grow on Mo(111) substrates, probably due to the poor surface morphology and high reactivity of the substrates. On the other hand, single crystal AlN films grow epitaxially on Mo(110) substrates with an in-plane relationship of AlN[11-20] // Mo[001]. Reflection high-energy electron diffraction or electron backscattered diffraction analysis has revealed that neither in-plane 30 deg. rotated domains nor cubic phase domains exist in the AlN films. X-ray reflectivity measurements have revealed that the heterointerface between AlN and Mo prepared by PLD at 450 deg. C is quite abrupt. These results indicate that PLD epitaxial growth of AlN on single crystal Mo substrates is quite promising for the fabrication of future high frequency filter devices

  9. Epitaxial growth of AlN on single crystal Mo substrates

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Koichiro; Inoue, Shigeru [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 (Japan); Nakano, Takayuki; Kim, Tae-Won [Kanagawa Academy of Science and Technology (KAST) KSP east 301, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012 (Japan); Oshima, Masaharu [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan); Fujioka, Hiroshi [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 (Japan); Kanagawa Academy of Science and Technology (KAST) KSP east 301, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012 (Japan)], E-mail: hfujioka@iis.u-tokyo.ac.jp

    2008-06-02

    We have grown AlN films on single-crystalline Mo(110), (100), and (111) substrates using a low temperature pulsed laser deposition (PLD) growth technique and investigated their structural properties. Although c-axis oriented AlN films grow on Mo(100), the films contain 30{sup o} rotated domains due to the difference in the rotational symmetry between AlN(0001) and Mo(100). AlN films with only poor crystalline quality grow on Mo(111) substrates, probably due to the poor surface morphology and high reactivity of the substrates. On the other hand, single crystal AlN films grow epitaxially on Mo(110) substrates with an in-plane relationship of AlN[11-20] // Mo[001]. Reflection high-energy electron diffraction or electron backscattered diffraction analysis has revealed that neither in-plane 30 deg. rotated domains nor cubic phase domains exist in the AlN films. X-ray reflectivity measurements have revealed that the heterointerface between AlN and Mo prepared by PLD at 450 deg. C is quite abrupt. These results indicate that PLD epitaxial growth of AlN on single crystal Mo substrates is quite promising for the fabrication of future high frequency filter devices.

  10. Biomimetic growth and substrate dependent mechanical properties of bone like apatite nucleated on Ti and magnetron sputtered TiO2 nanostructure

    Science.gov (United States)

    Sarma, Bimal K.; Das, Apurba; Barman, Pintu; Pal, Arup R.

    2016-04-01

    This report presents findings on biomimetic growth of hydroxyapatite (HAp) nanocrystals on Ti and sputtered TiO2 substrates. The possibility of TiO2 nanostructure as candidate materials for future biomedical applications has been explored through the comparison of microstructural and mechanical properties of bone like apatite grown on Ti and nano-TiO2 surfaces. Raman spectroscopy and x-ray diffraction studies reveal formation of carbonate apatite with apparent domain size in the nanoscale range. A better interaction at the nano-TiO2/nano-HAp interface due to higher interfacial area could promote the growth of bone like apatite. The crystal phases, crystallinity, and surface morphology of nano-TiO2 are considered as parameters to understand the nucleation and growth of apatite with different mechanical properties at the nanoscale. The methodology of x-ray line profile analysis encompasses deconvolution of merged peaks by preserving broadening due to nanosized HAp aggregates. The Young’s modulus of bone like apatite exhibits crystallographic directional dependence which suggests the presence of elastic anisotropy in bone like apatite. The lattice contraction in the c-direction is associated with the degree of carbonate substitution in the apatite lattice. The role of residual stress is critical for the lattice distortion of HAp deposited at physiological conditions of temperature and pH of human blood plasma. The ion concentration is crucial for the uniformity, crystallinity, and mechanical behaviour of the apatite.

  11. Biomimetic growth and substrate dependent mechanical properties of bone like apatite nucleated on Ti and magnetron sputtered TiO2 nanostructure

    International Nuclear Information System (INIS)

    Sarma, Bimal K; Das, Apurba; Barman, Pintu; Pal, Arup R

    2016-01-01

    This report presents findings on biomimetic growth of hydroxyapatite (HAp) nanocrystals on Ti and sputtered TiO 2 substrates. The possibility of TiO 2 nanostructure as candidate materials for future biomedical applications has been explored through the comparison of microstructural and mechanical properties of bone like apatite grown on Ti and nano-TiO 2 surfaces. Raman spectroscopy and x-ray diffraction studies reveal formation of carbonate apatite with apparent domain size in the nanoscale range. A better interaction at the nano-TiO 2 /nano-HAp interface due to higher interfacial area could promote the growth of bone like apatite. The crystal phases, crystallinity, and surface morphology of nano-TiO 2 are considered as parameters to understand the nucleation and growth of apatite with different mechanical properties at the nanoscale. The methodology of x-ray line profile analysis encompasses deconvolution of merged peaks by preserving broadening due to nanosized HAp aggregates. The Young’s modulus of bone like apatite exhibits crystallographic directional dependence which suggests the presence of elastic anisotropy in bone like apatite. The lattice contraction in the c-direction is associated with the degree of carbonate substitution in the apatite lattice. The role of residual stress is critical for the lattice distortion of HAp deposited at physiological conditions of temperature and pH of human blood plasma. The ion concentration is crucial for the uniformity, crystallinity, and mechanical behaviour of the apatite. (paper)

  12. Rational growth of semi-polar ZnO texture on a glass substrate for optoelectronic applications

    Science.gov (United States)

    Lu, B.; Ma, M. J.; Ye, Y. H.; Lu, J. G.; He, H. P.; Ye, Z. Z.

    2013-02-01

    Semi-polar ZnO films with surface texture were grown on glass substrates via pulsed-laser deposition (PLD) through Co-Ga co-doping. Oxygen pressure (PO2) was found to have significant effects on the structural and optical properties of the Zn(Co, Ga)O (ZCGO) films. A self-textured film with (1\\,0\\,\\bar {1}\\,1) preferred orientation (PO) was achieved by varying the growth conditions including a crucial narrow PO2 window and growth time. A possible mechanism underlying the PO evolution and the final texture of the films was proposed, which can be attributed to the collaboration of the doping effect and the PO2-dependent evolutionary selection process, in which certain grains can have increased vertical growth rate with respect to the substrate surface through interplane diffusion. Moreover, the growth of undoped pure ZnO films proceeded by using the (1\\,0\\,\\bar {1}\\,1) ZCGO film as a buffer layer. The ZnO layers retained a semi-polar characteristic with improved crystallinity and better optical quality. The epitaxy-like orientation of ZnO layers grown on (1\\,0\\,\\bar {1}\\,1) ZCGO films has applications in the development of semi-polar ZnO-based light-emitting diodes.

  13. Substrate dependent hierarchical structures of RF sputtered ZnS films

    Science.gov (United States)

    Chalana, S. R.; Mahadevan Pillai, V. P.

    2018-05-01

    RF magnetron sputtering technique was employed to fabricate ZnS nanostructures with special emphasis given to study the effect of substrates (quartz, glass and quartz substrate pre-coated with Au, Ag, Cu and Pt) on the structure, surface evolution and optical properties. Type of substrate has a significant influence on the crystalline phase, film morphology, thickness and surface roughness. The present study elucidates the suitability of quartz substrate for the deposition of stable and highly crystalline ZnS films. We found that the role of metal layer on quartz substrate is substantial in the preparation of hierarchical ZnS structures and these structures are of great importance due to its high specific area and potential applications in various fields. A mechanism for morphological evolution of ZnS structures is also presented based on the roughness of substrates and primary nonlocal effects in sputtering. Furthermore, the findings suggest that a controlled growth of hierarchical ZnS structures may be achieved with an ordinary RF sputtering technique by changing the substrate type.

  14. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    International Nuclear Information System (INIS)

    Jannat, Risat A; Hammer, Daniel A; Robbins, Gregory P; Ricart, Brendon G; Dembo, Micah

    2010-01-01

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the K D of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against β 2 -integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  15. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Jannat, Risat A; Hammer, Daniel A [Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 (United States); Robbins, Gregory P; Ricart, Brendon G [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 311A Towne Building, 220 South 33rd Street, Philadelphia, PA 19104 (United States); Dembo, Micah, E-mail: hammer@seas.upenn.ed [Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215 (United States)

    2010-05-19

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the K{sub D} of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against {beta}{sub 2}-integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  16. Growth of Horizonatal ZnO Nanowire Arrays on Any Substrate

    KAUST Repository

    Qin, Yong

    2008-12-04

    A general method is presented for growing laterally aligned and patterned ZnO nanowire (NW) arrays on any substrate as long as it is flat. The orientation control is achieved using the combined effect from ZnO seed layer and the catalytically inactive Cr (or Sn) layer for NW growth. The growth temperature (< 100 °C) is so low that the method can be applied to a wide range of substrates that can be inorganic, organic, single crystal, polycrystal, or amorphous. The laterally aligned ZnO NW arrays can be employed for various applications, such as gas sensor, field effect transistor, nanogenerator, and flexible electronics. © 2008 American Chemical Society.

  17. Acclimatization and growth of ornamental pineapple seedlings under organic substrates

    Directory of Open Access Journals (Sweden)

    Ronan Carlos Colombo

    2017-09-01

    Full Text Available The in vitro propagation techniques are commonly used to produce ornamental pineapple seedlings in commercial scale, aiming to attend the growers with genetic and sanitary quality seedlings. However, the choice of the ideal substrate is essential for the acclimatization and growth stage of the seedlings propagated by this technique, since some substrates can increase the seedling mortality and/or limit the seedling growth due to its physical and chemical characteristics. Thus, the aim of this study was to evaluate the acclimatization of ornamental pineapple [Ananas comosus (L. Merr. var. ananassoides (Baker Coppens & Leal] on different substrates. Seedlings with approximately seven centimeters, obtained from in vitro culture, were transplanted into styrofoam trays filled with the following substrates: sphagnum; semi-composed pine bark; carbonized rice husk; sphagnum + semicomposed pine bark; sphagnum + carbonized rice husk; and semi-composed pine bark + carbonized rice husk. Each treatment was replicated five times using 10 plants. At 180 days, there were evaluated the following variables: survival percentage, plant height, number of leaves, leaf area, largest root length, and shoot and root dry matter. The substrate semi-composed pine bark + carbonized rice husk presented the lowest mean (62% for survival percentage. The semi-composed pine bark and semi-composed pine bark + carbonized rice husk treatments presented significant increments in some evaluated biometric characteristics. The semi-composed pine bark is the most favorable substrate for the A. comosus var. ananassoids acclimatization.

  18. Twin-assisted growth of nominally stable substrates underneath dewetted Au nanoparticles

    International Nuclear Information System (INIS)

    Liu, Fang; Xie, Dong Yue; Majdi, Tahereh; Zhu, Guo-zhen

    2016-01-01

    By applying a simple and inexpensive thermal treatment, we synthesized supported gold-oxide nanostructures, which have potential applications to plasmonic devices and biosensors. The regrowth of nominally stable substrates under gold nanoparticles is associated with the appearance of preferential orientations of dewetted nanoparticles and the formation of atomically sharp interfacial monolayers. Steps present at the interfacial monolayer usually occur at defects including the intersection points of twin planes at the interface. They were related to the nucleation and immigration of the interfacial monolayers, prompting the substrate regrowth. Accordingly, we proposed the twin-assisted growth mechanism, which provides insight on the synthesis of gold-oxide nanostructures. - Highlights: • The twin-assisted growth mechanism is proposed for the abnormal regrowth of substrate underneath Au nanoparticles. • The substrate regrowth is related to the steps and ledges that are present at the Au–MgAl_2O_4 interfacial monolayers. • Interfacial steps are detected at defects such as the intersecting points of twin planes at the interface.

  19. Twin-assisted growth of nominally stable substrates underneath dewetted Au nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang; Xie, Dong Yue [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240 (China); Majdi, Tahereh [Department of Engineering Physics, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L7 (Canada); Zhu, Guo-zhen, E-mail: zhugz@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240 (China)

    2016-03-15

    By applying a simple and inexpensive thermal treatment, we synthesized supported gold-oxide nanostructures, which have potential applications to plasmonic devices and biosensors. The regrowth of nominally stable substrates under gold nanoparticles is associated with the appearance of preferential orientations of dewetted nanoparticles and the formation of atomically sharp interfacial monolayers. Steps present at the interfacial monolayer usually occur at defects including the intersection points of twin planes at the interface. They were related to the nucleation and immigration of the interfacial monolayers, prompting the substrate regrowth. Accordingly, we proposed the twin-assisted growth mechanism, which provides insight on the synthesis of gold-oxide nanostructures. - Highlights: • The twin-assisted growth mechanism is proposed for the abnormal regrowth of substrate underneath Au nanoparticles. • The substrate regrowth is related to the steps and ledges that are present at the Au–MgAl{sub 2}O{sub 4} interfacial monolayers. • Interfacial steps are detected at defects such as the intersecting points of twin planes at the interface.

  20. Growth regulators and substrates for Oncidium baueri Lindl. micropropagation

    Directory of Open Access Journals (Sweden)

    Daniele Brandstetter Rodrigues

    2016-10-01

    Full Text Available An adequate concentration of growth regulators as well as the replacement of agar by an alternative medium may be promising from practical and financial points of view to produce orchid plants by micropropagation. The objective of this work was to evaluate different concentrations of growth regulator and alternative substrates for agar replacement in culture medium for in vitro multiplication and rooting of Oncidium baueri. In the explant multiplication phase, two experimental factors were evaluated- various concentrations of 6-benzylaminopurine (BAP (0.0, 1.0, 2.0, and 3.0 mg L-1 and substrates (agar, vermiculite, and coconut fiber added to MS medium. In the rooting phase, different concentrations of indole butyric acid (IBA (0.0, 0.5, 1.0, and 1.5 mg L-1 were added to culture medium containing the same substrate. Six months after the experiments were initiated, the survival percentage, number of leaves, shoots, and roots and length of the aerial part and the major root were evaluated. The results suggested that addition of 1.0 mg L-1 BAP is necessary for the O. baueri in vitro multiplication phase, but IBA is not necessary in the rooting phase. For the substrate, vermiculite is not indicated as an agar replacement. In contrast, coconut fiber can be used in both multiplication and rooting phases of Oncidium baueri in vitro culture.

  1. Vertical epitaxial wire-on-wire growth of Ge/Si on Si(100) substrate.

    Science.gov (United States)

    Shimizu, Tomohiro; Zhang, Zhang; Shingubara, Shoso; Senz, Stephan; Gösele, Ulrich

    2009-04-01

    Vertically aligned epitaxial Ge/Si heterostructure nanowire arrays on Si(100) substrates were prepared by a two-step chemical vapor deposition method in anodic aluminum oxide templates. n-Butylgermane vapor was employed as new safer precursor for Ge nanowire growth instead of germane. First a Si nanowire was grown by the vapor liquid solid growth mechanism using Au as catalyst and silane. The second step was the growth of Ge nanowires on top of the Si nanowires. The method presented will allow preparing epitaxially grown vertical heterostructure nanowires consisting of multiple materials on an arbitrary substrate avoiding undesired lateral growth.

  2. Substrate and growth related microstructural and magnetic properties in La{sub 0.67}Sr{sub 0.33}MnO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, M.E.; Brown, G.W.; Kwon, C.; Jia, Q.

    1998-12-31

    Ambient observation of magnetic domain structures by magnetic force microscopy (MFM) in La{sub 0.67}Sr{sub 0.33}MnO{sub 3} films has not yet been clearly correlated with stresses induced by kinetic or thermodynamic growth processes or the compressive (LaAlO{sub 3}) or tensile (SrTiO{sub 3}) nature of the film-substrate lattice mismatch. Although domain-like magnetic structures have been seen in some as-grown films and related to substrate-induced stress and film thickness, no magnetic structure has been seen for other films grown under similar conditions on the same pair of substrates. In this study the authors have grown films over a range of temperatures by pulsed-laser deposition, using the above substrates, to determine the relationship between growth and stress-induced magnetic structures. Results from scanning tunneling, atomic force, and magnetic force microscopies, measurements of temperature-dependent magnetization and structure-dependent coercivity show the relationship between growth and magnetic properties. Maze-like domain structures, with separations between 150 nm and 200 nm, were only observed for the thicker films grown at the highest temperature, 800 C. Application of an in-plane magnetic field converted these domain structures to stripe-like domains whose spacing and out of plane component decreased as the field was increased.

  3. Germanium growth on electron beam lithography patterned Si3N4/Si(001) substrate using molecular beam epitaxy

    Science.gov (United States)

    Sarkar, Subhendu Sinha; Katiyar, Ajit K.; Sarkar, Arijit; Dhar, Achintya; Rudra, Arun; Khatri, Ravinder K.; Ray, Samit Kumar

    2018-04-01

    It is important to investigate the growth dynamics of Ge adatoms under different surface stress regimes of the patterned dielectric to control the selective growth of self-assembled Ge nanostructures on silicon. In the present work, we have studied the growth of Ge by molecular beam epitaxy on nanometer scale patterned Si3N4/Si(001) substrates generated using electron beam lithography. The pitch of the patterns has been varied to investigate its effect on the growth of Ge in comparison to un-patterned Si3N4. For the patterned Si3N4 film, Ge did not desorbed completely from the Si3N4 film and hence no site selective growth pattern is observed. Instead, depending upon the pitch, Ge growth has occurred in different growth modes around the openings in the Si3N4. For the un-patterned substrate, the morphology exhibits the occurrence of uniform 3D clustering of Ge adatoms on Si3N4 film. This variation in the growth modes of Ge is attributed to the variation of residual stress in the Si3N4 film for different pitch of holes, which has been confirmed theoretically through Comsol Multiphysics simulation. The variation in stress for different pitches resulted in modulation of surface energy of the Si3N4 film leading to the different growth modes of Ge.

  4. Influence of substrate temperature, growth rate and TCO substrate on the properties of CSS deposited CdS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, J., E-mail: jschaffner@surface.tu-darmstadt.de; Feldmeier, E.; Swirschuk, A.; Schimper, H.-J.; Klein, A.; Jaegermann, W.

    2011-08-31

    The growth of CdS thin films by close space sublimation (CSS) has been systematically studied using an ultra-high vacuum system known as DAISY-SOL in order to understand the basic growth mechanisms and their impact on the film properties. Substrate temperature and deposition rate were varied, and the surface properties of the CdS layer were determined by photoelectron spectroscopy (XPS) without breaking the vacuum. To analyze the influence of the deposition conditions on the layer morphology and crystallographic structure, the films were further characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The SEM and AFM studies show a correlation between the deposition rate and the film morphology. For high deposition rates, edged grain shapes and smoother surfaces were observed than for low deposition rates. CdS films were deposited onto two different commercially available fluorine-doped tin oxide (FTO) substrates. XRD studies show that a high <200> texture of the FTO substrate prefers the CdS growth in <0001> orientation of the hexagonal crystal modification.

  5. Epitaxial growth mechanisms of graphene and effects of substrates

    OpenAIRE

    Özçelik, V. Ongun; Cahangirov, S.; Ciraci, S.

    2012-01-01

    The growth process of single layer graphene with and without substrate is investigated using ab initio, finite temperature molecular dynamic calculations within density functional theory. An understanding of the epitaxial graphene growth mechanisms in the atomic level is provided by exploring the transient stages which occur at the growing edges of graphene. These stages are formation and collapse of large carbon rings together with the formation and healing of Stone-Wales like pentagon-hepta...

  6. Anaerobic digestion characteristics of pig manures depending on various growth stages and initial substrate concentrations in a scaled pig farm in Southern China.

    Science.gov (United States)

    Zhang, Wanqin; Lang, Qianqian; Wu, Shubiao; Li, Wei; Bah, Hamidou; Dong, Renjie

    2014-03-01

    The characteristics of anaerobic digestion of pig manure from different growth stages were investigated. According to growth stage, batch experiments were performed using gestating sow manure (GSM), swine nursery with post-weaned piglet manure (SNM), growing fattening manure (GFM) and mixed manure (MM) as substrates at four substrate concentrations (40, 50, 65 and 80gVS/L) under mesophilic conditions. The maximum methane yields of MM, SNM, GSM and GFM were 354.7, 328.7, 282.4 and 263.5mLCH4/gVSadded, respectively. Volatile fatty acids/total inorganic carbon (VFA/TIC) ratio increased from 0.10 to 0.89 when loading increased from 40 to 80gVS/L for GFM. The modified Gompertz model shows a better fit to the experimental results than the first order model with a lower difference between measured and predicted methane yields. The kinetic parameters indicated that the methane production curve on the basis of differences in biodegradability of the pig manure at different growth stages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Enhancing trichloroethylene degradation using non-aromatic compounds as growth substrates.

    Science.gov (United States)

    Kim, Seungjin; Hwang, Jeongmin; Chung, Jinwook; Bae, Wookeun

    2014-06-30

    The effect of non-aromatic compounds on the trichloroethylene (TCE) degradation of toluene-oxidizing bacteria were evaluated using Burkholderia cepacia G4 that expresses toluene 2-monooxygenase and Pseudomonas putida that expresses toluene dioxygenase. TCE degradation rates for B. cepacia G4 and P. putida with toluene alone as growth substrate were 0.144 and 0.123 μg-TCE/mg-protein h, respectively. When glucose, acetate and ethanol were fed as additional growth substrates, those values increased up to 0.196, 0.418 and 0.530 μg-TCE/mg-protein h, respectively for B. cepacia G4 and 0.319, 0.219 and 0.373 μg-TCE/mg-protein h, respectively for P. putida. In particular, the addition of ethanol resulted in a high TCE degradation rate regardless of the initial concentration. The use of a non-aromatic compound as an additional substrate probably enhanced the TCE degradation because of the additional supply of NADH that is consumed in co-metabolic degradation of TCE. Also, it is expected that the addition of a non-aromatic substrate can reduce the necessary dose of toluene and, subsequently, minimize the potential competitive inhibition upon TCE co-metabolism by toluene. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The effect of clay amendment on substrate properties and growth of woody plants

    Directory of Open Access Journals (Sweden)

    Tomáš Meisl

    2012-01-01

    Full Text Available This work deals with the effect of two clay products differing in particle size distribution on properties of growing substrate and on growth of containerized woody plants in substrates amended with these clay products. Fine and coarse clay were added to a peat substrate, each at two rates. The peat substrate without clay was used as a control. The substrates were tested in experiments with two woody ornamentals (Thuja occidentalis ’Smaragd’ and Prunus cistena. Chemical and physical properties of the substrates were measured according to European Standards before planting. Proportion of water categories differing in availability to the plants were calculated from retention curves measured on the sand box. Properties of substrates in containers with and without plants were evaluated in the same way at the end of the culture. Clay addition changed chemical and physical properties of the tested substrates in terms: available nutrients content, particle density, bulk density, total pore volume, easy available water, water buffering capacity, air capacity, and shrinkage. The effect of fine clay was much stronger. In comparison with the clear effect of clay addition on the substrate chemical and physical properties, the effect on the growth and quality of model woody plants was not so explicit.

  9. Substrate temperature dependence of ZnTe epilayers grown on GaAs(0 0 1) by molecular beam epitaxy

    Science.gov (United States)

    Zhao, Jie; Zeng, Yiping; Liu, Chao; Li, Yanbo

    2010-04-01

    ZnTe thin films have been grown on GaAs(0 0 1) substrates at different temperatures with constant Zn and Te beam equivalent pressures (BEPs) by molecular beam epitaxy (MBE). In situ reflection high-energy electron diffraction (RHEED) observation indicates that two-dimensional (2D) growth mode can be established after around one-minute three-dimensional (3D) nucleation by increasing the substrate temperature to 340 °C. We found that Zn desorption from the ZnTe surface is much greater than that of Te at higher temperatures, and estimated the Zn sticking coefficient by the evolution of growth rate. The Zn sticking coefficient decreases from 0.93 to 0.58 as the temperature is elevated from 320 to 400 °C. The ZnTe epilayer grown at 360 °C displays the narrowest full-width at half-maximum (FWHM) of 660 arcsec from (0 0 4) reflection in double-crystal X-ray rocking curve (DCXRC) measurements. The surface morphology of ZnTe epilayers is strongly dependent on the substrate temperature, and the root-mean-square (RMS) roughness diminishes drastically with the increase in temperature.

  10. Effect of hydrogen flow on growth of 3C-SiC heteroepitaxial layers on Si(111) substrates

    International Nuclear Information System (INIS)

    Yan, Guoguo; Zhang, Feng; Niu, Yingxi; Yang, Fei; Liu, Xingfang; Wang, Lei; Zhao, Wanshun; Sun, Guosheng; Zeng, Yiping

    2015-01-01

    Highlights: • 3C-SiC thin films of preferential orientation along with Si(111) substrates were obtained using home-made horizontal LPCVD with different H_2 flow rate ranging from15 to 30 slm. • High H_2 flow rate will inhibit the out-diffusion of silicon atoms from silicon substrates effectively. Transformation and the mechanism of void formation are discussed based on our model. • The variation of growth rate and n-type doping with increasing H_2 flow rate is researched and the influencing mechanism is discussed. - Abstract: 3C-SiC thin films were grown on Si(111) substrates at 1250 °C by horizontal low pressure chemical vapor deposition (LPCVD). We performed an exhaustive study on the effect of H_2 flow rate on the crystalline quality, surface morphologies, growth rate, n-type doping of 3C-SiC thin films and the voids at the interface. The films show epitaxial nature with high crystal quality and surface morphology increase obviously with increasing H_2 flow rate. The growth rate and n-type doping are also dependent on H_2 flow rate. The properties of the voids at the interface are discussed based on the cross-sectional scanning electron microscope characterization. Transformation of voids with increasing H_2 flow rate are attributed to higher 3C-SiC film growth rate and H_2 etching rate. The mechanism of void formation is discussed based on our model, too. The results demonstrate that H_2 flow rate plays a very important role in the heteroepitaxial growth of 3C-SiC films.

  11. Effect of hydrogen flow on growth of 3C-SiC heteroepitaxial layers on Si(111) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Guoguo [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Zhang, Feng, E-mail: fzhang@semi.ac.cn [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Niu, Yingxi; Yang, Fei [Electrical Engineering New Materials and Microelectronics Department, State Grid Smart Grid Research Institute, Beijing 100192 (China); Liu, Xingfang; Wang, Lei; Zhao, Wanshun [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Sun, Guosheng [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Dongguan Tianyu Semiconductor, Inc., Dongguan 523000 (China); Zeng, Yiping [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2015-10-30

    Highlights: • 3C-SiC thin films of preferential orientation along with Si(111) substrates were obtained using home-made horizontal LPCVD with different H{sub 2} flow rate ranging from15 to 30 slm. • High H{sub 2} flow rate will inhibit the out-diffusion of silicon atoms from silicon substrates effectively. Transformation and the mechanism of void formation are discussed based on our model. • The variation of growth rate and n-type doping with increasing H{sub 2} flow rate is researched and the influencing mechanism is discussed. - Abstract: 3C-SiC thin films were grown on Si(111) substrates at 1250 °C by horizontal low pressure chemical vapor deposition (LPCVD). We performed an exhaustive study on the effect of H{sub 2} flow rate on the crystalline quality, surface morphologies, growth rate, n-type doping of 3C-SiC thin films and the voids at the interface. The films show epitaxial nature with high crystal quality and surface morphology increase obviously with increasing H{sub 2} flow rate. The growth rate and n-type doping are also dependent on H{sub 2} flow rate. The properties of the voids at the interface are discussed based on the cross-sectional scanning electron microscope characterization. Transformation of voids with increasing H{sub 2} flow rate are attributed to higher 3C-SiC film growth rate and H{sub 2} etching rate. The mechanism of void formation is discussed based on our model, too. The results demonstrate that H{sub 2} flow rate plays a very important role in the heteroepitaxial growth of 3C-SiC films.

  12. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates

    Science.gov (United States)

    Wang, Xu; Zeng, Wei; Hong, Liang; Xu, Wenwen; Yang, Haokai; Wang, Fan; Duan, Huigao; Tang, Ming; Jiang, Hanqing

    2018-03-01

    Problems related to dendrite growth on lithium-metal anodes such as capacity loss and short circuit present major barriers to next-generation high-energy-density batteries. The development of successful lithium dendrite mitigation strategies is impeded by an incomplete understanding of the Li dendrite growth mechanisms, and in particular, Li-plating-induced internal stress in Li metal and its effect on Li growth morphology are not well addressed. Here, we reveal the enabling role of plating residual stress in dendrite formation through depositing Li on soft substrates and a stress-driven dendrite growth model. We show that dendrite growth is mitigated on such soft substrates through surface-wrinkling-induced stress relaxation in the deposited Li film. We demonstrate that this dendrite mitigation mechanism can be utilized synergistically with other existing approaches in the form of three-dimensional soft scaffolds for Li plating, which achieves higher coulombic efficiency and better capacity retention than that for conventional copper substrates.

  13. Aqueous chemical growth and patterning of ZnO nanopillars on different substrate materials

    Energy Technology Data Exchange (ETDEWEB)

    Kreye, M.; Postels, B.; Wehmann, H.H.; Waag, A. [Institute of Semiconductor Technology, Technical University of Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Fuhrmann, D.; Hangleiter, A. [Institute of Applied Physics, Technical University of Braunschweig, Mendelssohnstrasse 2, 38106 Braunschweig (Germany)

    2006-03-15

    Aqueous chemical growth (ACG) is a low-temperature approach that is only weakly influenced by the substrate and allows for the growth of ZnO nanopillars on various substrates. ACG is an efficient way to generate wafer-scale and densely packed arrays of ZnO nanopillars even on polymer materials. Photoluminescence (PL) characterisation clearly shows a comparatively strong band-edge luminescence even at room temperature that is accompanied with a rather weak visible luminescence in the yellow/orange spectral range. We introduce a rather simple postgrowth lithographic technique. Patterning of ZnO nanopillars even on layered conducting and flexible substrate materials using ACG as a low-temperature growth technique is demonstrated. The economical potential for future applications and devices using ZnO nanopillar arrays is discussed. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Effects of mixed substrates on growth and vitamin production by ...

    African Journals Online (AJOL)

    SERVER

    2007-10-16

    Oct 16, 2007 ... The cells were grown mixotrophically in glucose (G), ethanol ... Key words: mixed substrate culture, Euglena gracilis, cell growth, vitamin production. ..... Biological elimination of nitric oxide from fuel gas by marine micro-.

  15. Modeling of the Bacillus subtilis Bacterial Biofilm Growing on an Agar Substrate.

    Science.gov (United States)

    Wang, Xiaoling; Wang, Guoqing; Hao, Mudong

    2015-01-01

    Bacterial biofilms are organized communities composed of millions of microorganisms that accumulate on almost any kinds of surfaces. In this paper, a biofilm growth model on an agar substrate is developed based on mass conservation principles, Fick's first law, and Monod's kinetic reaction, by considering nutrient diffusion between biofilm and agar substrate. Our results show biofilm growth evolution characteristics such as biofilm thickness, active biomass, and nutrient concentration in the agar substrate. We quantitatively obtain biofilm growth dependence on different parameters. We provide an alternative mathematical method to describe other kinds of biofilm growth such as multiple bacterial species biofilm and also biofilm growth on various complex substrates.

  16. Logistic growth models of China pinks, cultivated on seven substrates, as a function of degree days

    Directory of Open Access Journals (Sweden)

    Marília Milani

    Full Text Available ABSTRACT: The objective of this study was to characterize the height (H and leaf number (LN of China pinks, grown in seven substrates, as a function of degree days, using the logistic growth model. H and LN were measured from 56 plants per substrate, for 392 plants in total. Plants that were grown on substrates formed of 50% soil with 50% rice husk ash (50% S + 50% RH and 80% rice husk ash with 20% worm castings (80% RH + 20% W had the longest vegetative growth period (74d, corresponding to 1317.9ºCd. The logistic growth model, adjusted for H, showed differences in the estimation of maximum expected height (α between the substrates, with values between 10.47cm for 50% S + 50% RH and 35.75cm for Mecplant(r. When α was estimated as LN, variation was also observed between the different substrates, from approximately 30 leaves on plants growing on 50% S + 50% RH to 34 leaves on the plants growing on the substrate formed of 80% RH + 20% W. Growth of China pinks can be characterized using H or LN in the logistic growth model as a function of degree days, being the provided plants adequately fertilized. The best substrates in terms of maximum height and leaf number were 80% soil + 20% worm castings and Mecplant(r. However, users must recalibrate the model with the estimated parameters before applying it to different growing conditions.

  17. Growth of tin oxide thin films composed of nanoparticles on hydrophilic and hydrophobic glass substrates by spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Paloly, Abdul Rasheed; Satheesh, M. [Nano Functional Materials Lab, Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India); Martínez-Tomás, M. Carmen; Muñoz-Sanjosé, Vicente [Departamento de Física Aplicada y Electromagnetismo, Universitat de Valencia, c/Dr Moliner 50, Burjassot, Valencia 46100 (Spain); Rajappan Achary, Sreekumar [Nano Functional Materials Lab, Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India); Bushiri, M. Junaid, E-mail: junaidbushiri@gmail.com [Nano Functional Materials Lab, Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India)

    2015-12-01

    Highlights: • SnO{sub 2} thin films were grown on hydrophilic and hydrophobic glass substrates. • Samples on hydrophobic substrates are having comparatively larger lattice volume. • Films on hydrophobic substrates have larger particles and low density distribution. • Substrate dependent photoluminescence emission is observed and studied. • SnO{sub 2} thin films grown over hydrophobic substrates may find potential applications. - Abstract: In this paper, we have demonstrated the growth of tin oxide (SnO{sub 2}) thin films composed of nanoparticles on hydrophobic (siliconized) and hydrophilic (non-siliconized) glass substrates by using the spray pyrolysis technique. X-ray diffraction (XRD) analysis confirmed the formation of SnO{sub 2} thin films with tetragonal rutile-phase structure. Average particle size of nanoparticles was determined to be in the range of 3–4 nm measured from the front view images obtained by a field emission gun scanning electron microscope (FESEM), while the size of nanoparticle clusters, when present, were in the range of 11–20 nm. Surface morphology of SnO{sub 2} films grown over hydrophobic substrates revealed larger isolated particles which are less crowded compared to the highly crowded and agglomerated smaller particles in films on hydrophilic substrates. Blue shift in the band gap is observed in samples in which the average particle size is slightly larger than the exciton Bohr radius. Photoluminescence (PL) analysis of samples grown over hydrophobic substrates exhibited an intense defect level emission and a weak near band edge emission. The enhanced visible emission from these SnO{sub 2} thin films is attributed to lattice defects formed during the film growth due to the mismatch between the film and the hydrophobic substrate surface.

  18. Kinetic models of cell growth, substrate utilization and bio ...

    African Journals Online (AJOL)

    Bio-decolorization kinetic studies of distillery effluent in a batch culture were conducted using Aspergillus fumigatus. A simple model was proposed using the Logistic Equation for the growth, Leudeking-Piret kinetics for bio-decolorization, and also for substrate utilization. The proposed models appeared to provide a suitable ...

  19. AlGaInAs narrow stripe selective growth on substrates patterned with different mask designs

    International Nuclear Information System (INIS)

    Feng, W; Pan, J Q; Yang, H; Hou, L P; Zhou, F; Zhao, L J; Zhu, H L; Wang, W

    2006-01-01

    We have performed a narrow stripe selective growth of oxide-free AlGaInAs waveguides on InP substrates patterned with pairs of SiO 2 mask stripes under optimized growth conditions. The mask stripe width varied from 0 to 40 μm, while the window region width between a pair of mask stripes was fixed at 1.5, 2.5 or 3.5 μm. Flat and smooth AlGaInAs waveguides covered by specific InP layers are successfully grown on substrates patterned with different mask designs. The thickness enhancement ratio and the photoluminescence (PL) spectrum of the AlGaInAs narrow stripe waveguides are strongly dependent on the mask stripe width and the window region width. In particular, a large PL wavelength shift of 79 nm and a PL FWHM of less than 64 meV are obtained simultaneously with a small mask stripe width varying from 0 to 40 μm when the window region width is 1.5 μm. We present some possible interpretations of the experimental observations in considering both the migration effect from a masked region and the lateral vapour diffusion effect

  20. Connective tissue growth factor is a substrate of ADAM28

    International Nuclear Information System (INIS)

    Mochizuki, Satsuki; Tanaka, Rena; Shimoda, Masayuki; Onuma, Junko; Fujii, Yutaka; Jinno, Hiromitsu; Okada, Yasunori

    2010-01-01

    Research highlights: → The hyper-variable region in the cysteine-rich domain of ADAM28 binds to C-terminal domain of CTGF. → ADAM28 cleaves CTGF alone and CTGF in the CTGF/VEGF 165 complex. → CTGF digestion by ADAM28 releases biologically active VEGF 165 from the complex. → ADAM28, CTGF and VEGF 165 are commonly co-expressed by carcinoma cells in human breast carcinoma tissues. → These suggest that ADAM28 promotes VEGF 165 -induced angiogenesis in the breast carcinomas by selective CTGF digestion in the CTGF/VEGF 165 complex. -- Abstract: ADAM28, a member of the ADAM (a disintegrin and metalloproteinase) gene family, is over-expressed by carcinoma cells and the expression correlates with carcinoma cell proliferation and progression in human lung and breast carcinomas. However, information about substrates of ADAM28 is limited. We screened interacting molecules of ADAM28 in human lung cDNA library by yeast two-hybrid system and identified connective tissue growth factor (CTGF). Binding of CTGF to proADAM28 was demonstrated by yeast two-hybrid assay and protein binding assay. ADAM28 cleaved CTGF in dose- and time-dependent manners at the Ala 181 -Tyr 182 and Asp 191 -Pro 192 bonds in the hinge region of the molecule. ADAM28 selectively digested CTGF in the complex of CTGF and vascular endothelial growth factor 165 (VEGF 165 ), releasing biologically active VEGF 165 from the complex. RT-PCR and immunohistochemical analyses demonstrated that ADAM28, CTGF and VEGF are commonly co-expressed in the breast carcinoma tissues. These data provide the first evidence that CTGF is a novel substrate of ADAM28 and suggest that ADAM28 may promote VEGF 165 -induced angiogenesis in the breast carcinomas by the CTGF digestion in the CTGF/VEGF 165 complex.

  1. Molecular-mediated crystal growth of PbTiO3 nanostructure on silicon substrate

    International Nuclear Information System (INIS)

    Chao Chunying; Ren Zhaohui; Liu Zhenya; Xiao Zhen; Xu Gang; Li Xiang; Wei Xiao; Shen Ge; Han Gaorong

    2011-01-01

    A simple approach based on an organically modified sol-gel process has been developed to fabricate PbTiO 3 (PT) nanocrystals on Si (1 0 0) substrate, where the amorphous powder modified by acetylacetone (acac) was used as precursor. After dropping the amorphous powder precursor prepared by freeze-drying process, PT nanocrystals on Si (1 0 0) substrate were obtained after heat treatment at 720 deg. C for 30 min in air. PT nanocrystals have been detected by XRD to be tetragonal perovskite structure. With the increase of acac/Pb molar ratio, the relative (1 0 0)/(0 0 1) diffraction peak intensity gradually increases, which probably suggested an oriented growth of PT nanocrystal along [1 0 0] on Si (1 0 0) substrates. In addition, Atomic force microscopy (AFM) results indicated that the height and the average lateral size of PT nanocrystal increased and then decreased as the acac/Pb molar ratio increased. Piezoelectric force microscopy (PFM) results demonstrated that all the samples show obvious piezoelectric activity. These results implied that the acetylacetone molecular mediated the growth of PT nanocrystals on Si (1 0 0) substrates possibly by the acac/Pb molar ratio. This simple method has been suggested to be attractive for tailoring an oriented growth of the nanostructures of perovskite oxide systems on Si substrates.

  2. The dependence of the wavelength on MBE growth parameters of GaAs quantum dot in AlGaAs NWs on Si (111) substrate

    Science.gov (United States)

    Reznik, R. R.; Shtrom, I. V.; Samsonenko, Yu B.; Khrebtov, A. I.; Soshnikov, I. P.; Cirlin, G. E.

    2017-11-01

    The data on the growth peculiarities and physical properties of GaAs insertions embedded in AlGaAs nanowires grown on Si (111) substrates by Au-assisted molecular beam epitaxy are presented. It is shown that by varying of the growth parameters it is possible to form structures like quantum dots emitting in a wide wavelengths range for both active and barrier parts. The technology proposed opens new possibilities for the integration of direct-band AIIIBV materials on silicon platform.

  3. Homo- and heteroepitaxial growth behavior of upright InAs nanowires on InAs and GaAs substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Jens; Gottschalch, Volker; Paetzelt, Hendrik [Institut fuer Anorganische Chemie, Universitaet Leipzig, Johannesallee 29, D-04103 Leipzig (Germany); Wagner, Gerald [Institut fuer Kristallographie und Mineralogie, Universitaet Leipzig, Linnestr. 5, D-04103 Leipzig (Germany); Pietsch, Ulrich [Festkoerperphysik, Universitaet Siegen, D-57068 Siegen (Germany)

    2008-07-01

    Semiconductor nanowires (NW) acquire recently attraction because of promising new application fields in electronics and optoelectronic. We applied the vapor-liquid-solid mechanism with gold seeds in combination with low-pressure metal-organic vapor phase epitaxy (LP-MOVPE) to achieve replicable InAs NW growth with high growth rates. Since the initial alloying of the gold seeds with the substrate material plays a deciding role for the inceptive NW growth, InAs free standing nanowires were grown on GaAs(111)B substrate as well as on InAs/GaAs(111)B quasi-substrate. The influence of the MOVPE parameters will be discussed with respect to NW morphology and real-structure. A special focus will be set on the heteroepitaxial InAs NW growth on GaAs substrates. Gracing-incidence X-ray studies and transmission electron microscopy investigations revealed the existence of a thin Ga{sub x}In{sub 1-x}As graduated alloy layer with embedded crystalline gold alloy particles at the NW substrate interface. The effect of droplet composition on the VLS growth will be presented in a thermodynamic model.

  4. Modeling of the Bacillus subtilis Bacterial Biofilm Growing on an Agar Substrate

    Directory of Open Access Journals (Sweden)

    Xiaoling Wang

    2015-01-01

    Full Text Available Bacterial biofilms are organized communities composed of millions of microorganisms that accumulate on almost any kinds of surfaces. In this paper, a biofilm growth model on an agar substrate is developed based on mass conservation principles, Fick’s first law, and Monod’s kinetic reaction, by considering nutrient diffusion between biofilm and agar substrate. Our results show biofilm growth evolution characteristics such as biofilm thickness, active biomass, and nutrient concentration in the agar substrate. We quantitatively obtain biofilm growth dependence on different parameters. We provide an alternative mathematical method to describe other kinds of biofilm growth such as multiple bacterial species biofilm and also biofilm growth on various complex substrates.

  5. Effect of Substrate Morphology on Growth and Field Emission Properties of Carbon Nanotube Films

    Directory of Open Access Journals (Sweden)

    Kumar Vikram

    2008-01-01

    Full Text Available AbstractCarbon nanotube (CNT films were grown by microwave plasma-enhanced chemical vapor deposition process on four types of Si substrates: (i mirror polished, (ii catalyst patterned, (iii mechanically polished having pits of varying size and shape, and (iv electrochemically etched. Iron thin film was used as catalytic material and acetylene and ammonia as the precursors. Morphological and structural characteristics of the films were investigated by scanning and transmission electron microscopes, respectively. CNT films of different morphology such as vertically aligned, randomly oriented flowers, or honey-comb like, depending on the morphology of the Si substrates, were obtained. CNTs had sharp tip and bamboo-like internal structure irrespective of growth morphology of the films. Comparative field emission measurements showed that patterned CNT films and that with randomly oriented morphology had superior emission characteristics with threshold field as low as ~2.0 V/μm. The defective (bamboo-structure structures of CNTs have been suggested for the enhanced emission performance of randomly oriented nanotube samples.

  6. Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating

    Directory of Open Access Journals (Sweden)

    Christina Rosman

    2014-12-01

    Full Text Available In this work, we study epithelial cell growth on substrates decorated with gold nanorods that are functionalized either with a positively charged cytotoxic surfactant or with a biocompatible polymer exhibiting one of two different end groups, resulting in a neutral or negative surface charge of the particle. Upon observation of cell growth for three days by live cell imaging using optical dark field microscopy, it was found that all particles supported cell adhesion while no directed cell migration and no significant particle internalization occurred. Concerning cell adhesion and spreading as compared to cell growth on bare substrates after 3 days of incubation, a reduction by 45% and 95%, respectively, for the surfactant particle coating was observed, whereas the amino-terminated polymer induced a reduction by 30% and 40%, respectively, which is absent for the carboxy-terminated polymer. Furthermore, interface-sensitive impedance spectroscopy (electric cell–substrate impedance sensing, ECIS was employed in order to investigate the micromotility of cells added to substrates decorated with various amounts of surfactant-coated particles. A surface density of 65 particles/µm2 (which corresponds to 0.5% of surface coverage with nanoparticles diminishes micromotion by 25% as compared to bare substrates after 35 hours of incubation. We conclude that the surface coating of the gold nanorods, which were applied to the basolateral side of the cells, has a recognizable influence on the growth behavior and thus the coating should be carefully selected for biomedical applications of nanoparticles.

  7. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    International Nuclear Information System (INIS)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-01-01

    Graphical abstract: - Highlights: • Cerium oxide nanorods were uniformly grown on diverse substrates. • Changes in growth conditions led to morphology evolution of cerium oxide nanostructures. • The grown cerium oxide nanostructures were single or poly crystalline. • Direct growth of cerium oxide nanorods made the diverse substrates superhydrophobic and anti-corrosive without any surface modifiers. - Abstract: Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields

  8. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo [School of Mechanical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Dong Rip, E-mail: dongrip@hanyang.ac.kr [School of Mechanical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-06-15

    Graphical abstract: - Highlights: • Cerium oxide nanorods were uniformly grown on diverse substrates. • Changes in growth conditions led to morphology evolution of cerium oxide nanostructures. • The grown cerium oxide nanostructures were single or poly crystalline. • Direct growth of cerium oxide nanorods made the diverse substrates superhydrophobic and anti-corrosive without any surface modifiers. - Abstract: Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  9. Identification of Toxoplasma gondii cAMP dependent protein kinase and its role in the tachyzoite growth.

    Directory of Open Access Journals (Sweden)

    Hitomi Kurokawa

    Full Text Available cAMP-dependent protein kinase (PKA has been implicated in the asexual stage of the Toxoplasma gondii life cycle through assaying the effect of a PKA-specific inhibitor on its growth rate. Since inhibition of the host cell PKA cannot be ruled out, a more precise evaluation of the role of PKA, as well as characterization of the kinase itself, is necessary.The inhibitory effects of two PKA inhibitors, H89, an ATP-competitive chemical inhibitor, and PKI, a substrate-competitive mammalian natural peptide inhibitor, were estimated. In the in vitro kinase assay, the inhibitory effect of PKI on a recombinant T. gondii PKA catalytic subunit (TgPKA-C was weaker compared to that on mammalian PKA-C. In a tachyzoite growth assay, PKI had little effect on the growth of tachyzoites, whereas H89 strongly inhibited it. Moreover, T. gondii PKA regulatory subunit (TgPKA-R-overexpressing tachyzoites showed a significant growth defect.Our data suggest that PKA plays an important role in the growth of tachyzoites, and the inhibitory effect of substrate-competitive inhibitor PKI on T. gondii PKA was low compared to that of the ATP competitive inhibitor H89.

  10. Transfer free graphene growth on SiO2 substrate at 250 °C

    Science.gov (United States)

    Vishwakarma, Riteshkumar; Rosmi, Mohamad Saufi; Takahashi, Kazunari; Wakamatsu, Yuji; Yaakob, Yazid; Araby, Mona Ibrahim; Kalita, Golap; Kitazawa, Masashi; Tanemura, Masaki

    2017-03-01

    Low-temperature growth, as well as the transfer free growth on substrates, is the major concern of graphene research for its practical applications. Here we propose a simple method to achieve the transfer free graphene growth on SiO2 covered Si (SiO2/Si) substrate at 250 °C based on a solid-liquid-solid reaction. The key to this approach is the catalyst metal, which is not popular for graphene growth by chemical vapor deposition. A catalyst metal film of 500 nm thick was deposited onto an amorphous C (50 nm thick) coated SiO2/Si substrate. The sample was then annealed at 250 °C under vacuum condition. Raman spectra measured after the removal of the catalyst by chemical etching showed intense G and 2D peaks together with a small D and intense SiO2 related peaks, confirming the transfer free growth of multilayer graphene on SiO2/Si. The domain size of the graphene confirmed by optical microscope and atomic force microscope was about 5 μm in an average. Thus, this approach will open up a new route for transfer free graphene growth at low temperatures.

  11. Substrate mediated growth of organic semiconducting thin films; Templateffekte bei der Strukturierung organischer Halbleiterfilme

    Energy Technology Data Exchange (ETDEWEB)

    Goetzen, Jan

    2010-09-17

    Since electronic properties of molecular materials are closely related to their structural order a precise control of the molecular packing and crystalline orientation of thin films is of vital interest for an optimization of organic electronic devices. Of particular interest in this respect is the initial stage of film formation which is largely governed by the interplay of intermolecular and molecule-substrate interactions. One approach to control the molecular film structure is based on substrate mediated growth. In this respect we have studied structural properties of thin films of pentacene, pentacene- 5,7,12,14-tetrone and perfluoro-pentacene which were grown onto various substrates including metals, metal oxides and graphite. On metal surfaces the molecules initially form a chemisorbed monolayer where molecules even can be uniformly aligned when using appropriate substrates with twofold symmetry. Further deposition, however, is accompanied by a pronounced dewetting and formation of disjoined islands which results from a large structural mismatch between the molecular arrangement in the monolayer and the crystalline phase. In some cases it is possible to orient such islands by utilizing step mediated nucleation and decoration of step bunches which allows the preparation of azimuthally well oriented elongated islands. On single crystalline oxides the growth parallels the situation found before for SiO{sub 2} where islands of upright oriented molecules are formed. The growth on graphite is somewhat particular since the lattice provides a natural template for acenes yielding epitaxially ordered monolayer films with planar adsorption geometry like in case of metals. Interestingly, however, no dewetting occurs upon further growth and instead rather smooth films are formed. The detailed analysis for the case of pentacene showed that the substrate-molecule interaction actually is weaker than the intermolecular interaction so that multilayer films can lift the

  12. Influence of the Hydrothermal Method Growth Parameters on the Zinc Oxide Nanowires Deposited on Several Substrates

    Directory of Open Access Journals (Sweden)

    Concepción Mejía-García

    2014-01-01

    Full Text Available We report the synthesis of ZnO nanowires grown on several substrates (PET, glass, and Si using a two-step process: (a preparation of the seed layer on the substrate by spin coating, from solutions of zinc acetate dihydrate and 1-propanol, and (b growth of the ZnO nanostructures by dipping the substrate in an equimolar solution of zinc nitrate hexahydrate and hexamethylenetetramine. Subsequently, films were thermally treated with a commercial microwave oven (350 and 700 W for 5, 20, and 35 min. The ZnO nanowires obtained were characterized structurally, morphologically, and optically using XRD, SEM, and UV-VIS transmission, respectively. XRD patterns spectra revealed the presence of Zn(OH2 on the films grown on glass and Si substrates. A preferential orientation along c-axis directions for films grown on PET substrate was observed. An analysis by SEM revealed that the growth of the ZnO nanowires on PET and glass is better than the growth on Si when the same growth parameters are used. On glass substrates, ZnO nanowires less than 50 nm in diameter and between 200 nm and 1200 nm in length were obtained. The ZnO nanowires band gap energy for the films grown on PET and glass was obtained from optical transmission spectra.

  13. Growth-substrate induced performance degradation in chemically synthesized monolayer MoS{sub 2} field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Amani, Matin; Chin, Matthew L.; Mazzoni, Alexander L.; Burke, Robert A.; Dubey, Madan, E-mail: madan.dubey.civ@mail.mil [Sensors and Electron Devices Directorate, US Army Research Laboratory, Adelphi, Maryland 20723 (United States); Najmaei, Sina; Ajayan, Pulickel M.; Lou, Jun [Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005 (United States)

    2014-05-19

    We report on the electronic transport properties of single-layer thick chemical vapor deposition (CVD) grown molybdenum disulfide (MoS{sub 2}) field-effect transistors (FETs) on Si/SiO{sub 2} substrates. MoS{sub 2} has been extensively investigated for the past two years as a potential semiconductor analogue to graphene. To date, MoS{sub 2} samples prepared via mechanical exfoliation have demonstrated field-effect mobility values which are significantly higher than that of CVD-grown MoS{sub 2}. In this study, we will show that the intrinsic electronic performance of CVD-grown MoS{sub 2} is equal or superior to that of exfoliated material and has been possibly masked by a combination of interfacial contamination on the growth substrate and residual tensile strain resulting from the high-temperature growth process. We are able to quantify this strain in the as-grown material using pre- and post-transfer metrology and microscopy of the same crystals. Moreover, temperature-dependent electrical measurements made on as-grown and transferred MoS{sub 2} devices following an identical fabrication process demonstrate the improvement in field-effect mobility.

  14. Substrates of neuropsychological functioning in stimulant dependence: a review of functional neuroimaging research

    NARCIS (Netherlands)

    Crunelle, C.L.; Veltman, D.J.; Booij, J.; van Emmerik-van Oortmerssen, K.; van den Brink, W.

    2012-01-01

    Stimulant dependence is associated with neuropsychological impairments. Here, we summarize and integrate the existing neuroimaging literature on the neural substrates of neuropsychological (dys)function in stimulant dependence, including cocaine, (meth-)amphetamine, ecstasy and nicotine dependence,

  15. Growth on elastic silicone substrate elicits a partial myogenic response in periodontal ligament derived stem cells

    Directory of Open Access Journals (Sweden)

    Daniel Pelaez

    2016-12-01

    Full Text Available The processes of cellular differentiation and phenotypic maintenance can be influenced by stimuli from a variety of different factors. One commonly overlooked factor is the mechanical properties of the growth substrate in which stem cells are maintained or differentiated down various lineages. Here we explored the effect that growth on an elastic silicone substrate had on the myogenic expression and cytoskeletal morphology of periodontal ligament derived stem cells. Cells were grown on either collagen I coated tissue culture polystyrene plates or collagen I coated elastic silicone membranes for a period of 4 days without further induction from soluble factors in the culture media. Following the 4-day growth, gene expression and immunohistochemical analysis for key cardiomyogenic markers was performed along with a morphological assessment of cytoskeletal organization. Results show that cells grown on the elastic substrate significantly upregulate key markers associated with contractile activity in muscle tissues. Namely, the myosin light chain polypeptides 2 and 7, as well as the myosin heavy chain polypeptide 7 genes underwent a statistically significant upregulation in the cells grown on elastic silicone membranes. Similarly, the cells on the softer elastic substrate stained positive for both sarcomeric actin and cardiac troponin t proteins following just 4 days of growth on the softer material. Cytoskeletal analysis showed that substrate stiffness had a marked effect on the organization and distribution of filamentous actin fibers within the cell body. Growth on silicone membranes produced flatter and shorter cellular morphologies with filamentous actin fibers projecting anisotropically throughout the cell body. These results demonstrate how crucial the mechanical properties of the growth substrate of cells can be on the ultimate cellular phenotype. These observations highlight the need to further optimize differentiation protocols to enhance

  16. Experimental Results and Integrated Modeling of Bacterial Growth on an Insoluble Hydrophobic Substrate (Phenanthrene)

    DEFF Research Database (Denmark)

    Adam, Iris K. U.; Rein, Arno; Miltner, Anja

    2014-01-01

    Metabolism of a low-solubility substrate is limited by dissolution and availability and can hardly be determined. We developed a numerical model for simultaneously calculating dissolution kinetics of such substrates and their metabolism and microbial growth (Monod kinetics with decay) and tested ...

  17. Three-dimensional growth simulation: A study of substrate oriented films

    International Nuclear Information System (INIS)

    Besnard, A; Martin, N; Carpentier, L

    2010-01-01

    Monte Carlo simulations are developed to simulate the growth of three-dimensional columnar microstructure in thin films. We are studying in particular oriented microstructure like those produced with the Glancing Angle Deposition technique (GLAD). Some geometrical characteristics of the particles flux, the organization of defect sites on the substrate surface and the atomic surface diffusion are mainly investigated in order to predict the growth processes and the resulting features of the films. This study reports on simulations of thin film growth exhibiting an oblique and zigzag columnar microstructure. Column angle evolution and density are investigated versus incidence angle α or period number n and compared with experimental measurements.

  18. Effect of different substrates on growth of Mimosa bimucronata seedlings inoculate with rhizobium

    Directory of Open Access Journals (Sweden)

    Juliana Müller Freire

    2017-06-01

    Full Text Available The objective of this study was to evaluate the growth response of Mimosa bimucronata (DC O. Kuntze seedlings in nursery conditions to inoculation with rhizobium strains previously selected using different substrates. An experimental design of randomized blocks with split plots was used, testing three substrates (pure organic-containing clay, sand and manure in 1: 1: 1 v: v: v ratio; organomineral mixed with 30% straw and sand with vermiculite in 1: 1 v: v and four N sources (inoculation with strains BR 3461 and BR 3470, control with N fertilization and control without fertilization, totalizing 12 treatments. Height and stem diameter were evaluate after 90 days and shoot, root and nodules dry mass were evaluate after 120 days. Organomineral substrates provided better seedling growth. However, only organic-substrate with straw and sand with vermiculite showed positive responses of plants inoculated with BR3470 strain. The performance of the inoculated seedlings was not higher than that of seedlings fertilized with N. The rate of N applied stimulated nodulation rather than inhibit it.

  19. Epitaxial growth of nobel metals on alumina substrates

    International Nuclear Information System (INIS)

    Al-Mohammad, A.

    2007-06-01

    The influence of the reconstructed (0001) α-Al 2 O 3 surface on the heteroepitaxial growth and adhesion properties of small metal particles (gold, silver and copper) of noncontinuous thin films has been investigated. The crystallographic structure and morphology of substrate surfaces were examined by Reflection High Energy Electron Diffraction and Atomic Force Microscopy techniques. The reconstructed surfaces are terminated by one or more Aluminum atomic layers. By means of the Transmission Electronic Microscopy, the various granulometric and lattice parameters variations are investigated during different stages of the heteroepitaxial growth of metallic thin films. We estimated the adhesion energy values for each case of metal//(0001)α-Al 2 O 3 interfaces by two methods: the maximum cluster density and the Lifshits theory of Van der Waals energy of interfaces. The results of both methods are in good agreement. Using these methods, we found interfaces Hamaker's constants values and we investigated all the heteroepitaxial growth steps.(author)

  20. Connection between the growth rate distribution and the size dependent crystal growth

    Science.gov (United States)

    Mitrović, M. M.; Žekić, A. A.; IIić, Z. Z.

    2002-07-01

    The results of investigations of the connection between the growth rate dispersions and the size dependent crystal growth of potassium dihydrogen phosphate (KDP), Rochelle salt (RS) and sodium chlorate (SC) are presented. A possible way out of the existing confusion in the size dependent crystal growth investigations is suggested. It is shown that the size independent growth exists if the crystals belonging to one growth rate distribution maximum are considered separately. The investigations suggest possible reason for the observed distribution maxima widths, and the high data scattering on the growth rate versus the crystal size dependence.

  1. Effects of substrate concentrations on the growth of heterotrophic bacteria and algae in secondary facultative ponds.

    Science.gov (United States)

    Kayombo, S; Mbwette, T S A; Katima, J H Y; Jorgensen, S E

    2003-07-01

    This paper presents the effect of substrate concentration on the growth of a mixed culture of algae and heterotrophic bacteria in secondary facultative ponds (SFPs) utilizing settled domestic sewage as a sole source of organic carbon. The growth of the mixed culture was studied at the concentrations ranging between 200 and 800 mg COD/l in a series of batch chemostat reactors. From the laboratory data, the specific growth rate (micro) was determined using the modified Gompertz model. The maximum specific growth rate ( micro(max)) and half saturation coefficients (K(s)) were calculated using the Monod kinetic equation. The maximum observed growth rate ( micro(max)) for heterotrophic bacteria was 3.8 day(-1) with K(s) of 200 mg COD/l. The micro(max) for algal biomass based on suspended volatile solids was 2.7 day(-1) with K(s) of 110 mg COD/l. The micro(max) of algae based on the chlorophyll-a was 3.5 day(-1) at K(s) of 50mg COD/l. The observed specific substrate removal by heterotrophic bacteria varied between the concentrations of substrate used and the average value was 0.82 (mg COD/mg biomass). The specific substrate utilization rate in the bioreactors was direct proportional to the specific growth rate. Hence, the determined Monod kinetic parameters are useful for the definition of the operation of SFPs.

  2. Morphology Controlled Fabrication of InN Nanowires on Brass Substrates

    Directory of Open Access Journals (Sweden)

    Huijie Li

    2016-10-01

    Full Text Available Growth of semiconductor nanowires on cheap metal substrates could pave the way to the large-scale manufacture of low-cost nanowire-based devices. In this work, we demonstrated that high density InN nanowires can be directly grown on brass substrates by metal-organic chemical vapor deposition. It was found that Zn from the brass substrates is the key factor in the formation of nanowires by restricting the lateral growth of InN. The nanowire morphology is highly dependent on the growth temperature. While at a lower growth temperature, the nanowires and the In droplets have large diameters. At the elevated growth temperature, the lateral sizes of the nanowires and the In droplets are much smaller. Moreover, the nanowire diameter can be controlled in situ by varying the temperature in the growth process. This method is very instructive to the diameter-controlled growth of nanowires of other materials.

  3. Dracaena marginata biofilter: design of growth substrate and treatment of stormwater runoff.

    Science.gov (United States)

    Vijayaraghavan, K; Praveen, R S

    2016-01-01

    The purpose of this research was to investigate the efficiency of Dracaena marginata planted biofilters to decontaminate urban runoff. A new biofilter growth substrate was prepared using low-cost and locally available materials such as red soil, fine sand, perlite, vermiculite, coco-peat and Sargassum biomass. The performance of biofilter substrate was compared with local garden soil based on physical and water quality parameters. Preliminary analyses indicated that biofilter substrate exhibited desirable characteristics such as low bulk density (1140 kg/m(3)), high water holding capacity (59.6%), air-filled porosity (7.82%) and hydraulic conductivity (965 mm/h). Four different biofilter assemblies, with vegetated and non-vegetated systems, were examined for several artificial rain events (un-spiked and metal-spiked). Results from un-spiked artificial rain events suggested that concentrations of most of the chemical components in effluent were highest at the beginning of rain events and thereafter subsided during the subsequent rain events. Biofilter growth substrate showed superior potential over garden soil to retain metal ions such as Al, Fe, Cu, Cr, Ni, Zn, Cd and Pb during metal-spiked rain events. Significant differences were also observed between non-vegetated and vegetated biofilter assemblies in runoff quality, with the latter producing better results.

  4. Effect of different substrates for organic agriculture in seedling development of traditional species of Solanaceae

    Energy Technology Data Exchange (ETDEWEB)

    Olaria, M.; Nebot, J.F.; Molina, H.; Troncho, P.; Lapeña, P.; Llorens, E.

    2016-11-01

    Sowing of seedlings is one of the most critical processes on the establishment of a crop, since the future development of the plant depends largely on its health when is planted on the field. Moreover, organic agriculture has to deal with the low application of fertilizers and pesticides, which hinder the growth of seedlings. In this work, we studied the big influence of different mixtures of substrates suitable for organic agriculture based on peat, coconut husk and vermicompost in traditional varieties of tomato, pepper and eggplant. Our results indicate that the use of coconut husk based substrates in organic agriculture can reduce the growth of seedlings between 20 and 30% compared with peat-based substrates. Moreover, the plants growth in this substrate showed lower levels of chlorophyll and lower weight, but the results are strongly dependent on the species tested. Comparison between traditional plants demonstrates that traditional varieties are strongly influenced by the substrate, whereas the growth of a commercial variety of tomato barely differs when different substrates are used. The election of the substrate in organic agriculture is critical to the correct development of the plant, especially when traditional plant varieties are used. (Author)

  5. Effect of different substrates for organic agriculture in seedling development of traditional species of Solanaceae

    Directory of Open Access Journals (Sweden)

    Hector Molina

    2016-03-01

    Full Text Available Sowing of seedlings is one of the most critical processes on the establishment of a crop, since the future development of the plant depends largely on its health when is planted on the field. Moreover, organic agriculture has to deal with the low application of fertilizers and pesticides, which hinder the growth of seedlings. In this work, we studied the big influence of different mixtures of substrates suitable for organic agriculture based on peat, coconut husk and vermicompost in traditional varieties of tomato, pepper and eggplant. Our results indicate that the use of coconut husk based substrates in organic agriculture can reduce the growth of seedlings between 20 and 30% compared with peat-based substrates. Moreover, the plants growth in this substrate showed lower levels of chlorophyll and lower weight, but the results are strongly dependent on the species tested. Comparison between traditional plants demonstrates that traditional varieties are strongly influenced by the substrate, whereas the growth of a commercial variety of tomato barely differs when different substrates are used. The election of the substrate in organic agriculture is critical to the correct development of the plant, especially when traditional plant varieties are used.

  6. Thickness-controlled direct growth of nanographene and nanographite film on non-catalytic substrates

    Science.gov (United States)

    Du, Lei; Yang, Liu; Hu, Zhiting; Zhang, Jiazhen; Huang, Chunlai; Sun, Liaoxin; Wang, Lin; Wei, Dacheng; Chen, Gang; Lu, Wei

    2018-05-01

    Metal-catalyzed chemical vapor deposition (CVD) has been broadly employed for large-scale production of high-quality graphene. However, a following transfer process to targeted substrates is needed, which is incompatible with current silicon technology. We here report a new CVD approach to form nanographene and nanographite films with accurate thickness control directly on non-catalytic substrates such as silicon dioxide and quartz at 800 °C. The growth time is as short as a few seconds. The approach includes using 9-bis(diethylamino)silylanthracene as the carbon source and an atomic layer deposition (ALD) controlling system. The structure of the formed nanographene and nanographite films were characterized using atomic force microscopy, high resolution transmission electron microscopy, Raman scattering, and x-ray photoemission spectroscopy. The nanographite film exhibits a transmittance higher than 80% at 550 nm and a sheet electrical resistance of 2000 ohms per square at room temperature. A negative temperature-dependence of the resistance of the nanographite film is also observed. Moreover, the thickness of the films can be precisely controlled via the deposition cycles using an ALD system, which promotes great application potential for optoelectronic and thermoelectronic-devices.

