WorldWideScience

Sample records for growth pebbles boulders

  1. How cores grow by pebble accretion. I. Direct core growth

    Science.gov (United States)

    Brouwers, M. G.; Vazan, A.; Ormel, C. W.

    2018-03-01

    Context. Planet formation by pebble accretion is an alternative to planetesimal-driven core accretion. In this scenario, planets grow by the accretion of cm- to m-sized pebbles instead of km-sized planetesimals. One of the main differences with planetesimal-driven core accretion is the increased thermal ablation experienced by pebbles. This can provide early enrichment to the planet's envelope, which influences its subsequent evolution and changes the process of core growth. Aims: We aim to predict core masses and envelope compositions of planets that form by pebble accretion and compare mass deposition of pebbles to planetesimals. Specifically, we calculate the core mass where pebbles completely evaporate and are absorbed before reaching the core, which signifies the end of direct core growth. Methods: We model the early growth of a protoplanet by calculating the structure of its envelope, taking into account the fate of impacting pebbles or planetesimals. The region where high-Z material can exist in vapor form is determined by the temperature-dependent vapor pressure. We include enrichment effects by locally modifying the mean molecular weight of the envelope. Results: In the pebble case, three phases of core growth can be identified. In the first phase (Mcore mixes outwards, slowing core growth. In the third phase (Mcore > 0.5M⊕), the high-Z inner region expands outwards, absorbing an increasing fraction of the ablated material as vapor. Rainout ends before the core mass reaches 0.6 M⊕, terminating direct core growth. In the case of icy H2O pebbles, this happens before 0.1 M⊕. Conclusions: Our results indicate that pebble accretion can directly form rocky cores up to only 0.6 M⊕, and is unable to form similarly sized icy cores. Subsequent core growth can proceed indirectly when the planet cools, provided it is able to retain its high-Z material.

  2. Tracking Boulders

    Science.gov (United States)

    2006-01-01

    13 March 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of a trough in the Sirenum Fossae region. On the floor and walls of the trough, large -- truck- to house-sized -- boulders are observed at rest. However, there is evidence in this image for the potential for mobility. In the central portion of the south (bottom) wall, a faint line of depressions extends from near the middle of the wall, down to the rippled trough floor, ending very near one of the many boulders in the area. This line of depressions is a boulder track; it indicates the path followed by the boulder as it trundled downslope and eventually came to rest on the trough floor. Because it is on Mars, even when the boulder is sitting still, this once-rolling stone gathers no moss. Location near: 29.4oS, 146.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  3. Pebble bed pebble motion: Simulation and Application

    Science.gov (United States)

    Cogliati, Joshua J.

    Pebble bed reactors (PBR) have moving graphite fuel pebbles. This unique feature provides advantages, but also means that simulation of the reactor requires understanding the typical motion and location of the granular flow of pebbles. This dissertation presents a method for simulation of motion of the pebbles in a PBR. A new mechanical motion simulator, PEBBLES, efficiently simulates the key elements of motion of the pebbles in a PBR. This model simulates gravitational force and contact forces including kinetic and true static friction. It's used for a variety of tasks including simulation of the effect of earthquakes on a PBR, calculation of packing fractions, Dancoff factors, pebble wear and the pebble force on the walls. The simulator includes a new differential static friction model for the varied geometries of PBRs. A new static friction benchmark was devised via analytically solving the mechanics equations to determine the minimum pebble-to-pebble friction and pebble-to-surface friction for a five pebble pyramid. This pyramid check as well as a comparison to the Janssen formula was used to test the new static friction equations. Because larger pebble bed simulations involve hundreds of thousands of pebbles and long periods of time, the PEBBLES code has been parallelized. PEBBLES runs on shared memory architectures and distributed memory architectures. For the shared memory architecture, the code uses a new O(n) lock-less parallel collision detection algorithm to determine which pebbles are likely to be in contact. The new collision detection algorithm improves on the traditional non-parallel O(n log(n)) collision detection algorithm. These features combine to form a fast parallel pebble motion simulation. The PEBBLES code provides new capabilities for understanding and optimizing PBRs. The PEBBLES code has provided the pebble motion data required to calculate the motion of pebbles during a simulated earthquake. The PEBBLES code provides the ability to

  4. Grain growth behavior of Li{sub 4}SiO{sub 4} pebbles fabricated by agar method for tritium breeder

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Maoqiao [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang, Yingchun, E-mail: zycustb@126.com [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang, Yun; Wang, Chaofu; Liu, Wei [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Yu, Yonghong [Department of Physics, Renmin University of China, Beijing, 100872 (China)

    2016-11-15

    Highlights: • Grain sizes of Li{sub 4}SiO{sub 4} were adjusted by different silicon sources. • Grain growth exponent of Li{sub 4}SiO{sub 4} was about 3. • Grain growth activation energy of Li{sub 4}SiO{sub 4} was about 125.54 kJ/mol. • Grain growth of Li{sub 4}SiO{sub 4} pebble was controlled by vapor transport. - Abstract: The Li{sub 4}SiO{sub 4} tritium breeding pebbles will be filled in the blanket and used for 2 years or more at high temperatures, which would increase the grain size and affect tritium release. Hence, grain sizes of the Li{sub 4}SiO{sub 4} pebbles fabricated by agar method were investigated, and two kinds of different silicon sources (crystal and amorphous SiO{sub 2}) with different particle sizes were used. The particle size of SiO{sub 2} could affect grain size and density of the Li{sub 4}SiO{sub 4} pebble. And the isothermal sintering was carried out to study the grain growth kinetics of Li{sub 4}SiO{sub 4}. The grain growth exponent (n) and the activation energy (Q) were calculated by the phenomenological kinetic equation. The calculated n values were 4.10, 3.98, 3.34 and 2.96, and corresponding Q values were 152.15, 147.99, 125.54 and 110.58 kJ/mol, respectively. At the higher sintering temperatures (950 and 1000 °C), the grain growth of Li{sub 4}SiO{sub 4} was controlled by vapor transport.

  5. EXPLOITATION OF GRANITE BOULDER

    Directory of Open Access Journals (Sweden)

    Ivan Cotman

    1994-12-01

    Full Text Available The processes of forming, petrography, features, properties and exploitation of granite boulders are described. The directional drilling and black powder blasting is the succesful method in exploitation of granite boulders (boulder technology (the paper is published in Croatian.

  6. Nutritional Considerations for Bouldering.

    Science.gov (United States)

    Smith, Edward J; Storey, Ryan; Ranchordas, Mayur K

    2017-08-01

    Bouldering competitions are held up to International level and governed by the International Federation of Sport Climbing. Bouldering has been selected to feature at the 2020 Olympic Games in Tokyo, however, physiological qualities and nutritional requirements to optimize performance remain inadequately defined due to large gaps in the literature. The primary goals of training include optimizing the capacity of the anaerobic energy systems and developing sport-specific strength, with emphasis on the isometric function of the forearm flexors responsible for grip. Bouldering athletes typically possess a lean physique, similar to the characteristics of sport climbers with reported body fat values of 6-12%. Athletes strive for a low body weight to improve power to weight ratio and limit the load on the extremities. Specialized nutritional support is uncommon and poor nutritional practices such as chronic carbohydrate restriction are prevalent, compromising the health of the athletes. The high intensity nature of bouldering demands a focus on adequate carbohydrate availability. Protein intake and timing should be structured to maximize muscle protein synthesis and recovery, with the literature suggesting 0.25-0.3 g/kg in 3-4 hr intervals. Supplementing with creatine and b-alanine may provide some benefit by augmenting the capacity of the anaerobic systems. Boulderers are encouraged to seek advice from nutrition experts to enhance performance, particularly important when weight loss is the desired outcome. Further research is warranted across all nutritional aspects of bouldering which is summarized in this review.

  7. Probability of Boulders

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    1997-01-01

    To collect background information for formulating a description of the expected soil properties along the tunnel line, in 1987 Storebælt initiated a statistical investigation of the occurrence and size of boulders in the Great Belt area. The data for the boulder size distribution were obtained....... The data collection part of the investigation was made on the basis of geological expert advice (Gunnar Larsen, Århus) by the Danish Geotechnical Institute (DGI).The statistical data analysis combined with stochastic modeling based on geometry and sound wave diffraction theory gave a point estimate...

  8. Modeling stationary and moving pebbles in a pebble bed reactor

    International Nuclear Information System (INIS)

    Zhao, Xiang; Montgomery, Trent; Zhang, Sijun

    2015-01-01

    Highlights: • The stationary and moving pebbles in a PBR are numerically studied by DEM. • The packing structure of stationary pebbles is simulated by a filling process. • The packing structural properties are obtained and analyzed. • The dynamic behavior of pebbles is predicted and discussed. - Abstract: This paper presents a numerical study of the stationary and moving pebbles in a pebble bed reactor (PBR) by means of discrete element method (DEM). The packing structure of stationary pebbles is simulated by a filling process that terminates with the settling of the pebbles into a PBR. The packing structural properties are obtained and analyzed. Subsequently, when the outlet of the PBR is opened during the operation of the PBR, the stationary pebbles start to flow downward and are removed at the bottom of the PBR. The dynamic behavior of pebbles is predicted and discussed. Our results indicate the DEM can offer both macroscopic and microscopic information for PBR design calculations and safety assessment

  9. Modeling stationary and dynamic pebbles in a pebble bed reactor

    International Nuclear Information System (INIS)

    Zhao, Xiang; Montgomery, Trent; Zhang, Sijun

    2011-01-01

    This paper presents a numerical study of the stationary and dynamic pebbles in a pebble bed reactor (PBR) by means of discrete element method (DEM). At first, the packing structure of stationary pebbles is simulated by filling process until the settling of pebbles into PBR. The packing structural properties are obtained and analyzed. Subsequently, when the outlet of PBR is open during the operational maintenance of PBR, the stationary pebbles start to flow downward and are removed at the bottom of PBR. The dynamic behavior of pebbles is predicted and discussed. Our results indicate the DEM can offer both macroscopic and microscopic information for PBR design calculations and safety assessment. (author)

  10. Pebble-bed pebble motion: Simulation and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2011-11-01

    Pebble bed reactors (PBR) have moving graphite fuel pebbles. This unique feature provides advantages, but also means that simulation of the reactor requires understanding the typical motion and location of the granular flow of pebbles. This report presents a method for simulation of motion of the pebbles in a PBR. A new mechanical motion simulator, PEBBLES, efficiently simulates the key elements of motion of the pebbles in a PBR. This model simulates gravitational force and contact forces including kinetic and true static friction. It's used for a variety of tasks including simulation of the effect of earthquakes on a PBR, calculation of packing fractions, Dancoff factors, pebble wear and the pebble force on the walls. The simulator includes a new differential static friction model for the varied geometries of PBRs. A new static friction benchmark was devised via analytically solving the mechanics equations to determine the minimum pebble-to-pebble friction and pebble-to-surface friction for a five pebble pyramid. This pyramid check as well as a comparison to the Janssen formula was used to test the new static friction equations. Because larger pebble bed simulations involve hundreds of thousands of pebbles and long periods of time, the PEBBLES code has been parallelized. PEBBLES runs on shared memory architectures and distributed memory architectures. For the shared memory architecture, the code uses a new O(n) lock-less parallel collision detection algorithm to determine which pebbles are likely to be in contact. The new collision detection algorithm improves on the traditional non-parallel O(n log(n)) collision detection algorithm. These features combine to form a fast parallel pebble motion simulation. The PEBBLES code provides new capabilities for understanding and optimizing PBRs. The PEBBLES code has provided the pebble motion data required to calculate the motion of pebbles during a simulated earthquake. The PEBBLES code provides the ability to

  11. Pebble-bed pebble motion: Simulation and Applications

    International Nuclear Information System (INIS)

    Cogliati, Joshua J.; Ougouag, Abderrafi M.

    2011-01-01

    Pebble bed reactors (PBR) have moving graphite fuel pebbles. This unique feature provides advantages, but also means that simulation of the reactor requires understanding the typical motion and location of the granular flow of pebbles. This report presents a method for simulation of motion of the pebbles in a PBR. A new mechanical motion simulator, PEBBLES, efficiently simulates the key elements of motion of the pebbles in a PBR. This model simulates gravitational force and contact forces including kinetic and true static friction. It's used for a variety of tasks including simulation of the effect of earthquakes on a PBR, calculation of packing fractions, Dancoff factors, pebble wear and the pebble force on the walls. The simulator includes a new differential static friction model for the varied geometries of PBRs. A new static friction benchmark was devised via analytically solving the mechanics equations to determine the minimum pebble-to-pebble friction and pebble-to-surface friction for a five pebble pyramid. This pyramid check as well as a comparison to the Janssen formula was used to test the new static friction equations. Because larger pebble bed simulations involve hundreds of thousands of pebbles and long periods of time, the PEBBLES code has been parallelized. PEBBLES runs on shared memory architectures and distributed memory architectures. For the shared memory architecture, the code uses a new O(n) lock-less parallel collision detection algorithm to determine which pebbles are likely to be in contact. The new collision detection algorithm improves on the traditional non-parallel O(n log(n)) collision detection algorithm. These features combine to form a fast parallel pebble motion simulation. The PEBBLES code provides new capabilities for understanding and optimizing PBRs. The PEBBLES code has provided the pebble motion data required to calculate the motion of pebbles during a simulated earthquake. The PEBBLES code provides the ability to determine

  12. Water uptake of trees in a montane forest catchment and the geomorphological potential of root growth in Boulder Creek Critical Zone Observatory, Rocky Mountains, Colorado

    Science.gov (United States)

    Skeets, B.; Barnard, H. R.; Byers, A.

    2011-12-01

    The influence of vegetation on the hydrological cycle and the possible effect of roots in geomorphological processes are poorly understood. Gordon Gulch watershed in the Front Range of the Rocky Mountains, Colorado, is a montane climate ecosystem of the Boulder Creek Critical Zone Observatory whose study adds to the database of ecohydrological work in different climates. This work sought to identify the sources of water used by different tree species and to determine how trees growing in rock outcrops may contribute to the fracturing and weathering of rock. Stable isotopes (18O and 2H) were analyzed from water extracted from soil and xylem samples. Pinus ponderosa on the south-facing slope consumes water from deeper depths during dry periods and uses newly rain-saturated soils, after rainfall events. Pinus contorta on the north -facing slope shows a similar, expected response in water consumption, before and after rain. Two trees (Pinus ponderosa) growing within rock outcrops demonstrate water use from cracks replenished by new rains. An underexplored question in geomorphology is whether tree roots growing in rock outcrops contribute to long-term geomorphological processes by physically deteriorating the bedrock. The dominant roots of measured trees contributed approximately 30 - 80% of total water use, seen especially after rainfall events. Preliminary analysis of root growth rings indicates that root growth is capable of expanding rock outcrop fractures at an approximate rate of 0.6 - 1.0 mm per year. These results demonstrate the significant role roots play in tree physiological processes and in bedrock deterioration.

  13. Pebble breakage in gravel

    International Nuclear Information System (INIS)

    Tuitz, C.

    2012-01-01

    The spatial clustering of broken pebbles in gravel layers of a Miocene sedimentary succession was investigated. Field observations suggested that the occurrence of broken pebbles could be related with gravel hosted shear deformation bands, which were the result of extensional regional deformation. Several different methods were used in this work to elucidate these observations. These methods include basic field work, measurements of physical pebble and gravel properties and, the application of different numerical modelling schemes. In particular, the finite element method in 2D and the discrete element method in 2D and 3D were used in order to quantify mechanisms of pebble deformation. The main objective of this work was to identify potential mechanisms that control particle breakage in fluvial gravel, which could explain the clustered spatial distribution of broken pebbles. The results of 2D finite element stress analysis indicated that the breakage load of differently located and oriented diametrical loading axes on a pebble varies and, that the weakest loading configuration coincides with the smallest principal axis of the pebble. The 3D discrete element method was applied to study the contact load distribution on pebbles in gravel deposits and the influence of different degrees of particle imbrication and orientation. The results showed that an increase of the number of imbricated particles leads to a significant load transfer from the rim to the centre of the oblate sides of the ellipsoidal particles. The findings of these pebble-scale investigations provided the basis for outcropscale modelling, where simulated gravel layers were subjected to layer-parallel extension. These outcrop-scale models revealed the existence of a particle breakage enhancing mechanism that becomes active during early stages of shear band formation. The interaction of such shear bands with the less deformed host material results in particle stress concentrations and subsequently

  14. Pebble-bed reactor

    International Nuclear Information System (INIS)

    Lohnert, G.; Mueller-Frank, U.; Heil, J.

    1976-01-01

    A pebble-bed nuclear reactor of large power rating comprises a container having a funnel-shaped bottom forming a pebble run-out having a centrally positioned outlet. A bed of downwardly-flowing substantially spherical nuclear fuel pebbles is positioned in the container and forms a reactive nuclear core maintained by feeding unused pebbles to the bed's top surface while used or burned-out pebbles run out and discharge through the outlet. A substantially conical body with its apex pointing upwardly and its periphery spaced from the periphery of the container spreads the bottom of the bed outwardly to provide an annular flow down the funnel-shaped bottom forming the runout, to the discharge outlet. This provides a largely constant downward velocity of the spheres throughout the diameter of the bed throughout a substantial portion of the down travel, so that all spheres reach about the same burned-out condition when they leave the core, after a single pass through the core area

  15. Sockets and Pebbles

    Science.gov (United States)

    1997-01-01

    This close-up Sojourner rover image of a small rock shows that weathering has etched-out pebbles to produce sockets. In the image, sunlight is coming from the upper left. Sockets (with shadows on top) are visible at the lower left and pebbles (with bright tops and shadowed bases) are seen at the lower center and lower right. Two pebbles (about 0.5 cm across) are visible at the lower center.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  16. PEBBLES: A COMPUTER CODE FOR MODELING PACKING, FLOW AND RECIRCULATIONOF PEBBLES IN A PEBBLE BED REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2006-10-01

    A comprehensive, high fidelity model for pebble flow has been developed and embodied in the PEBBLES computer code. In this paper, a description of the physical artifacts included in the model is presented and some results from using the computer code for predicting the features of pebble flow and packing in a realistic pebble bed reactor design are shown. The sensitivity of models to various physical parameters is also discussed.

  17. Pebble Puzzle Solved

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 In the quest to determine if a pebble was jamming the rock abrasion tool on NASA's Mars Exploration Rover Opportunity, scientists and engineers examined this up-close, approximate true-color image of the tool. The picture was taken by the rover's panoramic camera, using filters centered at 601, 535, and 482 nanometers, at 12:47 local solar time on sol 200 (August 16, 2004). Colored spots have been drawn on this image corresponding to regions where panoramic camera reflectance spectra were acquired (see chart in Figure 1). Those regions are: the grinding wheel heads (yellow); the rock abrasion tool magnets (green); the supposed pebble (red); a sunlit portion of the aluminum rock abrasion tool housing (purple); and a shadowed portion of the rock abrasion tool housing (brown). These spectra demonstrated that the composition of the supposed pebble was clearly different from that of the sunlit and shadowed portions of the rock abrasion tool, while similar to that of the dust-coated rock abrasion tool magnets and grinding heads. This led the team to conclude that the object disabling the rock abrasion tool was indeed a martian pebble.

  18. Pebble Accretion in Turbulent Protoplanetary Disks

    Science.gov (United States)

    Xu, Ziyan; Bai, Xue-Ning; Murray-Clay, Ruth A.

    2017-09-01

    It has been realized in recent years that the accretion of pebble-sized dust particles onto planetary cores is an important mode of core growth, which enables the formation of giant planets at large distances and assists planet formation in general. The pebble accretion theory is built upon the orbit theory of dust particles in a laminar protoplanetary disk (PPD). For sufficiently large core mass (in the “Hill regime”), essentially all particles of appropriate sizes entering the Hill sphere can be captured. However, the outer regions of PPDs are expected to be weakly turbulent due to the magnetorotational instability (MRI), where turbulent stirring of particle orbits may affect the efficiency of pebble accretion. We conduct shearing-box simulations of pebble accretion with different levels of MRI turbulence (strongly turbulent assuming ideal magnetohydrodynamics, weakly turbulent in the presence of ambipolar diffusion, and laminar) and different core masses to test the efficiency of pebble accretion at a microphysical level. We find that accretion remains efficient for marginally coupled particles (dimensionless stopping time {τ }s˜ 0.1{--}1) even in the presence of strong MRI turbulence. Though more dust particles are brought toward the core by the turbulence, this effect is largely canceled by a reduction in accretion probability. As a result, the overall effect of turbulence on the accretion rate is mainly reflected in the changes in the thickness of the dust layer. On the other hand, we find that the efficiency of pebble accretion for strongly coupled particles (down to {τ }s˜ 0.01) can be modestly reduced by strong turbulence for low-mass cores.

  19. Pebbles, Cobbles, and Sockets

    Science.gov (United States)

    1997-01-01

    This Rover image of 'Shark' (upper left center), 'Half Dome' (upper right), and a small rock (right foreground) reveal textures and structures not visible in lander camera images. These rocks are interpreted as conglomerates because their surfaces have rounded protrusions up to several centimeters in size. It is suggested that the protrusions are pebbles and granules.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  20. Operating windows of pebble divertor

    International Nuclear Information System (INIS)

    Matsuhiro, K.; Isobe, M.; Ohtsuka, Y.; Ueda, Y.; Nishikawa, M.

    2001-01-01

    A marked feature of the pebble divertor is an effect by use of functional multi-layer coated pebble, which consists of a surface plasma facing layer, an intermediate tritium permeation barrier layer, and a kernel for heat removal. The dimensions, structure and the irradiation conditions of pebbles are the important issues for the development of the pebble divertor. From the view point of resistance of the induced thermal stress, the pebble is taken as small as possible in size. On the other hand, from the view point of the pumping performance, the suitable irradiation temperature range of the surface layer of pebble was estimated from the experiments and the numerical analysis. The pumping process enhanced by dynamic retention is available to extend the higher allowable irradiation temperature range from 900K to 1100K. As taking the temperature rise limitation due to pumping effect and the fractural strength due to the induced thermal stress limitation, it was found that the diameter of the pebble is possible to be 1-2 mm in about 20 MW/m 2 for the SiC kernel and 2-3 mm in less than 30 MW/m 2 for the graphite kernel. (author)

  1. Pebble-isolation mass: Scaling law and implications for the formation of super-Earths and gas giants

    Science.gov (United States)

    Bitsch, Bertram; Morbidelli, Alessandro; Johansen, Anders; Lega, Elena; Lambrechts, Michiel; Crida, Aurélien

    2018-04-01

    The growth of a planetary core by pebble accretion stops at the so-called pebble isolation mass, when the core generates a pressure bump that traps drifting pebbles outside its orbit. The value of the pebble isolation mass is crucial in determining the final planet mass. If the isolation mass is very low, gas accretion is protracted and the planet remains at a few Earth masses with a mainly solid composition. For higher values of the pebble isolation mass, the planet might be able to accrete gas from the protoplanetary disc and grow into a gas giant. Previous works have determined a scaling of the pebble isolation mass with cube of the disc aspect ratio. Here, we expand on previous measurements and explore the dependency of the pebble isolation mass on all relevant parameters of the protoplanetary disc. We use 3D hydrodynamical simulations to measure the pebble isolation mass and derive a simple scaling law that captures the dependence on the local disc structure and the turbulent viscosity parameter α. We find that small pebbles, coupled to the gas, with Stokes number τf gap at pebble isolation mass. However, as the planetary mass increases, particles must be decreasingly smaller to penetrate the pressure bump. Turbulent diffusion of particles, however, can lead to an increase of the pebble isolation mass by a factor of two, depending on the strength of the background viscosity and on the pebble size. We finally explore the implications of the new scaling law of the pebble isolation mass on the formation of planetary systems by numerically integrating the growth and migration pathways of planets in evolving protoplanetary discs. Compared to models neglecting the dependence of the pebble isolation mass on the α-viscosity, our models including this effect result in higher core masses for giant planets. These higher core masses are more similar to the core masses of the giant planets in the solar system.

  2. Core homogenization method for pebble bed reactors

    International Nuclear Information System (INIS)

    Kulik, V.; Sanchez, R.

    2005-01-01

    This work presents a core homogenization scheme for treating a stochastic pebble bed loading in pebble bed reactors. The reactor core is decomposed into macro-domains that contain several pebble types characterized by different degrees of burnup. A stochastic description is introduced to account for pebble-to-pebble and pebble-to-helium interactions within a macro-domain as well as for interactions between macro-domains. Performance of the proposed method is tested for the PROTEUS and ASTRA critical reactor facilities. Numerical simulations accomplished with the APOLLO2 transport lattice code show good agreement with the experimental data for the PROTEUS reactor facility and with the TRIPOLI4 Monte Carlo simulations for the ASTRA reactor configuration. The difference between the proposed method and the traditional volume-averaged homogenization technique is negligible while only one type of fuel pebbles present in the system, but it grows rapidly with the level of pebble heterogeneity. (authors)

  3. The Emerging Paradigm of Pebble Accretion

    NARCIS (Netherlands)

    Ormel, C.W.; Pessah, M.; Gressel, O.

    2017-01-01

    Pebble accretion is the mechanism in which small particles ("pebbles") accrete onto big bodies big (planetesimals or planetary embryos) in gas-rich environments. In pebble accretion accretion , accretion occurs by settling and depends only on the mass of the gravitating body gravitating , not its

  4. City of Boulder, Colorado Municipal Tree Resource Analysis

    Science.gov (United States)

    E.G. McPherson; J.R. Simpson; P.J. Peper; S.L. Gardner; K.E. Vargas; Q. Xiao

    2005-01-01

    Boulder is a vibrant city, renowned for its livability and cultural wealth and well known for its Smart Growth policies that protect and restore environmental quality while enhancing economic opportunity. The city maintains trees as an integral component of the urban infrastructure. Research indicates that healthy trees can mitigate impacts associated with the built...

  5. PBMR Project - Pebble Fuel Advantages

    International Nuclear Information System (INIS)

    Slabber, Johan; Matzie, Regis; Casperson, Sten; Kriel, Willem

    2006-01-01

    An overview is presented of all the important issues that influenced the choice of pebble fuel for the High-temperature Gas-cooled Reactor (HTGR) concept developed by South Africa. Each of these issues is then discussed in detail and compared with other fuel configurations proposed for direct cycle High-temperature Reactor (HTR) applications. The comparisons are provided using objective data generated by analyses done for the design of the Pebble Bed Modular Reactor (PBMR) and data that is available in open literature for the other fuel configurations

  6. Pebble Bed Reactor Dust Production Model

    Energy Technology Data Exchange (ETDEWEB)

    Abderrafi M. Ougouag; Joshua J. Cogliati

    2008-09-01

    The operation of pebble bed reactors, including fuel circulation, can generate graphite dust, which in turn could be a concern for internal components; and to the near field in the remote event of a break in the coolant circuits. The design of the reactor system must, therefore, take the dust into account and the operation must include contingencies for dust removal and for mitigation of potential releases. Such planning requires a proper assessment of the dust inventory. This paper presents a predictive model of dust generation in an operating pebble bed with recirculating fuel. In this preliminary work the production model is based on the use of the assumption of proportionality between the dust production and the normal force and distance traveled. The model developed in this work uses the slip distances and the inter-pebble forces computed by the authors’ PEBBLES. The code, based on the discrete element method, simulates the relevant static and kinetic friction interactions between the pebbles as well as the recirculation of the pebbles through the reactor vessel. The interaction between pebbles and walls of the reactor vat is treated using the same approach. The amount of dust produced is proportional to the wear coefficient for adhesive wear (taken from literature) and to the slip volume, the product of the contact area and the slip distance. The paper will compare the predicted volume with the measured production rates. The simulation tallies the dust production based on the location of creation. Two peak production zones from intra pebble forces are predicted within the bed. The first zone is located near the pebble inlet chute due to the speed of the dropping pebbles. The second peak zone occurs lower in the reactor with increased pebble contact force due to the weight of supported pebbles. This paper presents the first use of a Discrete Element Method simulation of pebble bed dust production.

  7. Pebble Bed Reactor Dust Production Model

    International Nuclear Information System (INIS)

    Abderrafi M. Ougouag; Joshua J. Cogliati

    2008-01-01

    The operation of pebble bed reactors, including fuel circulation, can generate graphite dust, which in turn could be a concern for internal components; and to the near field in the remote event of a break in the coolant circuits. The design of the reactor system must, therefore, take the dust into account and the operation must include contingencies for dust removal and for mitigation of potential releases. Such planning requires a proper assessment of the dust inventory. This paper presents a predictive model of dust generation in an operating pebble bed with recirculating fuel. In this preliminary work the production model is based on the use of the assumption of proportionality between the dust production and the normal force and distance traveled. The model developed in this work uses the slip distances and the inter-pebble forces computed by the authors PEBBLES. The code, based on the discrete element method, simulates the relevant static and kinetic friction interactions between the pebbles as well as the recirculation of the pebbles through the reactor vessel. The interaction between pebbles and walls of the reactor vat is treated using the same approach. The amount of dust produced is proportional to the wear coefficient for adhesive wear (taken from literature) and to the slip volume, the product of the contact area and the slip distance. The paper will compare the predicted volume with the measured production rates. The simulation tallies the dust production based on the location of creation. Two peak production zones from intra pebble forces are predicted within the bed. The first zone is located near the pebble inlet chute due to the speed of the dropping pebbles. The second peak zone occurs lower in the reactor with increased pebble contact force due to the weight of supported pebbles. This paper presents the first use of a Discrete Element Method simulation of pebble bed dust production

  8. Abrasion behavior of graphite pebble in lifting pipe of pebble-bed HTR

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke; Su, Jiageng [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Zhou, Hongbo [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Chinergy Co., LTD., Beijing 100193 (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Yu, Suyun, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 10084 (China)

    2015-11-15

    Highlights: • Quantitative determination of abrasion rate of graphite pebbles in different lifting velocities. • Abrasion behavior of graphite pebble in helium, air and nitrogen. • In helium, intensive collisions caused by oscillatory motion result in more graphite dust production. - Abstract: A pebble-bed high-temperature gas-cooled reactor (pebble-bed HTR) uses a helium coolant, graphite core structure, and spherical fuel elements. The pebble-bed design enables on-line refueling, avoiding refueling shutdowns. During circulation process, the pebbles are lifted pneumatically via a stainless steel lifting pipe and reinserted into the reactor. Inevitably, the movement of the fuel elements as they recirculate in the reactor produces graphite dust. Mechanical wear is the primary source of graphite dust production. Specifically, the sources are mechanisms of pebble–pebble contact, pebble–wall (structural graphite) contact, and fuel handling (pebble–metal abrasion). The key contribution to graphite dust production is from the fuel handling system, particularly from the lifting pipe. During pneumatic lift, graphite pebbles undergo multiple collisions with the stainless steel lifting pipe, thereby causing abrasion of the graphite pebbles and producing graphite dust. The present work explored the abrasion behavior of graphite pebble in the lifting pipe by measuring the abrasion rate at different lifting velocities. The abrasion rate of the graphite pebble in helium was found much higher than those in air and nitrogen. This gas environment effect could be explained by either tribology behavior or dynamic behavior. Friction testing excluded the possibility of tribology reason. The dynamic behavior of the graphite pebble was captured by analysis of the audio waveforms during pneumatic lift. The analysis results revealed unique dynamic behavior of the graphite pebble in helium. Oscillation and consequently intensive collisions occur during pneumatic lift, causing

  9. 78 FR 7775 - Boulder Canyon Project

    Science.gov (United States)

    2013-02-04

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area...), is proposing an adjustment to the Boulder Canyon Project (BCP) electric service base charge and rates... subsequent laws, particularly section 9(c) of the Reclamation Project Act of 1939 (43 U.S.C. 485h(c)); and...

  10. 78 FR 48670 - Boulder Canyon Project

    Science.gov (United States)

    2013-08-09

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area... Canyon Project (BCP) electric service provided by the Western Area Power Administration (Western). The... INFORMATION: Hoover Dam, authorized by the Boulder Canyon Project Act (45 Stat. 1057, December 21, 1928), sits...

  11. 77 FR 48151 - Boulder Canyon Project

    Science.gov (United States)

    2012-08-13

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area... Canyon Project (BCP) electric service provided by the Western Area Power Administration (Western). The... INFORMATION: Hoover Dam, authorized by the Boulder Canyon Project Act (45 Stat. 1057, December 21, 1928), sits...

  12. 77 FR 2533 - Boulder Canyon Project

    Science.gov (United States)

    2012-01-18

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area...), is proposing an adjustment to the Boulder Canyon Project (BCP) electric service base charge and rates...) of the Reclamation Project Act of 1939 (43 U.S.C. 485h(c)); and other acts that specifically apply to...

  13. 76 FR 56430 - Boulder Canyon Project

    Science.gov (United States)

    2011-09-13

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area... Project (BCP) electric service provided by the Western Area Power Administration (Western). The Rates will... by the Boulder Canyon Project Act (45 Stat. 1057, December 21, 1928), sits on the Colorado River...

  14. 76 FR 8359 - Boulder Canyon Project

    Science.gov (United States)

    2011-02-14

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area... Western Area Power Administration (Western) is proposing an adjustment to the Boulder Canyon Project (BCP... Reclamation Project Act of 1939 (43 U.S.C. 485h(c)), and other acts that specifically apply to the project...

  15. Deposition of steeply infalling debris - pebbles, boulders, snowballs, asteroids, comets - around stars

    Science.gov (United States)

    Brown, J. C.; Veras, D.; Gänsicke, B. T.

    2017-09-01

    When Comet Lovejoy plunged into the Sun, and survived, questions arose about the physics of infall of small bodies. [1,2] has already described this infall in detail. However, a more general analysis for any type of star has been missing. [3] generalized previous studies, with specific applications to white dwarfs. High-metallicity pollution is common in white dwarf stars hosting remnant planetary systems. However, they rarely have detectable debris accretion discs, possibly because much of the influx is fast steeply infalling debris in star-grazing orbits, producing a more tenuous signature than a slowly accreting disc. Processes governing such deposition between the Roche radius and photosphere have so far received little attention and we model them here analytically by extending recent work on sun-grazing comets to white dwarf systems. We find that the evolution of cm-to-km size infallers most strongly depends on two combinations of parameters, which effectively measure sublimation rate and binding strength. We then provide an algorithm to determine the fate of infallers for any white dwarf, and apply the algorithm to four limiting combinations of hot versus cool (young/old) white dwarfs with snowy (weak, volatile) versus rocky (strong, refractory) infallers. We find: (i) Total sublimation above the photosphere befalls all small infallers across the entire white dwarf temperature range, the threshold size rising with it and 100× larger for rock than snow. (ii) All very large objects fragment tidally regardless of temperature: for rock, a0 ≽ 105 cm; for snow, a0 ≽ 103 - 3 × 104 cm across all white dwarf cooling ages. (iii) A considerable range of infaller sizes avoids fragmentation and total sublimation, yielding impacts or grazes with cold white dwarfs. This range rapidly narrows with increasing temperature, especially for snowy bodies. Finally, we briefly discuss how the various forms of deposited debris may finally reach the photosphere surface itself.

  16. Postirradiation examination of beryllium pebbles

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1998-01-01

    Postirradiation examinations of COBRA-1A beryllium pebbles irradiated in the EBR-II fast reactor at neutron fluences which generated 2700--3700 appm helium have been performed. Measurements included density change, optical microscopy, scanning electron microscopy, and transmission electron microscopy. The major change in microstructure is development of unusually shaped helium bubbles forming as highly non-equiaxed thin platelet-like cavities on the basal plane. Measurement of the swelling due to cavity formation was in good agreement with density change measurements

  17. Pebble fabrication and tritium release properties of an advanced tritium breeder

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Tsuyoshi, E-mail: hoshino.tsuyoshi@jaea.go.jp [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Edao, Yuki [Tritium Technology Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-4 Shirakata, Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kawamura, Yoshinori [Blanket Technology Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Ochiai, Kentaro [BA Project Coordination Group, Department of Fusion Power Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • Li{sub 2}TiO{sub 3} with excess Li (Li{sub 2+x}TiO{sub 3+y}) pebble as an advanced tritium breeders was fabricated using emulsion method. • Grain size of Li{sub 2+x}TiO{sub 3+y} pebbles was controlled to be less than 5 μm. • Li{sub 2+x}TiO{sub 3+y} pebbles exhibited good tritium release properties similar to that of Li{sub 2}TiO{sub 3} pebbles. - Abstract: Li{sub 2}TiO{sub 3} with excess Li (Li{sub 2+x}TiO{sub 3+y}) has been developed as an advanced tritium breeder. With respect to the tritium release characteristics of the blanket, the optimum grain size after sintering was less than 5 μm. Therefore, an emulsion method was developed to fabricate pebbles with this target grain size. The predominant factor affecting grain growth was assumed to be the presence of binder in the gel particles; this remaining binder was hypothesized to react with the excess Li, thereby generating Li{sub 2}CO{sub 3}, which promotes grain growth. To inhibit the generation of Li{sub 2}CO{sub 3}, calcined Li{sub 2+x}TiO{sub 3+y} pebbles were sintered under vacuum and subsequently under a 1% H{sub 2}–He atmosphere. The average grain size of the sintered Li{sub 2+x}TiO{sub 3+y} pebbles was less than 5 μm. Furthermore, the tritium release properties of Li{sub 2+x}TiO{sub 3+y} pebbles were evaluated, and deuterium–tritium (DT) neutron irradiation experiments were performed at the Fusion Neutronics Source facility in the Japan Atomic Energy Agency. To remove the tritium produced by neutron irradiation, 1% H{sub 2}–He purge gas was passed through the Li{sub 2+x}TiO{sub 3+y} pebbles. The Li{sub 2+x}TiO{sub 3+y} pebbles exhibited good tritium release properties, similar to those of Li{sub 2}TiO{sub 3} pebbles. In particular, the released amount of tritiated hydrogen gas for easier tritium handling was greater than the released amount of tritiated water.

  18. MIT pebble bed reactor project

    Energy Technology Data Exchange (ETDEWEB)

    Kadak, Andrew C. [Massachusetts Institute of Technology, Cambridge (United States)

    2007-03-15

    The conceptual design of the MIT modular pebble bed reactor is described. This reactor plant is a 250 Mwth, 120 Mwe indirect cycle plant that is designed to be deployed in the near term using demonstrated helium system components. The primary system is a conventional pebble bed reactor with a dynamic central column with an outlet temperature of 900 C providing helium to an intermediate helium to helium heat exchanger (IHX). The outlet of the IHX is input to a three shaft horizontal Brayton Cycle power conversion system. The design constraint used in sizing the plant is based on a factory modularity principle which allows the plant to be assembled 'Lego' style instead of constructed piece by piece. This principle employs space frames which contain the power conversion system that permits the Lego-like modules to be shipped by truck or train to sites. This paper also describes the research that has been conducted at MIT since 1998 on fuel modeling, silver leakage from coated fuel particles, dynamic simulation, MCNP reactor physics modeling and air ingress analysis.

  19. MIT pebble bed reactor project

    International Nuclear Information System (INIS)

    Kadak, Andrew C.

    2007-01-01

    The conceptual design of the MIT modular pebble bed reactor is described. This reactor plant is a 250 Mwth, 120 Mwe indirect cycle plant that is designed to be deployed in the near term using demonstrated helium system components. The primary system is a conventional pebble bed reactor with a dynamic central column with an outlet temperature of 900 C providing helium to an intermediate helium to helium heat exchanger (IHX). The outlet of the IHX is input to a three shaft horizontal Brayton Cycle power conversion system. The design constraint used in sizing the plant is based on a factory modularity principle which allows the plant to be assembled 'Lego' style instead of constructed piece by piece. This principle employs space frames which contain the power conversion system that permits the Lego-like modules to be shipped by truck or train to sites. This paper also describes the research that has been conducted at MIT since 1998 on fuel modeling, silver leakage from coated fuel particles, dynamic simulation, MCNP reactor physics modeling and air ingress analysis

  20. Proposed Construction of Boulder Seismic Station Monitoring Sites, Boulder, Wyoming. Environmental Assessment

    Science.gov (United States)

    2009-02-01

    boreholes at the Boulder Seismic Station for research, development, test, and evaluation (RDT&E) as part of the U.S. Nuclear Treaty monitoring...14 LIST OF FIGURES Figure 1. Location of the proposed Boulder Seismic Station, borehole locations and associated buffers...juncture of Spring Creek and Scab Creek Road (Figure 1). Currently, the Boulder Seismic Station has a 13-element array of seismometers on the property

  1. Contact detection acceleration in pebble flow simulation for pebble bed reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Ji, W. [Department of Mechanical, Aerospace, and Nuclear Engineering Rensselaer, Polytechnic Institute, 110 8th street, Troy, NY 12180 (United States)

    2013-07-01

    Pebble flow simulation plays an important role in the steady state and transient analysis of thermal-hydraulics and neutronics for Pebble Bed Reactors (PBR). The Discrete Element Method (DEM) and the modified Molecular Dynamics (MD) method are widely used to simulate the pebble motion to obtain the distribution of pebble concentration, velocity, and maximum contact stress. Although DEM and MD present high accuracy in the pebble flow simulation, they are quite computationally expensive due to the large quantity of pebbles to be simulated in a typical PBR and the ubiquitous contacts and collisions between neighboring pebbles that need to be detected frequently in the simulation, which greatly restricted their applicability for large scale PBR designs such as PBMR400. Since the contact detection accounts for more than 60% of the overall CPU time in the pebble flow simulation, the acceleration of the contact detection can greatly enhance the overall efficiency. In the present work, based on the design features of PBRs, two contact detection algorithms, the basic cell search algorithm and the bounding box search algorithm are investigated and applied to pebble contact detection. The influence from the PBR system size, core geometry and the searching cell size on the contact detection efficiency is presented. Our results suggest that for present PBR applications, the bounding box algorithm is less sensitive to the aforementioned effects and has superior performance in pebble contact detection compared with basic cell search algorithm. (authors)

  2. Contact detection acceleration in pebble flow simulation for pebble bed reactor systems

    International Nuclear Information System (INIS)

    Li, Y.; Ji, W.

    2013-01-01

    Pebble flow simulation plays an important role in the steady state and transient analysis of thermal-hydraulics and neutronics for Pebble Bed Reactors (PBR). The Discrete Element Method (DEM) and the modified Molecular Dynamics (MD) method are widely used to simulate the pebble motion to obtain the distribution of pebble concentration, velocity, and maximum contact stress. Although DEM and MD present high accuracy in the pebble flow simulation, they are quite computationally expensive due to the large quantity of pebbles to be simulated in a typical PBR and the ubiquitous contacts and collisions between neighboring pebbles that need to be detected frequently in the simulation, which greatly restricted their applicability for large scale PBR designs such as PBMR400. Since the contact detection accounts for more than 60% of the overall CPU time in the pebble flow simulation, the acceleration of the contact detection can greatly enhance the overall efficiency. In the present work, based on the design features of PBRs, two contact detection algorithms, the basic cell search algorithm and the bounding box search algorithm are investigated and applied to pebble contact detection. The influence from the PBR system size, core geometry and the searching cell size on the contact detection efficiency is presented. Our results suggest that for present PBR applications, the bounding box algorithm is less sensitive to the aforementioned effects and has superior performance in pebble contact detection compared with basic cell search algorithm. (authors)

  3. Behavior of beryllium pebbles under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dalle-Donne, M.; Scaffidi-Argentina, F. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik; Baldwin, D.L.; Gelles, D.S.; Greenwood, L.R.; Kawamura, H.; Oliver, B.M.

    1998-01-01

    Beryllium pebbles are being considered in fusion reactor blanket designs as neutron multiplier. An example is the European `Helium Cooled Pebble Bed Blanket.` Several forms of beryllium pebbles are commercially available but little is known about these forms in response to fast neutron irradiation. Commercially available beryllium pebbles have been irradiated to approximately 1.3 x 10{sup 22} n/cm{sup 2} (E>1 MeV) at 390degC. Pebbles 1-mm in diameter manufactured by Brush Wellman, USA and by Nippon Gaishi Company, Japan, and 3-mm pebbles manufactured by Brush Wellman were included. All were irradiated in the below-core area of the Experimental Breeder Reactor-II in Idaho Falls, USA, in molybdenum alloy capsules containing helium. Post-irradiation results are presented on density change measurements, tritium release by assay, stepped-temperature anneal, and thermal ramp desorption tests, and helium release by assay and stepped-temperature anneal measurements, for Be pebbles from two manufacturing methods, and with two specimen diameters. The experimental results on density change and tritium and helium release are compared with the predictions of the code ANFIBE. (author)

  4. PEBBLES Simulation of Static Friction and New Static Friction Benchmark

    International Nuclear Information System (INIS)

    Cogliati, Joshua J.; Ougouag, Abderrafi M.

    2010-01-01

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. This paper documents the PEBBLES static friction model. This model uses a three dimensional differential static friction approximation extended from the two dimensional Cundall and Strack model. The derivation of determining the rotational transformation of pebble to pebble static friction force is provided. A new implementation for a differential rotation method for pebble to container static friction force has been created. Previous published methods are insufficient for pebble bed reactor geometries. A new analytical static friction benchmark is documented that can be used to verify key static friction simulation parameters. This benchmark is based on determining the exact pebble to pebble and pebble to container static friction coefficients required to maintain a stable five sphere pyramid.

  5. Effect of bed configuration on pebble flow uniformity and stagnation in the pebble bed reactor

    International Nuclear Information System (INIS)

    Gui, Nan; Yang, Xingtuan; Tu, Jiyuan; Jiang, Shengyao

    2014-01-01

    Highlights: • Pebble flow uniformity and stagnation characteristics are very important for HTR-PM. • Arc- and brachistochrone-shaped configuration effects are studied by DEM simulation. • Best bed configurations with uniform flow and no stagnated pebbles are suggested. • Detailed quantified characteristics of bed configuration effects are shown for explanation. - Abstract: Pebble flow uniformity and stagnation characteristics are very important for the design of pebble bed high temperature gas-cooled reactor. Pebble flows inside some specifically designed contraction configurations of pebble bed are studied by discrete element method. The results show the characteristics of stagnation rates, recycling rates, radial distribution of pebble velocity and residence time. It is demonstrated clearly that the bed with a brachistochrone-shaped configuration achieves optimum levels of flow uniformity and recycling rate concentration, and almost no pebbles are stagnated in the bed. Moreover, the optimum choice among the arc-shaped bed configurations is demonstrated too. Detailed information shows the quantified characteristics of bed configuration effects on flow uniformity. In addition, a good design of the pebble bed configuration is suggested

  6. The Cross-Flow Mixing Analysis of Quasi-Static Pebble Flow in Pebble Bed Reactor

    International Nuclear Information System (INIS)

    Fang Xiang; Liu Zhiyong; Sun Yanfei; Yang Xingtuan; Jiang Shengyao

    2014-01-01

    In the pebble bed reactor, large number of fuel pebbles’ movement law and moving state can affect the reactor’s design, operation and safety directly. Therefore the pebble flow, which is based on the theory of particle streaming, is one of the most important research subjects of the pebble bed reactor engineering. The in-core pebble flow is a very slow particle flow (or called quasi-static particle flow), which is very different from the usual particle motion. How to accurately describe the characteristics of in-core pebble flow is a central issue for this subject. Due to the presence of random flow, the cross-mixing phenomenon will occur inevitably. In the present paper, the mixing phenomenon of pebble flow is generalized on the basis of experiment results. The pebble flow cross-mixing probability serves as the parameter which describes both the regularity and the randomness of pebble flow. The results are provided in the form of diagrammatic presentation. (author)

  7. Effect of friction on pebble flow pattern in pebble bed reactor

    International Nuclear Information System (INIS)

    Li, Yu; Gui, Nan; Yang, Xingtuan; Tu, Jiyuan; Jiang, Shengyao

    2016-01-01

    Highlights: • A 3D DEM study on particle–wall/particle friction in pebble bed reactor is carried out. • Characteristic values are defined to evaluate features of pebble flow pattern quantitatively. • Particle–wall friction is dominant to determine flow pattern in a specific pebble bed. • Friction effect of hopper part on flow field is more critical than that of cylinder part. • Three cases of 1:1 full scale practical pebble beds are simulated for demonstration. - Abstract: Friction affects pebble flow pattern in pebble-bed high temperature gas-cooled reactor (HTGR) significantly. Through a series of three dimensional DEM (discrete element method) simulations it is shown that reducing friction can be beneficial and create a uniform and consistent flow field required by nuclear engineering. Particle–wall friction poses a decisive impact on flow pattern, and particle–particle friction usually plays a secondary role; relation between particle–wall friction and flow pattern transition is also concluded. Moreover, new criteria are created to describe flow patterns quantitatively according to crucial issues in HTGR like stagnant zone, radial uniformity and flow sequence. Last but not least, it is proved that friction control of hopper part is more important than that of cylinder part in practical pebble beds, so reducing friction between pebbles and hopper surface is the engineering priority.

  8. The effects of temperatures on the pebble flow in a pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Sen, R. S.; Cogliati, J. J.; Gougar, H. D.

    2012-01-01

    The core of a pebble bed high temperature reactor (PBHTR) moves during operation, a feature which leads to better fuel economy (online refueling with no burnable poisons) and lower fuel stress. The pebbles are loaded at the top and trickle to the bottom of the core after which the burnup of each is measured. The pebbles that are not fully burned are recirculated through the core until the target burnup is achieved. The flow pattern of the pebbles through the core is of importance for core simulations because it couples the burnup distribution to the core temperature and power profiles, especially in cores with two or more radial burnup 'zones '. The pebble velocity profile is a strong function of the core geometry and the friction between the pebbles and the surrounding structures (other pebbles or graphite reflector blocks). The friction coefficient for graphite in a helium environment is inversely related to the temperature. The Thorium High Temperature Reactor (THTR) operated in Germany between 1983 and 1989. It featured a two-zone core, an inner core (IC) and outer core (OC), with different fuel mixtures loaded in each zone. The rate at which the IC was refueled relative to the OC in THTR was designed to be 0.56. During its operation, however, this ratio was measured to be 0.76, suggesting the pebbles in the inner core traveled faster than expected. It has been postulated that the positive feedback effect between inner core temperature, burnup, and pebble flow was underestimated in THTR. Because of the power shape, the center of the core in a typical cylindrical PBHTR operates at a higher temperature than the region next to the side reflector. The friction between pebbles in the IC is lower than that in the OC, perhaps causing a higher relative flow rate and lower average burnup, which in turn yield a higher local power density. Furthermore, the pebbles in the center region have higher velocities than the pebbles next to the side reflector due to the

  9. The effects of temperatures on the pebble flow in a pebble bed high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sen, R. S.; Cogliati, J. J.; Gougar, H. D. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2012-07-01

    The core of a pebble bed high temperature reactor (PBHTR) moves during operation, a feature which leads to better fuel economy (online refueling with no burnable poisons) and lower fuel stress. The pebbles are loaded at the top and trickle to the bottom of the core after which the burnup of each is measured. The pebbles that are not fully burned are recirculated through the core until the target burnup is achieved. The flow pattern of the pebbles through the core is of importance for core simulations because it couples the burnup distribution to the core temperature and power profiles, especially in cores with two or more radial burnup 'zones '. The pebble velocity profile is a strong function of the core geometry and the friction between the pebbles and the surrounding structures (other pebbles or graphite reflector blocks). The friction coefficient for graphite in a helium environment is inversely related to the temperature. The Thorium High Temperature Reactor (THTR) operated in Germany between 1983 and 1989. It featured a two-zone core, an inner core (IC) and outer core (OC), with different fuel mixtures loaded in each zone. The rate at which the IC was refueled relative to the OC in THTR was designed to be 0.56. During its operation, however, this ratio was measured to be 0.76, suggesting the pebbles in the inner core traveled faster than expected. It has been postulated that the positive feedback effect between inner core temperature, burnup, and pebble flow was underestimated in THTR. Because of the power shape, the center of the core in a typical cylindrical PBHTR operates at a higher temperature than the region next to the side reflector. The friction between pebbles in the IC is lower than that in the OC, perhaps causing a higher relative flow rate and lower average burnup, which in turn yield a higher local power density. Furthermore, the pebbles in the center region have higher velocities than the pebbles next to the side reflector due to the

  10. A Preliminary Study on Calculation of Inter-Pebble Dancoff Factor in a Pebble Type Core

    International Nuclear Information System (INIS)

    Kim, Song Hyun; Kim, Hong Chul; Kim, Soon Young; Noh, Jae Man; Kim, Jong Kyung

    2009-01-01

    The Dancoff factor is an entering probability of the neutron escaped from specific fuel kernel to another one without the interaction with moderators. Currently, Dancoff factors are mainly evaluated from stochastic methods, hence a research on analytical method is considerably insufficient in this field. In order to analytically evaluate Dancoff factor considering double-heterogeneous effect, inter-pebble and intra-pebble Dancoff factors should be calculated, respectively. Intra-pebble Dancoff factor related with the fuel kernels in one pebble was analyzed in past study. For the evaluation of inter-pebble Dancoff factor, fuel region to region Dancoff factor (FRDF) was defined and the method to calculate the FRDF is developed in this study. The result is compared with the calculation result of the MCNP5 code

  11. Experimental and computational investigation of flow of pebbles in a pebble bed nuclear reactor

    Science.gov (United States)

    Khane, Vaibhav B.

    The Pebble Bed Reactor (PBR) is a 4th generation nuclear reactor which is conceptually similar to moving bed reactors used in the chemical and petrochemical industries. In a PBR core, nuclear fuel in the form of pebbles moves slowly under the influence of gravity. Due to the dynamic nature of the core, a thorough understanding about slow and dense granular flow of pebbles is required from both a reactor safety and performance evaluation point of view. In this dissertation, a new integrated experimental and computational study of granular flow in a PBR has been performed. Continuous pebble re-circulation experimental set-up, mimicking flow of pebbles in a PBR, is designed and developed. Experimental investigation of the flow of pebbles in a mimicked test reactor was carried out for the first time using non-invasive radioactive particle tracking (RPT) and residence time distribution (RTD) techniques to measure the pebble trajectory, velocity, overall/zonal residence times, flow patterns etc. The tracer trajectory length and overall/zonal residence time is found to increase with change in pebble's initial seeding position from the center towards the wall of the test reactor. Overall and zonal average velocities of pebbles are found to decrease from the center towards the wall. Discrete element method (DEM) based simulations of test reactor geometry were also carried out using commercial code EDEM(TM) and simulation results were validated using the obtained benchmark experimental data. In addition, EDEM(TM) based parametric sensitivity study of interaction properties was carried out which suggests that static friction characteristics play an important role from a packed/pebble beds structural characterization point of view. To make the RPT technique viable for practical applications and to enhance its accuracy, a novel and dynamic technique for RPT calibration was designed and developed. Preliminary feasibility results suggest that it can be implemented as a non

  12. Thermo-mechanical screening tests to qualify beryllium pebble beds with non-spherical pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, Joerg, E-mail: joerg.reimann@partner.kit.edu [IKET, Karlsruhe Institute of Technology, Karlsruhe (Germany); Fretz, Benjamin [KBHF GmbH, Eggenstein-Leopoldshafen (Germany); Pupeschi, Simone [IAM, Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2015-10-15

    Highlights: • In present ceramic breeder blankets, pebble-shaped beryllium is used as a neutron multiplier. • Spherical pebbles are considered as the candidate material, however, non-spherical particles are of economic interest. • Thermo-mechanical pebble bed data do merely exist for non-spherical beryllium grades. • Uniaxial compression tests (UCTs), combined with the Hot Wire Technique (HWT) were used to measure the stress–strain relations and the thermal conductivity. • A small experimental set-up had to be used and a detailed 3D modelling was of prime importance. • Compared to spherical pebble beds, non-spherical pebble beds are generally softer and mainly the thermal conductivity is lower. - Abstract: In present ceramic breeder blankets, pebble-shaped beryllium is used as a neutron multiplier. Fairly spherical pebbles are considered as a candidate material, however, non-spherical particles are of economic interest because production costs are much lower. Yet, thermo-mechanical pebble bed data do merely exist for these beryllium grades, and the blanket relevant potential of these grades cannot be judged. Screening experiments were performed with three different grades of non-spherical beryllium pebbles, produced by different companies, accompanied by experiments with the reference beryllium pebble beds. Uniaxial compression tests (UCTs), combined with the Hot Wire Technique (HWT), were performed to measure both the stress–strain relation and the thermal conductivity, k, at different stress levels. Because of the limited amounts of the non-spherical materials, the experimental set-ups were small and a detailed 3D modelling was of prime importance in order to prove that the used design was appropriate. Compared to the pebble beds consisting of spherical pebbles, non-spherical pebble beds are generally softer (smaller stress for a given strain), and, mainly as a consequence of this, for a given strain value, the thermal conductivity is lower. This

  13. Effects of random pebble distribution on the multiplication factor in HTR pebble bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Auwerda, G.J., E-mail: g.j.auwerda@tudelft.n [Department of Physics of Nuclear Reactors at the Delft University of Technology, Mekelweg 15, Delft (Netherlands); Kloosterman, J.L.; Lathouwers, D.; Hagen, T.H.J.J. van der [Department of Physics of Nuclear Reactors at the Delft University of Technology, Mekelweg 15, Delft (Netherlands)

    2010-08-15

    In pebble bed reactors the pebbles have a random distribution within the core. The usual approach in modeling the bed is homogenizing the entire bed. To quantify the errors arising in such a model, this article investigates the effect on k{sub eff} of three phenomena in random pebble distributions: non-uniform packing density, neutron streaming in between the pebbles, and variations in Dancoff factor. For a 100 cm high cylinder with reflective top and bottom boundary conditions 25 pebble beds were generated. Of each bed three core models were made: a homogeneous model, a zones model including density fluctuations, and an exact model with all pebbles modeled individually. The same was done for a model of the PROTEUS facility. k{sub eff} calculations were performed with three codes: Monte Carlo, diffusion, and finite element transport. By comparing k{sub eff} of the homogenized and zones model the effect of including density fluctuations in the pebble bed was found to increase k{sub eff} by 71 pcm for the infinite cylinder and 649 pcm for PROTEUS. The large value for PROTEUS is due to the low packing fraction near the top of the pebble bed, causing a significant lower packing fraction for the bulk of the pebble bed in the homogenized model. The effect of neutron streaming was calculated by comparing the zones model with the exact model, and was found to decrease k{sub eff} by 606 pcm for the infinite cylinder, and by 1240 pcm for PROTEUS. This was compared with the effect of using a streaming correction factor on the diffusion coefficient in the zones model, which resulted in {Delta}{sub streaming} values of 340 and 1085 pcm. From this we conclude neutron streaming is an important effect in pebble bed reactors, and is not accurately described by the correction factor on the diffusion coefficient. Changing the Dancoff factor in the outer part of the pebble bed to compensate for the lower probability of neutrons to enter other fuel pebbles caused no significant changes

  14. Challenges in forming the solar system's giant planet cores via pebble accretion

    International Nuclear Information System (INIS)

    Kretke, K. A.; Levison, H. F.

    2014-01-01

    Though ∼10 M ⊕ mass rocky/icy cores are commonly held as a prerequisite for the formation of gas giants, theoretical models still struggle to explain how these embryos can form within the lifetimes of gaseous circumstellar disks. In recent years, aerodynamic-aided accretion of 'pebbles', objects ranging from centimeters to meters in size, has been suggested as a potential solution to this long-standing problem. While pebble accretion has been demonstrated to be extremely effective in local simulations that look at the detailed behavior of these pebbles in the vicinity of a single planetary embryo, to date there have been no global simulations demonstrating the effectiveness of pebble accretion in a more complicated, multi-planet environment. Therefore, we have incorporated the aerodynamic-aided accretion physics into LIPAD, a Lagrangian code that can follow the collisional/accretional/dynamical evolution of a protoplanetary system, to investigate how pebble accretion manifests itself in the larger planet formation picture. We find that under generic circumstances, pebble accretion naturally leads to an 'oligarchic' type of growth in which a large number of planetesimals grow to similar-sized planets. In particular, our simulations tend to form hundreds of Mars- and Earth-mass objects between 4 and 10 AU. While merging of some oligarchs may grow massive enough to form giant planet cores, leftover oligarchs lead to planetary systems that cannot be consistent with our own solar system. We investigate various ideas presented in the literature (including evaporation fronts and planet traps) and find that none easily overcome this tendency toward oligarchic growth.

  15. Loads on pebble bed fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Teuchert, E.; Maly, V.

    1974-03-15

    A comparison is made of key parameters for multi-recycle pebbles and single-pass once-through (OTTO) pebbles. The parameters analyzed include heat transfer characteristics with burn-up, temperature profiles, power per element as a function of axial position in the core, and burn-up. For the OTTO-scheme, the comparisons addressed the use of the conventional fuel element and the advanced "shell ball" designed to reduce the peak fuel temperature in the center of the fuel element. All studies addressed the uranium-thorium fuel cycle.

  16. Planet population synthesis driven by pebble accretion in cluster environments

    Science.gov (United States)

    Ndugu, N.; Bitsch, B.; Jurua, E.

    2018-02-01

    The evolution of protoplanetary discs embedded in stellar clusters depends on the age and the stellar density in which they are embedded. Stellar clusters of young age and high stellar surface density destroy protoplanetary discs by external photoevaporation and stellar encounters. Here, we consider the effect of background heating from newly formed stellar clusters on the structure of protoplanetary discs and how it affects the formation of planets in these discs. Our planet formation model is built on the core accretion scenario, where we take the reduction of the core growth time-scale due to pebble accretion into account. We synthesize planet populations that we compare to observations obtained by radial velocity measurements. The giant planets in our simulations migrate over large distances due to the fast type-II migration regime induced by a high disc viscosity (α = 5.4 × 10-3). Cold Jupiters (rp > 1 au) originate preferably from the outer disc, due to the large-scale planetary migration, while hot Jupiters (rp meaning that more gas giants are formed at larger metallicity. However, our synthetic population of isolated stars host a significant amount of giant planets even at low metallicity, in contradiction to observations where giant planets are preferably found around high metallicity stars, indicating that pebble accretion is very efficient in the standard pebble accretion framework. On the other hand, discs around stars embedded in cluster environments hardly form any giant planets at low metallicity in agreement with observations, where these changes originate from the increased temperature in the outer parts of the disc, which prolongs the core accretion time-scale of the planet. We therefore conclude that the outer disc structure and the planet's formation location determines the giant planet occurrence rate and the formation efficiency of cold and hot Jupiters.

  17. Geochemical fingerprints and pebbles zircon geochronology

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 7. Geochemical fingerprints and pebbles zircon geochronology: Implications for the provenance and tectonic setting of Lower Cretaceous sediments in the Zhucheng Basin (Jiaodong peninsula, North China). Jin-Long Ni Jun-Lai Liu Xiao-Ling Tang ...

  18. "Smart pebble" designs for sediment transport monitoring

    Science.gov (United States)

    Valyrakis, Manousos; Alexakis, Athanasios; Pavlovskis, Edgars

    2015-04-01

    Sediment transport, due to primarily the action of water, wind and ice, is one of the most significant geomorphic processes responsible for shaping Earth's surface. It involves entrainment of sediment grains in rivers and estuaries due to the violently fluctuating hydrodynamic forces near the bed. Here an instrumented particle, namely a "smart pebble", is developed to investigate the exact flow conditions under which individual grains may be entrained from the surface of a gravel bed. This could lead in developing a better understanding of the processes involved, focusing on the response of the particle during a variety of flow entrainment events. The "smart pebble" is a particle instrumented with MEMS sensors appropriate for capturing the hydrodynamic forces a coarse particle might experience during its entrainment from the river bed. A 3-axial gyroscope and accelerometer registers data to a memory card via a microcontroller, embedded in a 3D-printed waterproof hollow spherical particle. The instrumented board is appropriately fit and centred into the shell of the pebble, so as to achieve a nearly uniform distribution of the mass which could otherwise bias its motion. The "smart pebble" is powered by an independent power to ensure autonomy and sufficiently long periods of operation appropriate for deployment in the field. Post-processing and analysis of the acquired data is currently performed offline, using scientific programming software. The performance of the instrumented particle is validated, conducting a series of calibration experiments under well-controlled laboratory conditions.

  19. Measurements of the purge helium pressure drop across pebble beds packed with lithium orthosilicate and glass pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Sena, Ali, E-mail: ali.abou-sena@kit.edu; Arbeiter, Frederik; Boccaccini, Lorenzo V.; Schlindwein, Georg

    2014-10-15

    Highlights: • The objective is to measure the purge helium pressure drop across various HCPB-relevant pebble beds packed with lithium orthosilicate and glass pebbles. • The purge helium pressure drop significantly increases with decreasing the pebbles diameter from one run to another. • At the same superficial velocity, the pressure drop is directly proportional to the helium inlet pressure. • The Ergun's equation can successfully model the purge helium pressure drop for the HCPB-relevant pebble beds. • The measured values of the purge helium pressure drop for the lithium orthosilicate pebble bed will support the design of the purge gas system for the HCPB breeder units. - Abstract: The lithium orthosilicate pebble beds of the Helium Cooled Pebble Bed (HCPB) blanket are purged by helium to transport the produced tritium to the tritium extraction system. The pressure drop of the purge helium has a direct impact on the required pumping power and is a limiting factor for the purge mass flow. Therefore, the objective of this study is to measure the helium pressure drop across various HCPB-relevant pebble beds packed with lithium orthosilicate and glass pebbles. The pebble bed was formed by packing the pebbles into a stainless steel cylinder (ID = 30 mm and L = 120 mm); then it was integrated into a gas loop that has four variable-speed side-channel compressors to regulate the helium mass flow. The static pressure was measured at two locations (100 mm apart) along the pebble bed and at inlet and outlet of the pebble bed. The results demonstrated that: (i) the pressure drop significantly increases with decreasing the pebbles diameter, (ii) for the same superficial velocity, the pressure drop is directly proportional to the inlet pressure, and (iii) predictions of Ergun's equation agree well with the experimental results. The measured pressure drop for the lithium orthosilicate pebble bed will support the design of the purge gas system for the HCPB.

  20. "Smart pebble" design for environmental monitoring applications

    Science.gov (United States)

    Valyrakis, Manousos; Pavlovskis, Edgars

    2014-05-01

    Sediment transport, due to primarily the action of water, wind and ice, is one of the most significant geomorphic processes responsible for shaping Earth's surface. It involves entrainment of sediment grains in rivers and estuaries due to the violently fluctuating hydrodynamic forces near the bed. Here an instrumented particle, namely a "smart pebble", is developed to investigate the exact flow conditions under which individual grains may be entrained from the surface of a gravel bed. This could lead in developing a better understanding of the processes involved, while focusing on the response of the particle during a variety of flow entrainment events. The "smart pebble" is a particle instrumented with MEMS sensors appropriate for capturing the hydrodynamic forces a coarse particle might experience during its entrainment from the river bed. A 3-axial gyroscope and accelerometer registers data to a memory card via a microcontroller, embedded in a 3D-printed waterproof hollow spherical particle. The instrumented board is appropriately fit and centred into the shell of the pebble, so as to achieve a nearly uniform distribution of the mass which could otherwise bias its motion. The "smart pebble" is powered by an independent power to ensure autonomy and sufficiently long periods of operation appropriate for deployment in the field. Post-processing and analysis of the acquired data is currently performed offline, using scientific programming software. The performance of the instrumented particle is validated, conducting a series of calibration experiments under well-controlled laboratory conditions. "Smart pebble" allows for a wider range of environmental sensors (e.g. for environmental/pollutant monitoring) to be incorporated so as to extend the range of its application, enabling accurate environmental monitoring which is required to ensure infrastructure resilience and preservation of ecological health.

  1. X-ray tomography investigations on pebble bed structures

    International Nuclear Information System (INIS)

    Reimann, J.; Rolli, R.; Pieritz, R.A.; Ferrero, C.; Di Michiel, M.

    2007-01-01

    Granular materials (pebbles) are used in present ceramic breeder blankets both for the ceramic breeder material and beryllium. The thermal-mechanical behaviour of these pebble beds strongly depends on the arrangement of the pebbles in the bed, their contacts and contact surfaces with other pebbles and with walls. The influence of these quantities is most pronounced for beryllium pebble beds because of the large thermal conductivity ratio of beryllium to helium gas atmosphere. At present, the data base for the pebble bed thermal conductivity (k) and heat transfer coefficient (h) is quite limited for compressed beds and significant discrepancies exist in respect to h. The detailed knowledge of the pebble bed topology is, therefore, essential to better understand the heat transfer mechanisms. In the present work, results from detailed X-ray tomography investigations are reported on pebble topology in i) the pebble bed bulk (which is relevant for k), and ii) the region close to walls with thicknesses of several pebble diameters (relevant for h). At Forschungszentrum Karlsruhe, pebble beds consisting of aluminium spheres with diameters of 2.3 and 5 mm, respectively, (simulating the blanket relevant 1 mm beryllium pebbles), were uniaxially compressed at different pressure levels. High resolution three-dimensional microtomography (MT) experiments were subsequently performed at the European Synchrotron Radiation Facility, Grenoble. Radial and axial void fraction distributions were found to be oscillatory next to the walls and non-oscillatory in the bulk. For non-compressed pebble beds, the bulk void fraction is fairly constant; for compressed beds, a gradient exists along the compression axis. In the bulk, the angular distribution of pebble contacts was found to be fairly constant, indicating that no regular packing structure is induced. In the wall region, the pebble layer touching the wall is composed of zones with hexagonal structures as shown clearly by MT images. This

  2. Tsunami-induced boulder transport - combining physical experiments and numerical modelling

    Science.gov (United States)

    Oetjen, Jan; Engel, Max; May, Simon Matthias; Schüttrumpf, Holger; Brueckner, Helmut; Prasad Pudasaini, Shiva

    2016-04-01

    Coasts are crucial areas for living, economy, recreation, transportation, and various sectors of industry. Many of them are exposed to high-energy wave events. With regard to the ongoing population growth in low-elevation coastal areas, the urgent need for developing suitable management measures, especially for hazards like tsunamis, becomes obvious. These measures require supporting tools which allow an exact estimation of impact parameters like inundation height, inundation area, and wave energy. Focussing on tsunamis, geological archives can provide essential information on frequency and magnitude on a longer time scale in order to support coastal hazard management. While fine-grained deposits may quickly be altered after deposition, multi-ton coarse clasts (boulders) may represent an information source on past tsunami events with a much higher preservation potential. Applying numerical hydrodynamic coupled boulder transport models (BTM) is a commonly used approach to analyse characteristics (e.g. wave height, flow velocity) of the corresponding tsunami. Correct computations of tsunamis and the induced boulder transport can provide essential event-specific information, including wave heights, runup and direction. Although several valuable numerical models for tsunami-induced boulder transport exist (e. g. Goto et al., 2007; Imamura et al., 2008), some important basic aspects of both tsunami hydrodynamics and corresponding boulder transport have not yet been entirely understood. Therefore, our project aims at these questions in four crucial aspects of boulder transport by a tsunami: (i) influence of sediment load, (ii) influence of complex boulder shapes other than idealized rectangular shapes, (iii) momentum transfers between multiple boulders, and (iv) influence of non-uniform bathymetries and topographies both on tsunami and boulder. The investigation of these aspects in physical experiments and the correct implementation of an advanced model is an urgent need

  3. Geoelectric monitoring at the Boulder magnetic observatory

    Directory of Open Access Journals (Sweden)

    C. C. Blum

    2017-11-01

    Full Text Available Despite its importance to a range of applied and fundamental studies, and obvious parallels to a robust network of magnetic-field observatories, long-term geoelectric field monitoring is rarely performed. The installation of a new geoelectric monitoring system at the Boulder magnetic observatory of the US Geological Survey is summarized. Data from the system are expected, among other things, to be used for testing and validating algorithms for mapping North American geoelectric fields. An example time series of recorded electric and magnetic fields during a modest magnetic storm is presented. Based on our experience, we additionally present operational aspects of a successful geoelectric field monitoring system.

  4. DOE Zero Energy Ready Home Case Study: Boulder ZED Design Build - Boulder, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Boulder, Colorado, that scored HERS 38 without PV and 0 with PV. This 2,504 ft2 custom home has advanced framed walls, superior insulation a ground-source heat pump, ERV, and triple-pane windows.

  5. Effect of a Central Graphite Column on a Pebble Flow in a Pebble Bed Core

    International Nuclear Information System (INIS)

    In, W. K.; Lee, W. J.; Chang, J. H.

    2006-01-01

    A pebble bed reactor(PBR) uses coated fuel particles embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the core during an operation. The pebble bed core is configured as cylindrical or annular depending on the reactor power. It is well known that an annular core can increase a cores' thermal power. The annular inner core zone is typically filled with movable graphite balls or a fixed graphite column. The first problem with this conventional annular core is that it is difficult to maintain a boundary between the central graphite ball zone and the outer fuel zone. The second problem is that it is expensive to replace the central fixed graphite column after several tens of years of reactor operation. In order to resolve these problems, a PBR with a central graphite column in a low core is invented. This paper presents the effect of the central graphite column on a pebble flow by using the computational fluid dynamics(CFD) code, CFX-10

  6. A discrete element method study on the evolution of thermomechanics of a pebble bed experiencing pebble failure

    Energy Technology Data Exchange (ETDEWEB)

    Van Lew, Jon T., E-mail: jtvanlew@fusion.ucla.edu; Ying, Alice; Abdou, Mohamed

    2014-10-15

    The discrete element method (DEM) is used to study the thermal effects of pebble failure in an ensemble of lithium ceramic spheres. Some pebbles crushing in a large system is unavoidable and this study provides correlations between the extent of pebble failure and the reduction in effective thermal conductivity of the bed. In the model, we homogeneously induced failure and applied nuclear heating until dynamic and thermal steady-state. Conduction between pebbles and from pebbles to the boundary is the only mode of heat transfer presently modeled. The effective thermal conductivity was found to decrease rapidly as a function of the percent of failed pebbles in the bed. It was found that the dominant contributor to the reduction was the drop in inter-particle forces as pebbles fail; implying the extent of failure induced may not occur in real pebble beds. The results are meant to assist designers in the fusion energy community who are planning to use packed beds of ceramic pebbles. The evolution away from experimentally measured thermomechanical properties as pebbles fail is necessary for proper operation of fusion reactors.

  7. Wake patterns behind boulders in the rings of Saturn

    International Nuclear Information System (INIS)

    Brattli, A.; Havnes, O.; Melandsoe, F.

    2002-01-01

    The flow of charged dust around an electrically charged boulder moving through an environment thought to be typical of planatery rings is studied. As the boulder moves through the ring dust it will excite a V-shaped Mach cone pattern of a form and complexity which varies significantly with boulder size, relative velocity between the boulder and the dust, and with dust plasma conditions. Parameters relevant to the Saturnian ring system are used to compute examples which demonstrate the change in Mach cone patterns with the relevant parameters. Shortcomings of the model are discussed and ways to improve the calculations of Mach cone patterns are pointed out

  8. Mechanical performance of irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Dalle-Donne, M.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik

    1998-01-01

    For the Helium Cooled Pebble Bed (HCPB) Blanket, which is one of the two reference concepts studied within the European Fusion Technology Programme, the neutron multiplier consists of a mixed bed of about 2 and 0.1-0.2 mm diameter beryllium pebbles. Beryllium has no structural function in the blanket, however microstructural and mechanical properties are important, as they might influence the material behavior under neutron irradiation. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating it. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from these irradiation experiments, emphasizing the effects of irradiation of essential material properties and trying to elucidate the processes controlling the property changes. The microstructure, the porosity distribution, the impurity content, the behavior under compression loads and the compatibility of the beryllium pebbles with lithium orthosilicate (Li{sub 4}SiO{sub 4}) during the in-pile irradiation are presented and critically discussed. Qualitative information on ductility and creep obtained by hardness-type measurements are also supplied. (author)

  9. Ceramic breeder pebble bed packing stability under cyclic loads

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunbo, E-mail: chunbozhang@fusion.ucla.edu [Fusion Science and Technology Center, University of California, Los Angeles, CA 90095-1597 (United States); Ying, Alice; Abdou, Mohamed A. [Fusion Science and Technology Center, University of California, Los Angeles, CA 90095-1597 (United States); Park, Yi-Hyun [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • The feasibility of obtaining packing stability for pebble beds is studied. • The responses of pebble bed to cyclic loads have been presented and analyzed in details. • Pebble bed packing saturation and its applications are discussed. • A suggestion is made regarding the improvement of pebbles filling technique. - Abstract: Considering the optimization of blanket performance, it is desired that the bed morphology and packing state during reactor operation are stable and predictable. Both experimental and numerical work are performed to explore the stability of pebble beds, in particular under pulsed loading conditions. Uniaxial compaction tests have been performed for both KIT’s Li{sub 4}SiO{sub 4} and NFRI’s Li{sub 2}TiO{sub 3} pebble beds at elevated temperatures (up to 750 °C) under cyclic loads (up to 6 MPa). The obtained data shows the stress-strain loop initially moves towards the larger strain and nearly saturates after a certain number of cyclic loading cycles. The characterized FEM CAP material models for a Li{sub 4}SiO{sub 4} pebble bed with an edge-on configuration are used to simulate the thermomechanical behavior of pebble bed under ITER pulsed operations. Simulation results have shown the cyclic variation of temperature/stress/strain/gap and also the same saturation trend with experiments under cyclic loads. Therefore, it is feasible for pebble bed to maintain its packing stability during operation when disregarding pebbles’ breakage and irradiation.

  10. Mechanics of a crushable pebble assembly using discrete element method

    International Nuclear Information System (INIS)

    Annabattula, R.K.; Gan, Y.; Zhao, S.; Kamlah, M.

    2012-01-01

    The influence of crushing of individual pebbles on the overall strength of a pebble assembly is investigated using discrete element method. An assembly comprising of 5000 spherical pebbles is assigned with random critical failure energies with a Weibull distribution in accordance with the experimental observation. Then, the pebble assembly is subjected to uni-axial compression (ε 33 =1.5%) with periodic boundary conditions. The crushable pebble assembly shows a significant difference in stress–strain response in comparison to a non-crushable pebble assembly. The analysis shows that a ideal plasticity like behaviour (constant stress with increase in strain) is the characteristic of a crushable pebble assembly with sudden damage. The damage accumulation law plays a critical role in determining the critical stress while the critical number of completely failed pebbles at the onset of critical stress is independent of such a damage law. Furthermore, a loosely packed pebble assembly shows a higher crush resistance while the critical stress is insensitive to the packing factor (η) of the assembly.

  11. Geological Investigations on Boulder-Clay of E. Groningen

    NARCIS (Netherlands)

    Gijzel, van P.; Overweel, C.J.; Veenstra, H.J.

    1959-01-01

    In this article the results of a study on boulder-clay in the neighbourhood of Winschoten (N.E. Netherlands) are communicated (Chapter I). The underlying sediments of the boulder-clay in this area consist of fine preglacial sands and black clay. In the nuclei of the many drumlins a strongly

  12. A Pebble Bed Reactor cross section methodology

    International Nuclear Information System (INIS)

    Hudson, Nathanael H.; Ougouag, Abderrafi M.; Rahnema, Farzad; Gougar, Hans

    2009-01-01

    A method is presented for the evaluation of microscopic cross sections for the Pebble Bed Reactor (PBR) neutron diffusion computational models during convergence to an equilibrium (asymptotic) fuel cycle. This method considers the isotopics within a core spectral zone and the leakages from such a zone as they arise during reactor operation. The randomness of the spatial distribution of fuel grains within the fuel pebbles and that of the fuel and moderator pebbles within the core, the double heterogeneity of the fuel, and the indeterminate burnup of the spectral zones all pose a unique challenge for the computation of the local microscopic cross sections. As prior knowledge of the equilibrium composition and leakage is not available, it is necessary to repeatedly re-compute the group constants with updated zone information. A method is presented to account for local spectral zone composition and leakage effects without resorting to frequent spectrum code calls. Fine group data are pre-computed for a range of isotopic states. Microscopic cross sections and zone nuclide number densities are used to construct fine group macroscopic cross sections, which, together with fission spectra, flux modulation factors, and zone buckling, are used in the solution of the slowing down balance to generate a new or updated spectrum. The microscopic cross-sections are then re-collapsed with the new spectrum for the local spectral zone. This technique is named the Spectral History Correction (SHC) method. It is found that this method accurately recalculates local broad group microscopic cross sections. Significant improvement in the core eigenvalue, flux, and power peaking factor is observed when the local cross sections are corrected for the effects of the spectral zone composition and leakage in two-dimensional PBR test problems.

  13. Surface coating of graphite pebbles for Korean HCCR TBM

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of); Yun, Young-Hoon, E-mail: yunh2@dsu.ac.kr [Dongshin University, Naju (Korea, Republic of); Park, Yi-Hyun; Ahn, Mu-Young; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Highlights: • A CVR-SiC coating was successfully formed on graphite pebbles for neutron reflector. • Dense and fine-grained surface morphologies of the SiC coatings were observed. • Oxidation resistance of the CVR-SiC-coated graphite pebbles was improved. - Abstract: The new concept of the recently modified Helium-Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) is to adopt a graphite reflector in the form of a pebble bed. A protective SiC coating is applied to the graphite pebbles to prohibit their reaction with steam or air as well as dust generation during TBM operation. In this research, the chemical vapor reaction (CVR) method was applied to fabricate SiC-coated graphite pebbles in a silica source. Relatively dense CVR-SiC coating was successfully formed on the graphite pebbles through the reduction of the graphite phase with SiO gas that was simply created from the silica source at 1850 °C (2 h). The microstructural features, XRD patterns, pore-size distribution and oxidation behavior of the SiC-coated graphite pebbles were investigated. To develop the practical process, which will be applied for mass production hereafter, a novel alternative method was applied to form the layer of SiC coating on the graphite pebbles over the silica source.

  14. Fabrication of modified lithium orthosilicate pebbles by addition of titania

    Energy Technology Data Exchange (ETDEWEB)

    Knitter, R., E-mail: regina.knitter@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-WPT), Karlsruhe, 76021 (Germany); Kolb, M.H.H.; Kaufmann, U. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-WPT), Karlsruhe, 76021 (Germany); Goraieb, A.A. [Goraieb Versuchstechnik (GVT), Karlsruhe, 76227 (Germany)

    2013-11-15

    Highlights: ► Lithium orthosilicate pebbles with additions of titania were fabricated by a modified melt-based process. ► The fabricated pebbles exhibit a very fine-grained microstructure with lithium metatitanate as a secondary phase. ► Due to the addition of titanate, the crush load of the pebbles was significantly increased. ► The closed porosity was found to be slightly increased with increasing titanate content. -- Abstract: Lithium orthosilicate pebbles are one of the ceramic tritium breeder materials destined for the European solid breeder test blanket modules of ITER, the large-scale scientific experiment intended to prove the viability of fusion as an energy source, presently under construction in Cadarache, France. While the current reference material is fabricated by melt-spraying with 2.5 wt.% excess of silica, resulting in a two-phase material of lithium orthosilicate and metasilicate, a modified melt-based process was used to fabricate breeder pebbles with additions of titania in order to obtain pebbles with lithium metatitanate as a secondary phase. The fabricated two-phase pebbles exhibit a fine-grained microstructure and increased crush loads. The optimum titanate content has yet to be evaluated, nonetheless the pebbles may have the potential to combine the advantages of both lithium orthosilicate and metatitanate breeder ceramics.

  15. Surface coating of graphite pebbles for Korean HCCR TBM

    International Nuclear Information System (INIS)

    Lee, Youngmin; Yun, Young-Hoon; Park, Yi-Hyun; Ahn, Mu-Young; Cho, Seungyon

    2014-01-01

    Highlights: • A CVR-SiC coating was successfully formed on graphite pebbles for neutron reflector. • Dense and fine-grained surface morphologies of the SiC coatings were observed. • Oxidation resistance of the CVR-SiC-coated graphite pebbles was improved. - Abstract: The new concept of the recently modified Helium-Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) is to adopt a graphite reflector in the form of a pebble bed. A protective SiC coating is applied to the graphite pebbles to prohibit their reaction with steam or air as well as dust generation during TBM operation. In this research, the chemical vapor reaction (CVR) method was applied to fabricate SiC-coated graphite pebbles in a silica source. Relatively dense CVR-SiC coating was successfully formed on the graphite pebbles through the reduction of the graphite phase with SiO gas that was simply created from the silica source at 1850 °C (2 h). The microstructural features, XRD patterns, pore-size distribution and oxidation behavior of the SiC-coated graphite pebbles were investigated. To develop the practical process, which will be applied for mass production hereafter, a novel alternative method was applied to form the layer of SiC coating on the graphite pebbles over the silica source

  16. Toward a new paradigm for boulder dislodgement during storms

    Science.gov (United States)

    Weiss, Robert; Sheremet, Alex

    2017-07-01

    Boulders are an important coastal hazard event deposit because they can only be moved by tsunamis and energetic storms effects of storms. Storms and tsunami are competing processes for coastal change along many shorelines. Therefore, distinguishing the boulders that were moved during a storm from those moved by a tsunami is important. In this contribution, we present the results of a parameter study based on the TRIADS model for wave shoaling on mildly sloping beaches, coupled with a boulder-dislodgement model that is based on Newton's Second Law of Motion. The results show how smaller slopes expose the waves longer to the nonlinear processes, thus increasing the energy in the infragravity wave band. More energy in the infragravity wave band means that there are more energy wave lengths that can dislodge larger boulders. At the same time, a steeper slope lowers the threshold for boulder dislodgement (critical angle of dislodgement), making it more likely for larger boulders to be dislodged on a steeper slope. The competition between these two processes govern boulder dislodgement during storms and is investigated inhere.

  17. The Pebble Bed Modular Reactor: An obituary

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Steve, E-mail: stephen.thomas@gre.ac.u [Public Services International Research Unit (PSIRU), Business School, University of Greenwich, 30 Park Row, London SE10 9LS (United Kingdom)

    2011-05-15

    The High Temperature Gas-cooled Reactor (HTGR) has exerted a peculiar attraction over nuclear engineers. Despite many unsuccessful attempts over half a century to develop it as a commercial power reactor, there is still a strong belief amongst many nuclear advocates that a highly successful HTGR technology will emerge. The most recent attempt to commercialize an HTGR design, the Pebble Bed Modular Reactor (PBMR), was abandoned in 2010 after 12 years of effort and the expenditure of a large amount of South African public money. This article reviews this latest attempt to commercialize an HTGR design and attempts to identify which issues have led to its failure and what lessons can be learnt from this experience. It concludes that any further attempts to develop HTGRs using Pebble Bed technology should only be undertaken if there is a clear understanding of why earlier attempts have failed and a high level of confidence that earlier problems have been overcome. It argues that the PBMR project has exposed serious weaknesses in accountability mechanisms for the expenditure of South African public money. - Research highlights: {yields} In this study we examine the reasons behind the failure of the South African PBMR programme. {yields} The study reviews the technical issues that have arisen and lessons for future reactor developments. {yields} The study also identifies weaknesses in the accountability mechanisms for public spending.

  18. Optimization of MOX fuel cycles in pebble bed HTGR

    International Nuclear Information System (INIS)

    Wei Jinfeng; Li Fu; Sun Yuliang

    2013-01-01

    Compared with light water reactor (LWR), the pebble bed high temperature gas-cooled reactor (HTGR) is able to operate in a full mixed oxide (MOX) fuelled core without significant change to core structure design. Based on a reference design of 250 MW pebble bed HTGR, four MOX fuel cycles were designed and evaluated by VSOP program package, including the mixed Pu-U fuel pebbles and mixed loading of separate Pu-pebbles and U-pebbles. Some important physics features were investigated and compared for these four cycles, such as the effective multiplication factor of initial core, the pebble residence time, discharge burnup, and temperature coefficients. Preliminary results show that the overall performance of one case is superior to other equivalent MOX fuel cycles on condition that uranium fuel elements and plutonium fuel elements are separated as the different fuel pebbles and that the uranium fuel elements are irradiated longer in the core than the plutonium fuel elements, and the average discharge burnup of this case is also higher than others. (authors)

  19. Mechanics of binary and polydisperse spherical pebble assembly

    International Nuclear Information System (INIS)

    Annabattula, R.K.; Gan, Y.; Kamlah, M.

    2012-01-01

    The micromechanical behavior of an assembly of binary and polydisperse spherical pebbles is studied using discrete element method (DEM) accounting for microscopic interactions between individual pebbles. A in-house DEM code has been used to simulate the assemblies consisting of different pebble diameters and the results of the simulations are compared with that of mono-size pebble assemblies. The effect of relative radii and volume fraction of the pebbles on the macroscopic stress–strain response is discussed. Furthermore, the effect of packing factor and coefficient of friction on the overall stress–strain behavior of the system is studied in detail. The shear (tangential) stiffness between the particles is also another influencing parameter. For a very small shear stiffness the system shows a strong dependence on the packing factor while a pebble material dependent shear stiffness shows a rather moderate dependence on the packing factor. For a similar packing factor, the mono-size assembly shows a stiff behavior during loading compared to binary assembly. However, the simulations do not show a significant difference between the two behaviors in contrast to the observations made in the experiments. The discrepancy can be attributed to (i) probable difference in packing factors for mono-size and binary assemblies in the experiments, (ii) arbitrary friction coefficient in the current model and (iii) the tangential interaction (constant shear stiffness) implemented in the present model which needs further modification as a function of the load history on the pebbles. Evolution of other micromechanical characteristics such as coordination number, contact force distribution and stored elastic energy of individual pebbles as a function of external load and system parameters is presented which can be used to estimate important macroscopic properties such as overall thermal conductivity and crushing resistance of the pebble beds.

  20. Mechanics of binary and polydisperse spherical pebble assembly

    Energy Technology Data Exchange (ETDEWEB)

    Annabattula, R.K., E-mail: ratna.annabattula@kit.edu [Institute for Applied Materials (IAM-WBM), Karlsruhe Institute of Technology (KIT), D-76344, Eggenstein-Leopoldshafen (Germany); Gan, Y., E-mail: yixiang.gan@sydney.edu.au [School of Civil Engineering, University of Sydney, 2006 NSW, Sydney (Australia); Kamlah, M., E-mail: marc.kamlah@kit.edu [Institute for Applied Materials (IAM-WBM), Karlsruhe Institute of Technology (KIT), D-76344, Eggenstein-Leopoldshafen (Germany)

    2012-08-15

    The micromechanical behavior of an assembly of binary and polydisperse spherical pebbles is studied using discrete element method (DEM) accounting for microscopic interactions between individual pebbles. A in-house DEM code has been used to simulate the assemblies consisting of different pebble diameters and the results of the simulations are compared with that of mono-size pebble assemblies. The effect of relative radii and volume fraction of the pebbles on the macroscopic stress-strain response is discussed. Furthermore, the effect of packing factor and coefficient of friction on the overall stress-strain behavior of the system is studied in detail. The shear (tangential) stiffness between the particles is also another influencing parameter. For a very small shear stiffness the system shows a strong dependence on the packing factor while a pebble material dependent shear stiffness shows a rather moderate dependence on the packing factor. For a similar packing factor, the mono-size assembly shows a stiff behavior during loading compared to binary assembly. However, the simulations do not show a significant difference between the two behaviors in contrast to the observations made in the experiments. The discrepancy can be attributed to (i) probable difference in packing factors for mono-size and binary assemblies in the experiments, (ii) arbitrary friction coefficient in the current model and (iii) the tangential interaction (constant shear stiffness) implemented in the present model which needs further modification as a function of the load history on the pebbles. Evolution of other micromechanical characteristics such as coordination number, contact force distribution and stored elastic energy of individual pebbles as a function of external load and system parameters is presented which can be used to estimate important macroscopic properties such as overall thermal conductivity and crushing resistance of the pebble beds.

  1. The ESKOM pebble bed modular reactor

    International Nuclear Information System (INIS)

    Gittus, J.H.

    1999-01-01

    An audit has been made of the design, construction, safety, economics and marketability of the ESKOM pebble bed modular reactor (PBMR). In this paper that audit is briefly summarized. The principal conclusions of the audit are as follows. The design is sound. It is a logical development of the designs proposed for other, modern, high-temperature gas-cooled reactors. More than 80% of the cost of constructing and commissioning a series of PBMRs would be spent in South Africa. The PBMR is much safer than existing nuclear power reactors and for many practical purposes it may be treated as a conventional chemical plant. The PBMR is economically competitive with thermal power stations. There is a substantial global market for the PBMR. (author)

  2. Failure initiation and propagation of Li4SiO4 pebbles in fusion blankets

    International Nuclear Information System (INIS)

    Zhao Shuo; Gan Yixiang; Kamlah, Marc

    2013-01-01

    Lithium orthosilicate (Li 4 SiO 4 ) pebbles are considered to be a candidate as solid tritium breeder in the helium cooled pebble bed (HCPB) blanket. These ceramic pebbles might be crushed during thermomechanical loading in the blanket. In this work, the failure initiation and propagation of pebbles in pebble beds is investigated using the discrete element method (DEM). Pebbles are simplified as mono-sized elastic spheres. Every pebble has a contact strength in terms of critical strain energy, which is derived from a validated strength model and crush test data for pebbles from a specific batch of Li 4 SiO 4 pebbles. Pebble beds are compressed uniaxially and triaxially in DEM simulations. When the strain energy absorbed by a pebble exceeds its critical energy it fails. The failure initiation is defined as a given small fraction of pebbles crushed. It is found that the load level for failure initiation can be very low. For example, if failure initiation is defined as soon as 0.02% of the pebbles have been crushed, the pressure required for uniaxial loading is about 2.5 MPa. Therefore, it is essential to study the influence of failure propagation on the macroscopic response of pebble beds. Thus a reduction ratio defined as the size ratio of a pebble before and after its failure is introduced. The macroscopic stress–strain relation is investigated with different reduction ratios. A typical stress plateau is found for a small reduction ratio.

  3. Matrix formulation of pebble circulation in the pebbed code

    International Nuclear Information System (INIS)

    Gougar, H.D.; Terry, W.K.; Ougouag, A.M.

    2002-01-01

    The PEBBED technique provides a foundation for equilibrium fuel cycle analysis and optimization in pebble-bed cores in which the fuel elements are continuously flowing and, if desired, recirculating. In addition to the modern analysis techniques used in or being developed for the code, PEBBED incorporates a novel nuclide-mixing algorithm that allows for sophisticated recirculation patterns using a matrix generated from basic core parameters. Derived from a simple partitioning of the pebble flow, the elements of the recirculation matrix are used to compute the spatially averaged density of each nuclide at the entry plane from the nuclide densities of pebbles emerging from the discharge conus. The order of the recirculation matrix is a function of the flexibility and sophistication of the fuel handling mechanism. This formulation for coupling pebble flow and neutronics enables core design and fuel cycle optimization to be performed by the manipulation of a few key core parameters. The formulation is amenable to modern optimization techniques. (author)

  4. Transient heat conduction in a pebble fuel applying fractional model

    International Nuclear Information System (INIS)

    Gomez A, R.; Espinosa P, G.

    2009-10-01

    In this paper we presents the equation of thermal diffusion of temporary-fractional order in the one-dimensional space in spherical coordinates, with the objective to analyze the heat transference between the fuel and coolant in a fuel element of a Pebble Bed Modular Reactor. The pebble fuel is the heterogeneous system made by microsphere constitutes by U O, pyrolytic carbon and silicon carbide mixed with graphite. To describe the heat transfer phenomena in the pebble fuel we applied a constitutive law fractional (Non-Fourier) in order to analyze the behaviour transient of the temperature distribution in the pebble fuel with anomalous thermal diffusion effects a numerical model is developed. (Author)

  5. Gas bubble network formation in irradiated beryllium pebbles monitored by X-Ray micro-tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bolier, E; Ferrero, C. [Forschungszentrum Karlsruhe, Zimer 203, Gebaeude 451, Abteilung HVT-TL (Germany); Moslang, A. [Forschungszentrum Karlsruhe GmbH, FZK, Karlsruhe (Germany); Pieritz, R.A. [CNRS, Lab. de Glaciologie et Geophysique de l' Environnement, 38 - Saint Martin d' Heres (France)

    2007-07-01

    Full text of publication follows: The efficient and safe operation of helium cooled ceramic breeder blankets requires among others an efficient tritium release during operation at blanket relevant temperatures. In the past out-of-pile thermal desorption studies on low temperature neutron irradiated beryllium have shown that tritium and helium release peaks occur together. This phenomenon can be interpreted in terms of growth and coalescence of helium bubbles and tritium that either is trapped inside the helium bubbles in form of T{sub 2} molecules or in their strain field. With increasing temperature the bubble density and size at grain interfaces increase together with the probability of interconnected porosities and channel formation to the outer surface, leading to simultaneous helium and tritium release peaks in TDS. For a reliable prediction of gas release up to end-of-life conditions at blanket relevant temperatures, knowledge of the dynamics of bubble growth and coalescence as well as the 3D distribution of bubble network formation is indispensable. Such data could also be used to experimentally validate any future model predictions of tritium and helium release rates. A high resolution computer aided micro-tomography (CMT) setup has been developed at the European Synchrotron Radiation Facility which allowed reconstructing 3-D images of beryllium pebbles without damaging them. By postprocessing the data a 3D rendering of inner surfaces and of interconnected channel networks can be obtained, thus allowing the identification of open porosities in neutron irradiated and tempered beryllium pebbles. In our case Beryllium pebbles of 2 mm diameter had been neutron irradiated in the 'Beryllium' experiment at 770 K with 1.24 x 10{sup 25} nxm{sup -2} resulting in 480 appm He and 12 appm Tritium. After annealing at 1500 K CMT was performed on the pebbles with 4.9 and 1.4 {mu}m voxel resolution, respectively, followed by morphological and topological post

  6. Thermo-mechanical characterization of ceramic pebbles for breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Lo Frano, Rosa, E-mail: rosa.lofrano@ing.unipi.it; Aquaro, Donato; Scaletti, Luca

    2016-11-01

    Highlights: • Experimental activities to characterize the Li{sub 4}SiO{sub 4}. • Compression tests of pebbles. • Experimental evaluation of thermal conductivity of pebbles bed at different temperatures. • Experimental test with/without compression load. - Abstract: An open issue for fusion power reactor is to design a suitable breeding blanket capable to produce the necessary quantity of the tritium and to transfer the energy of the nuclear fusion reaction to the coolant. The envisaged solution called Helium-Cooled Pebble Bed (HCPB) breeding blanket foresees the use of lithium orthosilicate (Li{sub 4}SiO{sub 4}) or lithium metatitanate (Li{sub 2}TiO{sub 3}) pebble beds. The thermal mechanical properties of the candidate pebble bed materials are presently extensively investigated because they are critical for the feasibility and performances of the numerous conceptual designs which use a solid breeder. This study is aimed at the investigation of mechanical properties of the lithium orthosilicate and at the characterization of the main chemical, physical and thermo-mechanical properties taking into account the production technology. In doing that at the Department of Civil and Industrial Engineering (DICI) of the University of Pisa adequate experiments were carried out. The obtained results may contribute to characterize the material of the pebbles and to optimize the design of the envisaged fusion breeding blankets.

  7. Boulder Dislodgement by Tsunamis and Storms: Version 2.0

    Science.gov (United States)

    Weiss, Robert

    2016-04-01

    In the past, boulder dislodgement by tsunami and storm waves has been approached with a simple threshold approach in which a boulder was moved if the sum of the acting forces on the boulder is larger than zero. The impulse theory taught us, however, that this criterion is not enough to explain particle dislodgement. We employ an adapted version of the Newton's Second Law of Motion (NSLM) in order to consider the essence of the impulse theory which is that the sum of the forces has to exceed a certain threshold for a certain period of time. Furthermore, a classical assumption is to consider linear waves. However, when waves travel toward the shore, they alter due to non-linear processes. We employ the TRIADS model to quantify that change and how it impacts boulder dislodgement. We present our results of the coupled model (adapted NSLM and TRIADS model). The results project a more complex picture of boulder transport by storms and tsunami. The following question arises: What information do we actually invert, and what does it tell us about the causative event?

  8. Rich mineralized boulders of the Rirang River, west Kalimantan

    International Nuclear Information System (INIS)

    Tjokrokardono, S.; Sastratenaya, A.S.

    1988-01-01

    The Rirang River is a small tributary of the Kalan River. It is 1.5 km long and flows in a N60 deg. E direction. To the west it is separated from the Sampurno Valley by an asymmetric pass with a relatively gentle slope on the Rirang side and a very steep slope down to the Sampurno River. The Rirang Valley lacks outcrops because of a high degree of alteration. It is known to contain mineralized boulders, most of which are of centimetric to decimetric size, but some may exceed 1 m. The uranium content in these boulders varies between 0.6 and 6.67%. Two types of mineralized boulders exist: banded and non-banded types. The former usually have a rounded shape due to erosion on their angles. They are composed of dark centimetric fragments of breccia, roughly aligned, giving a banded aspect, and are cemented by lighter coloured materials of monazite. The mineral composition of the fragments is of fine brown monazite, molybdenite, pyrite, rutile and tourmaline. Uranium minerals are located at the edges of the dark components. Most of the non-banded type boulders are of metasiltstone containing mineralized stringers of uraninite, molybdenite, pyrite, and a little monazite and tourmaline. Some investigations have been carried out, but the geological context and the origin of the boulders are, as yet, not fully understood. (author). 2 refs, 10 figs, 2 tabs

  9. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of ceramic material are investigated within the framework of developing solid breeder blankets for future fusion power plants. A thermo-mechanical characterisation of such pebble beds is mandatory for understanding the behaviour of pebble beds, and thus the overall blanket, under fusion environment conditions. The mechanical behaviour of pebble beds is typically explored with uni-axial, bi-axial and tri-axial compression experiments. The latter two types of experiment are particularly revealing since they contain explicitly, beyond a compression behaviour of the bed, information on the conditions for pebble flow, i.e. macroscopic relocation, in the pebble bed. (orig.)

  10. Neutronic modeling of pebble bed reactors in APOLLO2

    International Nuclear Information System (INIS)

    Grimod, M.

    2010-01-01

    In this thesis we develop a new iterative homogenization technique for pebble bed reactors, based on a 'macro-stochastic' transport approximation in the collision probability method. A model has been developed to deal with the stochastic distribution of pebbles with different burnup in the core, considering spectral differences in homogenization and depletion calculations. This is generally not done in the codes presently used for pebble bed analyses, where a pebble with average isotopic composition is considered to perform the cell calculation. Also an iterative core calculation scheme has been set up, where the low-order RZ S N full-core calculation computes the entering currents in the spectrum zones subdividing the core. These currents, together with the core k eff , are then used as surface source in the fine-group heterogeneous calculation of the multi-pebble geometries. The developed method has been verified using reference Monte Carlo simulations of a simplified PBMR- 400 model. The pebbles in this model are individually positioned and have different randomly assigned burnup values. The APOLLO2 developed method matches the reference core k eff within ± 100 pcm, with relative differences on the production shape factors within ± 4%, and maximum discrepancy of 3% at the hotspot. Moreover, the first criticality experiment of the HTR-10 reactor was used to perform a first validation of the developed model. The computed critical number of pebbles to be loaded in the core is very close to the experimental value of 16890, only 77 pebbles less. A method to calculate the equilibrium reactor state was also developed and applied to analyze the simplified PBMR-400 model loaded with different fuel types (UO 2 , Pu, Pu + MA). The potential of the APOLLO2 method to compute different fluxes for the different pebble types of a multi-pebble geometry was used to evaluate the bias committed by the average composition pebble approximation. Thanks to a 'compensation of error

  11. Pebble red modular reactor - South Africa

    International Nuclear Information System (INIS)

    Fox, M.; Mulder, E.

    1996-01-01

    In 1995 the South African Electricity Utility, ESKOM, was convinced of the economical advantages of high temperature gas-cooled reactors as viable supply side option. Subsequently planning of a techno/economic study for the year 1996 was initiated. Continuation to the construction phase of a prototype plant will depend entirely on the outcome of this study. A reactor plant of pebble bed design coupled with a direct helium cycle is perceived. The electrical output is limited to about 100 MW for reasons of safety, economics and flexibility. Design of the reactor will be based on internationally proven, available technology. An extended research and development program is not anticipated. New licensing rules and regulations will be required. Safety classification of components will be based on the merit of HTGR technology rather than attempting to adhere to traditional LWR rules. A medium term time schedule for the design and construction of a prototype plant, commissioning and performance testing is proposed during the years 2002 and 2003. Pending the performance outcome of this plant and the current power demand, series production of 100 MWe units is foreseen. (author)

  12. A study for fuel reloading strategy in pebble bed core

    International Nuclear Information System (INIS)

    Kim, Hong Chul

    2012-02-01

    A fuel reloading analysis system for pebble bed reactor was developed by using a Monte Carlo code. The kinematic model was modified to improve the accuracy of the pebble velocity profile and to develop the model so that the diffusion coefficient is not changed by the geometry of the core. In addition, the point kernel method was employed to solve an equation derived in this study. Then, the analysis system for the pebble bed reactor was developed to accommodate the double heterogeneity, pebble velocity, and pebble refueling features using the MCNPX Monte Carlo code. The batch-tracking method was employed to simulate the movement of the pebbles and an automation system was written in the C programming language to implement it. The proposed analysis system can be utilized to verify new core analysis codes, deep-burn studies, various sensitivity studies, and other analysis tools available for the application of new fuel reloading strategies. It is noted that the proposed algorithm for the optimum fuel reloading pattern differs from other optimization methods using sensitivity analysis. In this algorithm, the reloading strategy, including the loading of fresh fuel and the reloading positions of the fresh and reloaded fuels, is determined by the interrelations of the criticality, the nuclear material inventories in the extracted fuel, and the power density. The devised algorithm was applied to the PBMR and NHDD-PBR200. The results show that the proposed algorithm can apply to satisfy the nuclear characteristics such as the criticality or power density since the pebble bed core has the characteristics that the fuels are reloaded every day

  13. Localization of the hot spots in a pebble bed reactor

    International Nuclear Information System (INIS)

    Chen, Leisheng; Lee, Wooram; Lee, Jaeyoung

    2016-01-01

    The pebble bed reactor (PBR) is a candidate reactor type for the very high temperature reactor (VHTR), which is one of the Generation-IV reactor types. The HTGR design concept exhibits excellent safety features due to the low power density and the large amount of graphite present in the core which gives a large thermal inertia in an accident such as loss of coolant. The conclusions are made and may contribute to a better design of a PBR core and a closer inspection of the local hot spots to avoid destruction of pebbles from happening. Thermal field of a PBR core is investigated in this study. Specifically, experiments on measuring the pebbles' surface temperature are performed. It is found that the upper pebble has an overall higher temperature profile than the other pebbles and the stagnation zone under does not increase its surface's temperature. In addition, the temperature profile of the side pebble shows a concave form and it keeps decreasing from the contact point to the vertex in the lower pebble. Lastly, the maximum temperature difference among these points is 5.83 deg. C. These findings above are validated by CFX simulations under two different turbulence models (k-e, SST) and two contact areas (diameter of 6mm and 3.5mm). By contrasting the temperature variation trends of all simulation cases, it is concluded that SST turbulence model with 20% intensity shows a better agreement with the experiment result, nevertheless, slightly deviation is also found in terms of total temperature difference and the peak appears in position 17-19 in experiments

  14. Localization of the hot spots in a pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Leisheng; Lee, Wooram; Lee, Jaeyoung [Handong Global University, Pohang (Korea, Republic of)

    2016-05-15

    The pebble bed reactor (PBR) is a candidate reactor type for the very high temperature reactor (VHTR), which is one of the Generation-IV reactor types. The HTGR design concept exhibits excellent safety features due to the low power density and the large amount of graphite present in the core which gives a large thermal inertia in an accident such as loss of coolant. The conclusions are made and may contribute to a better design of a PBR core and a closer inspection of the local hot spots to avoid destruction of pebbles from happening. Thermal field of a PBR core is investigated in this study. Specifically, experiments on measuring the pebbles' surface temperature are performed. It is found that the upper pebble has an overall higher temperature profile than the other pebbles and the stagnation zone under does not increase its surface's temperature. In addition, the temperature profile of the side pebble shows a concave form and it keeps decreasing from the contact point to the vertex in the lower pebble. Lastly, the maximum temperature difference among these points is 5.83 deg. C. These findings above are validated by CFX simulations under two different turbulence models (k-e, SST) and two contact areas (diameter of 6mm and 3.5mm). By contrasting the temperature variation trends of all simulation cases, it is concluded that SST turbulence model with 20% intensity shows a better agreement with the experiment result, nevertheless, slightly deviation is also found in terms of total temperature difference and the peak appears in position 17-19 in experiments.

  15. A story about distributions of dimensions and locations of boulders

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2006-01-01

    for making a bored tunnel through the till deposit. Geographical universality was discovered through the statistical analysis of observations of boulder coordinates and dimension measures from wide spread cliff beach locations. One conclusion is that the joint size distribution up to some degree of modeling...... distribution. Moreover, these ratios are independent of the maximal dimension. The random point field structure of the boulder coordinates as isolated points or as clusters of points makes Poisson fields reasonable modeling candidates for the fields of both single points and cluster points. The cluster size...

  16. Boulder Dislodgment Reloaded: New insights from boulder transport and dislodgement by tsunamis and storms from three-dimensional numerical simulations with GPUSPH

    Science.gov (United States)

    Weiss, R.; Zainali, A.

    2014-12-01

    Boulders can be found on many coastlines around the globe. They are generally thought to be moved either during coastal storms or tsunamis because they are too heavy to be moved by more common marine or coastal processes. To understand storm and tsunami risk at given coastline, the event histories of both events need to be separated to produce a robust event statistics for quantitative risk analyses. Because boulders are most likely only moved by coastal storms or tsunamis, they are very suitable to produce the data basis for such event statistics. Boulder transport problem has been approached by comparing the driving with resisting forces acting on a boulder. However, we argue that this approach is not sufficient because the comparison of resisting and driving forces only constitutes boulder motion, but not for boulder dislodgment. Boulder motion means that the boulder starts to move out of its pocket. However, this motion does not guarantee that the boulder will reach the critical dislodgment position. Boulder dislodgment is a necessary condition to identify whether or not a boulder has moved. For boulder dislodgement, an equation of motion is needed, and that equation is Newtons Second Law of Motion (NSL). We perform fully coupled three-dimensional numerical simulation of boulders moved by waves where the boulders move according to NSL. Our numerical simulations are the first of their kind applied to tsunami and storm boulder motion. They show how storm and tsunami waves interact with boulders in a more realistic physical setting, and highlight the importance of submergence. Based on our simulations we perform a dimensional analysis that identifies the Froude number as important parameter, which can be considered large only in the front of tsunami waves, but small in the rest of tsunami wave and also generally small in storm waves. From a general point of view, our results indicate that the boulder transport problem is more complex than recently considered, and

  17. Manufacturing Technology of Ceramic Pebbles for Breeding Blanket

    Directory of Open Access Journals (Sweden)

    Rosa Lo Frano

    2018-05-01

    Full Text Available An open issue for the fusion power reactor is the choice of breeding blanket material. The possible use of Helium-Cooled Pebble Breeder ceramic material in the form of pebble beds is of great interest worldwide as demonstrated by the numerous studies and research on this subject. Lithium orthosilicate (Li4SiO4 is a promising breeding material investigated in this present study because the neutron capture of Li-6 allows the production of tritium, 6Li (n, t 4He. Furthermore, lithium orthosilicate has the advantages of low activation characteristics, low thermal expansion coefficient, high thermal conductivity, high density and stability. Even if they are far from the industrial standard, a variety of industrial processes have been proposed for making orthosilicate pebbles with diameters of 0.1–1 mm. However, some manufacturing problems have been observed, such as in the chemical stability (agglomeration phenomena. The aim of this study is to provide a new methodology for the production of pebbles based on the drip casting method, which was jointly developed by the DICI-University of Pisa and Industrie Bitossi. Using this new (and alternative manufacturing technology, in the field of fusion reactors, appropriately sized ceramic pebbles could be produced for use as tritium breeders.

  18. Letters initiating Clean Water Act 404(c) review of mining at Pebble deposit

    Science.gov (United States)

    Correspondence between EPA and the Pebble Limited Partnership and the State of Alaska initiating review under section 404(c) of the Clean Water Act of potential adverse environmental effects associated with mining the Pebble deposit in southwest Alaska.

  19. Conceptual study of ferromagnetic pebbles for heat exhaust in fusion reactors with short power decay length

    Directory of Open Access Journals (Sweden)

    N. Gierse

    2015-03-01

    The key results of this study are that very high heat fluxes are accessible in the operation space of ferromagnetic pebbles, that ferromagnetic pebbles are compatible with tokamak operation and current divertor designs, that the heat removal capability of ferromagnetic pebbles increases as λq decreases and, finally, that for fusion relevant values of q∥ pebble diameters below 100 μm are required.

  20. Tritium adsorption/release behaviour of advanced EU breeder pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, Matthias H.H., E-mail: matthias.kolb@kit.edu; Rolli, Rolf; Knitter, Regina

    2017-06-15

    The tritium loading of current grades of advanced ceramic breeder pebbles with three different lithium orthosilicate (LOS)/lithium metatitanate (LMT) compositions (20–30 mol% LMT in LOS) and pebbles of EU reference material, was performed in a consistent way. The temperature dependent release of the introduced tritium was subsequently investigated by temperature programmed desorption (TPD) experiments to gain insight into the desorption characteristics. The obtained TPD data was decomposed into individual release mechanisms according to well-established desorption kinetics. The analysis showed that the pebble composition of the tested samples does not severely change the release behaviour. Yet, an increased content of lithium metatitanate leads to additional desorption peaks at medium temperatures. The majority of tritium is released by high temperature release mechanisms of chemisorbed tritium, while the release of physisorbed tritium is marginal in comparison. The results allow valuable projections for the tritium release behaviour in a fusion blanket.

  1. Tritium adsorption/release behaviour of advanced EU breeder pebbles

    Science.gov (United States)

    Kolb, Matthias H. H.; Rolli, Rolf; Knitter, Regina

    2017-06-01

    The tritium loading of current grades of advanced ceramic breeder pebbles with three different lithium orthosilicate (LOS)/lithium metatitanate (LMT) compositions (20-30 mol% LMT in LOS) and pebbles of EU reference material, was performed in a consistent way. The temperature dependent release of the introduced tritium was subsequently investigated by temperature programmed desorption (TPD) experiments to gain insight into the desorption characteristics. The obtained TPD data was decomposed into individual release mechanisms according to well-established desorption kinetics. The analysis showed that the pebble composition of the tested samples does not severely change the release behaviour. Yet, an increased content of lithium metatitanate leads to additional desorption peaks at medium temperatures. The majority of tritium is released by high temperature release mechanisms of chemisorbed tritium, while the release of physisorbed tritium is marginal in comparison. The results allow valuable projections for the tritium release behaviour in a fusion blanket.

  2. Preliminary study of uranium favorability of the Boulder batholith, Montana

    International Nuclear Information System (INIS)

    Castor, S.B.; Robins, J.W.

    1978-01-01

    The Boulder batholith of southwestern Montana is a composite Late Cretaceous intrusive mass, mostly composed of quartz monzonite and granodiorite. This study was not restricted to the plutonic rocks; it also includes younger rocks that overlie the batholith, and older rocks that it intrudes. The Boulder batholith area has good overall potential for economic uranium deposits, because its geology is similar to that of areas that contain economic deposits elsewhere in the world, and because at least 35 uranium occurrences of several different types are present. Potential is greatest for the occurrence of small uranium deposits in chalcedony veins and base-metal sulfide veins. Three areas may be favorable for large, low-grade deposits consisting of a number of closely spaced chalcedony veins and enriched wall rock; the Mooney claims, the Boulder area, and the Clancy area. In addition, there is a good possibility of by-product uranium production from phosphatic black shales in the project area. The potential for uranium deposits in breccia masses that cut prebatholith rocks, in manganese-quartz veins near Butte, and in a shear zone that cuts Tertiary rhyolite near Helena cannot be determined on the basis of available information. Low-grade, disseminated, primary uranium concentrations similar to porphyry deposits proposed by Armstrong (1974) may exist in the Boulder batholith, but the primary uranium content of most batholith rocks is low. The geologic environment adjacent to the Boulder batholith is similar in places to that at the Midnite mine in Washington. Some igneous rocks in the project area contain more than 10 ppM U 3 O 8 , and some metasedimentary rocks near the batholith contain reductants such as sulfides and carbonaceous material

  3. Preliminary study of uranium favorability of the Boulder batholith, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Castor, S.B.; Robins, J.W.

    1978-01-01

    The Boulder batholith of southwestern Montana is a composite Late Cretaceous intrusive mass, mostly composed of quartz monzonite and granodiorite. This study was not restricted to the plutonic rocks; it also includes younger rocks that overlie the batholith, and older rocks that it intrudes. The Boulder batholith area has good overall potential for economic uranium deposits, because its geology is similar to that of areas that contain economic deposits elsewhere in the world, and because at least 35 uranium occurrences of several different types are present. Potential is greatest for the occurrence of small uranium deposits in chalcedony veins and base-metal sulfide veins. Three areas may be favorable for large, low-grade deposits consisting of a number of closely spaced chalcedony veins and enriched wall rock; the Mooney claims, the Boulder area, and the Clancy area. In addition, there is a good possibility of by-product uranium production from phosphatic black shales in the project area. The potential for uranium deposits in breccia masses that cut prebatholith rocks, in manganese-quartz veins near Butte, and in a shear zone that cuts Tertiary rhyolite near Helena cannot be determined on the basis of available information. Low-grade, disseminated, primary uranium concentrations similar to porphyry deposits proposed by Armstrong (1974) may exist in the Boulder batholith, but the primary uranium content of most batholith rocks is low. The geologic environment adjacent to the Boulder batholith is similar in places to that at the Midnite mine in Washington. Some igneous rocks in the project area contain more than 10 ppM U/sub 3/O/sub 8/, and some metasedimentary rocks near the batholith contain reductants such as sulfides and carbonaceous material.

  4. A virtual pebble game to ensemble average graph rigidity.

    Science.gov (United States)

    González, Luis C; Wang, Hui; Livesay, Dennis R; Jacobs, Donald J

    2015-01-01

    The body-bar Pebble Game (PG) algorithm is commonly used to calculate network rigidity properties in proteins and polymeric materials. To account for fluctuating interactions such as hydrogen bonds, an ensemble of constraint topologies are sampled, and average network properties are obtained by averaging PG characterizations. At a simpler level of sophistication, Maxwell constraint counting (MCC) provides a rigorous lower bound for the number of internal degrees of freedom (DOF) within a body-bar network, and it is commonly employed to test if a molecular structure is globally under-constrained or over-constrained. MCC is a mean field approximation (MFA) that ignores spatial fluctuations of distance constraints by replacing the actual molecular structure by an effective medium that has distance constraints globally distributed with perfect uniform density. The Virtual Pebble Game (VPG) algorithm is a MFA that retains spatial inhomogeneity in the density of constraints on all length scales. Network fluctuations due to distance constraints that may be present or absent based on binary random dynamic variables are suppressed by replacing all possible constraint topology realizations with the probabilities that distance constraints are present. The VPG algorithm is isomorphic to the PG algorithm, where integers for counting "pebbles" placed on vertices or edges in the PG map to real numbers representing the probability to find a pebble. In the VPG, edges are assigned pebble capacities, and pebble movements become a continuous flow of probability within the network. Comparisons between the VPG and average PG results over a test set of proteins and disordered lattices demonstrate the VPG quantitatively estimates the ensemble average PG results well. The VPG performs about 20% faster than one PG, and it provides a pragmatic alternative to averaging PG rigidity characteristics over an ensemble of constraint topologies. The utility of the VPG falls in between the most

  5. THE ROLE OF PEBBLE FRAGMENTATION IN PLANETESIMAL FORMATION. I. EXPERIMENTAL STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Syed, M. Bukhari; Blum, J. [Institut für Geophysik und extraterrestrische Physik, Technische Universität zu Braunschweig, Mendelssohnstr. 3, D-38106 Braunschweig (Germany); Jansson, K. Wahlberg; Johansen, A. [Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, SE-221 00 Lund (Sweden)

    2017-01-10

    Previous work on protoplanetary dust growth shows a halt at centimeter sizes owing to the occurrence of bouncing at velocities of ≳0.1 m s{sup −1} and fragmentation at velocities ≳1 m s{sup −1}. To overcome these barriers, spatial concentration of centimeter-sized dust pebbles and subsequent gravitational collapse have been proposed. However, numerical investigations have shown that dust aggregates may undergo fragmentation during the gravitational collapse phase. This fragmentation in turn changes the size distribution of the solids and thus must be taken into account in order to understand the properties of the planetesimals that form. To explore the fate of dust pebbles undergoing fragmenting collisions, we conducted laboratory experiments on dust-aggregate collisions with a focus on establishing a collision model for this stage of planetesimal formation. In our experiments, we analyzed collisions of dust aggregates with masses between 0.7 and 91 g mass ratios between target and projectile from 1 to 126 at a fixed porosity of 65%, within the velocity range of 1.5–8.7 m s{sup −1}, at low atmospheric pressure of ∼10{sup −3} mbar, and in free-fall conditions. We derived the mass of the largest fragment, the fragment size/mass distribution, and the efficiency of mass transfer as a function of collision velocity and projectile/target aggregate size. Moreover, we give recipes for an easy-to-use fragmentation and mass-transfer model for further use in modeling work. In a companion paper, we use the experimental findings and the derived dust-aggregate collision model to investigate the fate of dust pebbles during gravitational collapse.

  6. NASA's Asteroid Redirect Mission: The Boulder Capture Option

    Science.gov (United States)

    Abell, Paul A.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.

    2014-01-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (approximately 4-10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is examining another option that entails retrieving a boulder (approximately 1-5 m) via robotic manipulators from the surface of a larger (approximately 100+ m) pre-characterized NEA. This option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. The boulder option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting boulder be returned for subsequent sampling. This boulder option for NASA's ARM can leverage knowledge of previously characterized NEAs from prior robotic missions, which provides more

  7. Multiple severe typhoons in recent history revealed by coral boulders of northwestern Luzon, Philippines

    Science.gov (United States)

    Gong, Shou-Yeh; Wu, Tso-Ren; Liu, Sze-Chieh; Shen, Chuan-Chou; Siringan, Fernando; Lin, Han-Wei

    2017-04-01

    Meter-sized coral boulders occurred on Holocene reef flat at Pasuquin, Ilocos Norte and Cabugao, Ilocos Sur, Philippines. Boulders larger than 3 meters were located and measured by field survey and UAV photogrammetry. Boulders now distributed 45-140 m away from edge of Holocene reef flat, and above highest high tide. The lithology of those boulders is the same as the underlying Holocene coral reef at the sites, hence believed to be broken from reef edge locally. Fossil corals in those boulders mostly appeal not in upward-growing attitude but overturned or tilted. Several tens of photos were taken around selected boulders from different angles, and 3D models were established from the photos. Dimension and volumes were calculated from 3D models. Boulder volumes can be estimated much more accurately this way than simply multiple X, Y, and Z as many previous studies did. The volumes of boulders larger than 3 m in length vary from 10-52.6 m3. Assuming 2.1 g/cm3 for wet density, weights of boulders are estimated to range from 21-110 metric tons. Boulders of such size and weight obviously can't be moved by normal waves, and likely dislodged by Extreme Wave Event (EWE). Small and well-preserved corals were found in depressions on boulder surface and interpreted to represent timing of final displacement. Corals found on seven boulders at Pasuquin were 230Th dated to be 1782, 1904, 1946, 1957, 1978 and 2003 AD respectively. No tsunami was reported in historical records in northern Luzon for those years, but several documented typhoons could be responsible for displacement of each of those boulders. Another Porites boulder at Cabugao was dated to be tilted five times from 673-838 AD, averaging one EWE every 33 years. Such frequent occurrence of EWE is unlikely resulted from tsunami. Therefore, those coral boulders at Pasuquin and Cabugao are interpreted to be displaced by severe typhoons.

  8. Parametric study for high conversion pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Teuchert, E.; Ruetten, H. J.

    1975-06-15

    Tables are presented of fuel cycle costs, conversion ratios and accompanying variations in fuel element designs for a 3,00 MWth high conversion pebble bed reactor with initial high enriched uranium/thorium cycle and subsequent recycling of U-233, Pu-239 and Pu-241.

  9. Uraniferous quartz-pebble conglomerates in South Africa

    International Nuclear Information System (INIS)

    von Backstroem, J.W.

    1981-01-01

    The purpose of this paper is to give a short background statement summarizing data on the Dominion Reef Group, the Witwatersrand Supergroup, and the Ventersdorp Contact Reef, with particular reference to the close relationship of gold and uranium with sedimentary features as well as the mineralization, conditions of deposition, and the nature of the quartz-pebble conglomerates

  10. Researchers solve big mysteries of pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shams, Afaque; Roelofs, Ferry; Komen, E.M.J. [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Baglietto, Emilio [Massachusetts Institute of Technology, Cambridge, MA (United States). Dept. of Nuclear Science and Engineering; Sgro, Titus [CD-adapco, London (United Kingdom). Technical Marketing

    2014-03-15

    The PBR is one type of High Temperature Reactors, which allows high temperature work while preventing the fuel from melting (bringing huge safety margins to the reactor) and high electricity efficiency. The design is also highly scalable; a plant could be designed to be as large or small as needed, and can even be made mobile, allowing it to be used onboard a ship. In a PBR, small particles of nuclear fuel, embedded in a moderating graphite pebble, are dropped into the reactor as needed. At the bottom, the pebbles can be removed simply by opening a small hatch and letting gravity pull them down. To cool the reactor and create electricity, helium gas is pumped through the reactor to pull heat out which is then run through generators. One of the most difficult problems to deal with has been the possible appearance of local temperature hotspots within the pebble bed heating to the point of melting the graphite moderators surrounding the fuel. Obviously, constructing a reactor and experimenting to investigate this possibility is out of the question. Instead, nuclear engineers have been attempting to simulate a PBR with various CFD codes. The thermo-dynamic analysis to simulate realistic conditions in a pebble bed are described and the results are shown. (orig.)

  11. TEM study of impurity segregations in beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Klimenkov, M., E-mail: michael.klimenkov@kit.edu [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Chakin, V.; Moeslang, A. [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R. [Institute for Applied Materials – Materials and Biomechanics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    Beryllium is planned to be used as a neutron multiplier in the Helium-cooled Pebble Bed European concept of a breeding blanket of demonstration power reactor DEMO. In order to evaluate the irradiation performance, individual pebbles and constrained pebble beds were neutron-irradiated at temperatures typical of fusion blankets. Beryllium pebbles 1 mm in diameter produced by the rotating electrode method were subjected to a TEM study before and after irradiation at High Flux Reactor, Petten, Netherlands at 861 K. The grain size varied in a wide range from sub-micron size up to several tens of micrometers, which indicated formation bimodal grain size distribution. Based on the application of combined electron energy loss spectroscopy and energy dispersive X-ray spectroscopy methods, we suggest that impurity precipitates play an important role in controlling the mechanical properties of beryllium. The impurity elements were present in beryllium at a sub-percent concentration form beryllide particles of a complex (Fe/Al/Mn/Cr)B composition. These particles are often ordered along dislocations lines, forming several micron-long chains. It can be suggested that fracture surfaces often extended along these chains in irradiated material.

  12. Transmutation of plutonium in pebble bed type high temperature reactors

    International Nuclear Information System (INIS)

    Bende, E.E.

    1997-01-01

    The pebble bed type High Temperature Reactor (HTR) has been studied as a uranium-free burner of reactor grade plutonium. In a parametric study, the plutonium loading per pebble as well as the type and size of the coated particles (CPs) have been varied to determine the plutonium consumption, the final plutonium burnup, the k ∞ and the temperature coefficients as a function of burnup. The plutonium loading per pebble is bounded between 1 and 3 gr Pu per pebble. The upper limit is imposed by the maximal allowable fast fluence for the CPs. A higher plutonium loading requires a longer irradiation time to reach a desired burnup, so that the CPs are exposed to a higher fast fluence. The lower limit is determined by the temperature coefficients, which become less negative with increasing moderator-actinide ratio. A burnup of about 600 MWd/kgHM can be reached. With the HTR's high efficiency of 40%, a plutonium supply of 1520 kg/GW e a is achieved. The discharges of plutonium and minor actinides are then 450 and 110 kg/GW e a, respectively. (author)

  13. Performance Evaluation of a Pebble Bed Solar Crop Dryer ...

    African Journals Online (AJOL)

    Nigerian Journal of Technology ... The solar crop dryer consists of an imbedded pebble bed solar heat storage unit/solar collector ... The crop-drying chamber is made of drying trays of wire gauze while the roof is made of transparent glazing.

  14. Random detailed model for probabilistic neutronic calculation in pebble bed Very High Temperature Reactors

    International Nuclear Information System (INIS)

    Perez Curbelo, J.; Rosales, J.; Garcia, L.; Garcia, C.; Brayner, C.

    2013-01-01

    The pebble bed nuclear reactor is one of the main candidates for the next generation of nuclear power plants. In pebble bed type HTRs, the fuel is contained within graphite pebbles in the form of TRISO particles, which form a randomly packed bed inside a graphite-walled cylindrical cavity. Pebble bed reactors (PBR) offer the opportunity to meet the sustainability requirements, such as nuclear safety, economic competitiveness, proliferation resistance and a minimal production of radioactive waste. In order to simulate PBRs correctly, the double heterogeneity of the system must be considered. It consists on randomly located pebbles into the core and TRISO particles into the fuel pebbles. These features are often neglected due to the difficulty to model with MCPN code. The main reason is that there is a limited number of cells and surfaces to be defined. In this study, a computational tool which allows getting a new geometrical model of fuel pebbles for neutronic calculations with MCNPX code, was developed. The heterogeneity of system is considered, and also the randomly located TRISO particles inside the pebble. Four proposed fuel pebble models were compared regarding their effective multiplication factor and energy liberation profiles. Such models are: Homogeneous Pebble, Five Zone Homogeneous Pebble, Detailed Geometry, and Randomly Detailed Geometry. (Author)

  15. Fabrication of Li2TiO3 pebbles by a freeze drying process

    International Nuclear Information System (INIS)

    Lee, Sang-Jin; Park, Yi-Hyun; Yu, Min-Woo

    2013-01-01

    Li 2 TiO 3 pebbles were successfully fabricated by using a freeze drying process. The Li 2 TiO 3 slurry was prepared using a commercial powder of particle size 0.5–1.5 μm and the pebble pre-form was prepared by dropping the slurry into liquid nitrogen through a syringe needle. The droplets were rapidly frozen, changing their morphology to spherical pebbles. The frozen pebbles were dried at −10 °C in vacuum. To make crack-free pebbles, some glycerin was employed in the slurry, and long drying time and a low vacuum condition were applied in the freeze drying process. In the process, the solid content in the slurry influenced the spheroidicity of the pebble green body. The dried pebbles were sintered at 1200 °C in an air atmosphere. The sintered pebbles showed almost 40% shrinkage. The sintered pebbles revealed a porous microstructure with a uniform pore distribution and the sintered pebbles were crushed under an average load of 50 N in a compressive strength test. In the present study, a freeze drying process for fabrication of spherical Li 2 TiO 3 pebbles is introduced. The processing parameters, such as solid content in the slurry and the conditions of freeze drying and sintering, are also examined

  16. Pore Scale Thermal Hydraulics Investigations of Molten Salt Cooled Pebble Bed High Temperature Reactor with BCC and FCC Configurations

    Directory of Open Access Journals (Sweden)

    Shixiong Song

    2014-01-01

    CFD results and empirical correlations’ predictions of pressure drop and local Nusselt numbers. Local pebble surface temperature distributions in several default conditions are investigated. Thermal removal capacities of molten salt are confirmed in the case of nominal condition; the pebble surface temperature under the condition of local power distortion shows the tolerance of pebble in extreme neutron dose exposure. The numerical experiments of local pebble insufficient cooling indicate that in the molten salt cooled pebble bed reactor, the pebble surface temperature is not very sensitive to loss of partial coolant. The methods and results of this paper would be useful for optimum designs and safety analysis of molten salt cooled pebble bed reactors.

  17. Asteroid Redirect Robotic Mission: Robotic Boulder Capture Option Overview

    Science.gov (United States)

    Mazanek, Daniel D.; Merrill, Raymond G.; Belbin, Scott P.; Reeves, David M.; Earle, Kevin D.; Naasz, Bo J.; Abell, Paul A.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is currently studying an option for the Asteroid Redirect Robotic Mission (ARRM) that would capture a multi-ton boulder (typically 2-4 meters in size) from the surface of a large (is approximately 100+ meter) Near-Earth Asteroid (NEA) and return it to cislunar space for subsequent human and robotic exploration. This alternative mission approach, designated the Robotic Boulder Capture Option (Option B), has been investigated to determine the mission feasibility and identify potential differences from the initial ARRM concept of capturing an entire small NEA (4-10 meters in size), which has been designated the Small Asteroid Capture Option (Option A). Compared to the initial ARRM concept, Option B allows for centimeter-level characterization over an entire large NEA, the certainty of target NEA composition type, the ability to select the boulder that is captured, numerous opportunities for mission enhancements to support science objectives, additional experience operating at a low-gravity planetary body including extended surface contact, and the ability to demonstrate future planetary defense strategies on a hazardous-size NEA. Option B can leverage precursor missions and existing Agency capabilities to help ensure mission success by targeting wellcharacterized asteroids and can accommodate uncertain programmatic schedules by tailoring the return mass.

  18. Automated Design and Optimization of Pebble-bed Reactor Cores

    International Nuclear Information System (INIS)

    Gougar, Hans D.; Ougouag, Abderrafi M.; Terry, William K.

    2010-01-01

    We present a conceptual design approach for high-temperature gas-cooled reactors using recirculating pebble-bed cores. The design approach employs PEBBED, a reactor physics code specifically designed to solve for and analyze the asymptotic burnup state of pebble-bed reactors, in conjunction with a genetic algorithm to obtain a core that maximizes a fitness value that is a function of user-specified parameters. The uniqueness of the asymptotic core state and the small number of independent parameters that define it suggest that core geometry and fuel cycle can be efficiently optimized toward a specified objective. PEBBED exploits a novel representation of the distribution of pebbles that enables efficient coupling of the burnup and neutron diffusion solvers. With this method, even complex pebble recirculation schemes can be expressed in terms of a few parameters that are amenable to modern optimization techniques. With PEBBED, the user chooses the type and range of core physics parameters that represent the design space. A set of traits, each with acceptable and preferred values expressed by a simple fitness function, is used to evaluate the candidate reactor cores. The stochastic search algorithm automatically drives the generation of core parameters toward the optimal core as defined by the user. The optimized design can then be modeled and analyzed in greater detail using higher resolution and more computationally demanding tools to confirm the desired characteristics. For this study, the design of pebble-bed high temperature reactor concepts subjected to demanding physical constraints demonstrated the efficacy of the PEBBED algorithm.

  19. Modelling of thermal and mechanical behaviour of pebble beds

    International Nuclear Information System (INIS)

    Boccaccini, L.V.; Buehler, L.; Hermsmeyer, S.; Wolf, F.

    2001-01-01

    FZK (Forshungzentrum Karlsruhe) is developing a Helium Cooled Pebble Bed (HCPB) Blanket Concept for fusion power reactors based on the use of ceramic breeder materials and beryllium multiplier in the form of pebble beds. The design of such a blanket requires models and computer codes describing the thermal-mechanical behavior of pebble beds to evaluate the temperatures, stresses, deformations and mechanical interactions between pebble beds and the structure with required accuracy and reliability. The objective to describe the beginning of life condition for the HCPB blanket seems near to be reached. Mechanical models that describe the thermo-mechanical behavior of granular materials used in form of pebble beds are implemented in a commercial structure code. These models have been calibrated using the results of a large series of dedicated experiments. The modeling work is practically concluded for ceramic breeder; it will be carried on in the next year for beryllium to obtain the required correlations for creep and the thermal conductivity. The difficulties for application in large components (such as the HCPB blanket) are the limitations of the present commercial codes to manage such a set of constitutive equations under complex load conditions and large mesh number. The further objective is to model the thermal cycles during operation; the present correlations have to be adapted for the release phase. A complete description of the blanket behavior during irradiation is at the present out of our capability; this objective requires an extensive R and D program that at the present is only at the beginning. (Y.Tanaka)

  20. Experimental and numerical validation of a two-region-designed pebble bed reactor with dynamic core

    International Nuclear Information System (INIS)

    Jiang, S.Y.; Yang, X.T.; Tang, Z.W.; Wang, W.J.; Tu, J.Y.; Liu, Z.Y.; Li, J.

    2012-01-01

    Highlights: ► The experimental installation has been built to investigate the pebble flow. ► The feasibility of two-region pebble bed reactor has been verified. ► The pebble flow is more uniform in a taller vessel than that in a lower vessel. ► Larger base cone angle will decrease the scale of the stagnant zone. - Abstract: The pebble flow is the principal issue for the design of the pebble bed reactor. In order to verify the feasibility of a two-region-designed pebble bed reactor, the experimental installation with a taller vessel has been built, which is proportional to the real pebble bed reactor. With the aid of the experimental installation, the stable establishment and maintenance of the two-region arrangement has been verified, at the same time, the applicability of the DEM program has been also validated. Research results show: (1) The pebble's bouncing on the free surface is an important factor for the mixing of the different colored pebbles. (2) Through the guide plates installed in the top of the pebble packing, the size of the mixing zone can be reduced from 6–7 times to 3–4 times the pebble diameter. (3) The relationship between the width of the central region and the ratio of loading pebbles is approximately linear in the taller vessel. (4) The heighten part of the pebble packing can improve the uniformity of the flowing in the lower. (5) To increase the base cone angle can decrease the scale of the stagnant zone. All of these conclusions are meaningful to the design of the real pebble reactor.