  7. Bacterial growth and substrate degradation by BTX-oxidizing culture in response to salt stress.

    Science.gov (United States)

    Lee, Chi-Yuan; Lin, Ching-Hsing

    2006-01-01

    Interactions between microbial growth and substrate degradation are important in determining the performance of trickle-bed bioreactors (TBB), especially when salt is added to reduce biomass formation in order to alleviate media clogging. This study was aimed at quantifying salinity effects on bacterial growth and substrate degradation, and at acquiring kinetic information in order to improve the design and operation of TBB. Experiment works began by cultivating a mixed culture in a chemostat reactor receiving artificial influent containing a mixture of benzene, toluene, and xylene (BTX), followed by using the enrichment culture to degrade the individual BTX substrates under a particular salinity, which ranged 0-50 g l(-1) in batch mode. Then, the measured concentrations of biomass and residual substrate versus time were analyzed with the microbial kinetics; moreover, the obtained microbial kinetic constants under various salinities were modeled using noncompetitive inhibition kinetics. For the three substrates the observed bacterial yields appeared to be decreased from 0.51-0.74 to 0.20-0.22 mg mg(-1) and the maximum specific rate of substrate utilization, q, declined from 0.25-0.42 to 0.07-0.11 h(-1), as the salinity increased from 0 to 50 NaCl g l(-1). The NaCl acted as noncompetitive inhibitor, where the modeling inhibitions of the coefficients, K ( T(S)), were 22.7-29.7 g l(-1) for substrate degradation and K ( T(mu)), 13.0-19.0 g l(-1), for biomass formation. The calculated ratios for the bacterial maintenance rate, m (S), to q, further indicated that the percentage energy spent on maintenance increased from 19-24 to 86-91% as salinity level increased from 0 to 50 g l(-1). These results revealed that the bacterial growth was more inhibited than substrate degradation by the BTX oxidizers under the tested salinity levels. The findings from this study demonstrate the potential of applying NaCl salt to control excessive biomass formation in biotrickling filters.

  8. The effect of sulphur-terminated GaAs substrates on the MOVPE growth of CuGaS2 thin films

    International Nuclear Information System (INIS)

    Berndt, P.R.; Botha, J.R.; Branch, M.S.; Leitch, A.W.R.; Kirmse, H.; Neumann, W.; Weber, J.

    2007-01-01

    In this study, various CuGaS 2 layers were grown on GaAs (001) substrates using metalorganic vapour phase epitaxy, for the purpose of studying the effect of sulphur-termination of the substrate on layer quality. The resultant films were investigated using X-ray diffractometry, and transmission electron microscopy, with high-resolution transmission electron microscopy providing additional insights into crystallite growth on the control substrates. This paper will demonstrate that sulphur-termination limits substrate degradation. In the absence of sulphur-termination, atypical three-dimensional MOVPE growth is observed, with epitaxial crystallites varying in size from 10 nm to 200 nm. Substrate degradation inhibits lateral growth at the interface resulting in amorphous regions, cavities, and epitaxial crystallites demonstrating overgrowth into mushroom-like structures

  9. EVALUATION OF THE GROWTH OF SELECTED LACTOBACILLI IN PSEUDOCEREAL SUBSTRATE

    Directory of Open Access Journals (Sweden)

    Denisa Liptáková

    2011-12-01

    Full Text Available The growth dynamics of Lactobacillus spp. in sweet water- and milk-based substrates from cooked buckwheat and amaranth flour were studied in this work. The numbers of lactobacilli were observed during fermentation in 5% CO2 atmosphere at 37 °C and storage (3 weeks at 6 °C. The earned data and estimated growth parameters showed that certain strains grew well in the milk-based gruels, even water-based amaranth gruel. This was also the case of the species under study characterized with the fastest growth. Based on the rates, only the strains of Lactobacillus rhamnosus GG and VT1 were able to grow with the values higher than 0.6 log CFU.ml-1.h-1 that can be expressed as the times to double (td lower than 0.5 h. This was found in both the amaranth and buckwheat milk-based gruels and water-based amaranth gruels but fermented only by the probiotic GG strain. The 3-week storage tests aimed on survival of the lactobacilli at 6 °C showed minimal decrease of the counts in buckwheat gruels with the average rates of -0.084 and -0.004 log CFU.ml-1.d-1 in water- and milk-based gruels, respectively. On the other hand in amaranth gruels, the numbers of lactobacilli slightly increased with the rate of 0.02 log CFU.ml-1.d-1, on average. The results of this pilot study pointed out that the selection of suitable lactic acid bacteria should be performed for optimal fermentation of pseudo-cereal substrates. The numbers of lactobacilli at the end of fermentation were not or very slightly affected by the type of substrate at 6 °C during three weeks.doi:10.5219/169

  10. Effects of substrate misorientation and growth rate on ordering in GaInP

    Science.gov (United States)

    Su, L. C.; Ho, I. H.; Stringfellow, G. B.

    1994-05-01

    Epitaxial layers of GaxIn1-xP with x≊0.52 have been grown by organometallic vapor-phase epitaxy on GaAs substrates misoriented from the (001) plane in the [1¯10] direction by angles ϑm, of 0°, 3°, 6°, and 9°. For each substrate orientation growth rates rg of 1, 2, and 4 μm/h have been used. The ordering was characterized using transmission electron diffraction (TED), dark-field imaging, and photoluminescence. The (110) cross-sectional images show domains of the Cu-Pt structure separated by antiphase boundaries (APBs). The domain size and shape and the degree of order are found to be strongly affected by both the substrate misorientation and the growth rate. For example, lateral domain dimensions range from 50 Å for layers grown with rg=4 μm/h and ϑm=0° to 2500 Å for rg=1 μm/h and ϑm=9°. The APBs generally propagate from the substrate/epilayer interface to the top surface at an angle to the (001) plane that increases dramatically as the angle of misorientation increases. The angle is nearly independent of growth rate. From the superspot intensities in the TED patterns, the degree of order appears to be a maximum for ϑm≊5°. Judging from the reduction in photoluminescence peak energy caused by ordering, the maximum degree of order appears to occur at ϑm≊4°.

  11. A model framework to describe growth-linked biodegradation of trace-level pesticides in the presence of coincidental carbon substrates and microbes

    DEFF Research Database (Denmark)

    Liu, Li; Helbling, Damian E.; Kohler, Hans-Peter E.

    2014-01-01

    described were: the growth-linked biodegradation of micropollutant at environmentally relevant concentrations; the effect of coincidental assimilable organic carbon substrates; and the effect of coincidental microbes that compete for assimilable organic carbon substrates. We used Monod kinetic models...... to describe substrate utilization and microbial growth rates for specific pesticide and degrader pairs. We then extended the model to include terms for utilization of assimilable organic carbon substrates by the specific degrader and coincidental microbes, growth on assimilable organic carbon substrates......, challenges remain in developing engineered remediation strategies for pesticide-contaminated environments because the fundamental processes that regulate growth-linked biodegradation of pesticides in natural environments remain poorly understood. In this research, we developed a model framework to describe...

  12. Growth of bi- and tri-layered graphene on silicon carbide substrate via molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Min, Tjun Kit; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    Molecular dynamics (MD) simulation with simulated annealing method is used to study the growth process of bi- and tri-layered graphene on a 6H-SiC (0001) substrate via molecular dynamics simulation. Tersoff-Albe-Erhart (TEA) potential is used to describe the inter-atomic interactions among the atoms in the system. The formation temperature, averaged carbon-carbon bond length, pair correlation function, binding energy and the distance between the graphene formed and the SiC substrate are quantified. The growth mechanism, graphitization of graphene on the SiC substrate and characteristics of the surface morphology of the graphene sheet obtained in our MD simulation compare well to that observed in epitaxially grown graphene experiments and other simulation works.

  13. Correlation between substrate bias, growth process and structural properties of phosphorus incorporated tetrahedral amorphous carbon films

    International Nuclear Information System (INIS)

    Liu Aiping; Zhu Jiaqi; Han Jiecai; Wu Huaping; Jia Zechun

    2007-01-01

    We investigate the growth process and structural properties of phosphorus incorporated tetrahedral amorphous carbon (ta-C:P) films which are deposited at different substrate biases by filtered cathodic vacuum arc technique with PH 3 as the dopant source. The films are characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy, Raman spectroscopy, residual stress measurement, UV/VIS/NIR absorption spectroscopy and temperature-dependent conductivity measurement. The atomic fraction of phosphorus in the films as a function of substrate bias is obtained by XPS analysis. The optimum bias for phosphorus incorporation is about -80 V. Raman spectra show that the amorphous structures of all samples with atomic-scaled smooth surface are not remarkably changed when PH 3 is implanted, but some small graphitic crystallites are formed. Moreover, phosphorus impurities and higher-energetic impinging ions are favorable for the clustering of sp 2 sites dispersed in sp 3 skeleton and increase the level of structural ordering for ta-C:P films, which further releases the compressive stress and enhances the conductivity of the films. Our analysis establishes an interrelationship between microstructure, stress state, electrical properties, and substrate bias, which helps to understand the deposition mechanism of ta-C:P films

  14. Substrates of neuropsychological functioning in stimulant dependence: a review of functional neuroimaging research

    NARCIS (Netherlands)

    Crunelle, Cleo L.; Veltman, Dick J.; Booij, Jan; Emmerik-van Oortmerssen, Katelijne; den Brink, Wim

    2012-01-01

    Stimulant dependence is associated with neuropsychological impairments. Here, we summarize and integrate the existing neuroimaging literature on the neural substrates of neuropsychological (dys) function in stimulant dependence, including cocaine, (meth-) amphetamine, ecstasy and nicotine

  15. Growth and yield of Dutch cucumber grown in a protected environment and with alternative organic substrates

    Directory of Open Access Journals (Sweden)

    Cinthya Meneses Fernández

    2018-05-01

    Full Text Available The replacement of imported substrates by local materials is a trend in severaltechnifiedproduction systems, given the cost reduction and the importance of agricultural by-products, formerly considered to be waste. The main objective of this work was to validate the effect of different substrates on the growth and productivity of Dutch cucumber plants under greenhouse conditions. The study took place from October 2012 to January 2013, at the Agricultural Experiment Station Fabio Baudrit, Alajuela, Costa Rica. Variety Fuerte was used and four mixed substrates (volume ratio made of local raw materials as coconut fiber (FC, oil palm leaf fiber (FP, organic compost (ABO, and sawdust (AS as well as a commercial treatment (control constituted by coco coir slabs were analyzed. Substrate water content, plant growth (vegetative phase, and yield were evaluated according to commercial size (S, M, L, XL, and rejected. The growth of Dutch cucumber plants, variety Fuerte, was higher on substrates with coconut fiber 40% + oil palm leaf fiber 40% + organic compost 20%, and coconut fiber 70% + organic compost 30%, while yield of the same two substrates was 15.57 and 15.44 kg/m2, respectively. Both treatments were statistically equal to the commercial coco coir substrate slabs with a yield of 14.77 kg/m2. Result attributed to the nutritional contribution of the organic compost (high K, Ca, and Mg along with and to the effects of aeration and water retention of fibers.

  16. Patterned growth of carbon nanotubes on Si substrates without predeposition of metal catalysts

    Science.gov (United States)

    Chen, Y.; Yu, J.

    2005-07-01

    Aligned carbon nanotubes (CNTs) can be readily synthesized on quartz or silicon-oxide-coated Si substrates using a chemical vapor deposition method, but it is difficult to grow them on pure Si substrates without predeposition of metal catalysts. We report that aligned CNTs were grown by pyrolysis of iron phthalocyanine at 1000°C on the templates created on Si substrates with simple mechanical scratching. Scanning electron microscopy and x-ray energy spectroscopy analysis revealed that the trenches and patterns created on the surface of Si substrates were preferred nucleation sites for nanotube growth due to a high surface energy, metastable surface structure, and possible capillarity effect. A two-step pyrolysis process maintained Fe as an active catalyst.

  17. Peroxisomal catalase deficiency modulates yeast lifespan depending on growth conditions

    NARCIS (Netherlands)

    Kawalek, Adam; Lefevre, Sophie D.; Veenhuis, Marten; van der Klei, Ida J.

    We studied the role of peroxisomal catalase in chronological aging of the yeast Hansenula polymorpha in relation to various growth substrates. Catalase-deficient (cat) cells showed a similar chronological life span (CLS) relative to the wild-type control upon growth on carbon and nitrogen sources

  18. Homo-epitaxial diamond film growth on ion implanted diamond substrates

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P S; Prawer, S; Nugent, K W; Bettiol, A A; Kostidis, L I; Jamieson, D N [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    The nucleation of CVD diamond is a complicated process, governed by many interrelated parameters. In the present work we attempt to elucidate the effect of strain on the growth of a homo-epitaxial CVD diamond. We have employed laterally confined high dose (MeV) Helium ion implantation to produce surface swelling of the substrate. The strain is enhanced by the lateral confinement of the implanted region to squares of 100 x 100 {mu}m{sup 2}. After ion implantation, micro-Raman spectroscopy was employed to map the surface strain. The substrates were then inserted into a CVD reactor and a CVD diamond film was grown upon them. Since the strained regions were laterally confined, it was then possible to monitor the effect of strain on diamond nucleation. The substrates were also analysed using Rutherford Backscattering Spectroscopy (RBS), Proton induced X-ray Emission (PIXE) and Ion Beam induced Luminescence (IBIL). 7 refs., 5 figs.

  19. Homo-epitaxial diamond film growth on ion implanted diamond substrates

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P.S.; Prawer, S.; Nugent, K.W.; Bettiol, A.A.; Kostidis, L.I.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The nucleation of CVD diamond is a complicated process, governed by many interrelated parameters. In the present work we attempt to elucidate the effect of strain on the growth of a homo-epitaxial CVD diamond. We have employed laterally confined high dose (MeV) Helium ion implantation to produce surface swelling of the substrate. The strain is enhanced by the lateral confinement of the implanted region to squares of 100 x 100 {mu}m{sup 2}. After ion implantation, micro-Raman spectroscopy was employed to map the surface strain. The substrates were then inserted into a CVD reactor and a CVD diamond film was grown upon them. Since the strained regions were laterally confined, it was then possible to monitor the effect of strain on diamond nucleation. The substrates were also analysed using Rutherford Backscattering Spectroscopy (RBS), Proton induced X-ray Emission (PIXE) and Ion Beam induced Luminescence (IBIL). 7 refs., 5 figs.

  20. Homo-epitaxial diamond film growth on ion implanted diamond substrates

    International Nuclear Information System (INIS)

    Weiser, P.S.; Prawer, S.; Nugent, K.W.; Bettiol, A.A.; Kostidis, L.I.; Jamieson, D.N.

    1996-01-01

    The nucleation of CVD diamond is a complicated process, governed by many interrelated parameters. In the present work we attempt to elucidate the effect of strain on the growth of a homo-epitaxial CVD diamond. We have employed laterally confined high dose (MeV) Helium ion implantation to produce surface swelling of the substrate. The strain is enhanced by the lateral confinement of the implanted region to squares of 100 x 100 μm 2 . After ion implantation, micro-Raman spectroscopy was employed to map the surface strain. The substrates were then inserted into a CVD reactor and a CVD diamond film was grown upon them. Since the strained regions were laterally confined, it was then possible to monitor the effect of strain on diamond nucleation. The substrates were also analysed using Rutherford Backscattering Spectroscopy (RBS), Proton induced X-ray Emission (PIXE) and Ion Beam induced Luminescence (IBIL). 7 refs., 5 figs

  1. Catalyst free growth of CNTs by CVD on nanoscale rough surfaces of silicon substrates

    Science.gov (United States)

    Damodar, D.; Sahoo, R. K.; Jacob, C.

    2013-06-01

    Catalyst free growth of carbon nanotubes (CNT) has been achieved using atmospheric pressure chemical vapor deposition (APCVD) on surface modified Si(111) substrates. The effect of the substrate surface has been observed by partially etching with KOH (potassium hydroxide) solution which is an anisotropic etchant. Scanning electron microscopy (SEM) confirmed the formation of CNTs over most of the area of the substrate where substrates were anisotropically etched. Transmission electron microscopy (TEM) was used to observe the internal structure of the CNTs. Raman spectroscopy further confirmed the formation of the carbon nanostructures and also their graphitic crystallinity.

  2. Growth of Gold-assisted Gallium Arsenide Nanowires on Silicon Substrates via Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Ramon M. delos Santos

    2008-06-01

    Full Text Available Gallium arsenide nanowires were grown on silicon (100 substrates by what is called the vapor-liquid-solid (VLS growth mechanism using a molecular beam epitaxy (MBE system. Good quality nanowires with surface density of approximately 108 nanowires per square centimeter were produced by utilizing gold nanoparticles, with density of 1011 nanoparticles per square centimeter, as catalysts for nanowire growth. X-ray diffraction measurements, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy revealed that the nanowires are epitaxially grown on the silicon substrates, are oriented along the [111] direction and have cubic zincblende structure.

  3. Profiling Y561-dependent and -independent substrates of CSF-1R in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Melodie L Knowlton

    2010-10-01

    Full Text Available Receptor tyrosine kinases (RTKs activate multiple downstream cytosolic tyrosine kinases following ligand stimulation. SRC family kinases (SFKs, which are recruited to activated RTKs through SH2 domain interactions with RTK autophosphorylation sites, are targets of many subfamilies of RTKs. To date, there has not been a systematic analysis of the downstream substrates of such receptor-activated SFKs. Here, we conducted quantitative mass spectrometry utilizing stable isotope labeling (SILAC analysis to profile candidate SRC-substrates induced by the CSF-1R tyrosine kinase by comparing the phosphotyrosine-containing peptides from cells expressing either CSF-1R or a mutant form of this RTK that is unable to bind to SFKs. This analysis identified previously uncharacterized changes in tyrosine phosphorylation induced by CSF-1R in mammary epithelial cells as well as a set of candidate substrates dependent on SRC recruitment to CSF-1R. Many of these candidates may be direct SRC targets as the amino acids flanking the phosphorylation sites in these proteins are similar to known SRC kinase phosphorylation motifs. The putative SRC-dependent proteins include known SRC substrates as well as previously unrecognized SRC targets. The collection of substrates includes proteins involved in multiple cellular processes including cell-cell adhesion, endocytosis, and signal transduction. Analyses of phosphoproteomic data from breast and lung cancer patient samples identified a subset of the SRC-dependent phosphorylation sites as being strongly correlated with SRC activation, which represent candidate markers of SRC activation downstream of receptor tyrosine kinases in human tumors. In summary, our data reveal quantitative site-specific changes in tyrosine phosphorylation induced by CSF-1R activation in epithelial cells and identify many candidate SRC-dependent substrates phosphorylated downstream of an RTK.

  4. Multilayer graphene growth on polar dielectric substrates using chemical vapour deposition

    Science.gov (United States)

    Karamat, S.; Çelik, K.; Shah Zaman, S.; Oral, A.

    2018-06-01

    High quality of graphene is necessary for its applications at industrial scale production. The most convenient way is its direct growth on dielectrics which avoid the transfer route of graphene from metal to dielectric substrate usually followed by graphene community. The choice of a suitable dielectric for the gate material which can replace silicon dioxide (SiO2) is in high demand. Various properties like permittivity, thermodynamic stability, film morphology, interface quality, bandgap and band alignment of other dielectrics with graphene needs more exploration. A potential dielectric material is required which could be used to grow graphene with all these qualities. Direct growth of graphene on magnesium oxide (MgO) substrates is an interesting idea and will be a new addition in the library of 2D materials. The present work is about the direct growth of graphene on MgO substrates by an ambient pressure chemical vapour deposition (CVD) method. We address the surface instability issue of the polar oxides which is the most challenging factor in MgO. Atomic force microscopy (AFM) measurements showed the topographical features of the graphene coated on MgO. X-ray photoelectron spectroscopy (XPS) study is carried out to extract information regarding the presence of necessary elements, their bonding with substrates and to confirm the sp-2 hybridization of carbon, which is a characteristic feature of graphene film. The chemical shift is due to the surface reconstruction of MgO in the prepared samples. For graphene-MgO interface, valence band offset (VBO) and conduction band offset (CBO) extracted from valence band spectra reported. Further, we predicted the energy band diagram for single layer and thin film of graphene. By using the room-temperature energy band gap values of MgO and graphene, the CBO is calculated to be 6.85 eV for single layer and 5.66 eV for few layer (1-3) of graphene layers.

  5. Growth and sporulation of Trichoderma polysporum on organic substrates by addition of carbon and nitrogen sources

    International Nuclear Information System (INIS)

    Rajput, A.Q.; Shahzad, S.

    2015-01-01

    During the present study nine different organic substrates viz., rice grains, sorghum grains, wheat grains, millet grains, wheat straw, rice husk, cow dung, sawdust and poultry manure were used for mass multiplication of Trichoderma polysporum. Grains, especially sorghum grains were found to be the best substrate for T. polysporum. Wheat straw and rice husk were less suitable, whereas, cow dung, sawdust and poultry manure were not suitable for growth of the fungus. Sucrose at the rate of 30,000 ppm and ammonium nitrate at the rate of 3,000 ppm were found to be the best carbon and nitrogen sources for growth and sporulation of T. polysporum. Amendment of the selected C and N sources to wheat straw, rice husk and millet grains resulted in significantly higher growth and conidia production by T. polysporum as compared to un-amended substrates. Sorghum and rice grains showed suppression in growth and sporulation of T. polysporum when amended with C and N sources. During studies on shelf life, populations of T. polysporum attained the peck at 60-135 days intervals on different substrates and declined gradually thereafter. However, even after 330 days, the populations were greater than the population at 0-day. At 345-360 days interval, populations were less than the initial populations at 0- days. Shelf life on C+N amended wheat straw and rice husk were more as compared to un-amended substrates. (author)

  6. Tolerance of GaAs as an original substrate for HVPE growth of free standing GaN

    Science.gov (United States)

    Suzuki, Mio; Sato, T.; Suemasu, T.; Hasegawa, F.

    2004-09-01

    In order to investigate possibility of thick GaN growth on a GaAs substrate by halide vapar phase epitaxy (HVPE), GaN was grown on GaAs(111)/Ti wafer with Ti deposited by E-gun. It was found that surface treatment of the GaAs substrate by HF solution deteriorated greatly the tolerence of GaAs and that Ti can protected GaAs from erosion by NH3. By depositing Ti on GaAs(111)A surface, a millor-like GaN layer could be grown at 1000 °C for 1 hour without serious deterioration of the original GaAs substrate. By increasing the growth rate, a thick free standing GaN will be obtained with GaAs as an original substrate in near future.

  7. Calcium-Dependent Protein Kinases from Arabidopsis show substrate specificity differences in an analysis of 103 substrates

    Directory of Open Access Journals (Sweden)

    Amy eCurran

    2011-08-01

    Full Text Available The identification of substrates represents a critical challenge for understanding any protein kinase-based signal transduction pathway. In Arabidopsis, there are more than 1000 different protein kinases, 34 of which belong to a family of Ca2+-dependent protein kinases (CPKs. While CPKs are implicated in regulating diverse aspects of plant biology, from ion transport to transcription, relatively little is known about isoform-specific differences in substrate specificity, or the number of phosphorylation targets. Here, in vitro kinase assays were used to compare phosphorylation targets of four CPKs from Arabidopsis (CPK1, 10, 16 and 34. Significant differences in substrate specificity for each kinase were revealed by assays using 103 different substrates. For example CPK16 phosphorylated Serine 109 in a peptide from the stress-regulated protein, Di19-2 with KM ~70 µM, but this site was not phosphorylated significantly by CPKs 1, 10, or 34. In contrast, CPKs 1, 10, and 34 phosphorylated 93 other peptide substrates not recognized by CPK16. Examples of substrate specificity differences among all four CPKs were verified by kinetic analyses. To test the correlation between in vivo phosphorylation events and in vitro kinase activities, assays were performed with 274 synthetic peptides that contained phosphorylation sites previously mapped in proteins isolated from plants (in vivo-mapped sites. Of these, 74 (27% were found to be phosphorylated by at least one of the four CPKs tested. This 27% success rate validates a robust strategy for linking the activities of specific kinases, such as CPKs, to the thousands of in planta phosphorylation sites that are being uncovered by emerging technologies.

  8. Modeling gravity effects on water retention and gas transport characteristics in plant growth substrates

    DEFF Research Database (Denmark)

    Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Jones, Scott B.; Tuller, Markus

    2014-01-01

    utilization to conserve energy and to limit transport costs, native materials mined on Moon or Mars are of primary interest for plant growth media in a future outpost, while terrestrial porous substrates with optimal growth media characteristics will be useful for onboard plant growth during space missions....... Due to limited experimental opportunities and prohibitive costs, liquid and gas behavior in porous substrates under reduced gravity conditions has been less studied and hence remains poorly understood. Based on ground-based measurements, this study examined water retention, oxygen diffusivity and air...... that estimates the gas percolation threshold based on the pore size distribution. The model successfully captured measured data for all investigated media and demonstrated the implications of the poorly-understood shift in gas percolation threshold with improved gas percolation in reduced gravity. Finally, using...

  9. Bonding temperature dependence of GaInAsP/InP laser diode grown on hydrophilically directly bonded InP/Si substrate

    Science.gov (United States)

    Aikawa, Masaki; Onuki, Yuya; Hayasaka, Natsuki; Nishiyama, Tetsuo; Kamada, Naoki; Han, Xu; Kallarasan Periyanayagam, Gandhi; Uchida, Kazuki; Sugiyama, Hirokazu; Shimomura, Kazuhiko

    2018-02-01

    The bonding-temperature-dependent lasing characteristics of 1.5 a µm GaInAsP laser diode (LD) grown on a directly bonded InP/Si substrate were successfully obtained. We have fabricated the InP/Si substrate using a direct hydrophilic wafer bonding technique at bonding temperatures of 350, 400, and 450 °C, and deposited GaInAsP/InP double heterostructure layers on this InP/Si substrate. The surface conditions, X-ray diffraction (XRD) analysis, photoluminescence (PL) spectra, and electrical characteristics after the growth were compared at these bonding temperatures. No significant differences were confirmed in X-ray diffraction analysis and PL spectra at these bonding temperatures. We realized the room-temperature lasing of the GaInAsP LD on the InP/Si substrate bonded at 350 and 400 °C. The threshold current densities were 4.65 kA/cm2 at 350 °C and 4.38 kA/cm2 at 400 °C. The electrical resistance was found to increase with annealing temperature.

  10. The effect of sulphur-terminated GaAs substrates on the MOVPE growth of CuGaS{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, P.R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)]. E-mail: pearl.berndt@nmmu.ac.za; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Branch, M.S. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Leitch, A.W.R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Kirmse, H. [Institute of Physics, Chair of Crystallography, Humboldt University of Berlin, Berlin (Germany); Neumann, W. [Institute of Physics, Chair of Crystallography, Humboldt University of Berlin, Berlin (Germany); Weber, J. [Institute for Applied Physics-Semiconductor Physics, University of Technology, Dresden (Germany)

    2007-05-31

    In this study, various CuGaS{sub 2} layers were grown on GaAs (001) substrates using metalorganic vapour phase epitaxy, for the purpose of studying the effect of sulphur-termination of the substrate on layer quality. The resultant films were investigated using X-ray diffractometry, and transmission electron microscopy, with high-resolution transmission electron microscopy providing additional insights into crystallite growth on the control substrates. This paper will demonstrate that sulphur-termination limits substrate degradation. In the absence of sulphur-termination, atypical three-dimensional MOVPE growth is observed, with epitaxial crystallites varying in size from 10 nm to 200 nm. Substrate degradation inhibits lateral growth at the interface resulting in amorphous regions, cavities, and epitaxial crystallites demonstrating overgrowth into mushroom-like structures.

  11. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tay, Roland Yingjie [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Temasek Laboratories@NTU, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Tsang, Siu Hon [Temasek Laboratories@NTU, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Loeblein, Manuela; Chow, Wai Leong [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); CNRS-International NTU Thales Research Alliance CINTRA UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Singapore, Singapore 637553 (Singapore); Loh, Guan Chee [Institue of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Toh, Joo Wah; Ang, Soon Loong [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Teo, Edwin Hang Tong, E-mail: htteo@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore)

    2015-03-09

    Atomically thin hexagonal-boron nitride (h-BN) films are primarily synthesized through chemical vapor deposition (CVD) on various catalytic transition metal substrates. In this work, a single-step metal-catalyst-free approach to obtain few- to multi-layer nanocrystalline h-BN (NCBN) directly on amorphous SiO{sub 2}/Si and quartz substrates is demonstrated. The as-grown thin films are continuous and smooth with no observable pinholes or wrinkles across the entire deposited substrate as inspected using optical and atomic force microscopy. The starting layers of NCBN orient itself parallel to the substrate, initiating the growth of the textured thin film. Formation of NCBN is due to the random and uncontrolled nucleation of h-BN on the dielectric substrate surface with no epitaxial relation, unlike on metal surfaces. The crystallite size is ∼25 nm as determined by Raman spectroscopy. Transmission electron microscopy shows that the NCBN formed sheets of multi-stacked layers with controllable thickness from ∼2 to 25 nm. The absence of transfer process in this technique avoids any additional degradation, such as wrinkles, tears or folding and residues on the film which are detrimental to device performance. This work provides a wider perspective of CVD-grown h-BN and presents a viable route towards large-scale manufacturing of h-BN substrates and for coating applications.

  12. WhiB6 is required for the secretion-dependent regulation of ESX-1 substrates in pathogenic mycobacteria.

    KAUST Repository

    Abdallah, Abdallah

    2018-04-09

    The mycobacterial type VII secretion system ESX-1 is responsible for the secretion of a number of proteins that play important roles during host infection. The regulation of the expression of secreted proteins is often essential to establish successful infection. Using transcriptome sequencing, we found that the abrogation of ESX-1 function in Mycobacterium marinum leads to a pronounced increase in gene expression levels of the espA operon during the infection of macrophages, suggesting an important role in ESX-1-mediated virulence during the early phase of infection. In addition, the disruption of ESX-1-mediated protein secretion also leads to a specific down-regulation of the ESX-1 substrates, but not of the structural components of this system, during growth in culture medium. This effect is observed in both M. marinum and M. tuberculosis. We established that down-regulation of ESX-1 substrates is the result of a regulatory process that is influenced by the putative transcriptional regulator whib6, which is located adjacent to the esx-1 locus. In addition, the overexpression of the ESX-1-associated PE35/PPE68 protein pair resulted in a significantly increased secretion of the ESX-1 substrate EsxA, demonstrating a functional link between these proteins. Taken together, these data show that WhiB6 is required for the secretion-dependent regulation of ESX-1 substrates and that ESX-1 substrates are regulated independently from the structural components, both during infection and as a result of active secretion.

  13. WhiB6 is required for the secretion-dependent regulation of ESX-1 substrates in pathogenic mycobacteria.

    KAUST Repository

    Abdallah, Abdallah; Weerdenburg, Eveline; Guan, Qingtian; Ummels, Roy; Borggreve, S; Adroub, Sabir; Malas, Tareq; Naeem, Raeece; Zhang, Huoming; Otto, Thomas; Bitter, Wilbert; Pain, Arnab

    2018-01-01

    The mycobacterial type VII secretion system ESX-1 is responsible for the secretion of a number of proteins that play important roles during host infection. The regulation of the expression of secreted proteins is often essential to establish successful infection. Using transcriptome sequencing, we found that the abrogation of ESX-1 function in Mycobacterium marinum leads to a pronounced increase in gene expression levels of the espA operon during the infection of macrophages, suggesting an important role in ESX-1-mediated virulence during the early phase of infection. In addition, the disruption of ESX-1-mediated protein secretion also leads to a specific down-regulation of the ESX-1 substrates, but not of the structural components of this system, during growth in culture medium. This effect is observed in both M. marinum and M. tuberculosis. We established that down-regulation of ESX-1 substrates is the result of a regulatory process that is influenced by the putative transcriptional regulator whib6, which is located adjacent to the esx-1 locus. In addition, the overexpression of the ESX-1-associated PE35/PPE68 protein pair resulted in a significantly increased secretion of the ESX-1 substrate EsxA, demonstrating a functional link between these proteins. Taken together, these data show that WhiB6 is required for the secretion-dependent regulation of ESX-1 substrates and that ESX-1 substrates are regulated independently from the structural components, both during infection and as a result of active secretion.

  14. Tolerance of GaAs as an original substrate for HVPE growth of free standing GaN

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Mio; Sato, T.; Suemasu, T.; Hasegawa, F. [University of Tsukuba, Institute of Applied Physics, Tsukuba, Ibaraki 305-8573 (Japan)

    2004-09-01

    In order to investigate possibility of thick GaN growth on a GaAs substrate by halide vapar phase epitaxy (HVPE), GaN was grown on GaAs(111)/Ti wafer with Ti deposited by E-gun. It was found that surface treatment of the GaAs substrate by HF solution deteriorated greatly the tolerance of GaAs and that Ti can protected GaAs from erosion by NH{sub 3}. By depositing Ti on GaAs(111)A surface, a mirror-like GaN layer could be grown at 1000 C for 1 hour without serious deterioration of the original GaAs substrate. By increasing the growth rate, a thick free standing GaN will be obtained with GaAs as an original substrate in near future. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Nanoscale imaging of the growth and division of bacterial cells on planar substrates with the atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Van Der Hofstadt, M. [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Hüttener, M.; Juárez, A. [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Departament de Microbiologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona (Spain); Gomila, G., E-mail: ggomila@ibecbarcelona.eu [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Departament d' Electronica, Universitat de Barcelona, C/ Marti i Franqués 1, 08028 Barcelona (Spain)

    2015-07-15

    With the use of the atomic force microscope (AFM), the Nanomicrobiology field has advanced drastically. Due to the complexity of imaging living bacterial processes in their natural growing environments, improvements have come to a standstill. Here we show the in situ nanoscale imaging of the growth and division of single bacterial cells on planar substrates with the atomic force microscope. To achieve this, we minimized the lateral shear forces responsible for the detachment of weakly adsorbed bacteria on planar substrates with the use of the so called dynamic jumping mode with very soft cantilever probes. With this approach, gentle imaging conditions can be maintained for long periods of time, enabling the continuous imaging of the bacterial cell growth and division, even on planar substrates. Present results offer the possibility to observe living processes of untrapped bacteria weakly attached to planar substrates. - Highlights: • Gelatine coatings used to weakly attach bacterial cells onto planar substrates. • Use of the dynamic jumping mode as a non-perturbing bacterial imaging mode. • Nanoscale resolution imaging of unperturbed single living bacterial cells. • Growth and division of single bacteria cells on planar substrates observed.

  16. Direct Growth of High-Quality InP Layers on GaAs Substrates by MOCVD

    Directory of Open Access Journals (Sweden)

    K. F. Yarn

    2003-01-01

    group V partial pressure, growth rate and V/III ratios. A mirror-like, uniform surface and high crystal quality of the metamorphic buffer layer directly grown on a GaAs substrate can be achieved. Finally, to investigate the performance of the metamorphic microwave devices, we also fabricate the InAlAs/InGaAs metamorphic HEMT on GaAs substrates.

  17. Study of carbide-forming element interlayers for diamond nucleation and growth on silicon and WC-Co substrates

    International Nuclear Information System (INIS)

    Tang, Y.; Li, Y.S.; Yang, Q.; Hirose, A.

    2010-01-01

    Diamond nucleation and growth on several typical carbide-forming elements (CFE) (Ti, Cr and W) coated Si and WC-Co substrates were studied. The ion beam sputtered CFE interlayers show an amorphous/nanocrystalline microstructure. The diamond formed on the CFE coated substrates shows higher nucleation density and rate and finer grain structure than on uncoated substrates. Consequently, nanocrystalline diamond thin films can be formed on the CFE coated substrates under conventional microcrystalline diamond growth conditions. Among the three tested CFE interlayers, diamond has the highest nucleation density and rate on W layer and the lowest on Ti layer. The diamond nucleation density and rate on CFE coated WC-Co are much higher than those on widely used metal nitride coated WC-Co.

  18. Fluorination of some highly functionalized cycloalkanes: chemoselectivity and substrate dependence.

    Science.gov (United States)

    Remete, Attila Márió; Nonn, Melinda; Fustero, Santos; Haukka, Matti; Fülöp, Ferenc; Kiss, Loránd

    2017-01-01

    A study exploring the chemical behavior of some dihydroxylated β-amino ester stereo- and regioisomers, derived from unsaturated cyclic β-amino acids is described. The nucleophilic fluorinations involving hydroxy-fluorine exchange of some highly functionalized alicyclic diol derivatives have been carried out in view of selective fluorination, investigating substrate dependence, neighboring group assistance and chemodifferentiation.

  19. Effects of substrate type on growth and mortality of blue mussels ( Mytilus edulis ) exposed to the predator Carcinus maenas

    DEFF Research Database (Denmark)

    Frandsen, Rikke; Dolmer, Per

    2002-01-01

    Structure and complexity of the substrate are important habitat characteristics for benthic epifauna. The specific growth and mortality rates and inducible defence characters on medium- sized blue mussels (Mytilus edulis L.) exposed to shore crabs (Carcinus maenas L.) were examined on three...... different substrate types in combined field and laboratory experiments. The experiments showed that complexity of the substrate increased blue mussel survival significantly, through a decrease in predation pressure. However, increased intraspecific competition for food on the complex substrate resulted...... in significantly lower growth rates of the mussels. Inducible defence characters were also influenced by substrate type. Blue mussels were more affected by predators on the structurally simple substrate, where they developed thicker shells and a larger posterior adductor muscle....

  20. Growth of fullerene on Ag and hydrogen-passivated Si substrates: Effect of electron beam exposure on growth modes

    International Nuclear Information System (INIS)

    Rundhe, M.V.; Dev, B.N.

    2008-01-01

    We have used Auger electron spectroscopy (AES) to investigate the effect of electron beam exposure on growth modes of fullerene (C 60 ) on substrates like Ag and hydrogen-passivated Si(1 1 1). The electron beam comprises of 3.4 keV electrons, which are used in the AES study. To investigate the effect, Auger signal (AS) vs. deposition time (t) measurements were conducted in a sequential mode, i.e., alternating deposition of C 60 and analysis using the electron beam. Duration of AES data collection after each deposition was the duration of exposure to electron beam in this experiment. For the growth study of C 60 on Ag, three AS-t plots were recorded for three different durations of exposure to electron beam. Changes in the AS-t plot, depending on the duration of exposure to the electron beam, reflect the electron beam-induced damage. Electron beam-induced damages of C 60 produce carbon materials of different densities and consequently transmission coefficient (α) of Auger electron through this material changes. In order to fit the AES (AS vs. t) data a model has been used which simultaneously provides the growth mode and the transmission coefficient. Observation of an increasing transmission coefficient with the increasing duration of exposure to the electron beam from α=0.34 to 0.60 indicates the change of the nature of the carbon material due to the partial damage of C 60

  1. Fluorination of some highly functionalized cycloalkanes: chemoselectivity and substrate dependence

    Directory of Open Access Journals (Sweden)

    Attila Márió Remete

    2017-11-01

    Full Text Available A study exploring the chemical behavior of some dihydroxylated β-amino ester stereo- and regioisomers, derived from unsaturated cyclic β-amino acids is described. The nucleophilic fluorinations involving hydroxy–fluorine exchange of some highly functionalized alicyclic diol derivatives have been carried out in view of selective fluorination, investigating substrate dependence, neighboring group assistance and chemodifferentiation.

  2. Dual inoculation with an Aarbuscular Mycorrhizal fungus and Rhizobium to facilitate the growth of alfalfa on coal mine substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wu, F.Y.; Bi, Y.L.; Wong, M.H. [China University of Mining & Technology, Beijing (China)

    2009-07-01

    A pot experiment was conducted to investigate the effects of Glomus mosseae and Rhizobium on Medicago sativa grown on three types of coal mine substrates, namely a mixture of coal wastes and sands (CS), coal wastes and fly ash (CF), and fly ash (FA). Inoculation with Rhizobium alone did not result in any growth response but G. mosseae alone displayed a significant effect on plant growth. G. mosseae markedly increased the survival rate of M. sativa in CS substrate. In CF and FA substrates the respective oven dry weights of M. sativa inoculated with G. mosseae were 1.8 and 5.1 times higher than those without inoculation. Based on nitrogen (N), phosphorus (P) and potassium (K) uptake and legume growth, the results also show that dual inoculation in CS and CF substrates elicited a synergistic effect. This indicates that inoculation with arbuscular mycorrhizal (AM) fungi may be a promising approach for revegetation of coal mine substrates.

  3. Substrate in the emergence and initial growth of seedlings of Caesalpinia pulcherrima

    Directory of Open Access Journals (Sweden)

    Magnólia Martins Alves

    Full Text Available ABSTRACT: Caesalpinia pulcherrima is an exotic species belongs to the Fabaceae family commonly known as flamboyant-mirim, and widely used for urban forestry. This study aimed to evaluate the effect of different substrates on the emergence and early seedlings growth of C. pulcherrima . The experiment was conducted in a greenhouse belonging to the Centro de Ciências Agrárias, Universidade Federal da Paraíba. The experimental design was completely randomized and treatments had 14 substrates: sand, vegetable soil, vermiculite, wood dust, carbonized rice straw, vegetable soil + sand 1:1, sand + wood dust 1:1, sand + carbonized rice straw 1:1, earth + wood dust 1:1, vegetable soil + carbonized rice straw 1:1, vermiculite + sand 1:1, vermiculite + wood dust 1:1, vermiculite + earth 1:1 and vermiculite + carbonized rice straw 1:1. Evaluation of the effect of the treatments was through the following determinations: percentage of emergency, first count, index of germination speed, length and dry weight of roots and shoots. The vermiculite, vegetable soil + sand 1:1, vermiculite + sand 1:1, vermiculite + saw dust 1:1, are suitable for emergence and early growth of seedlings of Caesalpinia pulcherrima . Substrates saw dust and carbonized rice straw were responsible for the worst performers on emergence and seedling development.

  4. RHEED and EELS study of Pd/Al bimetallic thin film growth on different α-Al 2O 3 substrates

    Science.gov (United States)

    Moroz, V.; Rajs, K.; Mašek, K.

    2002-06-01

    Pd/Al bimetallic thin films were grown by molecular beam epitaxy on single-crystalline α-Al 2O 3(0 0 0 1) and (1 1 2¯ 0) surfaces. Substrate and deposit crystallographic structures and evolution of deposit lattice parameter during the growth were studied by reflection high-energy electron diffraction. The electron energy loss spectroscopy was used as an auxiliary method for chemical analysis. The bimetallic films were prepared by successive deposition of both Pd and Al metals. The structure of Pd and Al deposits in early stages of the growth and its dependence on the preparation conditions were studied. Two phases of Pd clusters covered by Al overlayer have been found. The formation of Al overlayer strongly influenced the lattice parameter of Pd clusters.

  5. Poinsettia Growth and Development Response to Container Root Substrate with Biochar

    Directory of Open Access Journals (Sweden)

    Yanjun Guo

    2018-01-01

    Full Text Available A greenhouse study was conducted to evaluate the growth and development of poinsettia ‘Prestige Red’ (Euphorbia pulcherrima grown in a commercial peat-based potting mix (Sunshine Mix #1 amended with biochar at 0%, 20%, 40%, 60%, 80%, or 100% (by volume at four different fertigation regimes: F1: 100 to 200 mg·L−1 nitrogen (N, F2: 200 to 300 mg·L−1 N (control, F3: 300 to 400 mg·L−1 N, or F4: 400 to 500 mg·L−1 N. The experiment was a two-factor factorial design with 10 replications for each combination of biochar by fertigation. As the percentage of biochar increased, root substrate pore space and bulk density increased, while container capacity decreased. Root rot and red bract necrosis only occurred in F4 combined with 100% biochar. Plants grown in 40% biochar had a similar growth and development to those in 0% biochar. Up to 80% biochar, plants exhibited no significant change, except in terms of dry weight, which decreased at higher biochar percentages (60% and 80%. In summary, at a fertigation rate of 100 mg·L−1 N to 400 mg·L−1 N, up to 80% biochar could be used as an amendment to peat-based root substrate with acceptable growth reduction and no changes in quality.

  6. A novel, substrate independent three-step process for the growth of uniform ZnO nanorod arrays

    International Nuclear Information System (INIS)

    Byrne, D.; McGlynn, E.; Henry, M.O.; Kumar, K.; Hughes, G.

    2010-01-01

    We report a three-step deposition process for uniform arrays of ZnO nanorods, involving chemical bath deposition of aligned seed layers followed by nanorod nucleation sites and subsequent vapour phase transport growth of nanorods. This combines chemical bath deposition techniques, which enable substrate independent seeding and nucleation site generation with vapour phase transport growth of high crystalline and optical quality ZnO nanorod arrays. Our data indicate that the three-step process produces uniform nanorod arrays with narrow and rather monodisperse rod diameters (∼ 70 nm) across substrates of centimetre dimensions. X-ray photoelectron spectroscopy, scanning electron microscopy and X-ray diffraction were used to study the growth mechanism and characterise the nanostructures.

  7. GDH-Dependent Glutamate Oxidation in the Brain Dictates Peripheral Energy Substrate Distribution

    DEFF Research Database (Denmark)

    Karaca, Melis; Frigerio, Francesca; Migrenne, Stephanie

    2015-01-01

    in a central energy-deprivation state with increased ADP/ATP ratios and phospho-AMPK in the hypothalamus. This induced changes in the autonomous nervous system balance, with increased sympathetic activity promoting hepatic glucose production and mobilization of substrates reshaping peripheral energy stores...... glutamate dehydrogenase (GDH) activity. Here, we investigated the significance of glutamate as energy substrate for the brain. Upon glutamate exposure, astrocytes generated ATP in a GDH-dependent way. The observed lack of glutamate oxidation in brain-specific GDH null CnsGlud1(-/-) mice resulted...

  8. Growth and characterization of semi-polar (11-22) GaN on patterned (113) Si substrates

    International Nuclear Information System (INIS)

    Bai, J; Yu, X; Gong, Y; Hou, Y N; Zhang, Y; Wang, T

    2015-01-01

    Patterned (113) Si substrates have been fabricated for the growth of (11-22) semi-polar GaN, which completely eliminates one of the great issues in the growth of semi-polar GaN on silicon substrates, ‘Ga melting-back’. Furthermore, unlike any other mask patterning approaches which normally lead to parallel grooves along a particular orientation, our approach is to form periodic square window patterns. As a result, crack-free semi-polar (11-22) GaN with a significant improvement in crystal quality has been achieved, in particular, basal stacking faults (BSFs) have been significantly reduced. The mechanism for the defect suppression has been investigated based on detailed transmission electron microscopy measurements. It has been found that the BSFs can be impeded effectively at an early growth stage due to the priority growth along the 〈0001〉 direction. The additional 〈1-100〉 lateral growth above the masks results in a further reduction in dislocation density. The significant reduction in BSFs has been confirmed by low temperature photoluminescence measurements. (paper)

  9. Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates.

    Science.gov (United States)

    Chen, Haoming; Ma, Jinyi; Wei, Jiaxing; Gong, Xin; Yu, Xichen; Guo, Hui; Zhao, Yanwen

    2018-09-01

    Green roofs have increasingly been designed and applied to relieve environmental problems, such as water loss, air pollution as well as heat island effect. Substrate and vegetation are important components of green roofs providing ecosystem services and benefiting the urban development. Biochar made from sewage sludge could be potentially used as the substrate amendment for green roofs, however, the effects of biochar on substrate quality and plant performance in green roofs are still unclear. We evaluated the effects of adding sludge biochar (0, 5, 10, 15 and 20%, v/v) to natural soil planted with three types of plant species (ryegrass, Sedum lineare and cucumber) on soil properties, plant growth and microbial communities in both green roof and ground ecosystems. Our results showed that sludge biochar addition significantly increased substrate moisture, adjusted substrate temperature, altered microbial community structure and increased plant growth. The application rate of 10-15% sludge biochar on the green roof exerted the most significant effects on both microbial and plant biomass by 63.9-89.6% and 54.0-54.2% respectively. Path analysis showed that biochar addition had a strong effect on microbial biomass via changing the soil air-filled porosity, soil moisture and temperature, and promoted plant growth through the positive effects on microbial biomass. These results suggest that the applications of biochar at an appropriate rate can significantly alter plant growth and microbial community structure, and increase the ecological benefits of green roofs via exerting effects on the moisture, temperature and nutrients of roof substrates. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Halo(natronoarchaea isolated from hypersaline lakes utilize cellulose and chitin as growth substrates

    Directory of Open Access Journals (Sweden)

    Dimitry Y Sorokin

    2015-09-01

    Full Text Available Until recently, extremely halophilic euryarchaeota were considered mostly as aerobic heterotrophs utilizing simple organic compounds as growth substrates. Almost nothing is known on the ability of these prokaryotes to utilize complex polysaccharides as cellulose, xylan and chitin. Although few haloarchaeal cellulases and chitinases were recently characterized, the analysis of currently available haloarchaeal genomes deciphered numerous genes encoding glycosidases (GHs of various families including endoglucanases and chitinases. However, all these haloarchaea were isolated and cultivated on simple substrates and their ability to grow on polysaccharides in situ or in vitro is unknown. This study examines several halo(natronoarchaeal strains from geographically distant hypersaline lakes for the ability to grow on insoluble polymers as a sole growth substrate in salt-saturated mineral media. Some of them belonged to known taxa, while other represented novel phylogenetic lineages within the class Halobacteria. All isolates produced extracellular extremely salt tolerant cellulases or chitinases, either cell-free or cell-bound. Obtained results demonstrate a presence of diverse population of haloarchaeal cellulo/chitinotrophs in hypersaline habitats indicating that euryarchaea participate in aerobic mineralization of recalcitrant organic polymers in salt-saturated environments.

  11. Substrates and oxygen dependent citric acid production by Yarrowia lipolytica: insights through transcriptome and fluxome analyses.

    Science.gov (United States)

    Sabra, Wael; Bommareddy, Rajesh Reddy; Maheshwari, Garima; Papanikolaou, Seraphim; Zeng, An-Ping

    2017-05-08

    Unlike the well-studied backer yeast where catabolite repression represents a burden for mixed substrate fermentation, Yarrowia lipolytica, an oleaginous yeast, is recognized for its potential to produce single cell oils and citric acid from different feedstocks. These versatilities of Y. lipolytica with regards to substrate utilization make it an attractive host for biorefinery application. However, to develop a commercial process for the production of citric acid by Y. lipolytica, it is necessary to better understand the primary metabolism and its regulation, especially for growth on mixed substrate. Controlling the dissolved oxygen concentration (pO 2 ) in Y. lipolytica cultures enhanced citric acid production significantly in cultures grown on glucose in mono- or dual substrate fermentations, whereas with glycerol as mono-substrate no significant effect of pO 2 was found on citrate production. Growth on mixed substrate with glucose and glycerol revealed a relative preference of glycerol utilization by Y. lipolytica. Under optimized conditions with pO 2 control, the citric acid titer on glucose in mono- or in dual substrate cultures was 55 and 50 g/L (with productivity of 0.6 g/L*h in both cultures), respectively, compared to a maximum of 18 g/L (0.2 g/L*h) with glycerol in monosubstrate culture. Additionally, in dual substrate fermentation, glycerol limitation was found to trigger citrate consumption despite the presence of enough glucose in pO 2 -limited culture. The metabolic behavior of this yeast on different substrates was investigated at transcriptomic and 13 C-based fluxomics levels. Upregulation of most of the genes of the pentose phosphate pathway was found in cultures with highest citrate production with glucose in mono- or in dual substrate fermentation with pO 2 control. The activation of the glyoxylate cycle in the oxygen limited cultures and the imbalance caused by glycerol limitation might be the reason for the re-consumption of citrate in

  12. Time dependency of morphological remodeling of endothelial cells in response to substrate stiffness

    Science.gov (United States)

    Goli-Malekabadi, Zahra; Tafazzoli-shadpour, Mohammad; Tamayol, Ali; Seyedjafari, Ehsan

    2017-01-01

    Introduction: Substrate stiffness regulates cellular behavior as cells experience different stiffness values of tissues in the body. For example, endothelial cells (ECs) covering the inner layer of blood vessels are exposed to different stiffness values due to various pathologic and physiologic conditions. Despite numerous studies, cells by time span sense mechanical properties of the substrate, but the response is not well understood. We hypothesized that time is a major determinant influencing the behavior of cells seeded on substrates of varying stiffness. Methods: We monitored cell spreading, internal structure, 3D topography, and the viability of ECs over 24 hours of culture on polydimethylsiloxane (PDMS) substrates with two different degrees of elastic modulus. Results: Despite significant differences in cell spreading after cell seeding, cells showed a similar shape and internal structure after 24 hours of culture on both soft and stiff substrates. However, 3D topographical images confirmed existence of rich lamellipodia and filopodia around the cells cultured on stiffer PDMS substrates. Conclusion: It was concluded that the response of ECs to the substrate stiffness was time dependent with initial enhanced cellular spreading and viability on stiffer substrates. Results can provide a better comprehension of cell mechanotransduction for tissue engineering applications. PMID:28546952

  13. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth.

    Science.gov (United States)

    Lopez-Siles, Mireia; Khan, Tanweer M; Duncan, Sylvia H; Harmsen, Hermie J M; Garcia-Gil, L Jesús; Flint, Harry J

    2012-01-01

    Faecalibacterium prausnitzii is one of the most abundant commensal bacteria in the healthy human large intestine, but information on genetic diversity and substrate utilization is limited. Here, we examine the phylogeny, phenotypic characteristics, and influence of gut environmental factors on growth of F. prausnitzii strains isolated from healthy subjects. Phylogenetic analysis based on the 16S rRNA sequences indicated that the cultured strains were representative of F. prausnitzii sequences detected by direct analysis of fecal DNA and separated the available isolates into two phylogroups. Most F. prausnitzii strains tested grew well under anaerobic conditions on apple pectin. Furthermore, F. prausnitzii strains competed successfully in coculture with two other abundant pectin-utilizing species, Bacteroides thetaiotaomicron and Eubacterium eligens, with apple pectin as substrate, suggesting that this species makes a contribution to pectin fermentation in the colon. Many F. prausnitzii isolates were able to utilize uronic acids for growth, an ability previously thought to be confined to Bacteroides spp. among human colonic anaerobes. Most strains grew on N-acetylglucosamine, demonstrating an ability to utilize host-derived substrates. All strains tested were bile sensitive, showing at least 80% growth inhibition in the presence of 0.5 μg/ml bile salts, while inhibition at mildly acidic pH was strain dependent. These attributes help to explain the abundance of F. prausnitzii in the colonic community but also suggest factors in the gut environment that may limit its distribution.

  14. Growth of cubic GaN on a nitrided AlGaAs (001) substrate by using hydried vapor phase epitaxy

    International Nuclear Information System (INIS)

    Lee, H. J.; Yang, M.; Ahn, H. S.; Kim, K. H.; Yi, J. Y.; Jang, K. S.; Chang, J. H.; Kim, H. S.; Cho, C. R.; Kim, S. W.

    2006-01-01

    GaN layers were grown on AlGaAs (001) substrates by using hydride vapor phase epitaxy (HVPE). Growth parameters such as the nitridation temperature of the AlGaAs substrate and the growth rate of the GaN layer were found to be critical determinants for the growth of cubic GaN layer. Nitridation of the AlGaAs surface was performed in a NH 3 atmosphere at a temperature range of 550 - 700 .deg. C. GaN layers were grown at different growth rates on the nitrided AlGaAs substrates. The surface morphologies and the chemical constituents of the nitrided AlGaAs layers were characterized with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). For the optical and the crystalline characterization of the GaN films, cathodoluminescence (CL) and X-ray diffraction (XRD) were carried out.

  15. Density-dependent growth in invasive Lionfish (Pterois volitans).

    Science.gov (United States)

    Benkwitt, Cassandra E

    2013-01-01

    Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.

  16. Density-dependent growth in invasive Lionfish (Pterois volitans.

    Directory of Open Access Journals (Sweden)

    Cassandra E Benkwitt

    Full Text Available Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.

  17. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, K.C.; Karaoz, U.; Hanson, C.A.; Santee, C.A.; Bradford, M.A.; Treseder, K.K.; Wallenstein, M.D.; Brodie, E.L.

    2011-04-18

    Soils are immensely diverse microbial habitats with thousands of co-existing bacterial, archaeal, and fungal species. Across broad spatial scales, factors such as pH and soil moisture appear to determine the diversity and structure of soil bacterial communities. Within any one site however, bacterial taxon diversity is high and factors maintaining this diversity are poorly resolved. Candidate factors include organic substrate availability and chemical recalcitrance, and given that they appear to structure bacterial communities at the phylum level, we examine whether these factors might structure bacterial communities at finer levels of taxonomic resolution. Analyzing 16S rRNA gene composition of nucleotide analog-labeled DNA by PhyloChip microarrays, we compare relative growth rates on organic substrates of increasing chemical recalcitrance of >2,200 bacterial taxa across 43 divisions/phyla. Taxa that increase in relative abundance with labile organic substrates (i.e., glycine, sucrose) are numerous (>500), phylogenetically clustered, and occur predominantly in two phyla (Proteobacteria and Actinobacteria) including orders Actinomycetales, Enterobacteriales, Burkholderiales, Rhodocyclales, Alteromonadales, and Pseudomonadales. Taxa increasing in relative abundance with more chemically recalcitrant substrates (i.e., cellulose, lignin, or tannin-protein) are fewer (168) but more phylogenetically dispersed, occurring across eight phyla and including Clostridiales, Sphingomonadalaes, Desulfovibrionales. Just over 6% of detected taxa, including many Burkholderiales increase in relative abundance with both labile and chemically recalcitrant substrates. Estimates of median rRNA copy number per genome of responding taxa demonstrate that these patterns are broadly consistent with bacterial growth strategies. Taken together, these data suggest that changes in availability of intrinsically labile substrates may result in predictable shifts in soil bacterial composition.

  18. Growth of ZnO nanowire arrays directly onto Si via substrate topographical adjustments using both wet chemical and dry etching methods

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Nathan A., E-mail: 523615@swansea.ac.uk [Centre for Nanohealth, Department of Physics, College of Science, University of Swansea, Singleton Park SA2 8PP United Kingdom (United Kingdom); Evans, Jon E.; Jones, Daniel R. [Multidisciplinary Nanotechnology Centre, College of Engineering, University of Swansea, Singleton Park, SA2 8PP United Kingdom (United Kingdom); Lord, Alex M. [Centre for Nanohealth, College of Engineering, University of Swansea, Singleton Park, SA2 8PP United Kingdom (United Kingdom); Wilks, S.P. [Centre for Nanohealth, Department of Physics, College of Science, University of Swansea, Singleton Park SA2 8PP United Kingdom (United Kingdom)

    2015-03-15

    Highlights: • Arrays of catalyst-free ZnO NWs have been grown by CVD without seed layers on Si. • Si surface topography was altered by substrate etching, resulting in NW growth. • XPS analysis shows growth is related to topography and not surface contamination. • Using e-beam lithography with etching, selective nanowire growth is demonstrated. • Electrical measurements on the arrays show improved conduction through the Si. - Abstract: Arrays of CVD catalyst-free ZnO nanowires have been successfully grown without the use of seed layers, using both wet chemical and dry plasma etching methods to alter surface topography. XPS analysis indicates that the NW growth cannot be attributed to a substrate surface chemistry and is therefore directly related to the substrate topography. These nanowires demonstrate structural and optical properties typical of CVD ZnO nanowires. Moreover, the NW arrays exhibit a degree of vertical alignment of less than 20° from the substrate normal. Electrical measurements suggest an improved conduction path through the substrate over seed layer grown nanowires. Furthermore, the etching technique was combined with e-beam lithography to produce high resolution selective area nanowire growth. The ability to pattern uniform nanowires using mature dry etch technology coupled with the increased charge transport through the substrate demonstrates the potential of this technique in the vertical integration of nanowire arrays.

  19. Heteroepitaxial Growth of Ferromagnetic MnSb(0001) Films on Ge/Si(111) Virtual Substrates.

    Science.gov (United States)

    Burrows, Christopher W; Dobbie, Andrew; Myronov, Maksym; Hase, Thomas P A; Wilkins, Stuart B; Walker, Marc; Mudd, James J; Maskery, Ian; Lees, Martin R; McConville, Christopher F; Leadley, David R; Bell, Gavin R

    2013-11-06

    Molecular beam epitaxial growth of ferromagnetic MnSb(0001) has been achieved on high quality, fully relaxed Ge(111)/Si(111) virtual substrates grown by reduced pressure chemical vapor deposition. The epilayers were characterized using reflection high energy electron diffraction, synchrotron hard X-ray diffraction, X-ray photoemission spectroscopy, and magnetometry. The surface reconstructions, magnetic properties, crystalline quality, and strain relaxation behavior of the MnSb films are similar to those of MnSb grown on GaAs(111). In contrast to GaAs substrates, segregation of substrate atoms through the MnSb film does not occur, and alternative polymorphs of MnSb are absent.

  20. Thermal oxidation of seeds for the hydrothermal growth of WO3 nanorods on ITO glass substrate

    International Nuclear Information System (INIS)

    Ng, Chai Yan; Abdul Razak, Khairunisak; Lockman, Zainovia

    2015-01-01

    This work reports a simple seed formation method for the hydrothermal growth of tungsten oxide (WO 3 ) nanorods. A WO 3 seed layer was prepared by thermal oxidation, where a W-sputtered substrate was heated and oxidized in a furnace. Oxidation temperatures and periods were varied at 400–550 °C and 5–60 min, respectively, to determine an appropriate seed layer for nanorod growth. Thermal oxidation at 500 °C for 15 min was found to produce a seed layer with sufficient crystallinity and good adhesion to the substrate. These properties prevented the seed from peeling off during the hydrothermal process, thereby allowing nanorod growth on the seed. The nanorod film showed better electrochromic behavior (higher current density of − 1.11 and + 0.65 mA cm −2 ) than compact film (lower current density of − 0.54 and + 0.28 mA cm −2 ). - Highlights: • A simple seed formation method (thermal oxidation) on sputtered W film is reported. • Crystalline seed with good adhesion to substrate is required for nanorod growth. • The appropriate temperature and period for seed formation were 500 °C and 15 min. • WO 3 nanorods exhibited higher electrochromic current density than WO 3 compact film.

  1. Epitaxial growth of manganese oxide films on MgAl2O4 (001) substrates and the possible mechanism

    Science.gov (United States)

    Ren, Lizhu; Wu, Shuxiang; Zhou, Wenqi; Li, Shuwei

    2014-03-01

    Three types of manganese oxide films were grown on MgAl2O4 (001) substrates by plasma-assisted molecular beam epitaxy (PA-MBE) under different growth rates and substrate temperatures. The structural characteristics and chemical compositions of the films were investigated by using in-situ reflection high-energy electron diffraction (RHEED), ex-situ X-ray diffraction, Raman, and X-ray photoelectron spectra (XPS). At a lower substrate temperature (730 K), the epitaxial film tends to form mixed phases with a coexistence of Mn3O4 and Mn5O8 in order to relieve the mismatch-strain. However, at a higher substrate temperature (750 K), all of the films crystallize into Mn3O4; the critical thickness of the film grown under a lower growth rate (7 Å/min) is much larger than that under a high growth rate (10 Å/min). When the film reaches a certain critical thickness, the surface will become fairly rough, and another oriented phase Mn3O4 would crystallize on such a surface.

  2. The properties of TiN ultra-thin films grown on SiO{sub 2} substrate by reactive high power impulse magnetron sputtering under various growth angles

    Energy Technology Data Exchange (ETDEWEB)

    Shayestehaminzadeh, S., E-mail: ses30@hi.is [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Tryggvason, T.K. [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Karlsson, L. [School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen (Germany); Olafsson, S. [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Gudmundsson, J.T. [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); University of Michigan-Shanghai Jiao Tong University, University Joint Institute, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China)

    2013-12-02

    Thin TiN films were grown on SiO{sub 2} by reactive high power impulse magnetron sputtering (HiPIMS) and conventional dc magnetron sputtering (dcMS) while varying the angle between the target and the substrate surface from 0° (on-axis growth) to 90° (off-axis growth). Surface morphology and structural characterization were carried out using X-ray diffraction and reflection methods and the film properties were compared. The dcMS process shows higher growth rate than the HiPIMS process for on-axis grown films but the dcMS growth rate drops drastically for off-axis growth while the HiPIMS growth rate decreases slowly with increased angle between target and substrate for off-axis growth and becomes comparable to the dcMS growth rate. The dcMS grown films exhibit angle dependence in the density and surface roughness while the HiPIMS process creates denser and smoother films that are less angle dependent in all aspects. It was observed that the HiPIMS grown films remain poly-crystalline for all angles of rotation while the dcMS grown films are somewhat amorphous after 60°. The [111] and [200] grain sizes are comparable to the total film thickness in the HiPIMS grown films for all angles of rotation. In the case of dcMS, the [111], [200] and [220] grain sizes are roughly of the same size and much smaller than the total thickness for all growth angles except at 60° and higher. - Highlights: • TiN films were grown on SiO{sub 2} by HiPIMS and dcMS under various growth angles. • Influence of growth angle α = 0–90° on deposition rate and film quality was studied. • The HiPIMS process produces denser and smoother films for all growth angles. • At α = 0°, the growth rate of HiPIMS is 25% of dcMS while it is 50% at 90°. • The HiPIMS grown films remain poly-crystalline for all growth angles.

  3. Substrate-dependent denitrification of abundant probe-defined denitrifying bacteria in activated sludge.

    Science.gov (United States)

    Morgan-Sagastume, Fernando; Nielsen, Jeppe Lund; Nielsen, Per Halkjaer

    2008-11-01

    The denitrification capacity of different phylogenetic bacterial groups was investigated on addition of different substrates in activated sludge from two nutrient-removal plants. Nitrate/nitrite consumption rates (CRs) were calculated from nitrate and nitrite biosensor, in situ measurements. The nitrate/nitrite CRs depended on the substrate added, and acetate alone or combined with other substrates yielded the highest rates (3-6 mg N gVSS(-1) h(-1)). The nitrate CRs were similar to the nitrite CRs for most substrates tested. The structure of the active denitrifying population was investigated using heterotrophic CO2 microautoradiography (HetCO2-MAR) and FISH. Probe-defined denitrifiers appeared as specialized substrate utilizers despite acetate being preferentially used by most of them. Azoarcus and Accumulibacter abundance in the two different sludges was related to differences in their substrate-specific nitrate/nitrite CRs. Aquaspirillum-related bacteria were the most abundant potential denitrifiers (c. 20% of biovolume); however, Accumulibacter (3-7%) and Azoarcus (2-13%) may have primarily driven denitrification by utilizing pyruvate, ethanol, and acetate. Activated sludge denitrification was potentially conducted by a diverse, versatile population including not only Betaproteobacteria (Aquaspirillum, Thauera, Accumulibacter, and Azoarcus) but also some Alphaproteobacteria and Gammaproteobacteria, as indicated by the assimilation of 14CO2 by these probe-defined groups with a complex substrate mixture as an electron donor and nitrite as an electron acceptor in HetCO2-MAR-FISH tests.

  4. Solid-support substrates for plant growth at a lunar base

    Science.gov (United States)

    Ming, D. W.; Galindo, C.; Henninger, D. L.

    1990-01-01

    Zeoponics is only in its developmental stages at the Johnson Space Center and is defined as the cultivation of plants in zeolite substrates that contain several essential plant growth cations on their exchange sites, and have minor amounts of mineral phases and/or anion-exchange resins that supply essential plant growth anions. Zeolites are hydrated aluminosilicates of alkali and alkaline earth cations with the ability to exchange most of their constituent exchange cations as well as hydrate/dehydrate without change to their structural framework. Because zeolites have extremely high cation exchange capabilities, they are very attractive media for plant growth. It is possible to partially or fully saturate plant-essential cations on zeolites. Zeoponic systems will probably have their greatest applications at planetary bases (e.g., lunar bases). Lunar raw materials will have to be located that are suited for the synthesis of zeolites and other exchange resings. Lunar 'soil' simulants have been or are being prepared for zeolite/smectite synthesis and 'soil' dissolution studies.