  1. Building the giant planet cores by convergent migration of pebble-accreting embryos

    Science.gov (United States)

    Chrenko, Ondrej; Broz, Miroslav

    2016-10-01

    An explanation of the accretion buildup of giant planet cores on rather short (~Myr) time scales remains a long-standing challenge for scenarios of planetary system formation. One of the recently proposed processes that can take part during this evolutionary stage is the convergent Type I migration of Earth-sized embryos towards the zero-torque radius, occurring at an opacity transition within the dusty-gaseous protoplanetary disk (e.g. Pierens et al. 2013). Inconveniently, simulations show that such groups of embryos do not merge easily because they often get locked in mutual mean-motion resonances and consequently form an inward-migrating convoy.We revise this possibility of merging embryos while taking into account their ongoing growth by pebble accretion. Our aim is to check whether the rapid changes of masses combined with the migration of embryos through the feeding zone can break the resonant chain and allow for the giant planet core formation.The environment of the protoplanetary disk is modeled with the 2D FARGO code (Masset 2000), which we modified in order to perform non-isothermal hydrodynamic simulations, assuming flux-limited radiative diffusion (Levermore & Pomraning 1981). The embedded massive bodies are evolved simultaneously in 3D using the hybrid Wisdom-Holman/Gauss-Radau integrator from the Rebound package (Rein & Spiegel 2015). A semi-analytic method is used to evolve the masses of embryos by pebble accretion (e.g. Levison et al. 2015).

  2. Final Technical Report - Modernization of the Boulder Canyon Hydroelectric Project

    Energy Technology Data Exchange (ETDEWEB)

    Taddeucci, Joe [Dept. of Public Works, Boulder, CO (United States). Utilities Division

    2013-03-29

    The Boulder Canyon Hydroelectric Project (BCH) was purchased by the City of Boulder, CO (the city) in 2001. Project facilities were originally constructed in 1910 and upgraded in the 1930s and 1940s. By 2009, the two 10 MW turbine/generators had reached or were nearing the end of their useful lives. One generator had grounded out and was beyond repair, reducing plant capacity to 10 MW. The remaining 10 MW unit was expected to fail at any time. When the BCH power plant was originally constructed, a sizeable water supply was available for the sole purpose of hydroelectric power generation. Between 1950 and 2001, that water supply had gradually been converted to municipal water supply by the city. By 2001, the water available for hydroelectric power generation at BCH could not support even one 10 MW unit. Boulder lacked the financial resources to modernize the facilities, and Boulder anticipated that when the single, operational historical unit failed, the project would cease operation. In 2009, the City of Boulder applied for and received a U.S. Department of Energy (DOE) grant for $1.18 million toward a total estimated project cost of $5.155 million to modernize BCH. The federal funding allowed Boulder to move forward with plant modifications that would ensure BCH would continue operation. Federal funding was made available through the American Recovery and Reinvestment Act (ARRA) of 2009. Boulder determined that a single 5 MW turbine/generator would be the most appropriate capacity, given the reduced water supply to the plant. Average annual BCH generation with the old 10 MW unit had been about 8,500 MW-hr, whereas annual generation with a new, efficient turbine could average 11,000 to 12,000 MW-hr. The incremental change in annual generation represents a 30% increase in generation over pre-project conditions. The old turbine/generator was a single nozzle Pelton turbine with a 5-to-1 flow turndown and a maximum turbine/generator efficiency of 82%. The new unit is a

  3. Nonproliferation and safeguard considerations: Pebble Bed reactor fuel cycle evaluation

    International Nuclear Information System (INIS)

    1978-09-01

    Nuclear fuel cycles were evaluated for the Pebble Bed Gas Cooled Reactor under development in the Federal Republic of Germany. The basic fuel cycle specified for the HTR-K and PNP is well qualified and will meet the requirements of these reactors. Twenty alternate fuel cycles are described, including high-conversion cycles, net-breeding cycles, and proliferation-resistant cycles. High-conversion cycles, which have a high probability of being successfully developed, promise a significant improvement in resource utilization. Proliferation-resistant cycles, also with a high probability of successful development, conpare very favorably with those for other types of reactors. Most of the advanced cycles could be adapted to first-generation pebble bed reactors with no significant modifications

  4. Uranium assessment for the Precambrian pebble conglomerates in southeastern Wyoming

    International Nuclear Information System (INIS)

    Borgman, L.E.; Sever, C.; Quimby, W.F.; Andrew, M.E.; Karlstrom, K.E.; Houston, R.S.

    1981-03-01

    This volume is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates, and is a companion to Volume 1: The Geology and Uranium Potential to Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 2: Drill-Hole Data, Drill-Site Geology, and Geochemical Data from the Study of Precambrian Uraniferous Conglomerates of the Medicine Bow Mountains and the Sierra Madre of Southeastern Wyoming

  5. Thermal cycling tests on Li4SiO4 and beryllium pebbles

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Norajitra, P.; Weisenburger, A.

    1995-01-01

    The European B.O.T. Demo-relevant solid breeder blanket is based on the use of beds of beryllium and Li 4 SiO 4 pebbles. Particularly dangerous for the pebble integrity are the rapid temperature changes which could occur, for instance, by a sudden blanket power shut-down. A series of thermal cycle tests have been performed for various beds of beryllium and Li 4 SiO 4 pebbles. No breaking was observed in the beryllium pebbles, however the Li 4 SiO 4 pebbles broke by temperature rates of change of about -50 C/sec independently on pebbles size and lithium enrichment. This value is considerably higher than the peak temperature rates of change expected in the blanket. (orig.)

  6. Studies on air ingress for pebble bed reactors

    International Nuclear Information System (INIS)

    Moore, R.L.; Oh, C.H.; Merrill, B.J.; Petti, D.A.

    2002-01-01

    A loss-of-coolant accident (LOCA) has been considered a critical event for helium-cooled pebbled bed reactors. Following helium depressurization, it is anticipated that unless countermeasures are taken air will enter the core through the break and then by molecular diffusion and ultimately by natural convection leading to oxidation of the in-core graphite structure and graphite pebbles. Thus, without any mitigating features a LOCA will lead to an air ingress event. The INEEL is studying such an event with two well-respected light water reactor transient response codes: RELAP5/ATHENA and MELCOR. To study the degree of graphite oxidation occurring due to an air ingress event, a MELCOR model of a reference pebble bed design was constructed. A modified version of MELCOR developed at INEEL, which includes graphite oxidation capabilities, and molecular diffusion of air into helium was used for these calculations. Results show that the lower reflector graphite consumes all of the oxygen before reaching the core. The results also show a long time delay between the time that the depressurization phase of the accident is over and the time that natural circulation air through the core occurs. (author)

  7. Benchmark Evaluation of HTR-PROTEUS Pebble Bed Experimental Program

    International Nuclear Information System (INIS)

    Bess, John D.; Montierth, Leland; Köberl, Oliver

    2014-01-01

    Benchmark models were developed to evaluate 11 critical core configurations of the HTR-PROTEUS pebble bed experimental program. Various additional reactor physics measurements were performed as part of this program; currently only a total of 37 absorber rod worth measurements have been evaluated as acceptable benchmark experiments for Cores 4, 9, and 10. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the 235 U enrichment of the fuel, impurities in the moderator pebbles, and the density and impurity content of the radial reflector. Calculations of k eff with MCNP5 and ENDF/B-VII.0 neutron nuclear data are greater than the benchmark values but within 1% and also within the 3σ uncertainty, except for Core 4, which is the only randomly packed pebble configuration. Repeated calculations of k eff with MCNP6.1 and ENDF/B-VII.1 are lower than the benchmark values and within 1% (~3σ) except for Cores 5 and 9, which calculate lower than the benchmark eigenvalues within 4σ. The primary difference between the two nuclear data libraries is the adjustment of the absorption cross section of graphite. Simulations of the absorber rod worth measurements are within 3σ of the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments

  8. Bouldering: an alternative strategy to long-vertical climbing in root-climbing hortensias.

    Science.gov (United States)

    Granados Mendoza, Carolina; Isnard, Sandrine; Charles-Dominique, Tristan; Van den Bulcke, Jan; Rowe, Nick P; Van Acker, Joris; Goetghebeur, Paul; Samain, Marie-Stéphanie

    2014-10-06

    In the Neotropics, the genus Hydrangea of the popular ornamental hortensia family is represented by climbing species that strongly cling to their support surface by means of adhesive roots closely positioned along specialized anchoring stems. These root-climbing hortensia species belong to the nearly exclusive American Hydrangea section Cornidia and generally are long lianescent climbers that mostly flower and fructify high in the host tree canopy. The Mexican species Hydrangea seemannii, however, encompasses not only long lianescent climbers of large vertical rock walls and coniferous trees, but also short 'shrub-like' climbers on small rounded boulders. To investigate growth form plasticity in root-climbing hortensia species, we tested the hypothesis that support variability (e.g. differences in size and shape) promotes plastic responses observable at the mechanical, structural and anatomical level. Stem bending properties, architectural axis categorization, tissue organization and wood density were compared between boulder and long-vertical tree-climbers of H. seemannii. For comparison, the mechanical patterns of a closely related, strictly long-vertical tree-climbing species were investigated. Hydrangea seemannii has fine-tuned morphological, mechanical and anatomical responses to support variability suggesting the presence of two alternative root-climbing strategies that are optimized for their particular environmental conditions. Our results suggest that variation of some stem anatomical traits provides a buffering effect that regulates the mechanical and hydraulic demands of two distinct plant architectures. The adaptive value of observed plastic responses and the importance of considering growth form plasticity in evolutionary and conservation studies are discussed. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Development of Chinese HTR-PM pebble bed equivalent conductivity test facility

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Cheng; Yang, Xingtuan; Jiang, Shengyao [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2016-01-15

    The first two 250-MWt high-temperature reactor pebble bed modules (HTR-PM) have been installing at the Shidaowan plant in Shandong Province, China. The values of the effective thermal conductivity of the pebble bed core are essential parameters for the design. For their determination, Tsinghua University in China has proposed a full-scale heat transfer experiment to conduct comprehensive thermal transfer tests in packed pebble bed and to determine the effective thermal conductivity.

  10. Nuclear safeguards considerations for pebble bed reactors (PBRs)

    International Nuclear Information System (INIS)

    Moses, David L.

    2012-01-01

    Recent reports by the Department of Energy National Laboratories have discussed safeguards considerations for low enriched uranium (LEU)-fueled pebble bed reactors (PBRs) and the need for bulk accountancy of the plutonium in “used fuel.” These reports fail to account for the degree of plutonium dilution in the graphitized-carbon pebbles that is sufficient to meet the International Atomic Energy Agency (IAEA) “provisional” guidelines for termination of safeguards on “measured discards.” The thrust of this finding is not to terminate safeguards but to limit the need for specific accountancy of plutonium in stored used fuel. While the residual uranium in the used fuel is not sufficiently diluted to meet the IAEA provisional guidelines for termination of safeguards, the estimated quantities of the uranium minor isotopes 232 U and 236 U in the used fuel at the target burnup of ∼90 Gigawatt-days per metric ton (GWD/MT) exceed standard specification limits for reprocessed uranium and will require extensive blending with either natural uranium or uranium enrichment tails to dilute the 236 U content to fall within specification. Hence, the PBR used fuel is less desirable for commercial reprocessing and reuse than that from light water reactors. Also the PBR specific activity of a reprocessed uranium isotopic mixture and its A 2 values for effective dose limits if released in a dispersible form during a transportation accident are more limiting than the equivalent values for light-water-reactor used fuel at 55 GWD/MT without accounting for the presence of the principal carry-over fission product (technetium, 99 Tc) and plutonium contamination. Thus, the potentially recoverable uranium from PBR used fuel carries reactivity penalties and radiological penalties likely greater than those for reprocessed uranium from light water reactors. These factors impact the economics of reprocessing, but a more significant consideration is that reprocessing technologies for

  11. A COMPARISON OF PEBBLE MIXING AND DEPLETION ALGORITHMS USED IN PEBBLE-BED REACTOR EQUILIBRIUM CYCLE SIMULATION

    International Nuclear Information System (INIS)

    Gougar, Hans D.; Reitsma, Frederik; Joubert, Wessel

    2009-01-01

    Recirculating pebble-bed reactors are distinguished from all other reactor types by the downward movement through and reinsertion of fuel into the core during operation. Core simulators must account for this movement and mixing in order to capture the physics of the equilibrium cycle core. VSOP and PEBBED are two codes used to perform such simulations, but they do so using different methods. In this study, a simplified pebble-bed core with a specified flux profile and cross sections is used as the model for conducting analyses of two types of burnup schemes. The differences between the codes are described and related to the differences observed in the nuclide densities in pebbles discharged from the core. Differences in the methods for computing fission product buildup and average number densities lead to significant differences in the computed core power and eigenvalue. These test models provide a key component of an overall equilibrium cycle benchmark involving neutron transport, cross section generation, and fuel circulation.

  12. Stable isotope compositions of quartz pebbles and their fluid inclusions as tracers of sediment provenance: Implications for gold- and uranium-bearing quartz pebble conglomerates

    Energy Technology Data Exchange (ETDEWEB)

    Vennemann, T.W.; Kesler, S.E.; O' Neil, J.R. (Univ. of Michigan, Ann Arbor (United States))

    1992-09-01

    Oxygen isotope compositions of pebbles from late Archean to paleo-Proterozoic gold- and/or uranium-bearing oligomictic quartz pebble conglomerates of the Witwatersrand district, South Africa, and Huronian Supergroup, Canada, were determined in an attempt to define the nature of the source terrain. The [delta][sup 18]O values of quartz pebbles within any one sample typically vary by [approximately] 4[per thousand] or more, but occasionally by as much as 8[per thousand], even for adjacent pebbles within the same hand specimen. In addition, adjacent quartz pebbles of widely contrasting [delta][sup 18]O values also preserve distinct isotopic signatures of their fluid inclusions. This overall heterogeneity suggests that the pebbles did not undergo significant oxygen isotope exchange after incorporation in the conglomerates. Therefore, oxygen isotope analyses of such quartz pebbles, in combination with a detailed investigation of their mineral and fluid inclusions, can provide a useful method for characterizing pebble populations and hence dominant sediment source modes. Comparison of values found in this study with [delta][sup 18]O values of quartz from Archean granites, pegmatites, and mesothermal greenstone gold veins, i.e., [delta][sup 18]O values of sources commonly proposed for the conglomerate ores, suggests that uranium is derived from a granitic source, whereas gold has a mesothermal greenstone gold source. Low [delta][sup 18]O values of chert pebbles (9[per thousand] to 11.5[per thousand]) relative to those expected for Archean and Proterozoic marine cherts (commonly [ge] 17[per thousand]) effectively exclude marine cherts, and therefore, auriferous iron formations and exhalatives, as likely sources of gold.

  13. Stable isotope compositions of quartz pebbles and their fluid inclusions as tracers of sediment provenance: Implications for gold- and uranium-bearing quartz pebble conglomerates

    International Nuclear Information System (INIS)

    Vennemann, T.W.; Kesler, S.E.; O'Neil, J.R.

    1992-01-01

    Oxygen isotope compositions of pebbles from late Archean to paleo-Proterozoic gold- and/or uranium-bearing oligomictic quartz pebble conglomerates of the Witwatersrand district, South Africa, and Huronian Supergroup, Canada, were determined in an attempt to define the nature of the source terrain. The δ 18 O values of quartz pebbles within any one sample typically vary by ∼ 4 per-thousand or more, but occasionally by as much as 8 per-thousand, even for adjacent pebbles within the same hand specimen. In addition, adjacent quartz pebbles of widely contrasting δ 18 O values also preserve distinct isotopic signatures of their fluid inclusions. This overall heterogeneity suggests that the pebbles did not undergo significant oxygen isotope exchange after incorporation in the conglomerates. Therefore, oxygen isotope analyses of such quartz pebbles, in combination with a detailed investigation of their mineral and fluid inclusions, can provide a useful method for characterizing pebble populations and hence dominant sediment source modes. Comparison of values found in this study with δ 18 O values of quartz from Archean granites, pegmatites, and mesothermal greenstone gold veins, i.e., δ 18 O values of sources commonly proposed for the conglomerate ores, suggests that uranium is derived from a granitic source, whereas gold has a mesothermal greenstone gold source. Low δ 18 O values of chert pebbles (9 per-thousand to 11.5 per-thousand) relative to those expected for Archean and Proterozoic marine cherts (commonly ≥ 17 per-thousand) effectively exclude marine cherts, and therefore, auriferous iron formations and exhalatives, as likely sources of gold

  14. An advanced three-phase physical, experimental and numerical method for tsunami induced boulder transport

    Science.gov (United States)

    Oetjen, Jan; Engel, Max; Prasad Pudasaini, Shiva; Schüttrumpf, Holger; Brückner, Helmut

    2017-04-01

    Coasts around the world are affected by high-energy wave events like storm surges or tsunamis depending on their regional climatological and geological settings. By focusing on tsunami impacts, we combine the abilities and experiences of different scientific fields aiming at improved insights of near- and onshore tsunami hydrodynamics. We investigate the transport of coarse clasts - so called boulders - due to tsunami impacts by a multi-methodology approach of numerical modelling, laboratory experiments, and sedimentary field records. Coupled numerical hydrodynamic and boulder transport models (BTM) are widely applied for analysing the impact characteristics of the transport by tsunami, such as wave height and flow velocity. Numerical models able to simulate past tsunami events and the corresponding boulder transport patterns with high accuracy and acceptable computational effort can be utilized as powerful forecasting models predicting the impact of a coast approaching tsunami. We have conducted small-scale physical experiments in the tilting flume with real shaped boulder models. Utilizing the structure from motion technique (Westoby et al., 2012) we reconstructed real boulders from a field study on the Island of Bonaire (Lesser Antilles, Caribbean Sea, Engel & May, 2012). The obtained three-dimensional boulder meshes are utilized for creating downscaled replica of the real boulder for physical experiments. The results of the irregular shaped boulder are compared to experiments with regular shaped boulder models to achieve a better insight about the shape related influence on transport patterns. The numerical model is based on the general two-phase mass flow model by Pudasaini (2012) enhanced for boulder transport simulations. The boulder is implemented using the immersed boundary technique (Peskin, 2002) and the direct forcing approach. In this method Cartesian grids (fluid and particle phase) and Lagrangian meshes (boulder) are combined. By applying the

  15. Boulder emplacement and remobilisation by cyclone and submarine landslide tsunami waves near Suva City, Fiji

    Science.gov (United States)

    Lau, A. Y. Annie; Terry, James P.; Ziegler, Alan; Pratap, Arti; Harris, Daniel

    2018-02-01

    The characteristics of a reef-top boulder field created by a local submarine landslide tsunami are presented for the first time. Our examination of large reef-derived boulders deposited by the 1953 tsunami near Suva City, Fiji, revealed that shorter-than-normal-period tsunami waves generated by submarine landslides can create a boulder field resembling a storm boulder field due to relatively short boulder transport distances. The boulder-inferred 1953 tsunami flow velocity is estimated at over 9 m s- 1 at the reef edge. Subsequent events, for example Cyclone Kina (1993), appear to have remobilised some large boulders. While prior research has demonstrated headward retreat of Suva Canyon in response to the repeated occurrence of earthquakes over the past few millennia, our results highlight the lingering vulnerability of the Fijian coastlines to high-energy waves generated both in the presence (tsunami) and absence (storm) of submarine failures and/or earthquakes. To explain the age discrepancies of U-Th dated coral comprising the deposited boulders, we introduce a conceptual model showing the role of repeated episodes of tsunamigenic submarine landslides in removing reef front sections through collapse. Subsequent high-energy wave events transport boulders from exposed older sections of the reef front onto the reef where they are deposited as 'new' boulders, alongside freshly detached sections of the living reef. In similar situations where anachronistic deposits complicate the deposition signal, age-dating of the coral boulders should not be used as a proxy for determining the timing of the submarine landslides or the tsunamis that generated them.

  16. The reprocessing of advanced mixed lithium orthosilicate/metatitanate tritium breeder pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Leys, Oliver, E-mail: oliver.leys@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Eggenstein-Leopoldshafen, 76344 (Germany); Bergfeldt, Thomas; Kolb, Matthias H.H.; Knitter, Regina [Karlsruhe Institute of Technology, Institute for Applied Materials, Eggenstein-Leopoldshafen, 76344 (Germany); Goraieb, Aniceto A. [Karlsruhe Beryllium Handling Facility, Eggenstein-Leopoldshafen, 76344 (Germany)

    2016-06-15

    Highlights: • The recycling of advanced breeder pebbles without a deterioration of the material properties is possible using a melt-based process. • The only accumulation of impurities upon reprocessing, results from the platinum crucible alloy used for processing. • It is possible to replenish burnt-up lithium by additions of LiOH·H{sub 2}O to the melt during reprocessing. - Abstract: The recycling of tritium breeding materials will be necessary for any future use of nuclear fusion energy due to economical as well as ecological considerations. In the case of the solid breeder blanket concept, the ceramic pebble beds that are intended for the generation of tritium will eventually need to be restored due to depleted lithium levels as well as due to fractured pebbles, which will cause a deterioration of the pebble bed properties. It is proposed that the pebbles, which are fabricated using a melt-based process, are recycled using the same initial process, by replenishing the lithium levels and reforming the pebbles at the same time. To prove this recycling scheme, advanced ceramic pebbles were fabricated and then re-melted multiple times to prove that the reprocessing did not have any negative effect on the pebble properties and secondly, pebbles were produced with a simulated lithium burn-up and subsequently replenished by additions of LiOH to the melt. It was shown that the re-melting and lithium re-enrichment had no effect on the pebble properties, demonstrating that a melt-based process is suitable for recycling used breeder pebbles.

  17. Mechanical behavior of Be–Ti pebbles at blanket relevant temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kurinskiy, Petr, E-mail: petr.kurinskiy@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials—Applied Materials Physics (IAM-AWP), P.O. Box 3640, 76021 Karlsruhe (Germany); Rolli, Rolf [Karlsruhe Institute of Technology, Institute for Applied Materials—Materials Biomechanics (IAM-WBM), P.O. Box 3640, 76021 Karlsruhe (Germany); Kim, Jae-Hwan; Nakamichi, Masaru [Breeding Functional Materials Development Group, Department of Blanket Fusion Institute, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Oaza-Obuchi-Aza-Omotedate, Rokkasho-mura, Kamikita-gun, Aoori 039-3212 (Japan)

    2016-11-01

    Highlights: • Mechanical behavior of two kinds of Be–Ti pebbles in the temperature range of 400–800 °C was investigated. • It was experimentally shown that Be-7 at.%Ti pebbles have the enhanced ductile properties compared to Be-7.7 at.%Ti pebbles. • Brittle failure of both kinds of Be–Ti pebbles was observed by testing at 400 °C using the constant loading with 150 N. - Abstract: Mechanical performance of beryllium-based materials is a matter of a great interest from the point of view of their use as neutron multipliers of the tritium breeding blankets. The compression strains which can occur in beryllium pebble beds under blanket working conditions will lead to deformation or even failure of individual pebbles [1,2] (Reimann et al. 2002; Ishitsuka and Kawamura, 1995). Mechanical behavior of Be–Ti pebbles having chemical contents of Be-7.0 at.% Ti and Be-7.7 at.%Ti was investigated in the temperature range of 400–800 °C. Constant loads varying from 10 up to 150 N were applied uniaxially. It was shown that Be–Ti pebbles compared to pure beryllium pebbles possess much lower ductility, although their strength properties exceed corresponding characteristics of pure beryllium. Also, the influence of titanium content on mechanical behavior of Be–Ti pebbles was investigated. Specific features of deformation of pure beryllium and Be–Ti pebbles having different titanium contents at blanket operation temperatures are discussed.

  18. Fabrication of Li_2TiO_3 pebbles by a selective laser sintering process

    International Nuclear Information System (INIS)

    Zhou, Qilai; Gao, Yue; Liu, Kai; Xue, Lihong; Yan, Youwei

    2015-01-01

    Highlights: • Selective laser sintering (SLS) is employed to fabricate ceramic pebbles. • Quantities and diameter of the pebbles could be easily controlled by adjusting the model of pebbles. • All the pebbles could be prepared at a time within several minutes. • The Li_2TiO_3 pebbles sintered at 1100 °C show a notable crush load of 43 N. - Abstract: Lithium titanate, Li_2TiO_3, is an important tritium breeding material for deuterium (D)–tritium (T) fusion reactor. In test blanket module (TBM) design of China, Li_2TiO_3 is considered as one candidate material of tritium breeders. In this study, selective laser sintering (SLS) technology was introduced to fabricate Li_2TiO_3 ceramic pebbles. This fabrication process is computer assisted and has a high level of flexibility. Li_2TiO_3 powder with a particle size of 1–3 μm was used as the raw material, whilst epoxy resin E06 was adopted as a binder. Green Li_2TiO_3 pebbles with certain strengths were successfully prepared via SLS. Density of the green pebbles was subsequently increased by cold isostatic pressing (CIP) process. Li_2TiO_3 pebbles with a diameter of about 2 mm were obtained after high temperature sintering. Density of the pebbles reaches 80% of theoretical density (TD) with a comparable crush load of 43 N. This computer assisted approach provides a new efficient route for the production of Li_2TiO_3 ceramic pebbles.

  19. Pebble bed blanket design for deuterium burning tandem mirror reactors

    International Nuclear Information System (INIS)

    Grotz, S.P.; Dhir, V.K.

    1983-01-01

    The UCLA tandem mirror reactor, SATYR, was developed around the capability of tandem mirrors with thermal barriers to burn deuterium at reasonable efficiency levels. The pebble bed concept has been incorporated into our blanket design for the following reasons: 1) Large area-to-volume ratio for purposes of heat removal; 2) Large volume of structure for high thermal capacity thus increasing the safety margin during off-normal incidents; 3) Relatively inexpensive manufacturing costs because of large acceptable tolerances and lack of exotic materials (i.e., lithium). A simplified stress analysis of the blanket module was performed to optimize and simplify the design. The pre-specified stress intensity limitations used were based upon a 30-year predicted lifetime for each module. Along with stress analysis of the vessel a detailed thermal hydraulic analysis of the pebble bed has been completed. Parameters affecting the pebble bed design are fluidization velocity, pressure drop, heat transfer coefficient, thermally induced stress in the spheres and spatial variation of the power density. Although reasonable gross thermal efficiencies of the 2 designs has been achieved (28% for H 2 O and 39% for He) the high net recirculating power fraction for heating and neutral beams results in relatively low net plant efficiencies (21% and 27%). The results show that a blanket can be designed with good thermal efficiency and a relative-ly simple configuration. However, application of this concept to the high Q deuterium-tritium fuel cycle would have difficulties resulting from the need for continuous removal of the tritium. (orig./HP)

  20. Gas Reactor International Cooperative Program. Interim report. Safety and licensing evaluaion of German Pebble Bed Reactor concepts

    International Nuclear Information System (INIS)

    1978-09-01

    The Pebble Bed Gas Cooled Reactor, as developed in the Federal Republic of Germany, was reviewed from a United States Safety and Licensing perspective. The primary concepts considered were the steam cycle electric generating pebble bed (HTR-K) and the process heat pebble bed (PNP), although generic consideration of the direct cycle gas turbine pebble bed (HHT) was included. The study examines potential U.S. licensing issues and offers some suggestions as to required development areas

  1. Influence of gas pressure on the effective thermal conductivity of ceramic breeder pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Weijing [School of Civil Engineering, The University of Sydney, Sydney (Australia); Pupeschi, Simone [Institute for Applied Materials, Karlsruhe Institute of Technology (KIT) (Germany); Hanaor, Dorian [School of Civil Engineering, The University of Sydney, Sydney (Australia); Institute for Materials Science and Technologies, Technical University of Berlin (Germany); Gan, Yixiang, E-mail: yixiang.gan@sydney.edu.au [School of Civil Engineering, The University of Sydney, Sydney (Australia)

    2017-05-15

    Highlights: • This study explicitly demonstrates the influence of the gas pressure on the effective thermal conductivity of pebble beds. • The gas pressure influence is shown to correlated to the pebble size. • The effective thermal conductivity is linked to thermal-mechanical properties of pebbles and packing structure. - Abstract: Lithium ceramics have been considered as tritium breeder materials in many proposed designs of fusion breeding blankets. Heat generated in breeder pebble beds due to nuclear breeding reaction must be removed by means of actively cooled plates while generated tritiums is recovered by purge gas slowly flowing through beds. Therefore, the effective thermal conductivity of pebble beds that is one of the governing parameters determining heat transport phenomenon needs to be addressed with respect to mechanical status of beds and purge gas pressure. In this study, a numerical framework combining finite element simulation and a semi-empirical correlation of gas gap conduction is proposed to predict the effective thermal conductivity. The purge gas pressure is found to vary the effective thermal conductivity, in particular with the presence of various sized gaps in pebble beds. Random packing of pebble beds is taken into account by an approximated correlation considering the packing factor and coordination number of pebble beds. The model prediction is compared with experimental observation from different sources showing a quantitative agreement with the measurement.

  2. Influence of gas pressure on the effective thermal conductivity of ceramic breeder pebble beds

    International Nuclear Information System (INIS)

    Dai, Weijing; Pupeschi, Simone; Hanaor, Dorian; Gan, Yixiang

    2017-01-01

    Highlights: • This study explicitly demonstrates the influence of the gas pressure on the effective thermal conductivity of pebble beds. • The gas pressure influence is shown to correlated to the pebble size. • The effective thermal conductivity is linked to thermal-mechanical properties of pebbles and packing structure. - Abstract: Lithium ceramics have been considered as tritium breeder materials in many proposed designs of fusion breeding blankets. Heat generated in breeder pebble beds due to nuclear breeding reaction must be removed by means of actively cooled plates while generated tritiums is recovered by purge gas slowly flowing through beds. Therefore, the effective thermal conductivity of pebble beds that is one of the governing parameters determining heat transport phenomenon needs to be addressed with respect to mechanical status of beds and purge gas pressure. In this study, a numerical framework combining finite element simulation and a semi-empirical correlation of gas gap conduction is proposed to predict the effective thermal conductivity. The purge gas pressure is found to vary the effective thermal conductivity, in particular with the presence of various sized gaps in pebble beds. Random packing of pebble beds is taken into account by an approximated correlation considering the packing factor and coordination number of pebble beds. The model prediction is compared with experimental observation from different sources showing a quantitative agreement with the measurement.

  3. On the hyperporous non-linear elasticity model for fusion-relevant pebble beds

    International Nuclear Information System (INIS)

    Di Maio, P.A.; Giammusso, R.; Vella, G.

    2010-01-01

    Packed pebble beds are particular granular systems composed of a large amount of small particles, arranged in irregular lattices and surrounded by a gas filling interstitial spaces. Due to their heterogeneous structure, pebble beds have non-linear and strongly coupled thermal and mechanical behaviours whose constitutive models seem limited, being not suitable for fusion-relevant design-oriented applications. Within the framework of the modelling activities promoted for the lithiated ceramics and beryllium pebble beds foreseen in the Helium-Cooled Pebble Bed breeding blanket concept of DEMO, at the Department of Nuclear Engineering of the University of Palermo (DIN) a thermo-mechanical constitutive model has been set-up assuming that pebble beds can be considered as continuous, homogeneous and isotropic media. The present paper deals with the DIN non-linear elasticity constitutive model, based on the assumption that during the reversible straining of a pebble bed its effective logarithmic bulk modulus depends on the equivalent pressure according to a modified power law and its effective Poisson modulus remains constant. In these hypotheses the functional dependence of the effective tangential and secant bed deformation moduli on either the equivalent pressure or the volumetric strain have been derived in a closed analytical form. A procedure has been, then, defined to assess the model parameters for a given pebble bed from its oedometric test results and it has been applied to both polydisperse lithium orthosilicate and single size beryllium pebble beds.

  4. The activation analysis of gold in small refractory pebbles

    International Nuclear Information System (INIS)

    Bibby, D.M.; Chaix, R.P.

    1975-08-01

    The gold content of a suite of small pebbles, residual to the milling and leach of a gold bearing ore, has been investigated by means of neutron activation analysis (NAA). An NAA technique presenting a sensitivity of 0.02μgm gold, was used as being appropriate to the samples under investigation. An alternative NAA technique developed with the same sample suite showed a sensitivity of the order of 10 -4 to 10 -5 μgm gold. The NAA techniques developed, are appropriate to the determination of gold in small samples of ore not normally amenable to milling and/or dissolution

  5. A 350 MW HTR with an annular pebble bed core

    International Nuclear Information System (INIS)

    Wang Dazhong; Jiang Zhiqiang; Gao Zuying; Xu Yuanhui

    1992-12-01

    A conceptual design of HTR-module with an annular pebble bed core was proposed. This design can increase the unit power capacity of HTR-Module from 200 MWt to 350 MWt while it can keep the inherent safety characteristics of modular reactor. The preliminary safety analysis results for 350 MW HTR are given. In order to solve the problem of uneven helium outlet temperature distribution a gas flow mixing structure at bottom of core was designed. The experiment results of a gas mixing simulation test rig show that the mixing function can satisfy the design requirements

  6. Research on application of burnable poison in pebble bed HTR

    International Nuclear Information System (INIS)

    Wei Chunlin; Zhang Jian; Shan Wenzhi; Jing Xingqing

    2013-01-01

    Burnable poison in fuel ball was used in pebble bed high-temperature gas-cooled reactor (HTR) to optimize the shape and the peak factor of power distribution in certain conditions. Two options are available and evaluated, that is the homogeneous burnable poison in graphite matrix and burnable poison particles (BPPs) in fuel balls. Due to the absorption cross section of "1"0B, the depletion speed for homogeneous burnable poison is very fast, and difficult to control, on the other side, the depletion speed of BPPs can be optimized respecting to its size, and better shape and peak value of power distribution can be achieved. (authors)

  7. Pebble bed reactor fuel cycle optimization using particle swarm algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Tavron, Barak, E-mail: btavron@bgu.ac.il [Planning, Development and Technology Division, Israel Electric Corporation Ltd., P.O. Box 10, Haifa 31000 (Israel); Shwageraus, Eugene, E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2016-10-15

    Highlights: • Particle swarm method has been developed for fuel cycle optimization of PBR reactor. • Results show uranium utilization low sensitivity to fuel and core design parameters. • Multi-zone fuel loading pattern leads to a small improvement in uranium utilization. • Thorium mixes with highly enriched uranium yields the best uranium utilization. - Abstract: Pebble bed reactors (PBR) features, such as robust thermo-mechanical fuel design and on-line continuous fueling, facilitate wide range of fuel cycle alternatives. A range off fuel pebble types, containing different amounts of fertile or fissile fuel material, may be loaded into the reactor core. Several fuel loading zones may be used since radial mixing of the pebbles was shown to be limited. This radial separation suggests the possibility to implement the “seed-blanket” concept for the utilization of fertile fuels such as thorium, and for enhancing reactor fuel utilization. In this study, the particle-swarm meta-heuristic evolutionary optimization method (PSO) has been used to find optimal fuel cycle design which yields the highest natural uranium utilization. The PSO method is known for solving efficiently complex problems with non-linear objective function, continuous or discrete parameters and complex constrains. The VSOP system of codes has been used for PBR fuel utilization calculations and MATLAB script has been used to implement the PSO algorithm. Optimization of PBR natural uranium utilization (NUU) has been carried out for 3000 MWth High Temperature Reactor design (HTR) operating on the Once Trough Then Out (OTTO) fuel management scheme, and for 400 MWth Pebble Bed Modular Reactor (PBMR) operating on the multi-pass (MEDUL) fuel management scheme. Results showed only a modest improvement in the NUU (<5%) over reference designs. Investigation of thorium fuel cases showed that the use of HEU in combination with thorium results in the most favorable reactor performance in terms of

  8. Pebble bed reactor fuel cycle optimization using particle swarm algorithm

    International Nuclear Information System (INIS)

    Tavron, Barak; Shwageraus, Eugene

    2016-01-01

    Highlights: • Particle swarm method has been developed for fuel cycle optimization of PBR reactor. • Results show uranium utilization low sensitivity to fuel and core design parameters. • Multi-zone fuel loading pattern leads to a small improvement in uranium utilization. • Thorium mixes with highly enriched uranium yields the best uranium utilization. - Abstract: Pebble bed reactors (PBR) features, such as robust thermo-mechanical fuel design and on-line continuous fueling, facilitate wide range of fuel cycle alternatives. A range off fuel pebble types, containing different amounts of fertile or fissile fuel material, may be loaded into the reactor core. Several fuel loading zones may be used since radial mixing of the pebbles was shown to be limited. This radial separation suggests the possibility to implement the “seed-blanket” concept for the utilization of fertile fuels such as thorium, and for enhancing reactor fuel utilization. In this study, the particle-swarm meta-heuristic evolutionary optimization method (PSO) has been used to find optimal fuel cycle design which yields the highest natural uranium utilization. The PSO method is known for solving efficiently complex problems with non-linear objective function, continuous or discrete parameters and complex constrains. The VSOP system of codes has been used for PBR fuel utilization calculations and MATLAB script has been used to implement the PSO algorithm. Optimization of PBR natural uranium utilization (NUU) has been carried out for 3000 MWth High Temperature Reactor design (HTR) operating on the Once Trough Then Out (OTTO) fuel management scheme, and for 400 MWth Pebble Bed Modular Reactor (PBMR) operating on the multi-pass (MEDUL) fuel management scheme. Results showed only a modest improvement in the NUU (<5%) over reference designs. Investigation of thorium fuel cases showed that the use of HEU in combination with thorium results in the most favorable reactor performance in terms of

  9. Boulder Capture System Design Options for the Asteroid Robotic Redirect Mission Alternate Approach Trade Study

    Science.gov (United States)

    Belbin, Scott P.; Merrill, Raymond G.

    2014-01-01

    This paper presents a boulder acquisition and asteroid surface interaction electromechanical concept developed for the Asteroid Robotic Redirect Mission (ARRM) option to capture a free standing boulder on the surface of a 100 m or larger Near Earth Asteroid (NEA). It details the down select process and ranking of potential boulder capture methods, the evolution of a simple yet elegant articulating spaceframe, and ongoing risk reduction and concept refinement efforts. The capture system configuration leverages the spaceframe, heritage manipulators, and a new microspine technology to enable the ARRM boulder capture. While at the NEA it enables attenuation of terminal descent velocity, ascent to escape velocity, boulder collection and restraint. After departure from the NEA it enables, robotic inspection, sample caching, and crew Extra Vehicular Activities (EVA).

  10. An Analysis of Fuel Region to Region Dancoff Factor with the Random Mixture Effects of Moderator and Fuel Pebbles

    International Nuclear Information System (INIS)

    Kim, Song Hyun; Kim, Hong Chul; Kim, Jong Kyung; Noh, Jae Man

    2009-01-01

    Dancoff factor is an entering probability of the neutron escaped from specific fuel kernel to another one without the interaction with moderators. In order to analytically evaluate Dancoff factor considering double-heterogeneous effect, inter-pebble and intra-pebble Dancoff factors should be calculated, respectively. Intra-pebble Dancoff factor related with the fuel kernels in one pebble was analyzed in the past study. The fuel and moderator pebbles are randomly located in the pebble-type reactor. For the evaluation of inter-pebble Dancoff factor, a repetition of simple pebble structure is commonly assumed to simulate the complex geometry of pebble-type reactor. The evaluation using these structures can be underestimated because of the shadowing effects generated from the repetition of simple pebble structure. Fuel region to region Dancoff factor (FRDF) was defined as an entering probability of the neutron escaped from a specific fuel region to another one without any collision with moderator for a preliminary evaluation of inter-pebble Dancoff factor. To solve the underestimation problem of FRDF from the shadow effect, the specific pebble was assumed and FRDF was evaluated with the approximation method proposed in this study

  11. CFD simulation of a coolant flow and a heat transfer in a pebble bed reactor - HTR2008-58334

    International Nuclear Information System (INIS)

    In, W. K.; Lee, W. J.; Hassan, Y. A.

    2008-01-01

    This CFD study is to simulate a coolant(gas) flow and heat transfer in a PBR core during a normal operation. This study used a pebble array with direct area contacts among the pebbles which is one of the pebbles arrangements for a detailed simulation of PBR core CFD studies. A CFD model is developed to more adequately represent the pebbles randomly stacked in the PBR core. The CFD predictions showed a large variation of the temperature on the pebble surface as well as in the pebble core. The temperature drop in the outer graphite layer is smaller than that in the pebble-core region. This is because the thermal conductivity of graphite is higher than the fuel (UO, mixture) conductivity in the pebble core. Higher pebble surface temperature is predicted downstream of the pebble contact due to a reverse flow. Multiple vortices are predicted to occur downstream of the spherical pebbles due to a flow separation. The coolant flow structure and fuel temperature in the PBR core appears to largely depend on the in-core distribution of the pebbles. (authors)

  12. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Barbara H. Dolphin; James W. Sterbentz; Luka Snoj; Igor Lengar; Oliver Köberl

    2013-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.

  13. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Barbara H. Dolphin; James W. Sterbentz; Luka Snoj; Igor Lengar; Oliver Köberl

    2012-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.

  14. Application of a model to investigate the effective thermal conductivity of randomly packed fusion pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoliang; Zheng, Jie; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-05-15

    In our precious study, a prediction model, which calculates the effective thermal conductivity k{sub eff} of mono-sized pebble beds, has been developed and validated. Based on this model, here the effects of these influencing factors such as pebble size, thermal radiation, contact area, filling gas, gas flow, gas pressure, etc. on the k{sub eff} of randomly packed fusion pebble beds are studied and analyzed. The pebble beds investigated include Li{sub 4}SiO{sub 4}, Li{sub 2}ZrO{sub 3}, Li{sub 2}TiO{sub 3}, Li{sub 2}O, Be and BeO pebble beds. In the current study, many important and meaningful conclusions are derived and some of them are similar to the existing research results. Particularly, some critters that under which conditions the effect of some influencing factors can be neglected or should be considered are also presented.

  15. Preliminary neutronic study on Pu-based OTTO cycle pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Setiadipura, Topan; Zuhair [National Nuclear Energy Agency of Indonesia (BATAN), Selatan (Indonesia). Center for Nuclear Reactor Technology and Safety; Irwanto, Dwi [Bandung Institute of Technology (ITB), Bandung (Indonesia). Nuclear Physics and Biophysics Research Group

    2017-12-15

    The neutron physics characteristic of Pebble Bed Reactor (PBR) allows a better incineration of plutonium (Pu). An optimized design of simple PBR might give a symbiotic solution of providing a safe energy source, effective fuel utilization shown by a higher burnup value, and incineration of Pu stockpiles. This study perform a preliminary neutronic design study of a 200 MWt Once Through Then Out (OTTO) cycle PBR with Pu-based fuel. The safety criteria of the design were represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. In this preliminary phase, the parametric survey is limited to the heavy metal (HM) loading per pebble and the average axial speed of the fuel. An optimum high burnup of 419.7 MWd/kg-HM was achieved in this study. This optimum design uses a HM loading of 2.5 g/pebble with average axial fuel velocity 0.5 cm/day.

  16. Production of various sizes and some properties of beryllium pebbles by the rotating electrode method

    Energy Technology Data Exchange (ETDEWEB)

    Iwadachi, T.; Sakamoto, N.; Nishida, K. [NGK Insulators Ltd., Nagoya (Japan); Kawamura, H.

    1998-01-01

    The particle size distribution of beryllium pebbles produced by the rotating electrode method was investigated. Particle size depends on some physical properties and process parameters, which can practicaly be controlled by varying electrode angular velocities. The average particle sizes produced were expressed by the hyperbolic function with electrode angular velocity. Particles within the range of 0.3 and 2.0 mm in diameter are readily produced by the rotating electrode method while those of 0.2 mm in diameter are also fabricable. Sphericity and surface roughness were good in each size of pebble. Grain sizes of the pebbles are 17 {mu} m in 0.25 mm diameter pebbles and 260 {mu} m in 1.8 mm diameter pebbles. (author)

  17. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Mcwilliams, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  18. Application of discrete element method to study mechanical behaviors of ceramic breeder pebble beds

    International Nuclear Information System (INIS)

    An Zhiyong; Ying, Alice; Abdou, Mohamed

    2007-01-01

    In this paper, the discrete element method (DEM) approach has been applied to study mechanical behaviors of ceramic breeder pebble beds. Directly simulating the contact state of each individual particle by the physically based interaction laws, the DEM numerical program is capable of predicting the mechanical behaviors of non-standard packing structures. The program can also provide the data to trace the evolution of contact characteristics and forces as deformation proceeds, as well as the particle movement when the pebble bed is subjected to external loadings. Our numerical simulations focus on predicting the mechanical behaviors of ceramic breeder pebble beds, which include typical fusion breeder materials in solid breeder blankets. Current numerical results clearly show that the packing density and the bed geometry can have an impact on the mechanical stiffness of the pebble beds. Statistical data show that the contact forces are highly related to the contact status of the pebbles

  19. Thermal safety analysis for pebble bed blanket fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Wei Renjie

    1998-01-01

    Pebble bed blanket hybrid reactor may have more advantages than slab element blanket hybrid reactor in nuclear fuel production and nuclear safety. The thermo-hydraulic calculations of the blanket in the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor developed in China are carried out using the Code THERMIX and auxiliary code. In the calculations different fuel pebble material and steady state, depressurization and total loss of flow accident conditions are included. The results demonstrate that the conceptual design of the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor with dump tank is feasible and safe enough only if the suitable fuel pebble material is selected and the suitable control system and protection system are established. Some recommendations for due conceptual design are also presented

  20. The Role of Porosity in the Formation of Coastal Boulder Deposits - Hurricane Versus Tsunami

    Science.gov (United States)

    Spiske, M.; Boeroecz, Z.; Bahlburg, H.

    2007-12-01

    Coastal boulder deposits are a consequence of high-energy wave impacts, such as storms, hurricanes or tsunami. Distinguishing parameters between storm, hurricane and tsunami origin are distance of a deposit from the coast, boulder weight and inferred wave height. Formulas to calculate minimum wave heights of both storm and tsunami waves depend on accurate determination of boulder dimensions and lithology from the respective deposits. At present however, boulder porosity appears to be commonly neglected, leading to significant errors in determined bulk density, especially when boulders consist of reef or coral limestone. This limits precise calculations of wave heights and hampers a clear distinction between storm, hurricane and tsunami origin. Our study uses Archimedean and optical 3D-profilometry measurements for the determination of porosities and bulk densities of reef and coral limestone boulders from the islands of Aruba, Bonaire and Curaçao (ABC Islands, Netherlands Antilles). Due to the high porosities (up to 68 %) of the enclosed coral species, the weights of the reef rock boulders are as low as 20 % of previously calculated values. Hence minimum calculated heights both for tsunami and hurricane waves are smaller than previously proposed. We show that hurricane action appears to be the likely depositional mechanism for boulders on the ABC Islands, since 1) our calculations result in tsunami wave heights which do not permit the overtopping of coastal platforms on the ABC Islands, 2) boulder fields lie on the windward (eastern) sides of the islands, 3) recent hurricanes transported boulders up to 35 m3 and 4) the scarcity of tsunami events affecting the coasts of the ABC Islands compared to frequent impacts of tropical storms and hurricanes.

  1. Assessing the role of coastal characteristics in erosional process of rocky shores by boulder quarrying.

    Science.gov (United States)

    Causon Deguara, Joanna; Gauci, Ritienne

    2017-04-01

    Rocky coasts are considered as relatively stable coastlines, subject to erosional processes that change the landscape over long periods of time. Block quarrying is one such process, occurring when hydraulic pressure from wave impact dislodges boulders from within the outcropping bedrock. These dislodged boulders can be either deposited inland or dragged seaward by further wave action. This process can be evidenced from boulder deposits on the coast, as well as sockets and detachment scarps that are identified at the shoreline and in the backshore. This study seeks to identify the role of attributes such as aspect, geological structure and water depth have on erosion of rocky coasts through boulder quarrying processes. This is being done through observation of coastline morphology and an analysis of boulder accumulations and erosional features identified on a 3km stretch of rocky shore. The study area is situated on the SE coast of the Island of Malta (Central Mediterranean). The coastline being analysed generally trends NW - SE and consists of a series of limestone beds that dip slightly towards the NE. The boulder deposits observed along the site vary in size, quantity and position with respect to the shoreline. Whilst some areas exhibit large boulder accumulations, other areas are distinguished by the complete absence of such deposits. Taking into consideration the wave climate, the variable size, quantity and distribution of boulder accumulations observed along the site may indicate that geological structure and aspect play an important role in boulder dislodgment by wave action. Key words: rock coast, boulder quarrying, erosional process, Malta

  2. Integrated design approach of the pebble bed modular using models

    International Nuclear Information System (INIS)

    Venter, P.J.

    2005-01-01

    The Pebble Bed Modular Reactor (PBMR) is the first pebble bed reactor that will be utilised in a high temperature direct Brayton cycle configuration. This implies that there are a number of unique features in the PBMR that extend from the German experience base. One of the challenges in the design of the PBMR is managing the integrated design process between the designers, the physicists and the analysts. This integrated design process is managed through model-based development work. Three-dimensional CAD models are constructed of the components and parts in the reactor. From the CAD models, CFD models, neutronic models, shielding models, FEM models and other thermodynamic models are derived. These models range from very simple models to extremely detailed and complex models. The models are used in legacy software as well as commercial off-the-shelf software. The different models are also used in code-to-code comparisons to verify the results. This paper will briefly discuss the different models and the interaction between the models, showing the iterative design process that is used in the development of the reactor at PBMR. (author)

  3. Dynamics of a small direct cycle pebble bed HTR

    International Nuclear Information System (INIS)

    Verkerk, E.C.; Heek, A.I. van

    2001-01-01

    The Dutch market for combined generation of heat and power identifies a unit size of 40 MW thermal for the conceptual design of a nuclear cogeneration plant. The ACACIA system provides 14 MW(e) electricity combined with 17 t/h of high temperature steam (220 deg. C, 10 bar) with a pebble bed high temperature reactor directly coupled with a helium compressor and a helium turbine. To come to quantitative statements about the ACACIA transient behaviour, a calculational coupling between the high temperature reactor core analysis code package Panthermix (Panther-Thermix/Direkt) and the thermal hydraulic code RELAP5 for the energy conversion system has been made. This paper will present the analysis of safety related transients. The usual incident scenarios Loss of Coolant Incident (LOCI) and Loss of Flow Incident (LOFI) have been analysed. Besides, also a search for the real maximum fuel temperature (inside a fuel pebble anywhere in the core) has been made. It appears that the maximum fuel temperatures are not reached during a LOFI or LOCI with a halted mass flow rate, but for situations with a small mass flow rate, 1-0.5%. As such, a LOFI or LOCI does not represent the worst-case scenario in terms of maximal fuel temperature. (author)

  4. Power Peaking Effect of OTTO Fuel Scheme Pebble Bed Reactor

    Science.gov (United States)

    Setiadipura, T.; Suwoto; Zuhair; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    Pebble Bed Reactor (PBR) type of Hight Temperature Gas-cooled Reactor (HTGR) is a very interesting nuclear reactor design to fulfill the growing electricity and heat demand with a superior passive safety features. Effort to introduce the PBR design to the market can be strengthen by simplifying its system with the Once-through-then-out (OTTO) cycle PBR in which the pebble fuel only pass the core once. Important challenge in the OTTO fuel scheme is the power peaking effect which limit the maximum nominal power or burnup of the design. Parametric survey is perform in this study to investigate the contribution of different design parameters to power peaking effect of OTTO cycle PBR. PEBBED code is utilized in this study to perform the equilibrium PBR core analysis for different design parameter and fuel scheme. The parameters include its core diameter, height-per-diameter (H/D), power density, and core nominal power. Results of this study show that diameter and H/D effectsare stronger compare to the power density and nominal core power. Results of this study might become an importance guidance for design optimization of OTTO fuel scheme PBR.

  5. Torques Induced by Scattered Pebble-flow in Protoplanetary Disks

    Science.gov (United States)

    Benítez-Llambay, Pablo; Pessah, Martin E.

    2018-03-01

    Fast inward migration of planetary cores is a common problem in the current planet formation paradigm. Even though dust is ubiquitous in protoplanetary disks, its dynamical role in the migration history of planetary embryos has not been assessed. In this Letter, we show that the scattered pebble-flow induced by a low-mass planetary embryo leads to an asymmetric dust-density distribution that is able to exert a net torque. By analyzing a large suite of multifluid hydrodynamical simulations addressing the interaction between the disk and a low-mass planet on a fixed circular orbit, and neglecting dust feedback onto the gas, we identify two different regimes, gas- and gravity-dominated, where the scattered pebble-flow results in almost all cases in positive torques. We collect our measurements in a first torque map for dusty disks, which will enable the incorporation of the effect of dust dynamics on migration into population synthesis models. Depending on the dust drift speed, the dust-to-gas mass ratio/distribution, and the embryo mass, the dust-induced torque has the potential to halt inward migration or even induce fast outward migration of planetary cores. We thus anticipate that dust-driven migration could play a dominant role during the formation history of planets. Because dust torques scale with disk metallicity, we propose that dust-driven outward migration may enhance the occurrence of distant giant planets in higher-metallicity systems.

  6. Boulder coastal deposits at Favignana Island rocky coast (Sicily, Italy): Litho-structural and hydrodynamic control

    Science.gov (United States)

    Pepe, Fabrizio; Corradino, Marta; Parrino, Nicolò; Besio, Giovanni; Presti, Valeria Lo; Renda, Pietro; Calcagnile, Lucio; Quarta, Gianluca; Sulli, Attilio; Antonioli, Fabrizio

    2018-02-01

    Boulders are frequently dislodged from rock platforms, transported and deposited along coastal zones by high-magnitude storm waves or tsunamis. Their size and shape are often controlled by the thickness of bedding planes as well as by high-angle to bedding fracture network. We investigate these processes along two coastal areas of Favignana Island by integrating geological data for 81 boulders, 49 rupture surfaces (called sockets) and fracture orientation and spacing with four radiocarbon dates, numerical hydrodynamic analysis, and hindcast numerical simulation data. Boulders are scattered along the carbonate platform as isolated blocks or in small groups, which form, as a whole, a discontinuous berm. Underwater surveys also highlight free boulders with sharp edges and sockets carved out in the rock platform. Boulders are composed of ruditic- to arenitic-size clastic carbonates. Their size ranges from 0.6 to 3.7 m, 0.55 to 2.4 m, and 0.2 to 1 m on the major (A), medium (B), and minor (C) axes, respectively. The highest value of mass estimation is 12.5 t. Almost all of boulders and sockets are characterized by a tabular or bladed shape. The comparisons between a) the fractures spacing and the length of A- and B-axes, and b) the frequency peaks of C-axis with the recurrent thickness of beds measured along the coastal zone demonstrate the litho-structural control in the size and shape of joint-bounded boulders. These comparisons, together with the similarity between the shapes of the boulders and those of the sockets as well as between the lithology of boulders and the areas surrounding the sockets, suggest that blocks originate by detachment from the platform edge. Thus, the most common pre-transport setting is the joint-bounded scenario. Hydrodynamic equations estimate that the storm wave heights necessary to initiate the transport of blocks diverge from 2 m to 8 m for joint-bounded boulders and from few tens of centimeters up to 11 m for submerged boulders. The

  7. Fabrication and characterization of lithium orthosilicate pebbles using LiOH as a new raw material

    International Nuclear Information System (INIS)

    Knitter, R.; Reimann, J.; Risthaus, P.; Boccaccini, L.V.; Piazza, G.

    2004-01-01

    For the European Helium Cooled Pebble Bed (HCPB) blanket slightly overstoichiometric lithium orthosilicate pebbles (Li 4 SiO 4 +SiO 2 ) have been chosen as one optional breeder material. This material is developed in collaboration between Research Centre Karlsruhe (FZK) and the Schott Glas, Mainz. The lithium orthosilicate (OSi) pebbles are fabricated by the melting and spraying method in a semi-industrial scale facility. In the past, the not enriched pebbles were produced from a mixture of Li 4 SiO 4 and SiO 2 powders, but due to the fact that enriched Li 4 SiO 4 is not available on the market, highly enriched carbonate powder was used that finally resulted in nonsatisfying pebble characteristics. Enriched LiOH powder is commercially available, therefore, a new production route was pursued based on the following, simplified reaction: 4 LiOH + SiO 2 → Li 4 SiO 4 + 2 H 2 O. The melting process of LiOH and SiO 2 is less difficult to control than the melting of Li 2 CO 3 in spite of the decomposition of water. The pebbles produced from LiOH and SiO 2 are similar to those produced from Li 4 SiO 4 and SiO 2 . They exhibit a distinctly dendritic structure and show only a small amount of pores and cracks. In addition to the main constituent Li 4 SiO 4 , the high temperature phase Li 6 Si 2 O 7 was detected due to the quenching process and the excess of SiO 2 . This minor constituent, however, decomposes to Li 4 SiO 4 and Li 2 SiO 3 during annealing. In compressive crush load tests of single pebbles a crush load of about 9.5 N was measured for pebbles after drying at 300degC. The chemical analysis revealed a further advantage of the use of LiOH in the melting process. As LiOH is available in high-purity quality, the pebbles contain impurities to a lower degree than pebbles produced from Li 4 SiO 4 or Li 2 CO 3 . In order to obtain characteristic pebble bed data, first Uniaxial Compression Tests (UCTs) were performed at temperatures between ambient and at 850deg

  8. Pressurizing Behavior on Ingress of Coolant into Pebble Bed of Blanket of Fusion DEMO Reactor

    International Nuclear Information System (INIS)

    Daigo Tsuru; Mikio Enoeda; Masato Akiba

    2006-01-01

    Solid breeder blankets are being developed as candidate blankets for the Fusion DEMO reactor in Japan. JAEA is performing the development of the water cooled and helium cooled solid breeder blankets. The blanket utilizes ceramic breeder pebbles and multiplier pebbles beds cooled by high pressure water or high pressure helium in the cooling tubes placed in the blanket box structure. In the development of the blanket, it is very important to incorporate the safety technology as well as the performance improvement on tritium production and energy conversion. In the safety design and technology, coolant ingress in the blanket box structure is one of the most important events as the initiators. Especially the thermal hydraulics in the pebble bed in the case of the high pressure coolant ingress is very important to evaluate the pressure propagation and coolant flow behavior. This paper presents the preliminary results of the pressure loss characteristics by the coolant ingress in the pebble bed. Experiments have been performed by using alumina pebble bed (4 litter maximum volume of the pebble bed) and nitrogen gas to simulate the helium coolant ingress into breeder and multiplier pebble beds. Reservoir tank of 10 liter is filled with 1.0 MPa nitrogen. The nitrogen gas is released at the bottom part of the alumina pebble bed whose upper part is open to the atmosphere. The pressure change in the pebble bed is measured to identify the pressure loss. The measured values are compared with the predicted values by Ergun's equation, which is the correlation equation on pressure loss of the flow through porous medium. By the results of the experiments with no constraint on the alumina pebble bed, it was clarified that the measured value agreed in the lower flow rate. However, in the higher flow rate where the pressure loss is high, the measured value is about half of the predicted value. The differences between the measured values and the predicted values will be discussed from

  9. Contingency table analysis of pebble lithology and roundness: A case study of Huangshui River, China and comparison to rivers in the Rocky Mountains, USA

    Science.gov (United States)

    Miao, X.; Lindsey, D.A.; Lai, Z.; Liu, Xiuying

    2010-01-01

    Contingency table analysis of pebble lithology and roundness is an effective way to identify the source terrane of a drainage basin and to distinguish changes in basin size, piracy, tectonism, and other events. First, the analysis to terrace gravel deposited by the Huangshui River, northeastern Tibet Plateau, China, shows statistically contrasting pebble populations for the oldest terrace (T7, Dadongling, 1.2. Ma) and the youngest terraces (T0-T3, ?. 0.15. Ma). Two fluvial processes are considered to explain the contrast in correlation between lithology and roundness in T7 gravel versus T0-T3 gravel: 1) reworking of T7 gravel into T0-T3 gravel and 2) growth in the size of the river basin between T7 and T0-T3 times. We favor growth in basin size as the dominant process, from comparison of pebble counts and contingency tables. Second, comparison of results from Huangshui River of China to three piedmont streams of the Rocky Mountains, USA highlights major differences in source terrane and history. Like Rocky Mountain piedmont gravel from Colorado examples, the Huangshui gravels show a preference (observed versus expected frequency) for rounded granite. But unlike Rocky Mountain gravel, Huangshui gravel shows a preference for angular quartzite and for rounded sandstone. In conclusion, contrasting behavior of lithologies during transport, not always apparent in raw pebble counts, is readily analyzed using contingency tables to identify the provenance of individual lithologies, including recycled clasts. Results of the analysis may help unravel river history, including changes in basin size and lithology. ?? 2009.

  10. Fabrication of Li{sub 2}TiO{sub 3} pebbles by a freeze drying process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Jin, E-mail: lee@mokpo.ac.kr [Department of Advanced Materials Science and Engineering, Mokpo National University, Muan 534-729 (Korea, Republic of); Park, Yi-Hyun [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Yu, Min-Woo [Department of Advanced Materials Science and Engineering, Mokpo National University, Muan 534-729 (Korea, Republic of)

    2013-11-15

    Li{sub 2}TiO{sub 3} pebbles were successfully fabricated by using a freeze drying process. The Li{sub 2}TiO{sub 3} slurry was prepared using a commercial powder of particle size 0.5–1.5 μm and the pebble pre-form was prepared by dropping the slurry into liquid nitrogen through a syringe needle. The droplets were rapidly frozen, changing their morphology to spherical pebbles. The frozen pebbles were dried at −10 °C in vacuum. To make crack-free pebbles, some glycerin was employed in the slurry, and long drying time and a low vacuum condition were applied in the freeze drying process. In the process, the solid content in the slurry influenced the spheroidicity of the pebble green body. The dried pebbles were sintered at 1200 °C in an air atmosphere. The sintered pebbles showed almost 40% shrinkage. The sintered pebbles revealed a porous microstructure with a uniform pore distribution and the sintered pebbles were crushed under an average load of 50 N in a compressive strength test. In the present study, a freeze drying process for fabrication of spherical Li{sub 2}TiO{sub 3} pebbles is introduced. The processing parameters, such as solid content in the slurry and the conditions of freeze drying and sintering, are also examined.

  11. Tritium release and retention properties of highly neutron-irradiated beryllium pebbles from HIDOBE-01 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V., E-mail: vladimir.chakin@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R.; Moeslang, A.; Klimenkov, M.; Kolb, M.; Vladimirov, P.; Kurinskiy, P.; Schneider, H.-C. [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Til, S. van; Magielsen, A.J. [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2013-11-15

    The current helium cooled pebble bed (HCPB) tritium breeding blanket concept for fusion reactors includes a bed of 1 mm diameter beryllium pebbles to act as a neutron multiplier. Beryllium pebbles, fabricated by the rotating electrode method, were neutron irradiated in the HFR in Petten within the HIDOBE-01 experiment. This study presents tritium release and retention properties and data on microstructure evolution of beryllium pebbles irradiated at 630, 740, 873, 948 K up to a damage dose of 18 dpa, corresponding to a helium accumulation of about 3000 appm. The measured cumulative released activity from the beryllium pebbles irradiated at 948 K was found to be significantly lower than the calculated value. After irradiation at 873 and 948 K scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses revealed large pores or bubbles in the bulk and oxide films with a thickness of up to 8 μm at the surface of the beryllium pebbles. The radiation-enhanced diffusion of tritium and the formation of open porosity networks accelerate the tritium release from the beryllium pebbles during the high-flux neutron irradiation.

  12. Mechanical compression tests of beryllium pebbles after neutron irradiation up to 3000 appm helium production

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V., E-mail: vladimir.chakin@kit.edu [Karlsruhe Institute of Technology, Institite for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R.; Moeslang, A. [Karlsruhe Institute of Technology, Institite for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2015-04-15

    Highlights: • Compression tests of highly neutron irradiated beryllium pebbles have been performed. • Irradiation hardening of beryllium pebbles decreases the steady-state strain-rates. • The steady-state strain-rates of irradiated beryllium pebbles exceed their swelling rates. - Abstract: Results: of mechanical compression tests of irradiated and non-irradiated beryllium pebbles with diameters of 1 and 2 mm are presented. The neutron irradiation was performed in the HFR in Petten, The Netherlands at 686–968 K up to 1890–2950 appm helium production. The irradiation at 686 and 753 K cause irradiation hardening due to the gas bubble formation in beryllium. The irradiation-induced hardening leads to decrease of steady-state strain-rates of irradiated beryllium pebbles compared to non-irradiated ones. In contrary, after irradiation at higher temperatures of 861 and 968 K, the steady-state strain-rates of the pebbles increase because annealing of irradiation defects and softening of the material take place. It was shown that the steady-state strain-rates of irradiated beryllium pebbles always exceed their swelling rates.

  13. Numerical and experimental characterization of ceramic pebble beds under cycling mechanical loading

    Energy Technology Data Exchange (ETDEWEB)

    Pupeschi, S., E-mail: pupeschi.simone@hotmail.it [Institute for Applied Materials, Karlsruhe Institute of Technology (KIT) (Germany); Knitter, R.; Kamlah, M. [Institute for Applied Materials, Karlsruhe Institute of Technology (KIT) (Germany); Gan, Y. [School of Civil Engineering, The University of Sydney, Sydney, NSW, 2006 (Australia)

    2016-11-15

    Highlights: • The effect of cyclic loading on the mechanical response of pebble beds was assessed. • Numerical simulations were performed with KIT-DEM code. • The numerical simulations were compared with the experimental outcomes. • A good qualitative agreement between experimental and simulation results was found. • The pebble size distribution affects the mechanical response of the assemblies. - Abstract: All solid breeder concepts considered to be tested in ITER (International Thermonuclear Experimental Reactor), make use of lithium-based ceramics in the form of pebble-packed beds as tritium breeder. A thorough understanding of the thermal and mechanical properties of the ceramic pebble beds under fusion relevant conditions is essential for the design of the breeder blanket modules of future fusion reactors. In this study, the effect of cyclic loading on the mechanical behaviour of pebble bed assemblies was investigated using a Discrete Element Method (DEM) code. The numerical simulations were compared with the experimental outcomes. The results of numerical simulations show that the pebble size distribution affects noticeably the stress-strain behaviour of the assemblies. A good qualitative agreement between experimental and simulation results was found in terms of difference between residual strains of consecutive cycles. An increase of the oedometric modulus with the compressive load was observed for all investigated compositions in both experimental and DEM simulations. The numerical results show an increase of the oedometric modulus (E) with progressive compaction of the assemblies due to the cycling loading, while no significant influence of the pebbles size distribution was observed.

  14. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of Tritium breeding ceramic material are investigated within the framework of developing solid breeder blankets for future nuclear fusion power plants. For the thermo-mechanical characterisation of such pebble beds, bed compression experiments are the standard tools. New bi-axial compression experiments on 20 and 30 mm high pebble beds show pebble flow effects much more pronounced than in previous 10 mm beds. Owing to the greater bed height, conditions are reached where the bed fails in cross direction and unhindered flow of the pebbles occurs. The paper presents measurements for the orthosilicate and metatitanate breeder materials that are envisaged to be used in a solid breeder blanket. The data are compared with calculations made with a Drucker-Prager soil model within the finite-element code ABAQUS, calibrated with data from other experiments. It is investigated empirically whether internal bed friction angles can be determined from pebble beds of the considered heights, which would simplify, and broaden the data base for, the calibration of the Drucker-Prager pebble bed models

  15. Status of the in-pile test of HCPB pebble-bed assemblies in the HFR Petten

    Energy Technology Data Exchange (ETDEWEB)

    Laan, J.G. van der; Fokkens, J.H.; Hofmans, H.E.; Jong, M.; Magielsen, A.J.; Pijlgroms, B.J.; Stijkel, M.P. [NRG, Petten (Netherlands); Conrad, R. [JRC, Inst. for Energy, Petten (Netherlands); Malang, S.; Reimann, J. [FZK, Karlsruhe (Germany); Roux, N. [CEA Saclay (France)

    2002-06-01

    In the framework of developing the helium cooled pebble-bed (HCPB) blanket an irradiation test of pebble-bed assemblies is prepared at the HFR Petten. The test objective is to concentrate on the effect of neutron irradiation on the thermal-mechanical behaviour of the HCPB breeder pebble-bed at DEMO representative levels of temperature and defined thermal-mechanical loads. The basic test elements are EUROFER-97 cylinders with a horizontal bed of ceramic breeder pebbles sandwiched between two beryllium beds. The pebble beds are separated by EUROFER-97 steel plates. The heat flow is managed such as to have a radial temperature distribution in the ceramic breeder pebble-bed as flat as reasonably possible. The paper reports on the project status, and presents the results of pre-tests, material characteristics, the manufacturing of the pebble-bed assemblies, and the nuclear and thermo-mechanical loading parameters. (orig.)