  5. Substrate dependent physical properties of evaporated CdO thin films for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, Anuradha; Chander, S.; Patel, S.L. [Department of Physics, Mohanlal Sukhadia University, Udaipur-313001 (India); Rangra, K.J. [Sensors and Transducers Group, CSIR-CEERI, Pilani-333031 (India); Dhaka, M.S., E-mail: msdhaka75@yahoo.co.in [Department of Physics, Mohanlal Sukhadia University, Udaipur-313001 (India)

    2017-06-15

    Highlights: • Substrate dependent physical properties of CdO thin films are carried out. • XRD patterns reveal that the films have cubic structure of space group Fm3m. • Optical direct band gap is found to vary with the substrates. • SEM images show that the films are compact and homogeneous. • I–V characteristics show ohmic behavior of the deposited CdO films. - Abstract: In this study, CdO thin films were grown by e-beam evaporation technique on glass, indium tin oxide (ITO), fluorine-doped tin oxide (FTO) and silicon (Si) wafer. The deposited films were analyzed by X-ray diffraction (XRD), UV–Vis spectrophotometer, scanning electron microscopy, energy dispersive spectroscopy (EDS) and source meter (current–voltage) for structural, optical, surface morphological, elemental and electrical analysis, respectively. The films have single phase of cubic structure (space group Fm3m) with (200) preferred orientation. The structural parameters viz. inter-planar spacing, grain size, lattice constant, internal strain and dislocation density are calculated and found to vary with the nature of the substrates. The optical band gap was found in the range 2.24–3.95 eV and strongly dependents on the substrates. The SEM analysis shows that the films are compact, homogeneous and have granular structure without any defects like pin holes and cracks. The EDS spectra confirmed the presence of cadmium (Cd) and oxygen (O) in the films deposited on different substrates. The current–voltage characteristics of the films show ohmic behavior.

  6. Catalytic growth of carbon nanowires on composite diamond/silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sellam, Amine [Université de Lorraine, Institut Jean Lamour, Département CP2S (UMR CNRS 7198), Parc de Saurupt, F-54042 Nancy Cedex (France); Miska, Patrice [Université de Lorraine, Institut Jean Lamour, Département P2M (UMR CNRS 7198), Parc de Saurupt, F-54042 Nancy Cedex (France); Ghanbaja, Jaafar [Université de Lorraine, Institut Jean Lamour, Département CP2S (UMR CNRS 7198), Parc de Saurupt, F-54042 Nancy Cedex (France); Barrat, Silvère, E-mail: Silvere.Barrat@ijl.nancy-universite.fr [Université de Lorraine, Institut Jean Lamour, Département CP2S (UMR CNRS 7198), Parc de Saurupt, F-54042 Nancy Cedex (France)

    2014-01-01

    Polycrystalline diamond (PCD) films and carbon nanowires (CNWs) provide individually highly attractive properties for science and technology applications. The possibility of carbon composite materials made from a combination of these materials remains a potential approach widely discussed in literature but modestly investigated. We report in this work an early attempt to explore this opportunity in the light of some specific experimental considerations. Carbon nanowires (CNWs) are grown at low temperature without the conventional use of external hydrocarbon vapor source on silicon substrates partially covered by a thin film of coalesced micrometric CVD diamond. Composite substrates constituted by PCD on silicon were first cleaned with H{sub 2} plasma then used for the PVD deposition of 5 nm Ni thin films. Then, samples were heat treated in a CVD reactor at 580 °C in the presence of pure H{sub 2} pressure of 60 hPa at different annealing times. Comparative effect of annealing time on the dewetting of Ni thin films and the subsequent CNWs growth process was considered in this work using systematic observations by SEM. Possible mechanisms underlying CNWs growth in pure H{sub 2} gas were proposed. The nature and structure of these CNWs have been investigated by TEM microscopy and by Raman spectroscopy on the sample showing the highest CNWs density.

  7. Rapid growth of single-layer graphene on the insulating substrates by thermal CVD

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Y. [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Dai, D.; Chen, G.X.; Yu, J.H. [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Nishimura, K. [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Advanced Nano-processing Engineering Lab, Mechanical Systems Engineering, Kogakuin University (Japan); Lin, C.-T. [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Jiang, N., E-mail: jiangnan@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhan, Z.L., E-mail: zl_zhan@sohu.com [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2015-08-15

    Highlights: • A rapid thermal CVD process has been developed to directly grow graphene on the insulating substrates. • The treating time consumed is ≈25% compared to conventional CVD procedure. • Single-layer and few-layer graphene can be formed on quartz and SiO{sub 2}/Si substrates, respectively. • The formation of thinner graphene at the interface is due to the fast precipitation rate of carbon atoms during cooling. - Abstract: The advance of CVD technique to directly grow graphene on the insulating substrates is particularly significant for further device fabrication. As graphene is catalytically grown on metal foils, the degradation of the sample properties is unavoidable during transfer of graphene on the dielectric layer. Moreover, shortening the treatment time as possible, while achieving single-layer growth of graphene, is worthy to be investigated for promoting the efficiency of mass production. Here we performed a rapid heating/cooling process to grow graphene films directly on the insulating substrates by thermal CVD. The treating time consumed is ≈25% compared to conventional CVD procedure. In addition, we found that high-quality, single-layer graphene can be formed on quartz, but on SiO{sub 2}/Si substrate only few-layer graphene can be obtained. The pronounced substrate effect is attributed to the different dewetting behavior of Ni films on the both substrates at 950 °C.

  8. EFFECT OF PLANT EXTRACTS AND GROWTH SUBSTRATES ON CONTROLLING DAMPING-OFF IN PINUS TECUNUMANII SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Maria Alejandra Fajardo-Mejía

    2016-09-01

    Full Text Available Damping-off is considered one of the most limiting phytosanitary problems in conifer seedling production because it may cause massive damage or total plant death in short time periods. This pathology is caused by a complex of microorganisms, the most common of which are Fusarium spp. and Rhizoctonia spp. This study evaluated the effect of growth substrates and plant extracts at different concentrations on germination and incidence of disease in Pinus tecunumanii plants. The plants were inoculated with the damping-off pathogen Fusarium oxysporum and treatments were applied in a completely randomized design with a factorial arrangement of 4x2x3. This corresponded to four substrates (pine bark, rice hull, coconut husk and sandy soil (4:1; two plant extracts (Matricaria chamomilla and Datura stramonium, andthree concentrations of each extract (Control concentration: 0%, Concentration 1: 50 % and Concentration 2: Undiluted. Each treatment had three repetitions, with 25 plants per repetition. The growth substrates affected germination; the most effective of these were sandy soil (4:1 and pine bark, with 90% and 92% germination at day 20, respectively. No significant difference was observed between the germination obtained with these substrates and that obtained with coconut husk after day 19. Meanwhile, all of the extracts had a significant effect on controlling the disease when they were combined with the substrates, with the exception of coconut husk. With this last substrate the incidence of disease was lower than 4% without the application of plant extracts; this indicates that coconut husk discourages the development of the disease on its own.

  9. Plasma assisted growth of MoO{sub 3} films on different substrate locations relative to sublimation source

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rabindar K., E-mail: rkrksharma6@gmail.com; Saini, Sujit K.; Kumar, Prabhat; Singh, Megha; Reddy, G. B. [Thin film laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi – 110016 (India)

    2016-05-06

    In the present paper, we reported the role of substrate locations relative to source on the growth of MoO{sub 3} films deposited on Ni coated glass substrates using plasma assisted sublimation process (PASP). According to the XRD and SEM results, substrate location is very crucial factor to control the morphology of MoO{sub 3} films and the best nanostructure growth (in terms of alignments and features) is obtained in case of Sample B (in which substrate is placed on source). The structural results point out that all films exhibit only orthorhombic phase of molybdenum oxide (i.e. α-MoO{sub 3})but the most preferential growth is recorded in Sample B due to the presence of intense peaks crossponding to only (0 k 0) family of crystal planes (k = 2, 4,6..). The Raman analysis again confirms the orthorhombic nature of MoO{sub 3} NFs and details of vibrational bondsin Sample B have been given in the present report. The MoO{sub 3} NFs show intense PL emission in wavelength range of 300-700 nm with three peaks located at 415, 490, and 523 nm in accordance to the improved crystallinity in Sample B.

  10. Laboratory Evolution to Alternating Substrate Environments Yields Distinct Phenotypic and Genetic Adaptive Strategies

    DEFF Research Database (Denmark)

    Sandberg, Troy E.; Lloyd, Colton J.; Palsson, Bernhard O.

    2017-01-01

    conditions and different adaptation strategies depending on the substrates being switched between; in some environments, a persistent "generalist" strain developed, while in another, two "specialist" subpopulations arose that alternated dominance. Diauxic lag phenotype varied across the generalists...... maintain simple, static culturing environments so as to reduce selection pressure complexity. In this study, we investigated the adaptive strategies underlying evolution to fluctuating environments by evolving Escherichia coli to conditions of frequently switching growth substrate. Characterization...... of evolved strains via a number of different data types revealed the various genetic and phenotypic changes implemented in pursuit of growth optimality and how these differed across the different growth substrates and switching protocols. This work not only helps to establish general principles of adaptation...

  11. Effects of Precursor-Substrate Distances on the Growth of GaN Nanowires

    Directory of Open Access Journals (Sweden)

    Hongbin Cheng

    2015-01-01

    Full Text Available GaN nanowires were synthesized through the Ni-catalyzed chemical vapor deposition (CVD method using Ga2O3/GaN mixtures as gallium sources, and precursor-substrate distances were investigated as the important factor for the growth of GaN nanowires. The microstructure, composition, and photoluminescence property were characterized by X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and photoluminescence spectra. The results showed that single crystalline GaN nanowires with the diameter of about 90 nm and the length up to tens of micrometers had been grown thickly across Si (100 substrates with uniform density. Moreover, the variations of the GaN nanowire morphology, density, and size were largely attributed to substrate positions which would influence Ga precursor density in the carrier gas, the saturation degree of gaseous reactants, and the catalyst activity, respectively, in the fabrication of GaN nanowires by the vapour liquid solid mechanism.

  12. Temperature dependent magnetic properties of the GaAs substrate of spin-LEDs

    International Nuclear Information System (INIS)

    Ney, A; Harris, J S Jr; Parkin, S S P

    2006-01-01

    The temperature dependence of the magnetization of a light emitting diode having a ferromagnetic contact (spin-LED) is measured from 2 to 300 K in magnetic fields from 30 to 70 kOe and it is found that it originates from the GaAs substrate. The magnetization of GaAs comprises a van Vleck-type paramagnetic contribution to the susceptibility which scales inversely with the band gap of the semiconductor. Thus, the temperature dependence of the band gap of GaAs accounts for the non-linear temperature dependent magnetic susceptibility of GaAs and thus, at large magnetic fields, for the spin-LED

  13. Placental Adaptations in Growth Restriction

    Science.gov (United States)

    Zhang, Song; Regnault, Timothy R.H.; Barker, Paige L.; Botting, Kimberley J.; McMillen, Isabella C.; McMillan, Christine M.; Roberts, Claire T.; Morrison, Janna L.

    2015-01-01

    The placenta is the primary interface between the fetus and mother and plays an important role in maintaining fetal development and growth by facilitating the transfer of substrates and participating in modulating the maternal immune response to prevent immunological rejection of the conceptus. The major substrates required for fetal growth include oxygen, glucose, amino acids and fatty acids, and their transport processes depend on morphological characteristics of the placenta, such as placental size, morphology, blood flow and vascularity. Other factors including insulin-like growth factors, apoptosis, autophagy and glucocorticoid exposure also affect placental growth and substrate transport capacity. Intrauterine growth restriction (IUGR) is often a consequence of insufficiency, and is associated with a high incidence of perinatal morbidity and mortality, as well as increased risk of cardiovascular and metabolic diseases in later life. Several different experimental methods have been used to induce placental insufficiency and IUGR in animal models and a range of factors that regulate placental growth and substrate transport capacity have been demonstrated. While no model system completely recapitulates human IUGR, these animal models allow us to carefully dissect cellular and molecular mechanisms to improve our understanding and facilitate development of therapeutic interventions. PMID:25580812

  14. Fabrication of SrGe2 thin films on Ge (100), (110), and (111) substrates

    Science.gov (United States)

    Imajo, T.; Toko, K.; Takabe, R.; Saitoh, N.; Yoshizawa, N.; Suemasu, T.

    2018-01-01

    Semiconductor strontium digermanide (SrGe2) has a large absorption coefficient in the near-infrared light region and is expected to be useful for multijunction solar cells. This study firstly demonstrates the formation of SrGe2 thin films via a reactive deposition epitaxy on Ge substrates. The growth morphology of SrGe2 dramatically changed depending on the growth temperature (300-700 °C) and the crystal orientation of the Ge substrate. We succeeded in obtaining single-oriented SrGe2 using a Ge (110) substrate at 500 °C. Development on Si or glass substrates will lead to the application of SrGe2 to high-efficiency thin-film solar cells.

  15. Diamond film growth with modification properties of adhesion between substrate and diamond film

    Directory of Open Access Journals (Sweden)

    Setasuwon P.

    2004-03-01

    Full Text Available Diamond film growth was studied using chemical vapor deposition (CVD. A special equipment was build in-house, employing a welding torch, and substrate holder with a water-cooling system. Acetylene and oxygen were used as combustion gases and the substrate was tungsten carbide cobalt. It was found that surface treatments, such as diamond powder scratching or acid etching, increase the adhesion and prevent the film peel-off. Diamond powder scratching and combined diamond powder scratching with acid etching gave the similar diamond film structure with small grain and slightly rough surface. The diamond film obtained with both treatments has high adhesion and can withstand internal stress better than ones obtained by untreated surface or acid etching alone. It was also found that higher substrate temperature produced smoother surface and more uniform diamond grain.

  16. Thermal oxidation of seeds for the hydrothermal growth of WO{sub 3} nanorods on ITO glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Chai Yan [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Department of Mechanical and Material Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Abdul Razak, Khairunisak, E-mail: khairunisak@usm.my [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); NanoBiotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lockman, Zainovia, E-mail: zainovia@usm.my [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2015-11-30

    This work reports a simple seed formation method for the hydrothermal growth of tungsten oxide (WO{sub 3}) nanorods. A WO{sub 3} seed layer was prepared by thermal oxidation, where a W-sputtered substrate was heated and oxidized in a furnace. Oxidation temperatures and periods were varied at 400–550 °C and 5–60 min, respectively, to determine an appropriate seed layer for nanorod growth. Thermal oxidation at 500 °C for 15 min was found to produce a seed layer with sufficient crystallinity and good adhesion to the substrate. These properties prevented the seed from peeling off during the hydrothermal process, thereby allowing nanorod growth on the seed. The nanorod film showed better electrochromic behavior (higher current density of − 1.11 and + 0.65 mA cm{sup −2}) than compact film (lower current density of − 0.54 and + 0.28 mA cm{sup −2}). - Highlights: • A simple seed formation method (thermal oxidation) on sputtered W film is reported. • Crystalline seed with good adhesion to substrate is required for nanorod growth. • The appropriate temperature and period for seed formation were 500 °C and 15 min. • WO{sub 3} nanorods exhibited higher electrochromic current density than WO{sub 3} compact film.

  17. Room temperature growth of biaxially aligned yttria-stabilized zirconia films on glass substrates by pulsed-laser deposition

    CERN Document Server

    Li Peng; Mazumder, J

    2003-01-01

    Room temperature deposition of biaxially textured yttria-stabilized zirconia (YSZ) films on amorphous glass substrates was successfully achieved by conventional pulsed-laser deposition. The influence of the surrounding gases, their pressure and the deposition time on the structure of the films was studied. A columnar growth process was revealed based on the experimental results. The grown biaxial texture appears as a kind of substrate independence, which makes it possible to fabricate in-plane aligned YSZ films on various substrates.

  18. Crystallization and growth of Ni-Si alloy thin films on inert and on silicon substrates

    Science.gov (United States)

    Grimberg, I.; Weiss, B. Z.

    1995-04-01

    The crystallization kinetics and thermal stability of NiSi2±0.2 alloy thin films coevaporated on two different substrates were studied. The substrates were: silicon single crystal [Si(100)] and thermally oxidized silicon single crystal. In situ resistance measurements, transmission electron microscopy, x-ray diffraction, Auger electron spectroscopy, and Rutherford backscattering spectroscopy were used. The postdeposition microstructure consisted of a mixture of amorphous and crystalline phases. The amorphous phase, independent of the composition, crystallizes homogeneously to NiSi2 at temperatures lower than 200 °C. The activation energy, determined in the range of 1.4-2.54 eV, depends on the type of the substrate and on the composition of the alloyed films. The activation energy for the alloys deposited on the inert substrate was found to be lower than for the alloys deposited on silicon single crystal. The lowest activation energy was obtained for nonstoichiometric NiSi2.2, the highest for NiSi2—on both substrates. The crystallization mode depends on the structure of the as-deposited films, especially the density of the existing crystalline nuclei. Substantial differences were observed in the thermal stability of the NiSi2 compound on both substrates. With the alloy films deposited on the Si substrate, only the NiSi2 phase was identified after annealing to temperatures up to 800 °C. In the films deposited on the inert substrate, NiSi and NiSi2 phases were identified when the Ni content in the alloy exceeded 33 at. %. The effects of composition and the type of substrate on the crystallization kinetics and thermal stability are discussed.

  19. The effect of substrate orientation on the kinetics and thermodynamics of initial oxide-film growth on metals

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, Friederike

    2007-11-19

    This thesis addresses the effect of the parent metal-substrate orientation on the thermodynamics and kinetics of ultra-thin oxide-film growth on bare metals upon their exposure to oxygen gas at low temperatures (up to 650 K). A model description has been developed to predict the thermodynamically stable microstructure of a thin oxide film grown on its bare metal substrate as function of the oxidation conditions and the substrate orientation. For Mg and Ni, the critical oxide-film thickness is less than 1 oxide monolayer and therefore the initial development of an amorphous oxide phase on these metal substrates is unlikely. Finally, for Cu and densely packed Cr and Fe metal surfaces, oxide overgrowth is predicted to proceed by the direct formation and growth of a crystalline oxide phase. Further, polished Al single-crystals with {l_brace}111{r_brace}, {l_brace}100{r_brace} and {l_brace}110{r_brace} surface orientations were introduced in an ultra-high vacuum system for specimen processing and analysis. After surface cleaning and annealing, the bare Al substrates have been oxidized by exposure to pure oxygen gas. During the oxidation, the oxide-film growth kinetics has been established by real-time in-situ spectroscopic ellipsometry. After the oxidation, the oxide-film microstructures were investigated by angle-resolved X-ray photoelectron spectroscopy and low energy electron diffraction. Finally, high-resolution transmission electron microscopic analysis was applied to study the microstructure and morphology of the grown oxide films on an atomic scale. (orig.)

  20. Epitaxial growth of YBa2Cu3O7-δ thin films on LiNbO3 substrates

    International Nuclear Information System (INIS)

    Lee, S.G.; Koren, G.; Gupta, A.; Segmuller, A.; Chi, C.C.

    1989-01-01

    In situ epitaxial growth of YBa 2 Cu 3 O 7-δ thin films on Y-cut LiNbO 3 substrates using a standard laser ablation technique is reported. Resistance of the films shows a normal metallic behavior and a very sharp ( c (R=0) of 92 K. High critical current density of J c (77 K)=2x10 5 A/cm 2 is observed, which is in accordance with epitaxial growth. Film orientation observed from x-ray diffraction spectra indicates that the c axis is normal to the substrate plane and the a axis is at 45 degree to the [11.0] direction of the hexagonal lattice of the substrate with two domains in mirror image to the (110) plane

  1. Effects of substrate temperature, substrate orientation, and energetic atomic collisions on the structure of GaN films grown by reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Schiaber, Ziani S.; Lisboa-Filho, Paulo N.; Silva, José H. D. da [Universidade Estadual Paulista, UNESP, Bauru, São Paulo 17033-360 (Brazil); Leite, Douglas M. G. [Universidade Federal de Itajubá, UNIFEI, Itajubá, Minas Gerais 37500-903 (Brazil); Bortoleto, José R. R. [Universidade Estadual Paulista, UNESP, Sorocaba, São Paulo 18087-180 (Brazil)

    2013-11-14

    The combined effects of substrate temperature, substrate orientation, and energetic particle impingement on the structure of GaN films grown by reactive radio-frequency magnetron sputtering are investigated. Monte-Carlo based simulations are employed to analyze the energies of the species generated in the plasma and colliding with the growing surface. Polycrystalline films grown at temperatures ranging from 500 to 1000 °C clearly showed a dependence of orientation texture and surface morphology on substrate orientation (c- and a-plane sapphire) in which the (0001) GaN planes were parallel to the substrate surface. A large increase in interplanar spacing associated with the increase in both a- and c-parameters of the hexagonal lattice and a redshift of the optical bandgap were observed at substrate temperatures higher than 600 °C. The results showed that the tensile stresses produced during the film's growth in high-temperature deposition ranges were much larger than the expected compressive stresses caused by the difference in the thermal expansion coefficients of the film and substrate in the cool-down process after the film growth. The best films were deposited at 500 °C, 30 W and 600 °C, 45 W, which corresponds to conditions where the out diffusion from the film is low. Under these conditions the benefits of the temperature increase because of the decrease in defect density are greater than the problems caused by the strongly strained lattice that occurr at higher temperatures. The results are useful to the analysis of the growth conditions of GaN films by reactive sputtering.

  2. [Nutrient transfer and growth of Pinus greggii Engelm. inoculated with edible ectomycorrhizal mushrooms in two substrates].

    Science.gov (United States)

    Rentería-Chávez, María C; Pérez-Moreno, Jesús; Cetina-Alcalá, Víctor M; Ferrera-Cerrato, Ronald; Xoconostle-Cázares, Beatriz

    An ectomycorrhiza is a mutualistic symbiosis of paramount importance in forestry and tree production. One of the selection criteria of ectomycorrhizal fungi that has currently gained importance is their edibility due to the economic, ecological and cultural relevance of edible ectomycorrhizal mushrooms as a non-timber forest product. The effect of the inoculation with three edible ectomycorrhizal mushrooms: Laccaria laccata, Laccaria bicolor y Hebeloma leucosarx, which are widely sold in Mexico, on the growth and nutrient contents of Pinus greggii grown in an experimental substrate and a commercial substrate enriched with a slow-release fertilizer, was evaluated. Two years after sowing, differences in terms of shoot and root biomass and macro and micronutrient contents between inoculated and non-inoculated plants, were recorded independently of the fungal species and the substrate. Despite the fact that plants grown in the commercial substrate had higher growth and nutrient contents, their ectomycorrhizal colonization percentages were smaller than those of the plants grown in the experimental substrate. The differences in the nutrient transfer to the inoculated plant shoots among the evaluated fungal species were recorded. Ca mobilization by L. laccata, Na by L. bicolor and Mn by H. leucosarx were observed in the plants growing in the experimental substrate. It has been demonstrated that the selection of substrates constitutes an important factor in the production of ectomycorrhizal plants and that the three evaluated species of edible ectomycorrhizal mushrooms have an enormous potential in the controlled mycorrhization of P. greggii. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Formation of gallium nitride templates and freestanding substrates by hydride vapor phase epitaxy for homoepitaxial growth of III-nitride devices

    Science.gov (United States)

    Williams, Adrian Daniel

    Gallium nitride (GaN) is a direct wide band gap semiconductor currently under heavy development worldwide due to interest in its applications in ultra-violet optoelectronics, power electronics, devices operating in harsh environments (high temperature or corrorsive), etc. While a number of devices have been demonstrated with this material and its related alloys, the unavailability of GaN substrates is seen as one of the current major bottlenecks to both material quality and device performance. This dissertation is concerned with the synthesis of high quality GaN substrates by the hydride vapor phase epitaxy method (HVPE). In this work, the flow of growth precursors in a home-built HVPE reactor was modeled by the Navier-Stokes equation and solved by finite element analysis to promote uniformity of GaN on 2'' sapphire substrates. Kinetics of growth was studied and various regimes of growth were identified to establish a methodology for HVPE GaN growth, independent of reactor geometry. GaN templates as well as bulk substrates were fabricated in this work. Realization of freestanding GaN substrates was achieved through discovery of a natural stress-induced method of separating bulk GaN from sapphire via mechanical failure of a low-temperature GaN buffer layer. Such a process eliminates the need for pre- or post-processing of sapphire substrates, as is currently the standard. Stress in GaN-on-sapphire is discussed, with the dominant contributor identified as thermal stress due to thermal expansion coefficient mismatch between the two materials. This thermal stress is analyzed using Stoney's equation and conditions for crack-free growth of thick GaN substrates were identified. An etch-back process for planarizing GaN templates was also developed and successfully applied to rough GaN templates. The planarization of GaN has been mainly addressed by chemo-mechanical polishing (CMP) methods in the literature, with notable shortcomings including the inability to effectively

  4. Resolving nanoparticle growth mechanisms from size- and time-dependent growth rate analysis

    Science.gov (United States)

    Pichelstorfer, Lukas; Stolzenburg, Dominik; Ortega, John; Karl, Thomas; Kokkola, Harri; Laakso, Anton; Lehtinen, Kari E. J.; Smith, James N.; McMurry, Peter H.; Winkler, Paul M.

    2018-01-01

    Atmospheric new particle formation occurs frequently in the global atmosphere and may play a crucial role in climate by affecting cloud properties. The relevance of newly formed nanoparticles depends largely on the dynamics governing their initial formation and growth to sizes where they become important for cloud microphysics. One key to the proper understanding of nanoparticle effects on climate is therefore hidden in the growth mechanisms. In this study we have developed and successfully tested two independent methods based on the aerosol general dynamics equation, allowing detailed retrieval of time- and size-dependent nanoparticle growth rates. Both methods were used to analyze particle formation from two different biogenic precursor vapors in controlled chamber experiments. Our results suggest that growth rates below 10 nm show much more variation than is currently thought and pin down the decisive size range of growth at around 5 nm where in-depth studies of physical and chemical particle properties are needed.

  5. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Almind, K; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Since relative or absolute insulin deficiency and insulin insensitivity are involved in the aetiology of non-insulin-dependent diabetes mellitus (NIDDM), we examined whether patients with NIDDM exhibit genetic variability in the coding region of insulin receptor substrate-1 (IRS-1), a candidate...

  6. Design and development of green roof substrate to improve runoff water quality: plant growth experiments and adsorption.

    Science.gov (United States)

    Vijayaraghavan, K; Raja, Franklin D

    2014-10-15

    Many studies worldwide have investigated the potential benefits achievable by transforming brown roofs of buildings to green roofs. However, little literature examined the runoff quality/sorption ability of green roofs. As the green roof substrate is the main component to alter the quality of runoff, this investigation raises the possibility of using a mixture of low-cost inorganic materials to develop a green roof substrate. The tested materials include exfoliated vermiculite, expanded perlite, crushed brick and sand along with organic component (coco-peat). Detailed physical and chemical analyses revealed that each of these materials possesses different characteristics and hence a mix of these materials was desirable to develop an optimal green roof substrate. Using factorial design, 18 different substrate mixes were prepared and detailed examination indicated that mix-12 exhibited desirable characteristics of green roof substrate with low bulk density (431 kg/m(3)), high water holding capacity (39.4%), air filled porosity (19.5%), and hydraulic conductivity (4570 mm/h). The substrate mix also provided maximum support to Portulaca grandiflora (380% total biomass increment) over one month of growth. To explore the leaching characteristics and sorption capacity of developed green roof substrate, a down-flow packed column arrangement was employed. High conductivity and total dissolved solids along with light metal ions (Na, K, Ca and Mg) were observed in the leachates during initial stages of column operation; however the concentration of ions ceased during the final stages of operation (600 min). Experiments with metal-spiked deionized water revealed that green roof substrate possess high sorption capacity towards various heavy metal ions (Al, Fe, Cr, Cu, Ni, Pb, Zn and Cd). Thus the developed growth substrate possesses desirable characteristics for green roofs along with high sorption capacity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Vertically aligned ZnO nanorods on porous silicon substrates: Effect of growth time

    Directory of Open Access Journals (Sweden)

    R. Shabannia

    2015-04-01

    Full Text Available Vertically aligned ZnO nanorods were successfully grown on porous silicon (PS substrates by chemical bath deposition at a low temperature. X-ray diffraction, field-emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, and photoluminescence (PL analyses were carried out to investigate the effect of growth duration (2 h to 8 h on the optical and structural properties of the aligned ZnO nanorods. Strong and sharp ZnO (0 0 2 peaks of the ZnO nanorods proved that the aligned ZnO nanorods were preferentially fabricated along the c-axis of the hexagonal wurtzite structure. FESEM images demonstrated that the ZnO nanorod arrays were well aligned along the c-axis and perpendicular to the PS substrates regardless of the growth duration. The TEM image showed that the top surfaces of the ZnO nanorods were round with a smooth curvature. PL spectra demonstrated that the ZnO nanorods grown for 5 h exhibited the sharpest and most intense PL peaks within the ultraviolet range among all samples.

  8. Growth optimization and characterization of GaN epilayers on multifaceted (111) surfaces etched on Si(100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ansah-Antwi, KwaDwo Konadu, E-mail: kakadee@gmail.com; Chua, Soo Jin [Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis # 08-03, Singapore 138634 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, E4-5-45, 4 Engineering Drive 3, Singapore 117576 (Singapore); Soh, Chew Beng [Singapore Institute of Technology, 10 Dover Drive, Singapore 138683 (Singapore); Liu, Hongfei [Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis # 08-03, Singapore 138634 (Singapore)

    2015-11-15

    The four nearest Si(111) multifaceted sidewalls were exposed inside an array of 3 μm-wide square holes patterned on an Si(100) substrate, and this patterned Si(100) substrate was used as a substrate for the deposition of a gallium nitride (GaN) epilayer. Subsequently the effect that the growth pressure, the etched-hole profiles, and the etched-hole arrangement had upon the quality of the as-grown GaN was investigated. The coalescence of the as-grown GaN epilayer on the exposed Si(111) facets was observed to be enhanced with reduced growth pressure from 120 to 90 Torr. A larger Si(001) plane area at the bottom of the etched holes resulted in bidirectional GaN domains, which resulted in poor material quality. The bidirectional GaN domains were observed as two sets of six peaks via a high-resolution x-ray diffraction phi scan of the GaN(10-11) reflection. It was also shown that a triangular array of etched holes was more desirable than square arrays of etched holes for the growth high-quality and continuous GaN films.

  9. Onset temperature for Si nanostructure growth on Si substrate during high vacuum electron beam annealing.

    Science.gov (United States)

    Fang, F; Markwitz, A

    2009-05-01

    Silicon nanostructures, called Si nanowhiskers, are successfully synthesized on Si(100) substrate by high vacuum electron beam annealing. The onset temperature and duration needed for the Si nanowhiskers to grow was investigated. It was found that the onset and growth morphology of Si nanowhiskers strongly depend on the annealing temperature and duration applied in the annealing cycle. The onset temperature for nanowhisker growth was determined as 680 degrees C using an annealing duration of 90 min and temperature ramps of +5 degrees C s(-1) for heating and -100 degrees C s(-1) for cooling. Decreasing the annealing time at peak temperature to 5 min required an increase in peak temperature to 800 degrees C to initiate the nanowhisker growth. At 900 degrees C the duration for annealing at peak temperature can be set to 0 s to grow silicon nanowhiskers. A correlation was found between the variation in annealing temperature and duration and the nanowhisker height and density. Annealing at 900 degrees C for 0 s, only 2-3 nanowhiskers (average height 2.4 nm) grow on a surface area of 5 x 5 microm, whereas more than 500 nanowhiskers with an important average height of 4.6 nm for field emission applications grow on the same surface area for a sample annealed at 970 degrees C for 0 s. Selected results are presented showing the possibility of controlling the density and height of Si nanowhisker growth for field emission applications by applying different annealing temperature and duration.

  10. Simulation and theory of island growth on stepped substrates

    International Nuclear Information System (INIS)

    Pownall, C.D.

    1999-10-01

    The nucleation, growth and coalescence of islands on stepped substrates is investigated by Monte Carlo simulations and analytical theories. Substrate steps provide a preferential site for the nucleation of islands, making many of the important processes one-dimensional in nature, and are of potentially major importance in the development of low-dimensional structures as a means of growing highly ordered chains of 'quantum dots' or continuous 'quantum wires'. A model is developed in which island nucleation is entirely restricted to the step edge, islands grow in compact morphologies by monomer capture, and eventually coalesce with one another until a single continuous cluster of islands covers the entire step. A series of analytical theories is developed to describe the dynamics of the whole evolution. The initial nucleation and aggregation regimes are modeled using the traditional approach of rate equations, rooted in mean field theory, but incorporating corrections to account for correlations in the nucleation and capture processes. This approach is found to break down close to the point at which the island density saturates and a new approach is developed based upon geometric and probabilistic arguments to describe the saturation behaviour, including the characteristic dynamic scaling which is found to persist through the coalescence regime as well. A further new theory, incorporating arguments based on the geometry of Capture Zones, is presented which reproduces the dynamics of the coalescence regime. The, latter part of the. thesis considers the spatial properties of the system, in particular the spacing of the islands along the step. An expression is derived which describes the distribution of gap sizes, and this is solved using a recently-developed relaxation method. An important result is the discovery that larger critical island sizes tend to yield more evenly spaced arrays of islands. The extent of this effect is analysed by solving for critical island

  11. Effects of substrate type on plant growth and nitrogen and nitrate concentration in spinach

    Science.gov (United States)

    The effects of three commercial substrates (a mixture of forest residues, composted grape husks, and white peat; black peat; and coir) on plant growth and nitrogen (N) and nitrate (NO3) concentration and content were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were trans...

  12. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates

    Science.gov (United States)

    Vlassiouk, Ivan V.; Stehle, Yijing; Pudasaini, Pushpa Raj; Unocic, Raymond R.; Rack, Philip D.; Baddorf, Arthur P.; Ivanov, Ilia N.; Lavrik, Nickolay V.; List, Frederick; Gupta, Nitant; Bets, Ksenia V.; Yakobson, Boris I.; Smirnov, Sergei N.

    2018-03-01

    There is a demand for the manufacture of two-dimensional (2D) materials with high-quality single crystals of large size. Usually, epitaxial growth is considered the method of choice1 in preparing single-crystalline thin films, but it requires single-crystal substrates for deposition. Here we present a different approach and report the synthesis of single-crystal-like monolayer graphene films on polycrystalline substrates. The technological realization of the proposed method resembles the Czochralski process and is based on the evolutionary selection2 approach, which is now realized in 2D geometry. The method relies on `self-selection' of the fastest-growing domain orientation, which eventually overwhelms the slower-growing domains and yields a single-crystal continuous 2D film. Here we have used it to synthesize foot-long graphene films at rates up to 2.5 cm h-1 that possess the quality of a single crystal. We anticipate that the proposed approach could be readily adopted for the synthesis of other 2D materials and heterostructures.

  13. Growth and BZO-doping of the nanostructured YBCO thin films on buffered metal substrates

    DEFF Research Database (Denmark)

    Huhtinen, H.; Irjala, M.; Paturi, P.

    2010-01-01

    The growth of the nanostructured YBa2Cu3O6+x (YBCO) films is investigated for the first time on biaxially textured NiW substrates used in coated conductor technology. The optimization process of superconducting layers is made in wide magnetic field and temperature range in order to understand...... the vortex pinning structure and mechanism in our films prepared from nanostructured material. Structural analysis shows that growth mechanism in YBCO films grown on NiW is completely different when compared to YBCO on STO. Films on NiW are much rougher, there is huge in-plane variation of YBCO crystals...... and moreover out-of-plane long range lattice ordering is greatly reduced. Magnetic measurements demonstrate that jc in films grown on NiW is higher in high magnetic fields and low temperatures. This effect is connected to the amount of pinning centres observed in films on metal substrates which are effective...

  14. Growth of TiO2 Thin Film on Various Substrates using RF Magnetron Sputtering

    International Nuclear Information System (INIS)

    Ali, Riyaz Ahmad Mohamed; Nayan, Nafarizal

    2011-01-01

    The conductivity of Titanium Dioxide (TiO 2 ) thin film fabricated using Radio Frequency (RF) Magnetron Sputtering on Silicon (Si), Indium doped--Tin Oxide (ITO) and microscope glass (M) substrates is presented in this paper. The dependant of thin film thickness and type of substrate been discussed. TiO 2 was deposited using Ti target in Ar+O 2 (45:10) mixture at 250 W for 45, 60, 75, 90, 105 and 120 minute. Resultant thickness varies from 295 nm to 724 nm with deposition rate 6.4 nm/min. On the other hand, resistivity, Rs value for ITO substrate is between 5.72x10 -7 to 1.54x10 -6 Ω.m, Si substrate range is between 3.52x10 -6 to 1.76x10 -5 Ω.m and M substrate range is between 99 to 332 Ω.m. The value of resistivity increases with the thickness of the thin film.

  15. Nanowire growth from the viewpoint of the thin film polylayer growth theory

    Science.gov (United States)

    Kashchiev, Dimo

    2018-03-01

    The theory of polylayer growth of thin solid films is employed for description of the growth kinetics of single-crystal nanowires. Expressions are derived for the dependences of the height h and radius r of a given nanowire on time t, as well as for the h(r) dependence. These dependences are applicable immediately after the nanowire nucleation on the substrate and thus include the period during which the nucleated nanowire changes its shape from that of cap to that of column. The analysis shows that the nanowire cap-to-column shape transition is continuous and makes it possible to kinetically define the nanowire shape-transition radius by means of the nanowire radial and axial growth rates. The obtained h(t), r(t) and h(r) dependences are found to provide a good description of available experimental data for growth of self-nucleated GaN nanowires by the vapor-solid mechanism.

  16. Epidermal growth factor pathway substrate 15, Eps15

    DEFF Research Database (Denmark)

    Salcini, A E; Chen, H; Iannolo, G

    1999-01-01

    Eps15 was originally identified as a substrate for the kinase activity of the epidermal growth factor receptor (EGFR). Eps15 has a tripartite structure comprising a NH2-terminal portion, which contains three EH domains, a central putative coiled-coil region, and a COOH-terminal domain containing...... multiple copies of the amino acid triplet Aspartate-Proline-Phenylalanine. A pool of Eps15 is localized at clathrin coated pits where it interacts with the clathrin assembly complex AP-2 and a novel AP-2 binding protein, Epsin. Perturbation of Eps15 and Epsin function inhibits receptor-mediated endocytosis...... of EGF and transferrin, demonstrating that both proteins are components of the endocytic machinery. Since the family of EH-containing proteins is implicated in various aspects of intracellular sorting, biomolecular strategies aimed at interfering with these processes can now be envisioned...

  17. A model framework to describe growth-linked biodegradation of trace-level pollutants in the presence of coincidental carbon substrates and microbes.

    Science.gov (United States)

    Liu, Li; Helbling, Damian E; Kohler, Hans-Peter E; Smets, Barth F

    2014-11-18

    Pollutants such as pesticides and their degradation products occur ubiquitously in natural aquatic environments at trace concentrations (μg L(-1) and lower). Microbial biodegradation processes have long been known to contribute to the attenuation of pesticides in contaminated environments. However, challenges remain in developing engineered remediation strategies for pesticide-contaminated environments because the fundamental processes that regulate growth-linked biodegradation of pesticides in natural environments remain poorly understood. In this research, we developed a model framework to describe growth-linked biodegradation of pesticides at trace concentrations. We used experimental data reported in the literature or novel simulations to explore three fundamental kinetic processes in isolation. We then combine these kinetic processes into a unified model framework. The three kinetic processes described were: the growth-linked biodegradation of micropollutant at environmentally relevant concentrations; the effect of coincidental assimilable organic carbon substrates; and the effect of coincidental microbes that compete for assimilable organic carbon substrates. We used Monod kinetic models to describe substrate utilization and microbial growth rates for specific pesticide and degrader pairs. We then extended the model to include terms for utilization of assimilable organic carbon substrates by the specific degrader and coincidental microbes, growth on assimilable organic carbon substrates by the specific degrader and coincidental microbes, and endogenous metabolism. The proposed model framework enables interpretation and description of a range of experimental observations on micropollutant biodegradation. The model provides a useful tool to identify environmental conditions with respect to the occurrence of assimilable organic carbon and coincidental microbes that may result in enhanced or reduced micropollutant biodegradation.

  18. Localized Technological Change and Path-Dependent Growth

    OpenAIRE

    Bassanini, A.

    1997-01-01

    In recent years the theory of macroeconomic growth has seen an expanding literature building upon the idea that technological change is localized (technology-specific) to investigate various phenomena such as leapfrogging, take-off, and social mobility. In this paper I explore the relationship between localized technological change and dependence on history of long-run aggregate output growth. The growth model I set forth show that, subject to mild assumptions on the stochastic process repres...

  19. Remote and direct plasma regions for low-temperature growth of carbon nanotubes on glass substrates for display applications

    International Nuclear Information System (INIS)

    Tabatabaei, M K; Ghafouri fard, H; Koohsorkhi, J; Khatami, S; Mohajerzadeh, S

    2011-01-01

    A novel method for growing carbon nanotubes (CNTs) on glass substrates is introduced in this study. A two-stage plasma was used to achieve low-temperature and vertically aligned CNTs. Ni deposited on indium tin oxide/glass substrate was used as the catalyst and hydrogen and acetylene were used as gas feeds. In this investigation a new technique was developed to grow vertically aligned CNTs at temperatures below 400 deg. C while CNT growth by plasma-enhanced chemical vapour deposition required high temperatures. Low-temperature growth of vertically aligned CNTs was suitable for the fabrication of micro-lens and self-oriented displays on glass substrates. Also, we have reported a new configuration for CNT-based display by means of controlling the refractive index of liquid crystal around the CNT by applying a proper voltage to the top and bottom array.

  20. Substrate-dependent inhibition of human MATE1 by cationic ionic liquids.

    Science.gov (United States)

    Martínez-Guerrero, Lucy J; Wright, Stephen H

    2013-09-01

    The multidrug and toxin extruders 1- and 2-K (MATE1 and MATE2-K) are expressed in the luminal membrane of renal proximal tubule cells and provide the active step in the secretion of molecules that carry a net positive charge at physiologic pH, so-called organic cations. The present study tested whether structurally distinct MATE substrates can display different quantitative profiles of inhibition when interacting with structurally distinct ligands. The tested ligands were three structurally similar cationic ionic liquids (ILs, salts in the liquid state: N-butylpyridinium, NBuPy; 1-methyl-3-butylimidazolium, Bmim; and N-butyl-N-methylpyrrolidinium, BmPy). Uptake was measured using Chinese hamster ovary cells that stably expressed MATE1 or MATE2-K. By trans-stimulation, all three ILs were transported by both MATE transporters. The three ILs also inhibited uptake of three structurally distinct MATE substrates: 1-methyl-4-phenylpyridinium (MPP), triethylmethylammonium (TEMA), and N,N,N-trimethyl-2-[methyl(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino]ethanaminium (NBD-MTMA). MATE1 displayed a higher affinity for the pyridinium-based NBuPy (IC50 values, 2-4 µM) than for either the pyrrolidinium- (BmPy; 20-70 µM) or imidazolium-based ILs (Bmim; 15-60 µM). Inhibition of MPP, TEMA, and NBD-MTMA transport by NBuPy was competitive, with comparable Ki values against all substrates. Bmim also competitively blocked the three substrates but with Ki values that differed significantly (20 µM against MPP and 30 µM against NBD-MTMA versus 60 µM against TEMA). Together, these data indicate that renal secretion of ILs by the human kidney involves MATE transporters and suggest that the mechanism of transport inhibition is ligand-dependent, supporting the hypothesis that the binding of substrates to MATE transporters involves interaction with a binding surface with multiple binding sites.

  1. Molecular dynamics study of growth and interface structure during aluminum deposition on Ni(1 0 0) substrate

    International Nuclear Information System (INIS)

    er, Laboratory of Radiation and Matter, Faculty of Science and Technology, 26000 Settat (Morocco); Univ Hassan 1er, Laboratory LS3M, Faculté Polydisciplinaire of Khouribga, 26000 Settat (Morocco))" data-affiliation=" (Univ Hassan 1er, Laboratory of Radiation and Matter, Faculty of Science and Technology, 26000 Settat (Morocco); Univ Hassan 1er, Laboratory LS3M, Faculté Polydisciplinaire of Khouribga, 26000 Settat (Morocco))" >Hassani, A.; Makan, A.; er, Laboratory LS3M, Faculté Polydisciplinaire of Khouribga, 26000 Settat (Morocco))" data-affiliation=" (Univ Hassan 1er, Laboratory LS3M, Faculté Polydisciplinaire of Khouribga, 26000 Settat (Morocco))" >Sbiaai, K.; er, Laboratory of Radiation and Matter, Faculty of Science and Technology, 26000 Settat (Morocco))" data-affiliation=" (Univ Hassan 1er, Laboratory of Radiation and Matter, Faculty of Science and Technology, 26000 Settat (Morocco))" >Tabyaoui, A.; er, Laboratory LS3M, Faculté Polydisciplinaire of Khouribga, 26000 Settat (Morocco))" data-affiliation=" (Univ Hassan 1er, Laboratory LS3M, Faculté Polydisciplinaire of Khouribga, 26000 Settat (Morocco))" >Hasnaoui, A.

    2015-01-01

    Highlights: • Aluminum thin film growth on Ni(1 0 0) substrate was investigated. • Molecular dynamics simulation based on EAM interaction potential was considered. • Hexagonal and fourfold structures coexisted in the first layer. • Interface mismatch was revealed by wavy effect occurring in both lateral directions. • Film growth followed a layer-by-layer mode only in the first three deposited layers. - Abstract: We investigate aluminum thin film growth on Ni(1 0 0) substrate by means of molecular dynamics simulation. Embedded Atom Method interaction potential is considered. The simulation is performed at 300 K using an incident energy of 1 eV. The substrate-grown film interface shows the coexistence of hexagonal and fourfold structures in the first layer during the initial stage of deposition. As the deposition proceeds, the hexagonal geometry transforms to fourfold one which becomes dominant toward the end of deposition. The coverage of this layer exceeded 100%. Moreover, the deposited Al atoms with fourfold geometry adopt the lattice parameter of Ni as the thickness of deposited film increases. The interface mismatch investigation revealed that the roughness is dictated by how the Al(1 1 1) fits to the Ni(1 0 0) substrate, which may be reflected by a wavy effect occurring in both lateral directions. Furthermore, the film grows by a layer-by-layer mode with a coverage rate greater than 66.7% in the first three layers, while it follows an island mode with a coverage rate lower than the previous value (66.7%) beyond the third layer. Overall, a detailed analysis of each layer growth has established a relationship between the number of deposited atoms and the coverage rate of each layer

  2. Critical Determinants of Substrate Recognition by Cyclin-Dependent Kinase-like 5 (CDKL5).

    Science.gov (United States)

    Katayama, Syouichi; Sueyoshi, Noriyuki; Kameshita, Isamu

    2015-05-19

    Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase known to be associated with X-linked neurodevelopmental disorders. In a previous study, we identified amphiphysin 1 (Amph1) as a potential substrate for CDKL5 and identified a single phosphorylation site at Ser-293. In this study, we investigated the molecular mechanisms of substrate recognition by CDKL5 using Amph1 as a model substrate. Amph1 served as an efficient CDKL5 substrate, whereas Amph2, a structurally related homologue of Amph1, was not phosphorylated by CDKL5. The sequence around the Amph1 phosphorylation site is RPR(293)SPSQ, while the corresponding sequence in Amph2 is IPK(332)SPSQ. To define the amino acid sequence specificity of the substrate, various point mutants of Amph1 and Amph2 were prepared and phosphorylated by CDKL5. Both Amph2(I329R) and Amph1 served as efficient CDKL5 substrates, but Amph1(R290I) did not, indicating that the arginyl residue at the P -3 position is critical for substrate recognition. With regard to prolyl residues around the phosphorylation site of Amph1, Pro-291 at the P -2 position, but not Pro-294 at the P +1 position, is indispensable for phosphorylation by CDKL5. Phosphorylation experiments using various deletion mutants of Amph1 revealed that the proline-rich domain (PRD) (amino acids 247-315) alone was not phosphorylated by CDKL5. In contrast, Amph1(247-385), which comprised the PRD and CLAP domains, served as an efficient CDKL5 substrate. These results, taken together, suggest that both the phosphorylation site sequence (RPXSX) and the CLAP domain structure in Amph1 play crucial roles in recognition and phosphorylation by CDKL5.

  3. Growth-rate-dependent dynamics of a bacterial genetic oscillator

    Science.gov (United States)

    Osella, Matteo; Lagomarsino, Marco Cosentino

    2013-01-01

    Gene networks exhibiting oscillatory dynamics are widespread in biology. The minimal regulatory designs giving rise to oscillations have been implemented synthetically and studied by mathematical modeling. However, most of the available analyses generally neglect the coupling of regulatory circuits with the cellular “chassis” in which the circuits are embedded. For example, the intracellular macromolecular composition of fast-growing bacteria changes with growth rate. As a consequence, important parameters of gene expression, such as ribosome concentration or cell volume, are growth-rate dependent, ultimately coupling the dynamics of genetic circuits with cell physiology. This work addresses the effects of growth rate on the dynamics of a paradigmatic example of genetic oscillator, the repressilator. Making use of empirical growth-rate dependencies of parameters in bacteria, we show that the repressilator dynamics can switch between oscillations and convergence to a fixed point depending on the cellular state of growth, and thus on the nutrients it is fed. The physical support of the circuit (type of plasmid or gene positions on the chromosome) also plays an important role in determining the oscillation stability and the growth-rate dependence of period and amplitude. This analysis has potential application in the field of synthetic biology, and suggests that the coupling between endogenous genetic oscillators and cell physiology can have substantial consequences for their functionality.

  4. The effect of grooves in amorphous substrates on the orientation of metal deposits. I - Carbon substrates

    Science.gov (United States)

    Anton, R.; Poppa, H.; Flanders, D. C.

    1982-01-01

    The graphoepitaxial alignment of vapor-deposited discrete metal crystallites is investigated in the nucleation and growth stages and during annealing by in situ UHV/TEM techniques. Various stages of nucleation, growth and coalescence of vapor deposits of Au, Ag, Pb, Sn, and Bi on amorphous, topographically structured C substrates are analyzed by advanced dark-field techniques to detect preferred local orientations. It is found that the topography-induced orientation of metal crystallites depends strongly on their mobility and their respective tendency to develop pronounced crystallographic shapes. Lowering of the average surface free energies and increasing the crystallographic surface energy anisotropies cause generally improved graphoepitaxial alignments.

  5. Comparative study of initial growth stage in PVT growth of AlN on SiC and on native AlN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, B.M.; Heimann, P.; Bickermann, M.; Winnacker, A. [Department of Materials Science 6, University of Erlangen-Nuernberg, Martensstr. 7, 91058 Erlangen (Germany)

    2005-05-01

    The main issue in homoepitaxial growth of aluminum nitride (AlN) on native seed substrates appears to be aluminum oxynitride poisoning of seed surface leading to polycrystalline growth at 1750-1850 C. This is well below the lowest growth temperature appropriate for physical vapor transport (PVT) of bulk AlN, which is about 2150 C. Contrary, heteroepitaxial growth of AlN on SiC is relatively easy to achieve because of natural formation of a thin molten layer on the seed surface and VLS growth of AlN via the molten buffer layer. The most critical issue of AlN growth on SiC is cracking of the grown layer upon cooling as a result of different thermal expansion. Optimization of seeded growth process can be achieved by proper choice of SiC seed orientation and by use of ultra-pure starting material. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Effect of substrate crystallographic orientation of garnet-ferrite film properties

    International Nuclear Information System (INIS)

    Burym, Yu.A.; Dubinko, S.V.; Mitsaj, Yu.N.; Borovitskaya, L.N.; Prokopov, A.P.

    1992-01-01

    Samples of garnet-ferrite films with a composition (YbGdPrBi) 3 (FeAlGa) 5 O 12 grown under identical conditions on variously oriented substrates, have been studied. The substrate orientation was changed in such a way that the vector of the substrate normal was in the [110] plane between the [111] and [112] directions. We have found that the substrate misorientation leads to an inclined position of the easy magnetization axis (EMA) and a reduction of the film growth rate. The change of the film physical properties (Faraday rotation, Curie temperature, magnetization) indicates the film composition variation with the substrate orientation change. The temperature dependence of the EMA slope angle in the studied samples is determined by the magnetoelastic contribution to the anisotropy constants. (author)

  7. Growth and substrate consumption of Nitrobacter agilis cells immobilized in carrageenan: part 1. Dynamic modeling.

    Science.gov (United States)

    de Gooijer, C D; Wijffels, R H; Tramper, J

    1991-07-01

    The modeling of the growth of Nitrobacter agilis cell immobilized in kappa-carrageenan is presented. A detailed description is given of the modeling of internal diffusion and growth of cells in the support matrix in addition to external mass transfer resistance. The model predicts the substrate and biomass profiles in the support as well as the macroscopic oxygen consumption rate of the immobilized biocatalyst in time. The model is tested by experiments with continuously operated airlift loop reactors containing cells immobilized in kappa-carrageenan. The model describes experimental data very well. It is clearly shown that external mass transfer may not be neglected. Furthermore, a sensitivity analysis of the parameters at their values during the experiments revealed that apart from the radius of the spheres and the substrate bulk concentration, the external mass transfer resistance coefficient is the most sensitive parameter for our case.

  8. MBE-growth, characterization and properties of InN and InGaN

    International Nuclear Information System (INIS)

    Nanishi, Y.; Saito, Y.; Yamaguchi, T.; Hori, M.; Matsuda, F.; Araki, T.; Suzuki, A.; Miyajima, T.

    2003-01-01

    Recent developments on RF-MBE growth of InN and InGaN and their structural and property characterizations are reviewed. For successful growth of high quality InN, (1) nitridation of the sapphire substrates, (2) two-step growth, (3) precise control of V/III ratio and (4) selection of optimum growth temperature are found to be essential. Characterization using XRD, TEM, EXAFS and Raman scattering have clearly demonstrated that InN films have ideal hexagonal wurtzite structure. It is also found that the film has N-polarity. Studies on optimum growth condition dependence on substrate polarity using C and Si face SiC substrates and Ga and N face free-standing GaN substrates are also demonstrated. The result explains why high-quality InN grown by RF-MBE has N-polarity. PL and CL studies on these well-characterized high-quality InN have shown luminescence peaks at approximately 0.75 eV at 77 K. These values, however, change slightly depending on measurement temperatures and probably on the residual carrier concentrations. InGaN with full compositional range are also successfully grown on sapphire substrates and band gap energies of these alloys are also studied using PL and CL. Based on these results, true band gap energies of InN are discussed. This paper also includes latest study on single crystalline InN growth on Si (111) substrates. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. MBE-growth, characterization and properties of InN and InGaN

    Energy Technology Data Exchange (ETDEWEB)

    Nanishi, Y.; Saito, Y.; Yamaguchi, T.; Hori, M.; Matsuda, F.; Araki, T. [Dept. of Photonics, Ritsumeikan Univ., 1-1-1 Noji-higashi, Kusatsu (Japan); Suzuki, A. [Res. Org. of Sci. and Eng., Ritsumeikan Univ., 1-1-1 Noji-higashi, Kusatsu (Japan); Miyajima, T. [Sony Corp. Core Technology and Network Company, 4-14-1 Asahi, Atsugi, Kanagawa 243-0014 (Japan)

    2003-11-01

    Recent developments on RF-MBE growth of InN and InGaN and their structural and property characterizations are reviewed. For successful growth of high quality InN, (1) nitridation of the sapphire substrates, (2) two-step growth, (3) precise control of V/III ratio and (4) selection of optimum growth temperature are found to be essential. Characterization using XRD, TEM, EXAFS and Raman scattering have clearly demonstrated that InN films have ideal hexagonal wurtzite structure. It is also found that the film has N-polarity. Studies on optimum growth condition dependence on substrate polarity using C and Si face SiC substrates and Ga and N face free-standing GaN substrates are also demonstrated. The result explains why high-quality InN grown by RF-MBE has N-polarity. PL and CL studies on these well-characterized high-quality InN have shown luminescence peaks at approximately 0.75 eV at 77 K. These values, however, change slightly depending on measurement temperatures and probably on the residual carrier concentrations. InGaN with full compositional range are also successfully grown on sapphire substrates and band gap energies of these alloys are also studied using PL and CL. Based on these results, true band gap energies of InN are discussed. This paper also includes latest study on single crystalline InN growth on Si (111) substrates. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Nanoscale abnormal grain growth in (001) epitaxial ceria

    International Nuclear Information System (INIS)

    Solovyov, Vyacheslav F.; Develos-Bagarinao, Katherine; Nykypanchuk, Dmytro

    2009-01-01

    X-ray reciprocal-space mapping and atomic force microscopy (AFM) are used to study kinetics and mechanisms of lateral grain growth in epitaxial (001) ceria (CeO 2 ) deposited by pulsed laser deposition on (001) yttria-stabilized zirconia (YSZ) and (12 lowbar 10) (r-cut) sapphire. Rate and character of the grain growth during postannealing at 1050 deg. C are found to be strongly dependent on the type of the epitaxial substrate. Films deposited on YSZ exhibit signatures of normal grain growth, which stagnated after the lateral grain size reaches 40 nm, consistent with the grain-boundary pinning by the thermal grooving. In contrast, when r-cut sapphire substrate was used, abnormal (secondary) grain growth is observed. A small population of grains grow to well over 100 nm consuming smaller, 100 nm large (001) terminations and rendering the sample single-crystalline quality. The grain growth is accompanied by reduction in lateral rms strain, resulting in a universal grain size--rms strain dependence. Analysis of the AFM and x-ray diffraction data leads to the conclusion that bimodal initial grain population consisting of grains with very different sizes is responsible for initiation of the abnormal growth in (001) CeO 2 films on r-cut sapphire. Due to different surface chemistry, when a YSZ substrate is used, the initial grain distribution is monomodal, therefore only normal growth is active. We demonstrate that a 2.2 deg. miscut of the sapphire substrate eliminates the large-grain population, thus suppressing abnormal grain growth. It is concluded that utilization of abnormal grain growth is a promising way for synthesis of large (001) ceria terminations.

  11. MOVPE growth of violet GaN LEDs on β-Ga2O3 substrates

    Science.gov (United States)

    Li, Ding; Hoffmann, Veit; Richter, Eberhard; Tessaro, Thomas; Galazka, Zbigniew; Weyers, Markus; Tränkle, Günther

    2017-11-01

    We report that a H2-free atmosphere is essential for the initial stage of metalorganic vapour phase epitaxy (MOVPE) growth of GaN on β-Ga2O3 to prevent the surface from damage. A simple growth method is proposed that can easily transfer established GaN growth recipes from sapphire to β-Ga2O3 with both (-2 0 1) and (1 0 0) orientations. This method features a thin AlN nucleation layer grown below 900 °C in N2 atmosphere to protect the surface of β-Ga2O3 from deterioration during further growth under the H2 atmosphere. Based on this, we demonstrate working violet vertical light emitting diodes (VLEDs) on n-conductive β-Ga2O3 substrates.

  12. Use of artificial substrate in pond culture of freshwater prawn (Macrobrachium rosenbergii: a new approach regarding growth performance and economic return

    Directory of Open Access Journals (Sweden)

    Dilshad Milky Tuly

    2014-04-01

    Full Text Available An experiment was conducted for six months to evaluate the effects of artificial substrates on the survival, growth and production of Macrobrachium rosenbergii juveniles. The treatment T1 contained locally available bamboo-made substrate both vertical and horizontal and treatment T2 received no substrate. Juvenile prawns (0.40±0.13 g were stocked at the rate of 19,760 prawns ha-1. The water quality parameters range such as temperature, pH and DO were 22.06-33.45°C, 7.70-8.40 and 4.75-6.15 mgl-1 respectively which was no significant difference (P0.05 than T2 (56.87%. The specific growth rate, food conversion ratio and protein efficiency ratio were 1.19 % and 1.14 %, 3.15 and 4.39, 0.98 and 0.71 in T1 and T2 respectively which were not significantly different (P0.05 than T2. Thus growth and survival of prawn juveniles improved in presence of artificial substrate which could be economically viable technique for the freshwater prawn culture.

  13. Growth of M-plane (10-10)InN on LiAlO2(100) substrate

    International Nuclear Information System (INIS)

    Takagi, Yusuke; Muto, Daisuke; Araki, Tsutomu; Nanishi, Yasushi; Yamaguchi, Tomohiro

    2009-01-01

    In this study, we report the growth and characterization of M-plane InN films on LiAlO 2 (100) substrates by radio-frequency plasma assisted molecular beam epitaxy (RF-MBE). InN films were grown at various temperatures and under various V/III ratios on the substrates. Pure M -plane InN films were successfully grown at a high temperature of 450 C and under a slightly In-rich condition, while the incorporation of C-plane phase was observed in M -plane InN films grown at low temperatures of less than 400 C or under a N-rich condition. These indicate that controls of growth temperature and V/III ratio are important for the growth of pure M-plane InN films. The in-plane epitaxial relationships of M -plane InN on LiAlO 2 (100) were[0001] InN //[010] LiAlO 2 and[1-210] InN //[001] LiAlO 2 . A surface electron accumulation layer on the obtained M-plane InN film is also discussed. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Some Aspects of the RHEED Behavior of Low-Temperature GaAs Growth

    International Nuclear Information System (INIS)

    Nemcsics, A.

    2005-01-01

    The reflection high-energy electron diffraction (RHEED) behavior manifested during MBE growth on a GaAs(001) surface under low-temperature (LT) growth conditions is examined in this study. RHEED and its intensity oscillations during LT GaAs growth exhibit some particular behavior. The intensity, phase, and decay of the oscillations depend on the beam equivalent pressure (BEP) ratio and substrate temperature, etc. Here, the intensity dependence of RHEED behavior on the BEP ratio, substrate temperature, and excess of As content in the layer are examined. The change in the decay constant of the RHEED oscillations is also discussed

  15. Selective LPCVD growth of graphene on patterned copper and its growth mechanism

    Science.gov (United States)

    Zhang, M.; Huang, B.-C.; Wang, Y.; Woo, J. C. S.

    2016-12-01

    Copper-catalyzed graphene low-pressure chemical-vapor deposition (LPCVD) growth has been regarded as a viable solution towards its integration to CMOS technology, and the wafer-bonding method provides a reliable alternative for transferring the selective graphene grown on a patterned metal film for IC manufacturing. In this paper, selective LPCVD graphene growth using patterned copper dots has been studied. The Raman spectra of grown films have demonstrated large dependence on the growth conditions. To explain the results, the growth mechanisms based on surface adsorption and copper-vapor-assisted growth are investigated by the comparison between the blanket copper films with/without the additional copper source. The copper vapor density is found to be critical for high-quality graphene growth. In addition, the copper-vapor-assisted growth is also evidenced by the carbon deposition on the SiO2 substrate of the patterned-copper-dot sample and chamber wall during graphene growth. This growth mechanism explains the correlation between the growth condition and Raman spectrum for films on copper dots. The study on the copper-catalyzed selective graphene growth on the hard substrate paves the way for the synthesis and integration of the 2D material in VLSI.

  16. Experimental and simulation study of growth of TiO2 films on different substrates and its applications

    Science.gov (United States)

    Ghogare, Trupti T.; Kartha, Moses J.; Kendre, Subhash D.; Pathan, Habib M.

    2018-04-01

    Monte-Carlo Ballistic Deposition simulations have done on substrates with different initial roughness. The grown films were observed to be porous. The initial growths of the films with seed like initiations are observed for substrate with high initial roughness. In order to confirm this effect TiO2 films were deposited on different substrates using chemical bath deposition. The surface morphological and optical properties were measured using scanning electron microscopy and a UV-Vis spectrophotometer. Flower like porous structure are obtained on glass substrate and continuous porous morphology is formed on ITO substrate. The morphology of the surfaces was successfully reconstructed and the surface porosity was calculated after digitalising images and reconstructed the surfaces. The TiO2 film formed on ITO is observed to be 10% more porous than on the film formed on glass substrate. Diffusion Limited Aggregation simulations with multiple seeds confirms that the observed flower like structure formed are due to the screening effects of the diffusing ion by already deposited particles.

  17. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    Science.gov (United States)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-06-01

    Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  18. Effect of Different Substrates and Casing Materials on the Growth and Yield of Calocybe indica.

    Science.gov (United States)

    Amin, Ruhul; Khair, Abul; Alam, Nuhu; Lee, Tae Soo

    2010-06-01

    Calocybe indica, a tropical edible mushroom, is popular because it has good nutritive value and it can be cultivated commercially. The current investigation was undertaken to determine a suitable substrate and the appropriate thickness of casing materials for the cultivation of C. indica. Optimum mycelial growth was observed in coconut coir substrate. Primordia initiation with the different substrates and casing materials was observed between the 13th and 19th day. The maximum length of stalk was recorded from sugarcane leaf, while diameter of stalk and pileus, and thickness of pileus were found in rice straw substrate. The highest biological and economic yield, and biological efficiency were also obtained in the rice straw substrate. Cow dung and loamy soil, farm-yard manure, loamy soil and sand, and spent oyster mushroom substrates were used as casing materials to evaluate the yield and yield-contributing characteristics of C. indica. The results indicate that the number of effective fruiting bodies, the biological and economic yield, and the biological efficiency were statistically similar all of the casing materials used. The maximum biological efficiency was found in the cow dung and loamy soil casing material. The cow dung and loamy soil (3 cm thick) was the best casing material and the rice straw was the best substrate for the commercial cultivation of C. indica.

  19. Growth of InGaAs/GaAsP multiple quantum well solar cells on mis-orientated GaAs substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sodabanlu, Hassanet, E-mail: sodabanlu@hotaka.t.u-tokyo.ac.jp; Wang, Yunpeng; Watanabe, Kentaroh [Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Sugiyama, Masakazu [Department of Electrical Engineering and Information System, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Nakano, Yoshiaki [Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Department of Electrical Engineering and Information System, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan)

    2014-06-21

    The effects of growth temperature on the properties of InGaAs/GaAsP multiple quantum well (MQW) solar cells on various mis-orientated GaAs substrates were studied using metalorganic vapor phase epitaxy. Thickness modulation effect caused by mismatch strain of InGaAs/GaAsP could be suppressed by low growth temperature. Consequently, abrupt MQWs with strong light absorption could be deposited on mis-oriented substrates. However, degradation in crystal quality and impurity incorporation are the main drawbacks with low temperature growth because they tend to strongly degraded carrier transport and collection efficiency. MQW solar cells grown at optimized temperature showed the better conversion efficiency. The further investigation should focus on improvement of crystal quality and background impurities.

  20. Characterization of dependencies between growth and division in budding yeast.

    Science.gov (United States)

    Mayhew, Michael B; Iversen, Edwin S; Hartemink, Alexander J

    2017-02-01

    Cell growth and division are processes vital to the proliferation and development of life. Coordination between these two processes has been recognized for decades in a variety of organisms. In the budding yeast Saccharomyces cerevisiae , this coordination or 'size control' appears as an inverse correlation between cell size and the rate of cell-cycle progression, routinely observed in G 1 prior to cell division commitment. Beyond this point, cells are presumed to complete S/G 2 /M at similar rates and in a size-independent manner. As such, studies of dependence between growth and division have focused on G 1 Moreover, in unicellular organisms, coordination between growth and division has commonly been analysed within the cycle of a single cell without accounting for correlations in growth and division characteristics between cycles of related cells. In a comprehensive analysis of three published time-lapse microscopy datasets, we analyse both intra- and inter-cycle dependencies between growth and division, revisiting assumptions about the coordination between these two processes. Interestingly, we find evidence (i) that S/G 2 /M durations are systematically longer in daughters than in mothers, (ii) of dependencies between S/G 2 /M and size at budding that echo the classical G 1 dependencies, and (iii) in contrast with recent bacterial studies, of negative dependencies between size at birth and size accumulated during the cell cycle. In addition, we develop a novel hierarchical model to uncover inter-cycle dependencies, and we find evidence for such dependencies in cells growing in sugar-poor environments. Our analysis highlights the need for experimentalists and modellers to account for new sources of cell-to-cell variation in growth and division, and our model provides a formal statistical framework for the continued study of dependencies between biological processes. © 2017 The Author(s).