  16. Distribution and Characteristics of Boulder Halos at High Latitudes on Mars: Ground Ice and Surface Processes Drive Surface Reworking

    Science.gov (United States)

    Levy, J. S.; Fassett, C. I.; Rader, L. X.; King, I. R.; Chaffey, P. M.; Wagoner, C. M.; Hanlon, A. E.; Watters, J. L.; Kreslavsky, M. A.; Holt, J. W.; Russell, A. T.; Dyar, M. D.

    2018-02-01

    Boulder halos are circular arrangements of clasts present at Martian middle to high latitudes. Boulder halos are thought to result from impacts into a boulder-poor surficial unit that is rich in ground ice and/or sediments and that is underlain by a competent substrate. In this model, boulders are excavated by impacts and remain at the surface as the crater degrades. To determine the distribution of boulder halos and to evaluate mechanisms for their formation, we searched for boulder halos over 4,188 High Resolution Imaging Science Experiment images located between 50-80° north and 50-80° south latitude. We evaluate geological and climatological parameters at halo sites. Boulder halos are about three times more common in the northern hemisphere than in the southern hemisphere (19% versus 6% of images) and have size-frequency distributions suggesting recent Amazonian formation (tens to hundreds of millions of years). In the north, boulder halo sites are characterized by abundant shallow subsurface ice and high thermal inertia. Spatial patterns of halo distribution indicate that excavation of boulders from beneath nonboulder-bearing substrates is necessary for the formation of boulder halos, but that alone is not sufficient. Rather, surface processes either promote boulder halo preservation in the north or destroy boulder halos in the south. Notably, boulder halos predate the most recent period of near-surface ice emplacement on Mars and persist at the surface atop mobile regolith. The lifetime of observed boulders at the Martian surface is greater than the lifetime of the craters that excavated them. Finally, larger minimum boulder halo sizes in the north indicate thicker icy soil layers on average throughout climate variations driven by spin/orbit changes during the last tens to hundreds of millions of years.

  17. Characterisation and radiolysis of modified lithium orthosilicate pebbles with noble metal impurities

    DEFF Research Database (Denmark)

    Tamulevičius, Sigitas; Zariņš, A.; Valtenbergs, O.

    2017-01-01

    Modified lithium orthosilicate (Li4SiO4) pebbles with additions of titanium dioxide (TiO2) are suggested as an alternative tritium breeding ceramic for the European solid breeder test blanket module. The noble metals – platinum (Pt), gold (Au) and rhodium (Rh), can be introduced into the modified...... Li4SiO4 pebbles during the melt-based process, due to the corrosion of Pt-Rh and Pt-Au alloy crucible components. In this study, the surface microstructure, chemical and phase composition of the modified Li4SiO4 pebbles with different contents of the noble metals was analysed. The influence...

  18. Optimization of mass-production conditions for tritium breeder pebbles based on slurry droplet wetting method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yi-Hyun, E-mail: yhpark@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Min, Kyung-Mi; Ahn, Mu-Young; Cho, Seungyon; Lee, Young-Min [National Fusion Research Institute, Daejeon (Korea, Republic of); Park, Sang-Jin; Danish, Rehan; Lim, Chul-Hwan; Jo, Yong-Dae [IVT Co., Ltd., Daegu (Korea, Republic of)

    2016-11-01

    Highlights: • An automatic dispensing system was developed to improve uniformity and production rate of breeder pebbles. • The production rate of this system for Li{sub 2}TiO{sub 3} pebble was estimated at 50 kg/year. • The optimization of dispensing and sintering conditions for the mass-production of Li{sub 2}TiO{sub 3} pebble was conducted. • Integrity of Li{sub 2}TiO{sub 3} pebble was able to be ensured during mass-production process, especially during batch process. - Abstract: Lithium metatitanate (Li{sub 2}TiO{sub 3}) is being considered as tritium breeding material for solid-type breeding blanket, which are used in pebble-bed form. The total amount of Li{sub 2}TiO{sub 3} pebbles in Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) is approximately 80 kg. Furthermore, DEMO reactor requires a great deal of breeder pebbles. Therefore, the development of mass-production system for breeder pebbles is necessary. The slurry droplet wetting method was adopted in the mass-production process for Li{sub 2}TiO{sub 3} pebbles, which had been developed in Korea. In this method, an automatic slurry dispensing system is one of the key apparatuses because the uniformity of pebbles and production rate are able to be improved. The system was successfully manufactured, which was consisted of a dispensing unit for instillation of Li{sub 2}TiO{sub 3} slurry, a glycerin bath for hardening of droplets, and an automatic maintaining unit for constant distance between syringe needle and glycerin surface. The production rate of this system for Li{sub 2}TiO{sub 3} pebble was estimated at 50 kg/year. In this study, it was investigated that the effect of dispensing and sintering conditions on the mass-production of Li{sub 2}TiO{sub 3} pebbles.

  19. Year One Summary of X-energy Pebble Fuel Development at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McMurray, Jake W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunt, Rodney D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jolly, Brian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Trammell, Michael P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Daniel R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Blamer, Brandon J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Reif, Tyler J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kim, Howard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    The Advanced Reactor Concepts X-energy (ARC-Xe) Pebble Fuel Development project at Oak Ridge National Laboratory (ORNL) has successfully completed its first year, having made excellent progress in accomplishing programmatic objectives. The primary focus of research at ORNL in support of X-energy has been the training of X-energy fuel fabrication engineers and the establishment of US pebble fuel production capabilities able to supply the Xe-100 pebble-bed reactor. These efforts have been strongly supported by particle fuel fabrication and characterization expertise present at ORNL from the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program.

  20. An analytical evaluation for spatial-dependent intra-pebble Dancoff factor and escape probability

    International Nuclear Information System (INIS)

    Kim, Songhyun; Kim, Hong-Chul; Kim, Jong Kyung; Kim, Soon Young; Noh, Jae Man

    2009-01-01

    The analytical evaluation of spatial-dependent intra-pebble Dancoff factors and their escape probabilities is pursued by the model developed in this study. Intra-pebble Dancoff factors and their escape probabilities are calculated as a function of fuel kernel radius, number of fuel kernels, and fuel region radius. The method in this study can be easily utilized to analyze the tendency of spatial-dependent intra-pebble Dancoff factor and spatial-dependent fuel region escape probability for the various geometries because it is faster than the MCNP method as well as good accuracy. (author)

  1. Spectral zone selection methodology for pebble bed reactors

    International Nuclear Information System (INIS)

    Mphahlele, Ramatsemela; Ougouag, Abderrafi M.; Ivanov, Kostadin N.; Gougar, Hans D.

    2011-01-01

    A methodology is developed for determining boundaries of spectral zones for pebble bed reactors. A spectral zone is defined as a region made up of a number of nodes whose characteristics are collectively similar and that are assigned the same few-group diffusion constants. The spectral zones are selected in such a manner that the difference (error) between the reference transport solution and the diffusion code solution takes a minimum value. This is achieved by choosing spectral zones through optimally minimizing this error. The objective function for the optimization algorithm is the total reaction rate error, which is defined as the sum of the leakage, absorption and fission reaction rates errors in each zone. The selection of these spectral zones is such that the core calculation results based on diffusion theory are within an acceptable tolerance as compared to a proper transport reference solution. Through this work, a consistent approach for identifying spectral zones that yield more accurate diffusion results is introduced.

  2. Pebble Bed Reactor: core physics and fuel cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Worley, B.A.

    1979-10-01

    The Pebble Bed Reactor is a gas-cooled, graphite-moderated high-temperature reactor that is continuously fueled with small spherical fuel elements. The projected performance was studied over a broad range of reactor applicability. Calculations were done for a burner on a throwaway cycle, a converter with recycle, a prebreeder and breeder. The thorium fuel cycle was considered using low, medium (denatured), and highly enriched uranium. The base calculations were carried out for electrical energy generation in a 1200 MW/sub e/ plant. A steady-state, continuous-fueling model was developed and one- and two-dimensional calculations were used to characterize performance. Treating a single point in time effects considerable savings in computer time as opposed to following a long reactor history, permitting evaluation of reactor performance over a broad range of design parameters and operating modes.

  3. Pebble bed reactor with one-zone core

    International Nuclear Information System (INIS)

    Mueller-Frank, U.; Lohnert, G.

    1977-01-01

    The claim deals with measures to differentiate the flow rate and to remove spherical fuel elements in the core of a pebble bed reactor. Hence the vertical rate of the fuel elements in the border region is for example twice as much as in the centre. A central funnel-shaped outlet on the floor of the core container over which a conical body is placed with its peak pointing upwards, or also the forming of several outlets can be used to adjust to a certain exit rate for the fuel elements. The main target of the invention is a radially extensively constant coolant outlet temperature at the outlet of the core which determines the effectiveness of the connected heat exchanger and thus contributes to economy. (UA) [de

  4. Uranium deposits in Proterozoic quartz-pebble conglomerates

    International Nuclear Information System (INIS)

    1987-09-01

    This report is the result of an effort to gather together the most important information on uranium deposits in Proterozoic quartz-pebble conglomerates in the United States of America, Canada, Finland, Ghana, South Africa and Australia. The paper discusses the uranium potential (and in some cases also the gold potential in South Africa, Western Australia and Ghana) in terms of ores, sedimentation, mineralization, metamorphism, placers, geologic formations, stratigraphy, petrology, exploration, tectonics and distribution. Geologic history and application of geologic models are also discussed. Glacial outwash and water influx is also mentioned. The uranium deposits in a number of States in the USA are covered. The Witwatersrand placers are discussed in several papers. Refs, figs, tabs

  5. Tightly Coupled Multiphysics Algorithm for Pebble Bed Reactors

    International Nuclear Information System (INIS)

    Park, HyeongKae; Knoll, Dana; Gaston, Derek; Martineau, Richard

    2010-01-01

    We have developed a tightly coupled multiphysics simulation tool for the pebble-bed reactor (PBR) concept, a type of Very High-Temperature gas-cooled Reactor (VHTR). The simulation tool, PRONGHORN, takes advantages of the Multiphysics Object-Oriented Simulation Environment library, and is capable of solving multidimensional thermal-fluid and neutronics problems implicitly with a Newton-based approach. Expensive Jacobian matrix formation is alleviated via the Jacobian-free Newton-Krylov method, and physics-based preconditioning is applied to minimize Krylov iterations. Motivation for the work is provided via analysis and numerical experiments on simpler multiphysics reactor models. We then provide detail of the physical models and numerical methods in PRONGHORN. Finally, PRONGHORN's algorithmic capability is demonstrated on a number of PBR test cases.

  6. 'Once through' cycles in the pebble bed HTR

    International Nuclear Information System (INIS)

    Teuchert, E.

    1977-12-01

    In the pebble bed HTR the 'Once Through' cycles achieve a favorable conservation of uranium resources due to their high burnup and due to the relatively low fissile inventory. A detailed study is given for cycles with highly enriched uranium and thorium, 20% enriched uranium and thorium, and for the low (approximately 8%) enriched cycle. The recommended cycle is based on the known THTR fuel element in the Th/U (93%) cycle. The variant with separate Seed elements and Breed elements presents the best pioneer in view of later recycling and thermal breeding. The minimum proliferation risk is achieved in the Th/U (20%) cycle basing on the fuel element type of the AVR, due to the low amount and high denaturization of the disloaded plutonium. (orig.) [de

  7. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Per [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Greenspan, Ehud [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering

    2015-02-09

    This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designs are used, the power density of salt- cooled reactors is limited to 10 MW/m3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m3. This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X

  8. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors

    International Nuclear Information System (INIS)

    Peterson, Per; Greenspan, Ehud

    2015-01-01

    This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designs are used, the power density of salt- cooled reactors is limited to 10 MW/m 3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m 3 . This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X-PREX facility uses novel

  9. HTR-proteus pebble bed experimental program core 4: random packing with a 1:1 moderator-to-fuel pebble ratio

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sterbentz, James W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snoj, Luka [Jozef Stefan Inst. (IJS), Ljubljana (Slovenia); Lengar, Igor [Jozef Stefan Inst. (IJS), Ljubljana (Slovenia); Koberl, Oliver [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2014-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering

  10. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORE 4: RANDOM PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Leland M. Montierth

    2013-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering

  11. A story about estimation of a random field of boulders from incomplete seismic measurements

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2005-01-01

    deposits along the tunnel line. By use of this important distribution information and of the observed homogeneity of the seismic point source field together with the physical properties of diffraction it became possible to make the wanted prediction. During the excavation the found boulders were counted......This paper reports on the statistical interpretation of seismic diffraction measurements of boulder locations. The measurements are made in a corridor along the planned tunnel line for the later realized bored tunnel through the till deposits under the East Channel of the Great Belt in Denmark...... graphical registrations on seismograms do not make a proper interpretation possible without detailed knowledge about the joint distribution of the primary dimensions of the boulders. Therefore separate measurements were made of the dimensions of boulders deposited visibly on the cliff beaches of the Great...

  12. Geological model for Boulder 1 at Station 2, South Massif, Valley of Taurus-Littrow

    Science.gov (United States)

    Schmitt, H. H.

    1975-01-01

    A possible geological model for the origin and history of the materials that make up Boulder 1 is proposed on the basis of firm and probable regional, local, and boulder geological constraints. These constraints are described in detail, unresolved questions are considered, and a model is presented which appears to satisfy all the firm constraints and most of the probable constraints. According to this model, the crystallization of plagioclase and other ANT-suite phases now present in the boulder as clasts and matrix materials took place during the melted-shell stage of lunar history; the original rocks were greatly modified during the cratered-highland stage; and the events that determined the major characteristics of the boulder occurred during the large-basin stage.

  13. Quartz-pebble-conglomerate gold deposits: Chapter P in Mineral deposit models for resource assessment

    Science.gov (United States)

    Taylor, Ryan D.; Anderson, Eric D.

    2018-05-17

    Quartz-pebble-conglomerate gold deposits represent the largest repository of gold on Earth, largely due to the deposits of the Witwatersrand Basin, which account for nearly 40 percent of the total gold produced throughout Earth’s history. This deposit type has had a controversial history in regards to genetic models. However, most researchers conclude that they are paleoplacer deposits that have been modified by metamorphism and hydrothermal fluid flow subsequent to initial sedimentation.The deposits are found exclusively within fault-bounded depositional basins. The periphery of these basins commonly consists of granite-greenstone terranes, classic hosts for lode gold that source the detrital material infilling the basin. The gold reefs are typically located along unconformities or, less commonly, at the top of sedimentary beds. Large quartz pebbles and heavy-mineral concentrates are found associated with the gold. Deposits that formed prior to the Great Oxidation Event (circa 2.4 giga-annum [Ga]) contain pyrite, whereas younger deposits contain iron oxides. Uranium minerals and hydrocarbons are also notable features of some deposits.Much of the gold in these types of deposits forms crystalline features that are the product of local remobilization. However, some gold grains preserve textures that are undoubtedly of detrital origin. Other heavy minerals, such as pyrite, contain growth banding that is truncated along broken margins, which indicates that they were transported into place as opposed to forming by in situ growth in a hydrothermal setting.The ore tailings associated with these deposits commonly contain uranium-rich minerals and sulfides. Oxidation of the sulfides releases sulfuric acid and mobilizes various metals into the environment. The neutralizing potential of the tailings is minimal, since carbonate minerals are rare. The continuity of the tabular ore bodies, such as those of the Witwatersrand Basin, has allowed these mines to be the deepest in

  14. Boulder Food Rescue: An Innovative Approach to Reducing Food Waste and Increasing Food Security.

    Science.gov (United States)

    Sewald, Craig A; Kuo, Elena S; Dansky, Hana

    2018-05-01

    Food waste and food insecurity are both significant issues in communities throughout the U.S., including Boulder, Colorado. As much as 40% of the food produced in the U.S. goes uneaten and ends up in landfills. Nearly 13% of people in the Boulder region experience some level of food insecurity. Founded in 2011, Boulder Food Rescue supports community members to create their own food security through a participatory approach to an emergency food system. The organization uses a web-application "robot" to manage a schedule of volunteers. They coordinate with individuals at low-income senior housing sites, individual housing sites, family housing sites, after-school programs, and pre-schools to set up no-cost grocery programs stocked with food from local markets and grocers that would otherwise go to waste. Each site coordinator makes decisions about how, when, and where food delivery and distribution will occur. The program also conducts robust, real-time data collection and analysis. Boulder Food Rescue is a member and manager of the Food Rescue Alliance, and its model has been replicated and adapted by other cities, including Denver, Colorado Springs, Seattle, Jackson Hole, Minneapolis, Binghamton, and in the Philippines. Information for this special article was collected through key informant interviews with current and former Boulder Food Rescue staff and document review of Boulder Food Rescue materials. Boulder Food Rescue's open source software is available to other communities; to date, 40 cities have used the tool to start their own food rescue organizations. Boulder Food Rescue hopes to continue spreading this model to other cities that are considering ways to reduce food waste and increase food security. This article is part of a supplement entitled Building Thriving Communities Through Comprehensive Community Health Initiatives, which is sponsored by Kaiser Permanente, Community Health. Copyright © 2018 American Journal of Preventive Medicine. Published by

  15. Analysis of impact of mixing flow on the pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Hao Chen; Li Fu; Guo Jiong

    2014-01-01

    The impact of the mixing flow in the pebble flow on pebble bed high temperature gas cooled reactor (HTR) was analyzed in the paper. New code package MFVSOP which can simulate the mixing flow was developed. The equilibrium core of HTR-PM was selected as reference case, the impact of the mixing flow on the core parameters such as core power peak factor, power distribution was analyzed with different degree of mixing flow, and uncertainty analysis was carried out. Numerical results showed that the mixing flow had little impact on key parameters of pebble bed HTR, and the multiple-pass-operation-mode in pebble bed HTR can reduce the uncertainty arouse from the mixing flow. (authors)

  16. Computational and experimental prediction of dust production in pebble bed reactors, Part II

    Energy Technology Data Exchange (ETDEWEB)

    Hiruta, Mie; Johnson, Gannon [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States); Rostamian, Maziar, E-mail: mrostamian@asme.org [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States); Potirniche, Gabriel P. [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States); Ougouag, Abderrafi M. [Idaho National Laboratory, 2525 N Fremont Avenue, Idaho Falls, ID 83401 (United States); Bertino, Massimo; Franzel, Louis [Department of Physics, Virginia Commonwealth University, Richmond, VA 23284 (United States); Tokuhiro, Akira [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States)

    2013-10-15

    Highlights: • Custom-built high temperature, high pressure tribometer is designed. • Two different wear phenomena at high temperatures are observed. • Experimental wear results for graphite are presented. • The graphite wear dust production in a typical Pebble Bed Reactor is predicted. -- Abstract: This paper is the continuation of Part I, which describes the high temperature and high pressure helium environment wear tests of graphite–graphite in frictional contact. In the present work, it has been attempted to simulate a Pebble Bed Reactor core environment as compared to Part I. The experimental apparatus, which is a custom-designed tribometer, is capable of performing wear tests at PBR relevant higher temperatures and pressures under a helium environment. This environment facilitates prediction of wear mass loss of graphite as dust particulates from the pebble bed. The experimental results of high temperature helium environment are used to anticipate the amount of wear mass produced in a pebble bed nuclear reactor.

  17. Numerical Simulation of Particle Flow Motion in a Two-Dimensional Modular Pebble-Bed Reactor with Discrete Element Method

    Directory of Open Access Journals (Sweden)

    Guodong Liu

    2013-01-01

    Full Text Available Modular pebble-bed nuclear reactor (MPBNR technology is promising due to its attractive features such as high fuel performance and inherent safety. Particle motion of fuel and graphite pebbles is highly associated with the performance of pebbled-bed modular nuclear reactor. To understand the mechanism of pebble’s motion in the reactor, we numerically studied the influence of number ratio of fuel and graphite pebbles, funnel angle of the reactor, height of guide ring on the distribution of pebble position, and velocity by means of discrete element method (DEM in a two-dimensional MPBNR. Velocity distributions at different areas of the reactor as well as mixing characteristics of fuel and graphite pebbles were investigated. Both fuel and graphite pebbles moved downward, and a uniform motion was formed in the column zone, while pebbles motion in the cone zone was accelerated due to the decrease of the cross sectional flow area. The number ratio of fuel and graphite pebbles and the height of guide ring had a minor influence on the velocity distribution of pebbles, while the variation of funnel angle had an obvious impact on the velocity distribution. Simulated results agreed well with the work in the literature.

  18. Development of a safeguards system for the THTR pebble bed reactor

    International Nuclear Information System (INIS)

    Engelhardt, H.

    1978-08-01

    This report provides a survey of the technical possibilities of safeguarding the THTR-300 pebble bed reactor in accordance with the NPT. Description of the reactor system, the operational mode, and the operator's material control system are presented in Sections 2, 3 and 4. A suggested safeguards approach which is based on an item counting of pebble elements with containment and surveillance as a supplementary measure is described in the Sections 5 and 6

  19. Preliminary Neutronic Design of High Burnup OTTO Cycle Pebble Bed Reactor

    OpenAIRE

    Setiadipura, T; Irwanto, D; Zuhair, Zuhair

    2015-01-01

    The pebble bed type High Temperature Gas-cooled Reactor (HTGR) is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR) which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO) cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor ...

  20. Study on Characteristic of Temperature Coefficient of Reactivity for Plutonium Core of Pebbled Bed Reactor

    Science.gov (United States)

    Zuhair; Suwoto; Setiadipura, T.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    As a part of the solution searching for possibility to control the plutonium, a current effort is focused on mechanisms to maximize consumption of plutonium. Plutonium core solution is a unique case in the high temperature reactor which is intended to reduce the accumulation of plutonium. However, the safety performance of the plutonium core which tends to produce a positive temperature coefficient of reactivity should be examined. The pebble bed inherent safety features which are characterized by a negative temperature coefficient of reactivity must be maintained under any circumstances. The purpose of this study is to investigate the characteristic of temperature coefficient of reactivity for plutonium core of pebble bed reactor. A series of calculations with plutonium loading varied from 0.5 g to 1.5 g per fuel pebble were performed by the MCNPX code and ENDF/B-VII library. The calculation results show that the k eff curve of 0.5 g Pu/pebble declines sharply with the increase in fuel burnup while the greater Pu loading per pebble yields k eff curve declines slighter. The fuel with high Pu content per pebble may reach long burnup cycle. From the temperature coefficient point of view, it is concluded that the reactor containing 0.5 g-1.25 g Pu/pebble at high burnup has less favorable safety features if it is operated at high temperature. The use of fuel with Pu content of 1.5 g/pebble at high burnup should be considered carefully from core safety aspect because it could affect transient behavior into a fatal accident situation.

  1. Steamworlds: Atmospheric Structure and Critical Mass of Planets Accreting Icy Pebbles

    International Nuclear Information System (INIS)

    Chambers, John

    2017-01-01

    In the core accretion model, gas-giant planets first form a solid core, which then accretes gas from a protoplanetary disk when the core exceeds a critical mass. Here, we model the atmosphere of a core that grows by accreting ice-rich pebbles. The ice fraction of pebbles evaporates in warm regions of the atmosphere, saturating it with water vapor. Excess water precipitates to lower altitudes. Beneath an outer radiative region, the atmosphere is convective, following a moist adiabat in saturated regions due to water condensation and precipitation. Atmospheric mass, density, and temperature increase with core mass. For nominal model parameters, planets with core masses (ice + rock) between 0.08 and 0.16 Earth masses have surface temperatures between 273 and 647 K and form an ocean. In more massive planets, water exists as a supercritical convecting fluid mixed with gas from the disk. Typically, the core mass reaches a maximum (the critical mass) as a function of the total mass when the core is 2–5 Earth masses. The critical mass depends in a complicated way on pebble size, mass flux, and dust opacity due to the occasional appearance of multiple core-mass maxima. The core mass for an atmosphere of 50% hydrogen and helium may be a more robust indicator of the onset of gas accretion. This mass is typically 1–3 Earth masses for pebbles that are 50% ice by mass, increasing with opacity and pebble flux and decreasing with pebble ice/rock ratio.

  2. Steamworlds: Atmospheric Structure and Critical Mass of Planets Accreting Icy Pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, John, E-mail: jchambers@carnegiescience.edu [Carnegie Institution for Science Department of Terrestrial Magnetism, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States)

    2017-11-01

    In the core accretion model, gas-giant planets first form a solid core, which then accretes gas from a protoplanetary disk when the core exceeds a critical mass. Here, we model the atmosphere of a core that grows by accreting ice-rich pebbles. The ice fraction of pebbles evaporates in warm regions of the atmosphere, saturating it with water vapor. Excess water precipitates to lower altitudes. Beneath an outer radiative region, the atmosphere is convective, following a moist adiabat in saturated regions due to water condensation and precipitation. Atmospheric mass, density, and temperature increase with core mass. For nominal model parameters, planets with core masses (ice + rock) between 0.08 and 0.16 Earth masses have surface temperatures between 273 and 647 K and form an ocean. In more massive planets, water exists as a supercritical convecting fluid mixed with gas from the disk. Typically, the core mass reaches a maximum (the critical mass) as a function of the total mass when the core is 2–5 Earth masses. The critical mass depends in a complicated way on pebble size, mass flux, and dust opacity due to the occasional appearance of multiple core-mass maxima. The core mass for an atmosphere of 50% hydrogen and helium may be a more robust indicator of the onset of gas accretion. This mass is typically 1–3 Earth masses for pebbles that are 50% ice by mass, increasing with opacity and pebble flux and decreasing with pebble ice/rock ratio.

  3. Experimental measurement of effective thermal conductivity of packed lithium-titanate pebble bed

    International Nuclear Information System (INIS)

    Mandal, D.; Sathiyamoorthy, D.; Vinjamur, M.

    2012-01-01

    Lithium titanate is a promising solid breeder material for the fusion reactor blanket. Packed lithium titanate pebble bed is considered for the blanket. The thermal energy; that will be produced in the bed during breeding and the radiated heat from the reactor core absorbed must be removed. So, the experimental thermal property data are important for the blanket design. In past, a significant amount of works were conducted to determine the effective thermal conductivity of packed solid breeder pebble bed, in helium atmosphere, but no flow of gas was considered. With increase in gas flow rate, effective thermal conductivity of pebble bed increases. Particle size and void fraction also affect the thermal properties of the bed significantly. An experimental facility with external heat source was designed and installed. Experiments were carried out with lithium-titanate pebbles of different sizes at variable gas flow rates and at different bed wall temperature. It was observed that effective thermal conductivity of pebble bed is a function of particle Reynolds number and temperature. From the experimental data two correlations have been developed to estimate the effective thermal conductivity of packed lithium-titanate pebble bed for different particle Reynolds number and at different temperatures. The experimental details and results are discussed in this paper.

  4. CFD study on the supercritical carbon dioxide cooled pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dali, E-mail: ydlmitd@outlook.com; Peng, Minjun; Wang, Zhongyi

    2015-01-15

    Highlights: • An innovation concept of supercritical carbon dioxide cooled pebble bed reactor is proposed. • Body-centered cuboid (BCCa) arrangement is adopted for the pebbles. • S-CO{sub 2} would be a good candidate coolant for using in pebble bed reactor. - Abstract: The thermal hydraulic study of using supercritical carbon dioxide (S-CO{sub 2}), a superior fluid state brayton cycle medium, in pebble bed type nuclear reactor is assessed through computational fluid dynamics (CFD) methodology. Preliminary concept design of this S-CO{sub 2} cooled pebble bed reactor (PBR) is implemented by the well-known KTA heat transfer correlation and Ergun pressure drop equation. Eddy viscosity transport turbulence model is adopted and verified by KTA calculated results. Distributions of the temperature, velocity, pressure and Nusselt (Nu) number of the coolant near the surface of the middle spherical fuel element are obtained and analyzed. The conclusion of the assessment is that S-CO{sub 2} would be a good candidate coolant for using in pebble bed reactor due primarily to its good heat transfer characteristic and large mass density, which could lead to achieve lower pressure drop and higher power density.

  5. Arc plasma assisted rotating electrode process for preparation of metal pebbles

    International Nuclear Information System (INIS)

    Mohanty, T.; Tripathi, B.M.; Mahata, T.; Sinha, P.K.

    2014-01-01

    Spherical beryllium pebbles of size ranging from 0.2-2 mm are required as neutron multiplying material in solid Test Blanket Module (TBM) of International Thermonuclear Experimental Reactor (ITER). Rotating electrode process (REP) has been identified as a suitable technique for preparation of beryllium pebbles. In REP, arc plasma generated between non-consumable electrode (cathode) and rotating metal electrode (anode) plays a major role for continuous consumption of metal electrode and preparation of spherical metal pebbles. This paper focuses on description of the process, selection of sub-systems for development of REP experimental set up and optimization of arc parameters, such as, cathode geometry, arc current, arc voltage, arc gap and carrier gas flow rate for preparation of required size spherical metal pebbles. Other parameters which affect the pebbles sizes are rotational speed, metal electrode diameter and physical properties of the metal. As beryllium is toxic in nature its surrogate metals such as stainless steel (SS) and Titanium (Ti) were selected to evaluate the performance of the REP equipment. Several experiments were carried out using SS and Ti electrode and process parameters have been optimized for preparation of pebbles of different sizes. (author)

  6. Cyclic loading tests on ceramic breeder pebble bed by discrete element modeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Guo, Haibing; Shi, Tao [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Huang, Hongwen, E-mail: hhw@caep.cn [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Zhenghong, E-mail: inpcnyb@sina.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); University of Science and Technology of China, Hefei 230027 (China)

    2017-05-15

    Highlights: • Methods of cyclic loading tests on the pebble beds were developed in DEM. • Size distribution and sphericity of the pebbles were considered for the specimen. • Mechanical responses of the pebble beds under cyclic loading tests were assessed. - Abstract: Complex mechanics and packing instability can be induced by loading operation on ceramic breeder pebble bed for its discrete nature. A numerical approach using discrete element method (DEM) is applied to study the mechanical performance of the ceramic breeder pebble bed under quasi-static and cyclic loads. A preloaded specimen can be made with servo-control mechanism, the quasi-static and dynamic stress-strain performances are studied during the tests. It is found that the normalized normal contact forces under quasi-static loads have the similar distributions, and increase with increasing loads. Furthermore, the relatively low volumetric strain can be absorbed by pebble bed after several loading and unloading cycles, but the peak normal contact force can be extremely high during the first cycle. Cyclic loading with target pressure is recommended for densely packing, irreversible volume reduction gradually increase with cycles, and the normal contact forces decrease with cycles.

  7. Cyclic loading tests on ceramic breeder pebble bed by discrete element modeling

    International Nuclear Information System (INIS)

    Zhang, Hao; Guo, Haibing; Shi, Tao; Ye, Minyou; Huang, Hongwen; Li, Zhenghong

    2017-01-01

    Highlights: • Methods of cyclic loading tests on the pebble beds were developed in DEM. • Size distribution and sphericity of the pebbles were considered for the specimen. • Mechanical responses of the pebble beds under cyclic loading tests were assessed. - Abstract: Complex mechanics and packing instability can be induced by loading operation on ceramic breeder pebble bed for its discrete nature. A numerical approach using discrete element method (DEM) is applied to study the mechanical performance of the ceramic breeder pebble bed under quasi-static and cyclic loads. A preloaded specimen can be made with servo-control mechanism, the quasi-static and dynamic stress-strain performances are studied during the tests. It is found that the normalized normal contact forces under quasi-static loads have the similar distributions, and increase with increasing loads. Furthermore, the relatively low volumetric strain can be absorbed by pebble bed after several loading and unloading cycles, but the peak normal contact force can be extremely high during the first cycle. Cyclic loading with target pressure is recommended for densely packing, irreversible volume reduction gradually increase with cycles, and the normal contact forces decrease with cycles.

  8. 3D Modeling of Glacial Erratic Boulders in the Haizi Shan Region, Eastern Tibetan Plateau

    Science.gov (United States)

    Sheriff, M.; Stevens, J.; Radue, M. J.; Strand, P.; Zhou, W.; Putnam, A. E.

    2017-12-01

    The focus of our team's research is to study patterns of glacier retreat in the Northern and Southern Hemispheres at the end of the last ice age. Our purpose is to search for what caused this great global warming. Such information will improve understanding of how the climate system may respond to the human-induced buildup of fossil carbon dioxide. To reconstruct past glacier behavior, we sample boulders deposited by glaciers to find the rate of ancient recession. Each sample is tested to determine the age of the boulder using 10Be cosmogenic-nuclide dating. My portion of this research focuses on creating 3D models of the sampled boulders. Such high-resolution 3D models afford visual inspection and analysis of each boulder in a virtual reality environment after fieldwork is complete. Such detailed virtual reconstructions will aid post-fieldwork evaluation of sampled boulders. This will help our team interpret 10Be dating results. For example, a high-resolution model can aid post-fieldwork observations, and allow scientists to determine whether the rock has been previously covered, eroded, or moved since it was deposited by the glacier, but before the sample was collected. Also a model can be useful for recognizing patterns between age and boulder morphology. Lastly, the models can be used for those who wish to review the data after publication. To create the 3D models, I will use Hero4 GoPro and Canon PowerShot digital cameras to collect photographs of each boulder from different angles. I will then process the digital imagery using `structure-from-motion' techniques and Agisoft Photoscan software. All boulder photographs will be synthesized to 3D and based on a standardized scale. We will then import these models into an environment that can be accessed using cutting-edge virtual reality technology. By producing a virtual archive of 3D glacial boulder reconstructions, I hope to provide deeper insight into geological processes influencing these boulders during and

  9. Pebble bed modular reactor - The first Generation IV reactor to be constructed

    International Nuclear Information System (INIS)

    Ion, S.; Nicholls, D.; Matzie, R.; Matzner, D.

    2004-01-01

    Substantial interest has been generated in advanced reactors over the past few years. This interest is motivated by the view that new nuclear power reactors will be needed to provide low carbon generation of electricity and possibly hydrogen to support the future growth in demand for both of these commodities. Some governments feel that substantially different designs will be needed to satisfy the desires for public perception, improved safety, proliferation resistance, reduced waste and competitive economics. This has motivated the creation of the Generation IV Nuclear Energy Systems programme in which ten countries have agreed on a framework for international cooperation in research for advanced reactors. Six designs have been selected for continued evaluation, with the objective of deployment by 2030. One of these designs is the very high temperature reactor (VHTR), which is a thermal neutron spectrum system with a helium-cooled core utilising carbon-based fuel. The pebble bed modular reactor (PBMR), being developed in South Africa through a worldwide international collaborative effort led by Eskom, the national utility, will represent a key milestone on the way to achievement of the VHTR design objectives, but in the much nearer term. This paper outlines the design objectives, safety approach and design details of the PBMR, which is already at a very advanced stage of development. (author)

  10. Plutonium burning in a pebble-bed type high temperature nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bende, E.E

    2000-01-24

    This thesis deals with the pebble-bed High Temperature Reactor that is fuelled with pure reactor-grade plutonium. It is stressed that neither burnable poisons nor fertile materials like 238U and 212Th are present in the calculational models throughout this thesis. Chapter 2 discusses the general properties of the pebble-bed HTR: the passive safety features of this reactor; different fuel scenarios according to which the pebble-bed HTR can be operated; properties of the pebbles and the coated particles (CPs), including a concise overview of the mechanisms that can lead to coated particle failure. Special attention is paid to the effect of Pu as fuel inside these CPs thereby aiming to indicate which mechanisms are of concern when such CPs are considered as fuel in future reactors. In the last part of this chapter constraints are listed that were imposed to the models considered in the framework of this thesis. Chapter 3 presents the results of unit-cell calculations performed with three code systems. The main objective of this chapter is to compare the calculational results of one particular code system, which is a candidate for the generation of cross sections for a full-core calculation, to those of the other two code systems. Also some reactor physics interpretations of the calculational results are presented. The unit-cell calculations embrace the computation of a number of reactor physics parameters for pebbles with a varying plutonium mass per pebble and with different types of coated particles. For one pebble configuration, these parameters have been calculated for various fuel temperatures and over-all (uniform) temperatures. For that particular pebble configuration, also the results of a two burnup calculations were compared. Chapter 4 reports the results of a parameter study in which the number of coated particles per pebble as well as the type and size of the CPs have been varied. The effect of different pebble configurations on several reactor physics

  11. Risk-informed design of a pebble bed gas reactor

    International Nuclear Information System (INIS)

    Ritterbusch, Stanley; Dimitrijevic, Vesna; Simic Zdenko; Savkina Marina

    2003-01-01

    One of the major challenges to the successful deployment of new nuclear plants in the United States is the regulatory process, which is largely based on water-reactor design technology and operating experience. While ongoing and expected efforts to license new LWR designs are based primarily on current regulations, guidance, and past experience, the pre-application review of the gas-cooled Pebble Bed Modular Reactor (PBMR) has shown that efforts are being made to provide additional 'risk-informed' improvements to the licensing process. These improvements are aimed at resolving new design and regulatory issues using a plant-wide integrated evaluation method - state-of-the-art Probabilistic Risk Assessment - which addresses all significant design features and operating modes. The integrated PRA evaluation is supported by the usual deterministic design analyses, engineering judgments, and margins added to address uncertainties (i.e., defense-in-depth). The work performed for this paper was completed as part of the United States Department of Energy's Nuclear Energy Research Initiative. The purpose of this particular project was to develop the methods for a new 'highly risk-informed' design and regulatory process. In this work. PRA techniques were applied in order to provide an integrated and systematic analysis of the plant design, to quantify uncertainties and explicitly account for defense-in-depth features. This work concentrates on the application of the risk-informed principles to a new plant design such as the PBMR. The implementation example completed for this project included specification of the design configuration, use of the PRA to evaluate the design, and iterations to identify design changes that improve the overall level of safety and system reliability. This paper summarizes the new 'highly risk-informed' design process, the design of the PBMR, and the results obtained. These results, consistent with the known inherent safety features of a pebble

  12. Test-element assembly and loading parameters for the in-pile test of HCPB ceramic pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Laan, J.G. van der E-mail: vanderlaan@nrg-nl.com; Boccaccini, L.V.; Conrad, R.; Fokkens, J.H.; Jong, M.; Magielsen, A.J.; Pijlgroms, B.J.; Reimann, J.; Stijkel, M.P.; Malang, S

    2002-11-01

    In the framework of developing the helium cooled pebble-bed (HCPB) blanket an irradiation test of pebble-bed assemblies is prepared at the HFR Petten. The test objective is to concentrate on the effect of neutron irradiation on the thermal-mechanical behaviour of the HCPB breeder pebble-bed at DEMO representative levels of temperature and defined thermal-mechanical loads. The paper reports on the project status, and presents the results of pre-tests, material characteristics, the manufacturing of the pebble-bed assemblies, and the nuclear and thermo-mechanical loading parameters.

  13. Advanced modularity design for the MIT pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kadak, Andrew C. [Department of Nuclear Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 24-202 Cambridge, MA 02139-4307 (United States)]. E-mail: kadak@mit.edu; Berte, Marc V. [Department of Nuclear Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 24-202 Cambridge, MA 02139-4307 (United States)]. E-mail: mvberte@yahoo.com

    2006-03-15

    The future of all reactors will depend on whether they can be economically built and operated. One of the major impediments to new nuclear construction is the capital cost due in large part to the length of construction time and complexity of the plant. Pebble bed reactors offer the opportunity to reduce the complexity of the plant because the number of safety systems required is significantly reduced due to the inherent safety of the technology. However, because of its small size, the capital cost per kilowatt is likely to be large if traditional construction approaches are followed. This strongly suggests the need for innovative construction concepts to reduce the construction time and cost. MIT has proposed a modularity approach in which the plant is pre-built in space-frame type modules which are built in factories. These space frames would contain all the equipment contained in a given volume. Once equipment in the space frame is installed, the space frame would then be shipped to the site and assembled 'lego-style.' Studies presently underway have demonstrated the feasibility of the concept. Thermal stress analysis has been performed and an integrated design with the space frames has been developed. It is expected that this modularity approach will significantly shorten construction time and expense. This paper proposes a concept for further development, not a final design for the entire plant.

  14. Advanced modularity design for the MIT pebble bed reactor

    International Nuclear Information System (INIS)

    Kadak, Andrew C.; Berte, Marc V.

    2006-01-01

    The future of all reactors will depend on whether they can be economically built and operated. One of the major impediments to new nuclear construction is the capital cost due in large part to the length of construction time and complexity of the plant. Pebble bed reactors offer the opportunity to reduce the complexity of the plant because the number of safety systems required is significantly reduced due to the inherent safety of the technology. However, because of its small size, the capital cost per kilowatt is likely to be large if traditional construction approaches are followed. This strongly suggests the need for innovative construction concepts to reduce the construction time and cost. MIT has proposed a modularity approach in which the plant is pre-built in space-frame type modules which are built in factories. These space frames would contain all the equipment contained in a given volume. Once equipment in the space frame is installed, the space frame would then be shipped to the site and assembled 'lego-style.' Studies presently underway have demonstrated the feasibility of the concept. Thermal stress analysis has been performed and an integrated design with the space frames has been developed. It is expected that this modularity approach will significantly shorten construction time and expense. This paper proposes a concept for further development, not a final design for the entire plant

  15. Effective thermal conductivity of advanced ceramic breeder pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Pupeschi, S., E-mail: simone.pupeschi@kit.edu; Knitter, R.; Kamlah, M.

    2017-03-15

    As the knowledge of the effective thermal conductivity of ceramic breeder pebble beds under fusion relevant conditions is essential for the development of solid breeder blanket concepts, the EU advanced and reference lithium orthosilicate material were investigated with a newly developed experimental setup based on the transient hot wire method. The effective thermal conductivity was investigated in the temperature range RT–700 °C. Experiments were performed in helium and air atmospheres in the pressure range 0.12–0.4 MPa (abs.) under a compressive load up to 6 MPa. Results show a negligible influence of the chemical composition of the solid material on the bed’s effective thermal conductivity. A severe reduction of the effective thermal conductivity was observed in air. In both atmospheres an increase of the effective thermal conductivity with the temperature was detected, while the influence of the compressive load was found to be small. A clear dependence of the effective thermal conductivity on the pressure of the filling gas was observed in helium in contrast to air, where the pressure dependence was drastically reduced.

  16. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    Science.gov (United States)

    Cisneros, Anselmo Tomas, Jr.

    The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP

  17. Geohazard reconnaissance mapping for potential rock boulder fall using low altitude UAV photogrammetry

    Science.gov (United States)

    Sharan Kumar, N.; Ashraf Mohamad Ismail, Mohd; Sukor, Nur Sabahiah Abdul; Cheang, William

    2018-05-01

    This paper discusses potential applications of unmanned aerial vehicles (UAVs) for evaluation of risk immediately with photos and 3-dimensional digital element. Aerial photography using UAV ready to give a powerful technique for potential rock boulder fall recognition. High-resolution outputs from this method give the chance to evaluate the site for potential rock boulder falls spatially. The utilization of UAV to capture the aerial photos is a quick, reliable, and cost-effective technique contrasted with terrestrial laser scanning method. Reconnaissance of potential rock boulder susceptible to fall is very crucial during the geotechnical investigation. This process is essential in the view of the rock fall hazards nearby site before the beginning of any preliminary work. Photogrammetric applications have empowered the automated way to deal with identification of rock boulder susceptible to fall by recognizing the location, size, and position. A developing examination of the utilization of digital photogrammetry gives numerous many benefits for civil engineering application. These advancements have made important contributions to our capabilities to create the geohazard map on potential rock boulder fall.

  18. Quasi-direct numerical simulation of a pebble bed configuration. Part I: Flow (velocity) field analysis

    International Nuclear Information System (INIS)

    Shams, A.; Roelofs, F.; Komen, E.M.J.; Baglietto, E.

    2013-01-01

    Highlights: ► Quasi direct numerical simulations (q-DNS) of a pebble bed configuration has been performed. ► This q-DNS database may serve as a reference for the validation of different turbulence modeling approaches. ► A wide range of qualitative and quantitative data throughout the computational domain has been generated. ► Results for mean, RMS and covariance of velocity field are extensively reported in this paper. -- Abstract: High temperature reactors (HTR) are being considered for deployment around the world because of their excellent safety features. The fuel is embedded in a graphite moderator and can sustain very high temperatures. However, the appearance of hot spots in the pebble bed cores of HTR's may affect the integrity of the pebbles. A good prediction of the flow and heat transport in such a pebble bed core is a challenge for available turbulence models and such models need to be validated. In the present article, quasi direct numerical simulations (q-DNS) of a pebble bed configuration are reported, which may serve as a reference for the validation of different turbulence modeling approaches. Such approaches can be used in order to perform calculations for a randomly arranged pebble bed. Simulations are performed at a Reynolds number of 3088, based on pebble diameter, with a porosity level of 0.42. Detailed flow analyses have shown complex physics flow behavior and make this case challenging for turbulence model validation. Hence, a wide range of qualitative and quantitative data for velocity and temperature field have been extracted for this benchmark. In the present article (part I), results related to the flow field (mean, RMS and covariance of velocity) are documented and discussed in detail. Moreover, the discussion regarding the temperature field will be published in a separate article

  19. Preliminary neutronic design of high burnup OTTO cycle pebble bed reactor

    International Nuclear Information System (INIS)

    Setiadipura, T.; Zuhair; Irwanto, D.

    2015-01-01

    The pebble bed type High Temperature Gas-cooled Reactor (HTGR) is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR) which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO) cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM) loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble. (author)

  20. Preliminary Neutronic Design of High Burnup OTTO Cycle Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    T. Setiadipura

    2015-04-01

    Full Text Available The pebble bed type High Temperature Gas-cooled Reactor (HTGR is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble

  1. Detection system for location of fuel pebbles transported in pipes in a pebble-bed reactor based on vibration signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongbing, E-mail: liuhb07@mails.tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education P. R. China, Beijing 100084 (China); Du, Dong, E-mail: dudong@tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education P. R. China, Beijing 100084 (China); Huang, An; Chang, Baohua; Han, Zandong [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education P. R. China, Beijing 100084 (China); He, Ayada [Shanghai Electric Power Generation Group Shanghai Generator Works, Shanghai 200240 (China)

    2016-08-15

    Highlights: • A detection system for locations of pebbles transported in pipes is introduced. • The detection system is based on vibration signal processing, which is original. • The characteristics of the vibration signals of the pipe are analyzed. • The experiment shows that the detection results are accurate. • The research provides an important basis for the design of the reactor. - Abstract: Pebble-bed high temperature gas-cooled reactors have many advantages such as inherent safety, high efficiency, etc., and have been considered as a candidate for Generation IV nuclear reactors. During the operation of the reactor, there are thousands of fuel pebbles transported in the pipes outside the core by gravity and helium flow. The pattern of the pipes which consist of straight and arc sections is very complex. When a fuel pebble is transported, it will constantly collide with the pipes, especially in the arc sections. The collisions will lead to the vibration of the pipes. This paper aims to provide a detection system for the location of fuel pebbles transported in pipes in a pebble-bed reactor based on vibration signal processing. Before the reactor is running, the system acquires the vibration signals of several key sections by sensors. Then the frequency characteristics of the signals are obtained by joint time–frequency analysis. When the reactor is running, the system detects the signals and processes them based on their frequency characteristics in real time. According to the results of the processing, the system can correctly judge whether the fuel pebble has passed through the section and records the time of the passing. The experiment validates the accuracy and reliability of the detection results. In this way, the operational condition of the reactor can be monitored so that the normal running of the reactor can be ensured. Additionally, the detection data are of great significance to the evaluation and optimization of the reactor performance

  2. Detection system for location of fuel pebbles transported in pipes in a pebble-bed reactor based on vibration signal processing

    International Nuclear Information System (INIS)

    Liu, Hongbing; Du, Dong; Huang, An; Chang, Baohua; Han, Zandong; He, Ayada

    2016-01-01

    Highlights: • A detection system for locations of pebbles transported in pipes is introduced. • The detection system is based on vibration signal processing, which is original. • The characteristics of the vibration signals of the pipe are analyzed. • The experiment shows that the detection results are accurate. • The research provides an important basis for the design of the reactor. - Abstract: Pebble-bed high temperature gas-cooled reactors have many advantages such as inherent safety, high efficiency, etc., and have been considered as a candidate for Generation IV nuclear reactors. During the operation of the reactor, there are thousands of fuel pebbles transported in the pipes outside the core by gravity and helium flow. The pattern of the pipes which consist of straight and arc sections is very complex. When a fuel pebble is transported, it will constantly collide with the pipes, especially in the arc sections. The collisions will lead to the vibration of the pipes. This paper aims to provide a detection system for the location of fuel pebbles transported in pipes in a pebble-bed reactor based on vibration signal processing. Before the reactor is running, the system acquires the vibration signals of several key sections by sensors. Then the frequency characteristics of the signals are obtained by joint time–frequency analysis. When the reactor is running, the system detects the signals and processes them based on their frequency characteristics in real time. According to the results of the processing, the system can correctly judge whether the fuel pebble has passed through the section and records the time of the passing. The experiment validates the accuracy and reliability of the detection results. In this way, the operational condition of the reactor can be monitored so that the normal running of the reactor can be ensured. Additionally, the detection data are of great significance to the evaluation and optimization of the reactor performance

  3. Global and local re-impact and velocity regime of ballistic ejecta of boulder craters on Ceres

    Science.gov (United States)

    Schulzeck, F.; Schröder, S. E.; Schmedemann, N.; Stephan, K.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2018-04-01

    Imaging by the Dawn-spacecraft reveals that fresh craters on Ceres below 40 km often exhibit numerous boulders. We investigate how the fast rotating, low-gravity regime on Ceres influences their deposition. We analyze size-frequency distributions of ejecta blocks of twelve boulder craters. Global and local landing sites of boulder crater ejecta and boulder velocities are determined by the analytical calculation of elliptic particle trajectories on a rotating body. The cumulative distributions of boulder diameters follow steep-sloped power-laws. We do not find a correlation between boulder size and the distance of a boulder to its primary crater. Due to Ceres' low gravitational acceleration and fast rotation, ejecta of analyzed boulder craters (8-31 km) can be deposited across the entire surface of the dwarf planet. The particle trajectories are strongly influenced by the Coriolis effect as well as the impact geometry. Fast ejecta of high-latitude craters accumulate close to the pole of the opposite hemisphere. Fast ejecta of low-latitude craters wraps around the equator. Rotational effects are also relevant for the low-velocity regime. Boulders are ejected at velocities up to 71 m/s.

  4. Conceptual design of a passively safe thorium breeder Pebble Bed Reactor

    International Nuclear Information System (INIS)

    Wols, F.J.; Kloosterman, J.L.; Lathouwers, D.; Hagen, T.H.J.J. van der

    2015-01-01

    Highlights: • This work proposes three possible designs for a thorium Pebble Bed Reactor. • A high-conversion PBR (CR > 0.96), passively safe and within practical constraints. • A thorium breeder PBR (220 cm core) in practical regime, but not passively safe. • A passively safe breeder, requiring higher fuel reprocessing and recycling rates. - Abstract: More sustainable nuclear power generation might be achieved by combining the passive safety and high temperature applications of the Pebble Bed Reactor (PBR) design with the resource availability and favourable waste characteristics of the thorium fuel cycle. It has already been known that breeding can be achieved with the thorium fuel cycle inside a Pebble Bed Reactor if reprocessing is performed. This is also demonstrated in this work for a cylindrical core with a central driver zone, with 3 g heavy metal pebbles for enhanced fission, surrounded by a breeder zone containing 30 g thorium pebbles, for enhanced conversion. The main question of the present work is whether it is also possible to combine passive safety and breeding, within a practical operating regime, inside a thorium Pebble Bed Reactor. Therefore, the influence of several fuel design, core design and operational parameters upon the conversion ratio and passive safety is evaluated. A Depressurized Loss of Forced Cooling (DLOFC) is considered the worst safety scenario that can occur within a PBR. So, the response to a DLOFC with and without scram is evaluated for several breeder PBR designs using a coupled DALTON/THERMIX code scheme. With scram it is purely a heat transfer problem (THERMIX) demonstrating the decay heat removal capability of the design. In case control rods cannot be inserted, the temperature feedback of the core should also be able to counterbalance the reactivity insertion by the decaying xenon without fuel temperatures exceeding 1600 °C. Results show that high conversion ratios (CR > 0.96) and passive safety can be combined in

  5. Penn State geoPebble system: Design,Implementation, and Initial Results

    Science.gov (United States)

    Urbina, J. V.; Anandakrishnan, S.; Bilen, S. G.; Fleishman, A.; Burkett, P.

    2014-12-01

    The Penn State geoPebble system is a new network of wirelessly interconnected seismic and GPS sensor nodes with flexible architecture. This network will be used for studies of ice sheets in Antarctica and Greenland, as well as to investigate mountain glaciers. The network will consist of ˜150 geoPebbles that can be deployed in a user-defined spatial geometry. We present our design methodology, which has enabled us to develop these state-of- the art sensors using commercial-off-the-shelf hardware combined with custom-designed hardware and software. Each geoPebble is a self- contained, wirelessly connected sensor for collecting seismic measurements and position information. Key elements of each node encompasses a three-component seismic recorder, which includes an amplifier, filter, and 24- bit analog-to-digital converter that can sample up to 10 kHz. Each unit also includes a microphone channel to record the ground-coupled airwave. The timing for each node is available from GPS measurements and a local precision oscillator that is conditioned by the GPS timing pulses. In addition, we record the carrier-phase measurement of the L1 GPS signal in order to determine location at sub-decimeter accuracy (relative to other geoPebbles within a few kilometers radius). Each geoPebble includes 16 GB of solid-state storage, wireless communications capability to a central supervisory unit, and auxiliary measurements capability (including tilt from accelerometers, absolute orientation from magnetometers and temperature). A novel aspect of the geoPebble is a wireless charging system for the internal battery (using inductive coupling techniques). The geoPebbles include all the sensors (geophones, GPS, microphone), communications (WiFi), and power (battery and charging) internally, so the geoPebble system can operate without any cabling connections (though we do provide an external connector so that different geophones can be used). We report initial field-deployment results and

  6. Single-phase convection heat transfer characteristics of pebble-bed channels with internal heat generation

    International Nuclear Information System (INIS)

    Meng Xianke; Sun Zhongning; Xu Guangzhan

    2012-01-01

    Graphical abstract: The core of the water-cooled pebble bed reactor is the porous channels which stacked with spherical fuel elements. The gaps between the adjacent fuel elements are complex because they are stochastic and often shift. We adopt electromagnetic induction heating method to overall heat the pebble bed. By comparing and analyzing the experimental data, we get the rule of power distribution and the rule of heat transfer coefficient with particle diameter, heat flux density, inlet temperature and working fluid's Re number. Highlights: ► We adopt electromagnetic induction heating method to overall heat the pebble bed to be the internal heat source. ► The ball diameter is smaller, the effect of the heat transfer is better. ► With Re number increasing, heat transfer coefficient is also increasing and eventually tends to stabilize. ► The changing of heat power makes little effect on the heat transfer coefficient of pebble bed channels. - Abstract: The reactor core of a water-cooled pebble bed reactor includes porous channels that are formed by spherical fuel elements. This structure has notably improved heat transfer. Due to the variability and randomness of the interstices in pebble bed channels, heat transfer is complex, and there are few studies regarding this topic. To study the heat transfer characters of pebble bed channels with internal heat sources, oxidized stainless steel spheres with diameters of 3 and 8 mm and carbon steel spheres with 8 mm diameters are used in a stacked pebble bed. Distilled water is used as a refrigerant for the experiments, and the electromagnetic induction heating method is used to heat the pebble bed. By comparing and analyzing the experimental results, we obtain the governing rules for the power distribution and the heat transfer coefficient with respect to particle diameter, heat flux density, inlet temperature and working fluid Re number. From fitting of the experimental data, we obtain the dimensionless average

  7. Improvement of burnup analysis for pebble bed reactors with an accumulative fuel loading scheme

    International Nuclear Information System (INIS)

    Simanullang, Irwan Liapto; Obara, Toru

    2015-01-01

    Given the limitations of natural uranium resources, innovative nuclear power plant concepts that increase the efficiency of nuclear fuel utilization are needed. The Pebble Bed Reactor (PBR) shows some potential to achieve high efficiency in natural uranium utilization. To simplify the PBR concept, PBR with an accumulation fuel loading scheme was introduced and the Fuel Handling System (FHS) removed. In this concept, the pebble balls are added little by little into the reactor core until the pebble balls reach the top of the reactor core, and all pebble balls are discharged from the core at the end of the operation period. A code based on the MVP/MVP-BURN method has been developed to perform an analysis of a PBR with the accumulative fuel loading scheme. The optimum fuel composition was found using the code for high burnup performance. Previous efforts provided several motivations to improve the burnup performance: First, some errors in the input code were corrected. This correction, and an overall simplification of the input code, was implemented for easier analysis of a PBR with the accumulative fuel loading scheme. Second, the optimum fuel design had been obtained in the infinite geometry. To improve the optimum fuel composition, a parametric survey was obtained by varying the amount of Heavy Metal (HM) uranium per pebble and the degree of uranium enrichment. Moreover, an entire analysis of the parametric survey was obtained in the finite geometry. The results show that improvements in the fuel composition can lead to more accurate analysis with the code. (author)

  8. Comparison of Several Thermal Conductivity Constants for Thermal Hydraulic Calculation of Pebble Bed Reactor

    Science.gov (United States)

    Irwanto, Dwi; Setiadipura, Topan; Pramutadi, Asril

    2017-07-01

    There are two type of High Temperature Gas Reactor (HTGR), prismatic and pebble bed. Pebble Bed type has unique configuration because the fuels are randomly distributed inside the reactor core. In term of safety features, Pebble Bed Reactor (PBR) is one of the most promising reactor type in avoiding severe nuclear accidents. In order to analyze heat transfer and safety of this reactor type, a computer code is now under development. As a first step, calculation method proposed by Stroh [1] is adopted. An approach has been made to treat randomly distributed pebble balls contains fissile material inside the reactor core as a porous medium. Helium gas act as coolant on the reactor system are carrying heat flowing in the area between the pebble balls. Several parameters and constants are taken into account in the new developed code. Progress of the development of the code especially comparison of several thermal conductivity constants for a certain PBR-case are reported in the present study.

  9. THE ROLE OF PEBBLE FRAGMENTATION IN PLANETESIMAL FORMATION. II. NUMERICAL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Karl Wahlberg; Johansen, Anders [Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, SE-221 00 Lund (Sweden); Syed, Mohtashim Bukhari; Blum, Jürgen [Technische Universität Braunschweig, Institut für Geophysik und extraterrestrische Physik, Mendelssohnstraße 3, D-38106 Braunschweig (Germany)

    2017-01-20

    Some scenarios for planetesimal formation go through a phase of collapse of gravitationally bound clouds of millimeter- to centimeter-size pebbles. Such clouds can form, for example, through the streaming instability in protoplanetary disks. We model the collapse process with a statistical model to obtain the internal structure of planetesimals with solid radii between 10 and 1000 km. During the collapse, pebbles collide, and depending on their relative speeds, collisions have different outcomes. A mixture of particle sizes inside a planetesimal leads to better packing capabilities and higher densities. In this paper we apply results from new laboratory experiments of dust aggregate collisions (presented in a companion paper) to model collision outcomes. We find that the internal structure of a planetesimal is strongly dependent on both its mass and the applied fragmentation model. Low-mass planetesimals have no/few fragmenting pebble collisions in the collapse phase and end up as porous pebble piles. The number of fragmenting collisions increases with increasing cloud mass, resulting in wider particle size distributions and higher density. The collapse is nevertheless “cold” in the sense that collision speeds are damped by the high collision frequency. This ensures that a significant fraction of large pebbles survive the collapse in all but the most massive clouds. Our results are in broad agreement with the observed increase in density of Kuiper Belt objects with increasing size, as exemplified by the recent characterization of the highly porous comet 67P/Churyumov–Gerasimenko.

  10. A prediction model for the effective thermal conductivity of mono-sized pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoliang; Zheng, Jie; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-02-15

    Highlights: • One new method to couple the contact area with bed strain is developed. • The constant coefficient to correlate the effect of gas flow is determined. • This model is valid for various cases, and its advantages are showed obviously. - Abstract: A model is presented here to predict the effective thermal conductivity of porous medium packed with mono-sized spherical pebbles, and it is valid when pebbles’ size is far less than the characteristic length of porous medium just like the fusion pebble beds. In this model, the influences of parameters such as properties of pebble and gas materials, bed porosity, pebble size, gas flow, contact area, thermal radiation, contact resistance, etc. are all taken into account, and one method to couple the contact areas with bed strains is also developed and implemented preliminarily. Compared with available theoretical models, CFD numerical simulations and experimental data, this model is verified to be successful to forecast the bed effective thermal conductivity in various cases and its advantages are also showed obviously. Especially, the convection in pebble beds is focused on and a constant coefficient C to correlate the effect of gas flow is determined for the fully developed region of beds by numerical simulation, which is close to some experimental data.

  11. The importance of the AVR pebble-bed reactor for the future of nuclear power

    International Nuclear Information System (INIS)

    Pohl, P.

    2006-01-01

    The AVR pebble-bed high temperature gas-cooled reactor (HTGR) at Juelich (Germany)) operated from 1967 to 1988 and was certainly the most important HTGR project of the past. The reactor was the mass test bed for all development steps of HTGR pebble fuel. Some early fuel charges failed under high temperature conditions and contaminated the reactor. An accurate pebble measurement (Cs 137) allowed to clean the core from unwanted pebbles after 1981. The coolant activity went down and remained very low for the remaining reactor operation. A melt-wire experiment in 1986 revealed max. coolant temperatures of >1280 deg. C and fuel temperatures of >1350 deg. C, explained by under-estimated bypasses. The fuel still in the core achieved high burn-ups and showed under the extreme temperature conditions excellent fission product retention. Thus, the AVR operation qualified the HTGR fuel, and an average discharge burn-up of 112% fifa revealed an excellent fuel economy of the pebble-bed reactor. Furthermore, the AVR operation offers many meaningful data for code-to-experiment comparisons. (authors)

  12. Features and validation of discrete element method for simulating pebble flow in reactor core

    International Nuclear Information System (INIS)

    Xu Yong; Li Yanjie

    2005-01-01

    The core of a High-Temperature Gas-cooled Reactor (HTGR) is composed of big number of fuel pebbles, their kinetic behaviors are of great importance in estimating the path and residence time of individual pebble, the evolution of the mixing zone for the assessment of the efficiency of a reactor. Numerical method is highlighted in modern reactor design. In view of granular flow, the Discrete Element Model based on contact mechanics of spheres was briefly described. Two typical examples were presented to show the capability of the DEM method. The former is piling with glass/steel spheres, which provides validated evidences that the simulated angles of repose are in good coincidence with the experimental results. The later is particle discharge in a flat- bottomed silo, which shows the effects of material modulus and demonstrates several features. The two examples show the DEM method enables to predict the behaviors, such as the evolution of pebble profiles, streamlines etc., and provides sufficient information for pebble flow analysis and core design. In order to predict the cyclic pebble flow in a HTGR core precisely and efficiently, both model and code improvement are needed, together with rational specification of physical properties with proper measuring techniques. Strategic and methodological considerations were also discussed. (authors)

  13. Effect of a flow-corrective insert on the flow pattern in a pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yu; Gui, Nan; Yang, Xingtuan [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); Tu, Jiyuan [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); School of Aerospace, Mechanical & Manufacturing Engineering, RMIT University, Melbourne 3083, VIC (Australia); Jiang, Shengyao, E-mail: shengyaojiang@sina.com [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2016-04-15

    Highlights: • Effect of an insert on improving flow uniformity and eliminating stagnant zone is studied. • Three values concerned with the stagnant zone, radial uniformity and flow sequence are used. • Outlet diameter is a critical parameter that determines balancing mechanism of the insert. • Height/location is varied to let the insert work in unbalanced region and avoid adverse effect. - Abstract: A flow-corrective insert is adopted in the pebble-bed high temperature gas-cooled reactor (HTGR) to improve flow performance of the pebble flow for the first time. 3D discrete element method (DEM) modeling is employed to study this slow and dense granular flow. It is verified that locating a properly designed insert in the bed can help transform unsatisfactory flow field to the preferred flow pattern for pebble bed reactors. Three characteristic values on the stagnant zone, radial uniformity and flow sequence of pebble flow are defined to evaluate uniformity of the overall flow field quantitatively. The results demonstrate that the pebble bed equipped with an insert performs better than normal beds from all these three aspects. Moreover, based on numerical experiments, several universal tips for insert design on height, location and outlet diameter are suggested.

  14. Numerical Simulation of a Coolant Flow and Heat Transfer in a Pebble Bed Reactor

    International Nuclear Information System (INIS)

    In, Wang-Kee; Kim, Min-Hwan; Lee, Won-Jae

    2008-01-01

    Pebble Bed Reactor(PBR) is one of the very high temperature gas cooled reactors(VHTR) which have been reviewed in the Generation IV International Forum as potential sources for future energy needs, particularly for a hydrogen production. The pebble bed modular reactor(PBMR) exhibits inherent safety features due to the low power density and the large amount of graphite present in the core. PBR uses coated fuel particles(TRISO) embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the PBR core during a reactor operation and the coolant flows around randomly distributed spheres. For the reliable operation and the safety of the PBR, it is important to understand the coolant flow structure and the fuel pebble temperature in the PBR core. There have been few experimental and numerical studies to investigate the fluid and heat transfer phenomena in the PBR core. The objective of this paper is to predict the fluid and heat transfer in the PBR core. The computational fluid dynamics (CFD) code, STAR-CCM+(V2.08) is used to perform the CFD analysis using the design data for the PBMR400

  15. Stability and convergence analysis of the quasi-dynamics method for the initial pebble packing

    International Nuclear Information System (INIS)

    Li, Y.; Ji, W.

    2012-01-01

    The simulation for the pebble flow recirculation within Pebble Bed Reactors (PBRs) requires an efficient algorithm to generate an initial overlap-free pebble configuration within the reactor core. In the previous work, a dynamics-based approach, the Quasi-Dynamics Method (QDM), has been proposed to generate densely distributed pebbles in PBRs with cylindrical and annular core geometries. However, the stability and the efficiency of the QDM were not fully addressed. In this work, the algorithm is reformulated with two control parameters and the impact of these parameters on the algorithm performance is investigated. Firstly, the theoretical analysis for a 1-D packing system is conducted and the range of the parameter in which the algorithm is convergent is estimated. Then, this estimation is verified numerically for a 3-D packing system. Finally, the algorithm is applied to modeling the PBR fuel loading configuration and the convergence performance at different packing fractions is presented. Results show that the QDM is efficient in packing pebbles within the realistic range of the packing fraction in PBRs, and it is capable in handling cylindrical geometry with packing fractions up to 63.5%. (authors)

  16. A comparative study on the effective thermal conductivity of a single size beryllium pebble bed

    International Nuclear Information System (INIS)

    Abou-Sena, A.; Ying, A.; Abdou, M.

    2004-01-01

    Solid breeder blankets generally use beryllium-helium pebble beds to ensure sufficient tritium breeding. The data of the effective thermal conductivity, k eff , of beryllium pebble beds is important to the design of fusion blankets. It serves as a database for benchmarking the models of pebble beds. The objective of this paper is to review and compare the available data (obtained by several studies) of the effective thermal conductivity of beryllium pebble beds in order to address the current status of these data. Two comparisons are presented: one for the data of k eff versus bed mean temperature and the second one for the data of k eff versus external applied pressures. The data (k eff versus bed temperature) reported by Enoeda et al., Dalle Donne et al., and UCLA, have a similar particle size and packing fraction. Despite their similarity, the standard deviation values of their data are around 32%. Also, the data of the effective thermal conductivity as a function of mechanical pressure have standard deviation values of ∼50%. From the presented comparisons, significant discrepancies among the available data of k eff of the beryllium pebble beds were observed. These discrepancies may be attributed to the apparent differences among available studies, such as experiment technique, packing fraction, particle characteristics, bed dimensions, and temperature range and gradient across the bed. (author)

  17. Discrete Element Method Simulation of a Boulder Extraction From an Asteroid

    Science.gov (United States)

    Kulchitsky, Anton K.; Johnson, Jerome B.; Reeves, David M.; Wilkinson, Allen

    2014-01-01

    The force required to pull 7t and 40t polyhedral boulders from the surface of an asteroid is simulated using the discrete element method considering the effects of microgravity, regolith cohesion and boulder acceleration. The connection between particle surface energy and regolith cohesion is estimated by simulating a cohesion sample tearing test. An optimal constant acceleration is found where the peak net force from inertia and cohesion is a minimum. Peak pulling forces can be further reduced by using linear and quadratic acceleration functions with up to a 40% reduction in force for quadratic acceleration.

  18. Evaluation of Boulder, CO, SmartRegs Ordinance and Better Buildings Program

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L.; Vijayakumar, G.

    2012-04-01

    Under the SmartRegs ordinance in the city of Boulder, Colorado, all rental properties in the city must achieve an energy efficiency level comparable to a HERS Index of approximately 120 points or lower by the year 2019. The City of Boulder received a $12 million grant from the DOE's Better Buildings initiative to create and incentivize their EnergySmart Program. In this report, the Consortium for Advanced Residential Buildings (CARB) describes its work with the program, including energy audits of rental properties, developing training programs for insulators and inspectors, and conducting interviews with property owners.

  19. Evaluation of Boulder, CO,SmartRegs Ordinance and Better Buildings Program

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L. [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Vijayakumar, G. [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2012-04-01

    Under the SmartRegs ordinance in the city of Boulder, Colorado, all rental properties in the city must achieve an energy efficiency level comparable to a HERS Index of approximately 120 points or lower by the year 2019. The City of Boulder received a $12 million grant from the DOE’s Better Buildings initiative to create and incentivize their EnergySmart Program. In this report, the Consortium for Advanced Residential Buildings (CARB) describes its work with the program, including energy audits of rental properties, developing training programs for insulators and inspectors, and conducting interviews with property owners.

  20. Boulder accumulations related to extreme wave events on the eastern coast of Malta

    Science.gov (United States)

    Biolchi, Sara; Furlani, Stefano; Antonioli, Fabrizio; Baldassini, Niccoló; Causon Deguara, Joanna; Devoto, Stefano; Di Stefano, Agata; Evans, Julian; Gambin, Timothy; Gauci, Ritienne; Mastronuzzi, Giuseppe; Monaco, Carmelo; Scicchitano, Giovanni

    2016-03-01

    The accumulation of large boulders related to waves generated by either tsunamis or extreme storm events have been observed in different areas of the Mediterranean Sea. Along the eastern low-lying rocky coasts of Malta, five sites with large boulder deposits have been investigated, measured and mapped. These boulders have been detached and moved from the nearshore and the lowest parts of the coast by sea wave action. In the Sicily-Malta channel, heavy storms are common and originate from the NE and NW winds. Conversely, few tsunamis have been recorded in historical documents to have reached the Maltese archipelago. We present a multi-disciplinary study, which aims to define the characteristics of these boulder accumulations, in order to assess the coastal geo-hazard implications triggered by the sheer ability of extreme waves to detach and move large rocky blocks inland. The wave heights required to transport 77 coastal boulders were calculated using various hydrodynamic equations. Particular attention was given to the quantification of the input parameters required in the workings of these equations, such as size, density and distance from the coast. In addition, accelerator mass spectrometry (AMS) 14C ages were determined from selected samples of marine organisms encrusted on some of the coastal boulders. The combination of the results obtained both by the hydrodynamic equations, which provided values comparable with those observed and measured during the storms, and radiocarbon dating suggests that the majority of the boulders have been detached and moved by intense storm waves. These boulders testify to the existence of a real hazard for the coasts of Malta, i.e. that of very high storm waves, which, during exceptional storms, are able to detach large blocks of volumes exceeding 10 m3 from the coastal edge and the nearshore bottom, and also to transport them inland. Nevertheless, the occurrence of one or more tsunami events cannot be ruled out, since

  1. Microfossils in the Ordovician erratic boulders from South-western Finland

    Directory of Open Access Journals (Sweden)

    Nõlvak, J.

    1995-12-01

    Full Text Available Chitinozoans, ostracods and acritarchs found in four glacially transported limestone boulders from the south-western coast of Finland have been studied in order to test the usefulness of these microfossil groups in age determinations. Also rare specimens of conodonts, inarticulated brachiopods and foraminifers were found. Baltic limestone (or Östersjö limestone was the most problematic, because only fossils with calcitic or phosphatic shells are preserved. It is concluded that the boulders identified correlate with the Uhaku and Rakvere stages of the Middle Ordovician.

  2. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    Energy Technology Data Exchange (ETDEWEB)

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next

  3. Study of the fracture behavior of mortar and concretes with crushed rock or pebble aggregates

    Directory of Open Access Journals (Sweden)

    Sebastião Ribeiro

    2011-03-01

    Full Text Available The objective of this work was to compare the fracture energy of mortar and concretes produced with crushed rock and pebble aggregates using zero, 10, 20, 30 and 40% of aggregates mixed with standard mortar and applying the wedge splitting method to achieve stable crack propagation. The samples were cast in a special mold and cured for 28 days, after which they were subjected to crack propagation tests by the wedge splitting method to determine the fracture energies of the mortar and concrete. The concretes showed higher fracture energy than the mortar, and the concretes containing crushed rock showed higher resistance to crack propagation than all the compositions containing pebbles. The fracture energy varied from 38 to 55 J.m-2. A comparison of the number of aggregates that separated from the two concrete matrices with the highest fracture energies indicated that the concrete containing pebbles crumbled more easily and was therefore less resistant to crack propagation.

  4. Progress on pebble bed experimental activity for the HE-FUS3 mock-ups

    International Nuclear Information System (INIS)

    Dell'Orco, G.; Sansone, L.; Simoncini, M.; Zito, D.

    2002-01-01

    The EU Long Term for DEMO Programme foresees the qualification of the reference design of the helium cooled pebble bed (HCPB) - test blanket module (TBM) to be tested in ITER Reactor. In this frame, FZK and ENEA have launched many experimental activities for the evaluation of the interactions between the Tritium breeder and neutron multiplier pebble beds and the steel containment walls. Main aim of these activities is the measuring the pebble bed effective thermal conductivity, the wall heat transfer coefficient as well as their dependency from the mechanical constraints. The paper presents the progress of the testing activity and results of the tests on two mock-up, called Tazza and Helichetta, carried out on the HE-FUS3 facility at ENEA Brasimone. (orig.)

  5. Numerical characterization of thermo-mechanical performance of breeder pebble beds

    International Nuclear Information System (INIS)

    An, Zhiyong; Ying, Alice; Abdou, Mohamed

    2008-01-01

    A numerical approach using the discrete element method (DEM) has been applied to study the thermo-mechanical properties of ceramic breeder pebble beds. This numerical scheme is able to predict the inelastic behavior observed in a loading and unloading operation. In addition, it demonstrates that the average value of contact force increases linearly with overall pressure, but at a much faster rate, about 3.4 times the overall pressure increase rate. In this paper, the thermal creep properties of two different ceramic breeder pebble materials, Li 4 SiO 4 and Li 2 O, are also examined by the current numerical code. The difference found in the properties of candidate materials is reflected numerically in the overall strain in the pebble bed when the stress magnitude becomes smaller. (author)

  6. Consideration of emergency source terms for pebble-bed high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Tao, Liu; Jun, Zhao; Jiejuan, Tong; Jianzhu, Cao

    2009-01-01

    Being the last barrier in the nuclear power plant defense-in-depth strategy, emergency planning (EP) is an integrated project. One of the key elements in this process is emergency source terms selection. Emergency Source terms for light water reactor (LWR) nuclear power plant (NPP) have been introduced in many technical documents, and advanced NPP emergency planning is attracting attention recently. Commercial practices of advanced NPP are undergoing in the world, pebble-bed high-temperature gas-cooled reactor (HTGR) power plant is under construction in China which is considered as a representative of advanced NPP. The paper tries to find some pieces of suggestion from our investigation. The discussion of advanced NPP EP will be summarized first, and then the characteristics of pebble-bed HTGR relating to EP will be described. Finally, PSA insights on emergency source terms selection and current pebble-bed HTGR emergency source terms suggestions are proposed

  7. Revision of Drucker-Prager cap creep modelling of pebble beds in fusion blankets

    International Nuclear Information System (INIS)

    Hofer, D.; Kamlah, M.; Hermsmeyer, S.

    2004-01-01

    A continuum model commonly used in soil mechanics analysis is compiled by use of a finite element software and has been used to simulate the thermomechanical behaviour of pebble beds. The Drucker-Prager Cap theory accounts for inelastic volume change, cap hardening, nonlinear elasticity and pressure dependent shear failure. The hardening mechanism allows for defining the hydrostatic pressure yield stress as a function of the volumetric inelastic strain. Volumetric creep is considered in order to simulate the pebble bed behaviour at high temperatures. Here, the strain hardening option has been used for the consolidation creep mechanism. The model has been calibrated using the fitting curves of the oedometric test given by Reimann et al. The fitted data has been used to calculate a pebble bed with simplified boundary conditions loaded by non-uniform volumetric heating. This calculation demonstrated that the model is capable of representing creep behaviour under volumetric heating conditions. (author)

  8. Thermal-hydraulic analysis techniques for axisymmetric pebble bed nuclear reactor cores

    International Nuclear Information System (INIS)

    Stroh, K.R.

    1979-03-01

    The pebble bed reactor's cylindrical core volume contains a random bed of small, spherical fuel-moderator elements. These graphite spheres, containing a central region of dispersed coated-particle fissile and fertile material, are cooled by high pressure helium flowing through the connected interstitial voids. A mathematical model and numerical solution technique have been developed which allow calculation of macroscopic values of thermal-hydraulic variables in an axisymmetric pebble bed nuclear reactor core. The computer program PEBBLE is based on a mathematical model which treats the bed macroscopically as a generating, conducting porous medium. The steady-state model uses a nonlinear Forchheimer-type relation between the coolant pressure gradient and mass flux, with newly derived coefficients for the linear and quadratic resistance terms. The remaining equations in the model make use of mass continuity, and thermal energy balances for the solid and fluid phases

  9. Numerical characterization of thermo-mechanical performance of breeder pebble beds

    International Nuclear Information System (INIS)

    An, Zhiyong; Ying, Alice; Abdou, Mohamed

    2007-01-01

    A numerical approach using the discrete element method (DEM) has been applied to study the thermo-mechanical properties of ceramic breeder pebble beds. This numerical scheme is able to predict the inelastic behavior observed in a loading and unloading operation. In addition, it demonstrates that the average value of contact force increases linearly with overall pressure, but at a much faster rate, about 3.4 times the overall pressure increase rate. In this paper, the thermal creep properties of two different ceramic breeder pebble materials, Li 4 SiO 4 and Li 2 O, are also examined by the current numerical code. The difference found in the properties of candidate materials is reflected numerically in the overall strain in the pebble bed when the stress magnitude becomes smaller

  10. Verification of two-temperature method for heat transfer process within a pebble fuel

    International Nuclear Information System (INIS)

    Yu Dali; Peng Minjun

    2014-01-01

    A typical pebble fuel that used in high temperature reactor (HTR), mainly consists of a graphite matrix with numerous dispersed tristructural-isotropic (TRISO) fuel particles and a surrounding thin non-fueled graphite shell. These high heterogeneities lead to difficulty in explicit thermal calculation of a pebble fuel. We proposed a two-temperature method (TTM) to calculate the temperature distribution within a pebble fuel. The method is not only convenient to perform but also gives more realistic results since particles and graphite matrix are considered separately while the traditional ways are considering the fuel zone as average heat generation source. The method is validated both by Computational Fluid Dynamics (CFD) method and Wiener bounds. Results show that TTM has a stable performance and high accuracy. (author)

  11. DEM-CFD simulation of purge gas flow in a solid breeder pebble bed

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Zhenghong [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); University of Science and Technology of China, Hefei 230027 (China); Guo, Haibing [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Huang, Hongwen, E-mail: inpclane@sina.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-12-15

    Solid tritium breeding blanket applying pebble bed concept is promising for fusion reactors. Tritium bred in the pebble bed is purged out by inert gas. The flow characteristics of the purge gas are important for the tritium transport from the solid breeder materials. In this study, a randomly packed pebble bed was generated by Discrete Element Method (DEM) and verified by radial porosity distribution. The flow parameters of the purge gas in channels were solved by Computational Fluid Dynamics (CFD) method. The results show that the normalized velocity magnitudes have the same damped oscillating patterns with radial porosity distribution. Besides, the bypass flow near the wall cannot be ignored in this model, and it has a slight increase with inlet velocity. Furthermore, higher purging efficiency becomes with higher inlet velocity and especially higher in near wall region.

  12. Measurement of flow field in the pebble bed type high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Lee, Sa Ya; Lee, Jae Young

    2008-01-01

    In this study, flow field measurement of the Pebble Bed Reactor(PBR) for the High Temperature Gascooled Reactor(HTGR) was performed. Large number of pebbles in the core of PBR provides complicated flow channel. Due to the complicated geometries, numerical analysis has been intensively made rather than experimental observation. However, the justification of computational simulation by the experimental study is crucial to develop solid analysis of design method. In the present study, a wind tunnel installed with pebbles stacked was constructed and equipped with the Particle Image Velocimetry(PIV). We designed the system scaled up to realize the room temperature condition according to the similarity. The PIV observation gave us stagnation points, low speed region so that the suspected high temperature region can be identified. With the further supplementary experimental works, the present system may produce valuable data to justify the Computational Fluid Dynamics(CFD) simulation method

  13. Computational and experimental prediction of dust production in pebble bed reactors, Part II

    Energy Technology Data Exchange (ETDEWEB)

    Mie Hiruta; Gannon Johnson; Maziar Rostamian; Gabriel P. Potirniche; Abderrafi M. Ougouag; Massimo Bertino; Louis Franzel; Akira Tokuhiro

    2013-10-01

    This paper is the continuation of Part I, which describes the high temperature and high pressure helium environment wear tests of graphite–graphite in frictional contact. In the present work, it has been attempted to simulate a Pebble Bed Reactor core environment as compared to Part I. The experimental apparatus, which is a custom-designed tribometer, is capable of performing wear tests at PBR relevant higher temperatures and pressures under a helium environment. This environment facilitates prediction of wear mass loss of graphite as dust particulates from the pebble bed. The experimental results of high temperature helium environment are used to anticipate the amount of wear mass produced in a pebble bed nuclear reactor.

  14. Tritium release kinetics in lithium orthosilicate ceramic pebbles irradiated with low thermal-neutron fluence

    International Nuclear Information System (INIS)

    Xiao, Chengjian; Gao, Xiaoling; Kobayashi, Makoto; Kawasaki, Kiyotaka; Uchimura, Hiromichi; Toda, Kensuke; Kang, Chunmei; Chen, Xiaojun; Wang, Heyi; Peng, Shuming; Wang, Xiaolin; Oya, Yasuhisa; Okuno, Kenji

    2013-01-01

    Tritium release kinetics in lithium orthosilicate (Li 4 SiO 4 ) ceramic pebbles irradiated with low thermal-neutron fluence was studied by out-of-pile annealing experiments. It was found that the tritium produced in Li 4 SiO 4 pebbles was mainly released as tritiated water vapor (HTO). The apparent desorption activation energy of tritium on the pebble surface was consistent with the diffusion activation energy of tritium in the crystal grains, indicating that tritium release was mainly controlled by diffusion process. The diffusion coefficients of tritium in the crystal grains at temperatures ranging from 450 K to 600 K were obtained by isothermal annealing tests, and the Arrhenius relation was determined to be D = 1 × 10 −7.0 exp (−40.3 × 10 3 /RT) cm 2 s −1

  15. Tritium release kinetics in lithium orthosilicate ceramic pebbles irradiated with low thermal-neutron fluence

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Chengjian; Gao, Xiaoling [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Box 919-214, Mian Yang 621900 (China); Kobayashi, Makoto; Kawasaki, Kiyotaka; Uchimura, Hiromichi; Toda, Kensuke [China Academy of Engineering Physics, Box 919-1, Mian Yang 621900 (China); Kang, Chunmei; Chen, Xiaojun; Wang, Heyi; Peng, Shuming [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Box 919-214, Mian Yang 621900 (China); Wang, Xiaolin, E-mail: xlwang@caep.ac.cn [China Academy of Engineering Physics, Box 919-1, Mian Yang 621900 (China); Oya, Yasuhisa; Okuno, Kenji [Radiochemistry Research Laboratory, Faculty of Science, Shizuoka University, 836 Ohya, Shizuoka 422-8529 (Japan)

    2013-07-15

    Tritium release kinetics in lithium orthosilicate (Li{sub 4}SiO{sub 4}) ceramic pebbles irradiated with low thermal-neutron fluence was studied by out-of-pile annealing experiments. It was found that the tritium produced in Li{sub 4}SiO{sub 4} pebbles was mainly released as tritiated water vapor (HTO). The apparent desorption activation energy of tritium on the pebble surface was consistent with the diffusion activation energy of tritium in the crystal grains, indicating that tritium release was mainly controlled by diffusion process. The diffusion coefficients of tritium in the crystal grains at temperatures ranging from 450 K to 600 K were obtained by isothermal annealing tests, and the Arrhenius relation was determined to be D = 1 × 10{sup −7.0} exp (−40.3 × 10{sup 3}/RT) cm{sup 2} s{sup −1}.

  16. Electrical behaviour of ceramic breeder blankets in pebble form after γ-radiation

    Directory of Open Access Journals (Sweden)

    E. Carella

    2015-07-01

    Full Text Available Lithium orthosilicate (Li4SiO4 ceramics in from of pebble bed is the European candidate for ITER testing HCPB (Helium Cooled Pebble Bed breeding modules. The breeder function and the shielding role of this material, represent the areas upon which attention is focused. Electrical measurements are proposed for monitoring the modification created by ionizing radiation and at the same time provide information on lithium movement in this ceramic structure. The electrical tests are performed on pebbles fabricated by Spray-dryer method before and after gamma-irradiation through a 60Co source to a fluence of 4.8 Gy/s till a total dose of 5 ∗ 105 Gy. The introduction of thermal annealing treatments during the electrical impedance spectroscopy (EIS measurements points out the recombination effect of the temperature on the γ-induced defects.

  17. Characteristics of microstructure and tritium release properties of different kinds of beryllium pebbles for application in tritium breeding modules

    Energy Technology Data Exchange (ETDEWEB)

    Kurinskiy, P., E-mail: petr.kurinskiy@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials – Applied Materials Physics (IAM-AWP), P.O. Box 3640, Karlsruhe 76021 (Germany); Vladimirov, P.; Moeslang, A. [Karlsruhe Institute of Technology, Institute for Applied Materials – Applied Materials Physics (IAM-AWP), P.O. Box 3640, Karlsruhe 76021 (Germany); Rolli, R. [Karlsruhe Institute of Technology, Institute for Applied Materials – Materials and Biomechanics (IAM-WBM), P.O. Box 3640, Karlsruhe 76021 (Germany); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, Barcelona 08019 (Spain)

    2014-10-15

    Highlights: • Tritium release properties and characteristics of microstructure of beryllium pebbles having different sizes of grains were studied. • Fine-grained beryllium pebbles showed the best ability to release tritium compared to pebbles from another charges. • Be pebbles with the grain sizes exceeding 100 μm contain a great number of small pores and inclusions presumably referring to the history of material fabrication. • The sizes of grains are one of a key characteristic of microstructure which influences the parameters of tritium release. - Abstract: Beryllium pebbles with diameters of 1 mm are considered to be perspective material for the use as neutron multiplier in tritium breeding modules of fusion reactors. Up to now, the design of helium-cooled breeding blanket in ITER project foresees the use of 1 mm beryllium pebbles fabricated by NGK Insulators Ltd., Japan. It is notable that beryllium pebbles from Russian Federation and USA are also available and the possibility of their large-scale fabrication is under study. Presented work is dedicated to a study of characteristics of microstructure and parameters of tritium release of beryllium pebbles produced by Bochvar Institute, Russian Federation, and Materion Corporation, USA.

  18. 3D Nondestructive Visualization and Evaluation of TRISO Particles Distribution in HTGR Fuel Pebbles Using Cone-Beam Computed Tomography

    Directory of Open Access Journals (Sweden)

    Gongyi Yu

    2017-01-01

    Full Text Available A nonuniform distribution of tristructural isotropic (TRISO particles within a high-temperature gas-cooled reactor (HTGR pebble may lead to excessive thermal gradients and nonuniform thermal expansion during operation. If the particles are closely clustered, local hotspots may form, leading to excessive stresses on particle layers and an increased probability of particle failure. Although X-ray digital radiography (DR is currently used to evaluate the TRISO distributions in pebbles, X-ray DR projection images are two-dimensional in nature, which would potentially miss some details for 3D evaluation. This paper proposes a method of 3D visualization and evaluation of the TRISO distribution in HTGR pebbles using cone-beam computed tomography (CBCT: first, a pebble is scanned on our high-resolution CBCT, and 2D cross-sectional images are reconstructed; secondly, all cross-sectional images are restructured to form the 3D model of the pebble; then, volume rendering is applied to segment and display the TRISO particles in 3D for visualization and distribution evaluation. For method validation, several pebbles were scanned and the 3D distributions of the TRISO particles within the pebbles were produced. Experiment results show that the proposed method provides more 3D than DR, which will facilitate pebble fabrication research and production quality control.

  19. 78 FR 20168 - Notice of Intent To Rule on Request To Release Airport Property at the Boulder Municipal Airport...

    Science.gov (United States)

    2013-04-03

    ... To Release Airport Property at the Boulder Municipal Airport, Boulder, CO AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of request to release airport property. SUMMARY: The FAA proposes to... of Section 125 of the Wendell H. Ford Aviation Investment Reform Act for the 21st Century (AIR 21...

  20. Experimental study of flow field characteristics on bed configurations in the pebble bed reactor

    International Nuclear Information System (INIS)

    Jia, Xinlong; Gui, Nan; Yang, Xingtuan; Tu, Jiyuan; Jia, Haijun; Jiang, Shengyao

    2017-01-01

    Highlights: • PTV study of flow fields of pebble bed reactor with different configurations are carried out. • Some criteria are proposed to quantify vertical velocity field and flow uniformity. • The effect of different pebble bed configurations is also compared by the proposed criteria. • The displacement thickness is used analogically to analyze flow field characteristics. • The effect of mass flow variation in the stagnated region of the funnel flow is measured. - Abstract: The flow field characteristics are of fundamental importance in the design work of the pebble bed high temperature gas cooled reactor (HTGR). The different effects of bed configurations on the flow characteristics of pebble bed are studied through the PTV (Particle Tracking Velocimetry) experiment. Some criteria, e.g. flow uniformity (σ) and mass flow level (α), are proposed to estimate vertical velocity field and compare the bed configurations. The distribution of the Δθ (angle difference between the individual particle velocity and the velocity vector sum of all particles) is also used to estimate the resultant motion consistency level. Moreover, for each bed configuration, the thickness of displacement is analyzed to measure the effect of the funnel flow zone based on the boundary layer theory. Detailed information shows the quantified characteristics of bed configuration effects on flow uniformity and other characteristics; and the sequence of levels of each estimation criterion is obtained for all bed configurations. In addition, a good design of the pebble bed configuration is suggested and these estimation criteria can be also applied and adopted in testing other geometry designs of pebble bed.

  1. Interim report on core physics and fuel cycle analysis of the pebble bed reactor power plant concept

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1977-12-01

    Calculations were made to predict the performance of a pebble bed reactor operated in a mode to produce fissile fuel (high conversion or breeding). Both a one pebble design and a design involving large primary feed pebbles and small fertile pebbles were considered. A relatively short residence time of the primary pebbles loaded with 233 U fuel was found to be necessary to achieve a high breeding ratio, but this leads to relatively high fuel costs. A high fissile inventory is associated with a low C/Th ratio and a high thorium loading, causing the doubling time to be long, even though the breeding ratio is high, and the fuel cost of electrical product to be high. Production of 233 U fuel from 235 U feed was studied and performances of the converter and breeder reactor concepts were examined varying the key parameters

  2. Research and application of packing density for pebble bed in HTR

    International Nuclear Information System (INIS)

    Yu Fujiang; Xie Fei; Sun Ximing

    2015-01-01

    The pebble bed high temperature gas-cooled reactor is one of the major types of reactors developed by Chinese nuclear technology. The statistical analysis for packing density in the pebble bed is an important issue of physical-thermal calculation and safety analysis. Aimed to this problem, a new kind of method was set up to solve this problem. Compared with the traditional lattice-fill method and the experiment, its efficiency and accuracy were verified, while helping to find out the best length of unit in the traditional lattice-fill method. This method was used to analyze the boundary effects observed by experiments. (authors)

  3. Optimization of a radially cooled pebble bed reactor - HTR2008-58117

    International Nuclear Information System (INIS)

    Boer, B.; Kloosterman, J. L.; Lathouwers, D.; Van Der Hagen, T. H. J. J.; Van Dam, H.

    2008-01-01

    By altering the coolant flow direction in a pebble bed reactor from axial to radial, the pressure drop can be reduced tremendously. In this case the coolant flows from the outer reflector through the pebble bed and finally to flow paths in the inner reflector. As a consequence, the fuel temperatures are elevated due to the reduced heat transfer of the coolant. However, the power profile and pebble size in a radially cooled pebble bed reactor can be optimized to achieve lower fuel temperatures than current axially cooled designs, while the low pressure drop can be maintained. The radial power profile in the core can be altered by adopting multi-pass fuel management using several radial fuel zones in the core. The optimal power profile yielding a flat temperature profile is derived analytically and is approximated by radial fuel zoning. In this case, the pebbles pass through the outer region of the core first and each consecutive pass is located in a fuel zone closer to the inner reflector. Thereby, the resulting radial distribution of the fissile material in the core is influenced and the temperature profile is close to optimal. The fuel temperature in the pebbles can be further reduced by reducing the standard pebble diameter from 6 cm to a value as low as I cm. An analytical investigation is used to demonstrate the effects on the fuel temperature and pressure drop for both radial and axial cooling. Finally, two-dimensional numerical calculations were performed, using codes for neutronics, thermal-hydraulics and fuel depletion analysis, in order to validate the results for the optimized design that were obtained from the analytical investigations. It was found that for a radially cooled design with an optimized power profile and reduced pebble diameter (below 3.5 cm) both a reduction in the pressure drop (Δp = -2.6 bar), which increases the reactor efficiency with several percent, and a reduction in the maximum fuel temperature (ΔT = -50 deg. C) can be achieved

  4. Renewable side reflector structure for a pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Martin, Roger.

    1977-01-01

    The description is given of a renewable side reflector structure for a pebble bed high temperature reactor of the kind comprising a cylindrical graphite vessel constituting the neutron reflector, this vessel being filled with graphite pebbles containing the nuclear fuel and enclosed in a concrete protective containment. The internal peripheral area of the vessel is constituted by a line of adjacent graphite rods mounted so that they can rotate about their longitudinal axis and manoeuvrable from outside the concrete containment by means of a shaft passing into it [fr

  5. Pebble pile-up and planetesimal formation at the snow line

    Science.gov (United States)

    Drazkowska, J.

    2017-09-01

    The planetesimal formation stage represents a major gap in our understanding of planet formation process. Because of this, the late-stage planet accretion models typically make arbitrary assumptions about planetesimals and pebbles distribution, while the state-of-the-art dust evolution models predict no or little planetesimal formation. With this contribution, I present a step toward bridging the gap between the early and late stages of planet formation by models that connect dust coagulation and planetesimal formation. With the aid of evaporation, outward diffusion, and re-condensation of water vapor, pile-up of large pebbles is formed outside of the snow line that facilitates planetesimal formation by streaming instability.

  6. Acceleration of coupled granular flow and fluid flow simulations in pebble bed energy systems

    International Nuclear Information System (INIS)

    Li, Yanheng; Ji, Wei

    2013-01-01

    Highlights: ► Fast simulation of coupled pebble flow and coolant flow in PBR systems is studied. ► Dimension reduction based on axisymmetric geometry shows significant speedup. ► Relaxation of coupling frequency is investigated and an optimal range is determined. ► A total of 80% efficiency increase is achieved by the two fast strategies. ► Fast strategies can be applied to simulating other general fluidized bed systems. -- Abstract: Fast and accurate approaches to simulating the coupled particle flow and fluid flow are of importance to the analysis of large particle-fluid systems. This is especially needed when one tries to simulate pebble flow and coolant flow in Pebble Bed Reactor (PBR) energy systems on a routine basis. As one of the Generation IV designs, the PBR design is a promising nuclear energy system with high fuel performance and inherent safety. A typical PBR core can be modeled as a particle-fluid system with strong interactions among pebbles, coolants and reactor walls. In previous works, the coupled Discrete Element Method (DEM)-Computational Fluid Dynamics (CFD) approach has been investigated and applied to modeling PBR systems. However, the DEM-CFD approach is computationally expensive due to large amounts of pebbles in PBR systems. This greatly restricts the PBR analysis for the real time prediction and inclusion of more physics. In this work, based on the symmetry of the PBR geometry and the slow motion characteristics of the pebble flow, two acceleration strategies are proposed. First, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without loss of accuracy. Pebble flow is simulated by a full 3D DEM, while the coolant flow field is calculated with a 2D CFD simulation by averaging variables along the annular direction in the cylindrical and annular geometries. Second, based on the slow motion of pebble flow, the impact of the coupling frequency on the computation accuracy and efficiency is

  7. Acceleration of coupled granular flow and fluid flow simulations in pebble bed energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanheng, E-mail: liy19@rpi.edu [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY (United States); Ji, Wei, E-mail: jiw2@rpi.edu [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY (United States)

    2013-05-15

    Highlights: ► Fast simulation of coupled pebble flow and coolant flow in PBR systems is studied. ► Dimension reduction based on axisymmetric geometry shows significant speedup. ► Relaxation of coupling frequency is investigated and an optimal range is determined. ► A total of 80% efficiency increase is achieved by the two fast strategies. ► Fast strategies can be applied to simulating other general fluidized bed systems. -- Abstract: Fast and accurate approaches to simulating the coupled particle flow and fluid flow are of importance to the analysis of large particle-fluid systems. This is especially needed when one tries to simulate pebble flow and coolant flow in Pebble Bed Reactor (PBR) energy systems on a routine basis. As one of the Generation IV designs, the PBR design is a promising nuclear energy system with high fuel performance and inherent safety. A typical PBR core can be modeled as a particle-fluid system with strong interactions among pebbles, coolants and reactor walls. In previous works, the coupled Discrete Element Method (DEM)-Computational Fluid Dynamics (CFD) approach has been investigated and applied to modeling PBR systems. However, the DEM-CFD approach is computationally expensive due to large amounts of pebbles in PBR systems. This greatly restricts the PBR analysis for the real time prediction and inclusion of more physics. In this work, based on the symmetry of the PBR geometry and the slow motion characteristics of the pebble flow, two acceleration strategies are proposed. First, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without loss of accuracy. Pebble flow is simulated by a full 3D DEM, while the coolant flow field is calculated with a 2D CFD simulation by averaging variables along the annular direction in the cylindrical and annular geometries. Second, based on the slow motion of pebble flow, the impact of the coupling frequency on the computation accuracy and efficiency is

  8. Absorber rod for nuclear reactors in a pebble bed of spherical operating elements

    International Nuclear Information System (INIS)

    Reinstein, D.; Gnutzmann, H.

    1978-01-01

    The claim refers to the constructional configuration of an absorber rod, whose and penetrating into the pebble bed has an opening to reduce the fracture rate, so that the operating elements can escape into a channel within the absorber rod. To suit this to the direction of movement of the elements a part of the end of the rod is flexibly connected to the hollow absorber rod via a joint. In this way the mechanical load of the element particles is reduced and simultaneously one achieves that much lower force is required to insert the absorber rod into the pebble bed. (UA) [de

  9. Restoration of a boulder reef in temperate waters: Strategy, methodology and lessons learnt

    DEFF Research Database (Denmark)

    Støttrup, Josianne Gatt; Dahl, Karsten; Niemann, Sanne

    2017-01-01

    Anthropogenic impacts on marine habitats are a global problem, particularly in coastal areas. While boulder reefs in temperate waters hold high biomass and biodiversity, and may be unable to recover from anthropogenic stressors without restoration efforts, little is known about how to restore and...

  10. Giant boulders and Last Interglacial storm intensity in the North Atlantic

    Science.gov (United States)

    Rovere, Alessio; Casella, Elisa; Harris, Daniel L.; Lorscheid, Thomas; Nandasena, Napayalage A. K.; Dyer, Blake; Sandstrom, Michael R.; Stocchi, Paolo; D'Andrea, William J.; Raymo, Maureen E.

    2017-11-01

    As global climate warms and sea level rises, coastal areas will be subject to more frequent extreme flooding and hurricanes. Geologic evidence for extreme coastal storms during past warm periods has the potential to provide fundamental insights into their future intensity. Recent studies argue that during the Last Interglacial (MIS 5e, ˜128–116 ka) tropical and extratropical North Atlantic cyclones may have been more intense than at present, and may have produced waves larger than those observed historically. Such strong swells are inferred to have created a number of geologic features that can be observed today along the coastlines of Bermuda and the Bahamas. In this paper, we investigate the most iconic among these features: massive boulders atop a cliff in North Eleuthera, Bahamas. We combine geologic field surveys, wave models, and boulder transport equations to test the hypothesis that such boulders must have been emplaced by storms of greater-than-historical intensity. By contrast, our results suggest that with the higher relative sea level (RSL) estimated for the Bahamas during MIS 5e, boulders of this size could have been transported by waves generated by storms of historical intensity. Thus, while the megaboulders of Eleuthera cannot be used as geologic proof for past “superstorms,” they do show that with rising sea levels, cliffs and coastal barriers will be subject to significantly greater erosional energy, even without changes in storm intensity.

  11. Magnetic Characterization of Sand and Boulder Samples from Citarum River and Their Origin

    Directory of Open Access Journals (Sweden)

    Sudarningsih

    2017-09-01

    Full Text Available The Citarum River is a nationally strategic river located near Bandung, the capital city of West Java Province. The feasibility of using magnetic methods for monitoring pollution level is currently being tested in the river. Due to its location in a volcanic area, the sediments from the river are expected to be highly magnetic. In this study, sand and boulder samples from Balekambang, a relatively pristine upstream area of the river, were subjected to magnetic and geochemical characterizations to establish the baseline for unpolluted sediments. Such baseline is important for future magnetic monitoring of sediments in the river. The mass-specific magnetic susceptibility of boulder samples was found to be varied from 819.2 to 2340.5 × 10-8m3 kg-1 while that of sand samples varied from 2293.9 to 3845.3 × 10-8m3 kg-1. These high magnetic susceptibility values infer that river sediments are highly magnetic even before being contaminated by industrial and household wastes. The predominant magnetic mineral in sand samples was multi-domain magnetite while that in boulder samples was single to pseudo-single domain magnetite. These differences were supported by the results from petrographic and XRF analyses, implying that the sand and boulder samples originated from different geological formations.

  12. 78 FR 79436 - Boulder Canyon Project-Post-2017 Resource Pool

    Science.gov (United States)

    2013-12-30

    ... customers of electric utilities. The marketing criteria should include municipal corporations and political... Pool AGENCY: Western Area Power Administration, DOE. ACTION: Notice of final marketing criteria and... marketing agency of the Department of Energy (DOE), announces the Boulder Canyon Project (BCP) post-2017...

  13. Giant boulders and Last Interglacial storm intensity in the North Atlantic.

    Science.gov (United States)

    Rovere, Alessio; Casella, Elisa; Harris, Daniel L; Lorscheid, Thomas; Nandasena, Napayalage A K; Dyer, Blake; Sandstrom, Michael R; Stocchi, Paolo; D'Andrea, William J; Raymo, Maureen E

    2017-11-14

    As global climate warms and sea level rises, coastal areas will be subject to more frequent extreme flooding and hurricanes. Geologic evidence for extreme coastal storms during past warm periods has the potential to provide fundamental insights into their future intensity. Recent studies argue that during the Last Interglacial (MIS 5e, ∼128-116 ka) tropical and extratropical North Atlantic cyclones may have been more intense than at present, and may have produced waves larger than those observed historically. Such strong swells are inferred to have created a number of geologic features that can be observed today along the coastlines of Bermuda and the Bahamas. In this paper, we investigate the most iconic among these features: massive boulders atop a cliff in North Eleuthera, Bahamas. We combine geologic field surveys, wave models, and boulder transport equations to test the hypothesis that such boulders must have been emplaced by storms of greater-than-historical intensity. By contrast, our results suggest that with the higher relative sea level (RSL) estimated for the Bahamas during MIS 5e, boulders of this size could have been transported by waves generated by storms of historical intensity. Thus, while the megaboulders of Eleuthera cannot be used as geologic proof for past "superstorms," they do show that with rising sea levels, cliffs and coastal barriers will be subject to significantly greater erosional energy, even without changes in storm intensity.

  14. ADULT COHO SALMON AND STEELHEAD USE OF BOULDER WEIRS IN SOUTHWEST OREGON STREAMS

    Science.gov (United States)

    The placement of log and boulder structures in streams is a common and often effective technique for improving juvenile salmonid rearing habitat and increasing fish densities. Less frequently examined has been the use of these structures by adult salmonids. In 2004, spawner densi...

  15. Recent progress in the modelling of helium and tritium behaviour in irradiated beryllium pebbles

    International Nuclear Information System (INIS)

    Rabaglino, E.; Ronchi, C.; Cardella, A.

    2003-01-01

    One of the key issues of the European Helium Cooled Pebble Bed blanket is the behaviour under irradiation of beryllium pebbles, which have the function of neutron multiplier. An intense production of helium occurs in-pile, as well as a non negligible generation of tritium. Helium bubbles induce swelling and a high tritium inventory is a safety issue. Extensive studies for a better understanding, characterisation and modelling of the behaviour of helium and tritium in irradiated beryllium pebbles are being carried out, with the final aim to enable a reliable prediction of gas release and swelling in the full range of operating and accidental conditions of a Fusion Power Reactor. The general strategy consists in integrating studies on macroscopic phenomena (gas release) with the characterisation of corresponding microscopic diffusion phenomena (bubble kinetics) and the assessment of some fundamental diffusion parameter for the models (gas atomic diffusion coefficients). The present work gives a summary of the latest achievements in this context. By an inverse analysis of experimental out-of-pile gas release from weakly irradiated pebbles, coupled to the study of the characteristics of bubble population, it has been possible to assess the thermal diffusion coefficients of helium and tritium in and to improve and validate the classical model of gas precipitation into bubbles inside the grain. The improvement of the description of gas atomic diffusion and precipitation is the first step to enable a more reliable prediction of gas release

  16. Drucker-Prager-Cap creep modelling of pebble beds in fusion blankets

    International Nuclear Information System (INIS)

    Hofer, D.; Kamlah, M.

    2005-01-01

    Modelling of thermal and mechanical behaviour of pebble beds for fusion blankets is an important issue to understand the interaction of solid breeder and beryllium pebble beds with the surrounding structural material. Especially the differing coefficients of thermal expansion of these materials cause high stresses and strains during irradiation induced volumetric heating. To describe this process, the coupled thermomechanical behaviour of both pebble bed materials has to be modelled. Additionally, creep has to be considered contributing to bed deformations and stress relaxation. Motivated by experiments, we use a continuum mechanical approach called Drucker-Prager/Cap theory to model the macroscopic pebble bed behaviour. The model accounts for pressure dependent shear failure, inelastic hardening, and volumetric creep. The elastic part is described by a nonlinear elasticity law. The model has been implemented by user-defined routines in the commercial finite-element code ABAQUS. To check the numerics, the implementation is compared to an analytical solution. Furthermore, the Drucker-Prager/Cap tool is applied to a single ceramic breeder bed subject to creep under volumetric heating

  17. Optimized core design and fuel management of a pebble-bed type nuclear reactor

    NARCIS (Netherlands)

    Boer, B.

    2009-01-01

    The core design of a pebble-bed type Very High Temperature Reactor (VHTR) is optimized, aiming for an increase of the coolant outlet temperature to 1000 C, while retaining its inherent safety features. The VHTR has been selected by the international Generation IV research initiative as one of the

  18. A solid target for SINQ based on a Pb-shot Pebble-bed

    International Nuclear Information System (INIS)

    Atchison, F.; Heidenreich, G.

    1991-01-01

    Preliminary results from scoping calculations examining the possibilities of implementing a Pebble-bed of Pb-shot as a target for SINQ are presented. The primary design objects are set out and estimates of heating and activation given. Cooling circuit parameters are discussed and estimates for operating conditions presented. A short discussion of problems associated with a realisation is included. (author)

  19. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D

    2015-03-31

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  20. Optimized Core Design and Fuel Management of a Pebble-Bed Type Nuclear Reactor

    International Nuclear Information System (INIS)

    Boer, Brian

    2007-01-01

    The Very High Temperature Reactor (VHTR) has been selected by the international Generation IV research initiative as one of the six most promising nuclear reactor concepts that are expected to enter service in the second half of the 21st century. The VHTR is characterized by a high plant efficiency and a high fuel discharge burnup level. More specifically, the (pebble-bed type) High Temperature Reactor (HTR) is known for its inherently safe characteristics, coming from a negative temperature reactivity feedback, a low power density and a large thermal inertia of the core. The core of a pebble-bed reactor consists of graphite spheres (pebbles) that form a randomly packed porous bed, which is cooled by high pressure helium. The pebbles contain thousands of fuel particles, which are coated with several pyrocarbon and silicon carbon layers that are designed to contain the fission products that are formed during operation of the reactor. The inherent safety concept has been demonstrated in small pebble-bed reactors in practice, but an increase in the reactor size and power is required for cost-effective power production. An increase of the power density in order to increase the helium coolant outlet temperature is attractive with regard to the efficiency and possible process heat applications. However, this increase leads in general to higher fuel temperatures, which could lead to a consequent increase of the fuel coating failure probability. This thesis deals with the pebble-bed type VHTR that aims at an increased coolant outlet temperature of 1000 degrees C and beyond. For the simulation of the neutronic and thermal-hydraulic behavior of the reactor the DALTON-THERMIX coupled code system has been developed and has been validated against experiments performed in the AVR and HTR-10 reactors. An analysis of the 400 MWth Pebble Bed Modular Reactor (PBMR) design shows that the inherent safety concept that has been demonstrated in practice in the smaller AVR and HTR-10

  1. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Science.gov (United States)

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  2. Growing Pebbles and Conceptual Prisms - Understanding the Source of Student Misconceptions about Rock Formation.

    Science.gov (United States)

    Kusnick, Judi

    2002-01-01

    Analyzes narrative essays--stories of rock formation--written by pre-service elementary school teachers. Reports startling misconceptions among preservice teachers on pebbles that grow, human involvement in rock formation, and sedimentary rocks forming as puddles as dry up, even though these students had completed a college level course on Earth…

  3. Discussion on Design Transients of Pebble-bed High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Wang Yan; Li Fu; Zheng Yanhua

    2014-01-01

    In order to assure high quality for the components and their supports in the reactor coolant system, etc., some thermal-hydraulic transient conditions will be selected and researched for equipment design evaluation to satisfy the requirements ASME code, which are based on the conservative estimates of the magnitude and frequency of the temperature and pressure transients resulting from various operating conditions in the plant. In the mature design on pressurized water reactor, five conditions are considered. For the developing advanced pebble-bed high temperature gas-cooled reactor(HTGR), its design and operation has much difference with other reactors, so the transients of the pebble-bed high temperature gas-cooled reactor have distinctive characteristics. In this paper, the possible design transients of the pebble-bed HTGR will be discussed, and the frequency of design transients for equipment fatigue analysis and stress analysis due to cyclic stresses is also studied. The results will provide support for the design and construct of the pebble-bed HTGR. (author)

  4. Computational Investigation of On-Line Interrogation of Pebble Bed Reactor Fuel

    Science.gov (United States)

    Hawari, A. I.; Chen, Jianwei

    2005-10-01

    Pebble bed reactors are characterized by multipass fuel systems in which spherical fuel pebbles are circulated through the core until they reach a proposed burnup limit (80000-100000 MWD/MTU). For such reactors, the fuel is assayed on-line to ensure that the burnup limit is not breached. We considered assaying the fuel using an HPGe detector to perform passive gamma-ray spectrometry of fission products. Since neither fresh nor irradiated fuel is readily available, computer simulations were utilized to identify the radionuclides that can be used as burnup indicators, and to visualize the gamma-ray spectra at various levels of burnup. Specifically, we used the ORIGEN-MONTEBURNS-MCNP code system. This allowed the establishment of the burnup dependent one-group gas reactor cross-sections for the radionuclides of interest. Subsequently, ORIGEN was used to simulate in-core pebble depletion to establish the irradiated pebble isotopics. Finally, the codes MCNP and SYNTH were used to simulate the response of the HPGe gamma-ray spectrometer. The results show that absolute and relative indicators can be used on-line to determine unambiguously the enrichment and burnup on a pebble-by-pebble basis. The activity of Cs-137 or the activity ratio of Co-60/Cs-134 can be combined with the activity ratio of Np-239/I-132 to yield the enrichment and burnup information. To use the relative indicators, a relative efficiency calibration of the gamma-ray spectrometer can be performed using the La-140 gamma lines that are emitted by the irradiated pebble. I-132, Cs-134, Cs-137, La-140, and Np-239 are produced upon the irradiation of the fuel. Co-60 is produced by doping the fuel with a small amount (/spl sim/100 ppm) of Co-59. Using this approach, the uncertainty in burnup determination due to factors such as power history variation, detector efficiency calibration, and counting statistics is expected to remain in the range of /spl plusmn/5% to /spl plusmn/10%.

  5. Computational prediction of dust production in graphite moderated pebble bed reactors

    Science.gov (United States)

    Rostamian, Maziar

    The scope of the work reported here, which is the computational study of graphite wear behavior, supports the Nuclear Engineering University Programs project "Experimental Study and Computational Simulations of Key Pebble Bed Thermomechanics Issues for Design and Safety" funded by the US Department of Energy. In this work, modeling and simulating the contact mechanics, as anticipated in a PBR configuration, is carried out for the purpose of assessing the amount of dust generated during a full power operation year of a PBR. A methodology that encompasses finite element analysis (FEA) and micromechanics of wear is developed to address the issue of dust production and its quantification. Particularly, the phenomenon of wear and change of its rate with sliding length is the main focus of this dissertation. This work studies the wear properties of graphite by simulating pebble motion and interactions of a specific type of nuclear grade graphite, IG-11. This study consists of two perspectives: macroscale stress analysis and microscale analysis of wear mechanisms. The first is a set of FEA simulations considering pebble-pebble frictional contact. In these simulations, the mass of generated graphite particulates due to frictional contact is calculated by incorporating FEA results into Archard's equation, which is a linear correlation between wear mass and wear length. However, the experimental data by Johnson, University of Idaho, revealed that the wear rate of graphite decreases with sliding length. This is because the surfaces of the graphite pebbles become smoother over time, which results in a gradual decrease in wear rate. In order to address the change in wear rate, a more detailed analysis of wear mechanisms at room temperature is presented. In this microscale study, the wear behavior of graphite at the asperity level is studied by simulating the contact between asperities of facing surfaces. By introducing the effect of asperity removal on wear rate, a nonlinear

  6. Measurement of thermal expansion for a Li2TiO3 pebble bed

    International Nuclear Information System (INIS)

    Hisashi Tanigawa; Mikio Enoeda; Masato Akiba

    2006-01-01

    In the current design of the blanket with ceramic breeders, pebbles of breeding materials are packed into a container and used as a pebble bed. Thermal and mechanical conditions externally loaded on the bed affect thermal and mechanical properties of the bed. It is necessary to analyze thermo-mechanical properties of the bed under controlled thermal and mechanical conditions. In the present paper, thermal expansion of a Li 2 TiO 3 pebble bed was investigated. Our apparatus consists of a tensile test-apparatus and a measurement chamber. Pebbles of Li 2 TiO 3 with 2 mm diameter were used. They were packed into a container made of alumina. At first, thermal expansion of the apparatus was calibrated because the measured deformation included thermal expansions of the load rods and the container. Instead of the pebble bed, a column made of copper was installed and thermal expansion of the system was measured for the calibration. Taking into account the estimated thermal expansion of the column, thermal expansion of the rods and the container could be analyzed. Based on the correction, thermal expansion of the pebble bed was measured under compression of 0.1 MPa. Temperature of the bed was regulated from room temperature to 973 K. From the measured expansion of the bed, average thermal expansion coefficient was estimated. For the beds with different packing factors ranging from 65.5 to 68.5 %, thermal expansion coefficients were 1.4 ± 0. 10-5 K -1 . In the first measurement of the beds without pre-loading, expansion coefficients were larger for the cooling process than heating. When the beds were successively heated and cooled, the difference decreased. This means that relocation of the pebbles arises in the first heat treatment and progress of compaction is larger in the cooling process than heating. After a few heat treatments, packing states of the beds reach stable and expansion coefficients for both heat and cooling processes are close. In the case of the beds that

  7. Fabrication of Li{sub 4}SiO{sub 4} pebbles by a sol-gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xiangwei [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Wen Zhaoyin [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)], E-mail: zywen@mail.sic.ac.cn; Xu Xiaogang; Liu Yu [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2010-04-15

    Li{sub 4}SiO{sub 4} pebbles are considered as candidate ceramic breeder materials in many blanket designs. In this work, Li{sub 4}SiO{sub 4} pebbles with adequate sphericity were fabricated by a water-based sol-gel process using LiOH and SiO{sub 2} (aerosil) as the raw materials, which has not been reported for fabrication of Li{sub 4}SiO{sub 4} pebbles previously. Thermal analysis, phase analysis and morphological observations were carried out systematically. The effects of LiOH/C{sub 6}H{sub 8}O{sub 7} molar ratios and sintering temperature on the microstructure and density of the pebbles were discussed. Experimental results showed that when the LiOH/C{sub 6}H{sub 8}O{sub 7} molar ratio was 3, the microstructure of the Li{sub 4}SiO{sub 4} pebbles was the most favorable. While sintered at 900 deg. C for 4 h, Li{sub 4}SiO{sub 4} pebbles with about 1.2 mm in diameter were obtained and the density of the pebbles achieved about 74%.

  8. Thermo-mechanical and neutron lifetime modelling and design of Be pebbles in the neutron multiplier for the LIFE engine

    International Nuclear Information System (INIS)

    DeMange, P.; Marian, J.; Caro, M.; Caro, A.

    2009-01-01

    Concept designs for the laser inertial fusion/fission energy (LIFE) engine include a neutron multiplication blanket containing Be pebbles flowing in a molten salt coolant. These pebbles must be designed to withstand the extreme irradiation and temperature conditions in the blanket to enable a reliable and cost-effective operation of LIFE. In this work, we develop design criteria for spherical Be pebbles on the basis of their thermo-mechanical behaviour under continued neutron exposure. We consider the effects of high fluence and fast fluxes on the elastic, thermal and mechanical properties of nuclear-grade Be. Our results suggest a maximum pebble diameter of 30 mm to avoid tensile failure, coated with an anti-corrosive, high-strength metallic shell to avoid failure by pebble contact. Moreover, we find that the operation temperature must always be kept above 450 deg. C to enable creep to relax the stresses induced by swelling. Under these circumstances, we estimate the pebble lifetime to be at least 16 months if uncoated, and up to six years when coated. We identify the sources of uncertainty on the properties used and discuss the advantages of new intermetallic beryllides and their use in LIFE's neutron multiplier. To establish Be-pebble lifetimes with improved confidence, reliable experiments to measure irradiation creep must be performed.

  9. A modified time-temperature relationship for titanomagnetite and its application to igneous erratic boulders in Hachijo Island, Japan

    Science.gov (United States)

    Tonosaki, T.; Nakamura, N.; Goto, K.; Sato, T.; Watanabe, M.

    2016-12-01

    On land along shore line in an island all over the world, there are many huge boulders which seem that they had been broken and transported by errastic events (such as extreme waves). The presence of boulders on land provides geological evidence that the region had been suffered by ancient tsunami or storm waves, establishing the evaluation of risk-management policies for future disasters. In volcanic island of Hachijo, Japan, there are huge (>5000 kg) andesitic boulder (20 m altitude high), and basaltic boulders (4 m altitude high) which seem that they had been broken from an outcrop and emplaced from it. Because radiocarbon dating can not be applied to volcanic rocks, a magnetic viscous dating might be powerful tool to determine the rotation history of rocks. Tyson Smith and Vrosub (1994) succeeded in revealing the age of landslide basaltic rocks by geological evidence, using Pullaiah's time-temperature monogram by Neel's relaxation theory of single domain (SD) particles of magnetite (Pullaiah et al. 1975). However, our application of this monogram to igneous boulders fails to determine the age due to a different magnetic mineralogy including titanomagnetite. Therefore, by introducing a modified monogram for single domain particles of titanomagnetite, we tried to reveal a possible reworked age of the boulders. However, our boulders still fail to identify the reworked age. In this presentation, we will present our current situation of the problem and a working hypothesis to solve it.

  10. Boulders, biology and buildings: Why weathering is vital to geomorphology (Ralph Alger Bagnold Medal Lecture)

    Science.gov (United States)

    Viles, Heather A.

    2015-04-01

    Weathering is vital to geomorphology in three main senses. First, it is vital in the sense of being a fundamental and near-ubiquitous earth surface process without which landscapes would not develop, and which also provides a key link between geomorphology and the broader Earth system. Second, weathering is vital in the sense that, as it is heavily influenced by biotic processes, it demonstrates the importance of life to geomorphology and vice versa. In particular, weathering illustrates the many cross-linkages between microbial ecosystems and geomorphology. Finally, it is vital in the sense that weathering provides an important practical application of geomorphological knowledge. Geomorphologists in recent years have contributed much in terms of improving understanding the deterioration of rocks, stone and other materials in heritage sites and the built environment. This knowledge has also had direct implications for heritage conservation. This lecture reviews recent research on each of these three themes and on their linkages, and sets an integrated research agenda for the future. Weathering as a key process underpinning geomorphology and Earth system science has been the subject of much recent conceptual and empirical research. In particular, conceptual research advances have involved improving conceptualisation of scale issues and process synergies, and understanding weathering in terms of non-linear dynamical systems. Empirical advances have included the development of larger datasets on weathering rates, and the application of a wide range of non-destructive and remote sensing techniques to quantify weathering morphologies on boulder and rock surfaces. In recent years, understanding of the complex linkages between ecology and geomorphology (sometimes called biogeomorphology) has advanced particularly strongly in terms of weathering. For example, the influences of disturbance on biota and weathering have been conceptualised and investigated empirically in a

  11. Random geometry capability in RMC code for explicit analysis of polytype particle/pebble and applications to HTR-10 benchmark

    International Nuclear Information System (INIS)

    Liu, Shichang; Li, Zeguang; Wang, Kan; Cheng, Quan; She, Ding

    2018-01-01

    Highlights: •A new random geometry was developed in RMC for mixed and polytype particle/pebble. •This capability was applied to the full core calculations of HTR-10 benchmark. •Reactivity, temperature coefficient and control rod worth of HTR-10 were compared. •This method can explicitly model different packing fraction of different pebbles. •Monte Carlo code with this method can simulate polytype particle/pebble type reactor. -- Abstract: With the increasing demands of high fidelity neutronics analysis and the development of computer technology, Monte Carlo method is becoming more and more attractive in accurate simulation of pebble bed High Temperature gas-cooled Reactor (HTR), owing to its advantages of the flexible geometry modeling and the use of continuous-energy nuclear cross sections. For the double-heterogeneous geometry of pebble bed, traditional Monte Carlo codes can treat it by explicit geometry description. However, packing methods such as Random Sequential Addition (RSA) can only produce a sphere packing up to 38% volume packing fraction, while Discrete Element Method (DEM) is troublesome and also time consuming. Moreover, traditional Monte Carlo codes are difficult and inconvenient to simulate the mixed and polytype particles or pebbles. A new random geometry method was developed in Monte Carlo code RMC to simulate the particle transport in polytype particle/pebble in double heterogeneous geometry systems. This method was verified by some test cases, and applied to the full core calculations of HTR-10 benchmark. The reactivity, temperature coefficient and control rod worth of HTR-10 were compared for full core and initial core in helium and air atmosphere respectively, and the results agree well with the benchmark results and experimental results. This work would provide an efficient tool for the innovative design of pebble bed, prism HTRs and molten salt reactors with polytype particles or pebbles using Monte Carlo method.

  12. Investigation of effective thermal conductivity for pebble beds by one-way coupled CFD-DEM method for CFETR WCCB

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230027 (China); Chen, Youhua [University of Science and Technology of China, Hefei, Anhui 230027 (China); Huang, Kai [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230027 (China)

    2016-05-15

    Highlights: • A CFD-DEM coupled numerical model is built based on the prototypical blanket pebble bed. • The numerical model can be applied to simulate heat transfer of a pebble bed and estimate effective thermal conductivity. • The numerical model agrees well with the theoretical SZB model. • Effective thermal conductivity of pebble beds for WCCB is estimated by the current model. - Abstract: The mono-sized beryllium pebble bed and the multi-sized Li{sub 2}TiO{sub 3}/Be{sub 12}Ti mixed pebble bed are the main schemes for the Water-cooled ceramic breeder blanket (WCCB) of China Fusion Engineering Test Reactor (CFETR). And the effective thermal conductivity (k{sub eff}) of the pebble beds is important to characterize the thermal performance of WCCB. In this study, a one-way coupled CFD-DEM method was employed to simulate heat transfer and estimate k{sub eff}. The geometric topology of a prototypical blanket pebble bed was produced by the discrete element method (DEM). Based on the geometric topology, the temperature distribution and the k{sub eff} were obtained by the computational fluid dynamics (CFD) analysis. The current numerical model presented a good performance to calculate k{sub eff} of the beryllium pebble bed, and according to the modeling of the Li{sub 2}TiO{sub 3}/Be{sub 12}Ti mixed pebble bed, k{sub eff} was estimated with values ranged between 2.0 and 4.0 W/(m∙K).

  13. A study on Monte Carlo analysis of Pebble-type VHTR core for hydrogen production

    International Nuclear Information System (INIS)

    Kim, Hong Chul

    2005-02-01

    In order to pursue exact the core analysis for VHTR core which will be developed in future, a study on Monte Carol method was carried out. In Korea, pebble and prism type core are under investigation for VHTR core analysis. In this study, pebble-type core was investigated because it was known that it should not only maintain the nuclear fuel integrity but also have the advantage in economical efficiency and safety. The pebble-bed cores of HTR-PROTEUS critical facility in Swiss were selected for the benchmark model. After the detailed MCNP modeling of the whole facility, calculations of nuclear characteristics were performed. The two core configurations, Core 4.3 and Core 5 (reference state no. 3), among the 10 configurations of the HTR-PROTEUS cores were chosen to be analyzed in order to treat different fuel loading pattern and modeled. The former is a random packing core and the latter deterministic packing core. Based on the experimental data and the benchmark result of other research groups for the two different cores, some nuclear characteristics were calculated. Firstly, keff was calculated for these cores. The effect for TRIO homogeneity model was investigated. Control rod and shutdown rod worths also were calculated and the sensitivity analysis on cross-section library and reflector thickness was pursued. Lastly, neutron flux profiles were investigated in reflector regions. It is noted that Monte Carlo analysis of pebble-type VHTR core was firstly carried out in Korea. Also, this study should not only provide the basic data for pebble-type VHTR core analysis for hydrogen production but also be utilized as the verified data to validate a computer code for VHTR core analysis which will be developed in future

  14. Quasi-direct numerical simulation of a pebble bed configuration, Part-II: Temperature field analysis

    International Nuclear Information System (INIS)

    Shams, A.; Roelofs, F.; Komen, E.M.J.; Baglietto, E.

    2013-01-01

    Highlights: ► Quasi direct numerical simulations (q-DNSs) of a pebble bed configuration have been performed. ► This q-DNS database may serve as a reference for the validation of different turbulence modeling approaches. ► A wide range of qualitative and quantitative data throughout the computational domain has been generated. ► Results for mean, RMS of temperature and respective turbulent heat fluxes are extensively reported in this paper. -- Abstract: Good prediction of the flow and heat transfer phenomena in the pebble bed core of a high temperature reactor (HTR) is a challenge for available turbulence models, which still require to be validated. While experimental data are generally desirable in this validation process, due to the complex geometric configuration and measurement difficulties, a very limited amount of data is currently available. On the other hand, direct numerical simulation (DNS) is considered an accurate simulation technique, which may serve as an alternative for validating turbulence models. In the framework of the present study, quasi-direct numerical simulation (q-DNS) of a single face cubic centered pebble bed is performed, which will serve as a reference for the validation of different turbulence modeling approaches in order to perform calculations for a randomly arranged pebble bed. These simulations were performed at a Reynolds number of 3088, based on pebble diameter, with a porosity level of 0.42. Results related to flow field (mean, RMS and covariance of velocity) have been presented in Part-I, whereas, in the present article, we focus our attention to the analysis of the temperature field. A wide range of qualitative and quantitative data for the thermal field (mean, RMS and turbulent heat flux) has been generated

  15. Neutron Fluence And DPA Rate Analysis In Pebble-Bed HTR Reactor Vessel Using MCNP

    Science.gov (United States)

    Hamzah, Amir; Suwoto; Rohanda, Anis; Adrial, Hery; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    In the Pebble-bed HTR reactor, the distance between the core and the reactor vessel is very close and the media inside are carbon and He gas. Neutron moderation capability of graphite material is theoretically lower than that of water-moderated reactors. Thus, it is estimated much more the fast neutrons will reach the reactor vessel. The fast neutron collisions with the atoms in the reactor vessel will result in radiation damage and could be reducing the vessel life. The purpose of this study was to obtain the magnitude of neutron fluence in the Pebble-bed HTR reactor vessel. Neutron fluence calculations in the pebble-bed HTR reactor vessel were performed using the MCNP computer program. By determining the tally position, it can be calculated flux, spectrum and neutron fluence in the position of Pebble-bed HTR reactor vessel. The calculations results of total neutron flux and fast neutron flux in the reactor vessel of 1.82x108 n/cm2/s and 1.79x108 n/cm2/s respectively. The fast neutron fluence in the reactor vessel is 3.4x1017 n/cm2 for 60 years reactor operation. Radiation damage in stainless steel material caused by high-energy neutrons (> 1.0 MeV) will occur when it has reached the neutron flux level of 1.0x1024 n/cm2. The neutron fluence results show that there is no radiation damage in the Pebble-bed HTR reactor vessel, so it is predicted that it will be safe to operate at least for 60 years.

  16. Inside-out Planet Formation. IV. Pebble Evolution and Planet Formation Timescales

    Science.gov (United States)

    Hu, Xiao; Tan, Jonathan C.; Zhu, Zhaohuan; Chatterjee, Sourav; Birnstiel, Tilman; Youdin, Andrew N.; Mohanty, Subhanjoy

    2018-04-01

    Systems with tightly packed inner planets (STIPs) are very common. Chatterjee & Tan proposed Inside-out Planet Formation (IOPF), an in situ formation theory, to explain these planets. IOPF involves sequential planet formation from pebble-rich rings that are fed from the outer disk and trapped at the pressure maximum associated with the dead zone inner boundary (DZIB). Planet masses are set by their ability to open a gap and cause the DZIB to retreat outwards. We present models for the disk density and temperature structures that are relevant to the conditions of IOPF. For a wide range of DZIB conditions, we evaluate the gap-opening masses of planets in these disks that are expected to lead to the truncation of pebble accretion onto the forming planet. We then consider the evolution of dust and pebbles in the disk, estimating that pebbles typically grow to sizes of a few centimeters during their radial drift from several tens of astronomical units to the inner, ≲1 au scale disk. A large fraction of the accretion flux of solids is expected to be in such pebbles. This allows us to estimate the timescales for individual planet formation and the entire planetary system formation in the IOPF scenario. We find that to produce realistic STIPs within reasonable timescales similar to disk lifetimes requires disk accretion rates of ∼10‑9 M ⊙ yr‑1 and relatively low viscosity conditions in the DZIB region, i.e., a Shakura–Sunyaev parameter of α ∼ 10‑4.

  17. Fission Product Transport and Source Terms in HTRs: Experience from AVR Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    Rainer Moormann

    2008-01-01

    Full Text Available Fission products deposited in the coolant circuit outside of the active core play a dominant role in source term estimations for advanced small pebble bed HTRs, particularly in design basis accidents (DBA. The deposited fission products may be released in depressurization accidents because present pebble bed HTR concepts abstain from a gas tight containment. Contamination of the circuit also hinders maintenance work. Experiments, performed from 1972 to 88 on the AVR, an experimental pebble bed HTR, allow for a deeper insight into fission product transport behavior. The activity deposition per coolant pass was lower than expected and was influenced by fission product chemistry and by presence of carbonaceous dust. The latter lead also to inconsistencies between Cs plate out experiments in laboratory and in AVR. The deposition behavior of Ag was in line with present models. Dust as activity carrier is of safety relevance because of its mobility and of its sorption capability for fission products. All metal surfaces in pebble bed reactors were covered by a carbonaceous dust layer. Dust in AVR was produced by abrasion in amounts of about 5 kg/y. Additional dust sources in AVR were ours oil ingress and peeling of fuel element surfaces due to an air ingress. Dust has a size of about 1  m, consists mainly of graphite, is partly remobilized by flow perturbations, and deposits with time constants of 1 to 2 hours. In future reactors, an efficient filtering via a gas tight containment is required because accidents with fast depressurizations induce dust mobilization. Enhanced core temperatures in normal operation as in AVR and broken fuel pebbles have to be considered, as inflammable dust concentrations in the gas phase.

  18. First results of the post-irradiation examination of the Ceramic Breeder materials from the Pebble Bed Assemblies Irradiation for the HCPB Blanket concept

    International Nuclear Information System (INIS)

    Hegeman, J.; Magielsen, A.J.; Peeters, M.; Stijkel, M.P.; Fokkens, J.H.; Laan, J.G. van der

    2006-01-01

    In the framework of developing the European Helium Cooled Pebble-Bed (HCPB) blanket an irradiation test of pebble-bed assemblies is performed in the HFR Petten. The experiment is focused on the thermo-mechanical behavior of the HCPB type breeder pebble-bed at DEMO representative levels of temperature and defined thermal-mechanical loads. To achieve representative conditions a section of the HCPB is simulated by EUROFER-97 cylinders with a horizontal bed of ceramic breeder pebbles sandwiched between two beryllium beds. Floating Eurofer-97 steel plates separate the pebble-beds. The structural integrity of the ceramic breeder materials is an issue for the design of the Helium Cooled Pebble Bed concept. Therefore the objective of the post irradiation examination is to study deformation of pebbles and the pebble beds and to investigate the microstructure of the ceramic pebbles from the Pebble Bed Assemblies. This paper concentrates on the Post Irradiation Examination (PIE) of the four ceramic pebble beds that have been irradiated in the Pebble Bed Assembly experiment for the HCPB blanket concept. Two assemblies with Li 4 SiO 4 pebble-beds are operated at different maximum temperatures of approximately 600 o C and 800 o C. Post irradiation computational analysis has shown that both have different creep deformation. Two other assemblies have been loaded with a ceramic breeder bed of two types of Li 2 TiO 3 beds having different sintering temperatures and consequently different creep behavior. The irradiation maximum temperature of the Li 2 TiO 3 was 800 o C. To support the first PIE result, the post irradiation thermal analysis will be discussed because thermal gradients have influence on the pebble-bed thermo-mechanical behavior and as a result it may have impact on the structural integrity of the ceramic breeder materials. (author)

  19. Numerical modelling for the effective thermal conductivity of lithium meta titanate pebble bed with different packing structures

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, Maulik, E-mail: maulikpanchal@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India); Chaudhuri, Paritosh [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India); Van Lew, Jon T; Ying, Alice [UCLA, MAE Department, Los Angeles, CA 90095-1597 (United States)

    2016-11-15

    Highlights: • The effective thermal conductivity (k{sub eff}) of lithium meta-titanate (Li{sub 2}TiO{sub 3}) pebble beds is an important parameter for the design and analysis of TBM in ITER. • The k{sub eff} of Li{sub 2}TiO{sub 3} pebble beds under stagnant helium gas have been determined numerically using different uniform packing structures and random close packing (RCP) structures. • k{sub eff} of Li{sub 2}TiO{sub 3} pebble beds with different packing fractions have been reported as function of temperature; k{sub eff} of the RCP Li{sub 2}TiO{sub 3} pebble bed is compared with reported experimental results. • The numerically-determined k{sub eff} of the RCP Li{sub 2}TiO{sub 3} pebble bed agrees reasonably well with the experimental data and Zehner-Schlunder correlation. - Abstract: The effective thermal conductivity (k{sub eff}) of lithium meta-titanate (Li{sub 2}TiO{sub 3}) pebble beds is an important parameter for the design and analysis of IN LLCB TBM (Indian Lead Lithium Ceramic Breeder Test Blanket Module). The k{sub eff} of Li{sub 2}TiO{sub 3} pebble beds under stagnant helium gas have been determined numerically using different uniform packing structures and random close packing (RCP) structures. The uniform packing structures of Li{sub 2}TiO{sub 3} pebble bed are modelled by using the simple cubic, body centered cubic and face centered cubic arrangement. The packing structure of the RCP bed of Li{sub 2}TiO{sub 3} pebbles is generated with the discrete element method (DEM) code. k{sub eff} of Li{sub 2}TiO{sub 3} pebble beds with different packing fractions have been reported as function of temperature; k{sub eff} of the RCP Li{sub 2}TiO{sub 3} pebble bed is compared with reported experimental results from literature. The numerically determined k{sub eff} of the Li{sub 2}TiO{sub 3} pebble bed agrees reasonably well with the experimental data.