  1. In situ study of the growth and degradation processes in tetragonal lysozyme crystals on a silicon substrate by high-resolution X-ray diffractometry

    Science.gov (United States)

    Kovalchuk, M. V.; Prosekov, P. A.; Marchenkova, M. A.; Blagov, A. E.; D'yakova, Yu. A.; Tereshchenko, E. Yu.; Pisarevskii, Yu. V.; Kondratev, O. A.

    2014-09-01

    The results of an in situ study of the growth of tetragonal lysozyme crystals by high-resolution X-ray diffractometry are considered. The crystals are grown by the sitting-drop method on crystalline silicon substrates of different types: both on smooth substrates and substrates with artificial surface-relief structures using graphoepitaxy. The crystals are grown in a special hermetically closed crystallization cell, which enables one to obtain images with an optical microscope and perform in situ X-ray diffraction studies in the course of crystal growth. Measurements for lysozyme crystals were carried out in different stages of the crystallization process, including crystal nucleation and growth, developed crystals, the degradation of the crystal structure, and complete destruction.

  2. Growth of vertically oriented InN nanorods from In-rich conditions on unintentionally patterned sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Terziyska, Penka T., E-mail: pterziy1@lakeheadu.ca [Semiconductor Research Laboratory, Department of Electrical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1 (Canada); Butcher, Kenneth Scott A. [Semiconductor Research Laboratory, Department of Electrical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1 (Canada); MEAglow Ltd., Box 398, 2400 Nipigon Road, Thunder Bay, ON P7C4W1 (Canada); Rafailov, Peter [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Alexandrov, Dimiter [Semiconductor Research Laboratory, Department of Electrical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1 (Canada); MEAglow Ltd., Box 398, 2400 Nipigon Road, Thunder Bay, ON P7C4W1 (Canada)

    2015-10-30

    Highlights: • Vertical InN nanorods are grown on selective areas of sapphire substrates. • In metal droplets nucleate on the sharp needle apexes on the selective areas. • The preferred orientation and the growth direction of the nanorods are (0 0 0 1). • The nanorods grow from the supersaturated indium melt on their tops. - Abstract: Vertically oriented InN nanorods were grown on selective areas of unintentionally patterned c-oriented sapphire substrates exhibiting sharp needles that preferentially accommodate In-metal liquid droplets, using Migration Enhanced Afterglow (MEAglow) growth technique. We point out that the formation of AlN needles on selected areas can be reproduced intentionally by over-nitridation of unmasked areas of sapphire substrates. The liquid indium droplets serve as a self-catalyst and the nanorods grow from the supersaturated indium melt in the droplet in a vertical direction. X-ray diffraction measurements indicate the presence of hexagonal InN only, with preferred orientation along (0 0 0 1) crystal axis, and very good crystalline quality. The room temperature Raman spectrum shows the presence of the A{sub 1}(TO), E{sub 2}(high) and A{sub 1}(LO) phonon modes of the hexagonal InN.

  3. Redox-dependent substrate-cofactor interactions in the Michaelis-complex of a flavin-dependent oxidoreductase

    Science.gov (United States)

    Werther, Tobias; Wahlefeld, Stefan; Salewski, Johannes; Kuhlmann, Uwe; Zebger, Ingo; Hildebrandt, Peter; Dobbek, Holger

    2017-07-01

    How an enzyme activates its substrate for turnover is fundamental for catalysis but incompletely understood on a structural level. With redox enzymes one typically analyses structures of enzyme-substrate complexes in the unreactive oxidation state of the cofactor, assuming that the interaction between enzyme and substrate is independent of the cofactors oxidation state. Here, we investigate the Michaelis complex of the flavoenzyme xenobiotic reductase A with the reactive reduced cofactor bound to its substrates by X-ray crystallography and resonance Raman spectroscopy and compare it to the non-reactive oxidized Michaelis complex mimics. We find that substrates bind in different orientations to the oxidized and reduced flavin, in both cases flattening its structure. But only authentic Michaelis complexes display an unexpected rich vibrational band pattern uncovering a strong donor-acceptor complex between reduced flavin and substrate. This interaction likely activates the catalytic ground state of the reduced flavin, accelerating the reaction within a compressed cofactor-substrate complex.

  4. Maintenance-energy-dependent dynamics of growth and poly(3-hydroxybutyrate) [P(3HB)] production by Azohydromonas lata MTCC 2311 using simple and renewable carbon substrates

    OpenAIRE

    Zafar,M.; Kumar,S.; Kumar,S.; Dhiman,A. K.; Park,H.-S.

    2014-01-01

    The dynamics of microbial growth and poly(3-hydroxybutyrate) [P(3HB)] production in growth/ non-growth phases of Azhohydromonas lata MTCC 2311 were studied using a maintenance-energy-dependent mathematical model. The values of calculated model kinetic parameters were: m s1 = 0.0005 h-1, k = 0.0965, µmax = 0.25 h-1 for glucose; m s1 = 0.003 h-1, k = 0.1229, µmax = 0.27 h-1 for fructose; and m s1 = 0.0076 h-1, k = 0.0694, µmax = 0.25 h-1 for sucrose. The experimental data of biomass growth, sub...

  5. The effect of substrate modification on microbial growth on surfaces

    International Nuclear Information System (INIS)

    Brown, Angela Ann

    1998-01-01

    The principle aim of the program was to produce a novel, non-leaching antimicrobial surface for commercial development and future use in the liquid food packaging industry. Antimicrobial surfaces which exist presently have been produced to combat the growth of prokaryotic organisms and usually function as slow release systems. A system which could inhibit eukaryotic growth without contaminating the surrounding 'environment' with the inhibitor was considered of great commercial importance. The remit of this study was concerned with creating a surface which could control the growth of eukaryotic organisms found in fruit juice with particular interest in the yeast, Saccharomyces cerevisiae. Putative antimicrobial surfaces were created by the chemical modification of the test substrate polymers; nylon and ethylvinyl alcohol (EVOH). Surfaces were chemically modified by the covalent coupling of antimicrobial agents known to be active against the yeast Saccharomyces cerevisiae as ascertained by the screening process determining the minimum inhibitory concentration (MIC) values of agents in the desired test medium. During the study it was found that a number of surfaces did appear to inhibit yeast growth in fruit juice, however on further investigation the apparent inhibitory effect was discovered to be the result of un-bound material free in the test medium. On removing the possibility of any un-bound material present on the test surface, by a series of surface washings, the inhibitory effect on yeast growth was eliminated. Of the agents tested only one appeared to have an inhibitory effect which could be attributed to a true antimicrobial surface effect, Amical 48. As there is little known about this agent in the literature, its affect on yeast growth was examined and in particular a proposal for the mode of action on yeast is discussed, providing a plausible explanation for the inhibitory effect observed when this agent is covalently immobilised onto nylon. (author)

  6. a-Si:H crystallization from isothermal annealing and its dependence on the substrate used

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Lopez, M., E-mail: marlonrl@yahoo.com.mx [CIBA-Tlaxcala, Instituto Politecnico Nacional, Tepetitla, Tlax. 90700 (Mexico); Orduna-Diaz, A.; Delgado-Macuil, R.; Gayou, V.L.; Bibbins-Martinez, M. [CIBA-Tlaxcala, Instituto Politecnico Nacional, Tepetitla, Tlax. 90700 (Mexico); Torres-Jacome, A.; Trevino-Palacios, C.G. [INAOE, Tonantzintla, Puebla, Pue. 72000 (Mexico)

    2010-10-25

    We present hydrogenated amorphous silicon (a-Si:H) films which were deposited on two different substrates (glass and mono-crystalline silicon) after an isothermal annealing treatment at 250 deg. C for up to 14 h. The annealed amorphous films were analyzed using atomic force microscopy, Raman and FTIR spectroscopy. Films deposited on glass substrate experienced an amorphous-crystalline phase transition after annealing because of the metal-induced crystallization effect, reaching approximately 70% conversion after 14 h of annealing. An absorption frequency of the TO-phonon mode that varies systematically with the substoichiometry of the silicon oxide in the 1046-1170 cm{sup -1} region was observed, revealing the reactivity of the film with the annealing time. For similar annealing time, films deposited on mono-crystalline silicon substrate remained mainly amorphous with minimal Si-crystalline formation. Therefore, the crystalline formations and the shape of the films surfaces depends on the annealing time as well as on the substrate employed during the deposition process of the a-Si:H film.

  7. Study of molecular-beam epitaxy growth on patterned GaAs (311)A substrates with different mesa height

    NARCIS (Netherlands)

    Gong, Q.; Nötzel, R.; Schönherr, H.-P.; Ploog, K.

    2000-01-01

    We report on the evolution of the growth front during molecular-beam epitaxy on GaAs (3 1 1)A substrates stripe patterned along the [ ] direction as a function of the mesa height. During growth (1 0 0) and (2 1 1)A facets are formed and expand at the corners near the two opposite lying ( )A and (1 1

  8. Substrate dependence of TM-polarized light emission characteristics of BAlGaN/AlN quantum wells

    Science.gov (United States)

    Park, Seoung-Hwan; Ahn, Doyeol

    2018-06-01

    To study the substrate dependence of light emission characteristics of transverse-magnetic (TM)-polarized light emitted from BAlGaN/AlN quantum wells (QWs) grown on GaN and AlN substrates were investigated theoretically. It is found that the topmost valence subband for QW structures grown on AlN substrate, is heavy hole state (HH1) while that for QW structures grown on GaN substrate is crystal-field split off light hole state (CL1), irrespective of the boron content. Since TM-polarized light emission is associated with the light hole state, the TM-polarized emission peak of BAlGaN/AlN QW structures grown on GaN substrate is expected to be much larger than that of the QW structure grown on AlN substrate. Also, both QW structures show that the spontaneous emission peak of BAlGaN/AlN QW structures would be improved with the inclusion of the boron. However, it rapidly begins to decrease when the boron content exceeds a critical value.

  9. Growth of InAs/InGaAs nanowires on GaAs(111)B substrates

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Sven; Schott, Ruediger; Ludwig, Arne; Wieck, Andreas D. [Lehrstuhl fuer Angewandte Festkoerperphysik, Ruhr-Universitaet Bochum (Germany); Reuter, Dirk [Arbeitsgruppe fuer optoelektronische Materialien und Bauelemente, Universitaet Paderborn (Germany)

    2013-07-01

    To investigate the structure and behavior of individual 1D-quantum structures, so called nanowires, we have grown single localized Au seeded InAs/InGaAs nanowires on GaAs(111)B substrate by molecular beam epitaxy. The Au-seeds are implanted by focused ion beam (FIB) technology. We developed a AuGa-LMIS to avoid the beam spread induced by using a Wien-Filter, which allows us to reduce the spot size of the focused ion beam and as consequence the number of implanted ions necessary to seed a wire. At present the growth of InAs nanowires is not fully understood and we have been working on optimizing the process. We identified an optimal growth temperature and arsenic to indium ratio for nanowire growth. Further investigations also aim at analyzing the influence of the growth rates and growth directions. We studied the morphology of the nanowires by SEM imaging and the optical properties with photoluminescence spectroscopy.

  10. Selective-area vapour-liquid-solid growth of InP nanowires

    International Nuclear Information System (INIS)

    Dalacu, Dan; Kam, Alicia; Guy Austing, D; Wu Xiaohua; Lapointe, Jean; Aers, Geof C; Poole, Philip J

    2009-01-01

    A comparison is made between the conventional non-selective vapour-liquid-solid growth of InP nanowires and a novel selective-area growth process where the Au-seeded InP nanowires grow exclusively in the openings of a SiO 2 mask on an InP substrate. This new process allows the precise positioning and diameter control of the nanowires required for future advanced device fabrication. The growth temperature range is found to be extended for the selective-area growth technique due to removal of the competition between material incorporation at the Au/nanowire interface and the substrate. A model describing the growth mechanism is presented which successfully accounts for the nanoparticle size-dependent and time-dependent growth rate. The dominant indium collection process is found to be the scattering of the group III source material from the SiO 2 mask and subsequent capture by the nanowire, a process that had previously been ignored for selective-area growth by chemical beam epitaxy.

  11. Selective-area vapour-liquid-solid growth of InP nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Dalacu, Dan; Kam, Alicia; Guy Austing, D; Wu Xiaohua; Lapointe, Jean; Aers, Geof C; Poole, Philip J, E-mail: dan.dalacu@nrc-cnrc.gc.c [Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, K1A 0R6 (Canada)

    2009-09-30

    A comparison is made between the conventional non-selective vapour-liquid-solid growth of InP nanowires and a novel selective-area growth process where the Au-seeded InP nanowires grow exclusively in the openings of a SiO{sub 2} mask on an InP substrate. This new process allows the precise positioning and diameter control of the nanowires required for future advanced device fabrication. The growth temperature range is found to be extended for the selective-area growth technique due to removal of the competition between material incorporation at the Au/nanowire interface and the substrate. A model describing the growth mechanism is presented which successfully accounts for the nanoparticle size-dependent and time-dependent growth rate. The dominant indium collection process is found to be the scattering of the group III source material from the SiO{sub 2} mask and subsequent capture by the nanowire, a process that had previously been ignored for selective-area growth by chemical beam epitaxy.

  12. The Critical Role of Substrate in Stabilizing Phosphorene Nanoflake: A Theoretical Exploration.

    Science.gov (United States)

    Gao, Junfeng; Zhang, Gang; Zhang, Yong-Wei

    2016-04-13

    Phosphorene, a new two-dimensional (2D) semiconductor, has received much interest due to its robust direct band gap and high charge mobility. Currently, however, phosphorene can only be produced by mechanical or liquid exfoliation, and it is still a significant challenge to directly epitaxially grow phosphorene, which greatly hinders its mass production and, thus, applications. In epitaxial growth, the stability of nanoscale cluster or flake on a substrate is crucial. Here, we perform ab initio energy optimizations and molecular dynamics simulations to explore the critical role of substrate on the stability of a representative phosphorene flake. Our calculations show that the stability of the phosphorene nanoflake is strongly dependent on the interaction strength between the nanoflake and substrate. Specifically, the strong interaction (0.75 eV/P atom) with Cu(111) substrate breaks up the phosphorene nanoflake, while the weak interaction (0.063 eV/P atom) with h-BN substrate fails to stabilize its 2D structure. Remarkably, we find that a substrate with a moderate interaction (about 0.35 eV/P atom) is able to stabilize the 2D characteristics of the nanoflake on a realistic time scale. Our findings here provide useful guidelines for searching suitable substrates for the directly epitaxial growth of phosphorene.

  13. Bootstrapping as a Resource Dependence Management Strategy and its Association with Startup Growth

    OpenAIRE

    T. VANACKER; S. MANIGART; M. MEULEMAN; L. SELS

    2011-01-01

    This paper studies the association between bootstrapping and startup growth. Bootstrapping reduces a startup’s dependence on financial investors, but may create new dependencies. Drawing upon resource dependence theory, we hypothesize that when bootstrapping does not create new strong dependencies it will benefit startup growth, especially when dependence from financial investors is high. However, when bootstrapping creates new strong dependencies it will constrain growth, especially when dep...

  14. EFFECT OF DIFFERENT SUBSTRATES ON THE GROWTH AND YIELD OF TOMATO (Lycopersicum esculentum Mill UNDER GREENHOUSE CONDITIONS

    Directory of Open Access Journals (Sweden)

    Luis Daniel Ortega-Martínez

    2010-09-01

    Full Text Available The tomato (Lycopersicum esculentum Mill is the world's second most important vegetable. In Mexico, the crop gains economic and social relevance by the generation of foreign exchange and jobs, the production systems of this vegetable have been diversified in order to increase performance, incorporating innovative technologies such as plastic covers, drop irrigation and hydroponics. One of the main factors determining the success of the crop is the substrate, being the medium in which roots were developed which have great influence on the growth and development. In thisstudy, we evaluated during the crop season 2008-2009, the effect of substrate: pine sawdust, compost of sheep manure, agricultural land and red volcanic rock, on growth and yield of tomato. The experimental design used was randomized complete block with four repetitions and ten treatments were evaluated results from a combination of substrates in a volume of 1:1, each experimental unit consisted of four plants, the studied variables were subjected to an analysis of variance (ANOVA using the statistical package Statistical Package for the Social Sciences (SPSS. The genotype used was Sun 7705. Significant differences between substrates, composting with sawdust mixing affected to a greater response for the variables height 4.61 m, 2.1 cm thick of stem, the fruits of greater weight 107.8 g, yield per plant and 4 kg and 25 kg/m-2. However, the number of flowers and clusters was higher in the sawdust substrate, so the composting with sawdust mixture may be a viable option for greenhouse tomato production.

  15. Growth of light-emitting SiGe heterostructures on strained silicon-on-insulator substrates with a thin oxide layer

    Energy Technology Data Exchange (ETDEWEB)

    Baidakova, N. A., E-mail: banatale@ipmras.ru [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Bobrov, A. I. [University of Nizhny Novgorod (Russian Federation); Drozdov, M. N.; Novikov, A. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Pavlov, D. A. [University of Nizhny Novgorod (Russian Federation); Shaleev, M. V.; Yunin, P. A.; Yurasov, D. V.; Krasilnik, Z. F. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-08-15

    The possibility of using substrates based on “strained silicon on insulator” structures with a thin (25 nm) buried oxide layer for the growth of light-emitting SiGe structures is studied. It is shown that, in contrast to “strained silicon on insulator” substrates with a thick (hundreds of nanometers) oxide layer, the temperature stability of substrates with a thin oxide is much lower. Methods for the chemical and thermal cleaning of the surface of such substrates, which make it possible to both retain the elastic stresses in the thin Si layer on the oxide and provide cleaning of the surface from contaminating impurities, are perfecte. It is demonstrated that it is possible to use the method of molecular-beam epitaxy to grow light-emitting SiGe structures of high crystalline quality on such substrates.

  16. Composition–dependent growth dynamics of selectively grown InGaAs nanowires

    International Nuclear Information System (INIS)

    Kohashi, Y; Hara, S; Motohisa, J

    2014-01-01

    We grew gallium-rich (x > 0.50) and indium-rich (x < 0.50) In 1 − x Ga x As nanowires by catalyst–free selective-area metal–organic vapor-phase epitaxy (SA-MOVPE), and compared their growth dynamics dependence on V/III ratio. It was found that the growth dynamics of In 1 − x Ga x As nanowires is clearly dependent on the alloy composition x. Specifically, for gallium–rich nanowire growth, the axial growth rate of nanowires initially increased with decreasing V/III ratio, and then started to decrease when the V/III ratio continued to decrease below a critical value. On the other hand, axial growth rate of indium-rich nanowires monotonically decreased with decreasing V/III ratio. In addition, the alloy composition was strongly dependent on the V/III ratio for gallium-rich nanowire growth, while it was relatively independent of the V/III ratio for indium-rich nanowire growth. We discuss the origin of dissimilarity in the growth dynamics dependence on V/III ratio between gallium-rich and indium-rich InGaAs nanowire growth, and conclude that it is due to the inherent dissimilarity between GaAs and InAs. Our finding provides important guidelines for achieving precise control of the diameter, height, and alloy composition of nanowires suitable for future nanowire-based electronics. (papers)

  17. Plasma deposition of thin film silicon at low substrate temperature and at high growth rate

    NARCIS (Netherlands)

    Verkerk, A.D.|info:eu-repo/dai/nl/304831719

    2009-01-01

    To expand the range of applications for thin film solar cells incorporating hydrogenated amorphous silicon (a-Si:H) and hydrogenated nanocrystalline silicon (nc-Si:H), the growth rate has to be increased 0.5 or less to several nm/s and the substrate temperature should be lowered to around 100 C. In

  18. Growth kinetics, effect of carbon substrate in biosynthesis of mcl-PHA by Pseudomonas putida Bet001.

    Science.gov (United States)

    Gumel, A M; Annuar, M S M; Heidelberg, T

    2014-01-01

    Growth associated biosynthesis of medium chain length poly-3-hydroxyalkanoates (mcl-PHA) in Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. Models with substrate inhibition terms described well the kinetics of its growth. Selected fatty acids (C8:0 to C18:1) and ammonium were used as carbon and nitrogen sources during growth and PHA biosynthesis, resulting in PHA accumulation of about 50 to 69% (w/w) and PHA yields ranging from 10.12 g L(-1) to 15.45 g L(-1), respectively. The monomer composition of the PHA ranges from C4 to C14, and was strongly influenced by the type of carbon substrate fed. Interestingly, an odd carbon chain length (C7) monomer was also detected when C18:1 was fed. Polymer showed melting temperature (T m) of 42.0 (± 0.2) °C, glass transition temperature (T g) of -1.0 (± 0.2) °C and endothermic melting enthalpy of fusion (ΔHf) of 110.3 (± 0.1) J g(-1). The molecular weight (M w) range of the polymer was relatively narrow between 55 to 77 kDa.

  19. Growth kinetics, effect of carbon substrate in biosynthesis of mcl-PHA by Pseudomonas putida Bet001

    Directory of Open Access Journals (Sweden)

    A.M. Gumel

    2014-06-01

    Full Text Available Growth associated biosynthesis of medium chain length poly-3-hydroxyalkanoates (mcl-PHA in Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. Models with substrate inhibition terms described well the kinetics of its growth. Selected fatty acids (C8:0 to C18:1 and ammonium were used as carbon and nitrogen sources during growth and PHA biosynthesis, resulting in PHA accumulation of about 50 to 69% (w/w and PHA yields ranging from 10.12 g L-1 to 15.45 g L-1, respectively. The monomer composition of the PHA ranges from C4 to C14, and was strongly influenced by the type of carbon substrate fed. Interestingly, an odd carbon chain length (C7 monomer was also detected when C18:1 was fed. Polymer showed melting temperature (Tm of 42.0 (± 0.2 °C, glass transition temperature (Tg of -1.0 (± 0.2 °C and endothermic melting enthalpy of fusion (ΔHf of 110.3 (± 0.1 J g-1. The molecular weight (Mw range of the polymer was relatively narrow between 55 to 77 kDa.

  20. Metastability and relaxation in tensile SiGe on Ge(001) virtual substrates

    International Nuclear Information System (INIS)

    Frigerio, Jacopo; Lodari, Mario; Chrastina, Daniel; Mondiali, Valeria; Isella, Giovanni; Bollani, Monica

    2014-01-01

    We systematically study the heteroepitaxy of SiGe alloys on Ge virtual substrates in order to understand strain relaxation processes and maximize the tensile strain in the SiGe layer. The degree of relaxation is measured by high-resolution x-ray diffraction, and surface morphology is characterized by atomic force microscopy. The results are analyzed in terms of a numerical model, which considers dislocation nucleation, multiplication, thermally activated glide, and strain-dependent blocking. Relaxation is found to be sensitive to growth rate and substrate temperature as well as epilayer misfit and thickness, and growth parameters are found which allow a SiGe film with over 4 GPa of tensile stress to be obtained.

  1. Wrinkle-Free Single-Crystal Graphene Wafer Grown on Strain-Engineered Substrates.

    Science.gov (United States)

    Deng, Bing; Pang, Zhenqian; Chen, Shulin; Li, Xin; Meng, Caixia; Li, Jiayu; Liu, Mengxi; Wu, Juanxia; Qi, Yue; Dang, Wenhui; Yang, Hao; Zhang, Yanfeng; Zhang, Jin; Kang, Ning; Xu, Hongqi; Fu, Qiang; Qiu, Xiaohui; Gao, Peng; Wei, Yujie; Liu, Zhongfan; Peng, Hailin

    2017-12-26

    Wrinkles are ubiquitous for graphene films grown on various substrates by chemical vapor deposition at high temperature due to the strain induced by thermal mismatch between the graphene and substrates, which greatly degrades the extraordinary properties of graphene. Here we show that the wrinkle formation of graphene grown on Cu substrates is strongly dependent on the crystallographic orientations. Wrinkle-free single-crystal graphene was grown on a wafer-scale twin-boundary-free single-crystal Cu(111) thin film fabricated on sapphire substrate through strain engineering. The wrinkle-free feature of graphene originated from the relatively small thermal expansion of the Cu(111) thin film substrate and the relatively strong interfacial coupling between Cu(111) and graphene, based on the strain analyses as well as molecular dynamics simulations. Moreover, we demonstrated the transfer of an ultraflat graphene film onto target substrates from the reusable single-crystal Cu(111)/sapphire growth substrate. The wrinkle-free graphene shows enhanced electrical mobility compared to graphene with wrinkles.

  2. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.

    Science.gov (United States)

    Bosire, Erick M; Blank, Lars M; Rosenbaum, Miriam A

    2016-08-15

    Pseudomonas aeruginosa is an important, thriving member of microbial communities of microbial bioelectrochemical systems (BES) through the production of versatile phenazine redox mediators. Pure culture experiments with a model strain revealed synergistic interactions of P. aeruginosa with fermenting microorganisms whereby the synergism was mediated through the shared fermentation product 2,3-butanediol. Our work here shows that the behavior and efficiency of P. aeruginosa in mediated current production is strongly dependent on the strain of P. aeruginosa We compared levels of phenazine production by the previously investigated model strain P. aeruginosa PA14, the alternative model strain P. aeruginosa PAO1, and the BES isolate Pseudomonas sp. strain KRP1 with glucose and the fermentation products 2,3-butanediol and ethanol as carbon substrates. We found significant differences in substrate-dependent phenazine production and resulting anodic current generation for the three strains, with the BES isolate KRP1 being overall the best current producer and showing the highest electrochemical activity with glucose as a substrate (19 μA cm(-2) with ∼150 μg ml(-1) phenazine carboxylic acid as a redox mediator). Surprisingly, P. aeruginosa PAO1 showed very low phenazine production and electrochemical activity under all tested conditions. Microbial fuel cells and other microbial bioelectrochemical systems hold great promise for environmental technologies such as wastewater treatment and bioremediation. While there is much emphasis on the development of materials and devices to realize such systems, the investigation and a deeper understanding of the underlying microbiology and ecology are lagging behind. Physiological investigations focus on microorganisms exhibiting direct electron transfer in pure culture systems. Meanwhile, mediated electron transfer with natural redox compounds produced by, for example, Pseudomonas aeruginosa might enable an entire microbial

  3. Investigation of growth, structural and electronic properties of V2O3 thin films on selected substrates

    International Nuclear Information System (INIS)

    Nateprov, Alexei

    2006-08-01

    The present work is devoted to the experimental study of the MI transition in V 2 O 3 thin films, grown on different substrates. The main goal of the work was to develop a technology of growth of V 2 O 3 thin films on substrates with different electrical and structural properties (diamond and LiNbO 3 ), designed for specific applications. The structural and electrical properties of the obtained films were characterized in detail with a special focus on their potential applications. The MIT of V 2 O 3 was investigated by SAW using first directly deposited V 2 O 3 thin film onto a LiNbO 3 substrate. (orig.)

  4. Effects of substrate anisotropy and edge diffusion on submonolayer growth during molecular beam epitaxy: A Kinetic Monte Carlo study

    International Nuclear Information System (INIS)

    Devkota, J.; Shrestha, S.P.

    2007-12-01

    We have performed Kinetic Monte Carlo simulation work to study the effect of diffusion anisotropy, bonding anisotropy and edge diffusion on island formation at different temperatures during the sub-monolayer film growth in Molecular Beam Epitaxy. We use simple cubic solid on solid model and event based Bortz, Kalos and Labowitch (BKL) algorithm on the Kinetic Monte Carlo method to simulate the physical phenomena. We have found that the island morphology and growth exponent are found to be influenced by substrate anisotropy as well as edge diffusion, however they do not play a significant role in island elongation. The growth exponent and island size distribution are observed to be influenced by substrate anisotropy but are negligibly influenced by edge diffusion. We have found fractal islands when edge diffusion is excluded and compact islands when edge diffusion is included. (author)

  5. Characterization and growth mechanism of nonpolar and semipolar GaN layers grown on patterned sapphire substrates

    International Nuclear Information System (INIS)

    Okada, Narihito; Tadatomo, Kazuyuki

    2012-01-01

    Nonpolar and semipolar GaN layers with markedly improved crystalline quality can be obtained by selective-area growth from the sapphire sidewalls of patterned sapphire substrates (PSSs). In this paper, we review the crystalline qualities of GaN layers grown on PSSs and their growth mechanism. We grew semipolar {1 1 −2 2} and {1 0 −1 1} GaN layers on r- and n-PSSs. The crystalline qualities of the GaN layers grown on the PSSs were higher than those of GaN layers grown directly on heteroepitaxial substrates. To reveal the growth mechanism of GaN layers grown on PSSs, we also grew various nonpolar and semipolar GaN layers such as m-GaN on a-PSS, {1 1 −2 2} GaN on r-PSS, {1 0 − 1  1} GaN on n-PSS, m-GaN on c-PSS and a-GaN on m-PSS. It was found that the nucleation of GaN on the c-plane-like sapphire sidewall results in selective growth from the sapphire sidewall, and nonpolar or semipolar GaN can be obtained. Finally, we demonstrated a light-emitting diode fabricated on a {1 1 −2 2} GaN layer grown on an r-PSS. (paper)

  6. Atomic control of substrate termination and heteroepitaxial growth of SrTiO sub 3 /LaAlO sub 3 films

    CERN Document Server

    Kim, D W; Choi, C; Lim, K D; Noh, T W; Lee, D R; Park, J H; Lee, K B

    2000-01-01

    The roles of substrate termination in the growth behaviors of SrTiO sub 3 (STO) films were investigated. With heat treatment and an atomic layer deposition technique, LaAlO sub 3 (LAO) substrates with two kinds of terminations, i.e., LaO- and AlO sub 2 -terminated ones, could be prepared. On top of them STO films were grown by using laser molecular beam epitaxy. In the case of the STO/LaO-LAO film, a transition from layer-by-layer growth to island growth was observed after growth of about 10 monolayers (ML). On the other hand, the STO/AlO sub 2 -LAO film could be grown in a layer-by-layer mode with a flat surface up to 40 ML. We suggest that defects induced by charge compensation influence the strain states and the physical properties of oxide heterostructures significantly.

  7. Growth hormone-dependent phosphorylation of tyrosine 333 and/or 338 of the growth hormone receptor

    DEFF Research Database (Denmark)

    VanderKuur, J A; Wang, X; Zhang, L

    1995-01-01

    and a reduction of GH-dependent phosphorylation of the full-length receptor. Consistent with Tyr333 and/or Tyr338 serving as substrates of JAK2, these substitutions resulted in a loss of tyrosyl phosphorylation of truncated receptor in an in vitro kinase assay using substantially purified GH.GHR.JAK2 complexes...

  8. Graphene as an atomically thin interface for growth of vertically aligned carbon nanotubes.

    Science.gov (United States)

    Rao, Rahul; Chen, Gugang; Arava, Leela Mohana Reddy; Kalaga, Kaushik; Ishigami, Masahiro; Heinz, Tony F; Ajayan, Pulickel M; Harutyunyan, Avetik R

    2013-01-01

    Growth of vertically aligned carbon nanotube (CNT) forests is highly sensitive to the nature of the substrate. This constraint narrows the range of available materials to just a few oxide-based dielectrics and presents a major obstacle for applications. Using a suspended monolayer, we show here that graphene is an excellent conductive substrate for CNT forest growth. Furthermore, graphene is shown to intermediate growth on key substrates, such as Cu, Pt, and diamond, which had not previously been compatible with nanotube forest growth. We find that growth depends on the degree of crystallinity of graphene and is best on mono- or few-layer graphene. The synergistic effects of graphene are revealed by its endurance after CNT growth and low contact resistances between the nanotubes and Cu. Our results establish graphene as a unique interface that extends the class of substrate materials for CNT growth and opens up important new prospects for applications.

  9. The relative importance of exogenous and substrate-derived nitrogen for microbial growth during leaf decomposition

    Science.gov (United States)

    B.M. Cheever; J. R. Webster; E. E. Bilger; S. A. Thomas

    2013-01-01

    Heterotrophic microbes colonizing detritus obtain nitrogen (N) for growth by assimilating N from their substrate or immobilizing exogenous inorganic N. Microbial use of these two pools has different implications for N cycling and organic matter decomposition in the face of the global increase in biologically available N. We used sugar maple leaves labeled with

  10. Epitaxial growth of fcc-CoxNi100-x thin films on MgO(110) single-crystal substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Nukaga, Yuri; Sato, Yoichi; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-01-01

    Co x Ni 100-x (x=100, 80, 20, 0 at. %) epitaxial thin films were prepared on MgO(110) single-crystal substrates heated at 300 deg. C by ultrahigh vacuum molecular beam epitaxy. The growth mechanism is discussed based on lattice strain and crystallographic defects. CoNi(110) single-crystal films with a fcc structure are obtained for all compositions. Co x Ni 100-x film growth follows the Volmer-Weber mode. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of the Co x Ni 100-x films are in agreement within ±0.5% with the values of the respective bulk Co x Ni 100-x crystals, suggesting that the strain in the film is very small. High-resolution cross-sectional transmission microscopy shows that an atomically sharp boundary is formed between a Co(110) fcc film and a MgO(110) substrate, where periodical misfit dislocations are preferentially introduced in the film at the Co/MgO interface. The presence of such periodical misfit dislocations relieves the strain caused by the lattice mismatch between the film and the substrate.

  11. Effects of water depth and substrate color on the growth and body color of the red sea cucumber, Apostichopus japonicus

    Science.gov (United States)

    Jiang, Senhao; Dong, Shuanglin; Gao, Qinfeng; Ren, Yichao; Wang, Fang

    2015-05-01

    Three color variants of the sea cucumber, Apostichopus japonicus are recognized, the red one is highly valued in the market. When the red variant is cultured in ponds in China, its body color changes from red to celadon in 3-6 months. The effects of water depth and substrate color on the growth and body color of this animal were investigated. Juveniles of red A. japonicus were cultured in cages suspended at a range of water depths (20, 50, 100, 150 and 200 cm). The specific growth rate of red sea cucumbers was significantly higher in animals cultured at deeper water layers compared with those grown at shallowers. Body weights were greatest for sea cucumbers cultured at a depth of 150 cm and their survival rates were highest at a depth of 200 cm. A scale to evaluate the color of red sea cucumbers ( R value) was developed using a Pantone standard color card. All stocked animals in the 9-month trial retained a red color, however the red body color was much more intense in sea cucumbers cultured at shallower depths, while animals suspended in deeper layers became pale. In a separate trial, A. japonicus were cultured in suspended cages with seven different colored substrates. Substrate color had a significant effect on the growth and body-color of red A. japonicus. The yield were greatest for A. japonicus cultured on a yellow substrate, followed by green > white > orange > red > black and blue. All sea cucumbers in the 7-month trial retained a red color, although the red was most intense (highest R value) in animals cultured on a blue substrate and pale (lowest R value) for animals cultured on a green substrate.

  12. Chemometrics approach to substrate development, case: semisyntetic cheese

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose; Hansen, Birgitte Vedel

    1998-01-01

    from food production facilities.The Chemometrics approach to substrate development is illustrated by the development of a semisyntetic cheese substrate. Growth, colour formation and mycotoxin production of 6 cheese related fungi were studied on 9 types of natural cheeses and 24 synthetic cheese......, the most frequently occurring contaminant on semi-hard cheese. Growth experiments on the substrate were repeatable and reproducible. The substrate was also suitable for the starter P. camemberti. Mineral elements in cheese were shown to have strong effect on growth, mycotoxin production and colour...... formation of fungi. For P. roqueforti, P. discolor, P. verrucosum and Aspergillus versicolor the substrate was less suitable as a model cheese substrate, which indicates great variation in nutritional demands of the fungi. Substrates suitable for studies of specific cheese types was found for P. roqueforti...

  13. Structural properties, crystal quality and growth modes of MOCVD-grown AlN with TMAl pretreatment of sapphire substrate

    KAUST Repository

    Sun, Haiding; Wu, Feng; Altahtamouni, Talal Mohammed Ahmad; Alfaraj, Nasir; Li, Kun; Detchprohm, Theeradetch; Dupuis, Russell; Li, Xiaohang

    2017-01-01

    The growth of high quality AlN epitaxial films relies on precise control of the initial growth stages. In this work, we examined the influence of the trimethylaluminum (TMAl) pretreatment of sapphire substrates on the structural properties, crystal quality and growth modes of heteroepitaxial AlN films on (0001) sapphire substrates. Without the pretreatment, the AlN films nucleated on the smooth surface but exhibited mixed crystallographic Al- (N-) polarity, resulting in rough AlN film surfaces. With increasing the pretreatment time from 1 to 5 s, the N-polarity started to be impeded. However, small islands were formed on sapphire surface due to the decompostion of TMAl. As a result, small voids became noticeable at the nucleation layer (NL) because the growth started as quasi three-dimensional (3D) but transformed to 2D mode as the film grew thicker and got coalesced, leading to smoother and Al-polar films. On the other hand, longer pretreatment time of 40 s formed large 3D islands on sapphire, and thus initiated a 3D-growth mode of the AlN film, generating Al-polar AlN nanocolumns with different facets, which resulted into rougher film surfaces. The epitaxial growth modes and their correlation with the AlN film crystal quality under different TMAl pretreatments are also discussed.

  14. Structural properties, crystal quality and growth modes of MOCVD-grown AlN with TMAl pretreatment of sapphire substrate

    KAUST Repository

    Sun, Haiding

    2017-08-08

    The growth of high quality AlN epitaxial films relies on precise control of the initial growth stages. In this work, we examined the influence of the trimethylaluminum (TMAl) pretreatment of sapphire substrates on the structural properties, crystal quality and growth modes of heteroepitaxial AlN films on (0001) sapphire substrates. Without the pretreatment, the AlN films nucleated on the smooth surface but exhibited mixed crystallographic Al- (N-) polarity, resulting in rough AlN film surfaces. With increasing the pretreatment time from 1 to 5 s, the N-polarity started to be impeded. However, small islands were formed on sapphire surface due to the decompostion of TMAl. As a result, small voids became noticeable at the nucleation layer (NL) because the growth started as quasi three-dimensional (3D) but transformed to 2D mode as the film grew thicker and got coalesced, leading to smoother and Al-polar films. On the other hand, longer pretreatment time of 40 s formed large 3D islands on sapphire, and thus initiated a 3D-growth mode of the AlN film, generating Al-polar AlN nanocolumns with different facets, which resulted into rougher film surfaces. The epitaxial growth modes and their correlation with the AlN film crystal quality under different TMAl pretreatments are also discussed.

  15. Substrate and metabolite diffusion within model medium for soft cheese in relation to growth of Penicillium camembertii.

    Science.gov (United States)

    Aldarf, Mazen; Fourcade, Florence; Amrane, Abdeltif; Prigent, Yves

    2006-08-01

    Penicillium camembertii was cultivated on a jellified peptone-lactate based medium to simulate the composition of Camembert cheese. Diffusional limitations due to substrate consumption were not involved in the linear growth recorded during culture, while nitrogen (peptone) limitation accounted for growth cessation. Examination of gradients confirmed that medium neutralization was the consequence of lactate consumption and ammonium production. The diffusion of the lactate assimilated from the core to the rind and that of the ammonium produced from the rind to the core was described by means of a diffusion/reaction model involving a partial linking of consumption or production to growth. The model matched experimental data throughout growth.

  16. Growth, microstructure, and field-emission properties of synthesized diamond film on adamantane-coated silicon substrate by microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Tiwari, Rajanish N.; Chang Li

    2010-01-01

    Diamond nucleation on unscratched Si surface is great importance for its growth, and detailed understanding of this process is therefore desired for many applications. The pretreatment of the substrate surface may influence the initial growth period. In this study, diamond films have been synthesized on adamantane-coated crystalline silicon {100} substrate by microwave plasma chemical vapor deposition from a gaseous mixture of methane and hydrogen gases without the application of a bias voltage to the substrates. Prior to adamantane coating, the Si substrates were not pretreated such as abraded/scratched. The substrate temperature was ∼530 deg. C during diamond deposition. The deposited films are characterized by scanning electron microscopy, Raman spectrometry, x-ray diffraction, and x-ray photoelectron spectroscopy. These measurements provide definitive evidence for high-crystalline quality diamond film, which is synthesized on a SiC rather than clean Si substrate. Characterization through atomic force microscope allows establishing fine quality criteria of the film according to the grain size of nanodiamond along with SiC. The diamond films exhibit a low-threshold (55 V/μm) and high current-density (1.6 mA/cm 2 ) field-emission (FE) display. The possible mechanism of formation of diamond films and their FE properties have been demonstrated.

  17. Direct growth of CdSe nanorods on ITO substrates by co-anchoring of ZnO nanoparticles and ethylenediamine

    International Nuclear Information System (INIS)

    Pan Shangke; Xu Tingting; Venkatesan, Swaminathan; Qiao Qiquan

    2012-01-01

    To grow CdSe nanorods directly onto indium tin oxide (ITO) substrates, a ZnO buffer layer composed of nanoparticles with diameter of ∼30–40 nm was prepared by spin coating ZnO sol–gel solution onto the ITO substrates. CdSe nanorods were then successfully in situ grown onto ITO substrates with diameter of ∼30–40 nm and length of ∼120–160 nm using solvothermal method in which CdSe·0.5en (en = ethylenediamine) acted as solution precursor. The in situ synthesized CdSe nanorods were conformed and characterized by atomic force microscope and electron microscopy. The mechanism of such in situ CdSe growth was understood as ZnO nanoparticles anchored en onto ITO substrates, while en linked CdSe with ZnO.

  18. Growth and yield performance of Pleurotus ostreatus (Jacq. Fr.) Kumm (oyster mushroom) on different substrates.

    Science.gov (United States)

    Girmay, Zenebe; Gorems, Weldesemayat; Birhanu, Getachew; Zewdie, Solomon

    2016-12-01

    Mushroom cultivation is reported as an economically viable bio-technology process for conversion of various lignocellulosic wastes. Given the lack of technology know-how on the cultivation of mushroom, this study was conducted in Wondo Genet College of Forestry and Natural Resource, with the aim to assess the suitability of selected substrates (agricultural and/or forest wastes) for oyster mushroom cultivation. Accordingly, four substrates (cotton seed, paper waste, wheat straw, and sawdust) were tested for their efficacy in oyster mushroom production. Pure culture of oyster mushroom was obtained from Mycology laboratory, Department of Plant Biology and Biodiversity Management, Addis Ababa University. The pure culture was inoculated on potato dextrose agar for spawn preparation. Then, the spawn containing sorghum was inoculated with the fungal culture for the formation of fruiting bodies on the agricultural wastes. The oyster mushroom cultivation was undertaken under aseptic conditions, and the growth and development of mushroom were monitored daily. Results of the study revealed that oyster mushroom can grow on cotton seed, paper waste, sawdust and wheat straw, with varying growth performances. The highest biological and economic yield, as well as the highest percentage of biological efficiency of oyster mushroom was obtained from cotton seed, while the least was from sawdust. The study recommends cotton seed, followed by paper waste as suitable substrates for the cultivation of oyster mushroom. It also suggests that there is a need for further investigation on various aspects of oyster mushroom cultivation in Ethiopia to promote the industry.

  19. A Xylenol Orange-Based Screening Assay for the Substrate Specificity of Flavin-Dependent para-Phenol Oxidases

    Directory of Open Access Journals (Sweden)

    Tom A. Ewing

    2018-01-01

    Full Text Available Vanillyl alcohol oxidase (VAO and eugenol oxidase (EUGO are flavin-dependent enzymes that catalyse the oxidation of para-substituted phenols. This makes them potentially interesting biocatalysts for the conversion of lignin-derived aromatic monomers to value-added compounds. To facilitate their biocatalytic exploitation, it is important to develop methods by which variants of the enzymes can be rapidly screened for increased activity towards substrates of interest. Here, we present the development of a screening assay for the substrate specificity of para-phenol oxidases based on the detection of hydrogen peroxide using the ferric-xylenol orange complex method. The assay was used to screen the activity of VAO and EUGO towards a set of twenty-four potential substrates. This led to the identification of 4-cyclopentylphenol as a new substrate of VAO and EUGO and 4-cyclohexylphenol as a new substrate of VAO. Screening of a small library of VAO and EUGO active-site variants for alterations in their substrate specificity led to the identification of a VAO variant (T457Q with increased activity towards vanillyl alcohol (4-hydroxy-3-methoxybenzyl alcohol and a EUGO variant (V436I with increased activity towards chavicol (4-allylphenol and 4-cyclopentylphenol. This assay provides a quick and efficient method to screen the substrate specificity of para-phenol oxidases, facilitating the enzyme engineering of known para-phenol oxidases and the evaluation of the substrate specificity of novel para-phenol oxidases.

  20. A Xylenol Orange-Based Screening Assay for the Substrate Specificity of Flavin-Dependent para-Phenol Oxidases.

    Science.gov (United States)

    Ewing, Tom A; van Noord, Aster; Paul, Caroline E; van Berkel, Willem J H

    2018-01-14

    Vanillyl alcohol oxidase (VAO) and eugenol oxidase (EUGO) are flavin-dependent enzymes that catalyse the oxidation of para -substituted phenols. This makes them potentially interesting biocatalysts for the conversion of lignin-derived aromatic monomers to value-added compounds. To facilitate their biocatalytic exploitation, it is important to develop methods by which variants of the enzymes can be rapidly screened for increased activity towards substrates of interest. Here, we present the development of a screening assay for the substrate specificity of para -phenol oxidases based on the detection of hydrogen peroxide using the ferric-xylenol orange complex method. The assay was used to screen the activity of VAO and EUGO towards a set of twenty-four potential substrates. This led to the identification of 4-cyclopentylphenol as a new substrate of VAO and EUGO and 4-cyclohexylphenol as a new substrate of VAO. Screening of a small library of VAO and EUGO active-site variants for alterations in their substrate specificity led to the identification of a VAO variant (T457Q) with increased activity towards vanillyl alcohol (4-hydroxy-3-methoxybenzyl alcohol) and a EUGO variant (V436I) with increased activity towards chavicol (4-allylphenol) and 4-cyclopentylphenol. This assay provides a quick and efficient method to screen the substrate specificity of para -phenol oxidases, facilitating the enzyme engineering of known para- phenol oxidases and the evaluation of the substrate specificity of novel para -phenol oxidases.

  1. Influence of electron beam irradiation on growth of Phytophthora cinnamomi and its control in substrates

    Science.gov (United States)

    MigdaŁ, Wojciech; Orlikowski, Leszek B.; Ptaszek, Magdalena; Gryczka, Urszula

    2012-08-01

    Very extensive production procedure, especially in plants growing under covering, require methods, which would allow quick elimination or substantial reduction of populations of specific pathogens without affecting the growth and development of the cultivated plants. Among soil-borne pathogens, the Phytophthora species are especially dangerous for horticultural plants. In this study, irradiation with electron beam was applied to control Phytophthora cinnamomi. The influence of irradiation dose on the reduction of in vitro growth and the population density of the pathogen in treated peat and its mixture with composted pine bark (1:1), as well as the health of Chamaecyparis lawsoniana and Lavandula angustifolia plants were evaluated. Application of irradiation at a dose of 1.5 kGy completely inhibited the in vitro development of P. cinnamomi. This irradiation effect was connected with the disintegration of the hyphae and spores of the species. Irradiation of peat and its mixture with composted pine bark with 10 kGy resulted in the inhibition of stem base rot development in Ch. lawsoniana. Symptoms of the disease were not observed when the substrates were treated with 15 kGy. In the case of L. angustifolia, stem root rot was not observed on cuttings transplanted to infected peat irradiated at a dose of 10 kGy. Irradiation of the horticultural substrates did not affect plant growth.

  2. Growth of InGaN multiple quantum wells and GaN eplilayer on GaN substrate

    International Nuclear Information System (INIS)

    Lee, Sung-Nam; Paek, H.S.; Son, J.K.; Sakong, T.; Yoon, E.; Nam, O.H.; Park, Y.

    2006-01-01

    We investigated that the surface morphology of GaN epilayers was significantly affected by the surface tilt orientation of GaN substrate. Surface morphologies of GaN epilayers on GaN substrates show three types: mirror, wavy, and hillock. These surface morphologies are dependent on the surface orientation of GaN substrates. It is found that the hillock morphology of GaN epilayer was formed on the GaN substrate with surface tilt orientation less than 0.1 o . As the surface tilt angle increased to 0.35 o , the surface morphology varied from hillock to wavy morphology. Above a surface tilt angle of 0.4 o , surface morphology changed to the mirror-like type morphology. Additionally, these three types of GaN surface morphology also affected the optical quality of GaN epilayers as well as InGaN multiple quantum wells on GaN substrates by non-uniform In incorporation on the different surface morphologies of GaN epilayers

  3. Growth of Ca2MnO4 Ruddlesden-Popper structured thin films using combinatorial substrate epitaxy

    International Nuclear Information System (INIS)

    Lacotte, M.; David, A.; Pravarthana, D.; Prellier, W.; Grygiel, C.; Rohrer, G. S.; Salvador, P. A.; Velazquez, M.; Kloe, R. de

    2014-01-01

    The local epitaxial growth of pulsed laser deposited Ca 2 MnO 4 films on polycrystalline spark plasma sintered Sr 2 TiO 4 substrates was investigated to determine phase formation and preferred epitaxial orientation relationships (ORs) for isostructural Ruddlesden-Popper (RP) heteroepitaxy, further developing the high-throughput synthetic approach called Combinatorial Substrate Epitaxy (CSE). Both grazing incidence X-ray diffraction and electron backscatter diffraction patterns of the film and substrate were indexable as single-phase RP-structured compounds. The optimal growth temperature (between 650 °C and 800 °C) was found to be 750 °C using the maximum value of the average image quality of the backscattered diffraction patterns. Films grew in a grain-over-grain pattern such that each Ca 2 MnO 4 grain had a single OR with the Sr 2 TiO 4 grain on which it grew. Three primary ORs described 47 out of 49 grain pairs that covered nearly all of RP orientation space. The first OR, found for 20 of the 49, was the expected RP unit-cell over RP unit-cell OR, expressed as [100][001] film ||[100][001] sub . The other two ORs were essentially rotated from the first by 90°, with one (observed for 17 of 49 pairs) being rotated about the [100] and the other (observed for 10 of 49 pairs) being rotated about the [110] (and not exactly by 90°). These results indicate that only a small number of ORs are needed to describe isostructural RP heteroepitaxy and further demonstrate the potential of CSE in the design and growth of a wide range of complex functional oxides

  4. Temperature and angular dependence of substrate response in SEGR

    International Nuclear Information System (INIS)

    Mouret, I.; Allenspach, M.; Schrimpf, R.D.; Brews, J.R.; Galloway, K.F.

    1994-01-01

    This work examines the role of the substrate response in determining the temperature and angular dependence of Single-Event Gate Rupture (SEGR). Experimental data indicate that the likelihood of SEGR increases when the temperature of the device is increased or when the incident angle is made closer to normal. In this work, simulations are used to explore this influence of high temperature on SEGR and to support physical explanations for this effect. The reduced hole mobility at high temperature causes the hole concentration at the oxide-silicon interface to be greater, increasing the transient oxide field near the strike position. In addition, numerical calculations show that the transient oxide field decreases as the ion's angle of incidence is changed from normal. This decreased field suggests a lowered likelihood for SEGR, in agreement with the experimental trend

  5. Growth of higher fungi on wheat straw and their impact on the digestibility of the substrate

    Energy Technology Data Exchange (ETDEWEB)

    Moyson, E.; Verachtert, H. (Catholic Univ. of Leuven (Belgium). Faculty of Agriculture)

    1991-12-01

    The influence of the growth of three higher fungi on the composition of wheat straw was investigated. Pleurotus pulmonarius, P. sajor-caju and Lentinus edodes grew very well on lignocellulosic substrates, breaking down a considerable amount of lignin. The initial lignin concentration of straw was halved after 12 weeks of fungal growth, doubling the enzymic digestibility. Together with lignin, the higher fungi consumed half of the amount of hemicellulose (i.e. 15%), leaving cellulose fairly intact, which should remain as an energy source for ruminants. (orig.).

  6. Metabolic efficiency in yeast Saccharomyces cerevisiae in relation to temperature dependent growth and biomass yield.

    Science.gov (United States)

    Zakhartsev, Maksim; Yang, Xuelian; Reuss, Matthias; Pörtner, Hans Otto

    2015-08-01

    Canonized view on temperature effects on growth rate of microorganisms is based on assumption of protein denaturation, which is not confirmed experimentally so far. We develop an alternative concept, which is based on view that limits of thermal tolerance are based on imbalance of cellular energy allocation. Therefore, we investigated growth suppression of yeast Saccharomyces cerevisiae in the supraoptimal temperature range (30-40°C), i.e. above optimal temperature (Topt). The maximal specific growth rate (μmax) of biomass, its concentration and yield on glucose (Yx/glc) were measured across the whole thermal window (5-40°C) of the yeast in batch anaerobic growth on glucose. Specific rate of glucose consumption, specific rate of glucose consumption for maintenance (mglc), true biomass yield on glucose (Yx/glc(true)), fractional conservation of substrate carbon in product and ATP yield on glucose (Yatp/glc) were estimated from the experimental data. There was a negative linear relationship between ATP, ADP and AMP concentrations and specific growth rate at any growth conditions, whilst the energy charge was always high (~0.83). There were two temperature regions where mglc differed 12-fold, which points to the existence of a 'low' (within 5-31°C) and a 'high' (within 33-40°C) metabolic mode regarding maintenance requirements. The rise from the low to high mode occurred at 31-32°C in step-wise manner and it was accompanied with onset of suppression of μmax. High mglc at supraoptimal temperatures indicates a significant reduction of scope for growth, due to high maintenance cost. Analysis of temperature dependencies of product formation efficiency and Yatp/glc revealed that the efficiency of energy metabolism approaches its lower limit at 26-31°C. This limit is reflected in the predetermined combination of Yx/glc(true), elemental biomass composition and degree of reduction of the growth substrate. Approaching the limit implies a reduction of the safety margin

  7. Nucleation and Growth of GaN on GaAs (001) Substrates

    International Nuclear Information System (INIS)

    Drummond, Timothy J.; Hafich, Michael J.; Heller, Edwin J.; Lee, Stephen R.; Liliental-Weber, Zuzanna; Ruvimov, Sergei; Sullivan, John P.

    1999-01-01

    The nucleation of GaN thin films on GaAs is investigated for growth at 620 ''C. An rf plasma cell is used to generate chemically active nitrogen from N 2 . An arsenic flux is used in the first eight monolayer of nitride growth to enhance nucleation of the cubic phase. Subsequent growth does not require an As flux to preserve the cubic phase. The nucleation of smooth interfaces and GaN films with low stacking fault densities is dependent upon relative concentrations of active nitrogen species in the plasma and on the nitrogen to gallium flux ratio

  8. Thickness dependent properties of CMR Manganite thin films on lattice mismatched substrates: Distinguishing Strain and Interface Effects

    Science.gov (United States)

    Davidson, Anthony, III; Kolagani, Rajeswari; Bacharova, Ellisaveta; Yong, Grace; Smolyaninova, Vera; Schaefer, David; Mundle, Rajeh

    2007-03-01

    Epitaxial thin films of CMR manganite materials have been known to show thickness dependent electrical and magnetic properties on lattice mismatched substrates. Below a critical thickness, insulator-metal transition is suppressed. These effects have been largely attributed to the role of bi-axial lattice mismatch strain. Our recent results of epitaxial thin films of La0.67Ca0.33MnO3 (LCMO) on two substrates with varying degrees of compressive lattice mismatch indicate that, in addition to the effect of lattice mismatch strain, the thickness dependence of the properties are influenced by other factors possibly related to the nature of the film substrate interface and defects such as twin boundaries. We have compared the properties of LCMO films on (100) oriented LaAlO3 and (001) oriented NdCaAlO4 both of which induce compressive bi-axial strain. Interestingly, the suppression of the insulator-metal transition is less in films on NCAO which has a larger lattice mismatch. We will present results correlating the electrical and magneto transport properties with the structure and morphology of the films.

  9. Nucleation and growth microstructural study of ti films on 304 SS substrates

    Directory of Open Access Journals (Sweden)

    Rogério de Almeida Vieira

    2004-09-01

    Full Text Available Coating of steel surfaces with titanium films has been studied with the objective to protect them against corrosion, and to create an intermediate film for CVD diamond and TiN film deposition. In this work, the nucleation, growth mechanisms and microstructural formation of the titanium films deposited on 304 stainless steel (304 SS substrate are presented and discussed. The titanium films of variable thickness were obtained by vapour phase deposition produced by electron beam. The surfaces of these samples were observed by scanning electron microscopy. The cross sections of these samples were observed by using an atomic force microscope. The Ti film-304 SS interfaces were analyzed by X-ray diffraction. The results showed that titanium films have a columnar growth. The Ti film-304 SS interface had a residual compression stress at room temperature due to the inter-diffusion process.

  10. Growth, Structural and Optical Characterization of ZnO Nanotubes on Disposable-Flexible Paper Substrates by Low-Temperature Chemical Method

    Directory of Open Access Journals (Sweden)

    M. Y. Soomro

    2012-01-01

    Full Text Available We report the synthesis of vertically aligned ZnO nanotubes (NTs on paper substrates by low-temperature hydrothermal method. The growth of ZnO NTs on the paper substrate is discussed; further, the structural and optical properties are investigated by scanning electron microscope (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, energy-dispersive X-ray spectroscopy (EDS, and cathodoluminescence (CL, and it was found that the ZnO NTs on paper substrate fulfill the structural and optical properties of ZnO NTs grown on other conventional substrates. This will be more beneficial in future usage of ZnO NTs in different fields and applications. Particularly, this approach opens the ways in research and development for high volume manufacturing of low-cost, flexible optoelectronics devices on disposable paper substrates and can be used in the future miniaturization trends.

  11. The Effect of Nitrogen Form on pH and Petunia Growth in a WholeTree Substrate

    Science.gov (United States)

    The objective of our research was to investigate the effect of nitrogen form and proportion on peat-lite (PL) and WholeTree (WT) substrate pH and petunia growth. Chipped whole pine trees (consisting of needles, limbs, bark, wood and cones) were obtained from a commercial fuel wood chipping operation...

  12. Formation of different micro-morphologies from VO2 and ZnO crystallization using macro-porous silicon substrates

    Science.gov (United States)

    Salazar-Kuri, U.; Antúnez, E. E.; Estevez, J. O.; Olive-Méndez, Sion F.; Silva-González, N. R.; Agarwal, V.

    2017-05-01

    Square-shaped macropores produced by electrochemical anodization of n- and p-type Si wafers have been used as centers of nucleation to crystallize VO2 and ZnO. Substrate roughness dependent formation of different morphologies is revealed in the form of squared particles, spheres, bars and ribbons in the case of VO2 and hexagonal piles and spheres in the case of ZnO, have been observed.The presence of nano-/micro-metric crystals was studied through field emission scanning electron microscopy and energy dispersive X-ray spectroscopy mapping. Crystal structure of metal oxides was confirmed by micro-Raman spectroscopy. The growth of the different morphologies has been explained in terms of the surface free energy of a bare Si/SiO2 substrate and its modification originated from the roughness of the surface and of the walls of the porous substrates. This energy plays a crucial role on the minimization of the required energy to induce heterogeneous nucleation and crystal growth. Present work strengthens and provides an experimental evidence of roughness dependent metal oxide crystal growth with well-defined habits from pore corners and rough sides of the pore walls, similar to already reported protein crystals.

  13. Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth

    KAUST Repository

    Shen, Youde; Chen, Renjie; Yu, Xuechao; Wang, Qijie; Jungjohann, Katherine L.; Dayeh, Shadi A.; Wu, Tao

    2016-01-01

    Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices. © 2016 American Chemical Society.

  14. Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth

    KAUST Repository

    Shen, Youde

    2016-06-02

    Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices. © 2016 American Chemical Society.

  15. The investigation of alloy formation during InAs nanowires growth on GaAs (111)B substrate

    Energy Technology Data Exchange (ETDEWEB)

    Saqib, Muhammad; Biermanns, Andreas; Davydok, Anton; Pietsch, Ullrich [Festkoerperphysik, Universitaet Siegen, Walter-Flex-Str. 3, Siegen 57072 (Germany); Rieger, Torsten; Grap, Thomas; Lepsa, Mihail [Peter Gruenberg Institute (PGI-9), Forschungzentrum Juelich, Juelich 52425 (Germany)

    2013-07-01

    A possible way to obtain nanowires is the growth in molecular beam epitaxy (MBE) on the (111) oriented surface of the desired substrate, covered by a thin oxide layer. A crucial parameter in this method is the initial thickness of the oxide layer, often determined by an etching procedure. In this contribution, we report on the structural investigation of two different series (etched and unetched) of NWs samples. Vertically aligned InAs nanowires (NWs) doped with Si were self-assisted grown by molecular beam epitaxy on GaAs [111]B substrates covered with a thin SiO{sub x} layer. Using a combination of symmetric and asymmetric X-ray diffraction we study the influence of Si supply on the growth process and nanostructure formation. We find that the number of parasitic crystallites grown between the NWs increases with increasing Si flux. In addition, we observe the formation of a Ga{sub 0.2}In{sub 0.8}As alloy if the growth is performed on samples covered by a defective (etched) oxide layer. This alloy formation is observed within the crystallites and not within the nanowires. The Gallium concentration is determined from the lattice mismatch of the crystallites relative to the InAs nanowires. No alloy formation is found for samples with faultless oxide layers.

  16. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy

    Science.gov (United States)

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.

    2016-05-01

    Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon

  17. Determination of the Wetting Angle of Germanium and Germanium-Silicon Melts on Different Substrate Materials

    Science.gov (United States)

    Kaiser, Natalie; Croell, Arne; Szofran, F. R.; Cobb. S. D.; Dold, P.; Benz, K. W.

    1999-01-01

    During Bridgman growth of semiconductors detachment of the crystal and the melt meniscus has occasionally been observed, mainly under microgravity (microg) conditions. An important factor for detached growth is the wetting angle of the melt with the crucible material. High contact angles are more likely to result in detachment of the growing crystal from the ampoule wall. In order to achieve detached growth of germanium (Ge) and germanium-silicon (GeSi) crystals under 1g and microg conditions, sessile drop measurements were performed to determine the most suitable ampoule material as well as temperature dependence of the surface tension for GeSi. Sapphire, fused quartz, glassy carbon, graphite, SiC, pyrolytic Boron Nitride (pBN), AIN, and diamond were used as substrates. Furthermore, different cleaning procedures and surface treatments (etching, sandblasting, etc.) of the same substrate material and their effect on the wetting behavior were studied during these experiments. pBN and AIN substrates exhibited the highest contact angles with values around 170 deg.

  18. Gold nanoparticle growth control - Implementing novel wet chemistry method on silicon substrate

    KAUST Repository

    Al-Ameer, Ammar

    2013-04-01

    Controlling particle size, shape, nucleation, and self-assembly on surfaces are some of the main challenges facing electronic device fabrication. In this work, growth of gold nanoparticles over a wide range of sizes was investigated by using a novel wet chemical method, where potassium iodide is used as the reducing solution and gold chloride as the metal precursor, on silicon substrates. Four parameters were studied: soaking time, solution temperature, concentration of the solution of gold chloride, and surface pre-treatment of the substrate. Synthesized nanoparticles were then characterized using scanning electron microscopy (SEM). The precise control of the location and order of the grown gold overlayer was achieved by using focused ion beam (FIB) patterning of a silicon surface, pre-treated with potassium iodide. By varying the soaking time and temperature, different particle sizes and shapes were obtained. Flat geometrical shapes and spherical shapes were observed. We believe, that the method described in this work is potentially a straightforward and efficient way to fabricate gold contacts for microelectronics. © 2013 IEEE.

  19. Multiple growths of epitaxial lift-off solar cells from a single InP substrate

    International Nuclear Information System (INIS)

    Lee, Kyusang; Shiu, Kuen-Ting; Zimmerman, Jeramy D.; Forrest, Stephen R.; Renshaw, Christopher K.

    2010-01-01

    We demonstrate multiple growths of flexible, thin-film indium tin oxide-InP Schottky-barrier solar cells on a single InP wafer via epitaxial lift-off (ELO). Layers that protect the InP parent wafer surface during the ELO process are subsequently removed by selective wet-chemical etching, with the active solar cell layers transferred to a thin, flexible plastic host substrate by cold welding at room temperature. The first- and second-growth solar cells exhibit no performance degradation under simulated Atmospheric Mass 1.5 Global (AM 1.5G) illumination, and have a power conversion efficiency of η p =14.4±0.4% and η p =14.8±0.2%, respectively. The current-voltage characteristics for the solar cells and atomic force microscope images of the substrate indicate that the parent wafer is undamaged, and is suitable for reuse after ELO and the protection-layer removal processes. X-ray photoelectron spectroscopy, reflection high-energy electron diffraction observation, and three-dimensional surface profiling show a surface that is comparable or improved to the original epiready wafer following ELO. Wafer reuse over multiple cycles suggests that high-efficiency; single-crystal thin-film solar cells may provide a practical path to low-cost solar-to-electrical energy conversion.

  20. Growth of CNTs on Fe-Si catalyst prepared on Si and Al coated Si substrates

    International Nuclear Information System (INIS)

    Teng, F-Y; Ting, J-M; Sharma, Sahendra P; Liao, Kun-Hou

    2008-01-01

    In this paper we report the effect of Al interlayers on the growth characteristics of carbon nanotubes (CNTs) using as-deposited and plasma etched Fe-Si catalyst films as the catalysts. Al interlayers having various thicknesses ranging from 2 to 42 nm were deposited on Si substrates prior to the deposition of Fe-Si catalysts. It was found that the Al interlayer diffuses into the Fe-Si catalyst during the plasma etching prior to the CNT growth, leading to the swelling and amorphization of the catalyst. This allows enhanced carbon diffusion in the catalyst and therefore a faster growth rate of the resulting CNTs. It was also found that use of an Al interlayer having a thickness of ∼3 ± 1 nm is most effective. Due to the effectiveness of this, the normally required catalyst etching is no longer needed for the growth of CNTs

  1. Growth of CNTs on Fe-Si catalyst prepared on Si and Al coated Si substrates.

    Science.gov (United States)

    Teng, F-Y; Ting, Jyh-Ming; Sharma, Sahendra P; Liao, Kun-Hou

    2008-03-05

    In this paper we report the effect of Al interlayers on the growth characteristics of carbon nanotubes (CNTs) using as-deposited and plasma etched Fe-Si catalyst films as the catalysts. Al interlayers having various thicknesses ranging from 2 to 42 nm were deposited on Si substrates prior to the deposition of Fe-Si catalysts. It was found that the Al interlayer diffuses into the Fe-Si catalyst during the plasma etching prior to the CNT growth, leading to the swelling and amorphization of the catalyst. This allows enhanced carbon diffusion in the catalyst and therefore a faster growth rate of the resulting CNTs. It was also found that use of an Al interlayer having a thickness of ∼3 ± 1 nm is most effective. Due to the effectiveness of this, the normally required catalyst etching is no longer needed for the growth of CNTs.