  20. Synthesis of petrographic, geochemical, and isotopic data for the Boulder batholith, southwest Montana

    Science.gov (United States)

    du Bray, Edward A.; Aleinikoff, John N.; Lund, Karen

    2012-01-01

    The Late Cretaceous Boulder batholith in southwest Montana consists of the Butte Granite and a group of associated smaller intrusions emplaced into Mesoproterozoic to Mesozoic sedimentary rocks and into the Late Cretaceous Elkhorn Mountains Volcanics. The Boulder batholith is dominated by the voluminous Butte Granite, which is surrounded by as many as a dozen individually named, peripheral intrusions. These granodiorite, monzogranite, and minor syenogranite intrusions contain varying abundances of plagioclase, alkali feldspar, quartz, biotite, hornblende, rare clinopyroxene, and opaque oxide minerals. Mafic, intermediate, and felsic subsets of the Boulder batholith intrusions are defined principally on the basis of color index. Most Boulder batholith plutons have inequigranular to seriate textures although several are porphyritic and some are granophyric (and locally miarolitic). Most of these plutons are medium grained but several of the more felsic and granophyric intrusions are fine grained. Petrographic characteristics, especially relative abundances of constituent minerals, are distinctive and foster reasonably unambiguous identification of individual intrusions. Seventeen samples from plutons of the Boulder batholith were dated by SHRIMP (Sensitive High Resolution Ion Microprobe) zircon U-Pb geochronology. Three samples of the Butte Granite show that this large pluton may be composite, having formed during two episodes of magmatism at about 76.7 ± 0.5 Ma (2 samples) and 74.7 ± 0.6 million years ago (Ma) (1 sample). However, petrographic and chemical data are inconsistent with the Butte Granite consisting of separate, compositionally distinct intrusions. Accordingly, solidification of magma represented by the Butte Granite appears to have spanned about 2 million year (m.y.). The remaining Boulder batholith plutons were emplaced during a 6-10 m.y. span (81.7 ± 1.4 Ma to 73.7 ± 0.6 Ma). The compositional characteristics of these plutons are similar to those

  1. Structuring Disaster Recovery Infrastructure Decisions: Lessons from Boulder County's 2013 Flood Recovery

    Science.gov (United States)

    Clavin, C.; Petropoulos, Z.

    2017-12-01

    Recovery phase decision making processes, as compared to mitigation and response phase decision making processes, require communities make significant financial and capital decisions in the months after a disaster. Collectively, these investments may significantly contribute to the resilience of a community to future hazards. Pre-disaster administrative decisions are well-established within existing planning processes. Post-event recovery requires community decision makers to quickly evaluate technical proposals and manage significant recovery financial resources to ensure their community rebuilds in a manner that will be more resilient to future events. These technical and administrative hurdles in the aftermath of a disaster create a challenging atmosphere to make sound, scientifically-informed decisions leading to resilient recovery. In September 2013, a 1,000-year rain event that resulted in flooding throughout the Front Range of Colorado, significantly impacting Boulder County. While the event is long past, disaster recovery efforts still continue in parts of Boulder County. Boulder County officials formed a county collaborative that adapted the NIST Community Resilience Planning Guide for Buildings and Infrastructure Systems to facilitate a goals-based multi-criteria decision making process. Rather than use hazard-based information to guide infrastructure design, the county's decision process established time-to-recovery goals for infrastructure systems that were used as criteria for project design. This presentation explores the decision-making process employed by Boulder County to specify design standards for resilient rebuilding of infrastructure systems and examine how this infrastructure planning model could be extrapolated to other situations where there is uncertainty regarding future infrastructure design standards.

  2. On-line interrogation of pebble bed reactor fuel using passive gamma-ray spectrometry

    Science.gov (United States)

    Chen, Jianwei

    The Pebble Bed Reactor (PBR) is a helium-cooled, graphite-moderated high temperature nuclear power reactor. In addition to its inherently safe design, a unique feature of this reactor is its multipass fuel cycle in which graphite fuel pebbles (of varying enrichment) are randomly loaded and continuously circulated through the core until they reach their prescribed end-of-life burnup limit (˜80,000--100,000 MWD/MTU). Unlike the situation with conventional light water reactors (LWRs), depending solely on computational methods to perform in-core fuel management will be highly inaccurate. As a result, an on-line measurement approach becomes the only accurate method to assess whether a particular pebble has reached its end-of-life burnup limit. In this work, an investigation was performed to assess the feasibility of passive gamma-ray spectrometry assay as an approach for on-line interrogation of PBR fuel for the simultaneous determination of burnup and enrichment on a pebble-by-pebble basis. Due to the unavailability of irradiated or fresh pebbles, Monte Carlo simulations were used to study the gamma-ray spectra of the PBR fuel at various levels of burnup. A pebble depletion calculation was performed using the ORIGEN code, which yielded the gamma-ray source term that was introduced into the input of an MCNP simulation. The MCNP simulation assumed the use of a high-purity coaxial germanium detector. Due to the lack of one-group high temperature reactor cross sections for ORIGEN, a heterogeneous MCNP model was developed to describe a typical PBR core. Subsequently, the code MONTEBURNS was used to couple the MCNP model and ORIGEN. This approach allowed the development of the burnup-dependent, one-group spectral-averaged PBR cross sections to be used in the ORIGEN pebble depletion calculation. Based on the above studies, a relative approach for performing the measurements was established. The approach is based on using the relative activities of Np-239/I-132 in combination

  3. On the Evaluation of Pebble Bead Reactor Critical Experiments Using the Pebbed Code

    International Nuclear Information System (INIS)

    Gougar, Hans D.; Sen, R. Sonat

    2014-01-01

    Critical experiments pose a particular but necessary challenge to validating pebble bed reactor design codes. Fuel and core heterogeneities, impurities in graphite, variable packing of pebbles, and moderately strong neutronic coupling are among the factors that inject uncertainty into the results obtained with lower fidelity core physics models. Some of these are addressed in this study. The PEBBED pebble bed reactor fuel management code under development at the Idaho National Laboratory is designed for rapid design and analysis of pebble bed high temperature reactors (PBRs). Embedded within the code are the THERMIX-KONVEK thermal fluid solver and the COMBINE-7 spectrum generation code for inline cross section homogenization. Because 1D symmetry can be found at each stage of core heterogeneity; spherical at TRISO and pebble levels, and cylindrical at the control rod and core levels, the 1-D transport capability of ANISN is assumed to be sufficient in most cases for generating flux solutions for cross section homogenization. Furthermore, it is fast enough to be executed during the analysis or the equilibrium core. Multi-group diffusion-based design codes such as PEBBED and VSOP are not expected to yield the accuracy and resolution of continuous energy Monte Carlo codes for evaluation of critical experiments. Nonetheless, if the preparation of multigroup cross sections can adequately capture the physics of the mixing of PBR fuel elements and leakage from the core, reasonable results may be obtained. In this paper, results of the application of PEBBED to two critical experiments (HTR Proteus and HTR-10) and associated computational models are presented. The embedded 1-D transport solver is shown to capture the double heterogeneity of the pebble fuel in unit cell calculations. Eigenvalue calculations of a whole core are more challenging, particularly if the boron concentration is uncertain. The sensitivity of major safety parameters to variations in modeling

  4. Experimental study on single-phase convection heat transfer characteristics of pebble bed channels with internal heat generation

    International Nuclear Information System (INIS)

    Meng Xianke; Sun Zhongning; Zhou Ping; Xu Guangzhan

    2012-01-01

    The water-cooled pebble bed reactor core is the porous channels stacked with spherical fuel elements, having evident effect on enhancing heat transfer. Owing to the variability and randomness characteristics of it's interstice, pebble bed channels have a very complex heat transfer situation and have little correlative research. In order to research the heat transfer characters of pebble bed channels with internal heat source, electromagnetic induction heating method was adopted for overall heating the pebble bed which was composed of 8 mm diameter steel balls, and the internal heat transfer characteristics were researched. By comparing and analyzing the experimental data, the rule of power distribution and heat transfer coefficient with heat flux density, inlet temperature and working fluid's Re were got. According to the experimental data fitting, the dimensionless average heat transfer coefficient correlation criteria was got. The fitting results are good agreement with the experimental results within 12% difference. (authors)

  5. In-pile test of Li 2TiO 3 pebble bed with neutron pulse operation

    Science.gov (United States)

    Tsuchiya, K.; Nakamichi, M.; Kikukawa, A.; Nagao, Y.; Enoeda, M.; Osaki, T.; Ioki, K.; Kawamura, H.

    2002-12-01

    Lithium titanate (Li 2TiO 3) is one of the candidate materials as tritium breeder in the breeding blanket of fusion reactors, and it is necessary to show the tritium release behavior of Li 2TiO 3 pebble beds. Therefore, a blanket in-pile mockup was developed and in situ tritium release experiments with the Li 2TiO 3 pebble bed were carried out in the Japan Materials Testing Reactor. In this study, the relationship between tritium release behavior from Li 2TiO 3 pebble beds and effects of various parameters were evaluated. The ( R/ G) ratio of tritium release ( R) and tritium generation ( G) was saturated when the temperature at the outside edge of the Li 2TiO 3 pebble bed became 300 °C. The tritium release amount increased cycle by cycle and saturated after about 20 pulse operations.

  6. Molecular dynamics simulation for PBR pebble tracking simulation via a random walk approach using Monte Carlo simulation.

    Science.gov (United States)

    Lee, Kyoung O; Holmes, Thomas W; Calderon, Adan F; Gardner, Robin P

    2012-05-01

    Using a Monte Carlo (MC) simulation, random walks were used for pebble tracking in a two-dimensional geometry in the presence of a biased gravity field. We investigated the effect of viscosity damping in the presence of random Gaussian fluctuations. The particle tracks were generated by Molecular Dynamics (MD) simulation for a Pebble Bed Reactor. The MD simulations were conducted in the interaction of noncohesive Hertz-Mindlin theory where the random walk MC simulation has a correlation with the MD simulation. This treatment can easily be extended to include the generation of transient gamma-ray spectra from a single pebble that contains a radioactive tracer. Then the inverse analysis thereof could be made to determine the uncertainty of the realistic measurement of transient positions of that pebble by any given radiation detection system designed for that purpose. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Tritium and helium release from beryllium pebbles neutron-irradiated up to 230appm tritium and 3000appm helium

    Directory of Open Access Journals (Sweden)

    Vladimir Chakin

    2016-12-01

    Full Text Available Study of tritium and helium release from beryllium pebbles with diameters of 0.5 and 1mm after high-dose neutron irradiation at temperatures of 686–968K was performed. The release rate always has a single peak, and the peak temperatures at heating rates of 0.017K/s and 0.117K/s lie in the range of 1100–1350K for both tritium and helium release. The total tritium release from 1mm pebbles decreases considerably by increasing the irradiation temperature. The total tritium release from 0.5mm pebbles is less than that from 1mm pebbles and remains constant regardless of the irradiation temperature. At high irradiation temperatures, open channels are formed which contribute to the enhanced tritium release.

  8. Fabrication and characterization of 6Li-enriched Li2TiO3 pebbles for a high Li-burnup irradiation test

    International Nuclear Information System (INIS)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi

    2006-10-01

    Lithium titanate (Li 2 TiO 3 ) pebbles are considered to be a candidate material of tritium breeders for fusion reactor from viewpoints of easy tritium release at low temperatures (about 300degC) and chemical stability. In the present study, trial fabrication tests of 6 Li-enriched Li 2 TiO 3 pebbles of 1mm in diameter were carried out by a wet process with a dehydration reaction, and characteristics of the 6 Li-enriched Li 2 TiO 3 pebbles were evaluated for preparation of a high Li-burnup test in a testing reactor. Powder of 96at% 6 Li-enriched Li 2 TiO 3 was prepared by a solid state reaction, and two kinds of 6 Li-enriched Li 2 TiO 3 pebbles, namely un-doped and TiO 2 -doped Li 2 TiO 3 pebbles, were fabricated by the wet process. Based on results of the pebble fabrication tests, two kinds of 6 Li-enriched Li 2 TiO 3 pebbles were successfully fabricated with target values (density: 80-85%T.D., grain size: 2 TiO 3 pebbles was a satisfying value of about 1.05. Contact strength of these pebbles was about 6300MPa, which was almost the same as that of the Li 2 TiO 3 pebbles with natural Li. (author)

  9. The X-Ray Pebble Recirculation Experiment (X-PREX): Facility Description, Preliminary Discrete Element Method Simulation Validation Studies, and Future Test Program

    International Nuclear Information System (INIS)

    Laufer, Michael R.; Bickel, Jeffrey E.; Buster, Grant C.; Krumwiede, David L.; Peterson, Per F.

    2014-01-01

    This paper presents a facility description, preliminary results, and future test program of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X-PREX facility uses digital x-ray tomography methods to track both the translational and rotational motion of spherical pebbles, which provides unique experimental results that can be used to validate discrete element method (DEM) simulations of pebble motion. The validation effort supported by the X-PREX facility provides a means to build confidence in analysis of pebble bed configuration and residence time distributions that impact the neutronics, thermal hydraulics, and safety analysis of pebble bed reactor cores. Preliminary experimental and DEM simulation results are reported for silo drainage, a classical problem in the granular flow literature, at several hopper angles. These studies include conventional converging and novel diverging geometries that provide additional flexibility in the design of pebble bed reactor cores. Excellent agreement is found between the X-PREX experimental and DEM simulation results. Finally, this paper discusses additional studies in progress relevant to the design and analysis of pebble bed reactor cores including pebble recirculation in cylindrical core geometries and evaluation of forces on shut down blades inserted directly into a packed pebble bed. (author)

  10. Multi-hole seismic modeling in 3-D space and cross-hole seismic tomography analysis for boulder detection

    Science.gov (United States)

    Cheng, Fei; Liu, Jiangping; Wang, Jing; Zong, Yuquan; Yu, Mingyu

    2016-11-01

    A boulder stone, a common geological feature in south China, is referred to the remnant of a granite body which has been unevenly weathered. Undetected boulders could adversely impact the schedule and safety of subway construction when using tunnel boring machine (TBM) method. Therefore, boulder detection has always been a key issue demanded to be solved before the construction. Nowadays, cross-hole seismic tomography is a high resolution technique capable of boulder detection, however, the method can only solve for velocity in a 2-D slice between two wells, and the size and central position of the boulder are generally difficult to be accurately obtained. In this paper, the authors conduct a multi-hole wave field simulation and characteristic analysis of a boulder model based on the 3-D elastic wave staggered-grid finite difference theory, and also a 2-D imaging analysis based on first arrival travel time. The results indicate that (1) full wave field records could be obtained from multi-hole seismic wave simulations. Simulation results describe that the seismic wave propagation pattern in cross-hole high-velocity spherical geological bodies is more detailed and can serve as a basis for the wave field analysis. (2) When a cross-hole seismic section cuts through the boulder, the proposed method provides satisfactory cross-hole tomography results; however, when the section is closely positioned to the boulder, such high-velocity object in the 3-D space would impact on the surrounding wave field. The received diffracted wave interferes with the primary wave and in consequence the picked first arrival travel time is not derived from the profile, which results in a false appearance of high-velocity geology features. Finally, the results of 2-D analysis in 3-D modeling space are comparatively analyzed with the physical model test vis-a-vis the effect of high velocity body on the seismic tomographic measurements.

  11. Growth

    Science.gov (United States)

    John R. Jones; George A. Schier

    1985-01-01

    This chapter considers aspen growth as a process, and discusses some characteristics of the growth and development of trees and stands. For the most part, factors affecting growth are discussed elsewhere, particularly in the GENETICS AND VARIATION chapter and in chapters in PART 11. ECOLOGY. Aspen growth as it relates to wood production is examined in the WOOD RESOURCE...

  12. Rare gas constraints on the history of Boulder 1, Station 2, Apollo 17

    International Nuclear Information System (INIS)

    Leich, D.A.; Kahl, S.B.; Kirschbaum, A.R.; Niemeyer, S.; Phinney, D.

    1975-01-01

    Rare gas isotopic analyses have been performed on both pile-irradiated and unirradiated samples from Boulder 1, Station 2. Two samples from rock 72255, the Civet Cat clast and a sample of adjacent breccia, have concordant 40 Ar- 39 Ar ages of 3.99 +- 0.03 b.y. and 4.01 +- 0.03 b.y., respectively. Several samples from rock 72275 have complex thermal release patterns with no datable features, but an intermediate temperature plateau from the dark rim material of the Marble Cake clast yields an age of 3.99 +- 0.03 b.y., indistinguishable from the age of rock 72255. We regard these ages as upper limits on the time of the Serenitatis basin-forming event. The absence of fossil solar-wind trapped gases in the breccia samples implies that a prior existence for the boulder as near-surface regolith material can be regarded as extremely unlikely. Instead, the small trapped rare-gas components have isotopic and elemental compositions diagnostic of the terrestrial-type trapped component which has previously been identified in several Apollo 16 breccias and in rock 14321. Excess fission Xe is found in all Boulder 1 samples in approximately 1:1 proportions with Xe from spontaneous fission of 238 U. This excess fission Xe is attributed to spontaneous fission of 244 Pu in situ. Cosmic-ray exposure ages for samples from rocks 72215 and 72255 are concordant with mean 81 Kr-Kr exposure ages of 41.4 +- 1.4 m.y. and 44.1 +- 3.3 m.y., respectively. However, a distinctly different 81 Kr-Kr exposure age of 52.5 +- 1.4 m.y. is obtained for samples from rock 72275. A two-stage exposure model is developed to account for this discordance and for the remaining cosmogenic rare-gas data. The first stage was initiated at least 55 m.y. ago, probably as a result of the excavation of the boulder source-crop. A discrete change in shielding depths approx. 35 m.y. ago probably corresponds to the dislodgement of Boulder 1 from the South Massif and emplacement in its present position

  13. Studi Awal Desain Pebble Bed Reactor Berbasis Htr-pm Dengan Skema Resirkulasi Bahan Bakar Once-through-then-out

    OpenAIRE

    Setiadipura, Topan; Pane, Jupiter Sitorus; Zuhair, Zuhair

    2016-01-01

    STUDI AWAL DESAIN PEBBLE BED REACTOR BERBASIS HTR-PM DENGAN RESIRKULASI BAHAN BAKAR ONCE-THROUGH-THEN-OUT. Reaktor nuklir tipe pebble bed reactor (PBR) adalah salah satu reaktor canggih dengan fitur keselamatan pasif yang kuat. Pada desain tipe ini berpotensi untuk dilakukan kogenerasi yang bermanfaat untuk pengolahan berbagai mineral di berbagai pulau di Indonesia. Operasi PBR dapat lebih disederhanakan dengan menerapkan skema pengisian bahan bakar once-through-then-out (OTTO) dimana bahan b...

  14. The affirmation of the scientist-practitioner. A look back at Boulder.

    Science.gov (United States)

    Baker, D B; Benjamin, L T

    2000-02-01

    In the aftermath of World War II, several influences were paramount in forcing academic psychology to recognize, albeit reluctantly, the coming professionalization of psychology. The federal government, wishing to avoid a repeat of blunders following World War I that led to significant dissatisfaction among veterans, took proactive steps to ensure that mental health needs of the new veterans would be met. The USPHS and the VA were mandated to expand significantly the pool of mental health practitioners, a direction that led not only to the funding of the Boulder conference but also to the development of APA's accreditation program, funded practical and internship arrangements with the VA, and the USPHS grants to academic departments for clinical training. The GI Bill, amended to include payment for graduate education, created tremendous interest in graduate programs in psychology. As a result, psychology programs were inundated with funded applicants, most of whom were interested in the application of psychology to clinical and other applied fields. Graduate psychology departments were mixed in their views of this "blessing." The reality of a separate curriculum for professional training in psychology was a bitter pill for some academic psychologists to swallow. Graduate departments feared that control of their programs would be taken over by external forces and that they would lose their right to determine their own curriculum. Further, they feared the domination of clinical training within their own departments and the effects of such educational emphasis on their traditional experimental programs. The Boulder conference brought together these disparate needs and concerns, although one can argue about how well some points of view were represented with respect to others. It was a time of high anticipation and fear. The conference could easily have ended in failure, with such diverse interests being unable to reach any consensus. There are many letters in the

  15. Experimental investigation on feasibility of two-region-designed pebble-bed high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Yang Xingtuan; Hu Wenping; Jiang Shengyao

    2009-01-01

    Phenomenological experiments were performed on a 2-dimensional scaled model of the two-region designed pebble-bed high-temperature gas-cooled reactor core consisting of the distinct fuel pebble region and graphite pebble region. Issues with respect to the feasibility of the two-region design, including the establishment of the two-region arrangement, the mixing zone between the two regions, and the stagnant zone existence, were investigated. Three equilibrium conditions were proposed to evaluate the stable two-region arrangement formation. The general characteristics of the flow of the pebble bed were analyzed on basis of the observed phenomenon. It was found that a stable two-region arrangement was formed under the experimental conditions: the pebbles' motion was to some extent random but also confined by the neighbors of pebbles so that the mixing zone is constrained to a reasonable size. Guide plates utilized to improve mixing are proved to be effective without noticeable effect on the two-region arrangement features. Stagnant zones were observed under the experimental conditions and they were expected to be avoided by improving the design of the experimental setup. (author)

  16. CFD investigation of thermal-hydraulic characteristics in a PBR core using different contact treatments between pebbles

    International Nuclear Information System (INIS)

    Ferng, Y.M.; Lin, K.Y.

    2014-01-01

    Highlights: • It is important to study thermal-hydraulic characteristics in a PBR for a HTGR. • A CFD model is proposed to simulate flow and heat transfer in a segment of pebbles. • Area and point contact treatments for adjacent pebbles are adopted in this study. • Predicted dependences of Nu and friction factor agree with the correlations. - Abstract: A high temperature gas cooled reactor (HTGR) with a pebble bed core (PBR) can be considered as one of the possible energy generation sources in the incoming future due to its inherently safe performance, lower power density, and higher conversion efficiency, etc. It is important to study the thermal-hydraulic characteristics in a PBR for optimum design and safe operation of a HTGR. In this paper, a computational fluid dynamics (CFD) methodology is proposed to investigate the thermal-hydraulic behavior in a segment of pebbles representing the central region of a PBR. Two kinds of contact modeling between adjacent pebbles are adopted, namely area and point contact treatments. The former contact treatment is a geometric approximation modeling. Based on the comparisons of thermal-hydraulic characteristics in the pebbles predicted by both contact treatments, no significant difference is revealed except for the near-wall secondary flow pattern. In addition, compared with the calculated results from the well-known correlations, the present predicted dependence of Nu number and friction factor on the particle Reynolds number shows good agreement qualitatively and quantitatively

  17. Gas reactor international cooperative program interim report. Pebble bed reactor fuel cycle evaluation

    International Nuclear Information System (INIS)

    1978-09-01

    Nuclear fuel cycles were evaluated for the Pebble Bed Gas Cooled Reactor under development in the Federal Republic of Germany. The basic fuel cycle specified for the HTR-K and PNP is well qualified and will meet the requirements of these reactors. Twenty alternate fuel cycles are described, including high-conversion cycles, net-breeding cycles, and proliferation-resistant cycles. High-conversion cycles, which have a high probability of being successfully developed, promise a significant improvement in resource utilization. Proliferation-resistant cycles, also with a high probability of successful development, compare very favorably with those for other types of reactors. Most of the advanced cycles could be adapted to first-generation pebble bed reactors with no significant modifications

  18. Changes in the metallicity of gas giant planets due to pebble accretion

    Science.gov (United States)

    Humphries, R. J.; Nayakshin, S.

    2018-06-01

    We run numerical simulations to study the accretion of gas and dust grains on to gas giant planets embedded into massive protoplanetary discs. The outcome is found to depend on the disc cooling rate, planet mass, grain size, and irradiative feedback from the planet. If radiative cooling is efficient, planets accrete both gas and pebbles rapidly, open a gap, and usually become massive brown dwarfs. In the inefficient cooling case, gas is too hot to accrete on to the planet but pebble accretion continues and the planets migrate inward rapidly. Radiative feedback from the planet tends to suppress gas accretion. Our simulations predict that metal enrichment of planets by dust grain accretion inversely correlates with the final planet mass, in accordance with the observed trend in the inferred bulk composition of Solar system and exosolar giant planets. To account for observations, however, as many as ˜30-50 per cent of the dust mass should be in the form of large grains.

  19. Pebble bed reactors simulation using MCNP: The Chinese HTR-10 reactor

    Directory of Open Access Journals (Sweden)

    SA Hosseini

    2013-09-01

    Full Text Available   Given the role of Gas-Graphite reactors as the fourth generation reactors and their recently renewed importance, in 2002 the IAEA proposed a set of Benchmarking problems. In this work, we propose a model both efficient in time and resources and exact to simulate the HTR-10 reactor using MCNP-4C code. During the present work, all of the pressing factors in PBM reactor design such as the inter-pebble leakage, fuel particle distribution and fuel pebble packing fraction effects have been taken into account to obtain an exact and easy to run model. Finally, the comparison between the results of the present work and other calculations made at INEEL proves the exactness of the proposed model.

  20. Measurement of the thermal conductivity and heat transfer coefficient of a binary bed of beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Donne, M.D.; Piazza, G. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik; Goraieb, A.; Sordon, G.

    1998-01-01

    The four ITER partners propose to use binary beryllium pebble bed as neutron multiplier. Recently this solution has been adopted for the ITER blanket as well. In order to study the heat transfer in the blanket the effective thermal conductivity and the wall heat transfer coefficient of the bed have to be known. Therefore at Forschungszentrum Karlsruhe heat transfer experiments have been performed with a binary bed of beryllium pebbles and the results have been correlated expressing thermal conductivity and wall heat transfer coefficients as a function of temperature in the bed and of the difference between the thermal expansion of the bed and of that of the confinement walls. The comparison of the obtained correlations with the data available from the literature show a quite good agreement. (author)

  1. Stability analysis of the high temperature thermal pebble bed nuclear reactor concept

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1981-02-01

    A study was made of the stability of the high temperature gas-cooled pebble bed core against xenon-driven oscillation. This generic study indicated that a core as large as 3000 MW(t) could be stable. Several aspects present a challenge to analysis including the void space above the pebble bed, the effects of possible control rod configurations, and the temperature feedback contribution. Special methods of analysis were developed in this effort. Of considerable utility was the scheme of including an azimuthal buckling loss term in the neturon balance equations admitting direct solution of the first azimuthal harmonic for a core having azimuthal symmetry. This technique allows the linear stability analysis to be done solving two-dimensional (RZ) problems instead of three-dimensional problems. A scheme for removing the fundamental source contribution was also implemented to allow direct iteration toward the dominant harmonic solution, treating up to three dimensions with diffusion theory

  2. A CFD Study on Inlet Plenum Flow Field of Pebble Bed Reactor

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Lee, Won Jae; Chang, Jong Hwa

    2005-01-01

    High temperature gas cooled reactor, largely divided into two types of PBR (Pebble Bed Reactor) and PMR (Prismatic Modular Reactor), has becomes great interest of researchers in connection with the hydrogen production. KAERI has started a project to develop the gas cooled reactor for the hydrogen production and has been doing in-depth study for selecting the reactor type between PBR and PMR. As a part of the study, PBMR (Pebble Bed Modular Reactor) was selected as a reference PBR reactor for the CFD analysis and the flow field of its inlet plenum was simulated with computational fluid dynamics program CFX5. Due to asymmetrical arrangement of pipes to the inlet plenum, non-uniform flow distribution has been expected to occur, giving rise to non-uniform power distribution at the core. Flow fields of different arrangement of inlet pipes were also investigated, as one of measures to reduce the non-uniformity

  3. Cold flow study of liquid cooled pebble bed reactor (LC-PBR) through radioisotope techniques

    International Nuclear Information System (INIS)

    Verma, Rupesh; Upadhyay, Rajesh K.; Pant, H.J.

    2017-01-01

    As the world's demand for energy continues to increase burning of coal, oil and natural gases continue to increase which will eventually cause build-up in emission of greenhouse gasses. To overcome this challenge worldwide effort is in progress to develop an economical, more efficient and safer nuclear power. Higher thermal efficiency and enhances safety feature of Generation IV liquid cooled pebble bed reactor (LC-PBR) makes it viable option to replace existing nuclear reactor. However, this reactor is still in research stage and need detailed study before commercialization. In current work, hydrodynamics of LC-PBR is studied by using radioisotope based techniques, radioactive particle tracking and gamma-ray densitometry. Pebble flow profile and distribution are measured for different operating conditions. Optimal operating parameters are identified for operating LC-PBR based on hydrodynamics. (author)

  4. Studies on crude oil removal from pebbles by the application of biodiesel.

    Science.gov (United States)

    Xia, Wen-xiang; Xia, Yan; Li, Jin-cheng; Zhang, Dan-feng; Zhou, Qing; Wang, Xin-ping

    2015-02-15

    Oil residues along shorelines are hard to remove after an oil spill. The effect of biodiesel to eliminate crude oil from pebbles alone and in combination with petroleum degrading bacteria was investigated in simulated systems. Adding biodiesel made oil detach from pebbles and formed oil-biodiesel mixtures, most of which remained on top of seawater. The total petroleum hydrocarbon (TPH) removal efficiency increased with biodiesel quantities but the magnitude of augment decreased gradually. When used with petroleum degrading bacteria, the addition of biodiesel (BD), nutrients (NUT) and BD+NUT increased the dehydrogenase activity and decreased the biodegradation half lives. When BD and NUT were replenished at the same time, the TPH removal efficiency was 7.4% higher compared to the total improvement of efficiency when BD and NUT was added separately, indicating an additive effect of biodiesel and nutrients on oil biodegradation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. BRILLIANT PEBBLES: A METHOD FOR DETECTION OF VERY LARGE INTERSTELLAR GRAINS

    International Nuclear Information System (INIS)

    Socrates, Aristotle; Draine, Bruce T.

    2009-01-01

    A photon of wavelength λ ∼ 1 μm interacting with a dust grain of radius a p ∼ 1 mm (a 'pebble') undergoes scattering in the forward direction, largely within a small characteristic diffraction angle θ s ∼ λ/a p ∼ 100''. Though millimeter-size dust grains contribute negligibly to the interstellar medium's visual extinction, the signal they produce in scattered light may be detectable, especially for variable sources. Observations of light scattered at small angles allow for the direct measurement of the large grain population; variable sources can also yield tomographic information of the interstellar medium's mass distribution. The ability to detect brilliant pebble halos requires a careful understanding of the instrument point-spread function.

  6. Design of a power conversion system for an indirect cycle, helium cooled pebble bed reactor system

    International Nuclear Information System (INIS)

    Wang, C.; Ballinger, R.G.; Stahle, P.W.; Demetri, E.; Koronowski, M.

    2002-01-01

    A design is presented for the turbomachinery for an indirect cycle, closed, helium cooled modular pebble bed reactor system. The design makes use of current technology and will operate with an overall efficiency of 45%. The design uses an intermediate heat exchanger which isolated the reactor cycle from the turbomachinery. This design excludes radioactive fission products from the turbomachinery. This minimizes the probability of an air ingress accident and greatly simplifies maintenance. (author)

  7. Core-adjacent instrumentation systems for pebble bed reactors for process heat application - state of planning

    International Nuclear Information System (INIS)

    Benninghofen, G.; Serafin, N.; Spillekothen, H.G.; Hecker, R.; Brixy, H.; Serpekian, T.

    1982-06-01

    Planning and theoretical/experimental development work for core surveillance instrumentation systems is being performed to meet requirements of pebble bed reactors for process heat application. Detailed and proved instrumentation concepts are now available for the core-adjacent instrumentation systems. The current work and the results of neutron flux measurements at high temperatures are described. Operation devices for long-term accurate gas outlet temperature measurements up to approximately 1423 deg. K will also be discussed. (author)

  8. Probabilistic safety assessment framework of pebble-bed modular high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Liu Tao; Tong Jiejuan; Zhao Jun; Cao Jianzhu; Zhang Liguo

    2009-01-01

    After an investigation of similar reactor type probabilistic safety assessment (PSA) framework, Pebble-bed Modular High-Temperature Gas-cooled Reactor (HTR-PM) PSA framework was presented in correlate with its own design characteristics. That is an integral framework which spreads through event sequence structure with initiating events at the beginning and source term categories in the end. The analysis shows that it is HTR-PM design feature that determines its PSA framework. (authors)

  9. Status of Research on Pebble Bed HTR Fuel Fabrication Technology in Indonesia

    International Nuclear Information System (INIS)

    Rachmawati, M.; Sarjono; Ridwan; Langenati, R.

    2014-01-01

    Research on pebble bed HTR fuel fabrication is conducted in Indonesia. One of the aims is to build a knowledge base on pebble bed HTR fuel element fabrication technology for fuel procurement. The steps of research strategies are firstly to understand the basic design research of TRISO fuel, properties, and requirements, and secondly to understand the TRISO fuel manufacturing technology, which comprises fabrication and quality control, including its facility. Both steps are adopted from research and experiences of the countries with HTR fuel element fabrication technology. From the knowledge gained in the research, an experimental design of the process and a set of prototype process equipment for fabrication are developed, namely kernels production using external gelation process, TRISO coating of the kernel, and pebble compacting. Experiments using the prototypes have been conducted. Characterization of the kernel product, i.e. diameter, sphericity, density and O/U ratio, shows that the kernel product is still not in compliance with the specification requirements. These are deemed to be caused mainly by the selected vibrating system and the viscosity adjustment. Another major cause is the selected NH3 and air feeding method for both NH3 and air layer in the preparation for spherical droplets of liquid. The FB-CVD TRISO coating of the kernel has been experimented but unsuccessful by using an FB-CVD once‐through continuous coating process. For the pebble compacting, the process is still in the early stage of setting-up compaction equipment. This paper summarizes the current status of research on HTR fuel fabrication technology in Indonesia, the proposed process and its equipment setting-up for improvement of the kernel production. The knowledge and lessons learned gained from the research is useful and can be an assistance in planning for fuel development laboratory facilities procurement, formulating User Requirement Document and Bid Invitation Specification for

  10. Burnup performance of OTTO cycle pebble bed reactors with ROX fuel

    International Nuclear Information System (INIS)

    Ho, Hai Quan; Obara, Toru

    2015-01-01

    Highlights: • A 300 MW t Small Pebble Bed Reactor with Rock-like oxide fuel is proposed. • Using ROX fuel can achieve high discharged burnup of spent fuel. • High geological stability can be expected in direct disposal of the spent ROX fuel. • The Pebble Bed Reactor with ROX fuel can be critical at steady state operation. • All the reactor designs have a negative temperature coefficient. - Abstract: A pebble bed high-temperature gas-cooled reactor (PBR) with rock-like oxide (ROX) fuel was designed to achieve high discharged burnup and improve the integrity of the spent fuel in geological disposal. The MCPBR code with a JENDL-4.0 library, which developed the analysis of the Once-Through-Then-Out (OTTO) cycle in PBR, was used to perform the criticality and burnup analysis. Burnup calculations for eight cases were carried out for both ROX fuel and a UO 2 fuel reactor with different heavy-metal loading conditions. The effective multiplication factor of all cases approximately equalled unity in the equilibrium condition. The ROX fuel reactor showed lower FIFA than the UO 2 fuel reactor at the same heavy-metal loading, about 5–15%. However, the power peaking factor and maximum power per fuel ball in the ROX fuel core were lower than that of UO 2 fuel core. This effect makes it possible to compensate for the lower-FIFA disadvantage in a ROX fuel core. All reactor designs had a negative temperature coefficient that is needed for the passive safety features of a pebble bed reactor

  11. Preliminary Study of 20 MWth Experiment Power Reactor based on Pebble Bed Reactor

    Science.gov (United States)

    Irwanto, Dwi; Permana, Sidik; Pramuditya, Syeilendra

    2017-07-01

    In this study, preliminary design calculations for experimental small power reactor (20 MWt) based on Pebble Bed Reactor (PBR) are performed. PBR technology chosen due to its advantages in neutronic and safety aspects. Several important parameters, such as fissile enrichment, number of fuel passes, burnup and effective multiplication factor are taken into account in the calculation to find neutronic characteristics of the present reactor design.

  12. Column treatment of brewery wastewater using clay fortified with stone-pebbles

    International Nuclear Information System (INIS)

    Oladoja, N.A.; Ademoroti, C.M.A.; Idiaghe, J.A.; Oketola, A.A.

    2006-01-01

    The study aimed at providing a low-cost treatment for brewery wastewater, which was achieved by mixing clay with stone-pebbles to improve the low permeability of water through clay beds. The combination (clay/stone-pebbles) was used in columns for the treatment of brewery wastewater. The crystal chemistry of the clay samples was studied using X-ray diffractometer. Three principal clay minerals (kaolin, illite and smectite) were detected in the samples. Atomic absorption spectrophotometer was used to study the geochemistry of the clay samples. The results of the geochemical studies showed that all the samples were hydrated aluminosilicates. Performance efficiency studies were conducted to determine the best combination ratio of clay to stone-pebbles, which showed that combination ratio 3:1 (clay/stone pebbles, w/w) performed better. The flow-rate studies showed that brewery wastewater had longer residence time in non fortified clay than in fortified clay. The flow-rate of the wastewater in the percolating media varied from one medium to another. Two modes of treatment (batch and continuous) were used. The effluent passed through the continuous treatment mode had better quality characteristics as compared with the effluent passed through the batch treatment mode. The effect of repeated use of the fortified column on the performance efficiency was also studied. The pH, total solids, and the chemical oxygen demand (COD) of the effluent was monitored over time. The results of the COD monitored over time were analysed using breakthrough curves. The different columns were found to have different bed volumes at both the break through and exhaustion points. (author)

  13. Experimental performance and results of the critical pebble bed facility KAHTER

    Energy Technology Data Exchange (ETDEWEB)

    Krings, F. J.; Drueke, V.; Kirch, N.; Neef, R. D.

    1974-10-15

    The paper provides a description and results of critical experiments performed in KAHTER fueled with pebbles containing coated particles of HEU/Th oxide with a ratio of uranium-to-thorium of 1.1:5. Core loadings with varying amounts of fuel and solid graphite pebbles were tested with fuel-to-graphite pebble ratios of 3:1, 1:1, and 1:3. Tests included criticality for various fuel loadings with all control rods removed, control rod worths for reflector-mounted control as single rods and in a bank and control worths for a central control rod, reaction rates by flux wire activations (Dy, Mn, In, Au, and U-235) and detector measurements (BF3 and fission chamber), simulated xenon stability testing using the motions of a Cf-252 source and Cd-absorber observed by an externally-located BF3 detector, and the reactivity worth of a Hf burnable absorber. For calculations of the room-temperature zero-power critical experiment, the values for nitrogen and hydrogen contents of the graphite were taken from previous experiments in CESAR.

  14. A simulation of a pebble bed reactor core by the MCNP-4C computer code

    Directory of Open Access Journals (Sweden)

    Bakhshayesh Moshkbar Khalil

    2009-01-01

    Full Text Available Lack of energy is a major crisis of our century; the irregular increase of fossil fuel costs has forced us to search for novel, cheaper, and safer sources of energy. Pebble bed reactors - an advanced new generation of reactors with specific advantages in safety and cost - might turn out to be the desired candidate for the role. The calculation of the critical height of a pebble bed reactor at room temperature, while using the MCNP-4C computer code, is the main goal of this paper. In order to reduce the MCNP computing time compared to the previously proposed schemes, we have devised a new simulation scheme. Different arrangements of kernels in fuel pebble simulations were investigated and the best arrangement to decrease the MCNP execution time (while keeping the accuracy of the results, chosen. The neutron flux distribution and control rods worth, as well as their shadowing effects, have also been considered in this paper. All calculations done for the HTR-10 reactor core are in good agreement with experimental results.

  15. Failure analysis of pebble bed reactors during earthquake by discrete element method

    International Nuclear Information System (INIS)

    Keppler, Istvan

    2013-01-01

    Highlights: ► We evaluated the load acting on the central reflector beam of a pebble bed reactor. ► The load acting on the reflector beam highly depends on fuel element distribution. ► The contact force values do not show high dependence on fuel element distribution. ► Earthquake increases the load of the reflector, not the contact forces. -- Abstract: Pebble bed reactors (PBR) are graphite-moderated, gas-cooled nuclear reactors. PBR reactors use a large number of spherical fuel elements called pebbles. From mechanical point of view, the arrangement of “small” spherical fuel elements in a container poses the same problem, as the so-called silo problem in powder technology and agricultural engineering. To get more exact information about the contact forces arising between the fuel elements in static and dynamic case, we simulated the static case and the effects of an earthquake on a model reactor by using discrete element method. We determined the maximal contact forces acting between the individual fuel elements. We found that the value of the maximal bending moment in the central reflector beam has a high deviation from the average value even in static case, and it can significantly increase in case of an earthquake. Our results can help the engineers working on the design of such types of reactors to get information about the contact forces, to determine the dust production and the crush probability of fuel elements within the reactor, and to model different accident scenarios

  16. Failure analysis of pebble bed reactors during earthquake by discrete element method

    Energy Technology Data Exchange (ETDEWEB)

    Keppler, Istvan, E-mail: keppler.istvan@gek.szie.hu [Department of Mechanics and Engineering Design, Szent István University, Páter K.u.1., Gödöllő H-2103 (Hungary)

    2013-05-15

    Highlights: ► We evaluated the load acting on the central reflector beam of a pebble bed reactor. ► The load acting on the reflector beam highly depends on fuel element distribution. ► The contact force values do not show high dependence on fuel element distribution. ► Earthquake increases the load of the reflector, not the contact forces. -- Abstract: Pebble bed reactors (PBR) are graphite-moderated, gas-cooled nuclear reactors. PBR reactors use a large number of spherical fuel elements called pebbles. From mechanical point of view, the arrangement of “small” spherical fuel elements in a container poses the same problem, as the so-called silo problem in powder technology and agricultural engineering. To get more exact information about the contact forces arising between the fuel elements in static and dynamic case, we simulated the static case and the effects of an earthquake on a model reactor by using discrete element method. We determined the maximal contact forces acting between the individual fuel elements. We found that the value of the maximal bending moment in the central reflector beam has a high deviation from the average value even in static case, and it can significantly increase in case of an earthquake. Our results can help the engineers working on the design of such types of reactors to get information about the contact forces, to determine the dust production and the crush probability of fuel elements within the reactor, and to model different accident scenarios.

  17. Advanced Core Design And Fuel Management For Pebble-Bed Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

    2004-10-01

    A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well?defined parameters and expressed as a recirculation matrix. The implementation of a few heat?transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

  18. Development and testing of analytical models for the pebble bed type HTRs

    International Nuclear Information System (INIS)

    Huda, M.Q.; Obara, T.

    2008-01-01

    The pebble bed type gas cooled high temperature reactor (HTR) appears to be a good candidate for the next generation nuclear reactor technology. These reactors have unique characteristics in terms of the randomness in geometry, and require special techniques to analyze their systems. This study includes activities concerning the testing of computational tools and the qualification of models. Indeed, it is essential that the validated analytical tools be available to the research community. From this viewpoint codes like MCNP, ORIGEN and RELAP5, which have been used in nuclear industry for many years, are selected to identify and develop new capabilities needed to support HTR analysis. The geometrical model of the full reactor is obtained by using lattice and universe facilities provided by MCNP. The coupled MCNP-ORIGEN code is used to estimate the burnup and the refuelling scheme. Results obtained from Monte Carlo analysis are interfaced with RELAP5 to analyze the thermal hydraulics and safety characteristics of the reactor. New models and methodologies are developed for several past and present experimental and prototypical facilities that were based on HTR pebble bed concepts. The calculated results are compared with available experimental data and theoretical evaluations showing very good agreement. The ultimate goal of the validation of the computer codes for pebble bed HTR applications is to acquire and reinforce the capability of these general purpose computer codes for performing HTR core design and optimization studies

  19. Neutronic design of a Liquid Salt-cooled Pebble Bed Reactor (LSPBR)

    International Nuclear Information System (INIS)

    De Zwaan, S. J.; Boer, B.; Lathouwers, D.; Kloosterman, J. L.

    2006-01-01

    A renewed interest has been raised for liquid salt cooled nuclear reactors. The excellent heat transfer properties of liquid salt coolants provide several benefits, like lower fuel temperatures, higher coolant outlet temperatures, increased core power density and better decay heat removal. In order to benefit from the online refueling capability of a pebble bed reactor, the Liquid Salt Pebble Bed Reactor (LSPBR) is proposed. This is a high temperature pebble-bed reactor with a fuel design similar to existing HTRs, but using a liquid salt as a coolant. In this paper, the selection criteria for the liquid salt coolant are described. Based on its neutronic properties, LiF-BeF 2 (FLIBE) was selected for the LSPBR. Two designs of the LSPBR were considered: a cylindrical core and an annular core with a graphite inner reflector. Coupled neutronic-thermal hydraulic calculations were performed to obtain the steady state power distribution and the corresponding fuel temperatures. Finally, calculations were performed to investigate the decay heat removal capability in a protected loss-of-forced cooling accident. The maximum allowable power that can be produced with the LSPBR is hereby determined. (authors)

  20. Preparation of β-Li{sub 2}TiO{sub 3} pebbles by a modified indirect wet chemistry method

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Cheng-Long, E-mail: johnyucl@aliyun.com [School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021 (China); Research Laboratory of Hydrothermal Chemistry, Faculty of Science, The Kochi University, Kochi 780-8520 (Japan); Wang, Fei; Zhang, Ai-Lin; Gao, Dan-Peng; Cao, Shu-Yao [School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021 (China); Guo, Ying-Yan [College of Resources and Environment, Shaanxi University of Science & Technology, Xi’an 710021 (China); Hui, Huai-Bin [School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021 (China); Technology Research Institute, Technical Center at Dongfeng Commercial Vehicle Company Limited, Wuhan 430056 (China); Hao, Xin [School of Management, Shaanxi University of Science & Technology, Xi’an 710021 (China); Wang, Dao-Yi [School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021 (China); Yanagisawa, Kazumichi [Research Laboratory of Hydrothermal Chemistry, Faculty of Science, The Kochi University, Kochi 780-8520 (Japan)

    2015-12-15

    Graphical abstract: β-Li{sub 2}TiO{sub 3} pebbles with about 1.56 mm in diameter, a better sphericity of 1.02 and relative sintered density of 95.8%T.D. are successfully fabricated when sintered at 1100 °C for 6 h in ambient conditions. - Highlights: • β-Li{sub 2}TiO{sub 3} powders via hydrothermal method are used as raw materials. • A mixture of the acetone and carbon tetrachloride bath is used. • The wet gel pebbles can be fabricated at room temperature. - Abstract: β-Li{sub 2}TiO{sub 3} pebbles were fabricated by a modified indirect wet chemistry method. The first feature lies in that β-Li{sub 2}TiO{sub 3} powders via hydrothermal method were used as raw materials. The second one lies in that a mixture of the acetone and carbon tetrachloride was used for formation and aging of the pebbles at room temperature. The phase identification of the β-Li{sub 2}TiO{sub 3} sintered pebbles was conducted by the X-ray Diffraction analysis. The morphology of the sintered β-Li{sub 2}TiO{sub 3} pebbles was observed by Field Emission Scanning Electron Microscope. The experimental results show that the β-Li{sub 2}TiO{sub 3} pebbles with about 1.56 mm in diameter, a better sphericity of 1.02 and relative sintered density of 95.8%T.D. are successfully fabricated when sintered at 1100 °C for 6 h in ambient conditions. The grains in the pebbles are polyhedral brick-shaped, and homogeneous in size distribution. The morphology evolution and relative density of the β-Li{sub 2}TiO{sub 3} pebbles are governed by the sintering temperature, between 1050 °C and 1150 °C. More homogeneous in grain size, less porosity, and higher densification of the β-Li{sub 2}TiO{sub 3} pebbles can be obtained at 1100 °C.

  1. Testing of a "smart-pebble" for measuring particle transport statistics

    Science.gov (United States)

    Kitsikoudis, Vasileios; Avgeris, Loukas; Valyrakis, Manousos

    2017-04-01

    This paper presents preliminary results from novel experiments aiming to assess coarse sediment transport statistics for a range of transport conditions, via the use of an innovative "smart-pebble" device. This device is a waterproof sphere, which has 7 cm diameter and is equipped with a number of sensors that provide information about the velocity, acceleration and positioning of the "smart-pebble" within the flow field. A series of specifically designed experiments are carried out to monitor the entrainment of a "smart-pebble" for fully developed, uniform, turbulent flow conditions over a hydraulically rough bed. Specifically, the bed surface is configured to three sections, each of them consisting of well packed glass beads of slightly increasing size at the downstream direction. The first section has a streamwise length of L1=150 cm and beads size of D1=15 mm, the second section has a length of L2=85 cm and beads size of D2=22 mm, and the third bed section has a length of L3=55 cm and beads size of D3=25.4 mm. Two cameras monitor the area of interest to provide additional information regarding the "smart-pebble" movement. Three-dimensional flow measurements are obtained with the aid of an acoustic Doppler velocimeter along a measurement grid to assess the flow forcing field. A wide range of flow rates near and above the threshold of entrainment is tested, while using four distinct densities for the "smart-pebble", which can affect its transport speed and total momentum. The acquired data are analyzed to derive Lagrangian transport statistics and the implications of such an important experiment for the transport of particles by rolling are discussed. The flow conditions for the initiation of motion, particle accelerations and equilibrium particle velocities (translating into transport rates), statistics of particle impact and its motion, can be extracted from the acquired data, which can be further compared to develop meaningful insights for sediment transport

  2. A scaled experimental study of control blade insertion dynamics in Pebble-Bed Fluoride-Salt-Cooled High-Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Buster, Grant C., E-mail: grant.buster@gmail.com; Laufer, Michael R.; Peterson, Per F.

    2016-07-15

    Highlights: • A granular dynamics scaling methodology is discussed. • Control blade insertion in a representative pebble-bed core is experimentally studied. • Control blade insertion forces and pebble displacements are experimentally measured. • X-ray tomography techniques are used to observe pebble displacement distributions. - Abstract: Direct control element insertion into a pebble-bed reactor core is proposed as a viable control system in molten-salt-cooled pebble-bed reactors. Unlike helium-cooled pebble-bed reactors, this reactor type uses spherical fuel elements with near-neutral buoyancy in the molten-salt coolant, thus reducing contact forces on the fuel elements. This study uses the X-ray Pebble Bed Recirculation Experiment facility to measure the force required to insert a control element directly into a scaled pebble-bed. The required control element insertion force, and therefore the contact force on fuel elements, is measured to be well below recommended limits. Additionally, X-ray tomography is used to observe how the direct insertion of a control element physically displaces spherical fuel elements. The tomography results further support the viability of direct control element insertion into molten-salt-cooled pebble-bed reactor cores.

  3. The role of porosity in discriminating between tsunami and hurricane emplacement of boulders — A case study from the Lesser Antilles, southern Caribbean

    Science.gov (United States)

    Spiske, Michaela; Böröcz, Zoltán; Bahlburg, Heinrich

    2008-04-01

    Coastal boulder deposits are a consequence of high-energy wave impacts, such as storms, hurricanes or tsunami. Parameters useful for distinguishing between hurricane and tsunami origins include distance of a deposit from the coast, boulder weight and inferred wave height. In order to investigate the role of porosity on boulder transport and elucidate the distinction between tsunami and hurricane impacts, we performed Archimedean and optical 3D-profilometry measurements for the determination of accurate physical parameters for porous reef and coral limestone boulders from the islands of Aruba, Bonaire and Curaçao (ABC Islands, Netherlands Antilles, Leeward Islands). Subsets of different coral species and lithotypes constituting the boulders were sampled, the physical parameters of boulders were analyzed, and each boulder component was attributed to a certain range of porosity and density. Lowest porosities were observed in calcarenite (5-8%), whereas highest porosities were measured for serpulid reef rock (47-68%). Porous serpulid reef rock (0.8-1.2 g/cm 3) and the coral Diploria sp. (0.6-1.0 g/cm 3) possess the lowest bulk densities, while less porous calcarenite (2.0-2.7 g/cm 3) and the coral Montastrea cavernosa yield the highest bulk density values (1.6-2.7 g/cm 3). The obtained physical parameters were used to calculate boulder weights and both hurricane and tsunami wave heights necessary to initiate transport of these boulders. Boulders are up to 5.6 times lighter than given in previously published data, and hence required minimum hurricane or tsunami waves are lower than hitherto assumed. The calculated wave heights, the high frequency of tropical storms and hurricanes in the southern Caribbean and the occurrence of boulders exclusively on the windward sides of the islands, implicate that for boulders on the ABC Islands a hurricane origin is more likely than a tsunami origin.

  4. Predicted Versus Actual Savings for a Low-Rise Multifamily Retrofit in Boulder, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L. [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Williamson, J. [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2013-11-01

    To determine the most cost-effective methods of improving buildings, accurate analysis and prediction of the energy use of existing buildings is essential. However, multiple studies confirm that analysis methods tend to over-predict energy use in poorly insulated, leaky homes and thus, the savings associated with improving those homes. In this project, the Building America CARB team evaluated the retrofit of a multifamily building in Boulder, CO. The updated property is a 37 unit, 2 story apartment complex built in 1950, which underwent renovations in early 2009 to bring it into compliance with Boulder, CO's SmartRegs ordinance. Goals of the study were to: 1) evaluate predicted versus actual savings due to the improvements, 2) identify areas where the modeling assumptions may need to be changed, and 3) determine common changes made by renters that would negatively impact energy savings. Other issues that were investigated include the effects of improving building efficiency on tenant comfort, the impact on tenant turnover rates, and the potential market barriers for this type of community scale project.

  5. Indoor pollutant levels from the use of unvented natural gas fireplaces in Boulder, Colorado.

    Science.gov (United States)

    Dutton, S J; Hannigan, M P; Miller, S L

    2001-12-01

    High CO and NO2 concentrations have been documented in homes with unvented combustion appliances, such as natural gas fireplaces. In addition, polycyclic aromatic hydrocarbons (PAH) are emitted from incomplete natural gas combustion. The acute health risks of CO and NO2 exposure have been well established for the general population and for certain high-risk groups, including infants, the elderly, and people with heart disease or asthma. Health effects from PAH exposure are less well known, but may include increased risk of cancer. We monitored CO emissions during the operation of unvented natural gas fireplaces in two residences in Boulder, CO, at various times between 1997 and 2000. During 1999, we expanded our tests to include measurements of NO2 and PAH. Results show significant pollutant accumulation indoors when the fireplaces were used for extended periods of time. In one case, CO concentrations greater than 100 ppm accumulated in under 2 hr of operation; a person at rest exposed for 10 hr to this environment would get a mild case of CO poisoning with an estimated 10% carboxyhemoglobin level. Appreciable NO2 concentrations were also detected, with a 4-hr time average reaching 0.36 ppm. Similar time-average total PAH concentrations reached 35 ng/m3. The results of this study provide preliminary insights to potential indoor air quality problems in homes operating unvented natural gas fireplaces in Boulder.

  6. Survival Times of Meter-Sized Rock Boulders on the Surface of Airless Bodies

    Science.gov (United States)

    Basilevsky, A. T.; Head, J. W.; Horz, F.; Ramsley, K.

    2015-01-01

    This study considers the survival times of meter-sized rock boulders on the surfaces of several airless bodies. As the starting point, we employ estimates of the survival times of such boulders on the surface of the Moon by[1], then discuss the role of destruction due to day-night temperature cycling, consider the meteorite bombardment environment on the considered bodies in terms of projectile flux and velocities and finally estimate the survival times. Survival times of meter-sized rocks on lunar surface: The survival times of hand specimen-sized rocks exposed to the lunar surface environment were estimated based on experiments modeling the destruction of rocks by meteorite impacts, combined with measurements of the lunar surface meteorite flux, (e.g.,[2]). For estimations of the survival times of meter-sized lunar boulders, [1] suggested a different approach based on analysis of the spatial density of boulders on the rims of small lunar craters of known absolute age. It was found that for a few million years, only a small fraction of the boulders ejected by cratering process are destroyed, for several tens of million years approx.50% are destroyed, and for 200-300 Ma, 90 to 99% are destroyed. Following [2] and other works, [1] considered that the rocks are mostly destroyed by meteorite impacts. Destruction of rocks by thermal-stress. However, high diurnal temperature variations on the surface of the Moon and other airless bodies imply that thermal stresses may also be a cause of surface rock destruction. Delbo et al. [3] interpreted the observed presence of fine debris on the surface of small asteroids as due to thermal surface cycling. They stated that because of the very low gravity on the surface of these bodies, ejecta from meteorite impacts should leave the body, so formation there of fine debris has to be due to thermal cycling. Based on experiments on heating-cooling of cm-scale pieces of ordinary and carbonaceous chondrites and theoretical modeling of

  7. KüFA safety testing of HTR fuel pebbles irradiated in the High Flux Reactor in Petten

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, O., E-mail: oliver.seeger@rwth-aachen.de [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Safety of Irradiated Nuclear Materials Unit, Postfach 2340, 76125 Karlsruhe (Germany); Laurie, M., E-mail: mathias.laurie@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Safety of Irradiated Nuclear Materials Unit, Postfach 2340, 76125 Karlsruhe (Germany); Abjani, A. El; Ejton, J.; Boudaud, D.; Freis, D.; Carbol, P.; Rondinella, V.V. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Safety of Irradiated Nuclear Materials Unit, Postfach 2340, 76125 Karlsruhe (Germany); Fütterer, M. [European Commission, Joint Research Centre (JRC), Institute for Energy and Transport (IET), Nuclear Reactor Integrity Assessment and Knowledge Management Unit, PO Box 2, 1755 ZG Petten (Netherlands); Allelein, H.-J. [Lehrstuhl für Reaktorsicherheit und -technik an der RWTH Aachen, Kackertstraße 9, 52072 Aachen (Germany)

    2016-09-15

    The Cold Finger Apparatus (KühlFinger-Apparatur—KüFA) in operation at JRC-ITU is designed to experimentally scrutinize the effects of Depressurization LOss of Forced Circulation (D-LOFC) accident scenarios on irradiated High Temperature Reactor (HTR) fuel pebbles. Up to 1600 °C, the reference maximum temperature for these accidents, high-quality German HTR fuel pebbles have already demonstrated a small fission product release. This paper discusses and compares the releases obtained from KüFA-testing the pebbles HFR-K5/3 and HFR-EU1/3, which were both irradiated in the High Flux Reactor (HFR) in Petten. We present the time-dependent fractional release of the volatile fission product {sup 137}Cs as well as the fission gas {sup 85}Kr for both pebbles. For HFR-EU1/3 the isotopes {sup 134}Cs and {sup 154}Eu as well as the shorter-lived {sup 110m}Ag have also been measured. A detailed description of the experimental setup and its accuracy is given. The data for the recently tested pebbles is discussed in the context of previous results.

  8. Porous structure analysis of large-scale randomly packed pebble bed in high temperature gas-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Cheng; Yang, Xingtuan; Liu, Zhiyong; Sun, Yanfei; Jiang, Shengyao [Tsinghua Univ., Beijing (China). Key Laboratory of Advanced Reactor Engineering and Safety; Li, Congxin [Ministry of Environmental Protection of the People' s Republic of China, Beijing (China). Nuclear and Radiation Safety Center

    2015-02-15

    A three-dimensional pebble bed corresponding to the randomly packed bed in the heat transfer test facility built for the High Temperature Reactor Pebble bed Modules (HTR-PM) in Shandong Shidaowan is simulated via discrete element method. Based on the simulation, we make a detailed analysis on the packing structure of the pebble bed from several aspects, such as transverse section image, longitudinal section image, radial and axial porosity distributions, two-dimensional porosity distribution and coordination number distribution. The calculation results show that radial distribution of porosity is uniform in the center and oscillates near the wall; axial distribution of porosity oscillates near the bottom and linearly varies along height due to effect of gravity; the average coordination number is about seven and equals to the maximum coordination number frequency. The fully established three-dimensional packing structure analysis of the pebble bed in this work is of fundamental significance to understand the flow and heat transfer characteristics throughout the pebble-bed type structure.

  9. Geochemical studies of the White Breccia Boulders at North Ray Crater, Descartes region of the lunar highlands

    Science.gov (United States)

    Lindstrom, M. M.; Lindstrom, D. J.; Lum, R. K. L.; Schuhmann, P. J.; Nava, D. F.; Schuhmann, S.; Philpotts, J. A.; Winzer, S. R.

    1977-01-01

    The samples of the White Breccia Boulders obtained during the Apollo 16 mission and investigated in the reported study include an anorthositic breccia (67415), a dark matrix breccia (67435), a light matrix breccia (67455), and a large clast of dark matrix breccia (67475) taken from the 67455 boulder. The chemical analyses of bulk samples of the samples are listed in a table. A graph shows the lithophile trace element abundances. Another graph indicates the variation of Sm with Al2O3 content for samples from the White Breccia Boulders. The North Ray Crater breccias are found to be in general slightly more aluminous than breccias from the other stations at the Apollo 16 site. Analyses of eight Apollo 16 breccias cited in the literature range from 25% to 35% Al2O3. However, the North Ray Crater breccias are more clearly distinct from the other Apollo 16 breccias in their contents of lithophile trace elements.

  10. Assessing enigmatic boulder deposits in NE Aegean Sea: importance of historical sources as tool to support hydrodynamic equations

    Directory of Open Access Journals (Sweden)

    M. Vacchi

    2012-04-01

    Full Text Available Due to their importance in the assessment of coastal hazards, several studies have focused on geomorphological and sedimentological field evidence of catastrophic wave impacts related to historical tsunami events. Among them, many authors used boulder fields as important indicators of past tsunamis, especially in the Mediterranean Sea. The aim of this study was to understand the mechanism of deposition of clusters of large boulders, consisting of beachrock slabs, which were found on the southern coasts of Lesvos Island (NE Aegean Sea. Methods to infer the origin of boulder deposits (tsunami vs. storm wave are often based on hydrodynamic models even if different environmental complexities are difficult to be incorporated into numerical models. In this study, hydrodynamic equations did not provide unequivocal indication of the mechanism responsible for boulder deposition in the study area. Further analyses, ranging from geomorphologic to seismotectonic data, indicated a tsunami as the most likely cause of displacement of the boulders but still do not allow to totally exclude the extreme storm origin. Additional historical investigations (based on tsunami catalogues, historical photos and aged inhabitants interviews indicated that the boulders are likely to have been deposited by the tsunami triggered by the 6.7 Ms Chios-Karaburum earthquake of 1949 or, alternatively, by minor effects of the destructive tsunami produced by 1956's Amorgos Island earthquake. Results of this study point out that, at Mediterranean scale, to flank numerical models with the huge amount of the available historical data become a crucial tool in terms of prevention policies related to catastrophic coastal events.

  11. Review of PSI studies on reactor physics and thermal fluid dynamics of pebble bed reactors

    International Nuclear Information System (INIS)

    Prasser, Horst-Michael

    2014-01-01

    Switzerland is member of the Generation IV International Forum (GIF). The related work takes entirely place at PSI in the working groups of Gas-Cooled Fast Reactors and Very High Temperature Reactors. In the past, PSI has performed experimental and theoretical studies on criticality issues of pebble beds at the PROTEUS reactor, as well as a preliminary risk assessment of a prototypal HTR as an input for a comparison of energy supply options. PROTEUS was a critical assembly with an annular driver zone. The central region was filled by arrangements of fuel spheres. The reactivity effect of a water ingress was investigated by simulating the water by polyethylene rods of different diameter inserted into the gaps of a regular package. For sub-criticality measurements in pebble beds, a built-in pulsed neutron source was used. The experimental results were used to validate diffusion and higher order neutron transport models. Concerning thermal hydraulics of gas flows, the vast experience of PSI is focused on hydrogen transport, accumulation, and dispersion in containments of light water reactors. The phenomena are comparable in many aspects to the fluid dynamic issues relevant to HTR. Experiments on hydrogen flows are performed for numerous scenarios in the large-scale containment test facility PANDA. Hydrogen is substituted by helium as a model fluid. An important generic aspect is turbulent mixing in the presence of strong stratification, which is relevant for HTR as well. In a parallel project, generic small-scale mixing experiments with a high density ratio of 1:7 are carried out in a horizontal rectangular channel, where helium and nitrogen flows are brought into contact downstream of the rear edge of a splitter plate. Due to the high density ratio, turbulent mixing is affected by strong non-Boussinesq effects. The measurements taken by Particle Imaging Velocimetry (PIV) and Laser Induced Fluorescence techniques are compared to RANS and LES simulations. Similar large

  12. Dynamic analysis and application of fuel elements pneumatic transportation in a pebble bed reactor

    International Nuclear Information System (INIS)

    Liu, Hongbing; Du, Dong; Han, Zandong; Zou, Yirong; Pan, Jiluan

    2015-01-01

    Almost 10,000 spherical fuel elements are transported pneumatically one by one in the pipeline outside the core of a pebble bed reactor every day. Any failure in the transportation will lead to the shutdown of the reactor, even safety accidents. In order to ensure a stable and reliable transportation, it's of great importance to analyze the motion and force condition of the fuel element. In this paper, we focus on the dynamic analysis of the pneumatic transportation of the fuel element and derive kinetic equations. Then we introduce the design of the transportation pipeline. On this basis we calculate some important data such as the velocity of the fuel element, the force between the fuel element and the pipeline and the efficiency of the pneumatic transportation. Then we analyze these results and provide some suggestions for the design of the pipeline. The experiment was carried out on an experimental platform. The velocities of the fuel elements were measured. The experimental results were consistent with and validated the theoretical analysis. The research may offer the basis for the design of the transportation pipeline and the optimization of the fuel elements transportation in a pebble bed reactor. - Highlights: • The kinetic equations of the fuel element in pneumatic transportation are derived. • The dynamic characteristics of the fuel element are analyzed. • Some important parameters are calculated based on the kinetic equations. • The experimental results were consistent with the analysis and verified the analysis. • This paper may offer an important guide to the research of a pebble bed reactor

  13. Experimental investigation on tritium release from lithium titanate pebble under high temperature of 1073 K

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, Kentaro, E-mail: howartre@onid.oregonstate.edu [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki (Japan); Edao, Yuki; Kawamura, Yoshinori [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki (Japan); Hoshino, Tsuyoshi [Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori (Japan); Ohta, Masayuki; Sato, Satoshi; Konno, Chikara [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki (Japan)

    2015-10-15

    Highlights: • We have performed the tritium recovery experiment with the DT neutron source at 1073 K. • The tritium recovery corresponded with the calculated tritium production. • The chemical form of recovered tritium is affected by the temperature and kind of sweep gas. • The recovered HT increases at higher temperature and dry hydrogen circumstance. - Abstract: The temperature of Li{sub 2}TiO{sub 3} pebble breeder in a fusion DEMO blanket is assumed to be more than 1000 K. For the investigation of tritium release from a Li{sub 2}TiO{sub 3} pebble breeder blanket at such a high temperature, we have carried out a tritium release experiment with the DT neutron source at the JAEA-FNS. The Li{sub 2}TiO{sub 3} pebble (1.0–1.2 mm in diameter) of 70 g was put into a stainless steel container and installed into an assembly stratified with beryllium and Li{sub 2}TiO{sub 3} layers. During the DT neutron irradiation, the temperature was kept at 1073 K with wire heaters in the blanket container. Helium gas including 1% hydrogen gas (H{sub 2}/He) mainly flowed inside the container as the purge gas. Two chemical forms, HT and HTO, of extracted tritium were separately collected during the DT neutron irradiation by using water bubblers and CuO bed. The tritium activity in the water bubbler was measured by a liquid scintillation counter. To investigate the effect of moisture in the purge gas, we also performed the same experiments with H{sub 2}O/He gas (H{sub 2}O content: 1%) or pure helium gas. From our experiment at 1073 K, in the case of the purge gas includes H{sub 2}, it is indicated that the increasing tendency of HT release is similar to that of the dry H{sub 2}/He.

  14. Estimating anisotropic diffusion of neutrons near the boundary of a pebble bed random system

    International Nuclear Information System (INIS)

    Vasques, R.

    2013-01-01

    Due to the arrangement of the pebbles in a Pebble Bed Reactor (PBR) core, if a neutron is located close to a boundary wall, its path length probability distribution function in directions of flight parallel to the wall is significantly different than in other directions. Hence, anisotropic diffusion of neutrons near the boundaries arises. We describe an analysis of neutron transport in a simplified 3-D pebble bed random system, in which we investigate the anisotropic diffusion of neutrons born near one of the system's boundary walls. While this simplified system does not model the actual physical process that takes place near the boundaries of a PBR core, the present work paves the road to a formulation that may enable more accurate diffusion simulations of such problems to be performed in the future. Monte Carlo codes have been developed for (i) deriving realizations of the 3-D random system, and (ii) performing 3-D neutron transport inside the heterogeneous model; numerical results are presented for three different choices of parameters. These numerical results are used to assess the accuracy of estimates for the mean-squared displacement of neutrons obtained with the diffusion approximations of the Atomic Mix Model and of the recently introduced [1] Non-Classical Theory with angular-dependent path length distribution. The Non-Classical Theory makes use of a Generalized Linear Boltzmann Equation in which the locations of the scattering centers in the system are correlated and the distance to collision is not exponentially distributed. We show that the results predicted using the Non-Classical Theory successfully model the anisotropic behavior of the neutrons in the random system, and more closely agree with experiment than the results predicted by the Atomic Mix Model. (authors)

  15. Estimating anisotropic diffusion of neutrons near the boundary of a pebble bed random system

    Energy Technology Data Exchange (ETDEWEB)

    Vasques, R. [Department of Mathematics, Center for Computational Engineering Science, RWTH Aachen University, Schinkel Strasse 2, D-52062 Aachen (Germany)

    2013-07-01

    Due to the arrangement of the pebbles in a Pebble Bed Reactor (PBR) core, if a neutron is located close to a boundary wall, its path length probability distribution function in directions of flight parallel to the wall is significantly different than in other directions. Hence, anisotropic diffusion of neutrons near the boundaries arises. We describe an analysis of neutron transport in a simplified 3-D pebble bed random system, in which we investigate the anisotropic diffusion of neutrons born near one of the system's boundary walls. While this simplified system does not model the actual physical process that takes place near the boundaries of a PBR core, the present work paves the road to a formulation that may enable more accurate diffusion simulations of such problems to be performed in the future. Monte Carlo codes have been developed for (i) deriving realizations of the 3-D random system, and (ii) performing 3-D neutron transport inside the heterogeneous model; numerical results are presented for three different choices of parameters. These numerical results are used to assess the accuracy of estimates for the mean-squared displacement of neutrons obtained with the diffusion approximations of the Atomic Mix Model and of the recently introduced [1] Non-Classical Theory with angular-dependent path length distribution. The Non-Classical Theory makes use of a Generalized Linear Boltzmann Equation in which the locations of the scattering centers in the system are correlated and the distance to collision is not exponentially distributed. We show that the results predicted using the Non-Classical Theory successfully model the anisotropic behavior of the neutrons in the random system, and more closely agree with experiment than the results predicted by the Atomic Mix Model. (authors)

  16. What was the transport mode of large boulders in the Campine Plateau and the lower Meuse valley during the mid-Pleistocene?

    Science.gov (United States)

    De Brue, Hanne; Poesen, Jean; Notebaert, Bastiaan

    2015-01-01

    The Campine Plateau in northeastern Belgium, a remnant of an alluvial fan deposited by the Meuse River during the mid-Pleistocene, is characterised by the presence of boulders with maximum dimensions of up to 2 m, embedded in a gravel matrix. These boulders originated in the Ardennes region and are generally assumed to have been transported by ice-rafting processes. This paper investigates for the first time quantitatively the possibility of purely hydraulic transport of the boulders, taking into account channel and flow characteristics in the boulder provenance area during the mid-Pleistocene. Empirical transport relations that describe incipient motion thresholds in nonuniform river beds as a function of the relative grain size, or the ratio between the grain size of interest and the median grain size of the channel bed, are applied in order to calculate critical water depths for transport of boulders of various sizes. Results indicate that hydraulic transport of boulders with intermediate diameters < 1 m could have occurred within limited reaches of the palaeoriver, more specifically in the palaeo-Amblève tributary; whereas the small slope gradient of the palaeo-Meuse most probably inhibited boulder movement by hydraulic forces only. Although calculations of the ice volume required to lift a boulder to the water surface and comparison of the ice floe's dimensions with palaeochannel morphology do suggest that ice rafting is theoretically possible, several alternative, more probable transport mechanisms for the larger boulders of the Campine Plateau are proposed, requiring much smaller critical ice volumes and water depths than ice-rafting processes or purely hydraulic transport. These hypotheses include decreased bed friction and effective boulder density caused by a limited ice layer attached to the river bed and the boulder, hence lowering hydraulic transport thresholds, as well as the formation of ice jams and dams inducing catastrophic flooding and

  17. Progress in the development of Li{sub 2}ZrO{sub 3} and Li{sub 2}TiO{sub 3} pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Lulewicz, J D; Roux, N [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1998-03-01

    Li{sub 2}ZrO{sub 3} and Li{sub 2}TiO{sub 3} pebbles are being developed as ceramic breeder for the European Helium-cooled pebble bed DEMO blanket concept. Status is given of the fabrication work, and of the properties characteristics determination. (author)

  18. Optimal study of a solar air heating system with pebble bed energy storage

    International Nuclear Information System (INIS)

    Zhao, D.L.; Li, Y.; Dai, Y.J.; Wang, R.Z.

    2011-01-01

    Highlights: → Use two kinds of circulation media in the solar collector. → Air heating and pebble bed heat storage are applied with different operating modes. → Design parameters of the system are optimized by simulation program. → It is found that the system can meet 32.8% of the thermal energy demand in heating season. → Annual solar fraction aims to be 53.04%. -- Abstract: The application of solar air collectors for space heating has attracted extensive attention due to its unique advantages. In this study, a solar air heating system was modeled through TRNSYS for a 3319 m 2 building area. This air heating system, which has the potential to be applied for space heating in the heating season (from November to March) and hot water supply all year around in North China, uses pebble bed and water storage tank as heat storage. Five different working modes were designed based on different working conditions: (1) heat storage mode, (2) heating by solar collector, (3) heating by storage bed, (4) heating at night and (5) heating by an auxiliary source. These modes can be operated through the on/off control of fan and auxiliary heater, and through the operation of air dampers manually. The design, optimization and modification of this system are described in this paper. The solar fraction of the system was used as the optimization parameter. Design parameters of the system were optimized by using the TRNSYS program, which include the solar collector area, installation angle of solar collector, mass flow rate through the system, volume of pebble bed, heat transfer coefficient of the insulation layer of the pebble bed and water storage tank, height and volume of the water storage tank. The TRNSYS model has been verified by data from the literature. Results showed that the designed solar system can meet 32.8% of the thermal energy demand in the heating season and 84.6% of the energy consumption in non-heating season, with a yearly average solar fraction of 53.04%.

  19. Safeguards Challenges for Pebble-Bed Reactors (PBRs):Peoples Republic of China (PRC)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Charles W. [Massachusetts Institute of Technology (MIT); Moses, David Lewis [ORNL

    2009-11-01

    The Peoples Republic of China (PRC) is operating the HTR-10 pebble-bed reactor (PBR) and is in the process of building a prototype PBR plant with two modular reactors (250-MW(t) per reactor) feeding steam to a single turbine-generator. It is likely to be the first modular hightemperature reactor to be ready for commercial deployment in the world because it is a highpriority project for the PRC. The plant design features multiple modular reactors feeding steam to a single turbine generator where the number of modules determines the plant output. The design and commercialization strategy are based on PRC strengths: (1) a rapidly growing electric market that will support low-cost mass production of modular reactor units and (2) a balance of plant system based on economics of scale that uses the same mass-produced turbine-generator systems used in PRC coal plants. If successful, in addition to supplying the PRC market, this strategy could enable China to be the leading exporter of nuclear reactors to developing countries. The modular characteristics of the reactor match much of the need elsewhere in the world. PBRs have major safety advantages and a radically different fuel. The fuel, not the plant systems, is the primary safety system to prevent and mitigate the release of radionuclides under accident conditions. The fuel consists of small (6-cm) pebbles (spheres) containing coatedparticle fuel in a graphitized carbon matrix. The fuel loading per pebble is small (~9 grams of low-enriched uranium) and hundreds of thousands of pebbles are required to fuel a nuclear plant. The uranium concentration in the fuel is an order of magnitude less than in traditional nuclear fuels. These characteristics make the fuel significantly less attractive for illicit use (weapons production or dirty bomb); but, its unusual physical form may require changes in the tools used for safeguards. This report describes PBRs, what is different, and the safeguards challenges. A series of

  20. Risk assessment of small-sized HTR with pebble-bed core

    International Nuclear Information System (INIS)

    Kroeger, W.; Mertens, J.; Wolters, J.

    1987-01-01

    Two recent concepts of small-sized HTR's (HTR-Modul and HTR-100) were analysed regarding their safety concepts and risk protection. In neither case do core cooling accidents contribute to the risk because of the low induced core temperatures. Water ingress accidents dominate the risk in both cases by detaching deposited fission products which can be released into the environment. For these accident sequences no early fatalities and practically no lethal case of cancer were computed. Both HTR concepts include adequate precautionary measures and an infinitely small risk according to the usual standards. The safety concepts make express use of the specific inherent safety features of pebble-bed HTR's. (orig.)

  1. Safeguards Challenges for Pebble-Bed Reactors (PBRs):Peoples Republic of China (PRC)

    International Nuclear Information System (INIS)

    Forsberg, Charles W.; Moses, David Lewis

    2009-01-01

    The Peoples Republic of China (PRC) is operating the HTR-10 pebble-bed reactor (PBR) and is in the process of building a prototype PBR plant with two modular reactors (250-MW(t) per reactor) feeding steam to a single turbine-generator. It is likely to be the first modular high temperature reactor to be ready for commercial deployment in the world because it is a high priority project for the PRC. The plant design features multiple modular reactors feeding steam to a single turbine generator where the number of modules determines the plant output. The design and commercialization strategy are based on PRC strengths: (1) a rapidly growing electric market that will support low-cost mass production of modular reactor units and (2) a balance of plant system based on economics of scale that uses the same mass-produced turbine-generator systems used in PRC coal plants. If successful, in addition to supplying the PRC market, this strategy could enable China to be the leading exporter of nuclear reactors to developing countries. The modular characteristics of the reactor match much of the need elsewhere in the world. PBRs have major safety advantages and a radically different fuel. The fuel, not the plant systems, is the primary safety system to prevent and mitigate the release of radionuclides under accident conditions. The fuel consists of small (6-cm) pebbles (spheres) containing coated particle fuel in a graphitized carbon matrix. The fuel loading per pebble is small (∼9 grams of low-enriched uranium) and hundreds of thousands of pebbles are required to fuel a nuclear plant. The uranium concentration in the fuel is an order of magnitude less than in traditional nuclear fuels. These characteristics make the fuel significantly less attractive for illicit use (weapons production or dirty bomb); but, its unusual physical form may require changes in the tools used for safeguards. This report describes PBRs, what is different, and the safeguards challenges. A series of

  2. 3D DEM simulation and analysis of void fraction distribution in a pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Yang, Xingtuan; Gui, Nan; Tu, Jiyuan; Jiang, Shengyao

    2014-01-01

    Highlights: • We show a detailed analysis of void fraction (VF) in HTR-10 of China using DEM. • Radial distribution (RD) of VF is uniform in the core and oscillated near the wall. • Axial distribution (AD) is linearly varied along height due to effect of gravity. • Steady RD of VF in the conical base is Gaussian-like, larger than packing bed. • Joint linear and normal distribution of VF is analyzed and explained. - Abstract: The current work analyzes the radial and axial distributions of void fraction of a pebble bed high temperature reactor. A three-dimensional pebble bed corresponding to our test facility of pebble bed type gas-cooled high temperature reactor (HTR-10) in Tsinghua University is simulated via discrete element method, and the radial and axial void fraction profiles are calculated. It validates the oscillating characteristics of radial void fraction near the wall. Detailed calculations show the differences of void fraction profiles between the stationary packing bed and the dynamically discharging bed. Based on the vertically and circumferentially averaged radial distribution and horizontally averaged axial distribution of void fraction, a fully three-dimensional analytical distribution of void fraction throughout the bed is established. The results show the combined effects of gravity and void variation in the pebble bed caused by the pebble discharging. It indicates the linearly increased packing effect caused by gravity in the vertical (axial) direction and the normal distribution of void in the horizontal (radial) direction by pebble drainage. These two effects coexist in the conical base of the bed whereas only the former effect exists in the cylindrical volume of the bed

  3. Formation and accumulation of radiation-induced defects and radiolysis products in modified lithium orthosilicate pebbles with additions of titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zarins, Arturs, E-mail: arturs.zarins@lu.lv [University of Latvia, Institute of Chemical Physics, Jelgavas Street 1, LV-1004, Riga (Latvia); University of Latvia, Faculty of Chemistry, Jelgavas Street 1, LV-1004, Riga (Latvia); Valtenbergs, Oskars [University of Latvia, Institute of Chemical Physics, Jelgavas Street 1, LV-1004, Riga (Latvia); University of Latvia, Faculty of Chemistry, Jelgavas Street 1, LV-1004, Riga (Latvia); Kizane, Gunta; Supe, Arnis [University of Latvia, Institute of Chemical Physics, Jelgavas Street 1, LV-1004, Riga (Latvia); Knitter, Regina; Kolb, Matthias H.H.; Leys, Oliver [Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-KWT), 76021, Karlsruhe (Germany); Baumane, Larisa [University of Latvia, Institute of Chemical Physics, Jelgavas Street 1, LV-1004, Riga (Latvia); Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006, Riga (Latvia); Conka, Davis [University of Latvia, Institute of Chemical Physics, Jelgavas Street 1, LV-1004, Riga (Latvia); University of Latvia, Faculty of Chemistry, Jelgavas Street 1, LV-1004, Riga (Latvia)

    2016-03-15

    Lithium orthosilicate (Li{sub 4}SiO{sub 4}) pebbles with 2.5 wt.% excess of silicon dioxide (SiO{sub 2}) are the European Union's designated reference tritium breeding ceramics for the Helium Cooled Pebble Bed (HCPB) Test Blanket Module (TBM). However, the latest irradiation experiments showed that the reference Li{sub 4}SiO{sub 4} pebbles may crack and form fragments under operation conditions as expected in the HCPB TBM. Therefore, it has been suggested to change the chemical composition of the reference Li{sub 4}SiO{sub 4} pebbles and to add titanium dioxide (TiO{sub 2}), to obtain lithium metatitanate (Li{sub 2}TiO{sub 3}) as a second phase. The aim of this research was to investigate the formation and accumulation of radiation-induced defects (RD) and radiolysis products (RP) in the modified Li{sub 4}SiO{sub 4} pebbles with different contents of TiO{sub 2} for the first time, in order to estimate and compare radiation stability. The reference and the modified Li{sub 4}SiO{sub 4} pebbles were irradiated with accelerated electrons (E = 5 MeV) up to 5000 MGy absorbed dose at 300–990 K in a dry argon atmosphere. By using electron spin resonance (ESR) spectroscopy it was determined that in the modified Li{sub 4}SiO{sub 4} pebbles, several paramagnetic RD and RP are formed and accumulated, like, E' centres (SiO{sub 3}{sup 3−}/TiO{sub 3}{sup 3−}), HC{sub 2} centres (SiO{sub 4}{sup 3−}/TiO{sub 3}{sup −}) etc. On the basis of the obtained results, it is concluded that the modified Li{sub 4}SiO{sub 4} pebbles with TiO{sub 2} additions have comparable radiation stability with the reference pebbles. - Highlights: • Formation of RD and RP in modified Li{sub 4}SiO{sub 4} pebbles with additions of TiO{sub 2} is analysed for the first time. • Due to additions of TiO{sub 2}, concentration of paramagnetic RD slightly increased in modified Li{sub 4}SiO{sub 4} pebbles. • Modified Li{sub 4}SiO{sub 4} pebbles have good radiation stability compared to

  4. The effects of applying silicon carbide coating on core reactivity of pebble-bed HTR in water ingress accident

    Energy Technology Data Exchange (ETDEWEB)

    Zuhair, S.; Setiadipura, Topan [National Nuclear Energy Agency of Indonesia, Serpong Tagerang Selatan (Indonesia). Center for Nuclear Reactor Technology and Safety; Su' ud, Zaki [Bandung Institute of Technology (Indonesia). Dept. of Physics

    2017-03-15

    Graphite is used as the moderator, fuel barrier material, and core structure in High Temperature Reactors (HTRs). However, despite its good thermal and mechanical properties below the radiation and high temperatures, it cannot avoid corrosion as a consequence of an accident of water/air ingress. Degradation of graphite as a main HTR material and the formation of dangerous CO gas is a serious problem in HTR safety. One of the several steps that can be adopted to avoid or prevent the corrosion of graphite by the water/air ingress is the application of a thin layer of silicon carbide (SiC) on the surface of the fuel element. This study investigates the effect of applying SiC coating on the fuel surfaces of pebble-bed HTR in water ingress accident from the reactivity points of view. A series of reactivity calculations were done with the Monte Carlo transport code MCNPX and continuous energy nuclear data library ENDF/B-VII at temperature of 1200 K. Three options of UO{sub 2}, PuO{sub 2}, and ThO{sub 2}/UO{sub 2} fuel kernel were considered to obtain the inter comparison of the core reactivity of pebble-bed HTR in conditions of water/air ingress accident. The calculation results indicated that the UO{sub 2}-fueled pebble-bed HTR reactivity was slightly reduced and relatively more decreased when the thickness of the SiC coating increased. The reactivity characteristic of ThO{sub 2}/UO{sub 2}-fueled pebble-bed HTR showed a similar trend to that of UO{sub 2}, but did not show reactivity peak caused by water ingress. In contrast with UO{sub 2}- and ThO{sub 2}-fueled pebble-bed HTR, although the reactivity of PuO{sub 2}-fueled pebble-bed HTR was the lowest, its characteristics showed a very high reactivity peak (0.33 Δk/k) and this introduction of positive reactivity is difficult to control. SiC coating on the surface of the plutonium fuel pebble has no significant impact. From the comparison between reactivity characteristics of uranium, thorium and plutonium cores with 0

  5. Integrated mined-area reclamation and land use planning. Volume 3A. A case study of surface mining and reclamation planning: South Boulder Creek Park Project, Sand and Gravel Operations, Boulder, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, L R; Perry, A O; LaFevers, J R

    1977-02-01

    This case study details reclamation planning for the Flatiron Companies' South Boulder Creek Park Project in Boulder, Colorado. The site contains a deposit of high-quality sand and gravel considered to be one of the best and largest known deposits of aggregate materials in the Front Range area. The aggregate deposit is located in a highly visible site just off the Denver-Boulder Turnpike at the entrance to the city from Denver, and adjacent to a residential portion of the city. In order to make maximum use of pre-mining planning, as a tool for resolving a conflict over the company's proposed operation, an extensive cooperative planning effort was initiated. This included the preparation of an environmental impact assessment, numerous public hearings, operating and reclamation plan review by city authorities, annexation of the site to the city, and the granting of a scenic easement on the property to the city for the development of a regional recreation park. A suite of contractual agreements was worked out among Flatiron Companies, the City of Boulder, the Colorado Open Lands Foundation, and the Federal Bureau of Outdoor Recreation. The purpose of this case study is to allow the planner to gain insight into the procedures, possibilities, and constraints involved in premining planning in a cooperative situation.

  6. Boulder Deposits on the Southern Spanish Atlantic Coast: Possible Evidence for the 1755 AD Lisbon Tsunami?

    Directory of Open Access Journals (Sweden)

    Dieter Kelletat

    2005-01-01

    Full Text Available Field evidence of visible tsunami impacts in Europe is scarce. This research focused on an analysis of large littoral debris and accompanying geomorphic features and their rela- tionship to a tsunami event at Cabo de Trafalgar, located on the southern Spanish Atlantic coast. Relative dating of weathering features as well as minor bioconstructive forms in the littoral zone suggest the Lisbon tsunami of 1755 AD as the event responsible for the large deposits described. This tsunami had run up heights of more than 19 m and was generated at the Gorringe Bank, located 500 km west off the Cape. Tsunami deposits at Cabo de Tra- falgar are the first boulder deposits identified on the southern Spanish Atlantic coast and are located approximately 250 km southeast of the Algarve coast (Portugal, where other geo- morphic evidence for the Lisbon tsunami has been reported.

  7. Metal contamination and post-remediation recovery in the Boulder River watershed, Jefferson County, Montana

    Science.gov (United States)

    Unruh, Daniel M.; Church, Stanley E; Nimick, David A.; Fey, David L.

    2009-01-01

    The legacy of acid mine drainage and toxic trace metals left in streams by historical mining is being addressed by many important yet costly remediation efforts. Monitoring of environmental conditions frequently is not performed but is essential to evaluate remediation effectiveness, determine whether clean-up goals have been met, and assess which remediation strategies are most effective. Extensive pre- and post-remediation data for water and sediment quality for the Boulder River watershed in southwestern Montana provide an unusual opportunity to demonstrate the importance of monitoring. The most extensive restoration in the watershed occurred at the Comet mine on High Ore Creek and resulted in the most dramatic improvement in aquatic habitat. Removal of contaminated sediment and tailings, and stream-channel reconstruction reduced Cd and Zn concentrations in water such that fish are now present, and reduced metal concentrations in streambed sediment by a factor of c. 10, the largest improvement in the district. Waste removals at the Buckeye/Enterprise and Bullion mine sites produced limited or no improvement in water and sediment quality, and acidic drainage from mine adits continues to degrade stream aquatic habitat. Recontouring of hillslopes that had funnelled runoff into the workings of the Crystal mine substantially reduced metal concentrations in Uncle Sam Gulch, but did not eliminate all of the acidic adit drainage. Lead isotopic evidence suggests that the Crystal mine rather than the Comet mine is now the largest source of metals in streambed sediment of the Boulder River. The completed removal actions prevent additional contaminants from entering the stream, but it may take many years for erosional processes to diminish the effects of contaminated sediment already in streams. Although significant strides have been made, additional efforts to seal draining adits or treat the adit effluent at the Bullion and Crystal mines would need to be completed to

  8. Predicted Versus Actual Savings for a Low-Rise Multifamily Retrofit in Boulder, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L.; Williamson, J.

    2013-11-01

    To determine the most cost-effective methods of improving buildings, accurate analysis and prediction of the energy use of existing buildings is essential. However, multiple studies confirm that analysis methods tend to over-predict energy use in poorly insulated, leaky homes and thus, the savings associated with improving those homes. In NREL's report titled 'Assessing and Improving the Accuracy of Energy Analysis of Residential Buildings,' researchers propose a method for improving the accuracy of residential energy analysis methods. A key step in this process involves the comparisons of predicted versus metered energy use and savings. In support of this research need, CARB evaluated the retrofit of a multifamily building in Boulder, CO. The updated property is a 37 unit, 2 story apartment complex built in 1950, which underwent renovations in early 2009 to bring it into compliance with Boulder, CO's SmartRegs ordinance. Goals of the study were to: 1) evaluate predicted versus actual savings due to the improvements, 2) identify areas where the modeling assumptions may need to be changed, and 3) determine common changes made by renters that would negatively impact energy savings. In this study, CARB seeks to improve the accuracy of modeling software while assessing retrofit measures to specifically determine which are most effective for large multifamily complexes in the cold climate region. Other issues that were investigated include the effects of improving building efficiency on tenant comfort, the impact on tenant turnover rates, and the potential market barriers for this type of community scale project.

  9. Long-term variability of supratidal coastal boulder activation in Brittany (France)

    Science.gov (United States)

    Autret, Ronan; Dodet, Guillaume; Suanez, Serge; Roudaut, Gildas; Fichaut, Bernard

    2018-03-01

    High-energy supratidal coastal boulder deposit (SCBD) dynamics were investigated on Vierge Island and Pors Carn Point, north and south of western Brittany, France, respectively. Morphological changes induced by boulder transport and quarrying were quantified using high-resolution topographic survey data taken between 2012 and 2017. Additional in-situ wave parameters and water levels were also recorded over this period (2014-2017) in order to compute the maximum water levels and assess the relationship between SCBD morphological changes and specific hydrodynamic conditions. During extreme water levels (for maximum water levels exceeding a one in ten year event), SCBDs were broadly reworked (up to 40% of the total volume). During lower intensity events, for which maximum water levels were still very high, morphological changes represented 1% to 5% of the total volume. These morphological and hydrodynamic observations were then used to calibrate a chronology of SCBD activation events based on 70 years of hindcast winter maximum water levels. These long-term time-series showed great interannual variability in SCBD activation but no significant long-term trend. Winter-frequency SCBD activation was better correlated to the WEPA index (r = 0.46) than the NAO index (r = 0.1). Therefore, the WEPA index can be considered to be a more significant climate proxy for assessing storm-related geomorphic changes in the temperate latitudes of the N-E Atlantic basin (36°-52° N), including the Brittany coast. The potential of SCBDs as a morphological storm proxy for macrotidal high-energy rocky coasts is addressed.

  10. Trial fabrication of Be12Ti electrode for pebble production by rotating electrode method

    International Nuclear Information System (INIS)

    Uda, M.; Iwadachi, T.; Uchida, M.; Nakamichi, M.; Kawamura, H.

    2004-01-01

    Be 12 Ti has been one of candidates for advanced neutron multipliers, due to its high melting points and good chemical stability. Although Be 12 Ti is too brittle to product pebbles for neutron multipliers with the rotating electrode method (REM), a preliminary production of the pebbles which was made of two phase material of α-beryllium (α-Be) and Be 12 Ti was successfully demonstrated with REM. In this study a trial fabrication of the Be-5at%Ti'' ingot (α-Be + Be 12 Ti) for the REM electrode was carried out with a vacuum casting process. Three kinds of refractory crucibles (MgO, CaO and BeO) were tested for the evaluation of durability to the melt of Be-5%Ti. The water-cooled copper mould was applied for the casting mold to assist a one-direction solidification. The appearance (crack(s), shrinkage, etc.), microstructure and chemical analysis of the ''Be-5at%Ti'' ingots were investigated. As for the results of the trial fabrication, it was made clear that BeO crucible is most useful for the melting of Be-5at%Ti. The ingot, which was a size of φ85 x h 150 mm, had h 40mm sound portion from the bottom. The microstructure of the ingots showed two phases (probably α-Be and Be 12 Ti). The chemical composition of the Ti in the ingot were 3.1 - 6.2at%. (author)

  11. Integrated design approach of the pebble BeD modular reactor using models

    International Nuclear Information System (INIS)

    Venter, Pieter J.; Mitchell, Mark N.

    2007-01-01

    The pebble bed modular reactor (PBMR) is the first pebble bed reactor that will be utilised in a high temperature direct Brayton cycle configuration. This implies that there are a number of unique features in the PBMR that extend from the German experience base. One of the challenges in the design of the PBMR is developing an understanding of the expected behaviour of the reactor through analyses and simulations and managing the integrated design process between the designers, the physicists and the analysts. This integrated design process is managed through model-based development work. Three-dimensional CAD models are constructed of the components and parts in the reactor. From the CAD models, CFD models, neutronic models, shielding models, FEM models and other thermodynamic models are derived. These models range from very simple models to extremely detailed and complex models. The models are used in legacy software as well as commercial off-the-shelf software. The different models are also used in code-to-code comparisons to verify the results. This paper will briefly discuss the different models and the interaction between the models, and how the models are used in the iterative design process that is used in the development of the reactor at PBMR

  12. Pebble bed modular reactor safeguards: developing new approaches and implementing safeguards by design

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Brian David [Los Alamos National Laboratory; Beddingfield, David H [Los Alamos National Laboratory; Durst, Philip [INL; Bean, Robert [INL

    2010-01-01

    The design of the Pebble Bed Modular Reactor (PBMR) does not fit or seem appropriate to the IAEA safeguards approach under the categories of light water reactor (LWR), on-load refueled reactor (OLR, i.e. CANDU), or Other (prismatic HTGR) because the fuel is in a bulk form, rather than discrete items. Because the nuclear fuel is a collection of nuclear material inserted in tennis-ball sized spheres containing structural and moderating material and a PBMR core will contain a bulk load on the order of 500,000 spheres, it could be classified as a 'Bulk-Fuel Reactor.' Hence, the IAEA should develop unique safeguards criteria. In a multi-lab DOE study, it was found that an optimized blend of: (i) developing techniques to verify the plutonium content in spent fuel pebbles, (ii) improving burn-up computer codes for PBMR spent fuel to provide better understanding of the core and spent fuel makeup, and (iii) utilizing bulk verification techniques for PBMR spent fuel storage bins should be combined with the historic IAEA and South African approaches of containment and surveillance to verify and maintain continuity of knowledge of PBMR fuel. For all of these techniques to work the design of the reactor will need to accommodate safeguards and material accountancy measures to a far greater extent than has thus far been the case. The implementation of Safeguards-by-Design as the PBMR design progresses provides an approach to meets these safeguards and accountancy needs.

  13. Inner Super-Earths, Outer Gas Giants: How Pebble Isolation and Migration Feedback Keep Jupiters Cold

    Science.gov (United States)

    Fung, Jeffrey; Lee, Eve J.

    2018-06-01

    The majority of gas giants (planets of masses ≳102 M ⊕) are found to reside at distances beyond ∼1 au from their host stars. Within 1 au, the planetary population is dominated by super-Earths of 2–20 M ⊕. We show that this dichotomy between inner super-Earths and outer gas giants can be naturally explained should they form in nearly inviscid disks. In laminar disks, a planet can more easily repel disk gas away from its orbit. The feedback torque from the pile-up of gas inside the planet’s orbit slows down and eventually halts migration. A pressure bump outside the planet’s orbit traps pebbles and solids, starving the core. Gas giants are born cold and stay cold: more massive cores are preferentially formed at larger distances, and they barely migrate under disk feedback. We demonstrate this using two-dimensional hydrodynamical simulations of disk–planet interaction lasting up to 105 years: we track planet migration and pebble accretion until both come to an end by disk feedback. Whether cores undergo runaway gas accretion to become gas giants or not is determined by computing one-dimensional gas accretion models. Our simulations show that in an inviscid minimum mass solar nebula, gas giants do not form inside ∼0.5 au, nor can they migrate there while the disk is present. We also explore the dependence on disk mass and find that gas giants form further out in less massive disks.

  14. Li2O-pebble type tritium breeding blanket for fusion experimental reactor, 1

    International Nuclear Information System (INIS)

    Tone, Tatsuzo; Iida, Hiromasa; Tanaka, Yoshihisa

    1984-01-01

    The fusion experimental reactor is the next stage device in Japan, which is planned to be constructed following the critical plasma experimental device JT-60 being constructed at present. The breeding blanket installed in nuclear fusion reactors is one of most important structures, and it is required to satisfy the fundamental performance of producing and continuously recovering tritium as the nuclear fusion fuel, and other requirement in good coordination. The Li 2 O pebble type breeding blanket that Kawasaki Heavy Industries Ltd. has examined is the concept for resolving the problems of the mass transfer and thermal stress cracking of Li 2 O, which are important in blanket design. In this paper, the concept and characteristics of this breeding blanket are discussed from the viewpoint of the breeding and continuous recovery of tritium, the ease of manufacture and the maintenance of soundness. The breeding blanket is composed of breeding region, tritium purge region, cooling region, plasma stabilizing conductors and blanket container. Li 2 O is excellent in its tritium breeding performance and heat conductivity. The functions required for the breeding blanket, the fundamental structure, the examples of breeding blanket concept, the selection of breeding blanket concept, the characteristics of Li 2 O pebble type blanket and its future prospect are described. (Kako, I.)

  15. New sampling method in continuous energy Monte Carlo calculation for pebble bed reactors

    International Nuclear Information System (INIS)

    Murata, Isao; Takahashi, Akito; Mori, Takamasa; Nakagawa, Masayuki.

    1997-01-01

    A pebble bed reactor generally has double heterogeneity consisting of two kinds of spherical fuel element. In the core, there exist many fuel balls piled up randomly in a high packing fraction. And each fuel ball contains a lot of small fuel particles which are also distributed randomly. In this study, to realize precise neutron transport calculation of such reactors with the continuous energy Monte Carlo method, a new sampling method has been developed. The new method has been implemented in the general purpose Monte Carlo code MCNP to develop a modified version MCNP-BALL. This method was validated by calculating inventory of spherical fuel elements arranged successively by sampling during transport calculation and also by performing criticality calculations in ordered packing models. From the results, it was confirmed that the inventory of spherical fuel elements could be reproduced using MCNP-BALL within a sufficient accuracy of 0.2%. And the comparison of criticality calculations in ordered packing models between MCNP-BALL and the reference method shows excellent agreement in neutron spectrum as well as multiplication factor. MCNP-BALL enables us to analyze pebble bed type cores such as PROTEUS precisely with the continuous energy Monte Carlo method. (author)

  16. Study of the Effect of Burnable Poison Particles Applying in a Pebble Bed HTR

    International Nuclear Information System (INIS)

    Wei Chunlin; Zhao Jing; Zhang Jian; Xia Bing

    2014-01-01

    In pebble bed high temperature gas cooled reactors (HTR), spherical fuel elements pass through the core several times to balance the burnup process in the fuel region, resulting in an acceptable shape and peak factor of power density in the simulation analysis. In contrast, when fuel elements pass through the core only once, the peak of power density occurs at the top of the core and its value is too high to be safe. These indicators/parameters can be improved by incorporating burnable poison in the fuel elements under certain conditions. In the current study, burnable poison particles (BPPs) in fuel elements are evaluated. In spite of the strong absorption capability of "1"0B, BPPs can decrease the depletion speed and increase the duration of "1"0B because of the self-shielding effect, resulting in improved shape and peak factor of power distribution. Several BPPs with different radius are discussed in power distribution, following the calculation for a full-scale reactor core with modified VSOP code. According the result, applying BPPs on fuel pebbles is an effective means to improve the distribution of the power density under one-through fuel load in HTR. (author)

  17. Preliminary Core Design Analysis of a 200MWth Pebble Bed-type VHTR

    International Nuclear Information System (INIS)

    Jo, Chang Keun; Noh, Jae Man

    2007-01-01

    This paper intends to suggest the preliminary core design analysis of a VHTR for a hydrogen production. The nuclear hydrogen system that utilizes the high temperature heat generated from the VHTR is a promising candidate for a cost effective, safe and clean supply of hydrogen in the age of hydrogen economy. Among two candidate VHTR cores, that is, a prismatic modular reactor (PMR) and a pebble bed-type reactor (PBR), we focus on the design of a 200MWth PBR (hereinafter PBR200) in this paper. Here, the 200MWth power is selected for a demonstration plant. The core configuration of the PBR200 is similar to the PBMR (Pebble Bed Modular Reactor, 400MWth) of South Africa, but the overall dimension of the reactor system is scaled-down. This paper is to suggest two candidate PBR200 cores. One is an annular core with an inner reflector (PBR200-CD1) which was presented at IWRES07, and the other is a cylindrical core without an inner reflector (PBR200-CD2)

  18. Feasibility of Thorium Fuel Cycles in a Very High Temperature Pebble-Bed Hybrid System

    Directory of Open Access Journals (Sweden)

    L.P. Rodriguez

    2015-08-01

    Full Text Available Nuclear energy presents key challenges to be successful as a sustainable energy source. Currently, the viability of the use thorium-based fuel cycles in an innovative nuclear energy generation system is being investigated in order to solve these key challenges. In this work, the feasibility of three thorium-based fuel cycles (232Th-233U, 232Th-239Pu, and 232Th-U in a hybrid system formed by a Very High Temperature Pebble-Bed Reactor (VHTR and two Pebble-Bed Accelerator Driven Systems (ADSs was evaluated using parameters related to the neutronic behavior such as nuclear fuel breeding, minor actinide stockpile, the energetic contribution of each fissile isotope, and the radiotoxicity of the long lived wastes. These parameters were used to compare the fuel cycles using the well-known MCNPX ver. 2.6e computational code. The results obtained confirm that the 232Th-233U fuel cycle is the best cycle for minimizing the production of plutonium isotopes and minor actinides. Moreover, the inclusion of the second stage in the ADSs demonstrated the possibility of extending the burnup cycle duration and reducing the radiotoxicity of the discharged fuel from the VHTR.

  19. Increasing the Harvest: How the University of Colorado Boulder Replaced Alumni Association Dues with a Student Fee

    Science.gov (United States)

    Peglar, Tori

    2012-01-01

    In 2007 the University of Colorado Boulder Alumni Association moved under the university's umbrella after the alumni members had spent 11 years under the CU Foundation. But there were two major catches. First, the chancellor wanted them to eliminate their membership dues, as he felt they competed with the annual fund. Second, he could only make up…

  20. Moraine preservation and boulder erosion in the tropical Andes: interpreting old surface exposure ages in glaciated valleys

    Science.gov (United States)

    Smith, Jacqueline A.; Finkel, Robert C.; Farber, Daniel L.; Rodbell, Donald T.; Seltzer, Geoffrey O.

    2005-10-01

    Cosmogenic dating provides a long-awaited means of directly dating glacial deposits that pre-date the last glacial cycle. Although the potential benefits of longer chronologies are obvious, the greater uncertainty associated with older cosmogenic ages may be less readily apparent. We illustrate the challenges of developing and interpreting a long chronology using our data from the Peruvian Andes. We used surface exposure dating with cosmogenic radionuclides (CRNs; 10Be and 26Al) to date 140 boulders on moraines in valleys bordering the Junin Plain (11° S, 76° W) in central Peru. Our chronology spans multiple glacial cycles and includes exposure ages greater than 1 million years, which indicate that long-term rates of boulder erosion have been very low. Interpreting the chronology of moraines for glaciations that predate the last glacial cycle is complicated by the need to consider boulder erosion and exhumation, surface uplift, and inheritance of CRNs from previous exposure intervals. As an example, we recalculate exposure ages using our boulder erosion rates (0.3-0.5 metres per million years) and estimated surface uplift rates to emphasise both the challenges involved in interpreting old surface exposure ages and the value of chronological data, even with large uncertainties, when reconstructing the palaeoclimate of a region.

  1. University of Colorado at Boulder: Energy and Climate Revolving Fund. Green Revolving Funds in Action: Case Study Series

    Science.gov (United States)

    Caine, Rebecca

    2012-01-01

    The University of Colorado at Boulder's student run Environmental Center leads the campus' sustainability efforts. The Center created the Energy and Climate Revolving Fund (ECRF) in 2007 to finance energy-efficiency upgrades. The ECRF functions as a source of funding for project loans and provides a method of financing projects that seeks to save…

  2. 75 FR 19966 - Boulder Canyon Project-Post-2017 Application of the Energy Planning and Management Program Power...

    Science.gov (United States)

    2010-04-16

    ... Application of the Energy Planning and Management Program Power Marketing Initiative AGENCY: Western Area... and Management Program (Program) Power Marketing Initiative (PMI) (10 CFR part 905) to the Boulder... Power Administration (Western), Desert Southwest Region, a Federal power marketing agency of the...

  3. Characterization of PEBBLEs as a Tool for Real-Time Measurement of Dictyostelium discoideum Endosomal pH

    Directory of Open Access Journals (Sweden)

    Everett Moding

    2009-01-01

    Full Text Available The measurement of intracellular ion concentration change is important for understanding the cellular mechanisms for communication. Recently developed nanosensors, (Photonic Explorers for Biomedical use with Biologically Localized Embedding PEBBLEs, have a number of advantages for measuring ions in cells over established methods using microelectrodes, unbound fluorescent dyes, or NMR. PEBBLE sensors have been shown to work in principle for measuring dynamic ion changes, but few in vivo applications have been demonstrated. We modified the protocol for the fabrication of pH sensing PEBBLEs and developed a protocol for the utilization of these sensors for the monitoring of dynamic pH changes in the endosomes of slime mold Dictyostelium discoideum (D. discoideum. Oregon Green 514-CdSe Quantum Dot PEBBLEs were used to measure real-time pH inside D. discoideum endosomes during cAMP stimulation. Endosomal pH was shown to decrease during cAMP signaling, demonstrating a movement of protons into the endosomes of D. discoideum amoebae.

  4. In-pile test of Li{sub 2}TiO{sub 3} pebble bed with neutron pulse operation

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K. E-mail: tsuchiya@oarai.jaeri.go.jp; Nakamichi, M.; Kikukawa, A.; Nagao, Y.; Enoeda, M.; Osaki, T.; Ioki, K.; Kawamura, H

    2002-12-01

    Lithium titanate (Li{sub 2}TiO{sub 3}) is one of the candidate materials as tritium breeder in the breeding blanket of fusion reactors, and it is necessary to show the tritium release behavior of Li{sub 2}TiO{sub 3} pebble beds. Therefore, a blanket in-pile mockup was developed and in situ tritium release experiments with the Li{sub 2}TiO{sub 3} pebble bed were carried out in the Japan Materials Testing Reactor. In this study, the relationship between tritium release behavior from Li{sub 2}TiO{sub 3} pebble beds and effects of various parameters were evaluated. The (R/G) ratio of tritium release (R) and tritium generation (G) was saturated when the temperature at the outside edge of the Li{sub 2}TiO{sub 3} pebble bed became 300 deg. C. The tritium release amount increased cycle by cycle and saturated after about 20 pulse operations.

  5. Tritium release from Li{sub 4}SiO{sub 4} ceramic pebbles in high magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ran, Guangming [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Xiao, Chengjian; Chen, Xiaojun; Gong, Yu; Zhao, Linjie [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Wang, Xiaolin [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-12-15

    Highlights: • Behavior of tritium release from Li{sub 4}SiO{sub 4} pebbles in MF up to 7 T was investigated. • The MF effect on tritium release is not significant according to the TPD results. • Tritium release from the BIG sample is much easier than that from the SMALL sample. • The MF effect on tritium diffusion was probably weakened by surface desorption. - Abstract: The behavior of tritium release from Li{sub 4}SiO{sub 4} ceramic pebbles in high magnetic field (MF) was investigated by temperature programmed desorption (TPD). Two batches of Li{sub 4}SiO{sub 4} pebbles produced by wet method were used as the experimental samples, one batch with an average pebble diameter of 0.8 mm (the SMALL samples), and the other 1.2 mm (the BIG samples). A superconducting magnet was applied to generate MF up to 7 T in the sample area during annealing. For both batches of samples, the tritium release curves within and without MF showed very similar characteristics, indicating that the effect of high MF on tritium release behavior is not significant. The tritium release peaks for the BIG samples were observed at much lower temperatures than that for the SMALL samples, even though the grain sizes of the BIG samples are much bigger than that of the SMALL samples. It is considered that surface desorption process dominates the overall tritium release behavior in this work, which probably weakened the MF effect.

  6. Density improvement of Li{sub 2}TiO{sub 3} pebbles fabricated by wet process

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K; Kawamura, H [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Fuchinoue, K; Sawada, H; Watarumi, K

    1998-03-01

    Lithium titanate (Li{sub 2}TiO{sub 3}) has attracted the attention of many researchers from a point of tritium recovery at low temperature, chemical stability, etc.. The application of small Li{sub 2}TiO{sub 3} sphere has been proposed in some designs of fusion blanket. On the other hand, the wet process is most advantageous as the fabrication method of Li{sub 2}TiO{sub 3} pebbles from a point of mass production, and of reprocessing necessary for effective use of resources and reduction of radioactive wastes. In the preliminary fabrication test, density of Li{sub 2}TiO{sub 3} pebbles was about 40%T.D.. Therefore, in this study, density improvement tests and preliminary characterization of Li{sub 2}TiO{sub 3} pebbles by wet process were performed, noting the aging condition and sintering condition in the fabrication process of the gel-spheres. This study yielded Li{sub 2}TiO{sub 3} pebbles in target range of 80-85%T.D.. (author)

  7. A Preliminary Study of the Effect of Shifts in Packing Fraction on k-effective in Pebble-Bed Reactors

    International Nuclear Information System (INIS)

    Ougouag, Abderrafi Mohammed-El-Ami; Terry, William Knox

    2001-01-01

    A preliminary examination of the effect of pebble packing changes on the reactivity of a pebble-bed reactor (PBR) is performed. As a first step, using the MCNP code, the modeling of a PBR core as a continuous and homogeneous region is compared to the modeling as a collection of discrete pebbles of equal average fuel density. It is shown that the two modeling approaches give the same trends inasmuch as changes in keff are concerned. It is thus shown that for the purpose of identifying trends in keff changes, the use of a homogeneous model is sufficient. A homogeneous model is then used to assess the effect of pebble packing arrangement changes on the reactivity of a PBR core. It is shown that the changes can be large enough to result in prompt criticality. It is shown that for uranium fueled PBRs, thermal feedback could have the potential to offset the increase in activity, whereas for plutonium fueled systems, thermal feedback may not be sufficient for totally offsetting the packing-increase reactivity insertion and could even exacerbate the initial response. It is thus shown that a full study, including reactor kinetics, thermal feedback, and the dynamics of energy deposition and removal is warranted to fully characterize the potential consequences of packing shifts

  8. Preliminary Safeguards Assessment for the Pebble-Bed Fluoride High-Temperature Reactor (PB-FHR) Concept

    Energy Technology Data Exchange (ETDEWEB)

    Disser, Jay; Arthur, Edward; Lambert, Janine

    2016-09-01

    This report examines a preliminary design for a pebble bed fluoride salt-cooled high temperature reactor (PB-FHR) concept, assessing it from an international safeguards perspective. Safeguards features are defined, in a preliminary fashion, and suggestions are made for addressing further nuclear materials accountancy needs.

  9. Recovery and recycling of lithium value from spent lithium titanate (Li{sub 2}TiO{sub 3}) pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, D., E-mail: dmandal10@gmail.com

    2013-09-15

    Graphical abstract: Effects of various process parameters on the recovery of Li-from spent Li{sub 2}TiO{sub 3} pebbles were investigated. From the experimental results it was observed that the leaching rate increases with speed of stirring till 450 rpm and then above 450 rpm; the increase in speed of stirring does not have any significant effect on the leaching rate as shown in the following figure. Effects of other parameters on the Li-recovery from spent Li{sub 2}TiO{sub 3} pebbles are discussed in this paper. Abstract: In the first generation fusion reactors the fusion of deuterium (D) and tritium (T) is considered to produce energy to meet the future energy demand. Deuterium is available in nature whereas, tritium is not. Lithium-6 (Li{sup 6}) isotope has the ability to produce tritium in the n, α nuclear reaction with neutrons. Thus lithium-based ceramics enriched by Li{sup 6} isotope are considered for the tritium generation for its use in future fusion reactors. Lithium titanate is one such Li-based ceramic material being considered for its some attractive properties viz., high thermal and chemical stability, high thermal conductivity, and low tritium solubility. It is reported in the literature, that the burn up of these pebbles in the fusion reactor will be limited to only 15–17 atomic percentage. At the end of life, the pebbles will contain more than 45% unused Li{sup 6} isotope. Due to the high cost of enriched Li{sup 6} and the waste disposal considerations, it is necessary to recover the unused Li from the spent lithium titanate pebbles. Till date, only the feasibilities of different processes are reported, but no process details are available. Experiments were carried out for the recovery of Li from simulated Li{sub 2}TiO{sub 3} pebbles and to reuse of lithium in lithium titanate pebble fabrication. The details of the experiments and results are discussed in this paper.

  10. Fabrication of Li{sub 2}TiO{sub 3} pebbles using PVA–boric acid reaction for solid breeding materials

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yi-Hyun, E-mail: yhpark@nfri.re.kr; Cho, Seungyon; Ahn, Mu-Young

    2014-12-15

    Highlights: • Li{sub 2}TiO{sub 3} pebbles were successfully fabricated by the slurry droplet wetting method. • Boron was used as hardening agent of PVA and completely removed during sintering. • Microstructure of fabricated Li{sub 2}TiO{sub 3} pebble was exceptionally homogeneous. • Suitable process conditions for high-quality Li{sub 2}TiO{sub 3} pebble were summarized. - Abstract: Lithium metatitanate (Li{sub 2}TiO{sub 3}) is a candidate breeding material of the Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM). The breeding material is used in pebble-bed form to reduce the uncertainty of the interface thermal conductance. In this study, Li{sub 2}TiO{sub 3} pebbles were successfully fabricated by the slurry droplet wetting method using the cross-linking reaction between polyvinyl alcohol (PVA) and boric acid. The effects of fabrication parameters on the shaping of Li{sub 2}TiO{sub 3} green body were investigated. In addition, the basic characteristics of the sintered pebble were also evaluated. The shape of Li{sub 2}TiO{sub 3} green bodies was affected by slurry viscosity, PVA content and boric acid content. The grain size and average crush load of sintered Li{sub 2}TiO{sub 3} pebble were controlled by the sintering time. The boron was completely removed during the final sintering process.

  11. A safety re-evaluation of the AVR pebble bed reactor operation and its consequences for future HTR concepts

    Energy Technology Data Exchange (ETDEWEB)

    Moormann, R.

    2008-06-15

    The AVR pebble bed reactor (46 MW{sub th}) was operated 1967-88 at coolant outlet temperatures up to 990 C. A principle difference of pebble bed HTRs as AVR to conventional reactors is the continuous movement of fuel element pebbles through the core which complicates thermohydraulic, nuclear and safety estimations. Also because of a lack of other experience AVR operation is still a relevant basis for future pebble bed HTRs and thus requires careful examination. This paper deals mainly with some insufficiently published unresolved safety problems of AVR operation and of pebble bed HTRs but skips the widely known advantageous features of pebble bed HTRs. The AVR primary circuit is heavily contaminated with metallic fission products (Sr-90, Cs-137) which create problems in current dismantling. The amount of this contamination is not exactly known, but the evaluation of fission product deposition experiments indicates that the end of life contamination reached several percent of a single core inventory, which is some orders of magnitude more than precalculated and far more than in large LWRs. A major fraction of this contamination is bound on graphitic dust and thus partly mobile in depressurization accidents, which has to be considered in safety analyses of future reactors. A re-evaluation of the AVR contamination is performed here in order to quantify consequences for future HTRs (400 MW{sub th}). It leads to the conclusion that the AVR contamination was mainly caused by inadmissible high core temperatures, increasing fission product release rates, and not - as presumed in the past - by inadequate fuel quality only. The high AVR core temperatures were detected not earlier than one year before final AVR shut-down, because a pebble bed core cannot yet be equipped with instruments. The maximum core temperatures are still unknown but were more than 200 K higher than calculated. Further, azimuthal temperature differences at the active core margin of up to 200 K were

  12. A safety re-evaluation of the AVR pebble bed reactor operation and its consequences for future HTR concepts

    International Nuclear Information System (INIS)

    Moormann, R.

    2008-06-01

    The AVR pebble bed reactor (46 MW th ) was operated 1967-88 at coolant outlet temperatures up to 990 C. A principle difference of pebble bed HTRs as AVR to conventional reactors is the continuous movement of fuel element pebbles through the core which complicates thermohydraulic, nuclear and safety estimations. Also because of a lack of other experience AVR operation is still a relevant basis for future pebble bed HTRs and thus requires careful examination. This paper deals mainly with some insufficiently published unresolved safety problems of AVR operation and of pebble bed HTRs but skips the widely known advantageous features of pebble bed HTRs. The AVR primary circuit is heavily contaminated with metallic fission products (Sr-90, Cs-137) which create problems in current dismantling. The amount of this contamination is not exactly known, but the evaluation of fission product deposition experiments indicates that the end of life contamination reached several percent of a single core inventory, which is some orders of magnitude more than precalculated and far more than in large LWRs. A major fraction of this contamination is bound on graphitic dust and thus partly mobile in depressurization accidents, which has to be considered in safety analyses of future reactors. A re-evaluation of the AVR contamination is performed here in order to quantify consequences for future HTRs (400 MW th ). It leads to the conclusion that the AVR contamination was mainly caused by inadmissible high core temperatures, increasing fission product release rates, and not - as presumed in the past - by inadequate fuel quality only. The high AVR core temperatures were detected not earlier than one year before final AVR shut-down, because a pebble bed core cannot yet be equipped with instruments. The maximum core temperatures are still unknown but were more than 200 K higher than calculated. Further, azimuthal temperature differences at the active core margin of up to 200 K were observed

  13. Formation and accumulation of radiation-induced defects and radiolysis products in modified lithium orthosilicate pebbles with additions of titanium dioxide

    Science.gov (United States)

    Zarins, Arturs; Valtenbergs, Oskars; Kizane, Gunta; Supe, Arnis; Knitter, Regina; Kolb, Matthias H. H.; Leys, Oliver; Baumane, Larisa; Conka, Davis

    2016-03-01

    Lithium orthosilicate (Li4SiO4) pebbles with 2.5 wt.% excess of silicon dioxide (SiO2) are the European Union's designated reference tritium breeding ceramics for the Helium Cooled Pebble Bed (HCPB) Test Blanket Module (TBM). However, the latest irradiation experiments showed that the reference Li4SiO4 pebbles may crack and form fragments under operation conditions as expected in the HCPB TBM. Therefore, it has been suggested to change the chemical composition of the reference Li4SiO4 pebbles and to add titanium dioxide (TiO2), to obtain lithium metatitanate (Li2TiO3) as a second phase. The aim of this research was to investigate the formation and accumulation of radiation-induced defects (RD) and radiolysis products (RP) in the modified Li4SiO4 pebbles with different contents of TiO2 for the first time, in order to estimate and compare radiation stability. The reference and the modified Li4SiO4 pebbles were irradiated with accelerated electrons (E = 5 MeV) up to 5000 MGy absorbed dose at 300-990 K in a dry argon atmosphere. By using electron spin resonance (ESR) spectroscopy it was determined that in the modified Li4SiO4 pebbles, several paramagnetic RD and RP are formed and accumulated, like, E' centres (SiO33-/TiO33-), HC2 centres (SiO43-/TiO3-) etc. On the basis of the obtained results, it is concluded that the modified Li4SiO4 pebbles with TiO2 additions have comparable radiation stability with the reference pebbles.

  14. Effect of heat source shape on the thermal field in the pebble bed core of High Temperature Gas-cooled Reactor (HTGR)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Leisheng; Lee, Jaeyoung [Handong Global University, Pohang (Korea, Republic of)

    2015-10-15

    In this study, in order to minimize the error brought by non-uniform heat flux, the spherical heaters are employed as heat source; subsequently, thermal field and heat transfer characteristics of the pebbles are investigated. The thermal field of the pebble surface in PBR is measured with heat source in different shapes. The HTGR design concept exhibits excellent safety features due to the low power density and the large amount of graphite present in the core which gives a large thermal inertia in an accident such as loss of coolant. However, the possible appearance of hot spots in the pebble bed cores of HTGR may affect the integrity of the pebbles, which has drawn the attention of many scientists to investigate the thermal field and to predict the maximum temperature locations in the pebbles using CFD method, Lee et.al has also done some experimental work on measuring the surface temperature of the pebbles as well as visualizing flow patterns of the coolant gas, and it was found that the temperature near the contacting points between pebbles was not higher than the flow stagnation points due to the higher thermal conductivity of the pebble. Certain error of temperature measurement might occur because of not very uniform heat flux in the pebbles since heater in cylindrical shape was utilized as heat source in previous experiment. More uniform heat flux and more complicated thermal profile are found in the result obtained using spherical heaters. The result shows that the temperature in contact point is higher than that in the top point, which is different from the previous results. The complex thermal phenomena observed in the lower-half side-sphere can be explained by the flow pattern near the surface.

  15. Methodology of the On-Iine FoIIow Simulation of Pebble-bed High-temperature Reactors

    International Nuclear Information System (INIS)

    Xia Bing; Li Fu; Wei Chunlin; Zheng Yanhua; Chen Fubing; Zhang Jian; Guo Jiong

    2014-01-01

    The on-line fuel management is an essential feature of the pebble-bed high-temperature reactors (PB-HTRs), which is strongly coupled with the normal operation of the reactor. For the purpose of on-line analysis of the continuous shuffling scheme of numerous fuel pebbles, the follow simulation upon the real operation is necessary for the PB-HTRs. In this work, the on-line follow simulation methodology of the PB-HTRs’ operation is described, featured by the parallel treatments of both neutronics analysis and fuel cycling simulation. During the simulation, the operation history of the reactor is divided into a series of burn-up cycles according to the behavior of operation data, in which the steady-state neutron transport equations are solved and the diffusion theory is utilized to determine the physical features of the reactor core. The burn-up equations of heavy metals, fission products and neutron poisons including B-10, decoupled from the pebble flow term, are solved to analyze the burn-up process within a single burn-up cycle. The effect of pebble flow is simulated separately through a discrete fuel shuffling pattern confined by curved pebble flow channels, and the effect of multiple pass of the fuel is represented by logical batches within each spatial region of the core. The on-line thermal-hydraulics feedback is implemented for each bur-up cycle by using the real thermal-hydraulics data of the core operation. The treatment of control rods and absorber balls is carried out by utilizing a coupled neutron transport-diffusion calculation along with discontinuity factors. The physical models mentioned above are established mainly by using a revised version of the V.S.O.P program system. The real operation data of HTR-10 is utilized to verify the methodology presented in this work, which gives good agreement between simulation results and operation data. (author)

  16. Investigating effects of BCC and FCC arrangements on flow and heat transfer characteristics in pebbles through CFD methodology

    Energy Technology Data Exchange (ETDEWEB)

    Ferng, Yuh Ming, E-mail: ymferng@ess.nthu.edu.tw [Department of Engineering and System Science, Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Sec. 2. Kuang-Fu Rd., Hsingchu 30013, Taiwan, ROC (China); Lin, Kun-Yueh [Department of Engineering and System Science, Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Sec. 2. Kuang-Fu Rd., Hsingchu 30013, Taiwan, ROC (China)

    2013-05-15

    Highlights: ► An HTGR would be one of the possible energy generation sources. ► We propose a CFD model to study effects of pebble arrangements for a PRB core. ► The entrance effect on the Nu number can be reasonably captured. ► The present predicted Nu versus Re{sub p} shows good agreement with data and correlation. ► Using FCC lattice in a core, simulation results may be non-conservative. -- Abstract: A high temperature gas cooled reactor (HTGR) would be one of the possible energy generation sources due to its advantages of inherently safety performance and higher conversion efficiency, etc. However, safety is the most important issue for its commercialization in energy industry. It is very crucial for safety design and operation of an HTGR to investigate its thermal–hydraulic characteristics. In this article, a computational fluid dynamics (CFD) methodology is proposed to investigate effects of different arrangements on these characteristics for an HTGR with a pebble bed (PB) core. Two kinds of arrangement: body-centered cubic (BCC) and face-centered cubic (FCC) are studies herein. Based on the simulation results, higher heat transfer capability and lower pebble temperature are predicted in the pebbles with the FCC-arrangement. The thermally fully-developed flow condition may be reached, which is shown in the result that the predicted average Nussel (Nu) number decreases from the 1st layer and reaches to an asymptotic value as the gas passes through the 6th layer of pebbles. This entrance effect reveals that the system codes using the correlations developed from the fully-developed flow condition can be appropriately applied in the entire PBR core. In addition, the present predicted dependence of Nu number on the inlet Reynolds (Re) number shows good agreement with that obtained from the well-known KTA. Measured data of Nu number versus Re number are also used to validate the CFD model.

  17. Ground geophysical study of the Buckeye mine tailings, Boulder watershed, Montana

    Science.gov (United States)

    McDougal, Robert R.; Smith, Bruce D.

    2000-01-01

    The Buckeye mine site is located in the Boulder River watershed along Basin Creek, in northern Jefferson County, Montana. This project is part of the Boulder River watershed Abandoned Mine Lands Initiative, and is a collaborative effort between the U.S. Geological Survey and Bureau of Land Management in the U.S. Department of the Interior, and the U.S. Forest Service in the U.S. Department of Agriculture. The site includes a large flotation milltailing deposit, which extends to the stream and meadows below the mine. These tailings contain elevated levels of metals, such as silver, cadmium, copper, lead, and zinc. Metal-rich fluvial tailings containing these metals, are possible sources of ground and surface water contamination. Geophysical methods were used to characterize the sediments at the Buckeye mine site. Ground geophysical surveys, including electromagnetics, DC resistivity, and total field magnetic methods, were used to delineate anomalies that probably correlate with subsurface metal contamination. Subsurface conductivity was mapped using EM-31 and EM-34 terrain conductivity measuring systems. The conductivity maps represent variation of concentration of dissolved solids in the subsurface from a few meters, to an approximate depth of 30 meters. Conductive sulfides several centimeters thick were encountered in a shallow trench, dug in an area of very high conductivity, at a depth of approximately 1 to1.5 meters. Laboratory measurements of samples of the sulfide layers show the conductivity is on the order of 1000 millisiemens. DC resistivity soundings were used to quantify subsurface conductivity variations and to estimate the depth to bedrock. Total field magnetic measurements were used to identify magnetic metals in the subsurface. The EM surveys identified several areas of relatively high conductivity and detected a conductive plume extending to the southwest, toward the stream. This plume correlates well with the potentiometric surface and direction of

  18. Seismic-sequence stratigraphy and geologic structure of the Floridan aquifer system near "Boulder Zone" deep wells in Miami-Dade County, Florida

    Science.gov (United States)

    Cunningham, Kevin J.

    2015-01-01

    The U.S. Geological Survey, in cooperation with the Miami-Dade Water and Sewer Department, acquired, processed, and interpreted seismic-reflection data near the North and South District “Boulder Zone” Well Fields to determine if geologic factors may contribute to the upward migration of injected effluent into that upper part of the Floridan aquifer system designated by the U.S. Environmental Protection Agency as an underground source of drinking water. The depth of the Boulder Zone at the North and South District “Boulder Zone” Well Fields ranges from about 2,750 to 3,300 feet below land surface (ft bls), whereas overlying permeable zones used as alternative drinking water supply range in depth from about 825 to 1,580 ft bls at the North and South District “Boulder Zone” Well Fields. Seismic-sequence stratigraphy and geologic structures imaged on seismic-reflection profiles created for the study describe the part of the Floridan aquifer system overlying and within the Boulder Zone. Features of the Floridan aquifer system underlying the Boulder Zone were not studied because seismic-reflection profiles acquired near the North and South District “Boulder Zone” Well Fields lacked adequate resolution at such depths.

  19. Flow distribution of pebble bed high temperature gas cooled reactors using large eddy simulation

    International Nuclear Information System (INIS)

    Gokhan Yesilyurt; Hassan, Y.A.

    2003-01-01

    A High Temperature Gas-cooled Reactor (HTGR) is one of the renewed reactor designs to play a role in nuclear power generation. This reactor design concepts is currently under consideration and development worldwide. Since the HTGR concept offers inherent safety, has a very flexible fuel cycle with capability to achieve high burnup levels, and provides good thermal efficiency of power plant, it can be considered for further development and improvement as a reactor concept of generation IV. The combination of coated particle fuel, inert helium gas as coolant and graphite moderated reactor makes it possible to operate at high temperature yielding a high efficiency. In this study the simulation of turbulent transport for the gas through the gaps of the spherical fuel elements (fuel pebbles) will be performed. This will help in understanding the highly three-dimensional, complex flow phenomena in pebble bed caused by flow curvature. Under these conditions, heat transfer in both laminar and turbulent flows varies noticeably around curved surfaces. Curved flows would be present in the presence of contiguous curved surfaces. In the case of a laminar flow and of an appreciable effect of thermogravitional forces, the Nusselt (Nu) number depends significantly on the curvature shape of the surface. It changes with order of 10 times. The flow passages through the gap between the fuel balls have concave and convex configurations. Here the action of the centrifugal forces manifests itself differently on convex and concave parts of the flow path (suppression or stimulation of turbulence). The flow of this type has distinctive features. In such flow there is a pressure gradient, which strongly affects the boundary layer behavior. The transition from a laminar to turbulent flow around this curved flow occurs at deferent Reynolds (Re) numbers. Consequently, noncircular curved flows as in the pebble-bed situation, in detailed local sense, is interesting to be investigated. To the

  20. Gas reactor international cooperative program interim report: German Pebble Bed Reactor design and technology review

    International Nuclear Information System (INIS)

    1978-09-01

    This report describes and evaluates several gas-cooled reactor plant concepts under development within the Federal Republic of Germany (FRG). The concepts, based upon the use of a proven Pebble Bed Reactor (PBR) fuel element design, include nuclear heat generation for chemical processes and electrical power generation. Processes under consideration for the nuclear process heat plant (PNP) include hydrogasification of coal, steam gasification of coal, combined process, and long-distance chemical heat transportation. The electric plant emphasized in the report is the steam turbine cycle (HTR-K), although the gas turbine cycle (HHT) is also discussed. The study is a detailed description and evaluation of the nuclear portion of the various plants. The general conclusions are that the PBR technology is sound and that the HTR-K and PNP plant concepts appear to be achievable through appropriate continuing development programs, most of which are either under way or planned

  1. Fundamental burn-up mode in a pebble-bed type reactor

    International Nuclear Information System (INIS)

    Chen, Xue-Nong; Kiefhaber, Edgar; Maschek, Werner

    2008-01-01

    This paper deals with a pebble-bed type reactor, in which the fuel is loaded from one side (top) and discharged from the other side (bottom). A boundary value problem of a single group diffusion equation coupled with simplified burn-up equations is studied, where the natural radioactive decay processes are neglected in the burn-up modelling. An asymptotic burning wave solution is found analytically in the one-dimensional case, which is called as fundamental burn-up mode. Among this solution family there are two particular cases, namely, a classic fundamental solution with a zero burn-up and a partial solitary burn-up wave solution with a highest burn-up. An example of Th-U conversion is considered and the solutions are presented in order to show the mechanism of the burning wave. (author)

  2. Effect of packing fraction variations on reactivity in pebble-bed reactor

    International Nuclear Information System (INIS)

    Snoj, L.; Ravnik, M.

    2004-01-01

    The pebble-bed reactor (PBR) core consists of large number of randomly packed spherical fuel elements. The effect of fuel element packing density variations on multiplication factor in a typical PBR is studied using WIMS code. It is observed that at normal conditions the k-eff increases with packing fraction. Effects of secondary coolant ingress (water or molten lead) in the core at accidental conditions are studied at various packing densities. The effect of water ingress on reactivity depends strongly on water density and packing fraction and is prevailingly positive, while the lead ingress reduces multiplication factor regardless of lead effective density and packing fraction. Both effects are stronger at lower packing fractions. (author)

  3. Effect of fuel particles' size variations on multiplication factor in pebble-bed nuclear reactor

    International Nuclear Information System (INIS)

    Snoj, L.; Ravnik, M.

    2005-01-01

    The pebble-bed reactor (Pbr) spherical fuel element consists of two radial zones: the inner zone, in which the fissile material in form of the so-called TRISO particles is uniformly dispersed in graphite matrix and the outer zone, a shell of pure graphite. A TRISO particle is composed of a fissile kernel (UO 2 ) and several layers of carbon composites. The effect of TRISO particles' size variations and distance between them on PBR multiplication factor is studied using MCNP code. Fuel element is modelled in approximation of a cubical unit cell with periodic boundary condition. The multiplication factor of the fuel element depends on the size of the TRISO particles due to resonance self-shielding effect and on the inter-particle distance due to inter-kernel shadowing. (author)

  4. Preliminary analysis on in-core fuel management optimization of molten salt pebble-bed reactor

    International Nuclear Information System (INIS)

    Xia Bing; Jing Xingqing; Xu Xiaolin; Lv Yingzhong

    2013-01-01

    The Nuclear Hot Spring (NHS) is a molten salt pebble-bed reactor featured by full power natural circulation. The unique horizontal coolant flow of the NHS demands the fuel recycling schemes based on radial zoning refueling and the corresponding method of fuel management optimization. The local searching algorithm (LSA) and the simulated annealing algorithm (SAA), the stochastic optimization methods widely used in the refueling optimization problems in LWRs, were applied to the analysis of refueling optimization of the NHS. The analysis results indicate that, compared with the LSA, the SAA can survive the traps of local optimized solutions and reach the global optimized solution, and the quality of optimization of the SAA is independent of the choice of the initial solution. The optimization result gives excellent effects on the in-core power flattening and the suppression of fuel center temperature. For the one-dimensional zoning refueling schemes of the NHS, the SAA is an appropriate optimization method. (authors)

  5. DSNP models used in the pebble-bed HTGR dynamic simulation. V.2

    International Nuclear Information System (INIS)

    Saphier, D.

    1984-04-01

    A detailed description is given of the components that were used in the DSNP simulation of the PNP-500 high temperature gas-cooled pebble-bed reactor. Each component presented in this report describes in detail the mathematical model that was used, and the assumptions that were made in developing the model. Most of the models were developed using basic physical principles with the simplication that could be justified on the basis of the requested accuracy. Most of the models were developed as either one dimensional or lumped parameter models. The heat transfer and flow correlations, which are mostly based on semiempirical correlations were either provided by KFA or were adapted from the available literature. A short description of DSNP is also given, with a comprehensive list of all the statements available in Rev. 4.1 of DSNP. (H.K.)

  6. Investigations on accidents with massive water ingress exemplified by the pebble bed reactor PNP-500

    International Nuclear Information System (INIS)

    Moormann, R.