  2. BMP signaling regulates satellite cell-dependent postnatal muscle growth.

    Science.gov (United States)

    Stantzou, Amalia; Schirwis, Elija; Swist, Sandra; Alonso-Martin, Sonia; Polydorou, Ioanna; Zarrouki, Faouzi; Mouisel, Etienne; Beley, Cyriaque; Julien, Anaïs; Le Grand, Fabien; Garcia, Luis; Colnot, Céline; Birchmeier, Carmen; Braun, Thomas; Schuelke, Markus; Relaix, Frédéric; Amthor, Helge

    2017-08-01

    Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle inhibitors p21 and p57 In conclusion, these results show that BMP signaling defines postnatal muscle development by regulating satellite cell-dependent myofiber growth and the generation of the adult muscle stem cell pool. © 2017. Published by The Company of Biologists Ltd.

  3. Influence of electron beam irradiation on growth of Phytophthora cinnamomi and its control in substrates

    International Nuclear Information System (INIS)

    MigdaŁ, Wojciech; Orlikowski, Leszek B.; Ptaszek, Magdalena; Gryczka, Urszula

    2012-01-01

    Very extensive production procedure, especially in plants growing under covering, require methods, which would allow quick elimination or substantial reduction of populations of specific pathogens without affecting the growth and development of the cultivated plants. Among soil-borne pathogens, the Phytophthora species are especially dangerous for horticultural plants. In this study, irradiation with electron beam was applied to control Phytophthora cinnamomi. The influence of irradiation dose on the reduction of in vitro growth and the population density of the pathogen in treated peat and its mixture with composted pine bark (1:1), as well as the health of Chamaecyparis lawsoniana and Lavandula angustifolia plants were evaluated. Application of irradiation at a dose of 1.5 kGy completely inhibited the in vitro development of P. cinnamomi. This irradiation effect was connected with the disintegration of the hyphae and spores of the species. Irradiation of peat and its mixture with composted pine bark with 10 kGy resulted in the inhibition of stem base rot development in Ch. lawsoniana. Symptoms of the disease were not observed when the substrates were treated with 15 kGy. In the case of L. angustifolia, stem root rot was not observed on cuttings transplanted to infected peat irradiated at a dose of 10 kGy. Irradiation of the horticultural substrates did not affect plant growth. - Highlights: ► Electron beam irradiation is effective against soil-borne pathogens. ► Application of irradiation at dose 1.5 kGy completely inhibited in vitro development of Phytophthora cinnamomi. ► Irradiation of horticultural substrata did not influence the growth of plants.

  4. Photovoltaic Properties of p-Doped GaAs Nanowire Arrays Grown on n-Type GaAs(111)B Substrate

    Science.gov (United States)

    2010-01-01

    We report on the molecular beam epitaxy growth of Au-assisted GaAs p-type-doped NW arrays on the n-type GaAs(111)B substrate and their photovoltaic properties. The samples are grown at different substrate temperature within the range from 520 to 580 °C. It is shown that the dependence of conversion efficiency on the substrate temperature has a maximum at the substrate temperature of 550 °C. For the best sample, the conversion efficiency of 1.65% and the fill factor of 25% are obtained. PMID:20672038

  5. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    are considered as local transition events constrained in potential energy wells over certain local time periods. These processes are represented by Markov chains of multi-dimensional Boolean valued functions in three dimensional lattice space. Consequently, the fluctuating system evolution process is implemented as a Markov chain of equivalence class objects. It is shown that the process can be characterized by the acceptance of metastable local transitions. The method is applied to a problem of Au and Ag cluster growth on a rippled surface. The simulation predicts the existence of a morphology dependent transition time limit from a local metastable to stable state for subsequent cluster growth by accretion. The third topic is the formation of ripple structures on ion bombarded semiconductor surfaces treated in the first topic as the prepatterned substrate of the metallic deposition. This intriguing phenomenon has been known since the 1960's and various theoretical approaches have been explored. These previous models are discussed and a new non-linear model is formulated, based on the local atomic flow and associated density change in the near surface region. Within this framework ripple structures are shown to form without the necessity to invoke surface diffusion or large sputtering as important mechanisms. The model can also be extended to the case where sputtering is important and it is shown that in this case, certain 'magic' angles can occur at which the ripple patterns are most clearly defined. The results including some analytic solutions of the nonlinear equation of motions are in very good agreement with experimental observation.

  6. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    are considered as local transition events constrained in potential energy wells over certain local time periods. These processes are represented by Markov chains of multi-dimensional Boolean valued functions in three dimensional lattice space. Consequently, the fluctuating system evolution process is implemented as a Markov chain of equivalence class objects. It is shown that the process can be characterized by the acceptance of metastable local transitions. The method is applied to a problem of Au and Ag cluster growth on a rippled surface. The simulation predicts the existence of a morphology dependent transition time limit from a local metastable to stable state for subsequent cluster growth by accretion. The third topic is the formation of ripple structures on ion bombarded semiconductor surfaces treated in the first topic as the prepatterned substrate of the metallic deposition. This intriguing phenomenon has been known since the 1960's and various theoretical approaches have been explored. These previous models are discussed and a new non-linear model is formulated, based on the local atomic flow and associated density change in the near surface region. Within this framework ripple structures are shown to form without the necessity to invoke surface diffusion or large sputtering as important mechanisms. The model can also be extended to the case where sputtering is important and it is shown that in this case, certain 'magic' angles can occur at which the ripple patterns are most clearly defined. The results including some analytic solutions of the nonlinear equation of motions are in very good agreement with experimental observation.

  7. Neutrino masses, scale-dependent growth, and redshift-space distortions

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Oscar F., E-mail: oscarh@physics.mcgill.ca [Marianopolis College, 4873 Westmount Ave., Westmount, QC H3Y 1X9 (Canada)

    2017-06-01

    Massive neutrinos leave a unique signature in the large scale clustering of matter. We investigate the wavenumber dependence of the growth factor arising from neutrino masses and use a Fisher analysis to determine the aspects of a galaxy survey needed to measure this scale dependence.

  8. Effects of growth duration on the structural and optical properties of ZnO nanorods grown on seed-layer ZnO/polyethylene terephthalate substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y.I.; Shin, C.M.; Heo, J.H. [Department of Nano Systems Engineering, Center for Nano Manufacturing Inje University, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Ryu, H., E-mail: hhryu@inje.ac.kr [Department of Nano Systems Engineering, Center for Nano Manufacturing Inje University, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Lee, W.J. [Department of Nano Engineering, Dong-Eui University, Busan 614-714 (Korea, Republic of); Chang, J.H. [Major of Nano Semiconductor, Korea Maritime University, Busan 606-791 (Korea, Republic of); Son, C.S. [Department of Electronic Materials Engineering, Silla University, Busan 617-736 (Korea, Republic of); Yun, J. [Department of Nano Science and Engineering, Institute of Advanced Materials Kyungnam University, Changwon, Gyeongnam 631-701 (Korea, Republic of)

    2011-10-01

    Well-aligned single crystalline zinc oxide (ZnO) nanorods were successfully grown, by hydrothermal synthesis at a low temperature, on flexible polyethylene terephthalate (PET) substrates with a seed layer. Photoluminescence (PL), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) measurements were used to analyze the optical and structural properties of ZnO nanorods grown for various durations from 0.5 h to 10 h. Regular and well-aligned ZnO nanorods with diameters ranging from 62 nm to 127 nm and lengths from 0.3 {mu}m to 1.65 {mu}m were formed after almost 5 h of growth. The growth rate of ZnO grown on PET substrates is lower than that grown on Si (1 0 0) substrates. Enlarged TEM images show that the tips of the ZnO nanorods grown for 6 h have a round shape, whereas the tips grown for 10 h are sharpened. The crystal properties of ZnO nanorods can be tuned by using the growth duration as a growth condition. The XRD and PL results indicate that the structural and optical properties of the ZnO nanorods are most improved after 5 h and 6 h of growth, respectively.

  9. Substrate temperature dependence of microcrystallinity in plasma-deposited, boron-doped hydrogenated silicon alloys

    International Nuclear Information System (INIS)

    Rajeswaran, G.; Kampas, F.J.; Vanier, P.E.; Sabatini, R.L.; Tafto, J.

    1983-01-01

    The glow-discharge decomposition of silane diluted in hydrogen using diborane as a dopant results in the deposition of p-type microcrystalline silicon films at relatively low temperatures. The conductivity of these films is critically dependent on the substrate temperature when the ratio of silane flow rate to total gas flow rate is 1%. Electron micrographs show that highly conducting films contain numerous clusters of 2.5-nm crystallites that are embedded in an amorphous medium

  10. Time-dependent crack growth in steam generator tube leakage

    International Nuclear Information System (INIS)

    Chung, H.D.; Lee, J.H.; Park, Y.W.; Choi, Y.H.

    2006-01-01

    In general, cracks found in steam generator tubes have semi-elliptical shapes and it is assumed to be rectangular shape for conservatism after crack penetration. Hence, the leak and crack growth behavior has not been clearly understood after the elliptical crack penetrates the tube wall. Several experimental results performed by Argonne Nation Laboratory exhibited time-dependent crack growth behavior of rectangular flaws as well as trapezoidal flaws under constant pressure. The crack growth faster than expected was observed in both cases, which is likely attributed to time-dependent crack growth accompanied by fatigue sources such as the interaction between active jet and crack. The stress intensity factor, K 1 , is necessary for the prediction of the observed fatigue crack growth behavior. However, no K 1 solution is available for a trapezoidal flaw. The objective of this study is to develop the stress intensity factor which can be used for the fatigue analysis of a trapezoidal crack. To simplify the analysis, the crack is assumed to be a symmetric trapezoidal shape. A new K 1 formula for axial trapezoidal through-wall cracks was proposed based on the FEM results. (author)

  11. Fast Homoepitaxial Growth of 4H-SiC Films on 4° off-Axis Substrates in a SiH4-C2H4-H2 System

    International Nuclear Information System (INIS)

    Liu Bin; Sun Guo-Sheng; Liu Xing-Fang; Zhang Feng; Dong Lin; Zheng Liu; Yan Guo-Guo; Liu Sheng-Bei; Zhao Wan-Shun; Wang Lei; Zeng Yi-Ping; Wang Zhan-Guo; Li Xi-Guang; Yang Fei

    2013-01-01

    Homoepitaxial growth of 4H-SiC epilayers is conducted in a SiH 4 -C 2 H 4 -H 2 system by low pressure hot-wall vertical chemical vapor deposition (CVD). Thick epilayers of 45 μm are achieved at a high growth rate up to 26 μm/h under an optimized growth condition, and are characterized by using a Normaski optical microscope, a scanning electronic microscope (SEM), an atomic force microscope (AFM) and an x-ray diffractometer (XRD), indicating good crystalline quality with mirror-like smooth surfaces and an rms roughness of 0.9 nm in a 5 μm × 5μm area. The dependence of the 4H-SiC growth rate on growth conditions on 4° off-axis 4H-SiC substrates and its mechanism are investigated. It is found that the H 2 flow rate could influence the surface roughness, while good surface morphologies without Si droplets and epitaxial defects such as triangular defects could be obtained by increasing temperature

  12. Temperature effect on the growth of Au-free InAs and InAs/GaSb heterostructure nanowires on Si substrate by MOCVD

    Science.gov (United States)

    Kakkerla, Ramesh Kumar; Anandan, Deepak; Hsiao, Chih-Jen; Yu, Hung Wei; Singh, Sankalp Kumar; Chang, Edward Yi

    2018-05-01

    We demonstrate the growth of vertically aligned Au-free InAs and InAs/GaSb heterostructure nanowires on Si (1 1 1) substrate by Metal Organic Chemical Vapor Deposition (MOCVD). The effect of growth temperature on the morphology and growth rate of the InAs and InAs/GaSb heterostructure nanowires (NWs) is investigated. Control over diameter and length of the InAs NWs and the GaSb shell thickness was achieved by using growth temperature. As the GaSb growth temperature increase, GaSb radial growth rate increases due to the increase in alkyl decomposition at the substrate surface. Diffusivity of the adatoms increases as the GaSb growth temperature increase which results in tapered GaSb shell growth. Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) measurements revealed that the morphology and shell thickness can be tuned by the growth temperature. Electron microscopy also shows the formation of GaSb both in radial and axial directions outside the InAs NW core can be controlled by the growth temperature. This study demonstrates the control over InAs NWs growth and the GaSb shell thickness can be achieved through proper growth temperature control, such technique is essential for the growth of nanowire for future nano electronic devices, such as Tunnel FET.

  13. Reconstructed ancestral enzymes reveal that negative selection drove the evolution of substrate specificity in ADP-dependent kinases.

    Science.gov (United States)

    Castro-Fernandez, Víctor; Herrera-Morande, Alejandra; Zamora, Ricardo; Merino, Felipe; Gonzalez-Ordenes, Felipe; Padilla-Salinas, Felipe; Pereira, Humberto M; Brandão-Neto, Jose; Garratt, Richard C; Guixe, Victoria

    2017-09-22

    One central goal in molecular evolution is to pinpoint the mechanisms and evolutionary forces that cause an enzyme to change its substrate specificity; however, these processes remain largely unexplored. Using the glycolytic ADP-dependent kinases of archaea, including the orders Thermococcales , Methanosarcinales , and Methanococcales , as a model and employing an approach involving paleoenzymology, evolutionary statistics, and protein structural analysis, we could track changes in substrate specificity during ADP-dependent kinase evolution along with the structural determinants of these changes. To do so, we studied five key resurrected ancestral enzymes as well as their extant counterparts. We found that a major shift in function from a bifunctional ancestor that could phosphorylate either glucose or fructose 6-phosphate (fructose-6-P) as a substrate to a fructose 6-P-specific enzyme was started by a single amino acid substitution resulting in negative selection with a ground-state mode against glucose and a subsequent 1,600-fold change in specificity of the ancestral protein. This change rendered the residual phosphorylation of glucose a promiscuous and physiologically irrelevant activity, highlighting how promiscuity may be an evolutionary vestige of ancestral enzyme activities, which have been eliminated over time. We also could reconstruct the evolutionary history of substrate utilization by using an evolutionary model of discrete binary characters, indicating that substrate uses can be discretely lost or acquired during enzyme evolution. These findings exemplify how negative selection and subtle enzyme changes can lead to major evolutionary shifts in function, which can subsequently generate important adaptive advantages, for example, in improving glycolytic efficiency in Thermococcales . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Cellular contractility and substrate elasticity: a numerical investigation of the actin cytoskeleton and cell adhesion.

    Science.gov (United States)

    Ronan, William; Deshpande, Vikram S; McMeeking, Robert M; McGarry, J Patrick

    2014-04-01

    Numerous experimental studies have established that cells can sense the stiffness of underlying substrates and have quantified the effect of substrate stiffness on stress fibre formation, focal adhesion area, cell traction, and cell shape. In order to capture such behaviour, the current study couples a mixed mode thermodynamic and mechanical framework that predicts focal adhesion formation and growth with a material model that predicts stress fibre formation, contractility, and dissociation in a fully 3D implementation. Simulations reveal that SF contractility plays a critical role in the substrate-dependent response of cells. Compliant substrates do not provide sufficient tension for stress fibre persistence, causing dissociation of stress fibres and lower focal adhesion formation. In contrast, cells on stiffer substrates are predicted to contain large amounts of dominant stress fibres. Different levels of cellular contractility representative of different cell phenotypes are found to alter the range of substrate stiffness that cause the most significant changes in stress fibre and focal adhesion formation. Furthermore, stress fibre and focal adhesion formation evolve as a cell spreads on a substrate and leading to the formation of bands of fibres leading from the cell periphery over the nucleus. Inhibiting the formation of FAs during cell spreading is found to limit stress fibre formation. The predictions of this mutually dependent material-interface framework are strongly supported by experimental observations of cells adhered to elastic substrates and offer insight into the inter-dependent biomechanical processes regulating stress fibre and focal adhesion formation.

  15. The growth and characterization of well aligned RuO2 nanorods on sapphire substrates

    International Nuclear Information System (INIS)

    Chen, C C; Chen, R S; Tsai, T Y; Huang, Y S; Tsai, D S; Tiong, K K

    2004-01-01

    Self-assembled and well aligned RuO 2 nanorods (NRs) have been grown on sapphire (SA) substrates via metal-organic chemical vapour deposition (MOCVD), using bis(ethylcyclopentadienyl)ruthenium as the source reagent. The surface morphology, structural, and spectroscopic properties of the as-deposited NRs were characterized using field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected-area electron diffractometry (SAD), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and micro-Raman spectroscopy. FESEM micrographs reveal that vertically aligned nanorods (NRs) were grown on SA(100), while the NRs on the SA(012) were grown with a tilt angle of ∼ 35 degrees from the normal to the substrates. TEM and SAD measurements showed that the RuO 2 NRs with square cross-section have the long axis directed along the [001] direction. The XRD results indicate that the RuO 2 NRs are (002) oriented on SA(100) and (101) oriented on SA(012) substrates. A strong substrate effect on the alignment of the RuO 2 NRs growth has been demonstrated and the probable mechanism for the formation of these NRs has been discussed. XP spectra show the coexistence of higher oxidation state of ruthenium in the as-grown RuO 2 NRs. Micro-Raman spectra show the red-shift and peak broadening of the RuO 2 signatures with respect to that of the bulk counterpart which may be indicative of a phonon confinement effect for these NRs

  16. A study of size dependent structure, morphology and luminescence behavior of CdS films on Si substrate

    International Nuclear Information System (INIS)

    Kaushik, Diksha; Singh, Ragini Raj; Sharma, Madhulika; Gupta, D.K.; Lalla, N.P.; Pandey, R.K.

    2007-01-01

    Size tunable cadmium sulfide (CdS) films deposited by a dip coating technique on silicon (100) and indium tin oxide/glass substrates have been characterized using X-ray diffraction, X-ray reflectivity, transmission electron microscopy, atomic force microscopy and photoluminescence spectroscopy. The structural characterization indicated growth of an oriented phase of cadmium sulfide. Transmission electron microscopy used to calculate the particle size indicated narrow size dispersion. The tendency of nanocrystalline CdS films to form ordered clusters of CdS quantum dots on silicon (100) substrate has been revealed by morphological studies using atomic force microscopy. The photoluminescence emission spectroscopy of the cadmium sulfide films has also been investigated. It is shown that the nanocrystalline CdS exhibit intense photoluminescence as compared to the large grained polycrystalline CdS films. The effect of quantum confinement also manifested as a blue shift of photoluminescence emission. It is shown that the observed photoluminescence behavior of CdS is substantially enhanced when the nanocrystallites are assembled on silicon (100) substrate

  17. Three extracellular dipeptidyl peptidases found in Aspergillus oryzae show varying substrate specificities.

    Science.gov (United States)

    Maeda, Hiroshi; Sakai, Daisuke; Kobayashi, Takuji; Morita, Hiroto; Okamoto, Ayako; Takeuchi, Michio; Kusumoto, Ken-Ichi; Amano, Hitoshi; Ishida, Hiroki; Yamagata, Youhei

    2016-06-01

    Three extracellular dipeptidyl peptidase genes, dppB, dppE, and dppF, were unveiled by sequence analysis of the Aspergillus oryzae genome. We investigated their differential enzymatic profiles, in order to gain an understanding of the diversity of these genes. The three dipeptidyl peptidases were expressed using Aspergillus nidulans as the host. Each recombinant enzyme was purified and subsequently characterized. The enzymes displayed similar optimum pH values, but optimum temperatures, pH stabilities, and substrate specificities varied. DppB was identified as a Xaa-Prolyl dipeptidyl peptidase, while DppE scissile substrates were similar to the substrates for Aspergillus fumigatus DPPV (AfDPPV). DppF was found to be a novel enzyme that could digest both substrates for A. fumigatus DPPIV and AfDPPV. Semi-quantitative PCR revealed that the transcription of dppB in A. oryzae was induced by protein substrates and repressed by the addition of an inorganic nitrogen source, despite the presence of protein substrates. The transcription of dppE depended on its growth time, while the transcription of dppF was not affected by the type of the nitrogen source in the medium, and it started during the early stage of the fungal growth. Based on these results, we conclude that these enzymes may represent the nutrition acquisition enzymes. Additionally, DppF may be one of the sensor peptidases responsible for the detection of the protein substrates in A. oryzae environment. DppB may be involved in nitrogen assimilation control, since the transcription of dppB was repressed by NaNO3, despite the presence of protein substrates.

  18. Modeling of scale-dependent bacterial growth by chemical kinetics approach.

    Science.gov (United States)

    Martínez, Haydee; Sánchez, Joaquín; Cruz, José-Manuel; Ayala, Guadalupe; Rivera, Marco; Buhse, Thomas

    2014-01-01

    We applied the so-called chemical kinetics approach to complex bacterial growth patterns that were dependent on the liquid-surface-area-to-volume ratio (SA/V) of the bacterial cultures. The kinetic modeling was based on current experimental knowledge in terms of autocatalytic bacterial growth, its inhibition by the metabolite CO2, and the relief of inhibition through the physical escape of the inhibitor. The model quantitatively reproduces kinetic data of SA/V-dependent bacterial growth and can discriminate between differences in the growth dynamics of enteropathogenic E. coli, E. coli JM83, and Salmonella typhimurium on one hand and Vibrio cholerae on the other hand. Furthermore, the data fitting procedures allowed predictions about the velocities of the involved key processes and the potential behavior in an open-flow bacterial chemostat, revealing an oscillatory approach to the stationary states.

  19. Modeling of Scale-Dependent Bacterial Growth by Chemical Kinetics Approach

    Directory of Open Access Journals (Sweden)

    Haydee Martínez

    2014-01-01

    Full Text Available We applied the so-called chemical kinetics approach to complex bacterial growth patterns that were dependent on the liquid-surface-area-to-volume ratio (SA/V of the bacterial cultures. The kinetic modeling was based on current experimental knowledge in terms of autocatalytic bacterial growth, its inhibition by the metabolite CO2, and the relief of inhibition through the physical escape of the inhibitor. The model quantitatively reproduces kinetic data of SA/V-dependent bacterial growth and can discriminate between differences in the growth dynamics of enteropathogenic E. coli, E. coli  JM83, and Salmonella typhimurium on one hand and Vibrio cholerae on the other hand. Furthermore, the data fitting procedures allowed predictions about the velocities of the involved key processes and the potential behavior in an open-flow bacterial chemostat, revealing an oscillatory approach to the stationary states.

  20. Carbon nanotube-based substrates promote cardiogenesis in brown adipose-derived stem cells via β1-integrin-dependent TGF-β1 signaling pathway

    Science.gov (United States)

    Sun, Hongyu; Mou, Yongchao; Li, Yi; Li, Xia; Chen, Zi; Duval, Kayla; Huang, Zhu; Dai, Ruiwu; Tang, Lijun; Tian, Fuzhou

    2016-01-01

    Stem cell-based therapy remains one of the promising approaches for cardiac repair and regeneration. However, its applications are restricted by the limited efficacy of cardiac differentiation. To address this issue, we examined whether carbon nanotubes (CNTs) would provide an instructive extracellular microenvironment to facilitate cardiogenesis in brown adipose-derived stem cells (BASCs) and to elucidate the underlying signaling pathways. In this study, we systematically investigated a series of cellular responses of BASCs due to the incorporation of CNTs into collagen (CNT-Col) substrates that promoted cell adhesion, spreading, and growth. Moreover, we found that CNT-Col substrates remarkably improved the efficiency of BASCs cardiogenesis by using fluorescence staining and quantitative real-time reverse transcription-polymerase chain reaction. Critically, CNTs in the substrates accelerated the maturation of BASCs-derived cardiomyocytes. Furthermore, the underlying mechanism for promotion of BASCs cardiac differentiation by CNTs was determined by immunostaining, quantitative real-time reverse transcription-polymerase chain reaction, and Western blotting assay. It is notable that β1-integrin-dependent TGF-β1 signaling pathway modulates the facilitative effect of CNTs in cardiac differentiation of BASCs. Therefore, it is an efficient approach to regulate cardiac differentiation of BASCs by the incorporation of CNTs into the native matrix. Importantly, our findings can not only facilitate the mechanistic understanding of molecular events initiating cardiac differentiation in stem cells, but also offer a potentially safer source for cardiac regenerative medicine. PMID:27660434

  1. Influence of periphyton substrates and rearing density on Liza aurata growth and production in marine nursery ponds

    NARCIS (Netherlands)

    Richard, M.; Maurice, J.T.; Anginot, A.; Paticat, F.; Verdegem, M.C.J.; Hussenot, J.M.E.

    2010-01-01

    The main objectives of this investigation were to test the effects of (i) the presence of periphyton substrates, (ii) rearing density and (iii) supplemental feeding with dry feed on the growth and production of golden mullet (Liza aurata) juveniles. Twenty-six 1 m2-cages were installed in a French

  2. Thickness dependence of microstructures in La0.9Sr0.1MnO3 thin films grown on exact-cut and miscut SrTiO3 substrates

    International Nuclear Information System (INIS)

    Zhang Hongdi; An Yukai; Mai Zhenhong; Lu Huibin; Zhao Kun; Pan Guoqiang; Li Ruipeng; Fan Rong

    2008-01-01

    The thickness dependence of microstructures of La 0.9 Sr 0.1 MnO 3 (LSMO) thin films grown on exact-cut and miscut SrTiO 3 (STO) substrates, respectively, was investigated by high-angle X-ray diffraction (HXRD), X-ray small-angle reflection (XSAR), X-ray reciprocal space mapping and atomic force microscopy (AFM). Results show that the LSMO films are in pseudocubic structure and are highly epitaxial [0 0 1]-oriented growth on the (0 0 1) STO substrates. The crystalline quality of the LSMO film is improved with thickness. The epitaxial relationship between the LSMO films and the STO substrates is [0 0 1] LSMO -parallel [0 0 1] EXACT-STO , and the LSMO films have a slight mosaic structure along the q x direction for the samples grown on the exact-cut STO substrates. However, an oriented angle of about 0.24 deg. exists between [0 0 1] LSMO and [0 0 1] MISCUT-STO , and the LSMO films have a mosaic structure along the q z direction for that grown on the miscut STO substrates. The mosaic structure of both groups of the samples tends to reduce with thickness. The diffraction intensity of the (0 0 4) peaks increases with thickness of the LSMO film. The XSAR and AFM observations show that for both groups, the interface is sharp and the surface is rather smooth. The mechanism was discussed briefly

  3. Substrates of Mauritia flexuosa and wastewater from pig farming on growth and quality in seedlings of Acacia mangium

    Directory of Open Access Journals (Sweden)

    Emanuel França Araújo

    Full Text Available ABSTRACT Sustainable alternatives should be adopted to minimise the negative environmental impacts of agricultural activities. The use of wastewater as well as organic waste, from agricultural activities or found naturally, such as the decomposed stems of the Buriti palm (Mauritia flexuosa, can be a sustainable alternative in the production of seedlings for the reforestation of areas in the process of degradation or desertification, common in the State of Piauí, Brazil. The aim of this study was to evaluate growth and quality in seedlings of Acacia mangium Willd grown in substrates with different proportions of decomposed stems of Mauritia flexuosa (DSB, and irrigated with wastewater from pig farming (WPF. The experimental design was completely randomised, arranged in a 5 x 2 factorial scheme, corresponding to five proportions of DSB and soil (v/v,% - 0:100, 20:80, 40:60, 60:40, 80:20, and two sources of irrigation water (well water and WPF, with four replications. At 100 days after sowing (DAS, the seedlings were collected to measure the variables related to growth, quality and nodulation. Height, root collar diameter, shoot dry weight, leaf area and nitrogen accumulation in the shoots were significantly influenced (p≤0.05 by the interaction between substrate and source of irrigation water. The WPF had no significant influence on the growth or quality of the Acacia mangium Willd seedlings. The best ratio between DSB substrate and soil was 46:54, considered the most suitable for seedling production in Acacia mangium Willd.

  4. Epitaxial growth of Si1−xGex alloys and Ge on Si(100) by electron-cyclotron-resonance Ar plasma chemical vapor deposition without substrate heating

    International Nuclear Information System (INIS)

    Ueno, Naofumi; Sakuraba, Masao; Murota, Junichi; Sato, Shigeo

    2014-01-01

    By using electron-cyclotron-resonance (ECR) Ar-plasma chemical vapor deposition (CVD) without substrate heating, the epitaxial growth process of Si 1−x Ge x alloy and Ge films deposited directly on dilute-HF-treated Si(100) was investigated. From the reflection high energy electron diffraction patterns of the deposited Si 1−x Ge x alloy (x = 0.50, 0.75) and Ge films on Si(100), it is confirmed that epitaxial growth can be realized without substrate heating, and that crystallinity degradation at larger film thickness is observed. The X-ray diffraction peak of the epitaxial films reveals the existence of large compressive strain, which is induced by lattice matching with the Si(100) substrate at smaller film thicknesses, as well as strain relaxation behavior at larger film thicknesses. The Ge fraction of Si 1−x Ge x thin film is in good agreement with the normalized GeH 4 partial pressure. The Si 1−x Ge x deposition rate increases with an increase of GeH 4 partial pressure. The GeH 4 partial pressure dependence of partial deposition rates [(Si or Ge fraction) × (Si 1−x Ge x thickness) / (deposition time)] shows that the Si partial deposition rate is slightly enhanced by the existence of Ge. From these results, it is proposed that the ECR-plasma CVD process can be utilized for Ge fraction control in highly-strained heterostructure formation of group IV semiconductors. - Highlights: • Si 1−x Ge x alloy and Ge were epitaxially grown on Si(100) without substrate heating. • Large strain and its relaxation behavior can be observed by X-ray diffraction. • Ge fraction of Si 1−x Ge x is equal to normalized GeH 4 partial pressure. • Si partial deposition rate is slightly enhanced by existence of Ge

  5. Structural and morphological characterizations of ZnO films grown on GaAs substrates by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Agouram, S.; Zuniga Perez, J.; Munoz-Sanjose, V. [Universitat de Valencia, Departamento de Fisica Aplicada y Electromagnetismo, Burjassot (Spain)

    2007-07-15

    ZnO films were grown on GaAs(100), GaAs(111)A and GaAs(111)B substrates by metal organic chemical vapour deposition (MOCVD). Diethylzinc (DEZn) and tertiarybutanol (t-butanol) were used as Zn and O precursors, respectively. The influence of the growth temperature and GaAs substrate orientation on the crystalline orientation and morphology of the ZnO grown films has been analysed. Crystallinity of grown films was studied by X-ray diffraction (XRD); thickness and morphology of ZnO films were investigated by scanning electron microscopy (SEM). SEM results reveal significant differences between morphologies depending on growth temperature but not significant differences were detected on the texture of grown films. (orig.)

  6. Real-time optical modelling and investigation of inorganic nano-layer growth onto flexible polymeric substrates

    International Nuclear Information System (INIS)

    Laskarakis, A.; Georgiou, D.; Logothetidis, S.

    2010-01-01

    A major factor for the achievement of the desirable performance, efficiency and lifetime of flexible organic electronic devices is the optimization of the encapsulation layers that protect the device active layers by atmospheric gas molecule permeation. The active layers consisted of small molecule and/or polymer organic semiconductors as well as the organic conductors need to be encapsulated into a transparent medium that will provide the necessary protection and maintain their charge generation and transport characteristics. The encapsulation layers are generally consisted of inorganic thin films (silicon oxide-SiO x and aluminium oxide-AlO x ) deposited onto the polymeric substrates, such as PolyEthylene Terephthalate (PET). In this work, in situ and real-time Spectroscopic Ellipsometry in the ultraviolet spectral region has been implemented in order to investigate the growth of inorganic SiO x and AlO x nano-layers onto PET flexible polymeric substrates as well as the PET/inorganic interface effects during the early stages of growth. The analysis of the pseudodielectric function that was measured in real-time in very short time scales (in the order of hundreds of ms) has provided detailed information on the time evolution of the thickness and deposition rate of the inorganic nano-layers during their growth process as well as on their optical and electronic properties. This work proposes a methodology for using real-time optical monitoring technique with the aim to tailor and control the functionality of these materials for application in flexible electronic devices.

  7. Selective growth of Ge1- x Sn x epitaxial layer on patterned SiO2/Si substrate by metal-organic chemical vapor deposition

    Science.gov (United States)

    Takeuchi, Wakana; Washizu, Tomoya; Ike, Shinichi; Nakatsuka, Osamu; Zaima, Shigeaki

    2018-01-01

    We have investigated the selective growth of a Ge1- x Sn x epitaxial layer on a line/space-patterned SiO2/Si substrate by metal-organic chemical vapor deposition. We examined the behavior of a Sn precursor of tributyl(vinyl)tin (TBVSn) during the growth on Si and SiO2 substrates and investigated the effect of the Sn precursor on the selective growth. The selective growth of the Ge1- x Sn x epitaxial layer was performed under various total pressures and growth temperatures of 300 and 350 °C. The selective growth of the Ge1- x Sn x epitaxial layer on the patterned Si region is achieved at a low total pressure without Ge1- x Sn x growth on the SiO2 region. In addition, we found that the Sn content in the Ge1- x Sn x epitaxial layer increases with width of the SiO2 region for a fixed Si width even with low total pressure. To control the Sn content in the selective growth of the Ge1- x Sn x epitaxial layer, it is important to suppress the decomposition and migration of Sn and Ge precursors.

  8. High resolution x-ray diffraction study of the substrate temperature and thickness dependent microstructure of reactively sputtered epitaxial ZnO films

    KAUST Repository

    Singh, Devendra

    2017-08-24

    Epitaxial ZnO films were grown on c-sapphire by reactive sputtering of zinc target in Ar-O2 mixture. High resolution X-ray diffraction measurements were carried out to obtain lateral and vertical coherence lengths, crystallite tilt and twist, micro-strain and densities of screw and edge dislocations in epilayers of different thickness (25 - 200 nm) and those grown at different temperatures (100 - 500 °C). phgr-scans indicate epitaxial growth in all the cases, although epilayers grown at lower substrate temperatures (100 °C and 200 °C) and those of smaller thickness (25 nm and 50 nm) display inferior microstructural parameters. This is attributed to the dominant presence of initially grown strained 2D layer and subsequent transition to an energetically favorable mode. With increase in substrate temperature, the transition shifts to lower thickness and growth takes place through the formation of 2D platelets with intermediate strain, over which 3D islands grow. Consequently, 100 nm thick epilayers grown at 300 °C display the best microstructural parameters (micro-strain ~1.2 x 10-3, screw and edge dislocation densities ~1.5 x 1010 cm-2 and ~2.3 x 1011 cm-2, respectively). A marginal degradation of microstructural parameters is seen in epilayers grown at higher substrate temperatures, due to the dominance of 3D hillock type growth.

  9. High resolution x-ray diffraction study of the substrate temperature and thickness dependent microstructure of reactively sputtered epitaxial ZnO films

    KAUST Repository

    Singh, Devendra; Kumar, Ravi; Ganguli, Tapas; Major, Syed S

    2017-01-01

    Epitaxial ZnO films were grown on c-sapphire by reactive sputtering of zinc target in Ar-O2 mixture. High resolution X-ray diffraction measurements were carried out to obtain lateral and vertical coherence lengths, crystallite tilt and twist, micro-strain and densities of screw and edge dislocations in epilayers of different thickness (25 - 200 nm) and those grown at different temperatures (100 - 500 °C). phgr-scans indicate epitaxial growth in all the cases, although epilayers grown at lower substrate temperatures (100 °C and 200 °C) and those of smaller thickness (25 nm and 50 nm) display inferior microstructural parameters. This is attributed to the dominant presence of initially grown strained 2D layer and subsequent transition to an energetically favorable mode. With increase in substrate temperature, the transition shifts to lower thickness and growth takes place through the formation of 2D platelets with intermediate strain, over which 3D islands grow. Consequently, 100 nm thick epilayers grown at 300 °C display the best microstructural parameters (micro-strain ~1.2 x 10-3, screw and edge dislocation densities ~1.5 x 1010 cm-2 and ~2.3 x 1011 cm-2, respectively). A marginal degradation of microstructural parameters is seen in epilayers grown at higher substrate temperatures, due to the dominance of 3D hillock type growth.

  10. Alternative substrates for higher mushrooms mycelia cultivation

    Directory of Open Access Journals (Sweden)

    TETIANA KRUPODOROVA

    2015-12-01

    Full Text Available Cultivation of 29 species of higher mushroom mycelia on alternative substrates – wastes of Ukrainian oil-fat industry, has been investigated. The amount of mushroom mycelia obtaining on 12 investigated substrates varied significantly, from 1.0 g/L to 22.9 g/L on the 14th day of cultivation. The superficial cultivation adopted in this study allows for easy to choose appropriate medium (substrate for mycelia production. Alternative substrates (compared to glucose-peptone-yeast medium were selected for all studied species, from soybean cake – most suitable for the mycelial growth of 24 species, to walnut cake − suitable only for 2 species. The utilization of substrates has been evaluated by biological efficiency. The best index of biological efficiency varied from 19.0% to 41.6% depending on the mushroom species. It was established high biological efficiency of mycelia cultivation on substrates: wheat seed cake – Pleurotus djamor, Lyophyllum shimeji, Crinipellis schevczenkovi, Phellinus igniarius, Spongipellis litschaueri; oat seed cake – Ganoderma applanatum and G. lucidum; soybean cake – Hohenbuehelia myxotricha, Trametes versicolor, Morchella esculenta, Cordyceps sinensis, C. militaris, and Agrocybe aegerita; rape seed cake – Auriporia aurea; camelina seed cake – Fomes fomentarius. The cultivation of these species are perspective as a biotechnological process of agricultural wastes converted into mycelia, which could be used in different forms of products with therapeutic action: powder or tablets nutraceuticals or ingredients for functional foods.

  11. Molecular-beam epitaxial growth of insulating AlN on surface-controlled 6H-SiC substrate by HCl gas etching

    International Nuclear Information System (INIS)

    Onojima, Norio; Suda, Jun; Matsunami, Hiroyuki

    2002-01-01

    Insulating AlN layers were grown on surface-controlled 6H-SiC subtrates by molecular-beam epitaxy (MBE) using elemental Al and rf plasma-excited nitrogen (N*). HCl gas etching was introduced as an effective pretreatment method of substrate for MBE growth of AlN. 6H-SiC substrates pretreated by HCl gas etching had no surface polishing scratches and an atomically flat surface. In addition, evident ( 3 √x 3 √)R30 deg. surface reconstruction was observed even before thermal cleaning. AlN layers grown on this substrate had no defects related to surface polishing scratches and excellent insulating characteristics

  12. Buffer free MOCVD growth of GaN on 4H-SiC: Effect of substrate treatments and UV-photoirradiation

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, Maria; Giangregorio, Maria M.; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Kim, Tong-Ho; Choi, Soojeong; Brown, April [Department of Electrical and Computer Engineering, Duke University, Durham, NC 27709 (United States)

    2006-05-15

    GaN has been grown directly on the Si-face 4H-SiC(0001) substrates using remote plasma-assisted metalorganic chemical vapour deposition (RP-MOCVD) with UV-light irradiation. The effects of substrate pre-treatments and UV-photoirradiation of the growth surface on GaN nucleation and film morphology are investigated. Optical data from spectroscopic ellipsometry measurements and morphological data show an improvement in nucleation and material quality with UV-light irradiation. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Growth of misfit dislocation-free p/p+ thick epitaxial silicon wafers on Ge-B-codoped substrates

    International Nuclear Information System (INIS)

    Jiang Huihua; Yang Deren; Ma Xiangyang; Tian Daxi; Li Liben; Que Duanlin

    2006-01-01

    The growth of p/p + silicon epitaxial silicon wafers (epi-wafers) without misfit dislocations has been successfully achieved by using heavily boron-doped Czochralski (CZ) silicon wafers codoped with desirable level of germanium as the substrates. The lattice compensation by codoping of germanium and boron into the silicon matrix to reduce the lattice mismatch between the substrate (heavily boron-doped) and epi-layer (lightly boron-doped) is the basic idea underlying in the present achievement. In principle, the codoping of germanium and boron in the CZ silicon can be tailored to achieve misfit dislocation-free epi-layer with required thickness. It is reasonably expected that the presented solution to elimination of misfit dislocations in the p/p + silicon wafers can be applied in the volume production

  14. Molecular beam epitaxy of quasi-freestanding transition metal disulphide monolayers on van der Waals substrates: a growth study

    Science.gov (United States)

    Hall, Joshua; Pielić, Borna; Murray, Clifford; Jolie, Wouter; Wekking, Tobias; Busse, Carsten; Kralj, Marko; Michely, Thomas

    2018-04-01

    Based on an ultra-high vacuum compatible two-step molecular beam epitaxy synthesis with elemental sulphur, we grow clean, well-oriented, and almost defect-free monolayer islands and layers of the transition metal disulphides MoS2, TaS2 and WS2. Using scanning tunneling microscopy and low energy electron diffraction we investigate systematically how to optimise the growth process, and provide insight into the growth and annealing mechanisms. A large band gap of 2.55 eV and the ability to move flakes with the scanning tunneling microscope tip both document the weak interaction of MoS2 with its substrate consisting of graphene grown on Ir(1 1 1). As the method works for the synthesis of a variety of transition metal disulphides on different substrates, we speculate that it could be of great use for providing hitherto unattainable high quality monolayers of transition metal disulphides for fundamental spectroscopic investigations.

  15. Real time ellipsometry for monitoring plasma-assisted epitaxial growth of GaN

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Losurdo, Maria [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy)]. E-mail: maria.losurdo@ba.imip.cnr.it; Giangregorio, Maria M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Capezzuto, Pio [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Brown, April S. [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Kim, Tong-Ho [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Choi, Soojeong [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States)

    2006-10-31

    GaN is grown on Si-face 4H-SiC(0 0 0 1) substrates using remote plasma-assisted methods including metalorganic chemical vapour deposition (RP-MOCVD) and molecular beam epitaxy (MBE). Real time spectroscopic ellipsometry is used for monitoring all the steps of substrate pre-treatments and the heteroepitaxial growth of GaN on SiC. Our characterization emphasis is on understanding the nucleation mechanism and the GaN growth mode, which depend on the SiC surface preparation.

  16. Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation

    Science.gov (United States)

    Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong

    2018-05-01

    The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.

  17. Time-dependent crack growth and fracture in concrete

    International Nuclear Information System (INIS)

    Zhou Fan Ping.

    1992-02-01

    The objectives of this thesis are to study time-dependent fracture behaviour in concrete. The thesis consists of an experimental study, costitutive modelling and numerical analysis. The experimental study was undertaken to investigate the influences of time on material properties for the fracture process zone and on crack growth and fracture in plain concrete structures. The experiments include tensile relaxation tests, bending tests on notched beams to determine fracture energy at varying deflection rates, and sustained bending and compact tensile tests. From the tensile relaxation tests, the envelope of the σ-w relation does not seem to be influenced by holding periods, though some local detrimental effect does occur. Fracture energy seems to decrease as rates become slower. In the sustained loading tests, deformation (deflection or CMOD) growth curves display three stages, as usually observed in a creep rupture test. The secondary stage dominates the whole failure lifetime, and the secondary deformation rate appears to have good correlation with the failure lifetime. A crack model for time-dependent fracture is proposed, by applying the idea of the Fictitious Crack Model. In this model, a modified Maxwell model is introduced for the fracture process zone incorporated with the static σ-w curve as a failure criterion, based on the observation of the tensile relaxation tests. The time-dependent σ-w curve is expressed in an incremental law. The proposed model has been implemented in a finite element program and applied to simulating sustained flexural and compact tensile tests. Numerical analysis includes simulations of crack growth, load-CMOD curves, stress-failure lifetime curves, size effects on failure life etc. The numerical results indicate that the model seems to be able to properly predict the main features of time-dependent fracture behaviour in concrete, as compared with the experimental results. 97 refs

  18. Temperature-dependent templated growth of porphine thin films on the (111) facets of copper and silver

    Energy Technology Data Exchange (ETDEWEB)

    Diller, Katharina, E-mail: katharina.diller@tum.de [Physik-Department, E20, Technische Universität München, 85748 Garching (Germany); Theoretische Chemie, Technische Universität München, 85748 Garching (Germany); Klappenberger, Florian; Allegretti, Francesco; Papageorgiou, Anthoula C.; Fischer, Sybille; Duncan, David A.; Lloyd, Julian A.; Oh, Seung Cheol; Barth, Johannes V. [Physik-Department, E20, Technische Universität München, 85748 Garching (Germany); Maurer, Reinhard J.; Reuter, Karsten [Theoretische Chemie, Technische Universität München, 85748 Garching (Germany)

    2014-10-14

    The templated growth of the basic porphyrin unit, free-base porphine (2H-P), is characterized by means of X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy measurements and density functional theory (DFT). The DFT simulations allow the deconvolution of the complex XPS and NEXAFS signatures into contributions originating from five inequivalent carbon atoms, which can be grouped into C–N and C–C bonded species. Polarization-dependent NEXAFS measurements reveal an intriguing organizational behavior: On both Cu(111) and Ag(111), for coverages up to one monolayer, the molecules adsorb undeformed and parallel to the respective metal surface. Upon increasing the coverage, however, the orientation of the molecules in the thin films depends on the growth conditions. Multilayers deposited at low temperatures exhibit a similar average tilting angle (30° relative to the surface plane) on both substrates. Conversely, for multilayers grown at room temperature a markedly different scenario exists. On Cu(111) the film thickness is self-limited to a coverage of approximately two layers, while on Ag(111) multilayers can be grown easily and, in contrast to the bulk 2H-P crystal, the molecules are oriented perpendicular to the surface. This difference in molecular orientation results in a modified line-shape of the C 1s XPS signatures, which depends on the incident photon energy and is explained by comparison with depth-resolved DFT calculations. Simulations of ionization energies for differently stacked molecules show no indication for a packing-induced modification of the multilayer XP spectra, thus indicating that the comparison of single molecule calculations to multilayer data is justified.

  19. Basal metabolic state governs AIF-dependent growth support in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Scott, Andrew J.; Wilkinson, Amanda S.; Wilkinson, John C.

    2016-01-01

    Apoptosis-inducing factor (AIF), named for its involvement in cell death pathways, is a mitochondrial protein that regulates metabolic homeostasis. In addition to supporting the survival of healthy cells, AIF also plays a contributory role to the development of cancer through its enzymatic activity, and we have previously shown that AIF preferentially supports advanced-stage prostate cancer cells. Here we further evaluated the role of AIF in tumorigenesis by exploring its function in pancreatic cancer, a disease setting that most often presents at an advanced stage by the time of diagnosis. A bioinformatics approach was first employed to investigate AIF mRNA transcript levels in pancreatic tumor specimens vs. normal tissues. AIF-deficient pancreatic cancer cell lines were then established via lentiviral infection. Immunoblot analysis was used to determine relative protein quantities within cells. Cell viability was measured by flow cytometry; in vitro and Matrigel™ growth/survival using Coulter™ counting and phase contrast microscopy; and glucose consumption in the absence and presence of Matrigel™ using spectrophotometric methods. Archival gene expression data revealed a modest elevation of AIF transcript levels in subsets of pancreatic tumor specimens, suggesting a possible role in disease progression. AIF expression was then suppressed in a panel of five pancreatic cancer cell lines that display diverse metabolic phenotypes. AIF ablation selectively crippled the growth of cells in vitro in a manner that directly correlated with the loss of mitochondrial respiratory chain subunits and altered glucose metabolism, and these effects were exacerbated in the presence of Matrigel™ substrate. This suggests a critical metabolic role for AIF to pancreatic tumorigenesis, while the spectrum of sensitivities to AIF ablation depends on basal cellular metabolic phenotypes. Altogether these data indicate that AIF supports the growth and survival of metabolically defined

  20. Atomic force microscopy investigation of growth process of organic TCNQ aggregates on SiO2 and mica substrates

    Science.gov (United States)

    Huan, Qing; Hu, Hao; Pan, Li-Da; Xiao, Jiang; Du, Shi-Xuan; Gao, Hong-Jun

    2010-08-01

    Deposition patterns of tetracyanoquinodimethane (TCNQ) molecules on different surfaces are investigated by atomic force microscopy. A homemade physical vapour deposition system allows the better control of molecule deposition. Taking advantage of this system, we investigate TCNQ thin film growth on both SiO2 and mica surfaces. It is found that dense island patterns form at a high deposition rate, and a unique seahorse-like pattern forms at a low deposition rate. Growth patterns on different substrates suggest that the fractal pattern formation is dominated by molecule-molecule interaction. Finally, a phenomenal “two-branch" model is proposed to simulate the growth process of the seahorse pattern.

  1. Atomic force microscopy investigation of growth process of organic TCNQ aggregates on SiO2 and mica substrates

    International Nuclear Information System (INIS)

    Qing, Huan; Hao, Hu; Li-Da, Pan; Jiang, Xiao; Shi-Xuan, Du; Hong-Jun, Gao

    2010-01-01

    Deposition patterns of tetracyanoquinodimethane (TCNQ) molecules on different surfaces are investigated by atomic force microscopy. A homemade physical vapour deposition system allows the better control of molecule deposition. Taking advantage of this system, we investigate TCNQ thin film growth on both SiO 2 and mica surfaces. It is found that dense island patterns form at a high deposition rate, and a unique seahorse-like pattern forms at a low deposition rate. Growth patterns on different substrates suggest that the fractal pattern formation is dominated by molecule–molecule interaction. Finally, a phenomenal “two-branch” model is proposed to simulate the growth process of the seahorse pattern. (general)

  2. Investigation of growth, structural and electronic properties of V{sub 2}O{sub 3} thin films on selected substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nateprov, Alexei

    2006-08-15

    The present work is devoted to the experimental study of the MI transition in V{sub 2}O{sub 3} thin films, grown on different substrates. The main goal of the work was to develop a technology of growth of V{sub 2}O{sub 3} thin films on substrates with different electrical and structural properties (diamond and LiNbO{sub 3}), designed for specific applications. The structural and electrical properties of the obtained films were characterized in detail with a special focus on their potential applications. The MIT of V{sub 2}O{sub 3} was investigated by SAW using first directly deposited V{sub 2}O{sub 3} thin film onto a LiNbO{sub 3} substrate. (orig.)

  3. Layer Dependence and Light Tuning Surface Potential of 2D MoS2 on Various Substrates.

    Science.gov (United States)

    Li, Feng; Qi, Junjie; Xu, Minxuan; Xiao, Jiankun; Xu, Yuliang; Zhang, Xiankun; Liu, Shuo; Zhang, Yue

    2017-04-01

    Here surface potential of chemical vapor deposition (CVD) grown 2D MoS 2 with various layers is reported, and the effect of adherent substrate and light illumination on surface potential of monolayer MoS 2 are investigated. The surface potential of MoS 2 on Si/SiO 2 substrate decreases from 4.93 to 4.84 eV with the increase in the number of layer from 1 to 4 or more. Especially, the surface potentials of monolayer MoS 2 are strongly dependent on its adherent substrate, which are determined to be 4.55, 4.88, 4.93, 5.10, and 5.50 eV on Ag, graphene, Si/SiO 2 , Au, and Pt substrates, respectively. Light irradiation is introduced to tuning the surface potential of monolayer MoS 2 , with the increase in light intensity, the surface potential of MoS 2 on Si/SiO 2 substrate decreases from 4.93 to 4.74 eV, while increases from 5.50 to 5.56 eV on Pt substrate. The I-V curves on vertical of monolayer MoS 2 /Pt heterojunction show the decrease in current with the increase of light intensity, and Schottky barrier height at MoS 2 /Pt junctions increases from 0.302 to 0.342 eV. The changed surface potential can be explained by trapped charges on surface, photoinduced carriers, charge transfer, and local electric field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Study on ECR dry etching and selective MBE growth of AlGaN/GaN for fabrication of quantum nanostructures on GaN (0001) substrates

    International Nuclear Information System (INIS)

    Oikawa, Takeshi; Ishikawa, Fumitaro; Sato, Taketomo; Hashizume, Tamotsu; Hasegawa, Hideki

    2005-01-01

    This paper attempts to form AlGaN/GaN quantum wire (QWR) network structures on patterned GaN (0001) substrates by selective molecular beam epitaxy (MBE) growth. Substrate patterns were prepared along - and -directions by electron cyclotron resonance assisted reactive-ion beam etching (ECR-RIBE) process. Selective growth was possible for both directions in the case of GaN growth, but only in the -direction in the case of AlGaN growth. A hexagonal QWR network was successfully grown on a hexagonal mesa pattern by combining the -direction and two other equivalent directions. AFM observation confirmed excellent surface morphology of the grown network. A clear cathodoluminescence (CL) peak coming from the embedded AlGaN/GaN QWR structure was clearly identified

  5. Growth of InAs Quantum Dots on Germanium Substrate Using Metal Organic Chemical Vapor Deposition Technique

    Directory of Open Access Journals (Sweden)

    Tyagi Renu

    2009-01-01

    Full Text Available Abstract Self-assembled InAs quantum dots (QDs were grown on germanium substrates by metal organic chemical vapor deposition technique. Effects of growth temperature and InAs coverage on the size, density, and height of quantum dots were investigated. Growth temperature was varied from 400 to 450 °C and InAs coverage was varied between 1.40 and 2.35 monolayers (MLs. The surface morphology and structural characteristics of the quantum dots analyzed by atomic force microscope revealed that the density of the InAs quantum dots first increased and then decreased with the amount of InAs coverage; whereas density decreased with increase in growth temperature. It was observed that the size and height of InAs quantum dots increased with increase in both temperature and InAs coverage. The density of QDs was effectively controlled by growth temperature and InAs coverage on GaAs buffer layer.

  6. Dependence on the growth direction of the strain in AlGaSb alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Lopez, M; Delgado-Macuil, R; Gayou, V L; Orduna-Diaz, A [CIBA-Tlaxcala, IPN, Tlaxcala, Tlax. (Mexico); Momox-Beristain, E [FC-BUAP, Puebla, Pue. (Mexico); Salazar-Hernandez, B [CIICAp-UAEM, Cuernavaca, Mor. (Mexico); Rodriguez, A G, E-mail: marlonrl@yahoo.com.m [IICO-UASLP, San Luis Potosi, S.L.P. (Mexico)

    2009-05-01

    High resolution x-ray diffraction profiles were obtained from Al{sub x}Ga{sub 1-x}Sb layers grown on (001) and (111) GaSb substrates. The out of plane lattice parameter, was estimated directly from the symmetrical diffractions for (001) and (111) alloys. These results show that all the layers are strained, and those grown on (001) GaSb are slightly more strained than the corresponding layers grown on (111) GaSb. This difference is explained by the dependence of the strain ratio on growth direction. The out of plane lattice parameter as a function of Al content is higher than the corresponding bulk lattice parameter of Al{sub x}Ga{sub 1-x}Sb layers obtained with Vegard's law. Also, the perpendicular and the in-plane lattice parameter expected for pseudomorphic alloys, was estimated from the strain ratios, assuming an elastic deformation and using the EDX alloy composition to interpolate the elastic constants C{sub ij}. This estimation also shows that almost all the layers are fully strained.

  7. Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices.

    Science.gov (United States)

    Li, Zhe; Ho Chiu, Kar; Shahid Ashraf, Raja; Fearn, Sarah; Dattani, Rajeev; Cheng Wong, Him; Tan, Ching-Hong; Wu, Jiaying; Cabral, João T; Durrant, James R

    2015-10-15

    Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions.

  8. Growth of CrTe thin films by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Sreenivasan, M.G.; Hou, X.J.; Teo, K.L.; Jalil, M.B.A.; Liew, T.; Chong, T.C.

    2006-01-01

    We report the growth of Cr 1-δ Te films on (100) GaAs substrates using ZnTe buffer layers by solid-source molecular-beam epitaxial technique. RHEED patterns indicate a clear structural change during the initial stages of deposition. Temperature-dependent magnetization results reveal that different NiAs-related phases of Cr 1-δ Te can be obtained at different substrate temperatures. By varying the film thickness, a metastable zinc blende structure of CrTe could be obtained at lower substrate temperature

  9. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Almind, K; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Since relative or absolute insulin deficiency and insulin insensitivity are involved in the aetiology of non-insulin-dependent diabetes mellitus (NIDDM), we examined whether patients with NIDDM exhibit genetic variability in the coding region of insulin receptor substrate-1 (IRS-1), a candidate...... with NIDDM and 3 of the controls were heterozygous at codon 972 for a polymorphism in which glycine was substituted with arginine. Moreover, at codon 513, 6 patients with NIDDM and 2 controls had a heterozygous polymorphism with a transition from alanine to proline. None of the polymorphism carriers had both...

  10. MBE growth and characterization of GaAs1-x Sb x epitaxial layers on Si (0 0 1) substrates

    International Nuclear Information System (INIS)

    Toda, T.; Nishino, F.; Kato, A.; Kambayashi, T.; Jinbo, Y.; Uchitomi, N.

    2006-01-01

    We investigated the growth of GaAs 1- x Sb x (x=1.0, 0.82, 0.69, 0.44, 0.0) layers on Si (0 0 1) substrates using AlSb as a buffer layer. Epilayers were grown as a function of As beam equivalent pressure (BEP) under a constant Sb BEP, and they were then characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), and micro-Raman scattering analysis. We confirmed that GaAs 1- x Sb x layers have been successfully grown on Si substrates by introducing AlSb layers

  11. Substrate-dependent cell elasticity measured by optical tweezers indentation

    Science.gov (United States)

    Yousafzai, Muhammad S.; Ndoye, Fatou; Coceano, Giovanna; Niemela, Joseph; Bonin, Serena; Scoles, Giacinto; Cojoc, Dan

    2016-01-01

    In the last decade, cell elasticity has been widely investigated as a potential label free indicator for cellular alteration in different diseases, cancer included. Cell elasticity can be locally measured by pulling membrane tethers, stretching or indenting the cell using optical tweezers. In this paper, we propose a simple approach to perform cell indentation at pN forces by axially moving the cell against a trapped microbead. The elastic modulus is calculated using the Hertz-model. Besides the axial component, the setup also allows us to examine the lateral cell-bead interaction. This technique has been applied to measure the local elasticity of HBL-100 cells, an immortalized human cell line, originally derived from the milk of a woman with no evidence of breast cancer lesions. In addition, we have studied the influence of substrate stiffness on cell elasticity by performing experiments on cells cultured on two substrates, bare and collagen-coated, having different stiffness. The mean value of the cell elastic modulus measured during indentation was 26±9 Pa for the bare substrate, while for the collagen-coated substrate it diminished to 19±7 Pa. The same trend was obtained for the elastic modulus measured during the retraction of the cell: 23±10 Pa and 13±7 Pa, respectively. These results show the cells adapt their stiffness to that of the substrate and demonstrate the potential of this setup for low-force probing of modifications to cell mechanics induced by the surrounding environment (e.g. extracellular matrix or other cells).

  12. Growth and nutritional status of Brazilian wood species Cedrella fissilis and Anadenanthera peregrina in bauxite spoil in response to arbuscular mycorrhizal inoculation and substrate amendment

    Directory of Open Access Journals (Sweden)

    Tótola Marcos Rogério

    2000-01-01

    Full Text Available The growth of Cedrella fissilis Vell. (Cedro Rosa and of Anadenanthera peregrina Benth (Angico Vermelho in bauxite spoil was studied to evaluate their response to substrate amendment or to inoculation with arbuscular mycorrhizal fungi (AMF. The plants were grown in bauxite spoil, topsoil or spoil amended with either topsoil or compost, and inoculated with the AMF Acaulospora scrobiculata, Gigaspora margarita or Glomus etunicatum. Root colonization was highly dependent on the interaction plant-fungus-substrate. In C. fissilis, root colonization by Gigaspora margarita dropped from 75% in bauxite spoil to only 4% in topsoil. Contrarily, root colonization of A. peregrina by the same fungus increased from 48% in spoil to 60% in topsoil. Root colonization of C. fissilis in topsoil was lower than in the three other substrates. The opposite was observed for A. peregrina. Inoculation of the plants with Acaulospora scrobiculata or Glomus etunicatum was very effective in promoting plant growth. Plants of both C. fissilis and A. peregrina did not respond to amendments of bauxite spoil unless they were mycorrhizal. Also, a preferential partitioning of photosynthates to the shoots of A. peregrina inoculated with G. etunicatum or A. scrobiculata, and of C. fissilis inoculated with any of the three species of AMF was observed. C. fissilis showed a greater response to mycorrhizal inoculation than A. peregrina. The mean mycorrhizal efficiency (ME for dry matter production by C. fissilis was 1,847% for A. scrobiculata, 1,922% for G. etunicatum, and 119% for G. margarita. In A. peregrina, the ME was 249% for A. scrobiculata, 540% for G. etunicatum, and 50% for G. margarita. The effect of mycorrhizal inoculation on plant growth seems to be related in part to an enhanced phosphorus absorption by inoculated plants. Moreover, the efficiency with which the absorbed nutrients were used to produce plant biomass was much greater in plants inoculated with A. scrobiculata or

  13. Preparation of MgO Films as Buffer Layers by Laser-ablation at Various Substrate Temperatures

    Institute of Scientific and Technical Information of China (English)

    LI Ling; WANG Chuanbin; WANG Fang; SHEN Qiang; ZHANG Lianmeng

    2011-01-01

    MgO thin films were deposited on Si(100) substrates by laser ablation under various substrate temperatures (Tsub),expecting to provide a candidate buffer layer for the textured growth of functional perovskite oxide films on Si substrates.The effect of Tsub on the preferred orientation,crystallinity and surface morphology of the films was investigated.MgO films in single-phase were obtained at 473-973 K.With increasing Tsub,the preferred orientation of the films changed from (200) to (111).The crystallinity and surface morphology was different too,depending on Tsub·At Tsub=673 K,the MgO film became uniform and smooth,exhibiting high crystallinity and a dense texture.

  14. Growth and characterization of straight InAs/GaAs nanowire heterostructures on Si substrate

    International Nuclear Information System (INIS)

    Yan Xin; Zhang Xia; Li Jun-Shuai; Lü Xiao-Long; Ren Xiao-Min; Huang Yong-Qing

    2013-01-01

    Vertical InAs/GaAs nanowire (NW) heterostructures with a straight InAs segment have been successfully fabricated on Si (111) substrate by using AlGaAs/GaAs buffer layers coupled with a composition grading InGaAs segment. Both the GaAs and InAs segments are not limited by the misfit strain induced critical diameter. The low growth rate of InAs NWs is attributed to the AlGaAs/GaAs buffer layers which dramatically decrease the adatom diffusion contribution to the InAs NW growth. The crystal structure of InAs NW can be tuned from zincblende to wurtzite by controlling its diameter as well as the length of GaAs NWs. This work helps to open up a road for the integration of high-quality III-V NW heterostructures with Si

  15. Growth and characterization of InAs columnar quantum dots on GaAs substrate

    International Nuclear Information System (INIS)

    Li, L. H.; Patriarche, G.; Rossetti, M.; Fiore, A.

    2007-01-01

    The growth of InAs columnar quantum dots (CQDs) on GaAs substrates by molecular beam epitaxy was investigated. The CQDs were formed by depositing a 1.8 monolayer (ML) InAs seed dot layer and a short period GaAs/InAs superlattice (SL). It was found that the growth of the CQDs is very sensitive to growth interruption (GI) and growth temperature. Both longer GI and higher growth temperature impact the size dispersion of the CQDs, which causes the broadening of photoluminescence (PL) spectrum and the presence of the additional PL peak tails. By properly choosing the GI and the growth temperature, CQDs including GaAs (3 ML)/InAs (0.62 ML) SL with period number up to 35 without plastic relaxation were grown. The corresponding equivalent thickness of the SL is 41 nm which is two times higher than the theoretical critical thickness of the strained InGaAs layer with the same average In composition of 16%. The increase of the critical thickness is partially associated with the formation of the CQDs. Based on a five-stack CQD active region, laser diodes emitting around 1120 nm at room temperature were demonstrated, indicating a high material quality. CQDs with nearly isotropic cross section (20 nmx20 nm dimensions) were formed by depositing a 16-period GaAs (3 ML)/InAs (0.62 ML) SL on an InAs seed dot layer, indicating the feasibility of artificial shape engineering of QDs. Such a structure is expected to be very promising for polarization insensitive device applications, such as semiconductor optical amplifiers

  16. Growth of GaAs-nanowires on GaAs (111)B substrates induced by focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Schott, Ruediger; Reuter, Dirk; Wieck, Andreas D. [Lehrstuhl fuer Angewandte Festkoerperphysik, Ruhr-Universitaet Bochum (Germany)

    2011-07-01

    Semiconductor nanowires are a promising system for applications in the areas of electronics and photonics and also for exploring phenomena at the nanoscale. There are several approaches to grow nanowires at arbitrary sites on the wafer. We report about growing GaAs-nanowires on GaAs(111)B substrates via the vapour-liquid-solid (VLS) mechanism in an ultra-high-vacuum (UHV)-cluster of a molecular beam epitaxy (MBE) and a focused ion beam (FIB) system. Our idea is to implant metal seeds (especially Au) for the nanowire growth by in situ patterning using FIB. Due to the UHV transfer between the FIB and the MBE chamber, no further cleaning step of the substrate surface is necessary. Formations of organized GaAs-nanowires and high aspect ratios are observed.

  17. Growth of pentacene on clean and modified gold surfaces

    International Nuclear Information System (INIS)

    Kaefer, Daniel; Ruppel, Lars; Witte, Gregor

    2007-01-01

    The growth and evolution of pentacene films on gold substrates have been studied. By combining complementary techniques including scanning tunneling microscopy, atomic force microscopy, scanning electron microscopy, near-edge x-ray-absorption fine structure, and x-ray diffraction, the molecular orientation, crystalline structure, and morphology of the organic films were characterized as a function of film thickness and growth parameters (temperature and rate) for different gold substrates ranging from Au(111) single crystals to polycrystalline gold. Moreover, the influence of precoating the various gold substrates with self-assembled monolayers (SAM's) of organothiols with different chemical terminations has been studied. On bare gold the growth of pentacene films is characterized by a pronounced dewetting while the molecular orientation within the resulting crystalline three-dimensional islands depends distinctly on the roughness and cleanliness of the substrate surface. After completion of the first wetting layer where molecules adopt a planar orientation parallel to the surface the molecules continue to grow in a tilted fashion: on Au(111) the long molecular axis is oriented parallel to the surface while on polycrystalline gold it is upstanding oriented and thus parallels the crystalline orientation of pentacene films grown on SiO 2 . On SAM pretreated gold substrates the formation of a wetting layer is effectively suppressed and pentacene grows in a quasi-layer-by-layer fashion with an upstanding orientation leading to rather smooth films. The latter growth mode is observed independently of the chemical termination of the SAM's and the roughness of the gold substrate. Possible reasons for the different growth mechanism as well as consequences for the assignment of spectroscopic data of thin pentacene film are discussed

  18. Oxygen-sensitive regulation and neuroprotective effects of growth hormone-dependent growth factors during early postnatal development.

    Science.gov (United States)

    Jung, Susan; Boie, Gudrun; Doerr, Helmuth-Guenther; Trollmann, Regina

    2017-04-01

    Perinatal hypoxia severely disrupts metabolic and somatotrophic development, as well as cerebral maturational programs. Hypoxia-inducible transcription factors (HIFs) represent the most important endogenous adaptive mechanisms to hypoxia, activating a broad spectrum of growth factors that contribute to cell survival and energy homeostasis. To analyze effects of systemic hypoxia and growth hormone (GH) therapy (rhGH) on HIF-dependent growth factors during early postnatal development, we compared protein (using ELISA) and mRNA (using quantitative RT PCR) levels of growth factors in plasma and brain between normoxic and hypoxic mice (8% O 2 , 6 h; postnatal day 7 , P7) at P14. Exposure to hypoxia led to reduced body weight ( P controls and was associated with significantly reduced plasma levels of mouse GH ( P controls. In addition, rhGH treatment increased cerebral IGF-1, IGF-2, IGFBP-2, and erythropoietin mRNA levels, resulting in significantly reduced apoptotic cell death in the hypoxic, developing mouse brain. These data indicate that rhGH may functionally restore hypoxia-induced systemic dysregulation of the GH/IGF-1 axis and induce upregulation of neuroprotective, HIF-dependent growth factors in the hypoxic developing brain. Copyright © 2017 the American Physiological Society.

  19. A signal-substrate match in the substrate-borne component of a multimodal courtship display

    Directory of Open Access Journals (Sweden)

    Damian O. ELIAS, Andrew C. MASON, Eileen A. HEBETS

    2010-06-01

    Full Text Available The environment can impose strong limitations on the efficacy of signal transmission. In particular, for vibratory communication, the signaling environment is often extremely heterogeneous at very small scales. Nevertheless, natural selection is expected to select for signals well-suited to effective transmission. Here, we test for substrate-dependent signal efficacy in the wolf spider Schizocosa stridulans Stratton 1991. We first explore the transmission characteristics of this important signaling modality by playing recorded substrate-borne signals through three different substrates (leaf litter, pine litter, and red clay and measuring the propagated signal. We found that the substrate-borne signal of S. stridulans attenuates the least on leaf litter, the substrate upon which the species is naturally found. Next, by assessing mating success with artificially muted and non-muted males across different signaling substrates (leaf litter, pine litter, and sand, we explored the relationship between substrate-borne signaling and substrate for mating success. We found that muted males were unsuccessful in obtaining copulations regardless of substrate, while mating success was dependent on the signaling substrate for non-muted males. For non-muted males, more males copulated on leaf litter than any other substrate. Taken together, these results confirm the importance of substrate-borne signaling in S. stridulans and suggest a match between signal properties and signal efficacy – leaf litter transmits the signal most effectively and males are most successful in obtaining copulations on leaf litter [Current Zoology 56 (3: 370–378, 2010].

  20. Time-dependent crack growth in Alloy 718: An interim assessment

    International Nuclear Information System (INIS)

    James, L.A.

    1982-08-01

    Previous results on the time-dependent nature of fatigue-crack propagation (FCP) in Alloy 718 at elevated temperatures were reviewed. Additional experiments were conducted to further define certain aspects of the time-dependent crack growth behavior. it was found that loading waveform influenced FCP behavior, with tensile hold-times producing higher growth rates than continuous cycling at the same frequency. Crack growth rates under hold-time conditions tended to increase with decreasing grain size. Finally, experiments were conducted which tended to cast some doubt upon the ability of linear-elastic fracture mechanics (LEFM) techniques to characterize cracking behavior in this alloy under hold-time conditions. However, since a superior correlating parameter has not yet been proven, it is suggested that LEFM methods be used in the interim with appropriate safety factors to account for the potential errors. 34 refs., 10 figs., 4 tabs

  1. GaN nanorods and LED structures grown on patterned Si and AlN/Si substrates by selective area growth

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shunfeng; Fuendling, Soenke; Soekmen, Uensal; Neumann, Richard; Merzsch, Stephan; Peiner, Erwin; Wehmann, Hergo-Heinrich; Waag, Andreas [Institut fuer Halbleitertechnik, TU Braunschweig (Germany); Hinze, Peter; Weimann, Thomas [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany); Jahn, Uwe; Trampert, Achim; Riechert, Henning [Paul-Drude-Institut fuer Festkoerperelektronik, Berlin (Germany)

    2010-07-15

    GaN nanorods (NRs) show promising applications in high-efficiency light emitting diodes, monolithic white light emission and optical interconnection due to their superior properties. In this work, we performed GaN nanostructures growth by pre-patterning the Si and AlN/Si substrates. The pattern was transferred to Si and AlN/Si substrates by photolithography and inductively-coupled plasma etching. GaN NRs were grown on these templates by metal-organic vapour phase epitaxy (MOVPE). GaN grown on Si pillar templates show a truncated pyramidal structure. Transmission electron microscopy measurements demonstrated clearly that the threading dislocations bend to the side facets of the GaN nanostructures and terminate. GaN growth can also be observed on the sidewalls and bottom surface between the Si pillars. A simple phenomenological model is proposed to explain the GaN nanostructure growth on Si pillar templates. Based on this model, we developed another growth method, by which we grow GaN rod structures on pre-patterned AlN/Si templates. By in-situ nitridation and decreasing of the V/III ratio, we found that GaN rods only grew on the patterned AlN/Si dots with an aspect ratio of about 1.5 - 2. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Size-dependent standard deviation for growth rates: empirical results and theoretical modeling.

    Science.gov (United States)

    Podobnik, Boris; Horvatic, Davor; Pammolli, Fabio; Wang, Fengzhong; Stanley, H Eugene; Grosse, I

    2008-05-01

    We study annual logarithmic growth rates R of various economic variables such as exports, imports, and foreign debt. For each of these variables we find that the distributions of R can be approximated by double exponential (Laplace) distributions in the central parts and power-law distributions in the tails. For each of these variables we further find a power-law dependence of the standard deviation sigma(R) on the average size of the economic variable with a scaling exponent surprisingly close to that found for the gross domestic product (GDP) [Phys. Rev. Lett. 81, 3275 (1998)]. By analyzing annual logarithmic growth rates R of wages of 161 different occupations, we find a power-law dependence of the standard deviation sigma(R) on the average value of the wages with a scaling exponent beta approximately 0.14 close to those found for the growth of exports, imports, debt, and the growth of the GDP. In contrast to these findings, we observe for payroll data collected from 50 states of the USA that the standard deviation sigma(R) of the annual logarithmic growth rate R increases monotonically with the average value of payroll. However, also in this case we observe a power-law dependence of sigma(R) on the average payroll with a scaling exponent beta approximately -0.08 . Based on these observations we propose a stochastic process for multiple cross-correlated variables where for each variable (i) the distribution of logarithmic growth rates decays exponentially in the central part, (ii) the distribution of the logarithmic growth rate decays algebraically in the far tails, and (iii) the standard deviation of the logarithmic growth rate depends algebraically on the average size of the stochastic variable.

  3. Size-dependent standard deviation for growth rates: Empirical results and theoretical modeling

    Science.gov (United States)

    Podobnik, Boris; Horvatic, Davor; Pammolli, Fabio; Wang, Fengzhong; Stanley, H. Eugene; Grosse, I.

    2008-05-01

    We study annual logarithmic growth rates R of various economic variables such as exports, imports, and foreign debt. For each of these variables we find that the distributions of R can be approximated by double exponential (Laplace) distributions in the central parts and power-law distributions in the tails. For each of these variables we further find a power-law dependence of the standard deviation σ(R) on the average size of the economic variable with a scaling exponent surprisingly close to that found for the gross domestic product (GDP) [Phys. Rev. Lett. 81, 3275 (1998)]. By analyzing annual logarithmic growth rates R of wages of 161 different occupations, we find a power-law dependence of the standard deviation σ(R) on the average value of the wages with a scaling exponent β≈0.14 close to those found for the growth of exports, imports, debt, and the growth of the GDP. In contrast to these findings, we observe for payroll data collected from 50 states of the USA that the standard deviation σ(R) of the annual logarithmic growth rate R increases monotonically with the average value of payroll. However, also in this case we observe a power-law dependence of σ(R) on the average payroll with a scaling exponent β≈-0.08 . Based on these observations we propose a stochastic process for multiple cross-correlated variables where for each variable (i) the distribution of logarithmic growth rates decays exponentially in the central part, (ii) the distribution of the logarithmic growth rate decays algebraically in the far tails, and (iii) the standard deviation of the logarithmic growth rate depends algebraically on the average size of the stochastic variable.

  4. Strawberry Production in Soilless Substrate Troughs – Plant Growth

    Science.gov (United States)

    Soilless substrates made of peat moss, coconut coir, perlite, rockwool or bark are pathogen free and they have been used in strawberry production in Europe in troughs or containers. Open field strawberry production in soilless substrate is new to California growers. The objective of this study was t...

  5. Epitaxial growth of YBa sub 2 Cu sub 3 O sub 7 minus. delta. thin films on LiNbO sub 3 substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.G.; Koren, G.; Gupta, A.; Segmuller, A.; Chi, C.C. (IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (US))

    1989-09-18

    {ital In} {ital situ} epitaxial growth of YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} thin films on {ital Y}-cut LiNbO{sub 3} substrates using a standard laser ablation technique is reported. Resistance of the films shows a normal metallic behavior and a very sharp ({lt}1 K) superconducting transition with {ital T}{sub {ital c}}({ital R}=0) of 92 K. High critical current density of {ital J}{sub {ital c}}(77 K)=2{times}10{sup 5} A/cm{sup 2} is observed, which is in accordance with epitaxial growth. Film orientation observed from x-ray diffraction spectra indicates that the {ital c} axis is normal to the substrate plane and the {ital a} axis is at 45{degree} to the (11.0) direction of the hexagonal lattice of the substrate with two domains in mirror image to the (110) plane.

  6. Effect of the substrate temperature on the microstructure and texture of Mg90Zr10 (at.%) films deposited by sputtering

    International Nuclear Information System (INIS)

    Garces, Gerardo; Landais, Stephan; Adeva, Paloma

    2006-01-01

    The microstructure of Mg 90 Zr 10 (at.%) films obtained by sputtering onto copper substrate at three different temperatures (180, 320 and 350 deg. C) has been studied. Films exhibited an intense (0 0 0 1) basal plane fibre texture with the fibre axis parallel to the growth direction. Their microstructure consisted of columnar grains growing from the copper substrate to the free surface which is typical of the zone II of the Movchan and Demchishin zone model developed for PVD materials. Nevertheless, the microstructure of films was dependent on the substrate temperature. The grain diameter increased as the substrate temperature was increased. Moreover, the dislocation density inside the grains as well as that piled-up forming sub-grain boundaries decreased as the deposition temperature increased. Although the film growth in zone II is controlled by surface diffusion the larger surface mobility of the atoms as the substrate temperature increased led to changes in the solubility of zirconium. At low substrate temperatures all zirconium was in solid solution. However, at 350 deg. C the formation of small zirconium particles occurred at grain boundaries

  7. Growth and characterization of AlxGa1-xN LEO substrates

    International Nuclear Information System (INIS)

    Paek, H.S.; Sakong, T.; Lee, S.N.; Son, J.K.; Ryu, H.Y.; Nam, O.H.; Park, Y.

    2006-01-01

    We have studied the effect of Al composition on the properties of Al x Ga 1-x N LEO substrates. Al x Ga 1-x N LEO substrates were prepared on stripe-patterned 2μm-thick undoped GaN/sapphire substrates by metalorganic chemical vapor deposition. To investigate the dislocation and crack density, and the surface morphology of Al x Ga 1-x N LEO substrates with different Al compositions, photoluminescence and optical microscope were used. At a 1% of Al composition, we obtained crack-free and mirror-like substrates having a low dislocation density of ∼1E6cm -2 . We expect considerable reduction in threshold current density to be achieved from blue-violet laser diodes grown on Al x Ga 1-x N LEO substrates because of the increased optical gain, as compared to the laser diodes grown on Al-free LEO substrates

  8. Size- and food-dependent growth drives patterns of competitive dominance along productivity gradients.

    Science.gov (United States)

    Huss, Magnus; Gårdmark, Anna; Van Leeuwen, Anieke; de Roos, André M

    2012-04-01

    Patterns of coexistence among competing species exhibiting size- and food-dependent growth remain largely unexplored. Here we studied mechanisms behind coexistence and shifts in competitive dominance in a size-structured fish guild, representing sprat and herring stocks in the Baltic Sea, using a physiologically structured model of competing populations. The influence of degree of resource overlap and the possibility of undergoing ontogenetic diet shifts were studied as functions of zooplankton and zoobenthos productivity. By imposing different size-dependent mortalities, we could study the outcome of competition under contrasting environmental regimes representing poor and favorable growth conditions. We found that the identity of the dominant species shifted between low and high productivity. Adding a herring-exclusive benthos resource only provided a competitive advantage over sprat when size-dependent mortality was high enough to allow for rapid growth in the zooplankton niche. Hence, the importance of a bottom-up effect of varying productivity was dependent on a strong top-down effect. Although herring could depress shared resources to lower levels than could sprat and also could access an exclusive resource, the smaller size at maturation of sprat allowed it to coexist with herring and, in some cases, exclude it. Our model system, characterized by interactions among size cohorts, allowed for consumer coexistence even at full resource overlap at intermediate productivities when size-dependent mortality was low. Observed shifts in community patterns were crucially dependent on the explicit consideration of size- and food-dependent growth. Accordingly, we argue that accounting for food-dependent growth and size-dependent interactions is necessary to better predict changes in community structure and dynamics following changes in major ecosystem drivers such as resource productivity and mortality, which are fundamental for our ability to manage exploitation of

  9. Growth and characterization of thick cBN coatings on silicon and tool substrates

    International Nuclear Information System (INIS)

    Bewilogua, K.; Keunecke, M.; Weigel, K.; Wiemann, E.

    2004-01-01

    Recently some research groups have achieved progress in the deposition of cubic boron nitride (cBN) coatings with a thickness of 2 μm and more, which is necessary for cutting tool applications. In our laboratory, thick cBN coatings were sputter deposited on silicon substrates using a boron carbide target. Following a boron carbide interlayer (few 100 nm thick), a gradient layer with continuously increasing nitrogen content was prepared. After the cBN nucleation, the process parameters were modified for the cBN film growth to a thickness of more than 2 μm. However, the transfer of this technology to technically relevant substrates, like cemented carbide cutting inserts, required some further process modifications. At first, a titanium interlayer had to be deposited followed by a more than 1-μm-thick boron carbide layer. The next steps were identical to those on silicon substrates. The total coating thickness was in the range of 3 μm with a 0.5- to nearly 1-μm-thick cBN top layer. In spite of the enormous intrinsic stress, both the coatings on silicon and on cemented carbide exhibited a good adhesion and a prolonged stability in humid air. Oxidation experiments revealed a stability of the coating system on cemented carbide up to 700 deg. C and higher. Coated cutting inserts were tested in turning operations with different metallic workpiece materials. The test results will be compared to those of well-established cutting materials, like polycrystalline cubic boron nitride (PCBN) and oxide ceramics, considering the wear of coated tools

  10. Nanosheet controlled epitaxial growth of PbZr0.52Ti0.48O3 thin films on glass substrates

    Science.gov (United States)

    Bayraktar, M.; Chopra, A.; Bijkerk, F.; Rijnders, G.

    2014-09-01

    Integration of PbZr0.52Ti0.48O3 (PZT) films on glass substrates is of high importance for device applications. However, to make use of the superior ferro- and piezoelectric properties of PZT, well-oriented crystalline or epitaxial growth with control of the crystal orientation is a prerequisite. In this article, we report on epitaxial growth of PZT films with (100)- and (110)-orientation achieved by utilizing Ca2Nb3O10 (CNO) and Ti0.87O2 (TO) nanosheets as crystalline buffer layers. Fatigue measurements demonstrated stable ferroelectric properties of these films up to 5 × 109 cycles. (100)-oriented PZT films on CNO nanosheets show a large remnant polarization of 21 μC/cm2 that is the highest remnant polarization value compared to (110)-oriented and polycrystalline films reported in this work. A piezoelectric response of 98 pm/V is observed for (100)-oriented PZT film which is higher than the values reported in the literature on Si substrates.

  11. Growth of Ca{sub 2}MnO{sub 4} Ruddlesden-Popper structured thin films using combinatorial substrate epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lacotte, M.; David, A.; Pravarthana, D.; Prellier, W., E-mail: wilfrid.prellier@ensicaen.fr [Laboratoire CRISMAT, CNRS UMR 6508, ENSICAEN, Université de Basse-Normandie, 6 Bd Maréchal Juin, F-14050 Caen Cedex 4 (France); Grygiel, C. [Laboratoire CIMAP, CEA, CNRS UMR 6252, ENSICAEN, Université de Basse-Normandie, 6 Bd Maréchal Juin, F-14050 Caen Cedex 4 (France); Rohrer, G. S.; Salvador, P. A. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States); Velazquez, M. [CNRS, Université de Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Kloe, R. de [AMETEK B.V, EDAX Application Laboratory, Tilburg (Netherlands)

    2014-12-28

    The local epitaxial growth of pulsed laser deposited Ca{sub 2}MnO{sub 4} films on polycrystalline spark plasma sintered Sr{sub 2}TiO{sub 4} substrates was investigated to determine phase formation and preferred epitaxial orientation relationships (ORs) for isostructural Ruddlesden-Popper (RP) heteroepitaxy, further developing the high-throughput synthetic approach called Combinatorial Substrate Epitaxy (CSE). Both grazing incidence X-ray diffraction and electron backscatter diffraction patterns of the film and substrate were indexable as single-phase RP-structured compounds. The optimal growth temperature (between 650 °C and 800 °C) was found to be 750 °C using the maximum value of the average image quality of the backscattered diffraction patterns. Films grew in a grain-over-grain pattern such that each Ca{sub 2}MnO{sub 4} grain had a single OR with the Sr{sub 2}TiO{sub 4} grain on which it grew. Three primary ORs described 47 out of 49 grain pairs that covered nearly all of RP orientation space. The first OR, found for 20 of the 49, was the expected RP unit-cell over RP unit-cell OR, expressed as [100][001]{sub film}||[100][001]{sub sub}. The other two ORs were essentially rotated from the first by 90°, with one (observed for 17 of 49 pairs) being rotated about the [100] and the other (observed for 10 of 49 pairs) being rotated about the [110] (and not exactly by 90°). These results indicate that only a small number of ORs are needed to describe isostructural RP heteroepitaxy and further demonstrate the potential of CSE in the design and growth of a wide range of complex functional oxides.

  12. Growth and time dependent alignment of KCl crystals in Hemoglobin LB monolayer

    International Nuclear Information System (INIS)

    Mahato, Mrityunjoy; Pal, Prabir; Tah, Bidisha; Kamilya, Tapanendu; Talapatra, G.B.

    2012-01-01

    Nature and organism often use the biomineralization technique to build up various highly regular structures such as bone, teeth, kidney stone etc., and recently this becomes the strategy to design and synthesis of novel biocomposite materials. We report here the controlled crystallization of KCl in Langmuir and Langmuir Blodgett (LB) monolayer of Hemoglobin (Hb) at ambient condition. The nucleation and growth of KCl crystals in Hb monolayer has temporal and KCl concentration dependency. The growth of KCl crystals in LB film of Hb has distinct behavior in the alignment of crystals from linear to fractal like structures depending on growth time. The crystallographic identity of the biomineralized KCl crystal is confirmed from HR-TEM, XRD, and from powder diffraction simulation. Our results substantiated that the template of Langmuir monolayer of proteins plays a crucial role in biomineralization as well as in designing and synthesizing of novel biocomposite materials. Highlights: ► Biomineralization of KCl crystal has been studied in Hemoglobin LB film. ► KCl crystal growth is time and concentration of KCl dependent. ► The alignment of KCl crystal growth is fractal nature with time. ► The unfolding of Hb and evaporation factor has some role in crystallization and fractal growth.

  13. Magnetophotoluminescence study of the influence of substrate orientation and growth interruption on the electronic properties of InAs/GaAs quantum dots

    International Nuclear Information System (INIS)

    Godefroo, S.; Maes, J.; Hayne, M.; Moshchalkov, V.V.; Henini, M.; Pulizzi, F.; Patane, A.; Eaves, L.

    2004-01-01

    We have used photoluminescence in pulsed (≤50 T) and dc (≤12 T) magnetic fields to investigate the influence of substrate orientation and growth interruption (GI) on the electronic properties of InAs/GaAs quantum dots, grown by molecular beam epitaxy at 480 deg. C. Dot formation is very efficient on the (100) substrate: electronic confinement is already strong without GI and no significant change in confinement is observed with GI. On the contrary, for the (311)B substrate strong confinement of the charges only occurs after a GI is introduced. When longer GIs are applied the dots become higher

  14. Effects of bamboo substrate and supplemental feeding on growth and production of hybrid red tilapia fingerlings (Oreochromis mossambicusxOrechromis niloticus)

    NARCIS (Netherlands)

    Keshavanath, P.; Gangadhar, B.; Ramesh, T.J.; Dam, van A.A.; Beveridge, M.C.M.; Verdegem, M.C.J.

    2004-01-01

    Periphyton growing on artificial substrates can increase the production of herbivorous fish in aquaculture ponds. Periphyton may be an alternative or a complement for supplemental feed in fingerling production. Growth and production of hybrid red tilapia (Oreochromis mossambicus x Oreochromis

  15. Selective area growth of GaN rod structures by MOVPE: Dependence on growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shunfeng; Fuendling, Soenke; Wang, Xue; Erenburg, Milena; Al-Suleiman, Mohamed Aid Mansur; Wei, Jiandong; Wehmann, Hergo-Heinrich; Waag, Andreas [Institut fuer Halbleitertechnik, TU Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Bergbauer, Werner [Institut fuer Halbleitertechnik, TU Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Osram Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany); Strassburg, Martin [Osram Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany)

    2011-07-15

    Selective area growth of GaN nanorods by metalorganic vapor phase epitaxy is highly demanding for novel applications in nano-optoelectronic and nanophotonics. Recently, we report the successful selective area growth of GaN nanorods in a continuous-flow mode. In this work, as examples, we show the morphology dependence of GaN rods with {mu}m or sub-{mu}m in diameters on growth conditions. Firstly, we found that the nitridation time is critical for the growth, with an optimum from 90 to 180 seconds. This leads to more homogeneous N-polar GaN rods growth. A higher temperature during GaN rod growth tends to increase the aspect ratio of the GaN rods. This is due to the enhanced surface diffusion of growth species. The V/III ratio is also an important parameter for the GaN rod growth. Its increase causes reduction of the aspect ratio of GaN rods, which could be explained by the relatively lower growth rate on (000-1) N-polar top surface than it on {l_brace}1-100{r_brace} m-planes by supplying more NH{sub 3} (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Surface morphology of polyethylene glycol films produced by matrix-assisted pulsed laser evaporation (MAPLE): Dependence on substrate temperature

    DEFF Research Database (Denmark)

    Rodrigo, K.; Czuba, P.; Toftmann, B.

    2006-01-01

    The dependence of the surface morphology on the substrate temperature during film deposition was investigated for polyethylene glycol (PEG) films by matrix-assisted pulsed laser evaporation (MAPLE). The surface structure was studied with a combined technique of optical imaging and AFM measurements...

  17. CVD growth of large-area and high-quality HfS2 nanoforest on diverse substrates

    Science.gov (United States)

    Zheng, Binjie; Wang, Zegao; Qi, Fei; Wang, Xinqiang; Yu, Bo; Zhang, Wanli; Chen, Yuanfu

    2018-03-01

    Two-dimensional layered transition metal dichalcogenides (TMDs) have attracted burgeoning attention due to their various properties and wide potential applications. As a new TMD, hafnium disulfide (HfS2) is theoretically predicted to have better electrical performance than widely studied MoS2. The experimental researches also confirmed the extraordinary feature in electronics and optoelectronics. However, the maximal device performance may not be achieved due to its own limitation of planar structure and challenge of transfer without contamination. Here, through the chemical vapor deposition (CVD) technique, inch-size HfS2 nanoforest has been directly grown on diverse objective substrates covering insulating, semiconducting and conducting substrates. This direct CVD growth without conventional transfer process avoids contamination and degradation in quality, suggesting its promising and wide applications in high-quality and multifarious devices. It is noted that all the HfS2 nanoforests grown on diverse substrates are constructed with vertically aligned few-layered HfS2 nanosheets with high crystalline quality and edge orientation. Moreover, due to its unique structure, the HfS2 nanoforest owns abundant exposed edge sites and large active surface area, which is essential to apply in high-performance catalyst, sensor, and energy storage or field emitter.

  18. Temperature dependence of critical current and transport current losses of 4 mm YBCO coated conductors manufactured using nonmagnetic substrate

    Science.gov (United States)

    Kvitkovic, J.; Hatwar, R.; Pamidi, S. V.; Fleshler, S.; Thieme, C.

    2015-12-01

    The temperature dependence of the critical current and AC losses were measured on American Superconductor Corporation's (AMSC) second generation high temperature superconducting (2G HTS) wire produced by Rolling Assisted Biaxially Textured Substrate (RABiTS) and Metal Organic Deposition (MOD) process. Wires manufactured with two types of substrates were characterized. The magnetic substrate with composition Ni5a%W exhibits a magnetic signature and has non-negligible AC losses in AC power applications. A new nonmagnetic substrate with an alloy composition Ni9a%W has been developed by AMSC to address the AC losses in 2G HTS. The data presented show that the performance of the new conductor is identical to the conductor with magnetic substrate in terms of critical current density. The data on AC losses demonstrate the absence of ferromagnetic loss component in the new conductor and significantly reduced AC losses at low to moderate values of I/Ic. The reduced losses will translate into reduced capital costs and lower operating costs of superconducting electrical devices for AC applications.

  19. Oil palm waste and synthetic zeolite: an alternative soil-less growth substrate for lettuce production as a waste management practice

    Energy Technology Data Exchange (ETDEWEB)

    Jayasinghe, G.Y.; Tokashiki, Y.; Kitou, M.; Kinjo, K. [Kagoshima University, Kagoshima (Japan). United Graduate School of Agricultural Science

    2008-12-15

    A study was conducted to assess the characteristics and the prospective utilization of oil palm waste (OP) and synthetic zeolite (SZ) developed by coal fly ash, as an alternative substrate to peat and commercial perlite for lettuce (Lactuca sativa L.) production. The SZ, OP, sphagnum peat (PE), perlite (PL) and two different SZ-OP mixtures (v/v) at the ratio of 1 : 3 and 1 : 10 were utilized as the substrates under this study. The substrates formulated by mixing SZ with OP at the ratio of 1 : 3 and 1 : 10 showed improved substrate physical and chemical properties such as air space, bulk density, particle density, water-holding capacity, pH and electrical conductivity (EC), which were in the ideal substrate range when compared with PL. Furthermore, the water-holding capacity of the substrate having a 1 : 10 mixing ratio of SZ with OP was higher than that of the PL by 28.23%, whereas the bulk density was lower than that of PL by 35%. A greenhouse experiment was carried out to assess the influence of the substrates on the growth and development of lettuce. The results of the study suggest that the SZ-OP-based substrates and OP can be successfully utilized as alternatives to the commercial perlite and to substitute the conventional peat substrate for lettuce cultivation. In addition, this can be proposed as an alternative waste management practice.

  20. A simple technique for direct growth of Au into a nanoporous alumina layer on conductive glass as a reusable SERS substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jiajie [Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing 210094 (China); Shen, Muzhong [School of Engineering, AnHui Agricultural University, Hefei 230036 (China); Liu, Siyu; Li, Feng [Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing 210094 (China); Sun, Dongping, E-mail: sundpe301@163.com [School of Engineering, AnHui Agricultural University, Hefei 230036 (China); Wang, Tianhe, E-mail: thwang56@126.com [Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2017-06-01

    Graphical abstract: A simple technique for direct growth of gold nanoparticles (GNPs) into a nanostructured porous alumina layer on conductive glass slide (PAOCG). Gold was uniformly distributed in porous alumina layer. Au/PAOCG can serve as a portable, durable and reusable SERS substrate. - Highlights: • A simple method of producing nanoporous alumina layer on conductive glasses. • A facile technique for direct growth of gold nanoparticles (GNPs) into PAOCG. • It presents a general protocol for preparation of (MNPs) on conductive glasses. • Au/PAOCG exhibits high SERS sensitivity and excellent reusability. - Abstract: In this paper, we describe a simple technique for direct growth of gold nanoparticles (GNPs) into a nanostructured porous alumina layer on conductive glass slide (PAOCG). PAOCG was attached firmly with a small piece of steel and was then immersed in a HAuCl{sub 4} solution. Electro-induced electrons from steel were employed to reduce AuCl{sub 4}{sup −} on PAOCG. The galvanic replacement reaction (GRR) was adopted as the fundamental mechanism for reducing metal precursors. This mechanism was further studied by open circuit potential-time (OCP-t) experiment and the result demonstrated that steel induced the continuous proceeding of this reaction. This strategy presents a simple and general protocol for preparation of metal nanoparticles (MNPs) on conductive glass substrates. The SERS properties of Au/PAOCG were investigated using aqueous crystal violet (CV) and 4-mercaptopyridine (4-Mpy) as probe molecules. Au/PAOCG allowed as low as 10{sup −9} M CV and 10{sup −8} M 4-Mpy to be detected. The reusability of this substrate was achieved by measuring the SERS spectrum of the probe molecules followed with a 400 °C heat treatment for 10 min to remove the residuals. This substrate could be reused for at least ten cycles without any significantly reduced SERS performance. Therefore, this surface can serve as a portable, durable and reusable SERS

  1. Effects of Various Substrates and Foliar Application of Humic Acid ‎on Growth and some Qualitative and Quantitative Characteristics of Tomato (Lycopersicon esculentum Seedling

    Directory of Open Access Journals (Sweden)

    Nasibeh Pourghasemian

    2018-03-01

    Full Text Available Introduction: Successful greenhouse and nursery production of plants is largely dependent on the chemical and physical properties of the growing substrate. An ideal potting substrate should be free of weeds and diseases, heavy enough to avoid frequent tipping over and yet light enough to facilitate handling and shipping. The substrate should also be well drained and yet retain sufficient water to reduce the frequency of watering. Other parameters to consider include cost, availability, consistency between batches and stability in the media over time. Greenhouse crops in general, have higher nutrient demands than field grown crops. Therefore, in order to optimize production it is essential to focus on the growing substrate and fertilization. The physical properties of the growing medium are important parameters for successful plant growth, as these are related to the ability to adequately store and supply air and water to plants. Humic acid is a principal component of humic substances, which are the major organic constituents of soil (humus, peat and coal. It is also a major organic constituent of many upland streams, dystrophic lakes, and ocean water. It is produced by biodegradation of dead organic matter. It is not a single acid, but it is a complex mixture of many different acids containing carboxyl and phenolate groups so that the mixture behaves functionally as a dibasic acid or occasionally as a tribasic acid. Humic acids can form complexes with ions that are commonly found in the environment creating humic colloids. Humic and fulvic acids (fulvic acids are humic acids with lower molecular weight and higher oxygen content than other humic acids are commonly used as a soil supplement in agriculture. Humic Plus contains humic acid, fulvic acid, macro micro nutrients and proprietary constituents essential for plant growth. Organic matter soil amendments have been known by farmers to be beneficial to plant growth for longer than recorded

  2. Aerobic Degradation of Trichloroethylene by Co-Metabolism Using Phenol and Gasoline as Growth Substrates

    Directory of Open Access Journals (Sweden)

    Yan Li

    2014-05-01

    Full Text Available Trichloroethylene (TCE is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26 × 107 cell/mL, initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 μg (TCE/mg (biomass and 5.1 μg (TCE/mg (phenol, respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%. When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively. This study provides a promising approach for the removal of combined pollution of TCE and gasoline.

  3. Regulation of AKT phosphorylation at Ser473 and Thr308 by endoplasmic reticulum stress modulates substrate specificity in a severity dependent manner.

    Directory of Open Access Journals (Sweden)

    Hong Wa Yung

    2011-03-01

    Full Text Available Endoplasmic reticulum (ER stress is a common factor in the pathophysiology of diverse human diseases that are characterised by contrasting cellular behaviours, from proliferation in cancer to apoptosis in neurodegenerative disorders. Coincidently, dysregulation of AKT/PKB activity, which is the central regulator of cell growth, proliferation and survival, is often associated with the same diseases. Here, we demonstrate that ER stress modulates AKT substrate specificity in a severity-dependent manner, as shown by phospho-specific antibodies against known AKT targets. ER stress also reduces both total and phosphorylated AKT in a severity-dependent manner, without affecting activity of the upstream kinase PDK1. Normalisation to total AKT revealed that under ER stress phosphorylation of Thr308 is suppressed while that of Ser473 is increased. ER stress induces GRP78, and siRNA-mediated knock-down of GRP78 enhances phosphorylation at Ser473 by 3.6 fold, but not at Thr308. Substrate specificity is again altered. An in-situ proximity ligation assay revealed a physical interaction between GRP78 and AKT at the plasma membrane of cells following induction of ER stress. Staining was weak in cells with normal nuclear morphology but stronger in those displaying rounded, condensed nuclei. Co-immunoprecipitation of GRP78 and P-AKT(Ser473 confirmed the immuno-complex consists of non-phosphorylated AKT (Ser473 and Thr308. The interaction is likely specific as AKT did not bind to all molecular chaperones, and GRP78 did not bind to p70 S6 kinase. These findings provide one mechanistic explanation for how ER stress contributes to human pathologies demonstrating contrasting cell fates via modulation of AKT signalling.

  4. Regulation of AKT Phosphorylation at Ser473 and Thr308 by Endoplasmic Reticulum Stress Modulates Substrate Specificity in a Severity Dependent Manner

    Science.gov (United States)

    Yung, Hong Wa

    2011-01-01

    Endoplasmic reticulum (ER) stress is a common factor in the pathophysiology of diverse human diseases that are characterised by contrasting cellular behaviours, from proliferation in cancer to apoptosis in neurodegenerative disorders. Coincidently, dysregulation of AKT/PKB activity, which is the central regulator of cell growth, proliferation and survival, is often associated with the same diseases. Here, we demonstrate that ER stress modulates AKT substrate specificity in a severity-dependent manner, as shown by phospho-specific antibodies against known AKT targets. ER stress also reduces both total and phosphorylated AKT in a severity-dependent manner, without affecting activity of the upstream kinase PDK1. Normalisation to total AKT revealed that under ER stress phosphorylation of Thr308 is suppressed while that of Ser473 is increased. ER stress induces GRP78, and siRNA-mediated knock-down of GRP78 enhances phosphorylation at Ser473 by 3.6 fold, but not at Thr308. Substrate specificity is again altered. An in-situ proximity ligation assay revealed a physical interaction between GRP78 and AKT at the plasma membrane of cells following induction of ER stress. Staining was weak in cells with normal nuclear morphology but stronger in those displaying rounded, condensed nuclei. Co-immunoprecipitation of GRP78 and P-AKT(Ser473) confirmed the immuno-complex consists of non-phosphorylated AKT (Ser473 and Thr308). The interaction is likely specific as AKT did not bind to all molecular chaperones, and GRP78 did not bind to p70 S6 kinase. These findings provide one mechanistic explanation for how ER stress contributes to human pathologies demonstrating contrasting cell fates via modulation of AKT signalling. PMID:21445305

  5. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN-depleted head and neck cancer tumor cells.

    Science.gov (United States)

    Liu, Zhiyong; Hartman, Yolanda E; Warram, Jason M; Knowles, Joseph A; Sweeny, Larissa; Zhou, Tong; Rosenthal, Eben L

    2011-08-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were cocultured with fibroblasts or inoculated with fibroblasts into severe combined immunodeficient mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Coculture experiments showed fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN-silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN-silenced cells compared with control vector-transfected cells, whereas inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast coculture, suggesting the importance of FGFR2 signaling in fibroblast-mediated tumor growth. Analysis of xenografted tumors revealed that EMMPRIN-silenced tumors had a larger stromal compartment compared with control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast-independent tumor growth.

  6. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN depleted head and neck cancer tumor cells

    Science.gov (United States)

    Liu, Zhiyong; Hartman, Yolanda E.; Warram, Jason M.; Knowles, Joseph A.; Sweeny, Larrisa; Zhou, Tong; Rosenthal, Eben L.

    2011-01-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were co-cultured with fibroblasts or inoculated with fibroblasts into SCID mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Co-culture experiments demonstrated fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN silenced cells compared to control vector transfected cells, while inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast co-culture, suggesting the importance of FGFR2 signaling in fibroblast mediated tumor growth. Analysis of xenografted tumors revealed EMMPRIN silenced tumors had a larger stromal compartment compared to control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast independent tumor growth. PMID:21665938

  7. In situ growth of Co nanofibers in In2O3-SnO2 matrix during sputtering deposition

    International Nuclear Information System (INIS)

    Echigoya, Jun-ichi; Sano, Junichi

    2006-01-01

    Co-sputtering onto (001) cubic zirconia from a target of indium tin oxide (ITO) partially covered by cobalt (Co) was carried out at substrate temperatures of 470-770 K in order to investigate the growth of Co nanofibers. During film growth, Co forms fibers in the growth direction in the single-crystalline ITO matrix. The cross section of the Co fibers, the size of which depends on the substrate temperature, was a rectangle with an edge 1-5 nm in length. The edge length of the Co fiber increased with the increase of the substrate temperature. The present method is attractive for application to produce magnetic recording media

  8. Time dependent fracture growth in intact crystalline rock: new laboratory procedures

    International Nuclear Information System (INIS)

    Backers, T.; Stephansson, O.

    2008-01-01

    Short term laboratory tests to determine the strength of rock material are commonly used to assess stability of rock excavations. However, loading the rock below its short term strength may lead to delayed failure due to slow stable fracture growth. This time-dependent phenomenon is called subcritical fracture growth. A fracture mechanics based approach is applied in this study to determine the parameters describing subcritical fracture growth under Mode Ⅰ (tensile) and Mode Ⅱ (in-plane shear) loading in terms of the stress intensity factors of saturated granodiorite from the) Aespoe HRL. A statistical method is applied to data from three-point bending (tension) and Punch-Through Shear with Confining Pressure, PTS/CP, (shear) experiments. One population of each set-up was subjected to rapid loading tests yielding a strength probability distribution. A second population was loaded up to a certain fraction of the statistical percentage for failure and the time-to-failure was determined. From these two populations the subcritical fracture growth parameters were determined successfully. Earlier studies demonstrated subcritical fracture growth under Mode I loading conditions, but this study shows that under a Mode Ⅱ load time-dependent fracture growth exists as well. (authors)

  9. Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate

    International Nuclear Information System (INIS)

    Ma, Y J; Zhong, Z; Yang, X J; Fan, Y L; Jiang, Z M

    2013-01-01

    We investigated the molecular beam epitaxy growth of three-dimensional (3D) Ge quantum dot crystals (QDCs) on periodically pit-patterned Si substrates. A series of factors influencing the growth of QDCs were investigated in detail and the optimized growth conditions were found. The growth of the Si buffer layer and the first quantum dot (QD) layer play a key role in the growth of QDCs. The pit facet inclination angle decreased with increasing buffer layer thickness, and its optimized value was found to be around 21°, ensuring that all the QDs in the first layer nucleate within the pits. A large Ge deposition amount in the first QD layer favors strain build-up by QDs, size uniformity of QDs and hence periodicity of the strain distribution; a thin Si spacer layer favors strain correlation along the growth direction; both effects contribute to the vertical ordering of the QDCs. Results obtained by atomic force microscopy and cross-sectional transmission electron microscopy showed that 3D ordering was achieved in the Ge QDCs with the highest ever areal dot density of 1.2 × 10 10 cm −2 , and that the lateral and the vertical interdot spacing were ∼10 and ∼2.5 nm, respectively. (paper)

  10. Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate.

    Science.gov (United States)

    Ma, Y J; Zhong, Z; Yang, X J; Fan, Y L; Jiang, Z M

    2013-01-11

    We investigated the molecular beam epitaxy growth of three-dimensional (3D) Ge quantum dot crystals (QDCs) on periodically pit-patterned Si substrates. A series of factors influencing the growth of QDCs were investigated in detail and the optimized growth conditions were found. The growth of the Si buffer layer and the first quantum dot (QD) layer play a key role in the growth of QDCs. The pit facet inclination angle decreased with increasing buffer layer thickness, and its optimized value was found to be around 21°, ensuring that all the QDs in the first layer nucleate within the pits. A large Ge deposition amount in the first QD layer favors strain build-up by QDs, size uniformity of QDs and hence periodicity of the strain distribution; a thin Si spacer layer favors strain correlation along the growth direction; both effects contribute to the vertical ordering of the QDCs. Results obtained by atomic force microscopy and cross-sectional transmission electron microscopy showed that 3D ordering was achieved in the Ge QDCs with the highest ever areal dot density of 1.2 × 10(10) cm(-2), and that the lateral and the vertical interdot spacing were ~10 and ~2.5 nm, respectively.

  11. Epitaxial growth of cubic Gd{sub 2}O{sub 3} thin films on Ge substrates

    Energy Technology Data Exchange (ETDEWEB)

    Molle, A; Wiemer, C; Bhuiyan, M D N K; Tallarida, G; Fanciulli, M [CNR-INFM, Laboratorio Nazionale MDM, via C. Olivetti 2, I-20041 Agrate Brianza (Italy)], E-mail: alessandro.molle@mdm.infm.it

    2008-03-15

    Gd{sub 2}O{sub 3} thin films were grown on Ge (001) substrates by molecular beam epitaxy. The epitaxial character of the film is demonstrated by electron diffraction during the growth. The structural characterization of the films shows that the Gd{sub 2}O{sub 3} forms a bixbyite polymorph with a (110) out-of-plane orientation. The formation of bixbyite structured Gd{sub 2}O{sub 3} is discussed in terms of the atomic arrangement of the oxide planes on the Ge(001) surface.

  12. Vitamin B12–dependent taurine synthesis regulates growth and bone mass

    Science.gov (United States)

    Roman-Garcia, Pablo; Quiros-Gonzalez, Isabel; Mottram, Lynda; Lieben, Liesbet; Sharan, Kunal; Wangwiwatsin, Arporn; Tubio, Jose; Lewis, Kirsty; Wilkinson, Debbie; Santhanam, Balaji; Sarper, Nazan; Clare, Simon; Vassiliou, George S.; Velagapudi, Vidya R.; Dougan, Gordon; Yadav, Vijay K.

    2014-01-01

    Both maternal and offspring-derived factors contribute to lifelong growth and bone mass accrual, although the specific role of maternal deficiencies in the growth and bone mass of offspring is poorly understood. In the present study, we have shown that vitamin B12 (B12) deficiency in a murine genetic model results in severe postweaning growth retardation and osteoporosis, and the severity and time of onset of this phenotype in the offspring depends on the maternal genotype. Using integrated physiological and metabolomic analysis, we determined that B12 deficiency in the offspring decreases liver taurine production and associates with abrogation of a growth hormone/insulin-like growth factor 1 (GH/IGF1) axis. Taurine increased GH-dependent IGF1 synthesis in the liver, which subsequently enhanced osteoblast function, and in B12-deficient offspring, oral administration of taurine rescued their growth retardation and osteoporosis phenotypes. These results identify B12 as an essential vitamin that positively regulates postweaning growth and bone formation through taurine synthesis and suggests potential therapies to increase bone mass. PMID:24911144

  13. Effect of substrate material on the growth and field emission characteristics of large-area carbon nanotube forests

    Energy Technology Data Exchange (ETDEWEB)

    Ummethala, Raghunandan; Täschner, Christine; Leonhardt, Albrecht; Büchner, Bernd [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Wenger, Daniela; Tedde, Sandro F. [Siemens Healthcare GmbH, Technology Centre, Guenther-Scharowsky-Strasse 1, 91058 Erlangen (Germany); Eckert, Jürgen [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstrasse 12, A-8700 Leoben (Austria); Department Materials Physics, Montanuniversität Leoben, Jahnstraße 12, A-8700 Leoben (Austria)

    2016-01-28

    Carbon nanotubes (CNTs) are a promising replacement for tungsten filaments as electron emitters in conventional x-ray sources, owing to their higher aspect ratio, superior mechanical stability, chemical inertness, and high electrical and thermal conductivities. Conditions for realizing the best emission behavior from CNTs have been formulated over the last few years. In this paper, we report the relatively less-investigated factor, namely, the influence of the nature of substrate material on the growth as well as field emission characteristics of large-area multiwalled CNTs for their practical application in medical x-ray sources. We compare the morphology of CNTs on a variety of substrates such as stainless steel, copper, molybdenum, graphite, few-layer graphene, and carbon nanowalls grown by thermal chemical vapor deposition following a simple drop-coating of catalyst. We find that CNTs grown on stainless steel and graphite show the best combination of emission characteristics under pulsed operation mode. These studies are helpful in selecting the optimum substrate material for field emission applications. Ex situ studies on field emission degradation of CNTs are presented towards the end.

  14. Effect of substrate material on the growth and field emission characteristics of large-area carbon nanotube forests

    Science.gov (United States)

    Ummethala, Raghunandan; Wenger, Daniela; Tedde, Sandro F.; Täschner, Christine; Leonhardt, Albrecht; Büchner, Bernd; Eckert, Jürgen

    2016-01-01

    Carbon nanotubes (CNTs) are a promising replacement for tungsten filaments as electron emitters in conventional x-ray sources, owing to their higher aspect ratio, superior mechanical stability, chemical inertness, and high electrical and thermal conductivities. Conditions for realizing the best emission behavior from CNTs have been formulated over the last few years. In this paper, we report the relatively less-investigated factor, namely, the influence of the nature of substrate material on the growth as well as field emission characteristics of large-area multiwalled CNTs for their practical application in medical x-ray sources. We compare the morphology of CNTs on a variety of substrates such as stainless steel, copper, molybdenum, graphite, few-layer graphene, and carbon nanowalls grown by thermal chemical vapor deposition following a simple drop-coating of catalyst. We find that CNTs grown on stainless steel and graphite show the best combination of emission characteristics under pulsed operation mode. These studies are helpful in selecting the optimum substrate material for field emission applications. Ex situ studies on field emission degradation of CNTs are presented towards the end.

  15. Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    Full Text Available Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy.This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa, cells on soft substrates (150-300 Pa exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins and glycolysis (e.g., phosphofructokinase-1, whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway.The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical

  16. Substrate adhesion regulates sealing zone architecture and dynamics in cultured osteoclasts.

    Directory of Open Access Journals (Sweden)

    Fabian Anderegg

    Full Text Available The bone-degrading activity of osteoclasts depends on the formation of a cytoskeletal-adhesive super-structure known as the sealing zone (SZ. The SZ is a dynamic structure, consisting of a condensed array of podosomes, the elementary adhesion-mediating structures of osteoclasts, interconnected by F-actin filaments. The molecular composition and structure of the SZ were extensively investigated, yet despite its major importance for bone formation and remodelling, the mechanisms underlying its assembly and dynamics are still poorly understood. Here we determine the relations between matrix adhesiveness and the formation, stability and expansion of the SZ. By growing differentiated osteoclasts on micro-patterned glass substrates, where adhesive areas are separated by non-adhesive PLL-g-PEG barriers, we show that SZ growth and fusion strictly depend on the continuity of substrate adhesiveness, at the micrometer scale. We present a possible model for the role of mechanical forces in SZ formation and reorganization, inspired by the current data.

  17. Concentration dependence of biotransformation in fish liver S9: Optimizing substrate concentrations to estimate hepatic clearance for bioaccumulation assessment.

    Science.gov (United States)

    Lo, Justin C; Allard, Gayatri N; Otton, S Victoria; Campbell, David A; Gobas, Frank A P C

    2015-12-01

    In vitro bioassays to estimate biotransformation rate constants of contaminants in fish are currently being investigated to improve bioaccumulation assessments of hydrophobic contaminants. The present study investigates the relationship between chemical substrate concentration and in vitro biotransformation rate of 4 environmental contaminants (9-methylanthracene, pyrene, chrysene, and benzo[a]pyrene) in rainbow trout (Oncorhynchus mykiss) liver S9 fractions and methods to determine maximum first-order biotransformation rate constants. Substrate depletion experiments using a series of initial substrate concentrations showed that in vitro biotransformation rates exhibit strong concentration dependence, consistent with a Michaelis-Menten kinetic model. The results indicate that depletion rate constants measured at initial substrate concentrations of 1 μM (a current convention) could underestimate the in vitro biotransformation potential and may cause bioconcentration factors to be overestimated if in vitro biotransformation rates are used to assess bioconcentration factors in fish. Depletion rate constants measured using thin-film sorbent dosing experiments were not statistically different from the maximum depletion rate constants derived using a series of solvent delivery-based depletion experiments for 3 of the 4 test chemicals. Multiple solvent delivery-based depletion experiments at a range of initial concentrations are recommended for determining the concentration dependence of in vitro biotransformation rates in fish liver fractions, whereas a single sorbent phase dosing experiment may be able to provide reasonable approximations of maximum depletion rates of very hydrophobic substances. © 2015 SETAC.

  18. Wavelength dependence of the linear growth rate of the Es layer instability

    Directory of Open Access Journals (Sweden)

    R. B. Cosgrove

    2007-06-01

    Full Text Available It has recently been shown, by computation of the linear growth rate, that midlatitude sporadic-E (Es layers are subject to a large scale electrodynamic instability. This instability is a logical candidate to explain certain frontal structuring events, and polarization electric fields, which have been observed in Es layers by ionosondes, by coherent scatter radars, and by rockets. However, the original growth rate derivation assumed an infinitely thin Es layer, and therefore did not address the short wavelength cutoff. Also, the same derivation ignored the effects of F region loading, which is a significant wavelength dependent effect. Herein is given a generalized derivation that remedies both these short comings, and thereby allows a computation of the wavelength dependence of the linear growth rate, as well as computations of various threshold conditions. The wavelength dependence of the linear growth rate is compared with observed periodicities, and the role of the zeroth order meridional wind is explored. A three-dimensional paper model is used to explain the instability geometry, which has been defined formally in previous works.

  19. Plantago lanceolata growth and Cr uptake after mycorrhizal inoculation in a Cr amended substrate

    Directory of Open Access Journals (Sweden)

    Amaia Nogales

    2012-03-01

    Full Text Available Arbuscular mycorrhizal fungi from two chromium contaminated sites, one with 275 mg kg-1 of Cr (zone A and the other with 550 mg kg-1 Cr (zone B, were multiplied and tentatively identified. The effect of both fungal consortia on Plantago lanceolata plant growth in a substrate amended with 200 mg kg-1 of Cr and with 400 mg kg-1 Cr was assessed and compared with the growth of plants inoculated with Glomus intraradices BEG72. Only the plants inoculated with G. intraradices BEG72 and with the fungal consortia obtained from the area with a high Cr contamination (zone B grew in the soil with 400 mg kg-1 of Cr. The consortia of fungi from zone B, decreased the plant’s uptake/translocation of the heavy metal compared with G. intraradices BEG72. These results underscore the differential effect of AM fungi in conferring bioprotection in Cr contaminated soils.

  20. Plasma-electric field controlled growth of oriented graphene for energy storage applications

    Science.gov (United States)

    Ghosh, Subrata; Polaki, S. R.; Kamruddin, M.; Jeong, Sang Mun; (Ken Ostrikov, Kostya

    2018-04-01

    It is well known that graphene grows as flat sheets aligned with the growth substrate. Oriented graphene structures typically normal to the substrate have recently attracted major attention. Most often, the normal orientation is achieved in a plasma-assisted growth and is believed to be due to the plasma-induced in-built electric field, which is usually oriented normal to the substrate. This work focuses on the effect of an in-built electric field on the growth direction, morphology, interconnectedness, structural properties and also the supercapacitor performance of various configurations of graphene structures and reveals the unique dependence of these features on the electric field orientation. It is shown that tilting of growth substrates from parallel to the normal direction with respect to the direction of in-built plasma electric field leads to the morphological transitions from horizontal graphene layers, to oriented individual graphene sheets and then interconnected 3D networks of oriented graphene sheets. The revealed transition of the growth orientation leads to a change in structural properties, wetting nature, types of defect in graphitic structures and also affects their charge storage capacity when used as supercapacitor electrodes. This simple and versatile approach opens new opportunities for the production of potentially large batches of differently oriented and structured graphene sheets in one production run.

  1. Growth specificity of vertical ZnO nanorods on patterned seeded substrates through integrated chemical process

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. Suresh [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Maniam, S.M. [Centre for Quantum Technologies, National University of Singapore (Singapore); Sundaramurthy, J. [Department of Chemical and Biomolecular Engineering, National University of Singapore (NUS) (Singapore); Arokiaraj, J. [3M R and D Center (Singapore); Mangalaraj, D., E-mail: dmraj800@yahoo.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India); Rajarathnam, D. [CERAR, University of South Australia, Mawson Lakes, SA-5095 (Australia); Srinivasan, M.P. [Department of Chemical and Biomolecular Engineering, National University of Singapore (NUS) (Singapore); Jian, L.K. [Singapore Synchrotron Light Source (SSLS), National University of Singapore (NUS) (Singapore)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Simple integrated chemical process was adopted for specific ZnO nanorod growth. Black-Right-Pointing-Pointer Size and orientation of nanorods are well controlled by optimum reaction time and temperature. Black-Right-Pointing-Pointer Different site-selective ZnO nanorod growths are demonstrated. - Abstract: A simple and cost effective method has been employed for the random growth and oriented ZnO nanorod arrays over as-prepared and patterned seeded glass substrates by low temperature two step growth process and growth specificity by direct laser writing (DLW) process. Scanning electron microscopy (SEM) images and X-ray diffraction analysis confirm the growth of vertical ZnO nanorods with perfect (0 0 2) orientation along c-axis which is in conjunction with optimizing the parameters at different reaction times and temperatures. Transmission electron microscopy (TEM) images show the formation of vertical ZnO nanorods with diameter and length of {approx}120 nm and {approx}400 nm respectively. Photoluminescence (PL) spectroscopic studies show a narrow emission at {approx}385 nm and a broad visible emission from 450 to 600 nm. Further, site-selective ZnO nanorod growth is demonstrated for its high degree of control over size, orientation, uniformity, and periodicity on a positive photoresist ZnO seed layer by simple geometrical (line, circle and ring) patterns of 10 {mu}m and 5 {mu}m dimensions. The demonstrated control over size, orientation and periodicity of ZnO nanorods process opens up an opportunity to develop multifunctional properties which promises their potential applications in sensor, piezoelectric, and optoelectronic devices.

  2. The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth

    Directory of Open Access Journals (Sweden)

    Rakotoarivonina Harivony

    2012-12-01

    Full Text Available Abstract Background Thermobacillus xylanilyticus is a thermophilic and highly xylanolytic bacterium. It produces robust and stable enzymes, including glycoside hydrolases and esterases, which are of special interest for the development of integrated biorefineries. To investigate the strategies used by T. xylanilyticus to fractionate plant cell walls, two agricultural by-products, wheat bran and straw (which differ in their chemical composition and tissue organization, were used in this study and compared with glucose and xylans. The ability of T. xylanilyticus to grow on these substrates was studied. When the bacteria used lignocellulosic biomass, the production of enzymes was evaluated and correlated with the initial composition of the biomass, as well as with the evolution of any residues during growth. Results Our results showed that T. xylanilyticus is not only able to use glucose and xylans as primary carbon sources but can also use wheat bran and straw. The chemical compositions of both lignocellulosic substrates were modified by T. xylanilyticus after growth. The bacteria were able to consume 49% and 20% of the total carbohydrates in bran and straw, respectively, after 24 h of growth. The phenolic and acetyl ester contents of these substrates were also altered. Bacterial growth on both lignocellulosic biomasses induced hemicellulolytic enzyme production, and xylanase was the primary enzyme secreted. Debranching activities were differentially produced, as esterase activities were more important to bacterial cultures grown on wheat straw; arabinofuranosidase production was significantly higher in bacterial cultures grown on wheat bran. Conclusion This study provides insight into the ability of T. xylanilyticus to grow on abundant agricultural by-products, which are inexpensive carbon sources for enzyme production. The composition of the biomass upon which the bacteria grew influenced their growth, and differences in the biomass provided

  3. Three-dimensional noble-metal nanostructure: A new kind of substrate for sensitive, uniform, and reproducible surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Tian Cui-Feng; You Hong-Jun; Fang Ji-Xiang

    2014-01-01

    Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy technique for highly sensitive structural detection of low concentration analyte. The SERS activities largely depend on the topography of the substrate. In this review, we summarize the recent progress in SERS substrate, especially focusing on the three-dimensional (3D) noble-metal substrate with hierarchical nanostructure. Firstly, we introduce the background and general mechanism of 3D hierarchical SERS nanostructures. Then, a systematic overview on the fabrication, growth mechanism, and SERS property of various noble-metal substrates with 3D hierarchical nanostructures is presented. Finally, the applications of 3D hierarchical nanostructures as SERS substrates in many fields are discussed. (invited review — international conference on nanoscience and technology, china 2013)

  4. Temperature dependences of growth rates and carrying capacities of marine bacteria depart from metabolic theoretical predictions

    KAUST Repository

    Huete-Stauffer, Tamara Megan

    2015-09-11

    Using the metabolic theory of ecology (MTE) framework, we evaluated over a whole annual cycle the monthly responses to temperature of the growth rates (μ) and carrying capacities (K) of heterotrophic bacterioplankton at a temperate coastal site. We used experimental incubations spanning 6oC with bacterial physiological groups identified by flow cytometry according to membrane integrity (live), nucleic acid content (HNA and LNA) and respiratory activity (CTC+). The temperature dependence of μat the exponential phase of growth was summarized by the activation energy (E), which was variable (-0.52 to 0.72 eV) but followed a seasonal pattern, only reaching the hypothesized value for aerobic heterotrophs of 0.65 eV during the spring bloom for the most active bacterial groups (live, HNA, CTC+). K (i.e. maximum experimental abundance) peaked at 4 × 106 cells mL-1 and generally covaried with μbut, contrary to MTE predictions, it did not decrease consistently with temperature. In the case of live cells, the responses of μand K to temperature were positively correlated and related to seasonal changes in substrate availability, indicating that the responses of bacteria to warming are far from homogeneous and poorly explained by MTE at our site. © FEMS 2015.

  5. Translation elicits a growth rate-dependent, genome-wide, differential protein production in Bacillus subtilis.

    Science.gov (United States)

    Borkowski, Olivier; Goelzer, Anne; Schaffer, Marc; Calabre, Magali; Mäder, Ulrike; Aymerich, Stéphane; Jules, Matthieu; Fromion, Vincent

    2016-05-17

    Complex regulatory programs control cell adaptation to environmental changes by setting condition-specific proteomes. In balanced growth, bacterial protein abundances depend on the dilution rate, transcript abundances and transcript-specific translation efficiencies. We revisited the current theory claiming the invariance of bacterial translation efficiency. By integrating genome-wide transcriptome datasets and datasets from a library of synthetic gfp-reporter fusions, we demonstrated that translation efficiencies in Bacillus subtilis decreased up to fourfold from slow to fast growth. The translation initiation regions elicited a growth rate-dependent, differential production of proteins without regulators, hence revealing a unique, hard-coded, growth rate-dependent mode of regulation. We combined model-based data analyses of transcript and protein abundances genome-wide and revealed that this global regulation is extensively used in B. subtilis We eventually developed a knowledge-based, three-step translation initiation model, experimentally challenged the model predictions and proposed that a growth rate-dependent drop in free ribosome abundance accounted for the differential protein production. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  6. Nanosheet controlled epitaxial growth of PbZr0.52Ti0.48O3 thin films on glass substrates

    NARCIS (Netherlands)

    Bayraktar, Muharrem; Chopra, A.; Bijkerk, Frederik; Rijnders, Augustinus J.H.M.

    2014-01-01

    Integration of PbZr0.52Ti0.48O3 (PZT) films on glass substrates is of high importance for device applications. However, to make use of the superior ferro- and piezoelectric properties of PZT, well-oriented crystalline or epitaxial growth with control of the crystal orientation is a prerequisite. In

  7. Impact of first-step potential and time on the vertical growth of ZnO nanorods on ITO substrate by two-step electrochemical deposition

    International Nuclear Information System (INIS)

    Kim, Tae Gyoum; Jang, Jin-Tak; Ryu, Hyukhyun; Lee, Won-Jae

    2013-01-01

    Highlights: •We grew vertical ZnO nanorods on ITO substrate using a two-step continuous potential process. •The nucleation for the ZnO nanorods growth was changed by first-step potential and duration. •The vertical ZnO nanorods were well grown when first-step potential was −1.2 V and 10 s. -- Abstract: In this study, we analyzed the growth of ZnO nanorods on an ITO (indium doped tin oxide) substrate by electrochemical deposition using a two-step, continuous potential process. We examined the effect of changing the first-step potential as well as the first-step duration on the morphological, structural and optical properties of ZnO nanorods, measured via using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and photoluminescence (PL), respectively. As a result, vertical ZnO nanorods were grown on ITO substrate without the need for a template when the first-step potential was set to −1.2 V for a duration of 10 s, and the second-step potential was set to −0.7 V for a duration of 1190 s. The ZnO nanorods on this sample showed the highest XRD (0 0 2)/(1 0 0) peak intensity ratio and the highest PL near band edge emission to deep level emission peak intensity ratio (NBE/DLE). In this study, the nucleation for vertical ZnO nanorod growth on an ITO substrate was found to be affected by changes in the first-step potential and first-step duration

  8. Spiral growth of few-layer MoS{sub 2} by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dong, X.; Yan, C.; Tomer, D.; Li, L., E-mail: lianli@uwm.edu [Department of Physics, University of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Li, C. H. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-08-01

    Growth spirals exhibit appealing properties due to a preferred layer stacking and lack of inversion symmetry. Here, we report spiral growth of MoS{sub 2} during chemical vapor deposition on SiO{sub 2}/Si and epitaxial graphene/SiC substrates, and their physical and electronic properties. We determine the layer-dependence of the MoS{sub 2} bandgap, ranging from 2.4 eV for the monolayer to a constant of 1.3 eV beyond the fifth layer. We further observe that spirals predominantly initiate at the step edges of the SiC substrate, based on which we propose a growth mechanism driven by screw dislocation created by the coalescence of two growth fronts at steps.

  9. Quality improvement of organic thin films deposited on vibrating substrates

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, Y.A.; Caldas, P.G.; Prioli, R.; Cremona, M., E-mail: cremona@fis.puc-rio.br

    2011-12-30

    Most of the Organic Light-Emitting Diodes (OLEDs) have a multilayered structure composed of functional organic layers sandwiched between two electrodes. Thin films of small molecules are generally deposited by thermal evaporation onto glass or other rigid or flexible substrates. The interface state between two organic layers in OLED device depends on the surface morphology of the layers and affects deeply the OLED performance. The morphology of organic thin films depends mostly on substrate temperature and deposition rate. Generally, the control of the substrate temperature allows improving the quality of the deposited films. For organic compounds substrate temperature cannot be increased too much due to their poor thermal stability. However, studies in inorganic thin films indicate that it is possible to modify the morphology of a film by using substrate vibration without increasing the substrate temperature. In this work, the effect of the resonance vibration of glass and silicon substrates during thermal deposition in high vacuum environment of tris(8-quinolinolate)aluminum(III) (Alq{sub 3}) and N,N Prime -Bis(naphthalene-2-yl)-N,N Prime -bis(phenyl)-benzidine ({beta}-NPB) organic thin films with different deposition rates was investigated. The vibration used was in the range of hundreds of Hz and the substrates were kept at room temperature during the process. The nucleation and subsequent growth of the organic films on the substrates have been studied by atomic force microscopy technique. For Alq{sub 3} and {beta}-NPB films grown with 0.1 nm/s as deposition rate and using a frequency of 100 Hz with oscillation amplitude of some micrometers, the results indicate a reduction of cluster density and a roughness decreasing. Moreover, OLEDs fabricated with organic films deposited under these conditions improved their power efficiency, driven at 4 mA/cm{sup 2}, passing from 0.11 lm/W to 0.24 lm/W with an increase in their luminance of about 352 cd/m{sup 2

  10. Theoretical Investigation on Structural and Electronic Properties of InN Growth on Ce-Stabilized Zirconia (111 Substrates

    Directory of Open Access Journals (Sweden)

    Yao Guo

    2016-01-01

    Full Text Available The structural and electronic properties of InN on Ce-stabilized zirconia (CeSZ (111 substrates are investigated using first-principles calculations based on density functional theory with GGA + U method. Surface energy calculations indicate that the structure of Ce-segregated surface is more energetically stable than that of Ce-segregation-free surface. Adsorption energies of indium and nitrogen atoms on both Ce-segregated and Ce-segregation-free CeSZ (111 surfaces at the initial growth stage have been studied. The results suggest that the first layer of InN films consists of a nitrogen layer, which leads to epitaxial relationships between InN (0001 // CeSZ (111 and InN [112¯0] // CeSZ [11¯0]. In addition, density of states (DOS analysis revealed that the hybridization effect plays a crucial role in determining the interface structure for the growth of InN on CeSZ (111 surfaces. Furthermore, adsorption energies of indium atoms on the nitrogen layer have also been evaluated in order to investigate the lattice polarity determination for InN films. It was found that an indium atom preferentially adsorbs at the center of three nitrogen atoms stacked on the CeSZ substrate, which results in the formation of In-polarity InN.

  11. Substrate effect on the growth of monolayer dendritic MoS2 on LaAlO3 (100) and its electrocatalytic applications

    Science.gov (United States)

    Li, Cong; Zhang, Yu; Ji, Qingqing; Shi, Jianping; Chen, Zhaolong; Zhou, Xiebo; Fang, Qiyi; Zhang, Yanfeng

    2016-09-01

    In accommodating the rapid development of two-dimensional (2D) nanomaterials, chemical vapor deposition (CVD) has become a powerful tool for their batch production with desirable characteristics, such as high crystal quality, large domain size, and tunable domain shape. The crystallinity and morphology of the growth substrates usually play a crucial role in the CVD synthesis of high-quality monolayer MoS2, a kind of 2D layered material which has ignited huge interest in nanoelectronics, optoelectronics and energy harvesting, etc. Herein, by utilizing a low-pressure chemical vapor deposition (LPCVD) system, we demonstrate a regioselective synthesis of monolayer MoS2 on the corrugated single-crystal LaAlO3 (100) with twin crystal domains induced by the second-order phase transition. Unique dendritic morphologies with tunable nucleation densities were obtained in different regions of the undulated substrate, presenting a strong substrate modulation effect. Interestingly, the exposure of abundant active edge sites along with the rather high nucleation density makes the monolayer dendritic MoS2 a good electrocatalyst for hydrogen evolution reaction (HER), particularly featured by a rather high exchange current density (70.4 μA cm-2). Furthermore, uniform monolayer MoS2 films can also be obtained and transferred to arbitrary substrates. We believe that this work provides a new growth system for the controllable synthesis of 2D layered materials with unique dendritic morphologies, as well as its great application potential in energy conversion and harvesting.

  12. Coenzyme Q Biosynthesis: Evidence for a Substrate Access Channel in the FAD-Dependent Monooxygenase Coq6.

    Directory of Open Access Journals (Sweden)

    Alexandre Ismail

    2016-01-01

    Full Text Available Coq6 is an enzyme involved in the biosynthesis of coenzyme Q, a polyisoprenylated benzoquinone lipid essential to the function of the mitochondrial respiratory chain. In the yeast Saccharomyces cerevisiae, this putative flavin-dependent monooxygenase is proposed to hydroxylate the benzene ring of coenzyme Q (ubiquinone precursor at position C5. We show here through biochemical studies that Coq6 is a flavoprotein using FAD as a cofactor. Homology models of the Coq6-FAD complex are constructed and studied through molecular dynamics and substrate docking calculations of 3-hexaprenyl-4-hydroxyphenol (4-HP6, a bulky hydrophobic model substrate. We identify a putative access channel for Coq6 in a wild type model and propose in silico mutations positioned at its entrance capable of partially (G248R and L382E single mutations or completely (a G248R-L382E double-mutation blocking access to the channel for the substrate. Further in vivo assays support the computational predictions, thus explaining the decreased activities or inactivation of the mutated enzymes. This work provides the first detailed structural information of an important and highly conserved enzyme of ubiquinone biosynthesis.

  13. Diffusion-controlled growth of molecular heterostructures: fabrication of two-, one-, and zero-dimensional C(60) nanostructures on pentacene substrates.

    Science.gov (United States)

    Breuer, Tobias; Witte, Gregor

    2013-10-09

    A variety of low dimensional C60 structures has been grown on supporting pentacene multilayers. By choice of substrate temperature during growth the effective diffusion length of evaporated fullerenes and their nucleation at terraces or step edges can be precisely controlled. AFM and SEM measurements show that this enables the fabrication of either 2D adlayers or solely 1D chains decorating substrate steps, while at elevated growth temperature continuous wetting of step edges is prohibited and instead the formation of separated C60 clusters pinned at the pentacene step edges occurs. Remarkably, all structures remain thermally stable at room temperature once they are formed. In addition the various fullerene structures have been overgrown by an additional pentacene capping layer. Utilizing the different probe depth of XRD and NEXAFS, we found that no contiguous pentacene film is formed on the 2D C60 structure, whereas an encapsulation of the 1D and 0D structures with uniformly upright oriented pentacene is achieved, hence allowing the fabrication of low dimensional buried organic heterostructures.

  14. Growth pattern and growth dependent mortality of larval and pelagic juvenile North Sea cod Gadus morhua

    DEFF Research Database (Denmark)

    Nielsen, Rune; Munk, Peter

    2004-01-01

    and May 2001), and larval/juvenile growth history from each of the sampling sequences was outlined. Growth rate was estimated by fitting a Laird-Gompertz equation to lengths-at-age, and we found the mean specific growth rate in length at age 20 d was 3.2% d(-1), declining to 1.9% d(-1) at an age of 90 d....... Otolith radius and larval standard length were highly correlated, and otolith growth was used as a measure of larval somatic growth. The larvae were divided into 3 groups dependent on their hatch-date, and for each hatch group, the same period of past growth was compared between fish sampled in April...... and May. A 2-way repeated-measurement ANOVA revealed a significant higher past growth of fish sampled in May in 2 of the 3 hatch-groups, implying a higher mortality of the slow growing larvae. Additionally, otolith size at age differed significantly between the April and May sampling of the oldest larvae...

  15. Epitaxial growth of 100-μm thick M-type hexaferrite crystals on wide bandgap semiconductor GaN/Al{sub 2}O{sub 3} substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bolin; Su, Zhijuan; Bennett, Steve; Chen, Yajie, E-mail: y.chen@neu.edu; Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits and Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

    2014-05-07

    Thick barium hexaferrite BaFe{sub 12}O{sub 19} (BaM) films having thicknesses of ∼100 μm were epitaxially grown on GaN/Al{sub 2}O{sub 3} substrates from a molten-salt solution by vaporizing the solvent. X-ray diffraction measurement verified the growth of BaM (001) textured growth of thick films. Saturation magnetization, 4πM{sub s}, was measured for as-grown films to be 4.6 ± 0.2 kG and ferromagnetic resonance measurements revealed a microwave linewidth of ∼100 Oe at X-band. Scanning electron microscopy indicated clear hexagonal crystals distributed on the semiconductor substrate. These results demonstrate feasibility of growing M-type hexaferrite crystal films on wide bandgap semiconductor substrates by using a simple powder melting method. It also presents a potential pathway for the integration of ferrite microwave passive devices with active semiconductor circuit elements creating system-on-a-wafer architectures.

  16. Role of unsaturated derivatives of spermidine as substrates for spermine synthase and in supporting growth of SV-3T3 cells.

    OpenAIRE

    Pegg, A E; Nagarajan, S; Naficy, S; Ganem, B

    1991-01-01

    Synthetic unsaturated analogues of the natural polyamine were examined as possible substrates for spermine synthase and as replacements for spermidine in supporting the growth of SV-3T3 cells. It was found that N-(3-aminopropyl)-1,4-diamino-cis-but-2-ene [the cis isomer of the alkene analogue of spermidine] was a good substrate for spermine synthase, but that the trans isomer [N-(3-aminopropyl)-1,4-diamino-trans-but-2-ene] and the alkene analogue [N-(3-aminopropyl)-1,4-diaminobut-2-yne] were ...

  17. The influence of substrate source on the growth of Ralstonia eutropha, aiming at the production of polyhydroxyalkanoate

    Directory of Open Access Journals (Sweden)

    Marangoni C.

    2001-01-01

    Full Text Available With the aim of producing polyhydroxyalkanoates, a study of the influence of culture conditions (nitrogen and carbon sources and temperature on the growth of Ralstonia eutropha in stirred flasks was carried out and the use of some low-cost sources (hydrolyzed lactose, inverted sugar and corn steep liquor as evaluated. The best specific growth rate was obtained when inverted sugar was utilized as the substrate (mumax = 0.26 h-1. Two different phases in the assimilation of the carbon source were observed when hydrolyzed lactose was present, suggesting the assimilation first of glucose and then of galactose. To confirm the growth of Ralstonia eutropha using galactose as the only carbon source, experiments were carried out and the results showed that this bacterium is able to grow in the presence of this sugar at a growth rate of 0.13 h-1. The use of galactose by Ralstonia eutropha for its growth has not been reported in the literature until now. Corn steep liquor was found to be a viable alternative nitrogen source to ammonium sulfate. The results of experiments carried out at 30°C and 34°C were similar.

  18. STM and x-ray diffraction temperature-dependent growth study of SrRuO{sub 3} PLD thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, M.E.; Jia, Q.X.; Brown, G.W.

    1996-12-31

    SrRuO{sub 3} (SRO) has recently found a number of applications in different fields, e.g. as a buffer layer for the growth of high temperature superconductor (HTS) YBa{sub 2}Cu{sub 3}O{sub 7-x} films and as a bottom electrode for ferroelectric or high dielectric constant thin film capacitors and nonvolatile data storage. The growth of high crystallinity SRO films with good structural and electrical properties is the prerequisite for each of these applications. In this paper we describe the affect of one growth parameters temperature (T), on the crystalline quality, epitaxial substrate relationship and resulting electrical properties. SRO films were deposited on LaAlO{sub 3} single crystal substrates by pulsed laser deposition at substrate temperatures (T{sub s}) ranging from room temperature (RT) up to 800{degrees}C with a nominal film thickness of 150 nm range. The resulting films were characterized by x-ray diffraction, 4-point transport, and STM. The films` microstructures, as revealed by STM, evolved from polygranular at RT to a layered plate-like structure at higher deposition temperatures, T{sub s}, Increasing T{sub s} was marked first by increasing grain size, then a stronger orientational relationship between film and substrate, finally followed by the development of increased connectivity between grains to an extended island or condensed layered state. The transition from polygranular to layered structure occurred at T{sub s} > 650{degrees}C. Increased conductivity paralleled the changes in microstructure. The surfaces of all of the films were relatively smooth; the oriented films are suitable for use as conductive templates in multilayer structures.

  19. Studies of metallic species incorporation during growth of SrBi2Ta2O9 films on YBa2Cu3O7-x substrates using mass spectroscopy of recoiled ions

    International Nuclear Information System (INIS)

    Dhote, A. M.

    1999-01-01

    The incorporation of metallic species (Bi, Sr and Ta) during the growth of layered perovskite SrBi 2 Ta 2 O 9 (SBT) on a-axis oriented YBa 2 Cu 3 O 7-x (YBCO) conducting oxide substrates has been investigated using in situ low energy mass spectroscopy of recoiled ions (MSRI). This technique is capable of providing monolayer-specific surface information relevant to the growth of single and multi-component thin films and layered heterostructures. The data show a temperature dependence of metallic species incorporation during co-deposition of Sr, Bi and Ta on YBCO surfaces. At high temperatures (400 400 C. SBT films grown at temperatures ≤ 400 C and annealed in oxygen or air at 800 C exhibit a polycrystalline structure with partial a-axis orientation

  20. Investigations on Substrate Temperature-Induced Growth Modes of Organic Semiconductors at Dielectric/semiconductor Interface and Their Correlation with Threshold Voltage Stability in Organic Field-Effect Transistors.

    Science.gov (United States)

    Padma, Narayanan; Maheshwari, Priya; Bhattacharya, Debarati; Tokas, Raj B; Sen, Shashwati; Honda, Yoshihide; Basu, Saibal; Pujari, Pradeep Kumar; Rao, T V Chandrasekhar

    2016-02-10

    Influence of substrate temperature on growth modes of copper phthalocyanine (CuPc) thin films at the dielectric/semiconductor interface in organic field effect transistors (OFETs) is investigated. Atomic force microscopy (AFM) imaging at the interface reveals a change from 'layer+island' to "island" growth mode with increasing substrate temperatures, further confirmed by probing the buried interfaces using X-ray reflectivity (XRR) and positron annihilation spectroscopic (PAS) techniques. PAS depth profiling provides insight into the details of molecular ordering while positron lifetime measurements reveal the difference in packing modes of CuPc molecules at the interface. XRR measurements show systematic increase in interface width and electron density correlating well with the change from layer + island to coalesced huge 3D islands at higher substrate temperatures. Study demonstrates the usefulness of XRR and PAS techniques to study growth modes at buried interfaces and reveals the influence of growth modes of semiconductor at the interface on hole and electron trap concentrations individually, thereby affecting hysteresis and threshold voltage stability. Minimum hole trapping is correlated to near layer by layer formation close to the interface at 100 °C and maximum to the island formation with large voids between the grains at 225 °C.

  1. Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth

    Science.gov (United States)

    Hu, Hui; Ni, Yingchun; Montana, Vedrana; Haddon, Robert C.; Parpura, Vladimir

    2009-01-01

    We report the use of chemically modified carbon nanotubes as a substrate for cultured neurons. The morphological features of neurons that directly reflect their potential capability in synaptic transmission are characterized. The chemical properties of carbon nanotubes are systematically varied by attaching different functional groups that confer known characteristics to the substrate. By manipulating the charge carried by functionalized carbon nanotubes we are able to control the outgrowth and branching pattern of neuronal processes. PMID:21394241

  2. Platelet-derived-growth-factor-induced signalling in human platelets: phosphoinositide-3-kinase-dependent inhibition of platelet activation.

    Science.gov (United States)

    Selheim, F; Fukami, M H; Holmsen, H; Vassbotn, F S

    2000-09-01

    Human platelets release platelet-derived growth factor (PDGF) from alpha-granules during platelet activation. We have previously shown that platelets have PDGF alpha-receptors, a transmembrane tyrosine kinase that takes part in negative feedback regulation during platelet activation. Here we have described a study of PDGF-induced tyrosine phosphorylation of platelet substrates and phosphoinositide 3-kinase (PI-3K) activity in collagen-stimulated platelets. By immunoblotting with phosphotyrosine antibodies of collagen-activated platelets we found that PDGF increased the phosphorylation of several platelet substrates, e.g. pp140, pp120 and pp85. PDGF inhibited collagen-induced platelet activation in the presence of inhibitors of autocrine stimulation, thus blocking the pure collagen-induced signal transduction. PDGF enhanced the collagen-induced formation of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) as measured by HPLC. Wortmannin and LY294002, two unrelated inhibitors of PI-3K, were used to investigate the role of PI-3K in PDGF-induced platelet signalling. Incubation of platelets with wortmannin and LY294002 blocked the formation of three phosphorylated inositides as well as the inhibitory effect of PDGF on collagen-induced platelet activation. We conclude that the inhibitory effect of PDGF on platelet activation is PI-3K dependent. This is the first demonstration of a negative regulatory function of 3-phosphorylated inositides in platelets.

  3. Effect of differently pelletized digestate on the plant growth of spring wheat

    Science.gov (United States)

    Dietrich, Nils; Knoop, Christine; Raab, Thomas

    2017-04-01

    In Germany, biowaste is used in more than 100 biogas plants and has increasing potential as a fermentation substrate. To optimise waste cycle management organic digestates should be redistributed and innovative products for soil amendment of agricultural areas could be developed. The BMBF-funded VeNGA project seeks to find answers on how to improve the properties of soil amendments produced from fermentation residues. Here, we report findings from our study that focuses on plant growth and soil development. Within a three-month rhizotron experiment, the influence of differently prepared fermentation residues on the root development of summer wheat was investigated. The four variants of the prepared digestate (rolled pellet, pressed pellet, shredded, loose) were tested under constant conditions in the greenhouse on two soils with different textures (sandy and loamy-sand). All fermentation residues originated from the same batch and were composted before the preparation to ensure adequate hygienisation. Depending on preparation type and soil substrate significant differences in root growth and root development have been observed. Plant growth was most intense in the rhizotron experiment with the loose digestate, indicating high nutrient availability due to the large surface area of the organic matter. Plant growth in the substrate with the rolled and pressed pellets was less pronounced, indicating a more persistent stability of the pellets. In rhizotrons applied with rolled and pressed pellets root growth into the mineral fabric was significantly lower in sandy substrate than in the loamy-sand. However, in the sandy substrate root growth within the rolled pellets was more intense than in the substrate with the pressed pellets. Obviously, the different production techniques of the pellets seem to have an influence on the rooting of the pellets and facilitate the long term stability of soil organic carbon. Furthermore, the comparison of the two different textures

  4. Room-temperature epitaxial growth of high-quality m-plane InGaN films on ZnO substrates

    Energy Technology Data Exchange (ETDEWEB)

    Shimomoto, Kazuma; Ueno, Kohei [Institute of Industrial Science, University of Tokyo (Japan); Kobayashi, Atsushi [Institute of Industrial Science, University of Tokyo (Japan); Kanagawa Academy of Science and Technology (KAST), Takatsu-ku, Kawasaki (Japan); Department of Applied Chemistry, University of Tokyo (Japan); Ohta, Jitsuo [Institute of Industrial Science, University of Tokyo (Japan); Kanagawa Academy of Science and Technology (KAST), Takatsu-ku, Kawasaki (Japan); Oshima, Masaharu [Department of Applied Chemistry, University of Tokyo (Japan); Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation (JST-CREST), Tokyo (Japan); Fujioka, Hiroshi [Institute of Industrial Science, University of Tokyo (Japan); Kanagawa Academy of Science and Technology (KAST), Takatsu-ku, Kawasaki (Japan); Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation (JST-CREST), Tokyo (Japan); Amanai, Hidetaka; Nagao, Satoru; Horie, Hideyoshi [Mitsubishi Chemical Group, Science and Technology Research Center, Higashi-Mamiana, Ushiku-shi, Ibaraki (Japan)

    2009-05-15

    The authors have grown high-quality m -plane In{sub 0.36}Ga{sub 0.64}N (1 anti 100) films on ZnO (1 anti 100) substrates at room temperature (RT) by pulsed laser deposition (PLD) and have investigated their structural properties. m-plane InGaN films grown on ZnO substrates at RT possess atomically flat surfaces with stepped and terraced structures, indicating that the film growth proceeds in a two-dimensional mode. X-ray diffraction measurements have revealed that the m-plane InGaN films grow without phase separation reactions at RT. The full-width at half-maximum values of the 1 anti 100 X-ray rocking curves of films with X-ray incident azimuths perpendicular to the c- and a-axis are 88 arcsec and 78 arcsec, respectively. Reciprocal space-mapping has revealed that a 50 nm thick m-plane In{sub 0.36}Ga{sub 0.64}N film grows coherently on the ZnO substrate, which can probably explain the low defect density that is observed in the film. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Room-temperature epitaxial growth of high-quality m-plane InGaN films on ZnO substrates

    International Nuclear Information System (INIS)

    Shimomoto, Kazuma; Ueno, Kohei; Kobayashi, Atsushi; Ohta, Jitsuo; Oshima, Masaharu; Fujioka, Hiroshi; Amanai, Hidetaka; Nagao, Satoru; Horie, Hideyoshi

    2009-01-01

    The authors have grown high-quality m -plane In 0.36 Ga 0.64 N (1 anti 100) films on ZnO (1 anti 100) substrates at room temperature (RT) by pulsed laser deposition (PLD) and have investigated their structural properties. m-plane InGaN films grown on ZnO substrates at RT possess atomically flat surfaces with stepped and terraced structures, indicating that the film growth proceeds in a two-dimensional mode. X-ray diffraction measurements have revealed that the m-plane InGaN films grow without phase separation reactions at RT. The full-width at half-maximum values of the 1 anti 100 X-ray rocking curves of films with X-ray incident azimuths perpendicular to the c- and a-axis are 88 arcsec and 78 arcsec, respectively. Reciprocal space-mapping has revealed that a 50 nm thick m-plane In 0.36 Ga 0.64 N film grows coherently on the ZnO substrate, which can probably explain the low defect density that is observed in the film. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Wafer bowing control of free-standing heteroepitaxial diamond (100) films grown on Ir(100) substrates via patterned nucleation growth

    International Nuclear Information System (INIS)

    Yoshikawa, Taro; Kodama, Hideyuki; Kono, Shozo; Suzuki, Kazuhiro; Sawabe, Atsuhito

    2015-01-01

    The potential of patterned nucleation growth (PNG) technique to control the wafer bowing of free-standing heteroepitaxial diamond films was investigated. The heteroepitaxial diamond (100) films were grown on an Ir(100) substrate via PNG technique with different patterns of nucleation regions (NRs), which were dot-arrays with 8 or 13 μm pitch aligned to < 100 > or < 110 > direction of the Ir(100) substrate. The wafer bows and the local stress distributions of the free-standing films were measured using a confocal micro-Raman spectrometer. For each NR pattern, the stress evolutions within the early stage of diamond growth were also studied together with a scanning electron microscopic observation of the coalescing diamond particles. These investigations revealed that the NR pattern, in terms of pitch and direction of dot-array, strongly affects the compressive stress on the nucleation side of the diamond film and dominantly contributes to the elastic deformation of the free-standing film. This indicates that the PNG technique with an appropriate NR pattern is a promising solution to fabricate free-standing heteroepitaxial diamond films with extremely small bows. - Highlights: • Wafer bowing control of free-standing heteroepitaxial diamond (100) films • Effect of patterned nucleation and growth (PNG) technique on wafer bowing reduction • Influence of nucleation region patterns of PNG on wafer bowing • Internal stress analysis of PNG films via confocal micro-Raman spectroscopy

  7. Molecular mechanism of pH-dependent substrate transport by an arginine-agmatine antiporter.

    Science.gov (United States)

    Wang, Sheng; Yan, Renhong; Zhang, Xi; Chu, Qi; Shi, Yigong

    2014-09-02

    Enteropathogenic bacteria, exemplified by Escherichia coli, rely on acid-resistance systems (ARs) to survive the acidic environment of the stomach. AR3 consumes intracellular protons through decarboxylation of arginine (Arg) in the cytoplasm and exchange of the reaction product agmatine (Agm) with extracellular Arg. The latter process is mediated by the Arg:Agm antiporter AdiC, which is activated in response to acidic pH and remains fully active at pH 6.0 and below. Despite our knowledge of structural information, the molecular mechanism by which AdiC senses acidic pH remains completely unknown. Relying on alanine-scanning mutagenesis and an in vitro proteoliposome-based transport assay, we have identified Tyr74 as a critical pH sensor in AdiC. The AdiC variant Y74A exhibited robust transport activity at all pH values examined while maintaining stringent substrate specificity for Arg:Agm. Replacement of Tyr74 by Phe, but not by any other amino acid, led to the maintenance of pH-dependent substrate transport. These observations, in conjunction with structural information, identify a working model for pH-induced activation of AdiC in which a closed conformation is disrupted by cation-π interactions between proton and the aromatic side chain of Tyr74.

  8. The influence of substrate type and chlormequat on the growth and flowering of marigold (Tagetes L.

    Directory of Open Access Journals (Sweden)

    Maślanka Małgorzata

    2017-12-01

    Full Text Available This study was conducted to investigate the effect of various horticultural substrates (compost, peat-coconut, peat TS1, flower soil, lowmoor peat and a foliar spray of chlormequat (at a concentration of 1380 mg dm-3 on the growth and flowering of the marigold cultivars belonging to two species: Tagetes erecta - ʻMarvel Mixtureʼ and ʻTaishan Orangeʼ, and Tagetes patula - ʻDurango Redʼ and ʻBonanza Flameʼ. The obtained results show that the plants grown in peat TS1 and peat-coconut were taller, had longer internodes and leaves, and thicker stems than the plants grown in the other substrates. Chlormequat significantly reduced the height of ʻMarvel Mixtureʼ (in peat TS1, ʻTaishan Orangeʼ (in lowmoor peat and ‘Bonanza Flameʼ (in peat-coconut. The use of chlormequat also accelerated the development of flower heads in ʻTaishan Orangeʼ (in lowmoor peat.

  9. Tea waste: an effective and economic substrate for oyster mushroom cultivation.

    Science.gov (United States)

    Yang, Doudou; Liang, Jin; Wang, Yunsheng; Sun, Feng; Tao, Hong; Xu, Qiang; Zhang, Liang; Zhang, Zhengzhu; Ho, Chi-Tang; Wan, Xiaochun

    2016-01-30

    Tea waste is the residue that remains after tea leaves have been extracted by hot water to obtain water-soluble components. The waste contains a re-usable energy substrate and nutrients which may pollute the environment if they are not dealt with appropriately. Other agricultural wastes have been widely studied as substrates for cultivating mushrooms. In the present study, we cultivated oyster mushroom using tea waste as substrate. To study the feasibility of re-using it, tea waste was added to the substrate at different ratios in different experimental groups. Three mushroom strains (39, 71 and YOU) were compared and evaluated. Mycelia growth rate, yield, biological efficiency and growth duration were measured. Substrates with different tea waste ratios showed different growth and yield performance. The substrate containing 40-60% of tea waste resulted in the highest yield. Tea waste could be used as an effective and economic substrate for oyster mushroom cultivation. This study also provided a useful way of dealing with massive amounts of tea waste. © 2015 Society of Chemical Industry.

  10. Growth and Device Performance of AlGaN/GaN Heterostructure with AlSiC Precoverage on Silicon Substrate

    Directory of Open Access Journals (Sweden)

    Jae-Hoon Lee

    2014-01-01

    Full Text Available A crack-free AlGaN/GaN heterostructure was grown on 4-inch Si (111 substrate with initial dot-like AlSiC precoverage layer. It is believed that introducing the AlSiC layer between AlN wetting layer and Si substrate is more effective in obtaining a compressively stressed film growth than conventional Al precoverage on Si surface. The metal semiconductor field effect transistor (MESFET, fabricated on the AlGaN/GaN heterostructure grown with the AlSiC layer, exhibited normally on characteristics, such as threshold voltage of −2.3 V, maximum drain current of 370 mA/mm, and transconductance of 124 mS/mm.

  11. Plasmin-driven fibrinolysis facilitates skin tumor growth in a gender-dependent manner

    DEFF Research Database (Denmark)

    Hald, Andreas; Eickhardt, Hanne; Maerkedahl, Rasmus Baadsgaard

    2012-01-01

    deficiency was due to thrombosis and lost patency of the tumor vasculature, resulting in tumor necrosis. The connection between plasmin-dependent fibrinolysis, vascular patency, and tumor growth was further substantiated as the effect of plasminogen deficiency on tumor growth could be reverted...

  12. Molten Salt-Based Growth of Bulk GaN and InN for Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Waldrip, Karen Elizabeth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Power Sources Technology Dept.; Tsao, Jeffrey Yeenien [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Sciences Dept.; Kerley, Thomas M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Materials Sciences Dept.

    2006-09-01

    An atmospheric pressure approach to growth of bulk group III-nitrides is outlined. Native III-nitride substrates for optoelectronic and high power, high frequency electronics are desirable to enhance performance and reliability of these devices; currently, these materials are available in research quantities only for GaN, and are unavailable in the case of InN. The thermodynamics and kinetics of the reactions associated with traditional crystal growth techniques place these activities on the extreme edges of experimental physics. The technique described herein relies on the production of the nitride precursor (N3-) by chemical and/or electrochemical methods in a molten halide salt. This nitride ion is then reacted with group III metals in such a manner as to form the bulk nitride material. The work performed during the period of funding (July 2004-September 2005) focused on the initial measurement of the solubility of GaN in molten LiCl as a function of temperature, the construction of electrochemical cells, the modification of a commercial glove box (required for handling very hygroscopic LiCl), and on securing intellectual property for the technique.

  13. Polarity driven simultaneous growth of free-standing and lateral GaAsP epitaxial nanowires on GaAs (001) substrate

    International Nuclear Information System (INIS)

    Sun, Wen; Xu, Hongyi; Guo, Yanan; Gao, Qiang; Hoe Tan, Hark; Jagadish, Chennupati; Zou, Jin

    2013-01-01

    Simultaneous growth of 〈111〉 B free-standing and ±[110] lateral GaAsP epitaxial nanowires on GaAs (001) substrates were observed and investigated by electron microscopy and crystallographic analysis. It was found that the growth of both free-standing and lateral ternary nanowires via Au catalysts was driven by the fact that Au catalysts prefer to maintain low-energy (111) B interfaces with surrounding GaAs(P) materials: in the case of free-standing nanowires, Au catalysts maintain (111) B interfaces with their underlying GaAsP nanowires; while in the case of lateral nanowires, each Au catalyst remain their side (111) B interfaces with the surrounding GaAs(P) material during the lateral nanowire growth

  14. Growth-temperature-dependent optical and acetone detection properties of ZnO thin films

    International Nuclear Information System (INIS)

    Shewale, P. S.; Yu, Y. S.

    2015-01-01

    Zinc oxide (ZnO) thin films were prepared onto glass substrates at moderately low growth temperature by two-stage spray pyrolysis technique. The effects of growth temperature on structural, optical and acetone detection properties were investigated with X-ray diffractometry, a UV–visible spectrophotometer, photoluminescence (PL) spectroscopy and a homemade gas sensor testing unit, respectively. All the films are polycrystalline with a hexagonal wurtzite phase and exhibit a preferential orientation along [002] direction. The film crystallinity is gradually enhanced with an increase in growth temperature. The optical measurements show that all the films are physically highly transparent with a transmittance greater than 82% in the visible range. The band gap of the film is observed to exhibit a slight red shift with an increasing growth temperature. The PL studies on the films show UV/violet PL band at ∼ 395 nm. Among all the films investigated, the film deposited at 250 °C demonstrates a maximum sensitivity of 13% towards 20 ppm of acetone vapors at 300 °C operating temperature. (paper)

  15. In situ observation of carbon nanotube layer growth on microbolometers with substrates at ambient temperature

    Science.gov (United States)

    Svatoš, Vojtěch; Gablech, Imrich; Ilic, B. Robert; Pekárek, Jan; Neužil, Pavel

    2018-03-01

    Carbon nanotubes (CNTs) have near unity infrared (IR) absorption efficiency, making them extremely attractive for IR imaging devices. Since CNT growth occurs at elevated temperatures, the integration of CNTs with IR imaging devices is challenging and has not yet been achieved. Here, we show a strategy for implementing CNTs as IR absorbers using differential heating of thermally isolated microbolometer membranes in a C2H2 environment. During the process, CNTs were catalytically grown on the surface of a locally heated membrane, while the substrate was maintained at an ambient temperature. CNT growth was monitored in situ in real time using optical microscopy. During growth, we measured the intensity of light emission and the reflected light from the heated microbolometer. Our measurements of bolometer performance show that the CNT layer on the surface of the microbolometer membrane increases the IR response by a factor of (2.3 ± 0.1) (mean ± one standard deviation of the least-squares fit parameters). This work opens the door to integrating near unity IR absorption, CNT-based, IR absorbers with hybrid complementary metal-oxide-semiconductor focal plane array architectures.

  16. Growth and nutrient balance of Enterolobium contortsiliquum seedlings with addition of organic substrates and wastewater

    Directory of Open Access Journals (Sweden)

    Emanuel França Araújo

    2016-06-01

    Full Text Available Given the strong generation of solid organic waste and wastewater, the use of these materials as a primary source of nutrients is an important practice in environmental management, especially in the production of seedlings with emphasis on degraded areas. The objective of this study was to evaluate growth and nutrient balance of “tamboril” (Enterolobium contortsiliquum (Vell. Morong seedlings grown on substrates with different formulations proportions of organic matter irrigated with wastewater. It was tested five ratios of organic composts and soil: 0:100; 20:80; 40:60; 60:40 and 80:20 v/v. Two procedences of irrigation water was tested: water supply and wastewater from swine farming, arranged in a completely randomized design in a factorial scheme 5 x 2, with four replications. At 90 days, we evaluate seedlings morphological variables, the integrate diagnosis recommendation index and the nutrient balance index. The organic residue contributes to seedlings growth and nutritional balance. The proportion 80:20 proved to be the most suitable for “tamboril” seedlings production. Seedlings presented lower growth and nutritional balance when irrigate with swine farm wastewater.

  17. Cellulase biosynthesis by trichoderma viride on soluble substrates

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S B; Kitagawa, Y; Suga, K; Ichikawa, K

    1978-01-01

    Batch and continuous cultures of Trichoderma viride QM 6a were carried out using either glucose or cellobiose as the sole carbon source. From the data obtained in the continuous culture with glucose as substrate, growth parameters of this fungus ..mu../sub m/, K/sub s/, m and Y were identified. In the case of glucose as substrate, there were extremely low levels of cellobiase and no detectable cellulase activity in both batch and continuous cultures. The inducible cellobiase was an intracellular enzyme, produced in association with cell growth in batch culture on cellobiose as substrate. A kinetic model for cellobiose degradation and cell growth is proposed. A significant increase in the extracellular cellulase productivity was obtained in the range of low dilution rates from 0.025 h/sup -1/ to 0.2 h/sup -1/ in the continuous culture on cellobiose. From the results of these experiments, it was concluded that in continuous culture on cellobiose as substrate the cellulase activity was determined by the balance between induction and catabolite repression.

  18. Flow-dependent directional growth of carbon nanotube forests by chemical vapor deposition

    International Nuclear Information System (INIS)

    Kim, Hyeongkeun; Park, Young Chul; Chun, Kyoung-Yong; Kim, Young-Jin; Choi, Jae-Boong; Kim, Keun Soo; Kang, Junmo; Hong, Byung Hee; Boo, Jin-Hyo

    2011-01-01

    We demonstrated that the structural formation of vertically aligned carbon nanotube (CNT) forests is primarily affected by the geometry-related gas flow, leading to the change of growth directions during the chemical vapor deposition (CVD) process. By varying the growing time, flow rate, and direction of the carrier gas, the structures and the formation mechanisms of the vertically aligned CNT forests were carefully investigated. The growth directions of CNTs are found to be highly dependent on the nonlinear local gas flows induced by microchannels. The angle of growth significantly changes with increasing gas flows perpendicular to the microchannel, while the parallel gas flow shows almost no effect. A computational fluid dynamics (CFD) model was employed to explain the flow-dependent growth of CNT forests, revealing that the variation of the local pressure induced by microchannels is an important parameter determining the directionality of the CNT growth. We expect that the present method and analyses would provide useful information to control the micro- and macrostructures of vertically aligned CNTs for various structural/electrical applications.

  19. Flow-dependent directional growth of carbon nanotube forests by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeongkeun; Park, Young Chul; Chun, Kyoung-Yong; Kim, Young-Jin; Choi, Jae-Boong [School of Mechanical Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Kim, Keun Soo; Kang, Junmo; Hong, Byung Hee [SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Boo, Jin-Hyo, E-mail: byunghee@skku.edu, E-mail: boong33@skku.edu [Department of Chemistry, RIAN and Institute of Basic Science, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of)

    2011-03-04

    We demonstrated that the structural formation of vertically aligned carbon nanotube (CNT) forests is primarily affected by the geometry-related gas flow, leading to the change of growth directions during the chemical vapor deposition (CVD) process. By varying the growing time, flow rate, and direction of the carrier gas, the structures and the formation mechanisms of the vertically aligned CNT forests were carefully investigated. The growth directions of CNTs are found to be highly dependent on the nonlinear local gas flows induced by microchannels. The angle of growth significantly changes with increasing gas flows perpendicular to the microchannel, while the parallel gas flow shows almost no effect. A computational fluid dynamics (CFD) model was employed to explain the flow-dependent growth of CNT forests, revealing that the variation of the local pressure induced by microchannels is an important parameter determining the directionality of the CNT growth. We expect that the present method and analyses would provide useful information to control the micro- and macrostructures of vertically aligned CNTs for various structural/electrical applications.

  20. Cell Size and Growth Rate Are Modulated by TORC2-Dependent Signals.

    Science.gov (United States)

    Lucena, Rafael; Alcaide-Gavilán, Maria; Schubert, Katherine; He, Maybo; Domnauer, Matthew G; Marquer, Catherine; Klose, Christian; Surma, Michal A; Kellogg, Douglas R

    2018-01-22

    The size of all cells, from bacteria to vertebrates, is proportional to the growth rate set by nutrient availability, but the underlying mechanisms are unknown. Here, we show that nutrients modulate cell size and growth rate via the TORC2 signaling network in budding yeast. An important function of the TORC2 network is to modulate synthesis of ceramide lipids, which play roles in signaling. TORC2-dependent control of ceramide signaling strongly influences both cell size and growth rate. Thus, cells that cannot make ceramides fail to modulate their growth rate or size in response to changes in nutrients. PP2A associated with the Rts1 regulatory subunit (PP2A Rts1 ) is embedded in a feedback loop that controls TORC2 signaling and helps set the level of TORC2 signaling to match nutrient availability. Together, the data suggest a model in which growth rate and cell size are mechanistically linked by ceramide-dependent signals arising from the TORC2 network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The limitations of seedling growth and drought tolerance to novel soil substrates in arid systems: Implications for restoration success

    Science.gov (United States)

    Bateman, Amber; Lewandrowski, Wolfgang; Stevens, Jason; Muñoz-Rojas, Miriam

    2016-04-01

    Introduction With the limited knowledge available regarding the impact of drought on seedling growth, an understanding of seedling tolerance to arid conditions is crucial for restoration success (James et al., 2013; Muñoz-Rojas et al., 2014). However, restoration in semi-arid areas faces the challenge of re-establishing plant communities on altered soil substrates (Muñoz-Rojas et al., 2015). These substrates are a result of anthropogenic disturbances such as mining which have altered the plant-soil-water dynamics of the ecosystem (Machado et al., 2013). The aim of this study was to assess the impact of mining on the plant-soil-water dynamics of an arid ecosystem of Western Australia (Pilbara region, North Western Australia) and the implications these altered relationships have on seedling growth and their responses to drought. Methods Drought responses of native plant species were assessed through a series of glasshouse experiments. Firstly, 21 species dominant to the Pilbara region were subjected to drought in a topsoil growth media to assess variation in responses (leaf water potential at the time of stomatal closure) across species and identify traits associated with drought tolerance. Secondly, four species ranging in their drought tolerance identified previously, were grown to two leaf stages (second and fourth leaf stage) in three mining substrates (topsoil, a topsoil and waste mix and waste) to assess seedling drought responses to various potential restoration substrates and how that varied with plant development stage. Results and discussion Four morphological traits were found to be significantly associated with drought indicators (leaf mass ratio, stem area, stem length, stem weight), however, these were weak correlations. Waste substrate and its addition to topsoil reduced plant total biomass but did not alter species responses to drought. However, the soil physical properties of the waste reduced water retention and water availability for plant uptake

  2. Growth and domain structure of YBa2Cu3Ox films on neodymium gallate substrates with deviation of surface normal from [110] NdGaO3

    International Nuclear Information System (INIS)

    Bdikin, I.K.; Mozhaev, P.B.; Ovsyannikov, G.A.; Komissinskij, F.V.; Kotelyanskij, I.M.; Raksha, E.I.

    2001-01-01

    One investigated into growth, crystalline structure and electrophysical properties of YBa 2 Cu 3 O x (YBCO) epitaxial films grown on NdGaO 3 (NGO) substrates with substrate surface normal deviation from [110] by 5-26.6 deg angle around [001] with CeO 2 epitaxial sublayer or without it. Orientation of YBCO epitaxial films grown at these substrates is shown to be governed by occurrence of symmetrically equipment directions in substrates and in CeO 2 layer, as well as, by film precipitation rate. At precipitation high rate YBCO films on CeO 2 sublayer grow in [001] orientation independently of orientation of substrate and sublayer. One determined that at increase of substrate plane deviation angle from (110) NGO twinning of one or of both twin complexes in YBCO might be suppressed [ru

  3. Growth dependence of conjugation explains limited plasmid invasion in biofilms: an individual‐based modelling study

    DEFF Research Database (Denmark)

    Merkey, Brian; Lardon, Laurent; Seoane, Jose Miguel

    2011-01-01

    Plasmid invasion in biofilms is often surprisingly limited in spite of the close contact of cells in a biofilm. We hypothesized that this poor plasmid spread into deeper biofilm layers is caused by a dependence of conjugation on the growth rate (relative to the maximum growth rate) of the donor......, we find that invasion of a resident biofilm is indeed limited when plasmid transfer depends on growth, but not so in the absence of growth dependence. Using sensitivity analysis we also find that parameters related to timing (i.e. a lag before the transconjugant can transfer, transfer proficiency...... and scan speed) and spatial reach (EPS yield, conjugal pilus length) are more important for successful plasmid invasion than the recipients' growth rate or the probability of segregational loss. While this study identifies one factor that can limit plasmid invasion in biofilms, the new individual...

  4. Low Temperature (180°C Growth of Smooth Surface Germanium Epilayers on Silicon Substrates Using Electron Cyclotron Resonance Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Teng-Hsiang Chang

    2014-01-01

    Full Text Available This paper describes a new method to grow thin germanium (Ge epilayers (40 nm on c-Si substrates at a low growth temperature of 180°C using electron cyclotron resonance chemical vapor deposition (ECR-CVD process. The full width at half maximum (FWHM of the Ge (004 in X-ray diffraction pattern and the compressive stain in a Ge epilayer of 683 arcsec and 0.12% can be achieved. Moreover, the Ge/Si interface is observed by transmission electron microscopy to demonstrate the epitaxial growth of Ge on Si and the surface roughness is 0.342 nm. The thin-thickness and smooth surface of Ge epilayer grown on Si in this study is suitable to be a virtual substrate for developing the low cost and high efficiency III-V/Si tandem solar cells in our opinion. Furthermore, the low temperature process can not only decrease costs but can also reduce the restriction of high temperature processes on device manufacturing.

  5. Enhanced growth of highly lattice-mismatched CdSe on GaAs substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wang, Jyh-Shyang; Tsai, Yu-Hsuan; Wang, Hsiao-Hua; Ke, Han-Xiang; Tong, Shih-Chang; Yang, Chu-Shou; Wu, Chih-Hung; Shen, Ji-Lin

    2013-01-01

    This work demonstrates the improvement of the molecular beam epitaxial growth of zinc-blende CdSe on (0 0 1) GaAs substrate with a large lattice mismatch by introducing a small amount of Te atoms. Exposing the growing surface to Te atoms changes the reflection high-energy electron diffraction pattern from spotty to streaky together with (2 × 1) surface reconstruction, and greatly reduces the full width at half maximum of the X-ray rocking curve and increases the integral intensity of room-temperature photoluminescence by a factor of about nine.

  6. Latent Growth Modeling of nursing care dependency of acute neurological inpatients.

    Science.gov (United States)

    Piredda, M; Ghezzi, V; De Marinis, M G; Palese, A

    2015-01-01

    Longitudinal three-time point study, addressing how neurological adult patient care dependency varies from the admission time to the 3rd day of acute hospitalization. Nursing care dependency was measured with the Care Dependency Scale (CDS) and a Latent Growth Modeling approach was used to analyse the CDS trend in 124 neurosurgical and stroke inpatients. Care dependence followed a decreasing linear trend. Results can help nurse-managers planning an appropriate amount of nursing care for acute neurological patients during their initial stage of hospitalization. Further studies are needed aimed at investigating the determinants of nursing care dependence during the entire in-hospital stay.

  7. Frank-ter Haar syndrome protein Tks4 regulates epidermal growth factor-dependent cell migration.

    Science.gov (United States)

    Bögel, Gábor; Gujdár, Annamária; Geiszt, Miklós; Lányi, Árpád; Fekete, Anna; Sipeki, Szabolcs; Downward, Julian; Buday, László

    2012-09-07

    Mutations in the SH3PXD2B gene coding for the Tks4 protein are responsible for the autosomal recessive Frank-ter Haar syndrome. Tks4, a substrate of Src tyrosine kinase, is implicated in the regulation of podosome formation. Here, we report a novel role for Tks4 in the EGF signaling pathway. In EGF-treated cells, Tks4 is tyrosine-phosphorylated and associated with the activated EGF receptor. This association is not direct but requires the presence of Src tyrosine kinase. In addition, treatment of cells with LY294002, an inhibitor of PI 3-kinase, or mutations of the PX domain reduces tyrosine phosphorylation and membrane translocation of Tks4. Furthermore, a PX domain mutant (R43W) Tks4 carrying a reported point mutation in a Frank-ter Haar syndrome patient showed aberrant intracellular expression and reduced phosphoinositide binding. Finally, silencing of Tks4 was shown to markedly inhibit HeLa cell migration in a Boyden chamber assay in response to EGF or serum. Our results therefore reveal a new function for Tks4 in the regulation of growth factor-dependent cell migration.

  8. Density regulation in Northeast Atlantic fish populations: Density dependence is stronger in recruitment than in somatic growth.

    Science.gov (United States)

    Zimmermann, Fabian; Ricard, Daniel; Heino, Mikko

    2018-05-01

    Population regulation is a central concept in ecology, yet in many cases its presence and the underlying mechanisms are difficult to demonstrate. The current paradigm maintains that marine fish populations are predominantly regulated by density-dependent recruitment. While it is known that density-dependent somatic growth can be present too, its general importance remains unknown and most practical applications neglect it. This study aimed to close this gap by for the first time quantifying and comparing density dependence in growth and recruitment over a large set of fish populations. We fitted density-dependent models to time-series data on population size, recruitment and age-specific weight from commercially exploited fish populations in the Northeast Atlantic Ocean and the Baltic Sea. Data were standardized to enable a direct comparison within and among populations, and estimated parameters were used to quantify the impact of density regulation on population biomass. Statistically significant density dependence in recruitment was detected in a large proportion of populations (70%), whereas for density dependence in somatic growth the prevalence of density dependence depended heavily on the method (26% and 69%). Despite age-dependent variability, the density dependence in recruitment was consistently stronger among age groups and between alternative approaches that use weight-at-age or weight increments to assess growth. Estimates of density-dependent reduction in biomass underlined these results: 97% of populations with statistically significant parameters for growth and recruitment showed a larger impact of density-dependent recruitment on population biomass. The results reaffirm the importance of density-dependent recruitment in marine fishes, yet they also show that density dependence in somatic growth is not uncommon. Furthermore, the results are important from an applied perspective because density dependence in somatic growth affects productivity and

  9. Temperature dependent IDS–VGS characteristics of an N-channel Si tunneling field-effect transistor with a germanium source on Si(110) substrate

    International Nuclear Information System (INIS)

    Liu Yan; Yan Jing; Wang Hongjuan; Han Genquan

    2014-01-01

    We fabricated n-type Si-based TFETs with a Ge source on Si(110) substrate. The temperature dependent I DS –V GS characteristics of a TFET formed on Si(110) are investigated in the temperature range of 210 to 300 K. A study of the temperature dependence of I Leakage indicates that I Leakage is mainly dominated by the Shockley-Read-Hall (SRH) generation—recombination current of the n + drain—Si substrate junction. I ON increases monotonically with temperature, which is attributed to a reduction of the bandgap at the tunneling junction and an enhancement of band-to-band tunneling rate. The subthreshold swing S for trap assisted tunneling (TAT) current and band-to-band tunneling (BTBT) current shows the different temperature dependence. The subthreshold swing S for the TAT current degrades with temperature, while the S for BTBT current is temperature independent. (semiconductor devices)

  10. Single crystalline metal films as substrates for graphene growth

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, Patrick; Henss, Ann-Kathrin; Wintterlin, Joost [Department Chemie, Ludwig-Maximilians-Universitaet Muenchen (Germany); Weinl, Michael; Schreck, Matthias [Institut fuer Physik, Universitaet Augsburg (Germany); Speck, Florian; Ostler, Markus [Lehrstuhl fuer Technische Physik, Universitaet Erlangen-Nuernberg, Erlangen (Germany); Institut fuer Physik, Technische Universitaet Chemnitz (Germany); Seyller, Thomas [Institut fuer Physik, Technische Universitaet Chemnitz (Germany)

    2017-11-15

    Single crystalline metal films deposited on YSZ-buffered Si(111) wafers were investigated with respect to their suitability as substrates for epitaxial graphene. Graphene was grown by CVD of ethylene on Ru(0001), Ir(111), and Ni(111) films in UHV. For analysis a variety of surface science methods were used. By an initial annealing step the surface quality of the films was strongly improved. The temperature treatments of the metal films caused a pattern of slip lines, formed by thermal stress in the films, which, however, did not affect the graphene quality and even prevented wrinkle formation. Graphene was successfully grown on all three types of metal films in a quality comparable to graphene grown on bulk single crystals of the same metals. In the case of the Ni(111) films the originally obtained domain structure of rotational graphene phases could be transformed into a single domain by annealing. This healing process is based on the control of the equilibrium between graphene and dissolved carbon in the film. For the system graphene/Ni(111) the metal, after graphene growth, could be removed from underneath the epitaxial graphene layer by a pure gas phase reaction, using the reaction of CO with Ni to give gaseous Ni(CO){sub 4}. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Effects of hepatocyte growth factor on glutathione synthesis, growth, and apoptosis is cell density-dependent

    International Nuclear Information System (INIS)

    Yang Heping; Magilnick, Nathaniel; Xia Meng; Lu, Shelly C.

    2008-01-01

    Hepatocyte growth factor (HGF) is a potent hepatocyte mitogen that exerts opposing effects depending on cell density. Glutathione (GSH) is the main non-protein thiol in mammalian cells that modulates growth and apoptosis. We previously showed that GSH level is inversely related to cell density of hepatocytes and is positively related to growth. Our current work examined whether HGF can modulate GSH synthesis in a cell density-dependent manner and how GSH in turn influence HGF's effects. We found HGF treatment of H4IIE cells increased cell GSH levels only under subconfluent density. The increase in cell GSH under low density was due to increased transcription of GSH synthetic enzymes. This correlated with increased protein levels and nuclear binding activities of c-Jun, c-Fos, p65, p50, Nrf1 and Nrf2 to the promoter region of these genes. HGF acts as a mitogen in H4IIE cells under low cell density and protects against tumor necrosis factor α (TNFα)-induced apoptosis by limiting JNK activation. However, HGF is pro-apoptotic under high cell density and exacerbates TNFα-induced apoptosis by potentiating JNK activation. The increase in cell GSH under low cell density allows HGF to exert its full mitogenic effect but is not necessary for its anti-apoptotic effect

  12. Population and prehistory I: Food-dependent population growth in constant environments.

    Science.gov (United States)

    Lee, Charlotte T; Tuljapurkar, Shripad

    2008-06-01

    We present a demographic model that describes the feedbacks between food supply, human mortality and fertility rates, and labor availability in expanding populations, where arable land area is not limiting. This model provides a quantitative framework to describe how environment, technology, and culture interact to influence the fates of preindustrial agricultural populations. We present equilibrium conditions and derive approximations for the equilibrium population growth rate, food availability, and other food-dependent measures of population well-being. We examine how the approximations respond to environmental changes and to human choices, and find that the impact of environmental quality depends upon whether it manifests through agricultural yield or maximum (food-independent) survival rates. Human choices can complement or offset environmental effects: greater labor investments increase both population growth and well-being, and therefore can counteract lower agricultural yield, while fertility control decreases the growth rate but can increase or decrease well-being. Finally we establish equilibrium stability criteria, and argue that the potential for loss of local stability at low population growth rates could have important consequences for populations that suffer significant environmental or demographic shocks.

  13. Surface Reconstruction-Induced Coincidence Lattice Formation Between Two-Dimensionally Bonded Materials and a Three-Dimensionally Bonded Substrate

    NARCIS (Netherlands)

    Boschker, Jos E.; Momand, Jamo; Bragaglia, Valeria; Wang, Ruining; Perumal, Karthick; Giussani, Alessandro; Kooi, Bart J.; Riechert, Henning; Calarco, Raffaella

    Sb2Te3 films are used for studying the epitaxial registry between two-dimensionally bonded (2D) materials and three-dimensional bonded (3D) substrates. In contrast to the growth of 3D materials, it is found that the formation of coincidence lattices between Sb2Te3 and Si(111) depends on the geometry

  14. SUPPLEMENTARY INFORMATION Indicators for suicide substrate ...

    Indian Academy of Sciences (India)

    Jatinder

    The usual trend is to apply QSSA to a system with high substrate concentration. But, QSSA, i.e., steadiness in intermediate concentration, may even be achieved at high and even comparable enzyme-substrate ratio. Whether a system will attain a steady state depends not only on the high substrate concentration, but also on ...

  15. The diversity and specificity of the extracellular proteome in the cellulolytic bacterium Caldicellulosiruptor bescii is driven by the nature of the cellulosic growth substrate.

    Science.gov (United States)

    Poudel, Suresh; Giannone, Richard J; Basen, Mirko; Nookaew, Intawat; Poole, Farris L; Kelly, Robert M; Adams, Michael W W; Hettich, Robert L

    2018-01-01

    Caldicellulosiruptor bescii is a thermophilic cellulolytic bacterium that efficiently deconstructs lignocellulosic biomass into sugars, which subsequently can be fermented into alcohols, such as ethanol, and other products. Deconstruction of complex substrates by C. bescii involves a myriad of highly abundant, substrate-specific extracellular solute binding proteins (ESBPs) and carbohydrate-active enzymes (CAZymes) containing carbohydrate-binding modules (CBMs). Mass spectrometry-based proteomics was employed to investigate how these substrate recognition proteins and enzymes vary as a function of lignocellulosic substrates. Proteomic analysis revealed several key extracellular proteins that respond specifically to either C5 or C6 mono- and polysaccharides. These include proteins of unknown functions (PUFs), ESBPs, and CAZymes. ESBPs that were previously shown to interact more efficiently with hemicellulose and pectin were detected in high abundance during growth on complex C5 substrates, such as switchgrass and xylan. Some proteins, such as Athe_0614 and Athe_2368, whose functions are not well defined were predicted to be involved in xylan utilization and ABC transport and were significantly more abundant in complex and C5 substrates, respectively. The proteins encoded by the entire glucan degradation locus (GDL; Athe_1857, 1859, 1860, 1865, 1867, and 1866) were highly abundant under all growth conditions, particularly when C. bescii was grown on cellobiose, switchgrass, or xylan. In contrast, the glycoside hydrolases Athe_0609 (Pullulanase) and 0610, which both possess CBM20 and a starch binding domain, appear preferential to C5/complex substrate deconstruction. Some PUFs, such as Athe_2463 and 2464, were detected as highly abundant when grown on C5 substrates (xylan and xylose), also suggesting C5-substrate specificity. This study reveals the protein membership of the C. bescii secretome and demonstrates its plasticity based on the complexity (mono

  16. Growth of nano hexagon-like flake arrays cerium carbonate created with PAH as the substrate

    Energy Technology Data Exchange (ETDEWEB)

    Li, M., E-mail: limei@imust.cn [School of Materials Science and Engineering, Beijing University of Chemical Engineering, Department of Materials, Beijing 100029 (China); School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Department of Inorganic and Metalloid Materials, Key Laboratory of New Technologies of Modern Metallurgy and Application of Rare Materials, Baotou 014010 (China); Hu, Y.H., E-mail: bthyh@163.com [School of Materials Science and Engineering, Beijing University of Chemical Engineering, Department of Materials, Beijing 100029 (China); School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Department of Inorganic and Metalloid Materials, Key Laboratory of New Technologies of Modern Metallurgy and Application of Rare Materials, Baotou 014010 (China); Liu, Z.G.; Wang, X.F.; Wang, M.T. [School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Department of Inorganic and Metalloid Materials, Key Laboratory of New Technologies of Modern Metallurgy and Application of Rare Materials, Baotou 014010 (China)

    2015-01-15

    Petals-like Ce{sub 2}(CO{sub 3}){sub 3} on Ce{sub 2}(CO{sub 3}){sub 3} nano hexagon-like flake arrays have been precipitatingly fabricated using PAH substrates. By changing the way of feeding, PAH concentration and aging time, petals-like Ce{sub 2}(CO{sub 3}){sub 3} was created best when adding PAH into the Ce(NO{sub 3}){sub 3} solution, joined (NH{sub 4}){sub 2}CO{sub 3} solution along with mixing, PAH concentration is 0.9 g/L, aging time is 4 h. A growth mechanism was proposed to account for the growth of the petals-like Ce{sub 2}(CO{sub 3}){sub 3} with PAH as the substrate. Poly allylamine hydrochloride (PAH) is as template agent which forms π-allyl complex with Ce{sup 3+} and controls the morphology of Ce{sub 2}(CO{sub 3}){sub 3} particle. PAH and Ce{sup 3+} form π-allyl complex, and then induce the formation of Ce{sub 2}(CO{sub 3}){sub 3} crystal nucleus. And infrared spectrum analysis verified. XRD show that after adding PAH which is adsorbed on the crystal plane, the growth of Ce{sub 2}(CO{sub 3}){sub 3} crystal is inhibited on (2 4 2), the growth is promoted on (2 0 2) which is differentiated into the new (1 5 1), (2 2 2) is unchanged, Ce{sub 2}(CO{sub 3}){sub 3} crystal is accumulated petals shape by hexagon-like flake. UV absorption spectra show that CeO{sub 2} as prepared precursor Ce{sub 2}(CO{sub 3}){sub 3} after calcinations in air at high temperatures, the petal-like CeO{sub 2} has strong UV absorption and reflection effects, and absorption interval changed significantly by the move to UVA from UVB. - Graphical abstract: Each Ce-atom connects three Cl-atoms and three allyls in three dimensional spaces. To take the plane as a reference plane which is arrayed with three Ce-atom as equilateral triangle. The triangular each vertex is Ce-atom, the triangular center place is Cl-atom, the equilateral triangle which is mutually perpendicular with Ce-triangle surface and the inclined angle is 60° is made up with three Cl-atoms. - Highlights: • Petals

  17. Effect of the substrate temperature on the microstructure and texture of Mg{sub 90}Zr{sub 10} (at.%) films deposited by sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Garces, Gerardo [Department of Physical Metallurgy, CENIM, CSIC, Av. De Gregorio del Amo 8, 28040 Madrid (Spain)]. E-mail: ggarces@cenim.csic.es; Landais, Stephan [Office National dEtudes et de Recherches Aerospatiales, ONERA, BP72-29 Avenue de la Division Leclerc F-92322 Chatillon, Paris (France); Adeva, Paloma [Department of Physical Metallurgy, CENIM, CSIC, Av. De Gregorio del Amo 8, 28040 Madrid (Spain)

    2006-11-30

    The microstructure of Mg{sub 90}Zr{sub 10} (at.%) films obtained by sputtering onto copper substrate at three different temperatures (180, 320 and 350 deg. C) has been studied. Films exhibited an intense (0 0 0 1) basal plane fibre texture with the fibre axis parallel to the growth direction. Their microstructure consisted of columnar grains growing from the copper substrate to the free surface which is typical of the zone II of the Movchan and Demchishin zone model developed for PVD materials. Nevertheless, the microstructure of films was dependent on the substrate temperature. The grain diameter increased as the substrate temperature was increased. Moreover, the dislocation density inside the grains as well as that piled-up forming sub-grain boundaries decreased as the deposition temperature increased. Although the film growth in zone II is controlled by surface diffusion the larger surface mobility of the atoms as the substrate temperature increased led to changes in the solubility of zirconium. At low substrate temperatures all zirconium was in solid solution. However, at 350 deg. C the formation of small zirconium particles occurred at grain boundaries.

  18. GaMnAs on patterned GaAs(001) substrates: Growth and magnetotransport

    Energy Technology Data Exchange (ETDEWEB)

    Daeubler, Joachim; Glunk, Michael; Hummel, Thomas; Schoch, Wladimir; Limmer, Wolfgang; Sauer, Rolf [Institut fuer Halbleiterphysik, Universitaet Ulm, 89069 Ulm (Germany)

    2007-07-01

    A new type of GaMnAs microstructures with laterally confined electronic and magnetic properties has been realized in a bottom-up procedure by growing GaMnAs films on [1 anti 10]-oriented ridge structures with (113)A sidewalls and (001) top layers prepared on GaAs(001) substrates. Previous studies on planar GaMnAs samples have revealed different incorporation of Mn and excess As in (001) and (113)A layers. Accordingly, temperature- and field-dependent magnetotransport measurements on the overgrown ridge structures clearly demonstrate the coexistence of electronic and magnetic properties specific for (001) and (113)A GaMnAs in one single sample. This introduces an additional degree of freedom in the development of new functional structures.

  19. Study of the oxygen and substrate bias effects on the defect structure of reactive sputter-deposited SnOx films

    International Nuclear Information System (INIS)

    Misheva, M.; Nancheva, N.; Docheva, P.; Hadjijska, P.; Djourelov, N.; Elenkov, D.

    1999-01-01

    The effects of oxygen and substrate bias on the defect structure of reactive sputter-deposited SnOx films were investigated. Samples were analysed using transmission electron microscopy (TEM), transmission electron diffraction (TED), X-ray diffraction (XRD) and positron annihilation spectroscopy (PAS). The oxygen played an important role in the film growth and surface morphology. TEM, TED and XRD showed that increasing of the oxygen partial pressure leads to the formation of films with different crystal phases. The void sizes also depended on oxygen partial pressure. The positron lifetimes and their relative intensities depended on the void concentration, the partial annealing of the vacancies and oxidation of SnO to SnOx. This investigation also showed that the mechanical strength of the films obtained at negative substrate bias is higher and the concentration of vacancy defects is smaller, than in the films, prepared without substrate bias. (author)

  20. Nutritional capability of and substrate suitability for Pseudogymnoascus destructans, the causal agent of bat white-nose syndrome.

    Science.gov (United States)

    Raudabaugh, Daniel B; Miller, Andrew N

    2013-01-01

    Pseudogymnoascus destructans, the causal agent of bat white-nose syndrome, has caused nearly six million deaths in North American bats since its introduction into the United States in 2006. Current research has shown that caves can harbor P. destructans even after the infected bats are removed and bats no longer visit or inhabit previously infected caves. Our research focuses on elucidating reservoir requirements by investigating the nutritional capabilities of and substrate suitability requirements for six different P. destructans isolates from various localities including Illinois, Indiana, New York (Type specimen), and Pennsylvania. Enzyme assays implicate that both urease and b-glucosidase appear to be constitutive, lipase and esterase activity were more rapid than proteinase activity on 6% gelatin, gelatin degradation was accompanied by medium alkalinization, the reduction of thiosulfate generated hydrogen sulfide gas, chitinase and manganese dependent peroxidase activity were not visually demonstrated within eight weeks, and keratinase activity was not evident at pH 8 within eight weeks. We demonstrate that all P. destructans isolates are capable of growth and sporulation on dead fish, insect, and mushroom tissues. Sole nitrogen source assays demonstrated that all P. destructans isolates exhibit Class 2 nitrogen utilization and that growth-dependent interactions occur among different pH and nitrogen sources. Substrate suitability assays demonstrated that all isolates could grow and sporulate on media ranging from pH 5-11 and tolerated media supplemented with 2000 mg/L of calcium and 700 mg/L of three separated sulfur compounds: thiosulfate L-cysteine, and sulfite. All isolates were intolerant to PEG-induced matric potential with delayed germination and growth at -2.5 MPa with no visible germination at -5 MPa. Interestingly, decreasing the surface tension with Tween 80 permitted germination and growth of P. destructans in -5 MPa PEG medium within 14 days

  1. Effects of bamboo substrate and supplementary feed on growth and ...

    African Journals Online (AJOL)

    application as control (C), control and substrate installation (C + S) and, control and substrate with supplementary feeding (C + S + F) were randomly allotted to six earthen ponds each with an area of 100m2. Catfish fingerlings of mean weight 27.5g + 1.25 were stocked at the rate of 80 fish per 100m2. Water temperature, pH ...

  2. Substrate morphology induced self-organization into carbon nanotube arrays, ropes, and agglomerates.

    Science.gov (United States)

    Huang, Jia-Qi; Zhang, Qiang; Xu, Guang-Hui; Qian, Wei-Zhong; Wei, Fei

    2008-10-29

    In this paper, hydrophobic carbon nanotube (CNT) arrays, ropes, and agglomerates were synthesized through self-organization on quartz substrates with different micro-structures under the same growth condition. On a flat substrate, a uniform woven structure was formed which resulted in a synchronous growth into an array. When the substrate with 10 µm round concaves distributed on the surface was adopted, the woven structure was sporadic and a CNT cluster was grown in the concave. With further growth, CNT ropes were self-organized. Subsequently, when the substrate consisting of irregular ∼100 nm gaps was used, the initial woven structure was high density, thus resulting in the formation of CNT agglomerates. Study results showed that CNT arrays grown on the flat substrate were of the highest purity and had a contact angle of 153.8 ± 0.9°. Thus, the self-organization behavior among CNTs was in situ modulated by different substrate morphology without further treatments. This provides us with an additional understanding of the self-organization of CNTs during growth, as well as strategies for the controllable synthesis of CNTs with fixed properties.

  3. Substrate morphology induced self-organization into carbon nanotube arrays, ropes, and agglomerates

    International Nuclear Information System (INIS)

    Huang Jiaqi; Zhang Qiang; Xu Guanghui; Qian Weizhong; Wei Fei

    2008-01-01

    In this paper, hydrophobic carbon nanotube (CNT) arrays, ropes, and agglomerates were synthesized through self-organization on quartz substrates with different micro-structures under the same growth condition. On a flat substrate, a uniform woven structure was formed which resulted in a synchronous growth into an array. When the substrate with 10 μm round concaves distributed on the surface was adopted, the woven structure was sporadic and a CNT cluster was grown in the concave. With further growth, CNT ropes were self-organized. Subsequently, when the substrate consisting of irregular ∼100 nm gaps was used, the initial woven structure was high density, thus resulting in the formation of CNT agglomerates. Study results showed that CNT arrays grown on the flat substrate were of the highest purity and had a contact angle of 153.8 ± 0.9 0 . Thus, the self-organization behavior among CNTs was in situ modulated by different substrate morphology without further treatments. This provides us with an additional understanding of the self-organization of CNTs during growth, as well as strategies for the controllable synthesis of CNTs with fixed properties.

  4. On the growth mechanisms of polar (100) surfaces of ceria on copper (100)

    Science.gov (United States)

    Hackl, Johanna; Duchoň, Tomáš; Gottlob, Daniel M.; Cramm, Stefan; Veltruská, Kateřina; Matolín, Vladimír; Nemšák, Slavomír; Schneider, Claus M.

    2018-05-01

    We present a study of temperature dependent growth of nano-sized ceria islands on a Cu (100) substrate. Low-energy electron microscopy, micro-electron diffraction, X-ray absorption spectroscopy, and photoemission electron microscopy are used to determine the morphology, shape, chemical state, and crystal structure of the grown islands. Utilizing real-time observation capabilities, we reveal a three-way interaction between the ceria, substrate, and local oxygen chemical potential. The interaction manifests in the reorientation of terrace boundaries on the Cu (100) substrate, characteristic of the transition between oxidized and metallic surface. The reorientation is initiated at nucleation sites of ceria islands, whose growth direction is influenced by the proximity of the terrace boundaries. The grown ceria islands were identified as fully stoichiometric CeO2 (100) surfaces with a (2 × 2) reconstruction.

  5. Investigation of the silicon ion density during molecular beam epitaxy growth

    Science.gov (United States)

    Eifler, G.; Kasper, E.; Ashurov, Kh.; Morozov, S.

    2002-05-01

    Ions impinging on a surface during molecular beam epitaxy influence the growth and the properties of the growing layer, for example, suppression of dopant segregation and the generation of crystal defects. The silicon electron gun in the molecular beam epitaxy (MBE) equipment is used as a source for silicon ions. To use the effect of ion bombardment the mechanism of generation and distribution of ions was investigated. A monitoring system was developed and attached at the substrate position in the MBE growth chamber to measure the ion and electron densities towards the substrate. A negative voltage was applied to the substrate to modify the ion energy and density. Furthermore the current caused by charge carriers impinging on the substrate was measured and compared with the results of the monitoring system. The electron and ion densities were measured by varying the emission current of the e-gun achieving silicon growth rates between 0.07 and 0.45 nm/s and by changing the voltage applied to the substrate between 0 to -1000 V. The dependencies of ion and electron densities were shown and discussed within the framework of a simple model. The charged carrier densities measured with the monitoring system enable to separate the ion part of the substrate current and show its correlation to the generation rate. Comparing the ion density on the whole substrate and in the center gives a hint to the ion beam focusing effect. The maximum ion and electron current densities obtained were 0.40 and 0.61 μA/cm2, respectively.

  6. Substrates coated with silver nanoparticles as a neuronal regenerative material

    Directory of Open Access Journals (Sweden)

    Alon N

    2014-05-01

    Full Text Available Noa Alon,1,3,* Yana Miroshnikov,2,3,* Nina Perkas,2,3 Ifat Nissan,2,3 Aharon Gedanken,2,3 Orit Shefi1,31Faculty of Engineering, 2Department of Chemistry, 3Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel*These authors contributed equally to this workAbstract: Much effort has been devoted to the design of effective biomaterials for nerve regeneration. Here, we report the novel use of silver nanoparticles (AgNPs as regenerative agents to promote neuronal growth. We grew neuroblastoma cells on surfaces coated with AgNPs and studied the effect on the development of the neurites during the initiation and the elongation growth phases. We find that the AgNPs function as favorable anchoring sites, and the growth on the AgNP-coated substrates leads to a significantly enhanced neurite outgrowth. Cells grown on substrates coated with AgNPs have initiated three times more neurites than cells grown on uncoated substrates, and two times more than cells grown on substrates sputtered with a plain homogenous layer of silver. The growth of neurites on AgNPs in the elongation phase was enhanced as well. A comparison with substrates coated with gold nanoparticles (AuNPs and zinc oxide nanoparticles (ZnONPs demonstrated a clear silver material-driven promoting effect, in addition to the nanotopography. The growth on substrates coated with AgNPs has led to a significantly higher number of initiating neurites when compared to substrates coated with AuNPs or ZnONPs. All nanoparticle-coated substrates affected and promoted the elongation of neurites, with a significant positive maximal effect for the AgNPs. Our results, combined with the well-known antibacterial effect of AgNPs, suggest the use of AgNPs as an attractive nanomaterial – with dual activity – for neuronal repair studies.Keywords: nerve regeneration, nanotopography, antibacterial material, neuroblastoma, gold nanoparticles, zinc oxide nanoparticles

  7. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype

    Directory of Open Access Journals (Sweden)

    Ruslana Vasylkovska

    2015-01-01

    Full Text Available Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast.

  8. Molecular dynamics simulation about porous thin-film growth in secondary deposition

    International Nuclear Information System (INIS)

    Chen Huawei; Tieu, A. Kiet; Liu Qiang; Hagiwara, Ichiro; Lu Cheng

    2007-01-01

    The thin film growth has been confirmed to be assembled by an enormous number of clusters in experiments of CVD. Sequence of clusters' depositions proceeds to form the thin film at short time as gas fluids through surface of substrate. In order to grow condensed thin film using series of cluster deposition, the effect of initial velocity, substrate temperature and density of clusters on property of deposited thin film, especially appearance of nanoscale pores inside thin film must be investigated. In this simulation, three different cluster sizes of 203, 653, 1563 atoms with different velocities (0, 10, 100, 1000 and 3000 m/s) were deposited on a Cu(0 0 1) substrate whose temperatures were set between 300 and 1000 K. Four clusters and one cluster were used in primary deposition and secondary deposition, respectively. We have clarified that adhesion between clusters and substrate is greatly influenced by initial velocity. As a result, the exfoliation pattern of deposited thin film is dependent on initial velocity and different between them. One borderline dividing whole region into porous region and nonporous region are obtained to show the effect of growth conditions on appearance of nanoscale pores inside thin film. Moreover, we have also shown that the likelihood of porous thin film is dependent on the point of impact of a cluster relative to previously deposited clusters

  9. Molecular dynamics simulation about porous thin-film growth in secondary deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen Huawei [School of Mechanical Engineering and Automation, Beihang University, No. 37 Xuyuan Road, Haidian District, Beijing (China) and Mechanical Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, NSW 2522 (Australia)]. E-mail: chen_hua_wei@yahoo.com; Tieu, A. Kiet [Mechanical Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, NSW 2522 (Australia); Liu Qiang [School of Mechanical Engineering and Automation, Beihang University, No. 37 Xuyuan Road, Haidian District, Beijing (China); Hagiwara, Ichiro [Department of Mechanical Sciences and Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo (Japan); Lu Cheng [Mechanical Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, NSW 2522 (Australia)

    2007-07-15

    The thin film growth has been confirmed to be assembled by an enormous number of clusters in experiments of CVD. Sequence of clusters' depositions proceeds to form the thin film at short time as gas fluids through surface of substrate. In order to grow condensed thin film using series of cluster deposition, the effect of initial velocity, substrate temperature and density of clusters on property of deposited thin film, especially appearance of nanoscale pores inside thin film must be investigated. In this simulation, three different cluster sizes of 203, 653, 1563 atoms with different velocities (0, 10, 100, 1000 and 3000 m/s) were deposited on a Cu(0 0 1) substrate whose temperatures were set between 300 and 1000 K. Four clusters and one cluster were used in primary deposition and secondary deposition, respectively. We have clarified that adhesion between clusters and substrate is greatly influenced by initial velocity. As a result, the exfoliation pattern of deposited thin film is dependent on initial velocity and different between them. One borderline dividing whole region into porous region and nonporous region are obtained to show the effect of growth conditions on appearance of nanoscale pores inside thin film. Moreover, we have also shown that the likelihood of porous thin film is dependent on the point of impact of a cluster relative to previously deposited clusters.

  10. Size-controlled growth of ZnO nanowires by catalyst-free high-pressure pulsed laser deposition and their optical properties

    Directory of Open Access Journals (Sweden)

    W. Z. Liu

    2011-06-01

    Full Text Available Single crystalline ZnO nanowires were fabricated on Si (100 substrates by catalyst-free high-pressure pulsed laser deposition. It is found that the nanowires start to form when the substrate temperature and growth pressure exceed the critical values of 700 oC and 700 Pa, and their size strongly depends on these growth conditions. That is, the aspect ratio of the nanowires decreases with increasing temperature or decreasing pressure. Such a size dependence on growth conditions was discussed in terms of surface migration and scattering of ablated atoms. Room-temperature photoluminescence spectrum of ZnO nanowires shows a dominant near-band-edge emission peak at 3.28 eV and a visible emission band centered at 2.39 eV. Temperature-dependent photoluminescence studies reveal that the former consists of the acceptor-bound exciton and free exciton emissions; while the latter varies in intensity with the aspect ratio of the nanowires and is attributed to the surface-mediated deep level emission.

  11. Direct in Situ Conversion of Metals into Metal-Organic Frameworks: A Strategy for the Rapid Growth of MOF Films on Metal Substrates.

    Science.gov (United States)

    Ji, Hoon; Hwang, Sunhyun; Kim, Keonmok; Kim, CheolGi; Jeong, Nak Cheon

    2016-11-30

    The fabrication of metal-organic framework (MOF) films on conducting substrates has demonstrated great potential in applications such as electronic conduction and sensing. For these applications, direct contact of the film to the conducting substrate without a self-assembled monolayer (SAM) is a desired step that must be achieved prior to the use of MOF films. In this report, we propose an in situ strategy for the rapid one-step conversion of Cu metal into HKUST-1 films on conducting Cu substrates. The Cu substrate acts both as a conducting substrate and a source of Cu 2+ ions during the synthesis of HKUST-1. This synthesis is possible because of the simultaneous reaction of an oxidizing agent and a deprotonating agent, in which the former agent dissolves the metal substrate to form Cu 2+ ions while the latter agent deprotonates the ligand. Using this strategy, the HKUST-1 film could not only be rapidly synthesized within 5 min but also be directly attached to the Cu substrate. Based on microscopic studies, we propose a plausible mechanism for the growth reaction. Furthermore, we show the versatility of this in situ conversion methodology, applying it to ZIF-8, which comprises Zn 2+ ions and imidazole-based ligands. Using an I 2 -filled HKUST-1 film, we further demonstrate that the direct contact of the MOF film to the conducting substrate makes the material more suitable for use as a sensor or electronic conductor.

  12. Attempts to lower the detection limits of heavy metals in standardized grass cultures by using alternative growth substrates

    International Nuclear Information System (INIS)

    Winter, A.; Mueller, P.; Wagner, G.

    1992-01-01

    In addition to the use of standardized grass cultures (cf. VDI 3792) within the framework of an effect cadastre, grass cultures were tested on two non-contaminated substrates with nutrient solution in the greenhouse and in the open land during different exposure cycles. The results: As compared to the standard cultures on standardized soil, the cultures have the same or a better growth performance and better dry resistance on the artificial substrates; the blind values and the refore the detection limits in particular for cadmium are by far lower; four-week exposure periods with a two-week overlap have an improved information yield for the same amount of work throughout the investigation period as compared to a two-week exposure. Recommendations are derived from the results for a simplified application of the grass culture method in practice. (orig.) [de

  13. Catalytic growth of carbon nanofibers on Cr nanoparticles on a carbon substrate: adsorbents for organic dyes in water

    Energy Technology Data Exchange (ETDEWEB)

    Alves de Oliveira, Luiz Carlos, E-mail: luizoliveira@qui.ufmg.br; Candido da Silva, Adilson; Rodrigues Teixeira Machado, Alan [ICEx, Universidade Federal de Minas Gerais, Departamento de Quimica (Brazil); Diniz, Renata [Universidade Federal de Juiz de Fora, Departamento de Quimica (Brazil); Cesar Pereira, Marcio [Universidade Federal dos Vales do Jequitinhonha e Mucuri, Instituto de Ciencia, Engenharia e Tecnologia (Brazil)

    2013-05-15

    We have produced carbon nanofibers (CNFs) using leather waste that had been tanned with a chromium bath, and when dried contained Cr{sub 2}O{sub 3}. Suitable reduction processing produced a carbon substrate with supported nanoparticles of chromium metal. Powder X-ray diffraction showed that the Cr{sub 2}O{sub 3} is reduced on the carbon surface to produce CrC and metal Cr, which is the effective catalyst for the CNFs growth. The CNF arrays were confirmed by TEM images. Raman data revealed that the synthesized CNFs have a poor-quality graphite structure which favors their use in adsorption processes. These CNFs presented higher affinity to adsorb anionic dyes, whereas the cationic dyes are better adsorbed on the carbon substrate. The low-cost and availability of the carbon precursor makes their potential use to produce CNFs of interest.

  14. Catalytic growth of carbon nanofibers on Cr nanoparticles on a carbon substrate: adsorbents for organic dyes in water

    International Nuclear Information System (INIS)

    Alves de Oliveira, Luiz Carlos; Cândido da Silva, Adilson; Rodrigues Teixeira Machado, Alan; Diniz, Renata; César Pereira, Márcio

    2013-01-01

    We have produced carbon nanofibers (CNFs) using leather waste that had been tanned with a chromium bath, and when dried contained Cr 2 O 3 . Suitable reduction processing produced a carbon substrate with supported nanoparticles of chromium metal. Powder X-ray diffraction showed that the Cr 2 O 3 is reduced on the carbon surface to produce CrC and metal Cr, which is the effective catalyst for the CNFs growth. The CNF arrays were confirmed by TEM images. Raman data revealed that the synthesized CNFs have a poor-quality graphite structure which favors their use in adsorption processes. These CNFs presented higher affinity to adsorb anionic dyes, whereas the cationic dyes are better adsorbed on the carbon substrate. The low-cost and availability of the carbon precursor makes their potential use to produce CNFs of interest.

  15. Catalytic growth of carbon nanofibers on Cr nanoparticles on a carbon substrate: adsorbents for organic dyes in water

    Science.gov (United States)

    de Oliveira, Luiz Carlos Alves; da Silva, Adilson Cândido; Machado, Alan Rodrigues Teixeira; Diniz, Renata; Pereira, Márcio César

    2013-05-01

    We have produced carbon nanofibers (CNFs) using leather waste that had been tanned with a chromium bath, and when dried contained Cr2O3. Suitable reduction processing produced a carbon substrate with supported nanoparticles of chromium metal. Powder X-ray diffraction showed that the Cr2O3 is reduced on the carbon surface to produce CrC and metal Cr, which is the effective catalyst for the CNFs growth. The CNF arrays were confirmed by TEM images. Raman data revealed that the synthesized CNFs have a poor-quality graphite structure which favors their use in adsorption processes. These CNFs presented higher affinity to adsorb anionic dyes, whereas the cationic dyes are better adsorbed on the carbon substrate. The low-cost and availability of the carbon precursor makes their potential use to produce CNFs of interest.

  16. Low temperature metal free growth of graphene on insulating substrates by plasma assisted chemical vapor deposition

    Science.gov (United States)

    Muñoz, R.; Munuera, C.; Martínez, J. I.; Azpeitia, J.; Gómez-Aleixandre, C.; García-Hernández, M.

    2017-03-01

    Direct growth of graphene films on dielectric substrates (quartz and silica) is reported, by means of remote electron cyclotron resonance plasma assisted chemical vapor deposition r-(ECR-CVD) at low temperature (650 °C). Using a two step deposition process- nucleation and growth- by changing the partial pressure of the gas precursors at constant temperature, mostly monolayer continuous films, with grain sizes up to 500 nm are grown, exhibiting transmittance larger than 92% and sheet resistance as low as 900 Ω sq-1. The grain size and nucleation density of the resulting graphene sheets can be controlled varying the deposition time and pressure. In additon, first-principles DFT-based calculations have been carried out in order to rationalize the oxygen reduction in the quartz surface experimentally observed. This method is easily scalable and avoids damaging and expensive transfer steps of graphene films, improving compatibility with current fabrication technologies.

  17. Lateral epitaxial overgrowth of GaN on a patterned GaN-on-silicon substrate by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wang, Yongjin; Hu, Fangren; Hane, Kazuhiro

    2011-01-01

    We report here the lateral epitaxial overgrowth (LEO) of GaN on a patterned GaN-on-silicon substrate by molecular beam epitaxy (MBE) growth with radio frequency nitrogen plasma as a gas source. Two kinds of GaN nanostructures are defined by electron beam lithography and realized on a GaN substrate by fast atom beam etching. The epitaxial growth of GaN by MBE is performed on the prepared GaN template, and the selective growth of GaN takes place with the assistance of GaN nanostructures. The LEO of GaN produces novel GaN epitaxial structures which are dependent on the shape and the size of the processed GaN nanostructures. Periodic GaN hexagonal pyramids are generated inside the air holes, and GaN epitaxial strips with triangular section are formed in the grating region. This work provides a promising way for producing novel GaN-based devices by the LEO of GaN using the MBE technique

  18. Effect of the nand p-type Si(100) substrates with a SiC buffer layer on the growth mechanism and structure of epitaxial layers of semipolar AlN and GaN

    Science.gov (United States)

    Bessolov, V. N.; Grashchenko, A. S.; Konenkova, E. V.; Myasoedov, A. V.; Osipov, A. V.; Red'kov, A. V.; Rodin, S. N.; Rubets, V. P.; Kukushkin, S. A.

    2015-10-01

    A new effect of the n-and p-type doping of the Si(100) substrate with a SiC film on the growth mechanism and structure of AlN and GaN epitaxial layers has been revealed. It has been experimentally shown that the mechanism of AlN and GaN layer growth on the surface of a SiC layer synthesized by substituting atoms on n- and p-Si substrates is fundamentally different. It has been found that semipolar AlN and GaN layers on the SiC/Si(100) surface grow in the epitaxial and polycrystalline structures on p-Si and n-Si substrates, respectively. A new method for synthesizing epitaxial semipolar AlN and GaN layers by chloride-hydride epitaxy on silicon substrates has been proposed.

  19. Using a laboratory-based growth model to estimate mass- and temperature-dependent growth parameters across populations of juvenile Chinook Salmon

    Science.gov (United States)

    Perry, Russell W.; Plumb, John M.; Huntington, Charles

    2015-01-01

    To estimate the parameters that govern mass- and temperature-dependent growth, we conducted a meta-analysis of existing growth data from juvenile Chinook Salmon Oncorhynchus tshawytscha that were fed an ad libitum ration of a pelleted diet. Although the growth of juvenile Chinook Salmon has been well studied, research has focused on a single population, a narrow range of fish sizes, or a narrow range of temperatures. Therefore, we incorporated the Ratkowsky model for temperature-dependent growth into an allometric growth model; this model was then fitted to growth data from 11 data sources representing nine populations of juvenile Chinook Salmon. The model fit the growth data well, explaining 98% of the variation in final mass. The estimated allometric mass exponent (b) was 0.338 (SE = 0.025), similar to estimates reported for other salmonids. This estimate of b will be particularly useful for estimating mass-standardized growth rates of juvenile Chinook Salmon. In addition, the lower thermal limit, optimal temperature, and upper thermal limit for growth were estimated to be 1.8°C (SE = 0.63°C), 19.0°C (SE = 0.27°C), and 24.9°C (SE = 0.02°C), respectively. By taking a meta-analytical approach, we were able to provide a growth model that is applicable across populations of juvenile Chinook Salmon receiving an ad libitum ration of a pelleted diet.

  20. High Performance Bioanode Development for Fermentable Substrates via Controlled Electroactive Biofilm Growth

    Energy Technology Data Exchange (ETDEWEB)

    Ichihashi, Osamu [ORNL; Vishnivetskaya, Tatiana A [ORNL; Borole, Abhijeet P [ORNL

    2014-11-11

    A bioanode was optimized to generate current densities reaching 38.4 4.9 A m-2, which brings bioelectrochemical systems closer to commercial consideration. Glucose and lactate were fed together in a continuous or fed-batch mode. The current density increased from 2.3 A m-2 to 38.4 A m-2 over a 33 day period and remained stable thereafter. The coulombic efficiency ranged from 50% to 80%. A change in substrate concentration from 200 mg L-1 to 5 mg L-1 decreased maximum current density from 38.4 A m-2 to 12.3 A m-2. The anode consortia included Firmicutes (55.0%), Proteobacteria (41.8%) and Bacteroidetes (2.1%) constituting two potential electrogenic genera: Geobacter (6.8%) and Aeromonas (31.9%). The current production was found to be limited by kinetics during the growth period (33 days), and mass transfer, thereafter. The results indicate the necessity of removing spent biomass for efficient long term operation and treatment of wastewater streams.

  1. Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Hong; Dwaraknath, Shyam S.; Garten, Lauren; Ndione, Paul; Ginley, David; Persson, Kristin A.

    2016-05-25

    With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO2 compounds which provides a rich chemical and structural polymorph space. We find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO2 substrates, where the VO2 brookite phase would be preferentially grown on the a-c TiO2 brookite plane while the columbite and anatase structures favor the a-b plane on the respective TiO2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. These criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.

  2. Growth and characterization of textured well-faceted ZnO on planar Si(100, planar Si(111, and textured Si(100 substrates for solar cell applications

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    2017-09-01

    Full Text Available In this work, textured, well-faceted ZnO materials grown on planar Si(100, planar Si(111, and textured Si(100 substrates by low-pressure chemical vapor deposition (LPCVD were analyzed by X-ray diffraction (XRD, scanning electron microscopy (SEM, atomic force microscopy (AFM, and cathode luminescence (CL measurements. The results show that ZnO grown on planar Si(100, planar Si(111, and textured Si(100 substrates favor the growth of ZnO(110 ridge-like, ZnO(002 pyramid-like, and ZnO(101 pyramidal-tip structures, respectively. This could be attributed to the constraints of the lattice mismatch between the ZnO and Si unit cells. The average grain size of ZnO on the planar Si(100 substrate is slightly larger than that on the planar Si(111 substrate, while both of them are much larger than that on the textured Si(100 substrate. The average grain sizes (about 10–50 nm of the ZnO grown on the different silicon substrates decreases with the increase of their strains. These results are shown to strongly correlate with the results from the SEM, AFM, and CL as well. The reflectance spectra of these three samples show that the antireflection function provided by theses samples mostly results from the nanometer-scaled texture of the ZnO films, while the micrometer-scaled texture of the Si substrate has a limited contribution. The results of this work provide important information for optimized growth of textured and well-faceted ZnO grown on wafer-based silicon solar cells and can be utilized for efficiency enhancement and optimization of device materials and structures, such as heterojunction with intrinsic thin layer (HIT solar cells.

  3. ALD grown nanostructured ZnO thin films: Effect of substrate temperature on thickness and energy band gap

    Directory of Open Access Journals (Sweden)

    Javed Iqbal

    2016-10-01

    Full Text Available Nanostructured ZnO thin films with high transparency have been grown on glass substrate by atomic layer deposition at various temperatures ranging from 100 °C to 300 °C. Efforts have been made to observe the effect of substrate temperature on the thickness of the deposited thin films and its consequences on the energy band gap. A remarkably high growth rate of 0.56 nm per cycle at a substrate temperature of 200 °C for ZnO thin films have been achieved. This is the maximum growth rate for ALD deposited ZnO thin films ever reported so far to the best of our knowledge. The studies of field emission scanning electron microscopy and X-ray diffractometry patterns confirm the deposition of uniform and high quality nanosturtured ZnO thin films which have a polycrystalline nature with preferential orientation along (100 plane. The thickness of the films deposited at different substrate temperatures was measured by ellipsometry and surface profiling system while the UV–visible and photoluminescence spectroscopy studies have been used to evaluate the optical properties of the respective thin films. It has been observed that the thickness of the thin film depends on the substrate temperatures which ultimately affect the optical and structural parameters of the thin films.

  4. Strain dependent magnetic properties of LSMO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Prajapat, C.L.; Gupta, N.; Singh, M.R.; Mishra, P.K.; Gupta, S.K.; Ravikumar, G.; Bhattacharya, D.; Singh, Surendra; Basu, S.; Roul, B.K.

    2014-01-01

    Perovskite manganites exhibiting colossal magnetoresistance (CMR) are ideal candidates for growth of epitaxial multilayers with oxide high temperature superconductors owing to their structural similarity and comparable growth conditions. They are widely employed in studies on superconductor/ferromagnet-superlattices. Among the manganites, La 2/3 Sr 1/3 MnO 3 (LSMO) has one of the highest FM transition temperatures (above 300K). Magnetic properties of films that are dependent on strain (such as coercivity) can be tuned by varying deposition conditions, by using different substrates and varying thickness of films in nano range. Lattice mismatch between LSMO with STO and MgO substrates are 0.6% and 8% respectively. This mismatch produces tensile strain in LSMO films and changes its magnetic properties. We study the change in magnetic properties of epitaxial LSMO thin films on MgO (100) and STO (100) substrates with varying thickness to change the strain in the film. LSMO films are prepared by pulsed laser deposition

  5. Nonlinear optical parameters of nanocrystalline AZO thin film measured at different substrate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jilani, Asim, E-mail: asim.jilane@gmail.com [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Abdel-wahab, M.Sh [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni -Suef University, Beni-Suef (Egypt); Al-ghamdi, Attieh A. [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Dahlan, Ammar sadik [Department of architecture, faculty of environmental design, King Abdulaziz University, Jeddah (Saudi Arabia); Yahia, I.S. [Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Nano-Science & Semiconductor Labs, Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt)

    2016-01-15

    The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ{sup (3)} was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.

  6. Self-assembled Au nanoparticles on heated Corning glass by dc magnetron sputtering: size-dependent surface plasmon resonance tuning

    Energy Technology Data Exchange (ETDEWEB)

    Grammatikopoulos, S.; Pappas, S. D. [University of Patras, Laboratory of High-Tech Materials, School of Engineering (Greece); Dracopoulos, V. [Hellas-Institute of Chemical Engineering and High Temperature Chemical Processes, (FORTH/ICE-HT), Foundation for Research and Technology (Greece); Poulopoulos, P., E-mail: poulop@upatras.gr [University of Patras, Laboratory of High-Tech Materials, School of Engineering (Greece); Fumagalli, P. [Freie Universitaet Berlin, Institut fuer Experimentalphysik (Germany); Velgakis, M. J.; Politis, C. [University of Patras, Laboratory of High-Tech Materials, School of Engineering (Greece)

    2013-02-15

    We report on the growth of Au nanoparticles on Corning glass by direct current magnetron sputtering and on the optical absorption of the films. The substrate temperature was kept to relatively high temperatures of 100 or 450 Degree-Sign C. This lead to the growth of Au nanoparticles instead of smooth Au films as the surface energy of Au is much larger than the one of glass. The size of the particles depended on the substrate temperature and deposition time and was shown to follow a logarithmic normal distribution function. Both, the surface plasmon resonance position and bandwidth, were found to depend upon the average particle size. The surface plasmon resonance position showed a 75 nm continuous blue shift from 14 nm down to 2.5 nm average particle size. Thus, we have shown how to tune the nanoparticle size and surface plasmon resonance of Au by varying the substrate temperature and deposition time. The experimental results are reproduced reasonably using a method which is based on the size- and wavelength-dependent complex dielectric function of Au within the framework of the Mie theory for the optical properties of metallic nanospheres.

  7. Growth hormone, interferon-gamma, and leukemia inhibitory factor utilize insulin receptor substrate-2 in intracellular signaling

    DEFF Research Database (Denmark)

    Argetsinger, L S; Norstedt, G; Billestrup, Nils

    1996-01-01

    In this report, we demonstrate that insulin receptor substrate-2 (IRS-2) is tyrosyl-phosphorylated following stimulation of 3T3-F442A fibroblasts with growth hormone (GH), leukemia inhibitory factor and interferon-gamma. In response to GH and leukemia inhibitory factor, IRS-2 is immediately...... for GH is further demonstrated by the finding that GH stimulates association of IRS-2 with the 85-kDa regulatory subunit of phosphatidylinositol 3'-kinase and with the protein-tyrosine phosphatase SHP2. These results are consistent with the possibility that IRS-2 is a downstream signaling partner...

  8. A simple equation for describing the temperature dependent growth of free-floating macrophytes

    NARCIS (Netherlands)

    Heide, van Tj.; Roijackers, R.M.M.; Nes, van E.H.; Peeters, E.T.H.M.

    2006-01-01

    Temperature is one of the most important factors determining growth rates of free-floating macrophytes in the field. To analyse and predict temperature dependent growth rates of these pleustophytes, modelling may play an important role. Several equations have been published for describing

  9. Low temperature synthesis of graphene on arbitrary substrates and its transport properties

    Science.gov (United States)

    Zhao, Rong; Akhtar, Meysam; Alruqi, Adel; Jasinski, Jacek; Sumanasekera, Gamini; Department of Physics; Astronomy, University of Louisville Collaboration; Conn CenterRenewable Energy, University of Louisville Collaboration

    Here we report the direct synthesis of uniform and vertically oriented graphene films on multiple substrates including glass, Si/SiO2, and copper foil by radio-frequency plasma enhanced chemical vapor deposition (PECVD) using methane as the carbon precursor at relatively low temperatures. Raman spectra of all the samples show characteristic Raman peaks of graphene. The temperature dependence of electrical transport properties such as 4-probe resistance, thermo electrical power and hall mobility were measured for graphene grown on glass substrates at varying temperature from 500 ° C to 700 ° C. The morphological and surface characteristics were also studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). This work demonstrates the potential of low temperature and transfer-free graphene growth for future graphene-based electronic applications.

  10. Methylene blue improves mitochondrial respiration and decreases oxidative stress in a substrate-dependent manner in diabetic rat hearts.

    Science.gov (United States)

    Duicu, Oana M; Privistirescu, Andreea; Wolf, Adrian; Petruş, Alexandra; Dănilă, Maria D; Raţiu, Corina D; Muntean, Danina M; Sturza, Adrian

    2017-11-01

    Diabetic cardiomyopathy has been systematically associated with compromised mitochondrial energetics and increased generation of reactive oxygen species (ROS) that underlie its progression to heart failure. Methylene blue is a redox drug with reported protective effects mainly on brain mitochondria. The purpose of the present study was to characterize the effects of acute administration of methylene blue on mitochondrial respiration, H 2 O 2 production, and calcium sensitivity in rat heart mitochondria isolated from healthy and 2 months (streptozotocin-induced) diabetic rats. Mitochondrial respiratory function was assessed by high-resolution respirometry. H 2 O 2 production and calcium retention capacity were measured spectrofluorimetrically. The addition of methylene blue (0.1 μmol·L -1 ) elicited an increase in oxygen consumption of mitochondria energized with complex I and II substrates in both normal and diseased mitochondria. Interestingly, methylene blue elicited a significant increase in H 2 O 2 release in the presence of complex I substrates (glutamate and malate), but had an opposite effect in mitochondria energized with complex II substrate (succinate). No changes in the calcium retention capacity of healthy or diabetic mitochondria were found in the presence of methylene blue. In conclusion, in cardiac mitochondria isolated from diabetic and nondiabetic rat hearts, methylene blue improved respiratory function and elicited a dichotomic, substrate-dependent effect on ROS production.

  11. Nucleation of microcrystalline silicon: on the effect of the substrate surface nature and nano-imprint topography

    International Nuclear Information System (INIS)

    Palmans, J; Faraz, T; Verheijen, M A; Kessels, W M M; Creatore, M

    2016-01-01

    The nucleation of microcrystalline silicon thin-films has been investigated for various substrate natures and topographies. An earlier nucleation onset on aluminium-doped zinc oxide compared to glass substrates has been revealed, associated with a microstructure enhancement and reduced surface energy. Both aspects resulted in a larger crystallite density, following classical nucleation theory. Additionally, the nucleation onset was (plasma deposition) condition-dependent. Therefore, surface chemistry and its interplay with the plasma have been proposed as key factors affecting nucleation and growth. As such, preliminary proof of the substrate nature’s role in microcrystalline silicon growth has been provided. Subsequently, the impact of nano-imprint lithography prepared surfaces on the initial microcrystalline silicon growth has been explored. Strong topographies, with a 5-fold surface area enhancement, led to a reduction in crystalline volume fraction of ∼20%. However, no correlation between topography and microstructure has been found. Instead, the suppressed crystallization has been partially ascribed to a reduced growth flux, limited surface diffusion and increased incubation layer thickness, originating from the surface area enhancement when transiting from flat to nanostructured surfaces. Furthermore, fundamental plasma parameters have been reviewed in relation with surface topography. Strong topographies are not expected to affect the ion-to-growth flux ratio. However, the reduced ion flux (due to increasing surface area) further limited the already weak ion energy transfer to surface processes. Additionally, the atomic hydrogen flux, i.e. the driving force for microcrystalline growth, has been found to decrease by a factor of 10 when transiting from flat to nanostructured topography. This resulted in an almost 6-fold reduction of the hydrogen-to-growth flux ratio, a much stronger effect than the ion-to-growth flux ratio. Since previous studies regarding

  12. A Novel indole compound that inhibits Pseudomonas aeruginosa growth by targeting MreB is a substrate for MexAB-OprM.

    Science.gov (United States)

    Robertson, Gregory T; Doyle, Timothy B; Du, Qun; Duncan, Leonard; Mdluli, Khisimuzi E; Lynch, A Simon

    2007-10-01

    Drug efflux systems contribute to the intrinsic resistance of Pseudomonas aeruginosa to many antibiotics and biocides and hamper research focused on the discovery and development of new antimicrobial agents targeted against this important opportunistic pathogen. Using a P. aeruginosa PAO1 derivative bearing deletions of opmH, encoding an outer membrane channel for efflux substrates, and four efflux pumps belonging to the resistance nodulation/cell division class including mexAB-oprM, we identified a small-molecule indole-class compound (CBR-4830) that is inhibitory to growth of this efflux-compromised strain. Genetic studies established MexAB-OprM as the principal pump for CBR-4830 and revealed MreB, a prokaryotic actin homolog, as the proximal cellular target of CBR-4830. Additional studies establish MreB as an essential protein in P. aeruginosa, and efflux-compromised strains treated with CBR-4830 transition to coccoid shape, consistent with MreB inhibition or depletion. Resistance genetics further suggest that CBR-4830 interacts with the putative ATP-binding pocket in MreB and demonstrate significant cross-resistance with A22, a structurally unrelated compound that has been shown to promote rapid dispersion of MreB filaments in vivo. Interestingly, however, ATP-dependent polymerization of purified recombinant P. aeruginosa MreB is blocked in vitro in a dose-dependent manner by CBR-4830 but not by A22. Neither compound exhibits significant inhibitory activity against mutant forms of MreB protein that bear mutations identified in CBR-4830-resistant strains. Finally, employing the strains and reagents prepared and characterized during the course of these studies, we have begun to investigate the ability of analogues of CBR-4830 to inhibit the growth of both efflux-proficient and efflux-compromised P. aeruginosa through specific inhibition of MreB function.

  13. Use of aquatic macrophytes in substrate composition to produce moringa seedlings

    Directory of Open Access Journals (Sweden)

    Walda Monteiro Farias

    2016-03-01

    Full Text Available The use of aquatic macrophytes in substrate composition to produce seedlings of moringa is a sustainable alternative. Therefore, the objective of this research was to evaluate the development of moringa seedlings using substrates composed with aquatic macrophytes, and to determine concentrations of N, P and K in the seedlings. We used different combinations of weeds (M, manure (E and topsoil (TV to compose the substrates. The experiment was conducted in a 3 × 4 factorial in randomized arrangement with four replications. We evaluated plant height, crown diameter and stem, relative growth rate in height, canopy diameter and in stem, dry matter of aerial part and of roots, root length and root/shoot ratio, besides the content of N, P and K in seedlings. Moringa seedlings showed reduced growth when produced in substrates composed only with cattail. Water lettuce and substrates composed of 60% M + 30%E + 10 % TV and 70% M + 30% E, promoted greater nutrition and growth of moringa seedlings. The substrate 60M +30E +10TV composed by water hyacinth and cattail resulted in greater amount of P in moringa seedlings.

  14. Influence of AlGaN Buffer Growth Temperature on GaN Epilayer based on Si(lll) Substrate

    International Nuclear Information System (INIS)

    Wei Meng; Wang Xiaoliang; Pan Xu; Xiao Hongling; Wang Cuimei; Zhang Minglan; Wang Zhanguo

    2011-01-01

    This paper investigated the influence of AlGaN buffer growth temperature on strain status and crystal quality of the GaN film on Si(111) sbustrates by metal organic chemical vapor deposition. It was demonstrated by the optical microscopy that AlGaN buffer gorwth temperature had a remarkable effect on compensating tensil stress in top GaN layer and preventing the formation of cracks. X-ray diffraction and atomic force microscopy analysis showed crystal quality and surface morphology of the GaN epilayer could be improved through increasing AlGaN buffer growth temperature. 1μm crack-free GaN epilayer on Si (111) substrates was obtained with graded AlGaN buffer layer at optimized temperature of 1050 deg. C. Transmission electron microscopy analysis revealed that a significant reduction in threading dislocations was achieved in GaN epilayer.

  15. Identification of She3 as an SCF(Grr1 substrate in budding yeast.

    Directory of Open Access Journals (Sweden)

    Ruiwen Wang

    Full Text Available The highly orchestrated progression of the cell cycle depends on the degradation of many regulatory proteins at different cell cycle stages. One of the key cell cycle ubiquitin ligases is the Skp1-cullin-F-box (SCF complex. Acting in concert with the substrate-binding F-box protein Grr1, SCF(Grr1 promotes the degradation of cell cycle regulators as well as various metabolic enzymes. Using a yeast two-hybrid assay with a Grr1 derivative as the bait, we identified She3, which is an adaptor protein in the asymmetric mRNA transport system, as a novel Grr1 substrate. We generated stabilized She3 mutants, which no longer bound to Grr1, and found that the degradation of She3 is not required for regulating asymmetric mRNA transport. However, She3 stabilization leads to slower growth compared to wild-type cells in a co-culture assay, demonstrating that the degradation of She3 by Grr1 is required for optimal cell growth.

  16. Dependence of cell adhesion on extracellular matrix materials formed on pore bridge boundaries by nanopore opening and closing geometry.

    Science.gov (United States)

    Kim, Sueon; Han, Dong Yeol; Chen, Zhenzhong; Lee, Won Gu

    2018-04-30

    In this study, we report experimental results for characterization of the growth and formation of pore bridge materials that modified the adhesion structures of cells cultured on nanomembranes with opening and closing geometry. To perform the proof-of-concept experiments, we fabricated two types of anodized alumina oxide substrates with single-sided opening (i.e., one side open, but closed at the other side) and double-sided opening (i.e., both sides open). In our experiment, we compared the densities of pores formed and of bridge materials which differently act as connective proteins depending on the size of pores. The results show that the pore opening geometry can be used to promote the net contact force between pores, resulting in the growth and formation of pore bridge materials before and after cell culture. The results also imply that the bridge materials can be used to attract the structural protrusion of filopodia that can promote the adhesion of cell-to-cell and cell-to-pore bridge. It is observed that the shape and size of cellular structures of filopodia depend on the presence of pore bridge materials. Overall, this observation brought us a significant clue that cells cultured on nanopore substrates would change the adhesion property depending on not only the formation of nanopores formed on the surface of topological substrates, but also that of pore bridge materials by its morphological growth.

  17. Mathematical model of organic substrate degradation in solid waste windrow composting.

    Science.gov (United States)

    Seng, Bunrith; Kristanti, Risky Ayu; Hadibarata, Tony; Hirayama, Kimiaki; Katayama-Hirayama, Keiko; Kaneko, Hidehiro

    2016-01-01

    Organic solid waste composting is a complex process that involves many coupled physical, chemical and biological mechanisms. To understand this complexity and to ease in planning, design and management of the composting plant, mathematical model for simulation is usually applied. The aim of this paper is to develop a mathematical model of organic substrate degradation and its performance evaluation in solid waste windrow composting system. The present model is a biomass-dependent model, considering biological growth processes under the limitation of moisture, oxygen and substrate contents, and temperature. The main output of this model is substrate content which was divided into two categories: slowly and rapidly degradable substrates. To validate the model, it was applied to a laboratory scale windrow composting of a mixture of wood chips and dog food. The wastes were filled into a cylindrical reactor of 6 cm diameter and 1 m height. The simulation program was run for 3 weeks with 1 s stepwise. The simulated results were in reasonably good agreement with the experimental results. The MC and temperature of model simulation were found to be matched with those of experiment, but limited for rapidly degradable substrates. Under anaerobic zone, the degradation of rapidly degradable substrate needs to be incorporated into the model to achieve full simulation of a long period static pile composting. This model is a useful tool to estimate the changes of substrate content during composting period, and acts as a basic model for further development of a sophisticated model.

  18. Sumo-dependent substrate targeting of the SUMO protease Ulp1

    Directory of Open Access Journals (Sweden)

    Westerbeck Jason W

    2011-10-01

    Full Text Available Abstract Background In the yeast Saccharomyces cerevisiae, the essential small ubiquitin-like modifier (SUMO protease Ulp1 is responsible for both removing SUMO/Smt3 from specific target proteins and for processing precursor SUMO into its conjugation-competent form. Ulp1 localizes predominantly to nuclear pore complexes but has also been shown to deconjugate sumoylated septins at the bud-neck of dividing cells. How Ulp1 is directed to bud-neck localized septins and other cytoplasmic deconjugation targets is not well understood. Results Using a structure/function approach, we set out to elucidate features of Ulp1 that are required for substrate targeting. To aid our studies, we took advantage of a catalytically inactive mutant of Ulp1 that is greatly enriched at the septin ring of dividing yeast cells. We found that the localization of Ulp1 to the septins requires both SUMO and specific structural features of Ulp1's catalytic domain. Our analysis identified a 218-amino acid, substrate-trapping mutant of the catalytic domain of Ulp1, Ulp1(3(C580S, that is necessary and sufficient for septin localization. We also used the targeting and SUMO-binding properties of Ulp1(3(C580S to purify Smt3-modified proteins from cell extracts. Conclusions Our study provides novel insights into how the Ulp1 SUMO protease is actively targeted to its substrates in vivo and in vitro. Furthermore, we found that a substrate-trapping Ulp1(3(C580S interacts robustly with human SUMO1, SUMO2 and SUMO2 chains, making it a potentially useful tool for the analysis and purification of SUMO-modified proteins.

  19. Morphology of CdSe films prepared by chemical bath deposition: The role of substrate

    International Nuclear Information System (INIS)

    Simurda, M.; Nemec, P.; Formanek, P.; Nemec, I.; Nemcova, Y.; Maly, P.

    2006-01-01

    We combine optical spectroscopy and transmission electron microscopy to study the growth and the structural morphology of CdSe films prepared by chemical bath deposition (CBD) on two considerably different substrates. The films grown on glass are compact and strongly adherent to the substrate. On the contrary, the films deposited on carbon-coated glass (with approx. 20 nm thick amorphous carbon layer) are only loosely adherent to the substrate. Using transmission electron microscopy we revealed that even though the films grown on both substrates are assembled from closely spaced nanocrystals with diameter of about 5 nm, the films morphology on the sub-micrometer scale is considerably different in the two cases. While the films deposited on glass are rather compact, the films prepared on carbon layer have high porosity and are formed by interconnected spheres which size is dependent on the duration of deposition (e.g. 155 nm for 6 h and 350 nm for 24 h). This shows that the choice of the substrate for CBD has a stronger influence on the sub-micrometer film morphology than on the properties of individual nanocrystals forming the film

  20. Epitaxial growth of bcc-FexCo100-x thin films on MgO(1 1 0) single-crystal substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Nishiyama, Tsutomu; Shikada, Kouhei; Kirino, Fumiyoshi; Futamoto, Masaaki

    2010-01-01

    Fe x Co 100-x (x=100, 65, 50 at%) epitaxial thin films were prepared on MgO(1 1 0) single-crystal substrates heated at 300 deg. C by ultra-high vacuum molecular beam epitaxy. The film structure and the growth mechanism are discussed. FeCo(2 1 1) films with bcc structure grow epitaxially on MgO(1 1 0) substrates with two types of variants whose orientations are rotated around the film normal by 180 deg. each other for all compositions. Fe x Co 100-x film growth follows the Volmer Weber mode. X-ray diffraction analysis indicates the out-of-plane and the in-plane lattice spacings are in agreement with the values of respective bulk Fe x Co 100-x crystals with very small errors less than ±0.4%, suggesting the strains in the films are very small. High-resolution cross-sectional transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the film at the Fe 50 Co 50 /MgO interface along the MgO[1 1-bar 0] direction. The presence of such periodical dislocations decreases the large lattice mismatch of about -17% existing at the FeCo/MgO interface along the MgO[1 1-bar 0] direction.

  1. Growth and xanthan production of Xanthomonas campestris depending on the N-source concentration

    Energy Technology Data Exchange (ETDEWEB)

    Prell, A [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Inst. of Microbiology; Lasik, J [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Inst. of Microbiology; Konicek, J [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Inst. of Microbiology; Sobotka, M [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Inst. of Microbiology; Sys, J [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Inst. of Microbiology

    1995-11-01

    Growth of X. campestris and production of xanthan were studied in several batch fermentations with different starting concentrations of N-source. The dependencies of growth, productivity and yields on initial N-source concentration were observed. The maximum yields in the course of cultivations were identified. (orig.)

  2. Structure of the Mr 140,000 growth hormone-dependent insulin-like growth factor binding protein complex: Determination by reconstitution and affinity-labeling

    International Nuclear Information System (INIS)

    Baxter, R.C.; Martin, J.L.

    1989-01-01

    To determine the structure of the high molecular weight, growth hormone-dependent complex between the insulin-like growth factors (IGF-I and IGF-II) and their binding proteins in human serum, we have reconstituted the complex from its purified component proteins and analyzed it by gel electrophoresis and autoradiography after covalent cross-linking. The proteins tested in reconstitution mixtures were an acid-labile Mr 84,000-86,000 glycoprotein doublet (alpha subunit), an acid-stable Mr 47,000-53,000 glycoprotein doublet with IGF-binding activity (BP-53 or beta subunit), and IGF-I or IGF-II (gamma subunit). In incubations containing any one of the three subunits 125I-labeled and the other two unlabeled, identical 125I-labeled alpha-beta-gamma complexes of Mr 140,000 were formed. Minor bands of Mr 120,000 and 90,000 were also seen, thought to represent a partially deglycosylated form of the alpha-beta-gamma complex, and an alpha-gamma complex arising as a cross-linking artifact. When serum samples from subjects of various growth hormone status were affinity-labeled with IGF-II tracer, a growth hormone-dependent Mr 140,000 band was seen, corresponding to the reconstituted alpha-beta-gamma complex. Other growth hormone-dependent labeled bands, of Mr 90,000 (corresponding to alpha-gamma), Mr 55,000-60,000 (corresponding to labeled beta-subunit doublet), and smaller bands of Mr 38,000, 28,000, and 23,000-25,000 (corresponding to labeled beta-subunit degradation products), were also seen in the affinity-labeled serum samples and in the complex reconstituted from pure proteins. All were immunoprecipitable with an anti-BP-53 antiserum. We conclude that the growth hormone-dependent Mr 140,000 IGF-binding protein complex in human serum has three components: the alpha (acid-labile) subunit, the beta (binding) subunit, and the gamma (growth factor) subunit

  3. Energetic efficiency of complex substrate utilization by Trichoderma viride

    Energy Technology Data Exchange (ETDEWEB)

    Leite, M; Apine, A; Zeltina, M; Shvinka, J [AN Latvijskoj SSR, Riga (USSR). August Kirchstein Inst. of Microbiology

    1989-01-01

    The efficiency of carbon substrate utilization is evaluated as the thermodynamic efficiency (eta{sub x}) of microbial growth. Three methods based on mass-energy balance are used for the efficiency studies of complex substrates (straw, plant juices, lye) utilization by microfungi Trichoderma viride. 1. According to substrate and biomass balance eta{sub x}=0.55, 0.37 and 0.36 for Trichoderma viride growth on alkali pretreated wheat straw during 23, 34 and 50 hours. Cellulose biodegradation increases with cultivation time. However, the efficiency of cellulose utilization for cell mass growth decreases at the same time. 2. In accordance with oxygen-balance calculations eta{sub x}=0.75 and 0.71 for the same processes. The discrepancy in results from the above two methods probably can be explained by the following: A. Substrate and biomass balance gives underestimated results. B. Oxygen balance method includes the part of energy for extracellular product formation and therefore eta{sub x} can be overestimated. C. The efficiency of complex soluble substrate utilization (lye, green juice, deproteinized brown plant juice) tested by means of pulse method gives the values of eta{sub x}=0.72-0.88. Similar high estimates of eta{sub x} in C-limited batch culture are observed for soluble carbohydrates (glucose, galactose, lactose, xylose) but not for acetate. The pulse method is advantageous for testing the 'true' efficiency of carbon substrate utilization in a definite physiological environment. (orig.).

  4. Formation of graphene on BN substrate by vapor deposition method and size effects on its structure

    Science.gov (United States)

    Giang, Nguyen Hoang; Hanh, Tran Thi Thu; Ngoc, Le Nhu; Nga, Nguyen To; Van Hoang, Vo

    2018-04-01

    We report MD simulation of the growth of graphene by the vapor deposition on a two-dimensional hBN substrate. The systems (containing carbon vapor and hBN substrate) are relaxed at high temperature (1500 K), and then it is cooled down to room one (300 K). Carbon atoms interact with the substrate via the Lennard-Jones potential while the interaction between carbon atoms is computed via the Tersoff potential. Depending on the size of the model, different crystalline honeycomb structures have been found. Structural properties of the graphene obtained at 300 K are studied by analyzing radial distribution functions (RDFs), coordination numbers, ring statistics, interatomic distances, bond-angle distributions and 2D visualization of atomic configurations. We find that the models containing various numbers of atoms have a honeycomb structure. Besides, differences in structural properties of graphene formed by the vapor deposition on the substrate and free standing one are found. Moreover, the size effect on the structure is significant.

  5. Anisotropic Growth of Otavite on Calcite: Implications for Heteroepitaxial Growth Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Riechers, Shawn L.; Kerisit, Sebastien N.

    2017-12-18

    Elucidating how cation intermixing can affect the mechanisms of heteroepitaxial growth in aqueous media has remained a challenging endeavor. Toward this goal, in situ atomic force microscopy was employed to image the heteroepitaxial growth of otavite (CdCO3) at the (10-14) surface of calcite (CaCO3) single crystals in static aqueous conditions. Heteroepitaxial growth proceeded via spreading of three-dimensional (3D) islands and two-dimensional (2D) atomic layers at low and high initial saturation levels, respectively. Experiments were carried out as a function of applied force and imaging mode thus enabling determination of growth mechanisms unaltered by imaging artifacts. This approach revealed the significant anisotropic nature of heteroepitaxial growth on calcite in both growth modes and its dependence on supersaturation, intermixing, and substrate topography. The 3D islands not only grew preferentially along the [42-1] direction relative to the [010] direction, resulting in rod-like surface precipitates, but also showed clear preference for growth from the island end rich in obtuse/obtuse kink sites. Pinning to step edges was observed to often reverse this tendency. In the 2D growth mode, the relative velocities of acute and obtuse steps were observed to switch between the first and second atomic layers. This phenomenon stemmed from the significant Cd-Ca intermixing in the first layer, despite bulk thermodynamics predicting the formation of almost pure otavite. Composition effects were also responsible for the inability of 3D islands to grow on 2D layers in cases where both modes were observed to occur simultaneously. Overall, the AFM images highlighted the effects of intermixing on heteroepitaxial growth, particularly how it can induce thickness-dependent growth mechanisms at the nanoscale.

  6. pH and generation dependent morphologies of PAMAM dendrimers on a graphene substrate.

    Science.gov (United States)

    Gosika, Mounika; Maiti, Prabal K

    2018-03-07

    The adsorption of PAMAM dendrimers at solid/water interfaces has been extensively studied, and is mainly driven by electrostatic and van der Waals interactions between the substrate and the dendrimers. However, the pH dependence of the adsorption driven predominantly by the van der Waals interactions is poorly explored, although it is crucial for investigating the potentiality of these dendrimers in supercapacitors and surface patterning. Motivated by this aspect, we have studied the adsorption behavior of PAMAM dendrimers of generations 2 (G2) to 5 (G5) with pH and salt concentration variation, on a charge neutral graphene substrate, using fully atomistic molecular dynamics simulations. The instantaneous snapshots from our simulations illustrate that the dendrimers deform significantly from their bulk structures. Based on various structural property calculations, we classify the adsorbed dendrimer morphologies into five categories and map them to a phase diagram. Interestingly, the morphologies we report here have striking analogies with those reported in star-polymer adsorption studies. From the fractional contacts and other structural property analyses we find that the deformations are more pronounced at neutral pH as compared to high and low pH. Higher generation dendrimers resist deformation following the deformation trend, G2 > G3 > G4 > G5 at any given pH level. As the adsorption here is mainly driven by van der Waals interactions, we observe no desorption of the dendrimers as the salt molarity is increased, unlike that reported in the electrostatically driven adsorption studies.

  7. Extremely improved InP template and GaInAsP system growth on directly-bonded InP/SiO2-Si and InP/glass substrate

    International Nuclear Information System (INIS)

    Matsumoto, Keiichi; Makino, Tatsunori; Kimura, Katsuya; Shimomura, Kazuhiko

    2013-01-01

    We have developed an ultrathin InP template with low defect density on SiO 2 -Si and glass substrate by employing wet etching and wafer direct bonding technique. We have demonstrated epitaxial growth on these substrates and GaInAs/InP multiple quantum well layers were grown by low pressure metal-organic vapor-phase epitaxy. Photoluminescence measurements of the layers show that they are optically active and we have obtained almost the same intensity from these substrates compared to the InP substrate. These results may be attributed to improvement of InP template quality and should provide further improvements in device performance realized on SiO 2 -Si and glass substrate. And, these are promising results in terms of integration of InP-based several functional optical devices on SiO 2 -Si and glass substrate. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. New parametrization for the scale dependent growth function in general relativity

    International Nuclear Information System (INIS)

    Dent, James B.; Dutta, Sourish; Perivolaropoulos, Leandros

    2009-01-01

    We study the scale-dependent evolution of the growth function δ(a,k) of cosmological perturbations in dark energy models based on general relativity. This scale dependence is more prominent on cosmological scales of 100h -1 Mpc or larger. We derive a new scale-dependent parametrization which generalizes the well-known Newtonian approximation result f 0 (a)≡(dlnδ 0 /dlna)=Ω(a) γ (γ=(6/11) for ΛCDM) which is a good approximation on scales less than 50h -1 Mpc. Our generalized parametrization is of the form f(a)=(f 0 (a)/1+ξ(a,k)), where ξ(a,k)=(3H 0 2 Ω 0m )/(ak 2 ). We demonstrate that this parametrization fits the exact result of a full general relativistic evaluation of the growth function up to horizon scales for both ΛCDM and dynamical dark energy. In contrast, the scale independent parametrization does not provide a good fit on scales beyond 5% of the horizon scale (k≅0.01h -1 Mpc).

  9. Thresholds of time dependent intergranular crack growth in a nickel disc alloy Alloy 720Li

    Directory of Open Access Journals (Sweden)

    Li Hangyue

    2014-01-01

    Full Text Available At high temperatures in air, introducing a dwell period at the peak stress of fatigue cycles promotes time dependent intergranular crack growth which can increase crack growth rates by upto a few orders of magnitude from the rates of transgranular fatigue crack growth in superalloys. It is expected that time dependent intergranular crack growth in nickel-based superalloys may not occur below a critical mechanical driving force, ΔKth−IG, analogous to a fatigue threshold (ΔKth and a critical temperature, Tth. In this study, dwell fatigue crack growth tests have been carefully designed and conducted on Alloy 720Li to examine such thresholds. Unlike a fatigue threshold, the threshold stress intensity factor range for intergranular crack growth is observed to be highly sensitive to microstructure, dwell time and test procedure. The near threshold crack growth behaviour is made complex by the interactions between grain boundary oxidation embrittlement and crack tip stress relaxation. In general, lower ΔKth−IG values are associated with finer grain size and/or shorter dwell times. Often a load increasing procedure promotes stress relaxation and tends to lead to higher ΔKth−IG. When there is limited stress relaxation at the crack tip, similar ΔKth−IG values are measured with load increasing and load shedding procedures. They are generally higher than the fatigue threshold (ΔKth despite faster crack growth rates (da/dN in the stable crack growth regime. Time dependent intergranular crack growth cannot be activated below a temperature of 500 ∘C.

  10. TiO2 coatings via atomic layer deposition on polyurethane and polydimethylsiloxane substrates: Properties and effects on C. albicans growth and inactivation process

    Science.gov (United States)

    Pessoa, R. S.; dos Santos, V. P.; Cardoso, S. B.; Doria, A. C. O. C.; Figueira, F. R.; Rodrigues, B. V. M.; Testoni, G. E.; Fraga, M. A.; Marciano, F. R.; Lobo, A. O.; Maciel, H. S.

    2017-11-01

    Atomic layer deposition (ALD) surges as an attractive technology to deposit thin films on different substrates for many advanced biomedical applications. Herein titanium dioxide (TiO2) thin films were successful obtained on polyurethane (PU) and polydimethylsiloxane (PDMS) substrates using ALD. The effect of TiO2 films on Candida albicans growth and inactivation process were also systematic discussed. TiCl4 and H2O were used as precursors at 80 °C, while the reaction cycle number ranged from 500 to 2000. Several chemical, physical and physicochemical techniques were used to evaluate the growth kinetics, elemental composition, material structure, chemical bonds, contact angle, work of adhesion and surface morphology of the ALD TiO2 thin films grown on both substrates. For microbiological analyses, yeasts of standard strains of C. albicans were grown on non- and TiO2-coated substrates. Next, the antifungal and photocatalytic activities of the TiO2 were also investigated by counting the colony-forming units (CFU) before and after UV-light treatment. Chlorine-doped amorphous TiO2 films with varied thicknesses and Cl concentration ranging from 2 to 12% were obtained. In sum, the ALD TiO2 films suppressed the yeast-hyphal transition of C. albicans onto PU, however, a high adhesion of yeasts was observed. Conversely, for PDMS substrate, the yeast adhesion did not change, as observed in control. Comparatively to control, the TiO2-covered PDMS had a reduction in CFU up to 59.5% after UV treatment, while no modification was observed to TiO2-covered PU. These results pointed out that ALD chlorine-doped amorphous TiO2 films grown on biomedical polymeric surfaces may act as fungistatic materials. Furthermore, in case of contamination, these materials may also behave as antifungal materials under UV light exposure.

  11. Substrate specificity and pH dependence of homogeneous wheat germ acid phosphatase.

    Science.gov (United States)

    Van Etten, R L; Waymack, P P

    1991-08-01

    The broad substrate specificity of a homogeneous isoenzyme of wheat germ acid phosphatase (WGAP) was extensively investigated by chromatographic, electrophoretic, NMR, and kinetic procedures. WGAP exhibited no divalent metal ion requirement and was unaffected upon incubation with EDTA or o-phenanthroline. A comparison of two catalytically homogeneous isoenzymes revealed little difference in substrate specificity. The specificity of WGAP was established by determining the Michaelis constants for a wide variety of substrates. p-Nitrophenyl phosphate, pyrophosphate, tripolyphosphate, and ATP were preferred substrates while lesser activities were seen toward sugar phosphates, trimetaphosphate, phosphoproteins, and (much less) phosphodiesters. An extensive table of Km and Vmax values is given. The pathway for the hydrolysis of trimetaphosphate was examined by colorimetric and 31P NMR methods and it was found that linear tripolyphosphate is not a free intermediate in the enzymatic reaction. In contrast to literature reports, homogeneous wheat germ acid phosphatase exhibits no measurable carboxylesterase activity, nor does it hydrolyze phenyl phosphonothioate esters or phytic acid at significant rates.

  12. High Quality, Low Cost Bulk Gallium Nitride Substrates Grown by the Electrochemical Solution Growth Method

    Energy Technology Data Exchange (ETDEWEB)

    Seacrist, Michael [SunEdison Inc., St. Peters, MO (United States)

    2017-08-15

    The objective of this project was to develop the Electrochemical Solution Growth (ESG) method conceived / patented at Sandia National Laboratory into a commercially viable bulk gallium nitride (GaN) growth process that can be scaled to low cost, high quality, and large area GaN wafer substrate manufacturing. The goal was to advance the ESG growth technology by demonstrating rotating seed growth at the lab scale and then transitioning process to prototype commercial system, while validating the GaN material and electronic / optical device quality. The desired outcome of the project is a prototype commercial process for US-based manufacturing of high quality, large area, and lower cost GaN substrates that can drive widespread deployment of energy efficient GaN-based power electronic and optical devices. In year 1 of the project (Sept 2012 – Dec 2013) the overall objective was to demonstrate crystalline GaN growth > 100um on a GaN seed crystal. The development plan included tasks to demonstrate and implement a method for purifying reagent grade salts, develop the reactor 1 process for rotating seed Electrochemical Solution Growth (ESG) of GaN, grow and characterize ESG GaN films, develop a fluid flow and reaction chemistry model for GaN film growth, and design / build an improved growth reactor capable of scaling to 50mm seed diameter. The first year’s project objectives were met in some task areas including salt purification, film characterization, modeling, and reactor 2 design / fabrication. However, the key project objective of the growth of a crystalline GaN film on the seed template was not achieved. Amorphous film growth on the order of a few tenths of a micron has been detected with a film composition including Ga and N, plus several other impurities originating from the process solution and hardware. The presence of these impurities, particularly the oxygen, has inhibited the demonstration of crystalline GaN film growth on the seed template. However, the

  13. A study of the effects of aligned vertically growth time on ZnO nanorods deposited for the first time on Teflon substrate

    Science.gov (United States)

    Farhat, O. F.; Halim, M. M.; Ahmed, Naser M.; Oglat, Ammar A.; Abuelsamen, A. A.; Bououdina, M.; Qaeed, M. A.

    2017-12-01

    In this study, ZnO nanorods (NRs) were well deposited on Teflon substrates (PTFE) via a chemical bath deposition (CBD) method at low temperature. The consequences of growth time (1 h-4 h) on the structural and optical properties of the aligned ZnO (NRs) were investigated through X-ray diffraction, field-emission scanning electron microscopy (FESEM), and photoluminescence (PL) analyses. The results show that the ZnO (NRs) were preferred to grew aligned along the c-axis as hexagonal wurtzite structure as proved by the sharp and strong ZnO (002) peaks of the ZnO (NRs). Irrespective of the growth continuation, FESEM photos confirmed that the ZnO nanorods arrays were fit to be aligned along the c-axis and perpendicular to (PTFE) substrates. The ZnO nanorods that exhibited the sharper stand most intense PL peaks among the sample were grown for 3hs as demonstrated by PL spectra. The device further showed a sensitivity of 4068 to low-power (1.25 mW/cm2) 375 nm light pulses without an external bias. The measurements of photoresponse demonstrated the highly reproducible characteristics of the fabricated UV detector with rapid response and baseline recovery times of 48.05 ms. Thus, this work introduced a simple, low-cost method of fabricating rapid-response, and highly photosensitive UV detectors with zero power consumption on Teflon substrates.

  14. Facile synthesis, growth mechanism and reversible superhydrophobic and superhydrophilic properties of non-flaking CuO nanowires grown from porous copper substrates

    International Nuclear Information System (INIS)

    Zhang Qiaobao; Xu Daguo; Zhang Kaili; Hung, Tak Fu

    2013-01-01

    Reversible superhydrophobic and superhydrophilic surfaces based on porous substrates covered with CuO nanowires are developed in this study. A facile thermal oxidation method is used to synthesize non-flaking bicrystalline CuO nanowires on porous copper substrates in static air. The effects of thermal oxidation temperature and duration are systemically studied. The growth mechanism of the obtained non-flaking CuO nanowires is presented and the compression stress is believed to be the key driving force. The wettability of the CuO nanowires after chemical modification with trichloro(1H,1H,2H,2H-perfluorooctyl)silane is systemically investigated. The porous substrates covered with CuO nanowires exhibit excellent superhydrophobic performance with almost no water adhesion and no apparent drag resistance, and a maximum static water contact angle of 162 ± 2° is observed. Moreover, a rapid reversibly switchable wettability between superhydrophobic and superhydrophilic states is realized by the alternation of air–plasma treatment and surface fluorination. The porous substrates covered with CuO nanowires will find promising applications in surface and corrosion protection, liquid transportation, oil–water separation, and self-cleaning surfaces. (paper)

  15. PREFACE: Cell-substrate interactions Cell-substrate interactions

    Science.gov (United States)

    Gardel, Margaret; Schwarz, Ulrich

    2010-05-01

    One of the most striking achievements of evolution is the ability to build cellular systems that are both robust and dynamic. Taken by themselves, both properties are obvious requirements: robustness reflects the fact that cells are there to survive, and dynamics is required to adapt to changing environments. However, it is by no means trivial to understand how these two requirements can be implemented simultaneously in a physical system. The long and difficult quest to build adaptive materials is testimony to the inherent difficulty of this goal. Here materials science can learn a lot from nature, because cellular systems show that robustness and dynamics can be achieved in a synergetic fashion. For example, the capabilities of tissues to repair and regenerate are still unsurpassed in the world of synthetic materials. One of the most important aspects of the way biological cells adapt to their environment is their adhesive interaction with the substrate. Numerous aspects of the physiology of metazoan cells, including survival, proliferation, differentiation and migration, require the formation of adhesions to the cell substrate, typically an extracellular matrix protein. Adhesions guide these diverse processes both by mediating force transmission from the cell to the substrate and by controlling biochemical signaling pathways. While the study of cell-substrate adhesions is a mature field in cell biology, a quantitative biophysical understanding of how the interactions of the individual molecular components give rise to the rich dynamics and mechanical behaviors observed for cell-substrate adhesions has started to emerge only over the last decade or so. The recent growth of research activities on cell-substrate interactions was strongly driven by the introduction of new physical techniques for surface engineering into traditional cell biological work with cell culture. For example, microcontact printing of adhesive patterns was used to show that cell fate depends

  16. Heteroepitaxial Growth of Vacuum-Evaporated Si-Ge Films on Nano structured Silicon Substrates

    International Nuclear Information System (INIS)

    Ayu Wazira Azhari; Ayu Wazira Azhari; Kamaruzzaman Sopian; Saleem Hussain Zaidi

    2015-01-01

    In this study, a low-cost vacuum-evaporated technique is used in the heteroepitaxial growth of Si-Ge films. Three different surface variations are employed: for example polished Si, Si micro pyramids and Si nano pillars profiles. A simple metal-assisted chemical etching method is used to fabricate the Si nano pillars, with Ag acting as a catalyst. Following deposition, substrates are subjected to post-deposition thermal annealing at 1000 degree Celsius to improve the crystallinity of the Ge layer. Optical and morphological studies of surface area are conducted using field emission scanning electron microscopy (FE-SEM), Energy Dispersive X-ray (EDX), Raman spectroscopy and infrared spectroscopy. From the infrared spectroscopy analysis, the energy bandgap for Si-Ge films is estimated to be around 0.94 eV. This high-quality Si-Ge film is most favourable for optics, optoelectronics and high-efficiency solar cell applications. (author)

  17. The controlled growth of GaN microrods on Si(111) substrates by MOCVD

    Science.gov (United States)

    Foltynski, Bartosz; Garro, Nuria; Vallo, Martin; Finken, Matthias; Giesen, Christoph; Kalisch, Holger; Vescan, Andrei; Cantarero, Andrés; Heuken, Michael

    2015-03-01

    In this paper, a selective area growth (SAG) approach for growing GaN microrods on patterned SiNx/Si(111) substrates by metal-organic chemical vapor deposition (MOCVD) is studied. The surface morphology, optical and structural properties of vertical GaN microrods terminated by pyramidal shaped facets (six { 10 1 bar 1} planes) were characterized using scanning electron microscopy (SEM), room temperature photoluminescence (PL) and Raman spectroscopy, respectively. Measurements revealed high-quality GaN microcolumns grown with silane support. Characterized structures were grown nearly strain-free (central frequency of Raman peak of 567±1 cm-1) with crystal quality comparable to bulk crystals (FWHM=4.2±1 cm-1). Such GaN microrods might be used as a next-generation device concept for solid-state lighting (SSL) applications by realizing core-shell InGaN/GaN multi-quantum wells (MQWs) on the n-GaN rod base.

  18. Using random walk in models specified by stochastic differential equations to determine the best expression for the bacterial growth rate

    DEFF Research Database (Denmark)

    method allows us to develop a new expression for the growth rate. The method is based on the stochastic continuous-discrete time state-space model, with a continuous-time state equation (a stochastic differential equation, SDE) combined with a discrete-time measurement equation. In our study the SDE...... described by Kristensen et. al [2]. The resulting time series allows us graphically to inspect the functional dependence of the growth rate on the substrate content. From the method described above we find three new plausible expressions for μ(S). Therefore we apply the likelihood-ratio test to compare...... for the Monod expression. Thus, the method was applied to successfully determine a significant better expression for the substrate dependent growth expression, and we find the method generally applicable for model development. References [1] Kristensen NR, Madsen H, Jørgensen, SB (2004) A method for systematic...

  19. Hepatocyte growth factor regulated tyrosine kinase substrate in the peripheral development and function of B-cells

    International Nuclear Information System (INIS)

    Nagata, Takayuki; Murata, Kazuko; Murata, Ryo; Sun, Shu-lan; Saito, Yutaro; Yamaga, Shuhei; Tanaka, Nobuyuki; Tamai, Keiichi; Moriya, Kunihiko; Kasai, Noriyuki; Sugamura, Kazuo; Ishii, Naoto

    2014-01-01

    Highlights: •ESCRT-0 protein regulates the development of peripheral B-cells. •BCR expression on cell surface should be controlled by the endosomal-sorting system. •Hrs plays important roles in responsiveness to Ag stimulation in B lymphocytes. -- Abstract: Hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) is a vesicular sorting protein that functions as one of the endosomal-sorting proteins required for transport (ESCRT). Hrs, which binds to ubiquitinated proteins through its ubiquitin-interacting motif (UIM), contributes to the lysosomal transport and degradation of ubiquitinated membrane proteins. However, little is known about the relationship between B-cell functions and ESCRT proteins in vivo. Here we examined the immunological roles of Hrs in B-cell development and functions using B-cell-specific Hrs-deficient (Hrs flox/flox ;mb1 cre/+ :Hrs-cKO) mice, which were generated using a cre-LoxP recombination system. Hrs deficiency in B-cells significantly reduced T-cell-dependent antibody production in vivo and impaired the proliferation of B-cells treated in vitro with an anti-IgM monoclonal antibody but not with LPS. Although early development of B-cells in the bone marrow was normal in Hrs-cKO mice, there was a significant decrease in the number of the peripheral transitional B-cells and marginal zone B-cells in the spleen of Hrs-cKO mice. These results indicate that Hrs plays important roles during peripheral development and physiological functions of B lymphocytes

  20. Hepatocyte growth factor regulated tyrosine kinase substrate in the peripheral development and function of B-cells

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Takayuki [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Murata, Kazuko, E-mail: murata-k@iwakimu.ac.jp [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Murata, Ryo [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Sun, Shu-lan [Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Saito, Yutaro; Yamaga, Shuhei [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Tanaka, Nobuyuki; Tamai, Keiichi [Division of Immunology, Miyagi Cancer Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293 (Japan); Moriya, Kunihiko [Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Kasai, Noriyuki [Institute for Animal Experimentation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Sugamura, Kazuo [Division of Immunology, Miyagi Cancer Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293 (Japan); Ishii, Naoto [Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan)

    2014-01-10

    Highlights: •ESCRT-0 protein regulates the development of peripheral B-cells. •BCR expression on cell surface should be controlled by the endosomal-sorting system. •Hrs plays important roles in responsiveness to Ag stimulation in B lymphocytes. -- Abstract: Hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) is a vesicular sorting protein that functions as one of the endosomal-sorting proteins required for transport (ESCRT). Hrs, which binds to ubiquitinated proteins through its ubiquitin-interacting motif (UIM), contributes to the lysosomal transport and degradation of ubiquitinated membrane proteins. However, little is known about the relationship between B-cell functions and ESCRT proteins in vivo. Here we examined the immunological roles of Hrs in B-cell development and functions using B-cell-specific Hrs-deficient (Hrs{sup flox/flox};mb1{sup cre/+}:Hrs-cKO) mice, which were generated using a cre-LoxP recombination system. Hrs deficiency in B-cells significantly reduced T-cell-dependent antibody production in vivo and impaired the proliferation of B-cells treated in vitro with an anti-IgM monoclonal antibody but not with LPS. Although early development of B-cells in the bone marrow was normal in Hrs-cKO mice, there was a significant decrease in the number of the peripheral transitional B-cells and marginal zone B-cells in the spleen of Hrs-cKO mice. These results indicate that Hrs plays important roles during peripheral development and physiological functions of B lymphocytes.