    1986-01-01

    A computer code is used for analyses of massive water ingress accidents in the High-Temperature Gas Cooled Reactor concept PNP-500 with pebble bed core. The analyses are mainly focussed on graphite corrosion processes. For the investigated accidents a correct reactor shut down in assumed. The mass of water ingressing into the primary circuit is varied between 1000 and 7500 kg (i.e., up to hypothetical values). The dependence of accident consequences on parameters such as intensity and starting time of the afterheat removal system or kinetic values of the chemical processes is examined. The results show that even under pessimistic assumptions the extent of the graphite corrosion is relatively low; significant damaging of fuel elements or graphite components does not occur. A primary circuit depressurization, combined with local burning of water gas, would probably not affect the fission product retention potential of the (gastight) containment. Summing up, the risk caused by these accidents remains small. (orig.) [de

  7. Accounting for porous structure in effective thermal conductivity calculations in a pebble bed reactor

    International Nuclear Information System (INIS)

    Antwerpen, W. van; Rousseau, P.G.; Toit, C.G. du

    2009-01-01

    A proper understanding of the mechanisms of heat transfer, flow and pressure drop through a packed bed of spheres is of utmost importance in the design of a high temperature pebble bed reactor. A thorough knowledge of the porous structure within the packed bed is important to any rigorous analysis of the transport phenomena, as all the heat and flow mechanisms are influenced by the porous structure. In this paper a new approach is proposed to simulate the effective thermal conductivity employing a combination of new and existing correlations for randomly packed beds. More attention is given to packing structure based on coordination number and contact angles, resulting in a more rigorous differentiation between the bulk and near-wall regions. The model accounts for solid conduction, gas conduction, contact area, surface roughness as well as radiation. (author)

  8. Storage built pebble bed for greenhouse use; Acumulador tipo lecho para uso en invernaderos

    Energy Technology Data Exchange (ETDEWEB)

    Bistoni, S.; Iriarte, A.; Saravia, L.

    2004-07-01

    To heat greenhouses during the night it is necessary to use storage systems. Our region shows high radiation levels, even in winter, so during the day stored energy inside of a greenhouse is more than necessary. If the excess of energy is stored up, it can be used during the night when it is necessary. In this paper the performance of a storage built with plastic bottles with water inside them are studied and it is compared with a pebble bed. A model and its solution using the electric- thermal analogy are presented. The results show that it is feasible and economic to build a storage like the proposed. It is important to mention that the simulation is very simple because of the computational program used. (Author)

  9. Fluid flow and heat transfer investigation of pebble bed reactors using mesh-adaptive LES

    International Nuclear Information System (INIS)

    Pavlidis, Dimitrios; Lathouwers, Danny

    2013-01-01

    The very high temperature reactor is one of the designs currently being considered for nuclear power generation. One its variants is the pebble bed reactor in which the coolant passes through complex geometries (pores) at high Reynolds numbers. A computational fluid dynamics model with anisotropic mesh adaptivity is used to investigate coolant flow and heat transfer in such reactors. A novel method for implicitly incorporating solid boundaries based on multi-fluid flow modelling is adopted. The resulting model is able to resolve and simulate flow and heat transfer in randomly packed beds, regardless of the actual geometry, starting off with arbitrarily coarse meshes. The model is initially evaluated using an orderly stacked square channel of channel-height-to-particle diameter ratio of unity for a range of Reynolds numbers. The model is then applied to the face-centred cubical geometry. coolant flow and heat transfer patterns are investigated

  10. Sustainability of thorium-uranium in pebble-bed fluoride salt-cooled high temperature reactor

    International Nuclear Information System (INIS)

    Zhu, G.; Zou, Y.; Xu, H.

    2016-01-01

    Sustainability of thorium fuel in a Pebble-Bed Fluoride salt-cooled High temperature Reactor (PBFHR) is investigated to find the feasible region of high discharge burnup and negative Flibe (2LiF-BeF_2) salt Temperature Reactivity Coefficient (TRC). Dispersion fuel or pellet fuel with SiC cladding and SiC matrix is used to replace the tri-structural-isotropic (TRISO) coated particle system for increasing fuel loading and decreasing excessive moderation. To analyze the neutronic characteristics, an equilibrium calculation method of thorium fuel self-sustainability is developed. We have compared two refueling schemes (mixing flow pattern and directional flow pattern) and two kinds of reflector materials (SiC and graphite). This method found that the feasible region of breeding and negative Flibe TRC is between 20 vol% and 62 vol% fuel loading in the fuel. A discharge burnup could be achieved up to about 200 MWd/kgHM. The case with directional flow pattern and SiC reflector showed superior burnup characteristics but the worst radial power peak factor, while the case with mixing flow pattern and SiC reflector, which was the best tradeoff between discharge burnup and radial power peak factor, could provide burnup of 140 MWd/kgHM and about 1.4 radial power peak factor with 50 vol% dispersion fuel. In addition, Flibe salt displays good neutron properties as a coolant of quasi-fast reactors due to the strong "9Be(n,2n) reaction and low neutron absorption of "6Li (even at 1000 ppm) in fast spectrum. Preliminary thermal hydraulic calculation shows a good safety margin. The greatest challenge of this reactor may be the decades irradiation time of the pebble fuel. (A.C)

  11. 3.3 CM JVLA OBSERVATIONS OF TRANSITIONAL DISKS: SEARCHING FOR CENTIMETER PEBBLES

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Luis A.; Rodríguez, Luis F.; Palau, Aina, E-mail: lzapata@crya.unam.mx [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico)

    2017-01-10

    We present sensitive (rms-noises ∼4–25 μ Jy) and high angular resolution (∼1″–2″) 8.9 GHz (3.3 cm) Karl G. Jansky Very Large Array radio continuum observations of 10 presumed transitional disks associated with young low-mass stars. We report the detection of radio continuum emission in 5 out of the 10 objects (RXJ1615, UX Tau A, LkCa15, RXJ1633, and SR 24s). In the case of LkCa15, the centimeter emission is extended, and has a similar morphology to that of the transitional disk observed at millimeter wavelengths with an inner depression. For these five detections, we construct the spectral energy distributions from the centimeter to submillimeter wavelengths, and find that they can be well fitted with a single (RXJ1633 and UX Tau A) or a two-component power law (LkCa15, RXJ1615, and SR 24s). For the cases where a single power law fits the data well, the centimeter emission is likely produced by optically thin dust with large grains (i.e., centimeter-size pebbles) present in the transitional disks. For the cases where a double power law fits the data, the centimeter emission might be produced by the combination of photoevaporation and a free–free jet. We conclude that RXJ1633 and UX Tau A are excellent examples of transitional disks where the structure of the emission from centimeter/millimeter pebbles can be studied. In the other cases, some other physical emitting mechanisms are also important in the centimeter regime.

  12. 3.3 CM JVLA OBSERVATIONS OF TRANSITIONAL DISKS: SEARCHING FOR CENTIMETER PEBBLES

    International Nuclear Information System (INIS)

    Zapata, Luis A.; Rodríguez, Luis F.; Palau, Aina

    2017-01-01

    We present sensitive (rms-noises ∼4–25 μ Jy) and high angular resolution (∼1″–2″) 8.9 GHz (3.3 cm) Karl G. Jansky Very Large Array radio continuum observations of 10 presumed transitional disks associated with young low-mass stars. We report the detection of radio continuum emission in 5 out of the 10 objects (RXJ1615, UX Tau A, LkCa15, RXJ1633, and SR 24s). In the case of LkCa15, the centimeter emission is extended, and has a similar morphology to that of the transitional disk observed at millimeter wavelengths with an inner depression. For these five detections, we construct the spectral energy distributions from the centimeter to submillimeter wavelengths, and find that they can be well fitted with a single (RXJ1633 and UX Tau A) or a two-component power law (LkCa15, RXJ1615, and SR 24s). For the cases where a single power law fits the data well, the centimeter emission is likely produced by optically thin dust with large grains (i.e., centimeter-size pebbles) present in the transitional disks. For the cases where a double power law fits the data, the centimeter emission might be produced by the combination of photoevaporation and a free–free jet. We conclude that RXJ1633 and UX Tau A are excellent examples of transitional disks where the structure of the emission from centimeter/millimeter pebbles can be studied. In the other cases, some other physical emitting mechanisms are also important in the centimeter regime.

  13. Comparative evaluation of pebble-bed and prismatic fueled high-temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Bartine, D.E.

    1981-01-01

    A comparative evaluation has been performed of the HTGR and the Federal Republic of Germany's Pebble Bed Reactor (PBR) for potential commercial applications in the US. The evaluation considered two reactor sizes (1000 and 3000 MW(t)) and three process applications (steam cycle, direct cycle, and process heat, with outlet coolant temperatures of 750, 850, and 950/sup 0/C, respectively). The primary criterion for the comparison was the levelized (15-year) cost of producing electricity or process heat. Emphasis was placed on the cost impact of differences between the prismatic-type HTGR core, which requires periodic refuelings during reactor shutdowns, and the pebble bed PBR core, which is refueled continuously during reactor operations. Detailed studies of key technical issues using reference HTGR and PBR designs revealed that two cost components contributing to the levelized power costs are higher for the PBR: capital costs and operation and maintenance costs. A third cost component, associated with nonavailability penalties, tended to be higher for the PBR except for the process heat application, for which there is a large uncertainty in the HTGR nonavailability penalty at the 950/sup 0/C outlet coolant temperature. A fourth cost component, fuel cycle costs, is lower for the PBR, but not sufficiently lower to offset the capital cost component. Thus the HTGR appears to be slightly superior to the PBR in economic performance. Because of the advanced development of the HTGR concept, large HTGRs could also be commercialized in the US with lower R and D costs and shorter lead times than could large PBRs. It is recommended that the US gas-cooled thermal reactor program continue giving primary support to the HTGR, while also maintaining its cooperative PBR program with FRG.

  14. Development of Monte Carlo-based pebble bed reactor fuel management code

    International Nuclear Information System (INIS)

    Setiadipura, Topan; Obara, Toru

    2014-01-01

    Highlights: • A new Monte Carlo-based fuel management code for OTTO cycle pebble bed reactor was developed. • The double-heterogeneity was modeled using statistical method in MVP-BURN code. • The code can perform analysis of equilibrium and non-equilibrium phase. • Code-to-code comparisons for Once-Through-Then-Out case were investigated. • Ability of the code to accommodate the void cavity was confirmed. - Abstract: A fuel management code for pebble bed reactors (PBRs) based on the Monte Carlo method has been developed in this study. The code, named Monte Carlo burnup analysis code for PBR (MCPBR), enables a simulation of the Once-Through-Then-Out (OTTO) cycle of a PBR from the running-in phase to the equilibrium condition. In MCPBR, a burnup calculation based on a continuous-energy Monte Carlo code, MVP-BURN, is coupled with an additional utility code to be able to simulate the OTTO cycle of PBR. MCPBR has several advantages in modeling PBRs, namely its Monte Carlo neutron transport modeling, its capability of explicitly modeling the double heterogeneity of the PBR core, and its ability to model different axial fuel speeds in the PBR core. Analysis at the equilibrium condition of the simplified PBR was used as the validation test of MCPBR. The calculation results of the code were compared with the results of diffusion-based fuel management PBR codes, namely the VSOP and PEBBED codes. Using JENDL-4.0 nuclide library, MCPBR gave a 4.15% and 3.32% lower k eff value compared to VSOP and PEBBED, respectively. While using JENDL-3.3, MCPBR gave a 2.22% and 3.11% higher k eff value compared to VSOP and PEBBED, respectively. The ability of MCPBR to analyze neutron transport in the top void of the PBR core and its effects was also confirmed

  15. Multi-sphere unit cell model to calculate the effective thermal conductivity in pebble bed reactors

    International Nuclear Information System (INIS)

    Van Antwerpen, W.; Rousseau, P.G.; Du Toit, C.G.

    2010-01-01

    A proper understanding of the mechanisms of heat transfer, fluid flow and pressure drop through a packed bed of spheres is of utmost importance in the design of a high temperature Pebble Bed Reactor (PBR). While the gas flows predominantly in the axial direction through the bed, the total effective thermal conductivity is a lumped parameter that characterises the total heat transfer in the radial direction through the packed bed. The study of the effective thermal conductivity is important because it forms an intricate part of the self-acting decay heat removal chain, which is directly related to the PBR safety case. The effective thermal conductivity is the summation of various heat transport phenomena. These are the enhanced thermal conductivity due to turbulent mixing as the fluid passes through the voids between pebbles, heat transfer due to the movement of the solid spheres and thermal conduction and thermal radiation between the spheres in a stagnant fluid environment. In this study, the conduction and radiation between the spheres are investigated. Firstly, existing correlations for the effective thermal conductivity are investigated, with particular attention given to its applicability in the near-wall region. Several phenomena in particular are examined namely: conduction through the spheres, conduction through the contact area between the spheres, conduction through the gas phase and radiation between solid surfaces. A new approach to simulate the effective thermal conductivity for randomly packed beds is then presented, namely the so-called Multi-sphere Unit Cell Model. The model is validated by comparing the results with that obtained in experiments. (authors)

  16. Comparative evaluation of pebble-bed and prismatic fueled high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kasten, P.R.; Bartine, D.E.

    1981-01-01

    A comparative evaluation has been performed of the HTGR and the Federal Republic of Germany's Pebble Bed Reactor (PBR) for potential commercial applications in the US. The evaluation considered two reactor sizes [1000 and 3000 MW(t)] and three process applications (steam cycle, direct cycle, and process heat, with outlet coolant temperatures of 750, 850, and 950 0 C, respectively). The primary criterion for the comparison was the levelized (15-year) cost of producing electricity or process heat. Emphasis was placed on the cost impact of differences between the prismatic-type HTGR core, which requires periodic refuelings during reactor shutdowns, and the pebble bed PBR core, which is refueled continuously during reactor operations. Detailed studies of key technical issues using reference HTGR and PBR designs revealed that two cost components contributing to the levelized power costs are higher for the PBR: capital costs and operation and maintenance costs. A third cost component, associated with nonavailability penalties, tended to be higher for the PBR except for the process heat application, for which there is a large uncertainty in the HTGR nonavailability penalty at the 950 0 C outlet coolant temperature. A fourth cost component, fuel cycle costs, is lower for the PBR, but not sufficiently lower to offset the capital cost component. Thus the HTGR appears to be slightly superior to the PBR in economic performance. Because of the advanced development of the HTGR concept, large HTGRs could also be commercialized in the US with lower R and D costs and shorter lead times than could large PBRs. It is recommended that the US gas-cooled thermal reactor program continue giving primary support to the HTGR, while also maintaining its cooperative PBR program with FRG

  17. Flatiron-Erie 115kV transmission line project, Larimer, Weld and Boulder Counties, Colorado

    International Nuclear Information System (INIS)

    1993-05-01

    Western Area Power Administration (Western) proposes to uprate its existing 115-kV Flatiron-Erie transmission line. The line is located in Larimer, Weld and Boulder Counties, Colorado, and passes through the City of Longmont. The line connects Flatiron Substation and several of the substations supplying Longmont. It is a single circuit 115-kV line, 31.5 miles long, and was built in 1950-51 on a 75-foot wide right-of-way (ROW) using wood H-frame structures. Western proposes to build 27 new structures along the line, to replace or modify 45 of the existing structures and to remote 11 of them. Many of these additions and changes would involve structures that are approximately 5 to 15 feet taller than the existing ones. The existing conductors and ground wires would remain in place. The purpose of these actions would be to allow the power carrying capability of the line to be increased and to replace deteriorating/structural members. Western would be the sole participant in the proposed project. This report gives an analysis of the study area environment and the development of alternative routes. An assessment is presented of the impacts of the primary alternative routes. The environmental consequences of this project are addressed

  18. Fast Lemons and Sour Boulders: Testing Crossmodal Correspondences Using an Internet-Based Testing Methodology

    Directory of Open Access Journals (Sweden)

    Andy T. Woods

    2013-09-01

    Full Text Available According to a popular family of hypotheses, crossmodal matches between distinct features hold because they correspond to the same polarity on several conceptual dimensions (such as active–passive, good–bad, etc. that can be identified using the semantic differential technique. The main problem here resides in turning this hypothesis into testable empirical predictions. In the present study, we outline a series of plausible consequences of the hypothesis and test a variety of well-established and previously untested crossmodal correspondences by means of a novel internet-based testing methodology. The results highlight that the semantic hypothesis cannot easily explain differences in the prevalence of crossmodal associations built on the same semantic pattern (fast lemons, slow prunes, sour boulders, heavy red; furthermore, the semantic hypothesis only minimally predicts what happens when the semantic dimensions and polarities that are supposed to drive such crossmodal associations are made more salient (e.g., by adding emotional cues that ought to make the good/bad dimension more salient; finally, the semantic hypothesis does not explain why reliable matches are no longer observed once intramodal dimensions with congruent connotations are presented (e.g., visually presented shapes and colour do not appear to correspond.

  19. University of Colorado at Boulder Nuclear Physics Laboratory technical progress report

    International Nuclear Information System (INIS)

    Peterson, R.J.

    1991-01-01

    This report summarizes experimental work carried out between October 1, 1990, the closing of our Progress Report, and August 14, 1991 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under contract DE-FG02-ER40269 with the United States Department of Energy. This contract supports broadly based experimental work in intermediate energy nuclear physics. The program includes pion-nucleon studies at TRIUMF and LAMPF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/NTOF. The first results of spin-transfer observables in the isovector (rvec p,rvec n) reaction are included in this report. Our data confirm the tentative result from (rvec p,rvec p') reactions that the nuclear isovector spin response shows neither longitudinal enhancement nor transverse queching. Our program in quasifree scattering of high energy pions shows solid evidence of isoscalar enhancement of the nuclear nonspin response. We include several comparisons of the quasifree scattering of different probes. Results from our efforts in the design of accelerator RF cavities are also included in this report

  20. Final Report on Utilization of TRU TRISO Fuel as Applied to HTR Systems Part I: Pebble Bed Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brian Boer; Abderrafi M. Ougouag

    2011-03-01

    The Deep-Burn (DB) concept [ ] focuses on the destruction of transuranic nuclides from used light water reactor (LWR) fuel. These transuranic nuclides are incorporated into tri-isotopic (TRISO) coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400) [ ]. Although it has been shown in the previous Fiscal Year (FY) (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking, and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239Pu, 240Pu, and 241Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a standard, UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. Regarding the coated particle performance, the FY 2009 investigations showed that no

  1. Final Report on Utilization of TRU TRISO Fuel as Applied to HTR Systems Part I: Pebble Bed Reactors

    International Nuclear Information System (INIS)

    Boer, Brian; Ougouag, Abderrafi M.

    2011-01-01

    The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor (LWR) fuel. These transuranic nuclides are incorporated into tri-isotopic (TRISO) coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (FY) (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking, and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239Pu, 240Pu, and 241Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a standard, UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. Regarding the coated particle performance, the FY 2009 investigations showed that no significant

  2. HTR-PROTEUS pebble bed experimental program cores 9 & 10: columnar hexagonal point-on-point packing with a 1:1 moderator-to-fuel pebble ratio

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  3. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 9 & 10: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  4. Thermal-hydraulic calculation and analysis on helium cooled ceramic breeder pebble bed assembly for in-pile irradiation and in-situ tritium extraction

    International Nuclear Information System (INIS)

    Guo Chunqiu; Xie Jiachun; Liu Xingmin

    2013-01-01

    In-pile irradiation and in-situ tritium extraction experiment is one of associated domestic research projects in ITER special program. According to the technical requirements of in-pile irradiation experiment of helium cooled ceramic breeder (ceramic) pebble bed assembly in a research reactor, the feasibility of the design for the in-pile irradiation and in-situ tritium extraction experiment of ceramic pebble bed assembly was evaluated. By conducting thermal-hydraulic design calculation with different in-pile irradiation channels, locations and structure parameters for ceramic pebble bed assembly, a reasonable design scheme of ceramic pebble bed assembly satisfying the design requirements for in-pile irradiation was obtained. (authors)

  5. Sana experiments for self-acting removal of the after-heat in reactors with pebble bed fuel and their interpretation

    International Nuclear Information System (INIS)

    Niessen, H.F.; Stoecker, Bernd; Amoignon, Olivier; Zuying, Gao; Jie, Liu

    1997-01-01

    For the confirmation of self-acting afterheat removal under hypothetical accident conditions from pebble bed reactors at the Research Center Juelich a test facility with an electrical heating input up to 30kW was erected and operated. A description of the test facility is given. Within the different tests the pebble diameter, the pebble material, the gas in the pebble bed, the heating-power and the arrangement of the heating were changed. Parts of the data were used within an IAEA Co-ordinated Research Program as benchmark problems for the code validation. All computer codes could simulate the test results with a sufficient good agreement, when the tests were executed with helium. For the tests with nitrogen the natural convection has to be taken into account. (author)

  6. Fission track ages on apatite of Bergell rocks from central Alps and Bergell boulders in Oligocene sediments

    International Nuclear Information System (INIS)

    Wagner, G.A.; Miller, D.S.

    1979-01-01

    Previous radiometric dating studies indicated that the Bergell region, in contrast to other regions of the Central Alps, experienced an early, rapid uplift, but with decreasing rate. Furthermore, there is also a geological record of the early uplift history of the Bergell granite by the existence of boulders which were derived from this granite and which occur in the Late Oligocene sediments of the Po plain. In this work the uplift history of the Bergell is studied in more detail by fission track dating of additional apatites from the Bergell region. Secondly, by determining apatite fission track ages the granitic boulders of the Po plain can be re-assigned to their original vertical position within the Bergell intrusive before erosion removed them in Late Oligocene time. A rather conservative estimate replaces them 6 km above the present morphology of the Bergell massif. Thus, the thickness of the Bergell granite must have been at least 8 km. Generally, fission track studies on boulders may become an important tool to study the vertical extent of mountain chains during the geological past. (Auth.)

  7. Potential for timing high-energy marine inundation events in the recent geological past through age-dating of reef boulders in Fiji

    Science.gov (United States)

    Terry, James P.; Etienne, Samuel

    2014-12-01

    Transported coastal boulders have increasingly come to represent a valuable element of investigations within the broader framework of multi-proxy approaches applied to coastal hazard studies. Through a case study on Taveuni Island in Fiji, this paper outlines some approaches and hindrances to effective timing of prehistorical high-energy marine inundation events (storms and tsunamis) on tropical coastlines from the evidence of reef-platform carbonate boulders. Various sources of errors are outlined that investigators must consider when attempting to use carbonate boulder ages as a surrogate for timing past events. On Taveuni, uranium : thorium dates with a high level of precision (1-7 years) suggest that major inundation events have a return period of approximately 40-45 years since 1650 AD. Of particular importance, considerably different age dates are provided by coral samples sourced from the top and bottom (i.e. opposite faces) of individual boulders, so highlighting interpretation biases that must be avoided.

  8. Proposed Regulation of Fuels and Fuel Additives: Federal Volatility Control Program in the Denver-Boulder-Greeley-Ft. Collins-Loveland, Colorado, 1997 8-Hour Ozone Nonattainment Area

    Science.gov (United States)

    This notice proposes establishing an applicable standard of 7.8 pounds (psi) Reid vapor pressure under the federal volatility control program, in the Denver-Boulder-Greeley-Ft. Collins-Loveland, Colorado, 1997 8-hour ozone nonattainment area.

  9. Simulation of volumetrically heated pebble beds in solid breeding blankets for fusion reactors. Modelling, experimental validation and sensitivity studies

    International Nuclear Information System (INIS)

    Hernandez Gonzalez, Francisco Alberto

    2016-01-01

    The Breeder Units contains pebble beds of lithium orthosilicate (Li_4SiO_4) as tritium breeder material and beryllium as neutron multiplier. In this dissertation a closed validation strategy for the thermo-mechanical validation of the Breeder Units has been developed. This strategy is based on the development of dedicated testing and modeling tools, which are needed for the qualification of the thermo-mechanical functionality of these components in an out-of-pile experimental campaign. The neutron flux in the Breeder Units induces a nonhomogeneous volumetric heating in the pebble beds that must be mimicked in an out-of-pile experiment with an external heating system minimizing the intrusion in the pebble beds. Therefore, a heater system that simulates this volumetric heating has been developed. This heater system is based on ohmic heating and linear heater elements, which approximates the point heat sources of the granular material by linear sources. These linear sources represent ''linear pebbles'' in discrete locations close enough to relatively reproduce the thermal gradients occurring in the functional materials. The heater concept has been developed for the Li_4SiO_4 and it is based on a hexagonal matrix arrangement of linear and parallel heater elements of diameter 1 mm separated by 7 mm. A set of uniformly distributed thermocouples in the transversal and longitudinal direction in the pebble bed midplane allows a 2D temperature reconstruction of that measurement plane by means of biharmonic spline interpolation. This heating system has been implemented in a relevant Breeder Unit region and its proof-of-concept has been tested in a PRE-test Mock-Up eXperiment (PREMUX) that has been designed and constructed in the frame of this dissertation. The packing factor of the pebble bed with and without the heating system does not show significant differences, giving an indirect evidence of the low intrusion of the system. Such low intrusion has been confirmed by in

  10. Simulation of volumetrically heated pebble beds in solid breeding blankets for fusion reactors. Modelling, experimental validation and sensitivity studies

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Gonzalez, Francisco Alberto

    2016-10-14

    The Breeder Units contains pebble beds of lithium orthosilicate (Li{sub 4}SiO{sub 4}) as tritium breeder material and beryllium as neutron multiplier. In this dissertation a closed validation strategy for the thermo-mechanical validation of the Breeder Units has been developed. This strategy is based on the development of dedicated testing and modeling tools, which are needed for the qualification of the thermo-mechanical functionality of these components in an out-of-pile experimental campaign. The neutron flux in the Breeder Units induces a nonhomogeneous volumetric heating in the pebble beds that must be mimicked in an out-of-pile experiment with an external heating system minimizing the intrusion in the pebble beds. Therefore, a heater system that simulates this volumetric heating has been developed. This heater system is based on ohmic heating and linear heater elements, which approximates the point heat sources of the granular material by linear sources. These linear sources represent ''linear pebbles'' in discrete locations close enough to relatively reproduce the thermal gradients occurring in the functional materials. The heater concept has been developed for the Li{sub 4}SiO{sub 4} and it is based on a hexagonal matrix arrangement of linear and parallel heater elements of diameter 1 mm separated by 7 mm. A set of uniformly distributed thermocouples in the transversal and longitudinal direction in the pebble bed midplane allows a 2D temperature reconstruction of that measurement plane by means of biharmonic spline interpolation. This heating system has been implemented in a relevant Breeder Unit region and its proof-of-concept has been tested in a PRE-test Mock-Up eXperiment (PREMUX) that has been designed and constructed in the frame of this dissertation. The packing factor of the pebble bed with and without the heating system does not show significant differences, giving an indirect evidence of the low intrusion of the system. Such

  11. Flow characteristics analysis of purge gas in unitary pebble beds by CFD simulation coupled with DEM geometry model for fusion blanket

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Youhua [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Chen, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Luo, Guangnan [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2017-01-15

    Highlights: • A unitary pebble bed was built to analyze the flow characteristics of purge gas based on DEM-CFD method. • Flow characteristics between particles were clearly displayed. • Porosity distribution, velocity field distribution, pressure field distribution, pressure drop and the wall effects on velocity distribution were studied. - Abstract: Helium is used as the purge gas to sweep tritium out when it flows through the lithium ceramic and beryllium pebble beds in solid breeder blanket for fusion reactor. The flow characteristics of the purge gas will dominate the tritium sweep capability and tritium recovery system design. In this paper, a computational model for the unitary pebble bed was conducted using DEM-CFD method to study the purge gas flow characteristics in the bed, which include porosity distribution between pebbles, velocity field distribution, pressure field distribution, pressure drop as well as the wall effects on velocity distribution. Pebble bed porosity and velocity distribution with great fluctuations were found in the near-wall region and detailed flow characteristics between pebbles were displayed clearly. The results show that the numerical simulation model has an error with about 11% for estimating pressure drop when compared with the Ergun equation.

  12. Heat Transfer in Pebble-Bed Nuclear Reactor Cores Cooled by Fluoride Salts

    Science.gov (United States)

    Huddar, Lakshana Ravindranath

    With electricity demand predicted to rise by more than 50% within the next 20 years and a burgeoning world population requiring reliable emissions-free base-load electricity, can we design advanced nuclear reactors to help meet this challenge? At the University of California, Berkeley (UCB) Fluoride-salt-cooled High Temperature Reactors (FHR) are currently being investigated. FHRs are designed with better safety and economic characteristics than conventional light water reactors (LWR) currently in operation. These reactors operate at high temperature and low pressure making them more efficient and safer than LWRs. The pebble-bed FHR (PB-FHR) variant includes an annular nuclear reactor core that is filled with randomly packed pebble fuel. It is crucial to characterize the heat transfer within this unique geometry as this informs the safety limits of the reactor. The work presented in this dissertation focused on furthering the understanding of heat transfer in pebble-bed nuclear reactor cores using fluoride salts as a coolant. This was done through experimental, analytical and computational techniques. A complex nuclear system with a coolant that has never previously been in commercial use requires experimental data that can directly inform aspects of its design. It is important to isolate heat transfer phenomena in order to understand the underlying physics in the context of the PB-FHR, as well as to make decisions about further experimental work that needs to be done in support of developing the PB-FHR. Certain organic oils can simulate the heat transfer behaviour of the fluoride salt if relevant non-dimensional parameters are matched. The advantage of this method is that experiments can be done at a much lower temperature and at a smaller geometric scale compared to FHRs, thereby lowering costs. In this dissertation, experiments were designed and performed to collect data demonstrating similitude. The limitations of these experiments were also elucidated by

  13. Comparison of Ozone Retrievals from the Pandora Spectrometer System and Dobson Spectrophotometer in Boulder, Colorado

    Science.gov (United States)

    Herman, J.; Evans, R.; Cede, A.; Abuhassan, N.; Petropavlovskikh, I.; McConville, G.

    2015-01-01

    A comparison of retrieved total column ozone (TCO) amounts between the Pandora #34 spectrometer system and the Dobson #061 spectrophotometer from direct-sun observations was performed on the roof of the Boulder, Colorado, NOAA building. This paper, part of an ongoing study, covers a 1-year period starting on 17 December 2013. Both the standard Dobson and Pandora TCO retrievals required a correction, TCO(sub corr) = TCO (1 + C(T)), using a monthly varying effective ozone temperature, T(sub E), derived from a temperature and ozone profile climatology. The correction is used to remove a seasonal difference caused by using a fixed temperature in each retrieval algorithm. The respective corrections C(T(sub E)) are C(sub Pandora) = 0.00333(T(sub E) - 225) and C(sub Dobson) = -0.0013(T(sub E) - 226.7) per degree K. After the applied corrections removed most of the seasonal retrieval dependence on ozone temperature, TCO agreement between the instruments was within 1% for clear-sky conditions. For clear-sky observations, both co-located instruments tracked the day-to-day variation in total column ozone amounts with a correlation of r(exp 2) = 0.97 and an average offset of 1.1 +/- 5.8 DU. In addition, the Pandora TCO data showed 0.3% annual average agreement with satellite overpass data from AURA/OMI (Ozone Monitoring Instrument) and 1% annual average offset with Suomi-NPP/OMPS (Suomi National Polar-orbiting Partnership, the nadir viewing portion of the Ozone Mapper Profiler Suite).

  14. Geochemical Data for Samples Collected in 2007 Near the Concealed Pebble Porphyry Cu-Au-Mo Deposit, Southwest Alaska

    Science.gov (United States)

    Fey, David L.; Granitto, Matthew; Giles, Stuart A.; Smith, Steven M.; Eppinger, Robert G.; Kelley, Karen D.

    2008-01-01

    In the summer of 2007, the U.S. Geological Survey (USGS) began an exploration geochemical research study over the Pebble porphyry copper-gold-molydenum (Cu-Au-Mo) deposit in southwest Alaska. The Pebble deposit is extremely large and is almost entirely concealed by tundra, glacial deposits, and post-Cretaceous volcanic and volcaniclastic rocks. The deposit is presently being explored by Northern Dynasty Minerals, Ltd., and Anglo-American LLC. The USGS undertakes unbiased, broad-scale mineral resource assessments of government lands to provide Congress and citizens with information on national mineral endowment. Research on known deposits is also done to refine and better constrain methods and deposit models for the mineral resource assessments. The Pebble deposit was chosen for this study because it is concealed by surficial cover rocks, it is relatively undisturbed (except for exploration company drill holes), it is a large mineral system, and it is fairly well constrained at depth by the drill hole geology and geochemistry. The goals of the USGS study are (1) to determine whether the concealed deposit can be detected with surface samples, (2) to better understand the processes of metal migration from the deposit to the surface, and (3) to test and develop methods for assessing mineral resources in similar concealed terrains. This report presents analytical results for geochemical samples collected in 2007 from the Pebble deposit and surrounding environs. The analytical data are presented digitally both as an integrated Microsoft 2003 Access? database and as Microsoft 2003 Excel? files. The Pebble deposit is located in southwestern Alaska on state lands about 30 km (18 mi) northwest of the village of Illiamna and 320 km (200 mi) southwest of Anchorage (fig. 1). Elevations in the Pebble area range from 287 m (940 ft) at Frying Pan Lake just south of the deposit to 1146 m (3760 ft) on Kaskanak Mountain about 5 km (5 mi) to the west. The deposit is in an area of

  15. Analysis of the impact of random summing on passive assay of pebble bed reactor fuel using gamma-ray spectrometry

    Science.gov (United States)

    Chen, J.; Hawari, A. I.

    2007-08-01

    Pebble bed reactors (PBR) are characterized by multi-pass fuel systems in which spherical fuel pebbles are circulated through the core until they reach a proposed burnup limit. The fuel is assayed on-line to ensure that the burnup limit is not breached. However, random summing effects can impact the response of the burnup measurement system and result in distortions that degrade the accuracy of the assay results. Monte Carlo analysis was performed to estimate the magnitude and effect of random summing on the absolute and relative indicators that have been identified as usable in on-line assay. For a throughput rate of 10 5 counts/s and trapezoidal pulse shaping of the signals, the results show that absolute indicators suffer from severe distortions due to this effect. Relative indicators are found to be resistant to random summing with the deviation in the ratio of peak areas remaining less than 5-15% depending on pulse width.

  16. Tritium release from beryllium pebbles after high temperature irradiation up to 3000 appm He in the HIDOBE-01 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Til, S. van, E-mail: vantil@nrg.eu [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands); Fedorov, A.V.; Stijkel, M.P.; Cobussen, H.L.; Mutnuru, R.K.; Idsert, P. van der [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands); Zmitko, M. [The European Joint Undertaking for ITER and The Development of Fusion Energy, c/ Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2013-11-15

    In the HIDOBE (HIgh DOse irradiation of BEryllium) irradiation program, various grades of constrained and unconstrained beryllium pebbles, beryllium pellets and titanium-beryllide samples are irradiated in the High Flux Reactor (HFR) in Petten at four different temperatures (between 698 K and 1023 K) for 649 days [1]. The first of two HIDOBE irradiation experiments, HIDOBE-01, was completed after achieving a DEMO relevant helium production level of 3000 appm and the samples are retrieved for postirradiation examination (PIE). This work shows preliminary results of the out-of-pile tritium release analysis performed on different grades of irradiated beryllium pebbles (different in size). Relationships between irradiation temperature, tritium inventory and microstructural evolution have been observed by light microscopy and scanning electron microscopy.

  17. Recent shallow moonquake and impact-triggered boulder falls on the Moon: New insights from the Schrödinger basin

    Science.gov (United States)

    Senthil Kumar, P.; Sruthi, U.; Krishna, N.; Lakshmi, K. J. P.; Menon, Rajeev; Amitabh; Gopala Krishna, B.; Kring, David A.; Head, James W.; Goswami, J. N.; Kiran Kumar, A. S.

    2016-02-01

    Shallow moonquakes are thought to be of tectonic origin. However, the geologic structures responsible for these moonquakes are unknown. Here we report sites where moonquakes possibly occurred along young lobate scarps in the Schrödinger basin. Our analysis of Lunar Reconnaissance Orbiter and Chandrayaan-1 images revealed four lobate scarps in different parts of the Schrödinger basin. The scarps crosscut small fresh impact craters (bounced on nearby slopes. A cluster of a large number of boulder falls near Scarp 1 indicates that the scarp was seismically active recently. A low runout efficiency of the boulders (~2.5) indicates low to moderate levels of ground shaking, which we interpret to be related to low-magnitude moonquakes in the scarp. Boulder falls are also observed in other parts of the basin, where we mapped >1500 boulders associated with trails and bouncing marks. Their origins are largely controlled by recent impact events. Ejecta rays and secondary crater chains from a 14 km diameter impact crater traversed Schrödinger and triggered significant boulder falls about 17 Ma. Therefore, a combination of recent shallow moonquakes and impact events triggered the boulder falls in the Schrödinger basin.

  18. Thermo-mechanical Modelling of Pebble Beds in Fusion Blankets and its Implementation by a Return-Mapping Algorithm

    International Nuclear Information System (INIS)

    Gan, Yixiang; Kamlah, Marc

    2008-01-01

    In this investigation, a thermo-mechanical model of pebble beds is adopted and developed based on experiments by Dr. Reimann at Forschungszentrum Karlsruhe (FZK). The framework of the present material model is composed of a non-linear elastic law, the Drucker-Prager-Cap theory, and a modified creep law. Furthermore, the volumetric inelastic strain dependent thermal conductivity of beryllium pebble beds is taken into account and full thermo-mechanical coupling is considered. Investigation showed that the Drucker-Prager-Cap model implemented in ABAQUS can not fulfill the requirements of both the prediction of large creep strains and the hardening behaviour caused by creep, which are of importance with respect to the application of pebble beds in fusion blankets. Therefore, UMAT (user defined material's mechanical behaviour) and UMATHT (user defined material's thermal behaviour) routines are used to re-implement the present thermo-mechanical model in ABAQUS. An elastic predictor radial return mapping algorithm is used to solve the non-associated plasticity iteratively, and a proper tangent stiffness matrix is obtained for cost-efficiency in the calculation. An explicit creep mechanism is adopted for the prediction of time-dependent behaviour in order to represent large creep strains in high temperature. Finally, the thermo-mechanical interactions are implemented in a UMATHT routine for the coupled analysis. The oedometric compression tests and creep tests of pebble beds at different temperatures are simulated with the help of the present UMAT and UMATHT routines, and the comparison between the simulation and the experiments is made. (authors)

  19. The correction of pebble bed reactor nodal cross sections for the effects of leakage and depletion history

    Science.gov (United States)

    Hudson, Nathanael Harrison

    An accurate and computationally fast method to generate nodal cross sections for the Pebble Bed Reactor (PBR) was presented. In this method, named Spectral History Correction (SHC), a set of fine group microscopic cross section libraries, pre-computed at specified depletion and moderation states, was coupled with the nodal nuclide densities and group bucklings to compute the new fine group spectrum for each node. The relevant fine group cross-section library was then recollapsed to the local broad group cross-section structure with this new fine group spectrum. This library set was tracked in terms of fuel isotopic densities. Fine group modulation factors (to correct the homogeneous flux for heterogeneous effects) and fission spectra were also stored with the cross section library. As the PBR simulation converges to a steady state fuel cycle, the initial nodal cross section library becomes inaccurate due to the burnup of the fuel and the neutron leakage into and out of the node. Because of the recirculation of discharged fuel pebbles with fresh fuel pebbles, a node can consist of a collection of pebbles at various burnup stages. To account for the nodal burnup, the microscopic cross sections were combined with nodal averaged atom densities to approximate the fine group macroscopic cross-sections for that node. These constructed, homogeneous macroscopic cross sections within the node were used to calculate a numerical solution for the fine group spectrum with B1 theory. This new fine spectrum was used to collapse the pre-computed microscopic cross section library to the broad group structure employed by the fuel cycle code. This SHC technique was developed and practically implemented as a subroutine within the PBR fuel cycle code PEBBED. The SHC subroutine was called to recalculate the broad group cross sections during the code convergence. The result was a fast method that compared favorably to the benchmark scheme of cross section calculation with the lattice

  20. Direct deterministic method for neutronics analysis and computation of asymptotic burnup distribution in a recirculating pebble-bed reactor

    International Nuclear Information System (INIS)

    Terry, W.K.; Gougar, H.D.; Ougouag, A.M.

    2002-01-01

    A new deterministic method has been developed for the neutronics analysis of a pebble-bed reactor (PBR). The method accounts for the flow of pebbles explicitly and couples the flow to the neutronics. The method allows modeling of once-through cycles as well as cycles in which pebbles are recirculated through the core an arbitrary number of times. This new work is distinguished from older methods by the systematically semi-analytical approach it takes. In particular, whereas older methods use the finite-difference approach (or an equivalent one) for the discretization and the solution of the burnup equation, the present work integrates the relevant differential equation analytically in discrete and complementary sub-domains of the reactor. Like some of the finite-difference codes, the new method obtains the asymptotic fuel-loading pattern directly, without modeling any intermediate loading pattern. This is a significant advantage for the design and optimization of the asymptotic fuel-loading pattern. The new method is capable of modeling directly both the once-through-then-out fuel cycle and the pebble recirculating fuel cycle. Although it currently includes a finite-difference neutronics solver, the new method has been implemented into a modular code that incorporates the framework for the future coupling to an efficient solver such as a nodal method and to modern cross section preparation capabilities. In its current state, the deterministic method presented here is capable of quick and efficient design and optimization calculations for the in-core PBR fuel cycle. The method can also be used as a practical 'scoping' tool. It could, for example, be applied to determine the potential of the PBR for resisting nuclear-weapons proliferation and to optimize proliferation-resistant features. However, the purpose of this paper is to show that the method itself is viable. Refinements to the code are under way, with the objective of producing a powerful reactor physics

  1. Current status and results of the PBMR -Pebble Box- benchmark within the framework of the IAEA CRP5 - 341

    International Nuclear Information System (INIS)

    Reitsma, F.; Tyobeka, B.

    2010-01-01

    The verification and validation of computer codes used in the analysis of high temperature gas cooled pebble bed reactor systems has not been an easy goal to achieve. A limited amount of tests and operating reactor measurements are available. Code-to-code comparisons for realistic pebble bed reactor designs often exhibit differences that are difficult to explain and are often blamed on the complexity of the core models or the variety of analysis methods and cross section data sets employed. For this reason, within the framework of the IAEA CRP5, the 'Pebble Box' benchmark was formulated as a simple way to compare various treatments of neutronics phenomena. The problem is comprised of six test cases which were designed to investigate the treatments and effects of leakage and heterogeneity. This paper presents the preliminary results of the benchmark exercise as received during the CRP and suggests possible future steps towards the resolution of discrepancies between the results. Although few participants took part in the benchmarking exercise, the results presented here show that there is still a need for further evaluation and in-depth understanding in order to build the confidence that all the different methods, codes and cross-section data sets have the capability to handle the various neutronics effects for such systems. (authors)

  2. Experimental study of bypass flow in near wall gaps of a pebble bed reactor using hot wire anemometry technique

    International Nuclear Information System (INIS)

    Amini, Noushin; Hassan, Yassin A.

    2014-01-01

    Highlights: • Coolant flow behavior in near wall gaps of a pebble bed reactor is studied. • Hot wire anemometry is applied for high frequency velocity measurements. • Bypass flow is identified within the velocity profiles of near wall gaps. • Effect of gap geometry and Reynolds number on bypass flow is investigated. • Variation of velocity power spectra with radial location and Reynolds number is studied. - Abstract: Coolant flow behavior through the core of an annular pebble bed reactor is investigated in this experimental study. A high frequency hot wire anemometry system coupled with an X-probe is used for measurement of axial and radial velocity components at different points within two near wall gaps at five different modified Reynolds numbers (Re m = 2043–6857). The velocity profiles within the gaps verify the presence of an area of increased velocity close to the pebble bed outer reflector wall, which is known as the bypass flow. Moreover, the characteristics of the coolant flow profile are seen to be highly dependent on the gap geometry. The effect of Reynolds number on the velocity profiles varies as the geometry of the gap changes. The time histories of the local velocities measured with considerably high frequency are further analyzed using power spectral density technique. Power spectral plots illustrate substantial spatial variation of the energy content, spectral shape, and the slope of the energy cascade region. A significant correlation between Reynolds number and characteristics of the velocity power spectra is observed

  3. Examination of the potential for diversion or clandestine dual use of a pebble-bed reactor to produce plutonium

    International Nuclear Information System (INIS)

    Ougouag, A.M.; Terry, W.K.; Gougar, H.D.

    2002-01-01

    This paper explores the susceptibility of Pebble-Bed Reactors (PBRs) to be used overtly or covertly for the production of plutonium for nuclear weapons. The basic assumption made for the consideration of overt production is that a country would purchase a PBR with the ostensible motive of producing electric power; then, after the power plant was built, the country would divert the facility entirely to the production of weapons material. It is assumed that the country would then have to manufacture production pebbles from natural uranium. The basic assumption made for covert production is that the country would obtain and use a PBR for power production, but that it would clandestinely feed plutonium production pebbles through the reactor in such small numbers that the perturbation on power plant operation would be very difficult to detect. This paper shows the potential rate of plutonium production under such constraints. It is demonstrated that the PBR is a very poor choice for either form of proliferation-intent use. (author)

  4. Localization of the Hot Spot in the Gap of Pebble Bed of Very High Temperature Gas Cooled Reactor(VHTGR)

    International Nuclear Information System (INIS)

    Lee, Sa Ya; Hong, Sung Je; Lee, Jae Young

    2010-01-01

    Pebble Bed Reactor(PBR) has been investigated intensively due to its benefits in management, but its complicated flow geometry requests reliable analytical methods. Hassan and Lee et al. have been made three dimensional computational methods. Hassan also measured local velocity fields with Particle Tracking Velocimetry(PTV), in small sized packed bed using liquid coolant, and Lee et al. measured flow field in the 2-dimensional wind tunnel with a hot wire system. In the present study, we develop the scaled up wind tunnel of pebble bed to use air as coolant in the same Reynolds number condition, as 21614, of the PBMR-250MWth. In order to measure the local surface temperature, the heating system and temperature measurement system were installed and heat transfer analogy was performed. The local surface temperature data shows that the predicted hot spots by Lee et al. at the top and bottom of the pebble by the velocity field measurement are reasonable, but the heat conduction is prior than contact effect at contact points

  5. Three-Dimensional Analysis of the Hot-Spot Fuel Temperature in Pebble Bed and Prismatic Modular Reactors

    International Nuclear Information System (INIS)

    In, W. K.; Lee, S. W.; Lim, H. S.; Lee, W. J.

    2006-01-01

    High temperature gas-cooled reactors(HTGR) have been reviewed as potential sources for future energy needs, particularly for a hydrogen production. Among the HTGRs, the pebble bed reactor(PBR) and a prismatic modular reactor(PMR) are considered as the nuclear heat source in Korea's nuclear hydrogen development and demonstration project. PBR uses coated fuel particles embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the core during an operation. PMR uses graphite fuel blocks which contain cylindrical fuel compacts consisting of the fuel particles. The fuel blocks also contain coolant passages and locations for absorber and control material. The maximum fuel temperature in the core hot spot is one of the important design parameters for both a PBR and a PMR. The objective of this study is to predict the hot-spot fuel temperature distributions in a PBR and a PMR at a steady state. The computational fluid dynamics(CFD) code, CFX-10 is used to perform the three-dimensional analysis. The latest design data was used here based on the reference reactor designs, PBMR400 and GTMHR60

  6. Characteristic behaviour of Pebble Bed High Temperature Gas-cooled Reactors during water ingress events

    International Nuclear Information System (INIS)

    Khoza, Samukelisiwe N.; Serfontein, Dawid E.; Reitsma, Frederik

    2014-01-01

    The presence of water on the tube-side of the steam generators in high temperature gas-cooled reactors (HTGRs) with indirect cycle layouts presents a possibility for a penetration of neutron moderating steam into the core, which may cause a power excursion. This article presents results on the effect of water ingress into the core of the two South African Pebble Bed Modular Reactor design concepts, i.e. the PBMR-200 MW th and the PBMR-400 MW th developed by PBMR SOC Ltd. The VSOP 99/05 suite of codes was used for the simulation of this event. Partial steam vapour pressures were added in stages into the primary circuit in order to investigate the effect of water ingress on reactivity, power profiles and thermal neutron flux profiles. The effects of water ingress into the core are explained by increased neutron moderation, due to the addition of 1 H, which leads to a decrease in resonance capture by 238 U and therefore an increase in the multiplication factor. The more effective moderation of neutrons by definition reduces the fast neutron flux and increases the thermal flux in the core, i.e. leads to a softer spectrum. The more effective moderation also increases the average increase in lethargy between collisions of a neutron with successive fuel kernels, which reduces the probability for neutron capture in the radiative capture resonances of 238 U. The resulting higher resonance escape probability also increases the thermal flux in the core. The softening of the neutron spectrum leads to an increased effective microscopic fission cross section in the fissile isotopes and thus to increased neutron absorption for fission, which reduces the remaining number of neutrons that can diffuse into the reflectors. Therefore water ingress into the core leads to a reduced thermal neutron flux in the reflectors. The power density spatial distribution behaved similarly to the thermal neutron flux in the core. Analysis of possible mechanisms was conducted. The results show that

  7. Helium-cooled pebble bed test blanket module alternative design and fabrication routes

    International Nuclear Information System (INIS)

    Lux, M.

    2007-01-01

    According to first results of the recently started European DEMO study, a new blanket integration philosophy was developed applying so-called multi-module segments. These consist of a number of blanket modules flexibly mounted onto a common vertical manifold structure that can be used for replacing all modules in one segment at one time through vertical remote-handling ports. This principle gives new freedom in the design choices applied to the blanket modules itself. Based on the alternative design options considered for DEMO also the ITER test blanket module was newly analyzed. As a result of these activities it was decided to keep the major principles of the reference design like stiffening grid, breeder unit concept and perpendicular arrangement of pebble beds related to the First Wall because of the very positive results of thermo-mechanical and neutronics studies. The present paper gives an overview on possible further design optimization and alternative fabrication routes. One of the most significant improvements in terms of the hydraulic performance of the Helium cooled reactor can be reached with a new First Wall concept. That concept is based on an internal heat transfer enhancement technique and allows drastically reducing the flow velocity in the FW cooling channels. Small ribs perpendicular to the flow direction (transverse-rib roughness) are arranged on the inner surface of the First Wall cooling channels at the plasma side. In the breeder units cooling plates which are mostly parallel but bent into U-shape at the plasma-side are considered. In this design all flow channels are parallel and straight with the flow entering on one side of the parallel plate sections and exiting on the other side. The ceramic pebble beds are embedded between two pairs of such type of cooling plates. Different modifications could possibly be combined, whereby the most relevant discussed in this paper are (i) rib-cooled First Wall channels, (ii) U-bent cooling plates for

  8. Characteristics of convective heat transport in a packed pebble-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abdulmohsin, Rahman S., E-mail: rsar62@mst.edu [Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 400 West 11th Street/231 Schrenk Hall, Rolla, MO 65409-1230 (United States); Al-Dahhan, Muthanna H., E-mail: aldahhanm@mst.edu [Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 400 West 11th Street/231 Schrenk Hall, Rolla, MO 65409-1230 (United States); Department of Nuclear Engineering, 301 W. 14th St./222 Fulton Hall (United States)

    2015-04-01

    Highlights: • A fast-response heat transfer probe has been developed and used in this work. • Heat transport has been quantified in terms of local heat transfer coefficients. • The method of the electrically heated single sphere in packing has been applied. • The heat transfer coefficient increases from the center to the wall of packed bed. • This work advancing the knowledge of heat transport in the studied packed bed. - Abstract: Obtaining more precise results and a better understanding of the heat transport mechanism in the dynamic core of packed pebble-bed reactors is needed because this mechanism poses extreme challenges to the reliable design and efficient operation of these reactors. This mechanism can be quantified in terms of a solid-to-gas convective heat transfer coefficient. Therefore, in this work, the local convective heat transfer coefficients and their radial profiles were measured experimentally in a separate effect pilot-plant scale and cold-flow experimental setup of 0.3 m in diameter, using a sophisticated noninvasive heat transfer probe of spherical type. The effect of gas velocity on the heat transfer coefficient was investigated over a wide range of Reynolds numbers of practical importance. The experimental investigations of this work include various radial locations along the height of the bed. It was found that an increase in coolant gas flow velocity causes an increase in the heat transfer coefficient and that effect of the gas flow rate varies from laminar to turbulent flow regimes at all radial positions of the studied packed pebble-bed reactor. The results show that the local heat transfer coefficient increases from the bed center to the wall due to the change in the bed structure, and hence, in the flow pattern of the coolant gas. The findings clearly indicate that one value of an overall heat transfer coefficient cannot represent the local heat transfer coefficients within the bed; therefore, correlations are needed to

  9. Tritium release from EXOTIC-7 orthosilicate pebbles. Effect of burnup and contact with beryllium during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F; Werle, H [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik

    1998-03-01

    EXOTIC-7 was the first in-pile test with {sup 6}Li-enriched (50%) lithium orthosilicate (Li{sub 4}SiO{sub 4}) pebbles and with DEMO representative Li-burnup. Post irradiation examinations of the Li{sub 4}SiO{sub 4} have been performed at the Forschungszentrum Karlsruhe (FZK), mainly to investigate the tritium release kinetics as well as the effect of Li-burnup and/or contact with beryllium during irradiation. The release rate of Li{sub 4}SiO{sub 4} from pure Li{sub 4}SiO{sub 4} bed of capsule 28.1-1 is characterized by a broad main peak at about 400degC and by a smaller peak at about 800degC, and that from the mixed beds of capsule 28.2 and 26.2-1 shows again these two peaks, but most of the tritium is now released from the 800degC peak. This shift of release from low to high temperature may be due to the higher Li-burnup and/or due to contact with Be during irradiation. Due to the very difficult interpretation of the in-situ tritium release data, residence times have been estimated on the basis of the out-of-pile tests. The residence time for Li{sub 4}SiO{sub 4} from caps. 28.1-1 irradiated at 10% Li-burnup agrees quite well with that of the same material irradiated at Li-burnup lower than 3% in the EXOTIC-6 experiment. In spite of the observed shift in the release peaks from low to high temperature, also the residence time for Li{sub 4}SiO{sub 4} from caps. 26.2-1 irradiated at 13% Li-burnup agrees quite well with the data from EXOTIC-6 experiment. On the other hand, the residence time for Li{sub 4}SiO{sub 4} from caps. 28.2 (Li-burnup 18%) is about a factor 1.7-3.8 higher than that for caps. 26.2-1. Based on these data on can conclude that up to 13% Li-burnup neither the contact with beryllium nor the Li-burnup have a detrimental effect on the tritium release of Li{sub 4}SiO{sub 4} pebbles, but at 18% Li-burnup the residence time is increased by about a factor three. (J.P.N.)

  10. Fabrication of Li{sub 4}SiO{sub 4} pebbles by gel-precipitation technology

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Z.; Wu, X.; Gu, Z. [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai (China)

    2007-07-01

    Full text of publication follows: Lithium orthosilicate (Li{sub 4}SiO{sub 4}) is considered as a promising candidate as breeder material for fusion reactors due to its high lithium content, high stability and favorable tritium release behavior. The shape the breeder materials adopted was determined by many factors, such as the tritium breeding ratio, the ease of diffusion of tritium, the release of thermal stress and irradiation cracking etc. At present pebble configuration has been recognized as the preferred option in most blanket designs for tritium breeders. In the fabrication of spheres of a ceramic material, there are several methods available: the agglomeration of powders, melt-spraying method, sol-gel process and gel-precipitation process. Li{sub 4}SiO{sub 4} pebbles with satisfying quality have been fabricated by melt-spraying method. But expensive experimental equipment and high temperature restrict the extensive application of the method. Gel-precipitation can be operated at room temperature and no special equipment is needed. The technique has been successfully used to produce lithium aluminate ceramic spheres. In this work, fabrication of Li{sub 4}SiO{sub 4} pebbles by gel-precipitation technology was first time investigated systematically. LiOH, citric acid and SiO{sub 2} (aerosil) were used as raw materials. SiO{sub 2} (aerosil) was dispersed in the gel formed by LiOH and citric acid, milky suspension was then obtained and Li{sub 4}SiO{sub 4} pebbles were produced from the milky suspension. The pebbles obtained displayed pure Li{sub 4}SiO{sub 4} phase, exhibited high sphericity, uniform distribution in size, small amount of pores and cracks. Phase transformation with the molar ratio of SiO{sub 2}/LiOH was investigated. The effect of sintering temperature on microstructure was discussed. The water-based gel-precipitation method for fabrication of Li{sub 4}SiO{sub 4} spheres was simple and convenient to realize mass production. (authors)

  11. Streamflow predictions under climate scenarios in the Boulder Creek Watershed at Orodell

    Science.gov (United States)

    Zhang, Q.; Williams, M. W.; Livneh, B.

    2016-12-01

    Mountainous areas have complex geological features and climatic variability, which limit our ability to simulate and predict hydrologic processes, especially in face to a changing climate. Hydrologic models can improve our understanding of land surface water and energy budgets in these regions. In this study, a distributed physically-based hydrologic model is applied to the Boulder Creek Watershed, USA to study streamflow conditions under future climatic scenarios. Model parameters were adjusted using observed streamflow data at 1/16th degree resolution, with a NSE value of 0.69. The results from CMIP5 models can give a general range of streamflow conditions under different climatic scenarios. Two scenarios are being applied, including the RCP 4.5 and 8.5 scenarios. RCP 8.5 has higher emission concentrations than RCP 4.5, but not very significant in the period of study. Using pair t-test and Mann-Whitney test at specific grid cells to compare modeled and observed climate data, four CMIP5 models were chosen to predict streamflow from 2010 to 2025. Of the four models, two models predicted increased precipitation, while the other two models predicted decreased precipitation, and the four models predicted increased minimum and maximum temperature in RCP 4.5. Average streamflow decreased by 2% 14%, while maximum SWE varies from -7% to +210% from 2010 to 2025, relative to 2006 to 2010. In RCP 8.5, three models predicted increased precipitation, while the other one model predicted decreased precipitation, and the four models predicted increased maximum and minimum temperature. Besides one model, the other three models predicted increased average streamflow by 3.5% 32%, which results from the higher increasing magnitude in precipitation. Maximum SWE varies by 6% 55% higher than that from 2006 to 2010. This study shows that average daily maximum and minimum temperature will increase toward 2025 from different climate models, while average streamflow will decrease in RCP 4

  12. Experimental and numerical studies on penetration of shaped charge into concrete and pebble layered targets

    Directory of Open Access Journals (Sweden)

    C Wang

    2017-09-01

    Full Text Available Experiments on penetrating into concrete and pebble layered targets were performed by shaped charge with different cone angles, liner wall thicknesses, length to diameter ratios and charge diameters at different standoffs. Based on the experimental data, the influence of shaped charge’s structural parameters on crater diameter, hole diameter, crater depth and penetration depth was analyzed in detail. Meanwhile, formation and penetration processes of all shaped charges were simulated by AUTODYN software for investigating the more intrinsic mechanisms, in which the numerical models are the same as those set up in the experiments. The results obtained in this paper indicate that there are obvious differences between jetting projectile charge (JPC and explosively formed projectile (EFP in penetrating into multi-layer targets. For the same charge diameter, the values of hole diameter formed by EFP were much larger than JPC. However, for the same standoff, the penetration depth caused by JCP were larger than EFP. The interfacial effect exists in the penetration progress of JPC.

  13. Uncertainty and Sensitivity Analyses of a Pebble Bed HTGR Loss of Cooling Event

    Directory of Open Access Journals (Sweden)

    Gerhard Strydom

    2013-01-01

    Full Text Available The Very High Temperature Reactor Methods Development group at the Idaho National Laboratory identified the need for a defensible and systematic uncertainty and sensitivity approach in 2009. This paper summarizes the results of an uncertainty and sensitivity quantification investigation performed with the SUSA code, utilizing the International Atomic Energy Agency CRP 5 Pebble Bed Modular Reactor benchmark and the INL code suite PEBBED-THERMIX. Eight model input parameters were selected for inclusion in this study, and after the input parameters variations and probability density functions were specified, a total of 800 steady state and depressurized loss of forced cooling (DLOFC transient PEBBED-THERMIX calculations were performed. The six data sets were statistically analyzed to determine the 5% and 95% DLOFC peak fuel temperature tolerance intervals with 95% confidence levels. It was found that the uncertainties in the decay heat and graphite thermal conductivities were the most significant contributors to the propagated DLOFC peak fuel temperature uncertainty. No significant differences were observed between the results of Simple Random Sampling (SRS or Latin Hypercube Sampling (LHS data sets, and use of uniform or normal input parameter distributions also did not lead to any significant differences between these data sets.

  14. Gas Turbine High Temperature Gas (Helium) Reactor Using Pebble Bed Fuel Derived from Spent Fuel

    International Nuclear Information System (INIS)

    Cole, Quentin

    2013-01-01

    Project goals: Build on the $1B investment spent during the NGNP Project for the only true Inherently Safe Small Modular Reactor Design – the only SMR design that can make this claim due to negative temperature coefficient of reactivity - no containment required – less construction cost. NPMC in Partnership with Pebble Bed Modular Group, a fully owned subsidiary of Eskom, RSA to Factory Build Complete Plant in Modular Sections at Factory Site in Oswego, NY for transport to site by rail or shipping for world wide export. NPMC will provide Project and Construction Management of all new builds from plant sites through construction, commissioning and startup using local labor. License and Construct ion of spent fuel processing facility in both NY and South Africa using Proven Technology. Ultimate goals of project: 1. Award of the 2013 US DOE Innovative SMR $452M cost share grant for US NRC License Certification 2.Build Full Scale Demonstration Plant at Koeburg, RSA with World Bank Funding managed by NPMC in collaboration with our legal firm, Haynes and Boone LLP 3. Take Plant Orders Immediately (10% Down Payment) 4. Form Strategic Alliance with Domestic and/or International Utility

  15. Numerical investigation of the flow at the pebble bed of the high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Costa, Franklin C.; Navarro, Moyses A.; Santos, Andre A.C.

    2011-01-01

    This paper presents a numerical investigation of the thermal and fluid dynamics among the fuel spheres and the cooling fluid, appearing in the core of pebble bed reactor (PBR-Peeble Bed Reactor) using the CFD-Computational Fluid Dynamics CFX 13.0. The paper presents the two analysis results. In the first phase it was considered two heat transfer models for the fuel spheres. In a model it was established volumetric load generation, with thermal conduction for both the fuel and coating. The other model prescribes a heat flux at the sphere surfaces. In this analysis, it was proceed two simulation in the two sphere arrangements, one considering the spheres in contact, and the other with 2 mm spacing between them. At the second analysis it was evaluated the sphere arrangement influence on the thermal and fluid dynamic behavior of the bed. The four simulations present differences in the flow and in the surface and maximum temperature profiles of the coating.(author)

  16. Varicose and cheerio collaborate with pebble to mediate semaphorin-1a reverse signaling in Drosophila.

    Science.gov (United States)

    Jeong, Sangyun; Yang, Da-Som; Hong, Young Gi; Mitchell, Sarah P; Brown, Matthew P; Kolodkin, Alex L

    2017-09-26

    The transmembrane semaphorin Sema-1a acts as both a ligand and a receptor to regulate axon-axon repulsion during neural development. Pebble (Pbl), a Rho guanine nucleotide exchange factor, mediates Sema-1a reverse signaling through association with the N-terminal region of the Sema-1a intracellular domain (ICD), resulting in cytoskeletal reorganization. Here, we uncover two additional Sema-1a interacting proteins, varicose (Vari) and cheerio (Cher), each with neuronal functions required for motor axon pathfinding. Vari is a member of the membrane-associated guanylate kinase (MAGUK) family of proteins, members of which can serve as scaffolds to organize signaling complexes. Cher is related to actin filament cross-linking proteins that regulate actin cytoskeleton dynamics. The PDZ domain binding motif found in the most C-terminal region of the Sema-1a ICD is necessary for interaction with Vari, but not Cher, indicative of distinct binding modalities. Pbl/Sema-1a-mediated repulsive guidance is potentiated by both vari and cher Genetic analyses further suggest that scaffolding functions of Vari and Cher play an important role in Pbl-mediated Sema-1a reverse signaling. These results define intracellular components critical for signal transduction from the Sema-1a receptor to the cytoskeleton and provide insight into mechanisms underlying semaphorin-induced localized changes in cytoskeletal organization.

  17. Pebble bed modular reactors versus other generation technologies. Costs and challenges for South Africa

    International Nuclear Information System (INIS)

    Grubert, Emily; Parks, Brian; Schneider, Erich; Sekar, Srinivas

    2011-01-01

    South Africa is Africa's major economy, with plans to double its electricity generation capacity by 2026. South Africa has spent almost two decades developing a nuclear reactor known as a Pebble Bed Modular Reactor (PBMR), which could provide substantial benefits to the electricity grid but was recently mothballed due to high costs. This work estimates the lifecycle financial costs of South African PBMRs, then compares these costs to those of five other generation options: coal, nuclear as pressurized water reactors (PWRs), wind, and solar as photovoltaics (PV) or concentrating solar power (CSP). Each technology is evaluated with low, base case, and high assumptions for capital costs, construction time, and interest rates. Decommissioning costs, project lifetime, capacity factors, and sensitivity to carbon price are also considered. PBMR could be cost competitive with coal under certain low cost conditions, even without a carbon price. However, international lending practices and other factors suggest that a high capital cost, high interest rate nuclear plant is likely to be competing with a low capital cost, low interest rate coal plant in a market where cost recovery is challenging. PBMR could potentially become more competitive if low rate international loans were available to nuclear projects or became unavailable to coal projects. (author)

  18. Detection of flux perturbations in pebble bed HTGRs by near core instrumentation

    International Nuclear Information System (INIS)

    Neef, R.D.; Basse, W.; Carlson, D.E.; Knob, P.; Schaal, H.; Wilhelm, H.; Stroemich, A.

    1982-06-01

    For pebble bed reactors an incore monitoring system cannot be utilized during normal operation, mainly for two reasons: 1) The necessary instrumentation cannot withstand possible coolant gas temperatures of up to 1150 deg. C. 2) The detector guide structures cannot withstand the continuous downward movement of the fuel elements in the core and would perturb the loading scheme. Therefore a near-core detector system is necessary which can be used to monitor the power distribution and to recognise perturbations in the neutron flux distribution. This helps guarantee that temperature limits in the core (fuel elements, absorber rods) and in the heat removal systems (steam generators) will not be exceeded. For this purpose an instrumentation system of the following kind is planned (and at least for a prototype reactor no part of it should be omitted): 1) Fast fission chambers in the top reflector for measuring the fast neutron flux distribution; 2) Self powered neutron detectors (SPNDs) in the radial reflector for thermal flux mapping; 3) Thermocouples in the bottom reflector for measuring the profile of the outlet gas temperature

  19. Global scaling analysis for the pebble bed advanced high temperature reactor

    International Nuclear Information System (INIS)

    Blandford, E.D.; Peterson, P.F.

    2009-01-01

    Scaled Integral Effects Test (IET) facilities play a critical role in the design certification process of innovative reactor designs. Best-estimate system analysis codes, which minimize deliberate conservatism, require confirmatory data during the validation process to ensure an acceptable level of accuracy as defined by the regulator. The modular Pebble Bed Advanced High Temperature Reactor (PB-AHTR), with a nominal power output of 900 MWth, is the most recent UC Berkeley design for a liquid fluoride salt cooled, solid fuel reactor. The PB-AHTR takes advantage of technologies developed for gas-cooled high temperature thermal and fast reactors, sodium fast reactors, and molten salt reactors. In this paper, non-dimensional scaling groups and similarity criteria are presented at the global system level for a loss of forced circulation transient, where single-phase natural circulation is the primary mechanism for decay heat removal following a primary pump trip. Due to very large margin to fuel damage temperatures, the peak metal temperature of primary-loop components was identified as the key safety parameter of interest. Fractional Scaling Analysis (FSA) methods were used to quantify the intensity of each transfer process during the transient and subsequently rank them by their relative importance while identifying key sources of distortion between the prototype and model. The results show that the development of a scaling hierarchy at the global system level informs the bottom-up scaling analysis. (author)

  20. Simulation in CFD of a Pebble Bed: Advanced high temperature reactor core using OpenFOAM

    International Nuclear Information System (INIS)

    Dahl, Pamela M.; Su, Jian

    2017-01-01

    Numerical simulations of a Pebble Bed nuclear reactor core are presented using the multi-physics tool-kit OpenFOAM. The HTR-PM is modeled using the porous media approach, accounting both for viscous and inertial effects through the Darcy and Forchheimer model. Initially, cylindrical 2D and 3D simulations are compared, in order to evaluate their differences and decide if the 2D simulations carry enough of the sought information, considering the savings in computational costs. The porous medium is considered to be isotropic, with the whole length of the packed bed occupied homogeneously with the spherical fuel elements. Steady-state simulations for normal equilibrium operation are performed, using a semi sine function of the power density along the vertical axis as the source term for the energy balance equation.Total pressure drop is calculated and compared with that obtained from literature for a similar case. At a second stage, transient simulations are performed, where relevant parameters are calculated and compared to those of the literature. (author)

  1. Simulation in CFD of a Pebble Bed: Advanced high temperature reactor core using OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, Pamela M.; Su, Jian, E-mail: sujian@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa