WorldWideScience

Sample records for growth incorporating thermal

  1. Thermal models pertaining to continental growth

    International Nuclear Information System (INIS)

    Morgan, P.; Ashwal, L.

    1988-01-01

    Thermal models are important to understanding continental growth as the genesis, stabilization, and possible recycling of continental crust are closely related to the tectonic processes of the earth which are driven primarily by heat. The thermal energy budget of the earth was slowly decreasing since core formation, and thus the energy driving the terrestrial tectonic engine was decreasing. This fundamental observation was used to develop a logic tree defining the options for continental growth throughout earth history

  2. Incorporation of multiwalled carbon nanotubes to acrylic based bone cements: effects on mechanical and thermal properties.

    Science.gov (United States)

    Ormsby, Ross; McNally, Tony; Mitchell, Christina; Dunne, Nicholas

    2010-02-01

    Polymethyl methacrylate (PMMA) bone cement-multiwalled carbon nanotube (MWCNT) nanocomposites with a weight loading of 0.1% were prepared using 3 different methods of MWCNT incorporation. The mechanical and thermal properties of the resultant nanocomposite cements were characterised in accordance with the international standard for acrylic resin cements. The mechanical properties of the resultant nanocomposite cements were influenced by the type of MWCNT and method of incorporation used. The exothermic polymerisation reaction for the PMMA bone cement was significantly reduced when thermally conductive functionalised MWCNTs were added. This reduction in exotherm translated in a decrease in thermal necrosis index value of the respective nanocomposite cements, which potentially could reduce the hyperthermia experienced in vivo. The morphology and degree of dispersion of the MWCNTs in the PMMA matrix at different scales were analysed using scanning electron microscopy. Improvements in mechanical properties were attributed to the MWCNTs arresting/retarding crack propagation through the cement by providing a bridging effect into the wake of the crack, normal to the direction of crack growth. MWCNT agglomerations were evident within the cement microstructure, the degree of these agglomerations was dependent on the method used to incorporate the MWCNTs into the cement. Copyright 2009. Published by Elsevier Ltd.

  3. Strategies for growth of thermal power

    International Nuclear Information System (INIS)

    Shah, R.K.D.

    1998-01-01

    The power generating industry in India is at the cross roads. Massive investments are required to achieve GDP growth of 7-8% per annum over the next 10 years. For this, appropriate strategies have to be evolved which will give the country best returns. With coal being the major fuel resource in India, thermal power generation will continue to be the mainstay in the next decade. This paper covers various key issues to be addressed covering the plan and perspectives of thermal power, environmental issues, technology strategies for growth, power policy and R and D. (author)

  4. Rumen microbial growth estimation using in vitro radiophosphorous incorporation technique

    International Nuclear Information System (INIS)

    Bueno, Ives Claudio da Silva; Machado, Mariana de Carvalho; Cabral Filho, Sergio Lucio Salomon; Gobbo, Sarita Priscila; Vitti, Dorinha Miriam Silber Schmidt; Abdalla, Adibe Luiz

    2002-01-01

    Rumen microorganisms are able to transform low biological value nitrogen of feed stuff into high quality protein. To determine how much microbial protein that process forms, radiomarkers can be used. Radiophosphorous has been used to mark microbial protein, as element P is present in all rumen microorganisms (as phospholipids) and the P:N ratio of rumen biomass is quite constant. The aim of this work was to estimate microbial synthesis from feedstuff commonly used in ruminant nutrition in Brazil. Tested feeds were fresh alfalfa, raw sugarcane bagasse, rice hulls, rice meal, soybean meal, wheat meal, Tifton hay, leucaena, dehydrated citrus pulp, wet brewers' grains and cottonseed meal. 32 P-labelled phosphate solution was used as marker for microbial protein. Results showed the diversity of feeds by distinct quantities of nitrogen incorporated into microbial mass. Low nutrient availability feeds (sugarcane bagasse and rice hulls) promoted the lowest values of incorporated nitrogen. Nitrogen incorporation showed positive relationship (r=0.56; P=0.06) with the rate of degradation and negative relationship (r=-0.59; P<0.05) with fiber content of feeds. The results highlight that easier fermentable feeds (higher rates of degradation) and/or with lower fiber contents promote a more efficient microbial growth and better performance for the host animal. (author)

  5. Rumen microbial growth estimation using in vitro radiophosphorous incorporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Ives Claudio da Silva; Machado, Mariana de Carvalho; Cabral Filho, Sergio Lucio Salomon; Gobbo, Sarita Priscila; Vitti, Dorinha Miriam Silber Schmidt; Abdalla, Adibe Luiz [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil)

    2002-07-01

    Rumen microorganisms are able to transform low biological value nitrogen of feed stuff into high quality protein. To determine how much microbial protein that process forms, radiomarkers can be used. Radiophosphorous has been used to mark microbial protein, as element P is present in all rumen microorganisms (as phospholipids) and the P:N ratio of rumen biomass is quite constant. The aim of this work was to estimate microbial synthesis from feedstuff commonly used in ruminant nutrition in Brazil. Tested feeds were fresh alfalfa, raw sugarcane bagasse, rice hulls, rice meal, soybean meal, wheat meal, Tifton hay, leucaena, dehydrated citrus pulp, wet brewers' grains and cottonseed meal. {sup 32} P-labelled phosphate solution was used as marker for microbial protein. Results showed the diversity of feeds by distinct quantities of nitrogen incorporated into microbial mass. Low nutrient availability feeds (sugarcane bagasse and rice hulls) promoted the lowest values of incorporated nitrogen. Nitrogen incorporation showed positive relationship (r=0.56; P=0.06) with the rate of degradation and negative relationship (r=-0.59; P<0.05) with fiber content of feeds. The results highlight that easier fermentable feeds (higher rates of degradation) and/or with lower fiber contents promote a more efficient microbial growth and better performance for the host animal. (author)

  6. [3H] Thymidine incorporation to estimate growth rates of anaerobic bacterial strains

    International Nuclear Information System (INIS)

    Winding, A.

    1992-01-01

    The incorporation of [ 3 H] thymidine by axenic cultures of anaerobic bacteria was investigated as a means to measure growth. The three fermentative strains and one of the methanogenic strains tested incorporated [ 3 H] thymidine during growth. It is concluded that the [ 3 H] thymidine incorporation method underestimates bacterial growth in anaerobic environments

  7. Thermal Aware Floorplanning Incorporating Temperature Dependent Wire Delay Estimation

    DEFF Research Database (Denmark)

    Winther, AndreasThor; Liu, Wei; Nannarelli, Alberto

    2015-01-01

    Temperature has a negative impact on metal resistance and thus wire delay. In state-of-the-art VLSI circuits, large thermal gradients usually exist due to the uneven distribution of heat sources. The difference in wire temperature can lead to performance mismatch because wires of the same length...... can have different delay. Traditional floorplanning algorithms use wirelength to estimate wire performance. In this work, we show that this does not always produce a design with the shortest delay and we propose a floorplanning algorithm taking into account temperature dependent wire delay as one...

  8. Wave propagation in embedded inhomogeneous nanoscale plates incorporating thermal effects

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza; Dabbagh, Ali

    2018-04-01

    In this article, an analytical approach is developed to study the effects of thermal loading on the wave propagation characteristics of an embedded functionally graded (FG) nanoplate based on refined four-variable plate theory. The heat conduction equation is solved to derive the nonlinear temperature distribution across the thickness. Temperature-dependent material properties of nanoplate are graded using Mori-Tanaka model. The nonlocal elasticity theory of Eringen is introduced to consider small-scale effects. The governing equations are derived by the means of Hamilton's principle. Obtained frequencies are validated with those of previously published works. Effects of different parameters such as temperature distribution, foundation parameters, nonlocal parameter, and gradient index on the wave propagation response of size-dependent FG nanoplates have been investigated.

  9. Stochastic modeling of thermal fatigue crack growth

    CERN Document Server

    Radu, Vasile

    2015-01-01

    The book describes a systematic stochastic modeling approach for assessing thermal-fatigue crack-growth in mixing tees, based on the power spectral density of temperature fluctuation at the inner pipe surface. It shows the development of a frequency-temperature response function in the framework of single-input, single-output (SISO) methodology from random noise/signal theory under sinusoidal input. The frequency response of stress intensity factor (SIF) is obtained by a polynomial fitting procedure of thermal stress profiles at various instants of time. The method, which takes into account the variability of material properties, and has been implemented in a real-world application, estimates the probabilities of failure by considering a limit state function and Monte Carlo analysis, which are based on the proposed stochastic model. Written in a comprehensive and accessible style, this book presents a new and effective method for assessing thermal fatigue crack, and it is intended as a concise and practice-or...

  10. Review on factors influencing thermal conductivity of concrete incorporating various type of waste materials

    Science.gov (United States)

    Misri, Z.; Ibrahim, M. H. W.; Awal, A. S. M. A.; Desa, M. S. M.; Ghadzali, N. S.

    2018-04-01

    Concrete is well-known as a construction material which is widely used in building and infrastructure around the world. However, its widespread use has affected the reduction of natural resources. Hence, many approached have been made by researchers to study the incorporation of waste materials in concrete as a substitution for natural resources besides reducing waste disposal problems. Concrete is basically verified by determining its properties; strengths, permeability, shrinkage, durability, thermal properties etc. In various thermal properties of concrete, thermal conductivity (TC) has received a large amount of attention because it is depend upon the composition of concrete. Thermal conductivity is important in building insulation to measure the ability of a material to transfer heat. The aim of this paper is to discuss the methods and influence factors of TC of concrete containing various type of waste materials.

  11. Calcium incorporation in graphene oxide particles: A morphological, chemical, electrical, and thermal study

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Kelly L.S. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias (Brazil); Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, 21941-909 Rio de Janeiro (Brazil); Curti, Raphael V.; Araujo, Joyce R.; Landi, Sandra M.; Ferreira, Erlon H.M.; Neves, Rodrigo S.; Kuznetsov, Alexei; Sena, Lidia A. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias (Brazil); Archanjo, Braulio S., E-mail: bsarchanjo@inmetro.gov.br [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias (Brazil); Achete, Carlos A. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias (Brazil); Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro (Brazil)

    2016-07-01

    Surface chemical modification and functionalization are common strategies used to provide new properties or functionalities to a material or to enhance existing ones. In this work, graphene oxide prepared using Hummers' method has been chemically modified with calcium ions by immersion in a calcium carbonate solution. Transmission electron microscopy analyses showed that graphene oxide (GO) and calcium incorporated graphene oxide have a morphology similar to an ultra-thin membrane composed of overlapping sheets. X-ray diffraction and Fourier-infrared spectroscopy show that calcium carbonate residue was completely removed by hydrochloric acid washes. Energy dispersive X-ray spectroscopy mapping showed spatially homogeneous calcium in Ca-incorporated graphene oxide sample after HCl washing. This Ca is mainly ionic according to X-ray photoelectron spectroscopy, and its incorporation promoted a small reduction in the graphene oxide structure, corroborated also by four-point probe measurements. A thermal study shows a remarkable increase in the GO stability with the presence of Ca{sup 2+} ions. - Highlights: • Graphene oxide has been chemically modified with Ca ions by immersion in a CaCO{sub 3} solution. • GO–Ca has morphology similar to an ultra-thin membrane composed of overlapping sheets. • CaCO{sub 3} residue was completely removed by acid washes, leaving only ionic calcium. • EDS maps show that Ca incorporation is spatially homogeneous in GO structure. • Thermal analyses show a remarkable increase in GO stability after Ca incorporation.

  12. Calcium incorporation in graphene oxide particles: A morphological, chemical, electrical, and thermal study

    International Nuclear Information System (INIS)

    Castro, Kelly L.S.; Curti, Raphael V.; Araujo, Joyce R.; Landi, Sandra M.; Ferreira, Erlon H.M.; Neves, Rodrigo S.; Kuznetsov, Alexei; Sena, Lidia A.; Archanjo, Braulio S.; Achete, Carlos A.

    2016-01-01

    Surface chemical modification and functionalization are common strategies used to provide new properties or functionalities to a material or to enhance existing ones. In this work, graphene oxide prepared using Hummers' method has been chemically modified with calcium ions by immersion in a calcium carbonate solution. Transmission electron microscopy analyses showed that graphene oxide (GO) and calcium incorporated graphene oxide have a morphology similar to an ultra-thin membrane composed of overlapping sheets. X-ray diffraction and Fourier-infrared spectroscopy show that calcium carbonate residue was completely removed by hydrochloric acid washes. Energy dispersive X-ray spectroscopy mapping showed spatially homogeneous calcium in Ca-incorporated graphene oxide sample after HCl washing. This Ca is mainly ionic according to X-ray photoelectron spectroscopy, and its incorporation promoted a small reduction in the graphene oxide structure, corroborated also by four-point probe measurements. A thermal study shows a remarkable increase in the GO stability with the presence of Ca"2"+ ions. - Highlights: • Graphene oxide has been chemically modified with Ca ions by immersion in a CaCO_3 solution. • GO–Ca has morphology similar to an ultra-thin membrane composed of overlapping sheets. • CaCO_3 residue was completely removed by acid washes, leaving only ionic calcium. • EDS maps show that Ca incorporation is spatially homogeneous in GO structure. • Thermal analyses show a remarkable increase in GO stability after Ca incorporation.

  13. Fatigue crack growth behavior under cyclic thermal transient stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1986-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  14. Fatigue crack growth behavior under cyclic transient thermal stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1987-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  15. Tritiated thymidine incorporation and the growth of heterotrophic bacteria in warm core rings

    International Nuclear Information System (INIS)

    Ducklow, H.W.; Hill, S.M.

    1985-01-01

    The time-course of the incorporation rate of [methyl- 3 H]thymidine ([ 3 H]TdR) was established during 6-12 h incubations of natural bacterial populations sampled from the surface layers of warm core Gulf Stream rings. Parallel estimates of changes in cell numbers were made in order to examine the relationships between TdR incorporation and population growth for oceanic bacterial populations. Their results indicate that a conversion factor of 4 x 10 18 cells produced per mole of [ 3 H]TdR incorporated yielded estimates of bacterial production which were within a factor of 2 or 3 of production estimates derived from changes in cell numbers in seawater cultures. The authors observed a significant, direct relationship between the initial rates of TdR incorporation per cell and specific growth rates and conclude that initial short term (15-45 min) assays of TdR incorporation are a valuable tool for studying bacterial production in oceanic waters. In most incubations, the rate of TdR incorporation increased more rapidly than did cell numbers. Very large conversion factor values were derived from these data. The discrepancy between growth determined from TdR incorporation rates and total bacterial numbers in seawater cultures has not been observed in previous studies of coastal, estuarine, or lacustrine bacteria, but was a consistent feature of our studies on oceanic populations

  16. Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review

    Directory of Open Access Journals (Sweden)

    Wisut Chamsa-ard

    2017-05-01

    Full Text Available The global demand for energy is increasing and the detrimental consequences of rising greenhouse gas emissions, global warming and environmental degradation present major challenges. Solar energy offers a clean and viable renewable energy source with the potential to alleviate the detrimental consequences normally associated with fossil fuel-based energy generation. However, there are two inherent problems associated with conventional solar thermal energy conversion systems. The first involves low thermal conductivity values of heat transfer fluids, and the second involves the poor optical properties of many absorbers and their coating. Hence, there is an imperative need to improve both thermal and optical properties of current solar conversion systems. Direct solar thermal absorption collectors incorporating a nanofluid offers the opportunity to achieve significant improvements in both optical and thermal performance. Since nanofluids offer much greater heat absorbing and heat transfer properties compared to traditional working fluids. The review summarizes current research in this innovative field. It discusses direct solar absorber collectors and methods for improving their performance. This is followed by a discussion of the various types of nanofluids available and the synthesis techniques used to manufacture them. In closing, a brief discussion of nanofluid property modelling is also presented.

  17. Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review.

    Science.gov (United States)

    Chamsa-Ard, Wisut; Brundavanam, Sridevi; Fung, Chun Che; Fawcett, Derek; Poinern, Gerrard

    2017-05-31

    The global demand for energy is increasing and the detrimental consequences of rising greenhouse gas emissions, global warming and environmental degradation present major challenges. Solar energy offers a clean and viable renewable energy source with the potential to alleviate the detrimental consequences normally associated with fossil fuel-based energy generation. However, there are two inherent problems associated with conventional solar thermal energy conversion systems. The first involves low thermal conductivity values of heat transfer fluids, and the second involves the poor optical properties of many absorbers and their coating. Hence, there is an imperative need to improve both thermal and optical properties of current solar conversion systems. Direct solar thermal absorption collectors incorporating a nanofluid offers the opportunity to achieve significant improvements in both optical and thermal performance. Since nanofluids offer much greater heat absorbing and heat transfer properties compared to traditional working fluids. The review summarizes current research in this innovative field. It discusses direct solar absorber collectors and methods for improving their performance. This is followed by a discussion of the various types of nanofluids available and the synthesis techniques used to manufacture them. In closing, a brief discussion of nanofluid property modelling is also presented.

  18. Plasmodium falciparum: assessment of in vitro growth by [3H]hypoxanthine incorporation

    International Nuclear Information System (INIS)

    Chulay, J.D.; Haynes, J.D.; Diggs, C.L.

    1983-01-01

    To evaluate rapidly Plasmodium falciparum growth in Vitro, [ 3 H]hypoxanthine was added to parasite microcultures and radioisotope incorporation was measured. When culture parameters were carefully controlled, [ 3 H]hypoxanthine incorporation was proportional to the number of parasitized erythrocytes present. Factors affecting [ 3 H]hypoxanthine incorporation included initial parasitemia, duration of culture, duration of radioisotope pulse, parasite stage, concentration of uninfected erythrocytes, the use of serum or plasma to supplement growth, and the concentration of a variety of purines in the culture medium. The method described can be used to measure inhibition of P. falciparum growth by immune serum and has previously been used to study antimalarial drug activity in vitro

  19. Computer simulation with TRNSYS for a mobile refrigeration system incorporating a phase change thermal storage unit

    International Nuclear Information System (INIS)

    Liu, Ming; Saman, Wasim; Bruno, Frank

    2014-01-01

    Highlights: • A mobile refrigeration system incorporating phase change thermal storage was simulated using TRNSYS. • A TRNSYS component of a phase change thermal storage unit was created and linked to other components from TRNSYS library. • The temperature in the refrigerated space can be predicted using this TRNSYS model under various conditions. • A mobile refrigeration system incorporating PCM and an off-peak electric driven refrigeration unit is feasible. • The phase change material with the lowest melting temperature should be selected. - Abstract: This paper presents a new TRNSYS model of a refrigeration system incorporating phase change material (PCM) for mobile transport. The PCTSU is charged by an off-vehicle refrigeration unit and the PCM provides cooling when discharging and the cooling released is utilized to cool down the refrigerated space. The advantage of this refrigeration system compared to a conventional system is that it consumes less energy and produces significantly lower greenhouse gas emissions. A refrigeration system for a typical refrigerated van is modelled and simulations are performed with climatic data from four different locations. The main components of the TRNSYS model are Type 88 (cooling load estimation) and Type 300 (new PCTSU component), accompanied by other additional components. The results show that in order to maintain the temperature of the products at −18 °C for 10 h, a total of 250 kg and 390 kg of PCM are required for no door opening and 20 door openings during the transportation, respectively. In addition, a parametric study is carried out to evaluate the effects of location, size of the refrigerated space, number of door openings and melting temperature of the PCM on the thermal performance

  20. Determination of rumen microbial growth in vitro form 32P-labelled phosphate incorporation

    International Nuclear Information System (INIS)

    Nevel, C.J. Van; Demeyer, D.I.

    1977-01-01

    The extracellular phosphate pool in incubations of rumen fluid or washed cell suspensions of mixed rumen bacteria (WCS) was labelled with 32 P. From the constant extracellular phosphate pool specific activity and the amount of radioactivity incorporated during incubation, the amount of P incorporated in the microbial fraction was calculated. From the value for nitrogen: P determined in microbial matter, the amount of N incorporated was calculated as a measure of microbial growth. Incorporation of soluble non-protein-N in incubations devoid of substrate protein was 50 and 80% of the values obtained using isotope method for rumen fluid and WCS respectively. Incorporation of 32 P in P-containing microbial components (mainly nucleic acids) was compared with net synthesis of these components in incubations of WCS. When N incorporation, calculated from results obtained using isotope method in incubations with rumen fluid, was compared with the amount of carbohydrate substrate fermented and the type of fermentation, values between 18.3 and 44.6 g N incorporated kg of organic matter fermented were obtained. The use of isotopes for determination of rumen microbial growth in vitro is critically discussed. (author)

  1. Highly crystalline zinc incorporated hydroxyapatite nanorods' synthesis, characterization, thermal, biocompatibility, and antibacterial study

    Science.gov (United States)

    Udhayakumar, Gayathri; Muthukumarasamy, N.; Velauthapillai, Dhayalan; Santhosh, Shanthi Bhupathi

    2017-10-01

    Highly crystalline zinc incorporated hydroxyapatite (Zn-HAp) nanorods have been synthesized using microwave irradiation method. To improve bioactivity and crystallinity of pure HAp, zinc was incorporated into it. As-synthesized samples were characterized by Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction, field-emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX), high-resolution transmission electron microscopy (HRTEM), and the thermal and crystallinity behavior of Zn-HAp nanoparticle were studied by thermogravimetry (TGA) and differential scanning calorimetry (DSC). Antibacterial activity of the as-synthesized nanorods was evaluated against two prokaryotic strains ( Escherichia coli and Staphylococcus aureus). The FT-IR studies show the presence of hydroxide and phosphate functional groups. HRTEM and FESEM images showed highly crystalline rod-shaped nanoparticles with the diameter of about 50-60 nm. EDAX revealed the presence of Ca, Zn, P, and O in the prepared samples. The crystallinity and thermal stability were further confirmed by TGA-DSC analysis. The biocompatibility evaluation results promoted that the Zn-HAp nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopaedic application.

  2. Ge incorporation inside 4H-SiC during Homoepitaxial growth by chemical vapor deposition

    OpenAIRE

    Alassaad, Kassem; Soulière, Véronique; Cauwet, François; Peyre, Hervé; Carole, Davy; Kwasnicki, Pawel; Juillaguet, Sandrine; Kups, Thomas; Pezoldt, Jörg; Ferro, Gabriel

    2014-01-01

    8 pages; International audience; In this work, we report on the addition of GeH4 gas during homoepitaxial growth of 4H-SiC by chemical vapour deposition. Ge introduction does not affect dramatically the surface morphology and defect density though it is accompanied with Ge droplets accumulation at the surface. The Ge incorporation level inside the 4H-SiC matrix, ranging from few 1017 to few 1018 at.cm-3, was found to be mainly affected by the growth temperature and GeH4 flux. Other growth par...

  3. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    International Nuclear Information System (INIS)

    Hedegaard, Karsten; Balyk, Olexandr

    2013-01-01

    Individual compression heat pumps constitute a potentially valuable resource in supporting wind power integration due to their economic competitiveness and possibilities for flexible operation. When analysing the system benefits of flexible heat pump operation, effects on investments should be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage options: passive heat storage in the building structure via radiator heating, active heat storage in concrete floors via floor heating, and use of thermal storage tanks for space heating and hot water. It is shown that the model is well qualified for analysing possibilities and system benefits of operating heat pumps flexibly. This includes prioritising heat pump operation for hours with low marginal electricity production costs, and peak load shaving resulting in a reduced need for peak and reserve capacity investments. - Highlights: • Model optimising heat pumps and heat storages in integration with the energy system. • Optimisation of both energy system investments and operation. • Heat storage in building structure and thermal storage tanks included. • Model well qualified for analysing system benefits of flexible heat pump operation. • Covers peak load shaving and operation prioritised for low electricity prices

  4. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Balyk, Olexandr

    2013-01-01

    Individual compression heat pumps constitute a potentially valuable resource in supporting wind power integration due to their economic competitiveness and possibilities for flexible operation. When analysing the system benefits of flexible heat pump operation, effects on investments should...... be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage...... of operating heat pumps flexibly. This includes prioritising heat pump operation for hours with low marginal electricity production costs, and peak load shaving resulting in a reduced need for peak and reserve capacity investments....

  5. Geolocating thermal binoculars based on a software defined camera core incorporating HOT MCT grown by MOVPE

    Science.gov (United States)

    Pillans, Luke; Harmer, Jack; Edwards, Tim; Richardson, Lee

    2016-05-01

    Geolocation is the process of calculating a target position based on bearing and range relative to the known location of the observer. A high performance thermal imager with integrated geolocation functions is a powerful long range targeting device. Firefly is a software defined camera core incorporating a system-on-a-chip processor running the AndroidTM operating system. The processor has a range of industry standard serial interfaces which were used to interface to peripheral devices including a laser rangefinder and a digital magnetic compass. The core has built in Global Positioning System (GPS) which provides the third variable required for geolocation. The graphical capability of Firefly allowed flexibility in the design of the man-machine interface (MMI), so the finished system can give access to extensive functionality without appearing cumbersome or over-complicated to the user. This paper covers both the hardware and software design of the system, including how the camera core influenced the selection of peripheral hardware, and the MMI design process which incorporated user feedback at various stages.

  6. Improved luminescence intensity and stability of thermal annealed ZnO incorporated Alq3 composite films.

    Science.gov (United States)

    Cuba, M; Muralidharan, G

    2015-11-01

    The 30 wt% of ZnO (weight percentage of ZnO has been optimised) incorporated tris- (8-hydroxyquinoline)aluminum (Alq3) has been synthesised and coated on to glass substrates using dip coating method. The structural and optical properties of the Alq3/ZnO composite film after thermal annealing from 50 to 300 °C insteps 50° has been studied and reported. XRD pattern reveals the presence of crystalline ZnO in all the annealed films. The films annealed above 150 °C reveal the presence of crystalline Alq3 along with crystalline ZnO. The FTIR spectra confirm the presence of hydroxyquinoline and ZnO vibration in all the annealed composite films. The composite films annealed above 150 °C show a partial sublimation and degradation of hydroxyquinoline compounds. The ZnO incorporated composite films (Alq3/ZnO) exhibit two emission peaks, one corresponding to ZnO at 487 nm and another at 513 nm due to Alq3. The films annealed at 200 °C exhibit maximum photoluminescence (PL) intensity than pristine film at 513 nm when excited at 390 nm.

  7. Influence of the growth-surface on the incorporation of phosphorus in SiC

    International Nuclear Information System (INIS)

    Rauls, E.; Gerstmann, U.; Frauenheim, Th.

    2005-01-01

    Phosphorus is a common and desired n-type dopant of SiC, but it turned out that doping by diffusion or during growth is rarely successful. To avoid the efforts and the creation of damage if ion implantation is used instead, these techniques were, though, highly desirable. In this work, we have investigated theoretically the experimental observation that phosphorus obviously hardly diffuses into the material. Not the diffusivity of the dopant but its addiction to occupy a three-fold coordinated surface site are critical, together with the way the surface affects the bulk migration barriers of the dopants. Whereas the most common growth direction for 4H-SiC, the polar silicon terminated (0001) surface, seems to be least appropriate for the incorporation of phosphorus atoms, growth along the nonpolar [112-bar 0] provides a good possibility to achieve efficient P-doping during growth

  8. Largely enhanced thermal and mechanical properties of polymer nanocomposites via incorporating C60@graphene nanocarbon hybrid

    International Nuclear Information System (INIS)

    Song, Ping’an; Liu, Lina; Yu, Youming; Huang, Guobo; Guo, Qipeng

    2013-01-01

    Although considerable progress has been achieved to create advanced polymer nanocomposites using nanocarbons including fullerene (C 60 ) and graphene, it remains a major challenge to effectively disperse them in a polymer matrix and to fully exert their extraordinary properties. Here we report a novel approach to fabricate the C 60 @graphene nanocarbon hybrid (C 60 : ∼47.9 wt%, graphene: ∼35.1%) via three-step reactions. The presence of C 60 on a graphene sheet surface can effectively prevent the aggregation of the latter which in turn helps the dispersion of the former in a polymer matrix during melt-processing. C 60 @graphene is found to be uniformly dispersed in a polypropylene (PP) matrix. Compared with pristine C 60 or graphene, C 60 @graphene further improves the thermal stability and mechanical properties of PP. The incorporation of 2.0 wt% C 60 @graphene (relative to PP) can remarkably increase the initial degradation temperature by around 59 ° C and simultaneously enhance the tensile strength and Young’s modulus by 67% and 76%, respectively, all of which are higher than those of corresponding PP/C 60 (graphene) nanocomposites. These significant performance improvements are mainly due to the free-radical-trapping effect of C 60 , and the thermal barrier and reinforcing effects of graphene nanosheets as well as the effective stress load transfer. This work provides a new methodology to design multifunctional nanohybrids for creating advanced materials. (paper)

  9. Fatigue Crack Growth in Bodies with Thermally Sprayed Coating

    Czech Academy of Sciences Publication Activity Database

    Kovářík, O.; Haušild, P.; Medřický, Jan; Tomek, L.; Siegl, J.; Mušálek, Radek; Curry, N.; Björklund, S.

    2016-01-01

    Roč. 25, 1-2 (2016), s. 311-320 ISSN 1059-9630. [ITSC 2015: International Thermal Spray Conference and Exposition. Long Beach, California, 11.05.2015-14.05.2015] R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Thermal barrier coating * fatigue * crack growth * digital image correlation * digital image correlation Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.488, year: 2016 http://link.springer.com/article/10.1007%2Fs11666-015-0329-9

  10. A Fibrocontractive Mechanochemical Model of Dermal Wound Closure Incorporating Realistic Growth Factor Kinetics

    KAUST Repository

    Murphy, Kelly E.

    2012-01-13

    Fibroblasts and their activated phenotype, myofibroblasts, are the primary cell types involved in the contraction associated with dermal wound healing. Recent experimental evidence indicates that the transformation from fibroblasts to myofibroblasts involves two distinct processes: The cells are stimulated to change phenotype by the combined actions of transforming growth factor β (TGFβ) and mechanical tension. This observation indicates a need for a detailed exploration of the effect of the strong interactions between the mechanical changes and growth factors in dermal wound healing. We review the experimental findings in detail and develop a model of dermal wound healing that incorporates these phenomena. Our model includes the interactions between TGFβ and collagenase, providing a more biologically realistic form for the growth factor kinetics than those included in previous mechanochemical descriptions. A comparison is made between the model predictions and experimental data on human dermal wound healing and all the essential features are well matched. © 2012 Society for Mathematical Biology.

  11. A Fibrocontractive Mechanochemical Model of Dermal Wound Closure Incorporating Realistic Growth Factor Kinetics

    KAUST Repository

    Murphy, Kelly E.; Hall, Cameron L.; Maini, Philip K.; McCue, Scott W.; McElwain, D. L. Sean

    2012-01-01

    Fibroblasts and their activated phenotype, myofibroblasts, are the primary cell types involved in the contraction associated with dermal wound healing. Recent experimental evidence indicates that the transformation from fibroblasts to myofibroblasts involves two distinct processes: The cells are stimulated to change phenotype by the combined actions of transforming growth factor β (TGFβ) and mechanical tension. This observation indicates a need for a detailed exploration of the effect of the strong interactions between the mechanical changes and growth factors in dermal wound healing. We review the experimental findings in detail and develop a model of dermal wound healing that incorporates these phenomena. Our model includes the interactions between TGFβ and collagenase, providing a more biologically realistic form for the growth factor kinetics than those included in previous mechanochemical descriptions. A comparison is made between the model predictions and experimental data on human dermal wound healing and all the essential features are well matched. © 2012 Society for Mathematical Biology.

  12. Thermal fatigue crack growth analysis in a nozzle corner

    International Nuclear Information System (INIS)

    Blauel, J.G.; Hodulak, L.

    1983-01-01

    Calculations of the crack growth under local thermal shock fatigue are performed. Estimates of crack growth are based on stress distributions obtained by a finite element analysis for thermal transients in the structure without crack. Stress intensity factors are calculated using interpolation formulae derived from known basic solutions for part-through cracks under constant and linearly varying load. The crack propagation at selected parts of the crack front is calculated stepwise by integration of the Paris law with material constants C and n interpolated from test results on compact specimens at constant temperatures. Experimental results for the model vessel test MB1 at an internal pressure of 14 N/mm 2 and a temperature of 320 0 C exposed to a repeated local spraying with cold water are presented and compared to predictions

  13. Epitaxial Growth and Cracking Mechanisms of Thermally Sprayed Ceramic Splats

    Science.gov (United States)

    Chen, Lin; Yang, Guan-jun

    2018-02-01

    In the present study, the epitaxial growth and cracking mechanisms of thermally sprayed ceramic splats were explored. We report, for the first time, the epitaxial growth of various splat/substrate combinations at low substrate temperatures (100 °C) and large lattice mismatch (- 11.26%). Our results suggest that thermal spray deposition was essentially a liquid-phase epitaxy, readily forming chemical bonding. The interface temperature was also estimated. The results convincingly demonstrated that atoms only need to diffuse and rearrange over a sufficiently short range during extremely rapid solidification. Concurrently, severe cracking occurred in the epitaxial splat/substrate systems, which indicated high tensile stress was produced during splat deposition. The origin of the tensile stress was attributed to the strong constraint of the locally heated substrate by its cold surroundings.

  14. Effects of growth conditions on thermal profiles during Czochralski silicon crystal growth

    Science.gov (United States)

    Choe, Kwang Su; Stefani, Jerry A.; Dettling, Theodore B.; Tien, John K.; Wallace, John P.

    1991-01-01

    An eddy current testing method was used to continuously monitor crystal growth process and investigate the effects of growth conditions on thermal profiles during Czochralski silicon crystal growth. The experimental concept was to monitor the intrinsic electrical conductivities of the growing crystal and deduce temperature values from them. In terms of the experiments, the effects of changes in growth parameters, which include the crystal and crucible rotation rates, crucible position, and pull rate, and hot-zone geometries were investigated. The results show that the crystal thermal profile could shift significantly as a function of crystal length if the closed-loop control fails to maintain a constant thermal condition. As a direct evidence to the effects of the melt flow on heat transfer processes, a thermal gradient minimum was observed when the crystal/crucible rotation combination was 20/-10 rpm cw. The thermal gradients in the crystal near the growth interface were reduced most by decreasing the pull rate or by reducing the radiant heat loss to the environment; a nearly constant axial thermal gradient was achieved when either the pull rate was decreased by half, the height of the exposed crucible wall was doubled, or a radiation shield was placed around the crystal. Under these conditions, the average axial thermal gradient along the surface of the crystal was about 4-5°C/mm. When compared to theoretical results found in literature, the axial profiles correlated well with the results of the models which included radiant interactions. However, the radial gradients estimated from three-frequency data were much higher than what were predicted by known theoretical models. This discrepancy seems to indicate that optical phenomenon within the crystal is significant and should be included in theoretical modeling.

  15. TGO growth and crack propagation in a thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.R.; Archer, R.; Huang, X. [National Research Council of Canada, Ottawa, ON (Canada); Marple, B.R. [National Research Council of Canada, Boucherville, PQ (Canada)

    2008-07-01

    In thermal barrier coating (TBC) systems, a continuous alumina layer developed at the ceramic topcoat/bond coat interface helps to protect the metallic bond coat from further oxidation and improve the durability of the TBC system under service conditions. However, other oxides such as spinel and nickel oxide, formed in the oxidizing environment, are believed to be detrimental to TBC durability during service at high temperatures. It was shown that in an air-plasma-sprayed (APS) TBC system, post-spraying heat treatments in low-pressure oxygen environments could suppress the formation of the detrimental oxides by promoting the formation of an alumina layer at the ceramic topcoat/bond coat interface, leading to an improved TBC durability. This work presents the influence of post-spraying heat treatments in low-pressure oxygen environments on the oxidation behaviour and durability of a thermally sprayed TBC system with high-velocity oxy-fuel (HVOF)-produced Co-32Ni-21Cr-8Al-0.5Y (wt.%) bond coat. Oxidation behaviour of the TBCs is evaluated by examining their microstructural evolution, growth kinetics of the thermally grown oxide (TGO) layers, as well as crack propagation during low frequency thermal cycling at 1050 C. The relationship between the TGO growth and crack propagation will also be discussed. (orig.)

  16. Role of high-temperature creep stress in thermally grown oxide growth of thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K.; Nakao, Y.; Seo, D.; Miura, H.; Shoji, T. [Tohoku Univ., Sendai (Japan)

    2008-07-01

    Thermally grown oxide (TGO) grows at the top / bond coating interface of the thermal barrier coating (TBC) in service. It is supposed that the failures of the TBC occur due to thermal stress and the decrease of adhesive strength caused by the TGO growth. Recently, large local stress has been found to change both the diffusion constant of oxygen through an existing oxide and the rate of chemical reaction at the oxide / oxidized material interface. Since high thermal stress occurs in the TBC, the volume expansion of the newly grown oxide, and centrifugal force, the growth rate of the TGO may change depending on not only temperature but also the stress. The aim of this study is to make clear the influence of stress on the growth rate of the TGO quantitatively. As a result, the thickness of the TGO clearly increases with increase of the amplitude of the applied stress and temperature. The increase rate of the TGO thickness is approximately 23% when the applied stress is increased from 0 to 205 MPa at 900 C, and approximately 29% when the stress is increased from 0 to 150 MPa at 950 C. (orig.)

  17. Growth of large aluminum nitride single crystals with thermal-gradient control

    Science.gov (United States)

    Bondokov, Robert T; Rao, Shailaja P; Gibb, Shawn Robert; Schowalter, Leo J

    2015-05-12

    In various embodiments, non-zero thermal gradients are formed within a growth chamber both substantially parallel and substantially perpendicular to the growth direction during formation of semiconductor crystals, where the ratio of the two thermal gradients (parallel to perpendicular) is less than 10, by, e.g., arrangement of thermal shields outside of the growth chamber.

  18. A new look at the decomposition of agricultural productivity growth incorporating weather effects.

    Science.gov (United States)

    Njuki, Eric; Bravo-Ureta, Boris E; O'Donnell, Christopher J

    2018-01-01

    Random fluctuations in temperature and precipitation have substantial impacts on agricultural output. However, the contribution of these changing configurations in weather to total factor productivity (TFP) growth has not been addressed explicitly in econometric analyses. Thus, the key objective of this study is to quantify and to investigate the role of changing weather patterns in explaining yearly fluctuations in TFP. For this purpose, we define TFP to be a measure of total output divided by a measure of total input. We estimate a stochastic production frontier model using U.S. state-level agricultural data incorporating growing season temperature and precipitation, and intra-annual standard deviations of temperature and precipitation for the period 1960-2004. We use the estimated parameters of the model to compute a TFP index that has good axiomatic properties. We then decompose TFP growth in each state into weather effects, technological progress, technical efficiency, and scale-mix efficiency changes. This approach improves our understanding of the role of different components of TFP in agricultural productivity growth. We find that annual TFP growth averaged 1.56% between 1960 and 2004. Moreover, we observe substantial heterogeneity in weather effects across states and over time.

  19. Thermal Behavior and Free-Radical-Scavenging Activity of Phytic Acid Alone and Incorporated in Cosmetic Emulsions

    Directory of Open Access Journals (Sweden)

    André Luis Máximo Daneluti

    2015-07-01

    Full Text Available Phytic acid is a natural compound widely used as depigmenting agent in cosmetic emulsions. Few studies are available in the literature covering the stability and the antioxidating property of this substance, used alone or into emulsions. Therefore, the purpose of this work was to investigate the thermal behavior and antioxidant properties of phytic acid alone and into cosmetic emulsions. The thermal behavior of this substance was evaluated by thermogravimetry (TG/derivative thermogravimetry (DTG and differential scanning calorimetry (DSC and the free-radical-scavenging activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH. TG/DTG and DSC curves allowed evaluation of the thermal behavior of phytic acid. These results showed that the substance presented four stages of mass loss. Thermal decomposition of the material initiated at 150 °C. Thermal behavior of the cosmetic emulsions detected that the addition of phytic acid decreased the thermal stability of the system. DPPH free-radical-scavenging activity showed that phytic acid incorporated into emulsion had no antioxidant capacity compared to BHT. In summary, we concluded that the thermoanalytical techniques (TG and DSC were efficient and reliable in the characterization of phytic acid alone and incorporated into cosmetic emulsions.

  20. Growth and development rates have different thermal responses.

    Science.gov (United States)

    Forster, Jack; Hirst, Andrew G; Woodward, Guy

    2011-11-01

    Growth and development rates are fundamental to all living organisms. In a warming world, it is important to determine how these rates will respond to increasing temperatures. It is often assumed that the thermal responses of physiological rates are coupled to metabolic rate and thus have the same temperature dependence. However, the existence of the temperature-size rule suggests that intraspecific growth and development are decoupled. Decoupling of these rates would have important consequences for individual species and ecosystems, yet this has not been tested systematically across a range of species. We conducted an analysis on growth and development rate data compiled from the literature for a well-studied group, marine pelagic copepods, and use an information-theoretic approach to test which equations best describe these rates. Growth and development rates were best characterized by models with significantly different parameters: development has stronger temperature dependence than does growth across all life stages. As such, it is incorrect to assume that these rates have the same temperature dependence. We used the best-fit models for these rates to predict changes in organism mass in response to temperature. These predictions follow a concave relationship, which complicates attempts to model the impacts of increasing global temperatures on species body size.

  1. Transient Thermal State of an Active Braille Matrix with Incorporated Thermal Actuators by Means of Finite Element Method

    Science.gov (United States)

    Alutei, Alexandra-Maria; Szelitzky, Emoke; Mandru, Dan

    2013-01-01

    In this article the authors present the transient thermal analysis for a developed thermal linear actuator based on wax paraffin used to drive the cells of a Braille device. A numerical investigation of transient heat transfer phenomenon during paraffin melting and solidification in an encapsulated recipient has been carried out using the ANSYS…

  2. Physical, thermal and mechanical study of MPC formulated with LG-MgO incorporating Phase Change Materials as admixture

    Science.gov (United States)

    Maldonado-Alameda, A.; Lacasta, A. M.; Giro-Paloma, J.; Chimenos, J. M.; Formosa, J.

    2017-10-01

    The high environmental impact generated by using of Ordinary Portland Cement (OPC) has lead to the search for alternative materials in the field of civil and building engineering. In addition, there is a tendency to develop cements from industrial by-products, thus reducing pollution and emissions generated by their production. One of the best positioned cements to compete with OPC is Magnesium Phosphate Cement (MPC). The present work studies different dosages of MPC mortars formulated with low-grade MgO by-product (sustainable MPC) incorporating Microencapsulated Phase Change Materials (MPCM) and air entraining additive (AEA) as admixtures (Thermal Sustainable MPC) to improve the thermal behaviour of the material. The aim is developed a new eco-friendly material that leads to reducing energy consumption in buildings. The study is focused on the physical, thermal, and mechanical characterization of TS-MPC mortars to assess their potential use as a thermal prefabricated panel. The results allow to relate the amount of the MPCM and the additive percentage with the thermal and mechanical properties of the TS- MPC. Furthermore, is important to highlight the influence of MPCM not only in the thermal behaviour but also on the increase of the porosity. The experimental results show that the addition of both additives contributes substantially to the improvement of the thermal behaviour of the mortars and converts them on a suitable material to reduce thermal oscillations in buildings.

  3. Construction of Zn-incorporated multilayer films to promote osteoblasts growth and reduce bacterial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng, E-mail: liupeng79@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Zhao, Yongchun; Yuan, Zhang [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Ding, Hongyan [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu Province 223003 (China); Hu, Yan; Yang, Weihu [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Cai, Kaiyong, E-mail: kaiyong_cai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2017-06-01

    To improve the biological performance of titanium substrates, a bioactive multilayered structure of chitosan/gelatin pair, containing zinc ions, was constructed via a layer-by-layer self-assembly technique. The successful preparation of zinc ions incorporated multilayer films was demonstrated by scanning electron microscopy, X-ray photoelectron spectroscopy, and contact angle measurements, respectively. The biological behaviors of osteoblasts adhered to modified Ti substrates were investigated in vitro via cytoskeleton observation, cell viability measurement, and alkaline phosphatase activity assay. The cytocompatibility evaluation verified that the present system was capable of promoting the growth of osteoblasts. In addition, Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria were used to evaluate antibacterial property of modified Ti substrates. Bacterial adhesion and viability assay confirmed that Zn-loaded multilayer films were able to inhibit the adhesion and growth of bacteria. The approach presented here affords an alternative to reduce bacterial infection and promote osteoblast growth for titanium-based implants. - Highlights: • Polyelectrolyte multilayer films containing Zn ions were fabricated on Ti substrate. • Modified Ti substrate stimulated the biological responses of osteoblast. • Antibacterial property of Ti substrate was significantly improved. • The resulting material thus has potential application in orthopedic field.

  4. Effect of the incorporation of modified purified clay with different content surfactants in the thermal and mechanical PET nanocomposites

    International Nuclear Information System (INIS)

    Leite, Itamara F.; Soares, Anna P.S.; Silva, Suedina M.L.; Malta, Oscar M.L.

    2011-01-01

    An organically modified bentonite purified with different amounts of alkyl ammonium salts and alkyl phosphonium was used as filler in the preparation of nanocomposites of poly(ethylene terephthalate) (PET). PET/organophilic bentonite masterbatch were prepared in a Haake torque rheometer at 260° C, 60 rpm for 10min. Then, the master batch obtained were mixed with PET in quantities necessary to obtain the nominal content of 1 wt% of bentonite, a twin screw extruder counter-rotating to 275°C in all heating zones and 60 rpm. Subsequently, the mixtures were injected (Arburg All Rounder), in the form of tensile specimens (ASTM D638). The effect of incorporating this type of filler on thermal and mechanical properties of nanocomposites of PET will be investigated. The incorporation of different types of organoclay to PET resulted in intercalated nanocomposites and partially exfoliated. The intercalated morphology showed higher thermal stability. (author)

  5. Preparation and features of polycaprolactone vascular grafts with the incorporated vascular endothelial growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Sevostyanova, V. V., E-mail: sevostyanova.victoria@gmail.com; Khodyrevskaya, Y. I.; Glushkova, T. V.; Antonova, L. V.; Kudryavtseva, Y. A.; Barbarash, O. L.; Barbarash, L. S. [Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo (Russian Federation)

    2015-10-27

    The development of tissue-engineered small-diameter vascular grafts is an urgent issue in cardiovascular surgery. In this study, we assessed how the incorporation of the vascular endothelial growth factor (VEGF) affects morphological and mechanical properties of polycaprolactone (PCL) vascular grafts along with its release kinetics. Vascular grafts were prepared using two-phase electrospinning. In pursuing our aims, we performed scanning electron microscopy, mechanical testing, and enzyme-linked immunosorbent assay. Our results demonstrated the preservation of a highly porous structure and improvement of PCL/VEGF scaffold mechanical properties as compared to PCL grafts. A prolonged VEGF release testifies the use of this construct as a scaffold for tissue-engineered vascular grafts.

  6. Correlation between substrate bias, growth process and structural properties of phosphorus incorporated tetrahedral amorphous carbon films

    International Nuclear Information System (INIS)

    Liu Aiping; Zhu Jiaqi; Han Jiecai; Wu Huaping; Jia Zechun

    2007-01-01

    We investigate the growth process and structural properties of phosphorus incorporated tetrahedral amorphous carbon (ta-C:P) films which are deposited at different substrate biases by filtered cathodic vacuum arc technique with PH 3 as the dopant source. The films are characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy, Raman spectroscopy, residual stress measurement, UV/VIS/NIR absorption spectroscopy and temperature-dependent conductivity measurement. The atomic fraction of phosphorus in the films as a function of substrate bias is obtained by XPS analysis. The optimum bias for phosphorus incorporation is about -80 V. Raman spectra show that the amorphous structures of all samples with atomic-scaled smooth surface are not remarkably changed when PH 3 is implanted, but some small graphitic crystallites are formed. Moreover, phosphorus impurities and higher-energetic impinging ions are favorable for the clustering of sp 2 sites dispersed in sp 3 skeleton and increase the level of structural ordering for ta-C:P films, which further releases the compressive stress and enhances the conductivity of the films. Our analysis establishes an interrelationship between microstructure, stress state, electrical properties, and substrate bias, which helps to understand the deposition mechanism of ta-C:P films

  7. Growth Inhibition of Sporomusa ovata by Incorporation of Benzimidazole Bases into Cobamides

    Science.gov (United States)

    Mok, Kenny C.

    2013-01-01

    Phenolyl cobamides are unique members of a class of cobalt-containing cofactors that includes vitamin B12 (cobalamin). Cobamide cofactors facilitate diverse reactions in prokaryotes and eukaryotes. Phenolyl cobamides are structurally and chemically distinct from the more commonly used benzimidazolyl cobamides such as cobalamin, as the lower axial ligand is a phenolic group rather than a benzimidazole. The functional significance of this difference is not well understood. Here we show that in the bacterium Sporomusa ovata, the only organism known to synthesize phenolyl cobamides, several cobamide-dependent acetogenic metabolisms have a requirement or preference for phenolyl cobamides. The addition of benzimidazoles to S. ovata cultures results in a decrease in growth rate when grown on methanol, 3,4-dimethoxybenzoate, H2 plus CO2, or betaine. Suppression of native p-cresolyl cobamide synthesis and production of benzimidazolyl cobamides occur upon the addition of benzimidazoles, indicating that benzimidazolyl cobamides are not functionally equivalent to the phenolyl cobamide cofactors produced by S. ovata. We further show that S. ovata is capable of incorporating other phenolic compounds into cobamides that function in methanol metabolism. These results demonstrate that S. ovata can incorporate a wide range of compounds as cobamide lower ligands, despite its preference for phenolyl cobamides in the metabolism of certain energy substrates. To our knowledge, S. ovata is unique among cobamide-dependent organisms in its preferential utilization of phenolyl cobamides. PMID:23417488

  8. Boron, arsenic and phosphorus dopant incorporation during low temperature low pressure silicon epitaxial growth

    International Nuclear Information System (INIS)

    Borland, J.O.; Thompson, T.; Tagle, V.; Benzing, W.

    1987-01-01

    Submicron silicon epitaxial structures with very abrupt epi/substrate transition widths have been realized through the use of low temperature silicon epitaxial growth techniques. At these low temperature and low pressure epitaxial growth conditions there is minimal, if any, dopant diffusion from the substrate into the epilayer during deposition. The reincorporation of autodoped dopant as well as the incorporation of intentional dopant can be a trade-off at low temperatures and low pressures. For advanced CMOS and Bi-CMOS technologies, five to six orders of magnitude change in concentration levels are desirable. In this investigation, all of the epitaxial depositions were carried out in an AMC-7810 epi-reactor with standard jets for a turbulent mixing system, and using a modified center inject configuration to achieve a single pass laminar flow system. To simulate the reincorporation of various autodoped dopant, the authors ran a controlled dopant flow of 100 sccm for each of the three dopants (boron, phosphorus and arsenic) to achieve the controlled background dopant level in the reactor gas stream

  9. Joint Toxicity of Cadmium and Ionizing Radiation on Zooplankton Carbon Incorporation, Growth and Mobility.

    Science.gov (United States)

    Nascimento, Francisco J A; Svendsen, Claus; Bradshaw, Clare

    2016-02-02

    The risk of exposure to radioactive elements is seldom assessed considering mixture toxicity, potentially over- or underestimating biological and ecological effects on ecosystems. This study investigated how three end points, carbon transfer between phytoplankton and Daphnia magna, D. magna mobility and growth, responded to exposure to γ-radiation in combination with the heavy metal cadmium (Cd), using the MIXTOX approach. Observed effects were compared with mixture effects predicted by concentration addition (CA) and independent action (IA) models and with deviations for synergistic/antagonistic (S/A), dose-level (DL), and dose-ratio (DR) dependency interactions. Several patterns of response were observed depending on the end point tested. DL-dependent deviation from the IA model was observed for carbon incorporation with antagonism switching to synergism at higher doses, while the CA model indicated synergism, mainly driven by effects at high doses of γ-radiation. CA detected antagonism regarding acute immobilization, while IA predicted DR-dependency. Both CA and IA also identified antagonism for daphnid growth. In general, effects of combinations of γ-radiation and Cd seem to be antagonistic at lower doses, but synergistic at the higher range of the doses tested. Our results highlight the importance of investigating the effects of exposure to γ-radiation in a multistressor context.

  10. Growth, spectral and thermal studies of ibuprofen crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ramukutty, S.; Ramachandran, E. [Department of Physics, Thiruvalluvar College, Papanasam (India)

    2012-01-15

    RS -Ibuprofen was crystallized for the first time in silica gel under suitable pH conditions by reduction of solubility method. The grown crystals were characterized by single crystal X-ray diffraction and density measurement. The functional groups present in the crystal were identified using Fourier transform infrared spectroscopy. Optical bandgap energy of ibuprofen was estimated as 3.19(3) eV from UV-Vis spectrum. Thermogravimetric analysis revealed that ibuprofen is thermally stable upto 102.9 C and the initial loss of mass was due to evaporation only. Morphological study showed that the growth is prominent along b-axis and the prominent face is {l_brace}100{r_brace}. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Growth performance, digestive enzyme activity and immune response of Macrobrachium rosenbergii fed with probiotic Clostridium butyricum incorporated diets

    Directory of Open Access Journals (Sweden)

    Mohammad Saifuddin Sumon

    2018-01-01

    Full Text Available To determine antagonistic effect of Clostridium butyricum against Vibrio harveyi and its probiotic effect on growth performance, digestibility and immune response of fresh water prawn, Macrobrachium rosenbergii juveniles were examined following feeding with C. butyricum incorporated feed for 60 days. Significant reduction of V. harveyi growth was found at 8 hr and onward in in-vitro and at 10 days and onward in in-vivo challenge test. After rearing prawn with the bacteria in feed treatment for 60 days, body weight and growth rate of prawns was significantly higher (p  0.05 compared to control group. This study revealed that probiotic, C. butyricum incorporated diets were found to be beneficial for M. rosenbergii culture in terms of hindering the growth of pathogenic bacteria and increasing the growth, protease and amylase activities of prawn. Results from this study will be helpful to improve fresh water prawn farming.

  12. Enhanced intestinal anastomotic healing with gelatin hydrogel incorporating basic fibroblast growth factor.

    Science.gov (United States)

    Hirai, Kenjiro; Tabata, Yasuhiko; Hasegawa, Suguru; Sakai, Yoshiharu

    2016-10-01

    Anastomotic leakage is a common complication of intestinal surgery. In an attempt to resolve this issue, a promising approach is enhancement of anastomotic wound healing. A method for controlled release of basic fibroblast growth factor (bFGF) using a gelatin hydrogel was developed with the objective of investigating the effects of this technology on intestinal anastomotic healing. The small intestine of Wistar rats was cut, end-to-end anastomosis was performed and rats were divided into three groups: bFGF group (anastomosis wrapped with a hydrogel sheet incorporating bFGF), PBS group (wrapped with a sheet incorporating phosphate-buffered saline solution) and NT group (no additional treatment). Degradation profiles of gelatin hydrogels in vivo and histological examinations were performed using gelatin hydrogels with various water contents and bFGF concentrations to define the optimal bFGF dose and hydrogel biodegradability. The anastomotic wound healing process was evaluated by histological examinations, adhesion-related score and bursting pressure. The optimal water content of the hydrogel and bFGF dose was determined as 96% and 30 µg per sheet, respectively. Application of bFGF significantly enhanced neovascularization, fibroblast infiltration and collagen production around the anastomotic site when compared with the other groups. Bursting pressure was significantly increased in the bFGF group. No significant difference was observed in the adhesion-related score among the groups and no anastomotic obstruction and leakage were observed. Therefore controlled release of bFGF enhanced healing of an intestinal anastomosis during the early postoperative period and is a promising method to suppress anastomotic leakage. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  13. The effects of functional magnetic nanotubes with incorporated nerve growth factor in neuronal differentiation of PC12 cells

    International Nuclear Information System (INIS)

    Xie Jining; Chen Linfeng; Varadan, Vijay K; Yancey, Justin; Srivatsan, Malathi

    2008-01-01

    In this in vitro study the efficiency of magnetic nanotubes to bind with nerve growth factor (NGF) and the ability of NGF-incorporated magnetic nanotubes to release the bound NGF are investigated using rat pheochromocytoma cells (PC12 cells). It is found that functional magnetic nanotubes with NGF incorporation enabled the differentiation of PC12 cells into neurons exhibiting growth cones and neurite outgrowth. Microscope observations show that filopodia extending from neuron growth cones were in close proximity to the NGF-incorporated magnetic nanotubes, at times appearing to extend towards or into them. These results show that magnetic nanotubes can be used as a delivery vehicle for NGF and thus may be exploited in attempts to treat neurodegenerative disorders such as Parkinson's disease with neurotrophins. Further neurite outgrowth can be controlled by manipulating magnetic nanotubes with external magnetic fields, thus helping in directed regeneration

  14. Thermal preference of juvenile Dover sole (Solea solea in relation to thermal acclimation and optimal growth temperature.

    Directory of Open Access Journals (Sweden)

    Edward Schram

    Full Text Available Dover sole (Solea solea is an obligate ectotherm with a natural thermal habitat ranging from approximately 5 to 27°C. Thermal optima for growth lie in the range of 20 to 25°C. More precise information on thermal optima for growth is needed for cost-effective Dover sole aquaculture. The main objective of this study was to determine the optimal growth temperature of juvenile Dover sole (Solea solea and in addition to test the hypothesis that the final preferendum equals the optimal growth temperature. Temperature preference was measured in a circular preference chamber for Dover sole acclimated to 18, 22 and 28°C. Optimal growth temperature was measured by rearing Dover sole at 19, 22, 25 and 28°C. The optimal growth temperature resulting from this growth experiment was 22.7°C for Dover sole with a size between 30 to 50 g. The temperature preferred by juvenile Dover sole increases with acclimation temperature and exceeds the optimal temperature for growth. A final preferendum could not be detected. Although a confounding effect of behavioural fever on temperature preference could not be entirely excluded, thermal preference and thermal optima for physiological processes seem to be unrelated in Dover sole.

  15. Effects of dietary incorporation of potato protein concentrate and supplementation of methionine on growth and feed utilization of rainbow trout

    DEFF Research Database (Denmark)

    Xie, S.; Jokumsen, Alfred

    1998-01-01

    and supplementation of methionine in the diet of rainbow trout. When the proportion of PPC exceeded 56 g kg-1 the growth of fish decreased while both growth and feed utilization decreased when the dietary PPC was 111 g kg-1. Protein productive value and condition factor of the fish decreased and mortality increased......Four diets (1, 2, 3 and 4) were formulated to contain different potato protein concentrate (PPC) levels (0, 22, 56, and 111 g kg-1). Diet 5 contained 56 g kg-1 PPC and 17 g kg-1 methionine. A growth trial was conducted to investigate the effect on growth and feed utilization of incorporation of PPC...

  16. Seat headrest-incorporated personalized ventilation: Thermal comfort and inhaled air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Ivanova, T.; Stefanova, G.

    2012-01-01

    inhaled by the manikin was measured and used to assess the clean air supply efficiency of the SHPV. The response of 35 subjects was collected to examine thermal comfort with the SHPV. The subjects participated in 3 experiments at personalized air temperature and room air temperature of 22/20 °C, 23/23 °C......The performance of personalized ventilation with seat headrest-mounted air supply terminal devices (ATD), named seat headrest personalized ventilation (SHPV), was studied. Physical measurements using a breathing thermal manikin were taken to identify its ability to provide clean air to inhalation...... depending on design, shape, size and positioning of the ATD, flow rate and temperature of personalized air, room temperature, clothing thermal insulation of the manikin, etc. Tracer gas was mixed with the room air. The air supplied by the SHPV was free of tracer gas. Tracer gas concentration in the air...

  17. Dosimeter incorporating radiophotoluminescent detectors for thermal neutrons and γ-rays in n-γ fields

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Y.O. [Groupe RaMsEs, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/IN2P3, 23 rue du Loess, BP 28, F-67037 Strasbourg Cedex 2 (France); Nachab, A., E-mail: a.nachab@uca.ma [Département de physique, Faculté Poly-disciplinaire, Université Cadi Ayyad, Route Sidi Bouzid BP 4162, 46000 Safi (Morocco); Roy, C.; Nourreddine, A. [Groupe RaMsEs, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/IN2P3, 23 rue du Loess, BP 28, F-67037 Strasbourg Cedex 2 (France)

    2016-10-15

    We have developed a dosimeter associating different neutron converters with two radiophotoluminescent detectors to measure thermal neutrons and γ-rays in a mixed n-γ field. Tests show that the H{sup ∗}(10) and H{sub p}(10) responses to thermal neutrons and γ-rays are linear with detection limits lower than 0.4 mSv. The angular dependence of the dosimeter response is satisfactory and the influence of a phantom on the results is examined.

  18. Evolution of Ca-Al-rich bodies in the earliest solar system: growth by incorporation

    International Nuclear Information System (INIS)

    Wark, D.A.; Lovering, J.F.

    1982-01-01

    Many Type B Ca-Al-rich inclusions (CAI's) in the Allende carbonaceous chondrite contain two types of spinel structures, 'framboids' and 'palisades'. Framboids are clumps of spinel grains generally < 100 μm across. Experimental studies show that they probably formed in situ by solid state growth processes. Palisades are texturally different and consist of ovoid shells of spinel grains that appear in thin sections as long arcs or rings with diameters ranging from approx. 50 μm up to 2 cm. No in situ formation process seems able to explain the variety of sizes and morphologies of palisades nor the different compositions and textures of the enclosed and enclosing materials. We therefore suggest that palisades are the spinel rims of smaller, earlier-formed Type B CAI's that were incorporated into other CAI material in various ways - by capture into liquid drops, by solid condensate overgrowths and by the partial melting or welding of agglomerates containing the bodies. As some Type B bodies have been found inside Type A host material it appears that in at least some regions, and probably generally, Type A CAI's formed after Type B. Proposals are made concerning the origin of the CAI material. (author)

  19. Numerical Simulation Procedure for Modeling TGO Crack Propagation and TGO Growth in Thermal Barrier Coatings upon Thermal-Mechanical Cycling

    Directory of Open Access Journals (Sweden)

    Ding Jun

    2014-01-01

    Full Text Available This paper reports a numerical simulation procedure to model crack propagation in TGO layer and TGO growth near a surface groove in metal substrate upon multiple thermal-mechanical cycles. The material property change method is employed to model TGO formation cycle by cycle, and the creep properties for constituent materials are also incorporated. Two columns of repeated nodes are placed along the interface of the potential crack, and these nodes are bonded together as one node at a geometrical location. In terms of critical crack opening displacement criterion, onset of crack propagation in TGO layer has been determined by finite element analyses in comparison with that without predefined crack. Then, according to the results from the previous analyses, the input values for the critical failure parameters for the subsequent analyses can be decided. The robust capabilities of restart analysis in ABAQUS help to implement the overall simulation for TGO crack propagation. The comparison of the TGO final deformation profile between numerical and experimental observation shows a good agreement indicating the correctness and effectiveness of the present procedure, which can guide the prediction of the failure in TGO for the future design and optimization for TBC system.

  20. Growth and Properties of Cl- Incorporated ZnO Nanofilms Grown by Ultrasonic Spray-Assisted Chemical Vapor Deposition.

    Science.gov (United States)

    Chen, Tingfang; Wang, Aiji; Kong, Lingrui; Li, Yongliang; Wang, Yinshu

    2016-04-01

    Pure and Cl- incorporated ZnO nanofilms were grown by the ultrasonic spray-assisted chemical vapor deposition (CVD) method. The properties of the nanofilms were investigated. The effects of growth temperature and Cl- concentration on the crystal structure, morphology, and optical properties of the nanofilms were studied. Temperature plays an important role in the growth mode and morphology of the pure nanofilms. Preferential growth along the c-axis occurs only at modulating temperature. Lower temperature suppresses the preferential growth, and higher temperature suppresses the growth of the nanofilms. The morphologies of the nanofilms change from lamellar and spherical structures into hexagonal platelets, then into separated nanoparticles with an increase in the temperature. Incorporating Cl- results in the lattice contracting gradually along with c-axis. Grains composing the nanofilms refine, and the optical gap broadens with increasing of Cl- concentration in growth precursor. Incorporating Cl- could reduce oxygen vacancies and passivate the non-irradiated centers, thus enhancing the UV emission and suppressing the visible emission of ZnO nanofilms.

  1. Incorporating Water Boiling in the Numerical Modelling of Thermal Remediation by Electrical Resistance Heating

    Science.gov (United States)

    Molnar, I. L.; Krol, M.; Mumford, K. G.

    2017-12-01

    Developing numerical models for subsurface thermal remediation techniques - such as Electrical Resistive Heating (ERH) - that include multiphase processes such as in-situ water boiling, gas production and recovery has remained a significant challenge. These subsurface gas generation and recovery processes are driven by physical phenomena such as discrete and unstable gas (bubble) flow as well as water-gas phase mass transfer rates during bubble flow. Traditional approaches to multiphase flow modeling soil remain unable to accurately describe these phenomena. However, it has been demonstrated that Macroscopic Invasion Percolation (MIP) can successfully simulate discrete and unstable gas transport1. This has lead to the development of a coupled Electro Thermal-MIP Model2 (ET-MIP) capable of simulating multiple key processes in the thermal remediation and gas recovery process including: electrical heating of soil and groundwater, water flow, geological heterogeneity, heating-induced buoyant flow, water boiling, gas bubble generation and mobilization, contaminant mass transport and removal, and additional mechanisms such as bubble collapse in cooler regions. This study presents the first rigorous validation of a coupled ET-MIP model against two-dimensional water boiling and water/NAPL co-boiling experiments3. Once validated, the model was used to explore the impact of water and co-boiling events and subsequent gas generation and mobilization on ERH's ability to 1) generate, expand and mobilize gas at boiling and NAPL co-boiling temperatures, 2) efficiently strip contaminants from soil during both boiling and co-boiling. In addition, a quantification of the energy losses arising from steam generation during subsurface water boiling was examined with respect to its impact on the efficacy of thermal remediation. While this study specifically targets ERH, the study's focus on examining the fundamental mechanisms driving thermal remediation (e.g., water boiling) renders

  2. Effect of the growth temperature and the AlN mole fraction on In incorporation and properties of quaternary III-nitride layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Fernandez-Garrido, S.; Pereiro, J.; Munoz, E.; Calleja, E.; Redondo-Cubero, A.; Gago, R.; Bertram, F.; Christen, J.; Luna, E.; Trampert, A.

    2008-01-01

    Indium incorporation into wurtzite (0001)-oriented In x Al y Ga 1-x-y N layers grown by plasma-assisted molecular beam epitaxy was studied as a function of the growth temperature (565-635 deg. C) and the AlN mole fraction (0.01< y<0.27). The layer stoichiometry was determined by Rutherford backscattering spectrometry (RBS). RBS shows that indium incorporation decreased continuously with increasing growth temperature due to thermally enhanced dissociation of In-N bonds and for increasing AlN mole fractions. High resolution x-ray diffraction and transmission electron microscopy (TEM) measurements did not show evidence of phase separation. The mosaicity of the quaternary layers was found to be mainly determined by the growth temperature and independent on alloy composition within the range studied. However, depending on the AlN mole fraction, nanometer-sized composition fluctuations were detected by TEM. Photoluminescence spectra showed a single broad emission at room temperature, with energy and bandwidth S- and W-shaped temperature dependences typical of exciton localization by alloy inhomogeneities. Cathodoluminescence measurements demonstrated that the alloy inhomogeneities, responsible of exciton localization, occur on a lateral length scale below 150 nm, which is corroborated by TEM

  3. Microstructural evolution and growth kinetics of thermally grown oxides in plasma sprayed thermal barrier coatings

    Directory of Open Access Journals (Sweden)

    Xiaoju Liu

    2016-02-01

    Full Text Available The formation of thermally grown oxide (TGO during high temperature is a key factor to the degradation of thermal barrier coatings (TBCs applied on hot section components. In the present study both the CoNiCrAlY bond coat and ZrO2-8 wt.% Y2O3 (8YSZ ceramic coat of TBCs were prepared by air plasma spraying (APS. The composition and microstructure of TGO in TBCs were investigated using scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS and X-ray diffraction (XRD analysis. The growth rate of TGO for TBC and pure BC were gained after isothermal oxidation at 1100 °C for various times. The results showed that as-sprayed bond coat consisted of β and γ/γ′phases, β phase reducesd as the oxidation time increased. The TGO comprised α-Al2O3 formed in the first 2 h. CoO, NiO, Cr2O3 and spinel oxides appeared after 20 h of oxidation. Contents of CoO and NiO reduced while that of Cr2O3 and spinel oxides increased in the later oxidation stage. The TGO eventually consisted of a sub-Al2O3 layer with columnar microstructure and the upper porous CS clusters. The TGO growth kinetics for two kinds of samples followed parabolic laws, with oxidation rate constant of 0.344 μm/h0.5 for TBCs and 0.354 μm/h0.5 for pure BCs.

  4. Oxide growth and damage evolution in thermal barrier coatings

    NARCIS (Netherlands)

    Hille, T.S.; Turteltaub, S.R.; Suiker, A.S.J.

    2011-01-01

    Cracking in thermal barrier coatings (TBC) is triggered by the development of a thermally-grown oxide (TGO) layer that develops during thermal cycling from the oxidation of aluminum present in the bond coat (BC). In the present communication a numerical model is presented that describes the

  5. Development of an integrated thermal-hydraulics capability incorporating RELAP5 and PANTHER neutronics code

    Energy Technology Data Exchange (ETDEWEB)

    Page, R.; Jones, J.R.

    1997-07-01

    Ensuring that safety analysis needs are met in the future is likely to lead to the development of new codes and the further development of existing codes. It is therefore advantageous to define standards for data interfaces and to develop software interfacing techniques which can readily accommodate changes when they are made. Defining interface standards is beneficial but is necessarily restricted in application if future requirements are not known in detail. Code interfacing methods are of particular relevance with the move towards automatic grid frequency response operation where the integration of plant dynamic, core follow and fault study calculation tools is considered advantageous. This paper describes the background and features of a new code TALINK (Transient Analysis code LINKage program) used to provide a flexible interface to link the RELAP5 thermal hydraulics code with the PANTHER neutron kinetics and the SIBDYM whole plant dynamic modelling codes used by Nuclear Electric. The complete package enables the codes to be executed in parallel and provides an integrated whole plant thermal-hydraulics and neutron kinetics model. In addition the paper discusses the capabilities and pedigree of the component codes used to form the integrated transient analysis package and the details of the calculation of a postulated Sizewell `B` Loss of offsite power fault transient.

  6. Development of an integrated thermal-hydraulics capability incorporating RELAP5 and PANTHER neutronics code

    International Nuclear Information System (INIS)

    Page, R.; Jones, J.R.

    1997-01-01

    Ensuring that safety analysis needs are met in the future is likely to lead to the development of new codes and the further development of existing codes. It is therefore advantageous to define standards for data interfaces and to develop software interfacing techniques which can readily accommodate changes when they are made. Defining interface standards is beneficial but is necessarily restricted in application if future requirements are not known in detail. Code interfacing methods are of particular relevance with the move towards automatic grid frequency response operation where the integration of plant dynamic, core follow and fault study calculation tools is considered advantageous. This paper describes the background and features of a new code TALINK (Transient Analysis code LINKage program) used to provide a flexible interface to link the RELAP5 thermal hydraulics code with the PANTHER neutron kinetics and the SIBDYM whole plant dynamic modelling codes used by Nuclear Electric. The complete package enables the codes to be executed in parallel and provides an integrated whole plant thermal-hydraulics and neutron kinetics model. In addition the paper discusses the capabilities and pedigree of the component codes used to form the integrated transient analysis package and the details of the calculation of a postulated Sizewell 'B' Loss of offsite power fault transient

  7. Thermal and electrothermal sensitivity of polyglutamic acid with incorporated carbocyanine dyes in Langmuir-Blodgett films

    Energy Technology Data Exchange (ETDEWEB)

    Popova, G. [Mendeleyev University of Chemical Technology of Russia, Miusskaya sq., 9, Moscow 125047 (Russian Federation)], E-mail: galina@muctr.edu.ru; Spitsyn, A; Vantsyan, M [Mendeleyev University of Chemical Technology of Russia, Miusskaya sq., 9, Moscow 125047 (Russian Federation); Matveeva, N [Lukin Institute Phys. Problems, Zelenograd (Russian Federation); Yudin, S; Palto, S [Crystallography Institute Rus., Leninsky prosp., 57, 117336 Moscow (Russian Federation)

    2008-03-31

    Light-and electrosensitive carbocyanine dyes were incorporated into polyglutamic acid via covalent and non-covalent bonding. The reversible colour change on heating the Langmuir-Blodgett films of polyaminoacid has been studied by absorption spectroscopy and electroconductivity techniques. Characteristic shifts of the absorption spectrum are explained by formation of aggregates and hydrogen bonds. It was shown that H-aggregates and dimers are formed in Langmuir-Blodgett films; each type of assemblies contributes to the absorption spectrum. At elevated temperatures the ratio between concentrations of monomers, dimers and H-aggregates varies due to a breakdown of a part of aggregates into monomers. The change in molecular polarizability was also noticed. Electroconductivity of Langmuir-Blodgett films is observed in longitudinal and transverse directions. Electrochromic effect is noticed under weak electric current by change from red to colourless with iodine doping.

  8. A Thermal Technique of Fault Nucleation, Growth, and Slip

    Science.gov (United States)

    Garagash, D.; Germanovich, L. N.; Murdoch, L. C.; Martel, S. J.; Reches, Z.; Elsworth, D.; Onstott, T. C.

    2009-12-01

    Fractures and fluids influence virtually all mechanical processes in the crust, but many aspects of these processes remain poorly understood largely because of a lack of controlled field experiments at appropriate scale. We have developed an in-situ experimental approach to create carefully controlled faults at scale of ~10 meters using thermal techniques to modify in situ stresses to the point where the rock fails in shear. This approach extends experiments on fault nucleation and growth to length scales 2-3 orders of magnitude greater than are currently possible in the laboratory. The experiments could be done at depths where the modified in situ stresses are sufficient to drive faulting, obviating the need for unrealistically large loading frames. Such experiments require an access to large rock volumes in the deep subsurface in a controlled setting. The Deep Underground Science and Engineering Laboratory (DUSEL), which is a research facility planned to occupy the workings of the former Homestake gold mine in the northern Black Hills, South Dakota, presents an opportunity for accessing locations with vertical stresses as large as 60 MPa (down to 2400 m depth), which is sufficient to create faults. One of the most promising methods for manipulating stresses to create faults that we have evaluated involves drilling two parallel planar arrays of boreholes and circulating cold fluid (e.g., liquid nitrogen) to chill the region in the vicinity of the boreholes. Cooling a relatively small region around each borehole causes the rock to contract, reducing the normal compressive stress throughout much larger region between the arrays of boreholes. This scheme was evaluated using both scaling analysis and a finite element code. Our results show that if the boreholes are spaced by ~1 m, in several days to weeks, the normal compressive stress can be reduced by 10 MPa or more, and it is even possible to create net tension between the borehole arrays. According to the Mohr

  9. Development of whole core thermal-hydraulic analysis program ACT. 4. Incorporation of three-dimensional upper plenum model

    International Nuclear Information System (INIS)

    Ohshima, Hiroyuki

    2003-03-01

    The thermal-hydraulic analysis computer program ACT is under development for the evaluation of detailed flow and temperature fields in a core region of fast breeder reactors under various operation conditions. The purpose of this program development is to contribute not only to clarifying thermal hydraulic characteristics that cannot be revealed by experiments due to measurement difficulty but also to performing rational safety design and assessment. This report describes the incorporation of a three-dimensional upper plenum model to ACT and its verification study as part of the program development. To treat the influence of three-dimensional thermal-hydraulic behavior in a upper plenum on the in-core temperature field, the multi-dimensional general purpose thermal-hydraulic analysis program AQUA, which was developed and validated at JNC, was applied as the base of the upper plenum analysis module of ACT. AQUA enables to model the upper plenum configuration including immersed heat exchangers of the direct reactor auxiliary cooling system (DRACS). In coupling core analysis module that consists of the fuel-assembly and the inter-wrapper gap calculation parts with the upper plenum module, different types of computation mesh systems were jointed using the staggered quarter assembly mesh scheme. A coupling algorithm among core, upper plenum and heat transport system modules, which can keep mass, momentum and energy conservation, was developed and optimized in consideration of parallel computing. ACT was applied to analyzing a sodium experiment (PLANDTL-DHX) performed at JNC, which simulated the natural circulation decay heat removal under DRACS operation conditions for the program verification. From the calculation result, the validity of the improved program was confirmed. (author)

  10. A Non-Isothermal Chemical Lattice Boltzmann Model Incorporating Thermal Reaction Kinetics and Enthalpy Changes

    Directory of Open Access Journals (Sweden)

    Stuart Bartlett

    2017-08-01

    Full Text Available The lattice Boltzmann method is an efficient computational fluid dynamics technique that can accurately model a broad range of complex systems. As well as single-phase fluids, it can simulate thermohydrodynamic systems and passive scalar advection. In recent years, it also gained attention as a means of simulating chemical phenomena, as interest in self-organization processes increased. This paper will present a widely-used and versatile lattice Boltzmann model that can simultaneously incorporate fluid dynamics, heat transfer, buoyancy-driven convection, passive scalar advection, chemical reactions and enthalpy changes. All of these effects interact in a physically accurate framework that is simple to code and readily parallelizable. As well as a complete description of the model equations, several example systems will be presented in order to demonstrate the accuracy and versatility of the method. New simulations, which analyzed the effect of a reversible reaction on the transport properties of a convecting fluid, will also be described in detail. This extra chemical degree of freedom was utilized by the system to augment its net heat flux. The numerical method outlined in this paper can be readily deployed for a vast range of complex flow problems, spanning a variety of scientific disciplines.

  11. Semiconducting Properties of Nanostructured Amorphous Carbon Thin Films Incorporated with Iodine by Thermal Chemical Vapor Deposition

    Science.gov (United States)

    Kamaruzaman, Dayana; Ahmad, Nurfadzilah; Annuar, Ishak; Rusop, Mohamad

    2013-11-01

    Nanostructured iodine-post doped amorphous carbon (a-C:I) thin films were prepared from camphor oil using a thermal chemical vapor deposition (TCVD) technique at different doping temperatures. The structural properties of the films were studied by field-emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDS), Raman, and Fourier transform infrared (FTIR) studies. FESEM and EDS studies showed successful iodine doping. FTIR and Raman studies showed that the a-C:I thin films consisted of a mixture of sp2- and sp3-bonded carbon atoms. The optical and electrical properties of a-C:I thin films were determined by UV-vis-NIR spectroscopy and current-voltage (I-V) measurement respectively. The optical band gap of a-C thin films decreased upon iodine doping. The highest electrical conductivity was found at 400 °C doping. Heterojunctions are confirmed by rectifying the I-V characteristics of an a-C:I/n-Si junction.

  12. Modelling of thermal field and point defect dynamics during silicon single crystal growth using CZ technique

    Science.gov (United States)

    Sabanskis, A.; Virbulis, J.

    2018-05-01

    Mathematical modelling is employed to numerically analyse the dynamics of the Czochralski (CZ) silicon single crystal growth. The model is axisymmetric, its thermal part describes heat transfer by conduction and thermal radiation, and allows to predict the time-dependent shape of the crystal-melt interface. Besides the thermal field, the point defect dynamics is modelled using the finite element method. The considered process consists of cone growth and cylindrical phases, including a short period of a reduced crystal pull rate, and a power jump to avoid large diameter changes. The influence of the thermal stresses on the point defects is also investigated.

  13. Growth activity in human septal cartilage: age-dependent incorporation of labeled sulfate in different anatomic locations

    International Nuclear Information System (INIS)

    Vetter, U.; Pirsig, W.; Heinze, E.

    1983-01-01

    Growth activity in different areas of human septal cartilage was measured by the in vitro incorporation of 35 S-labeled NaSO 4 into chondroitin sulfate. Septal cartilage without perichondrium was obtained during rhinoplasty from 36 patients aged 6 to 35 years. It could be shown that the anterior free end of the septum displays high growth activity in all age groups. The supra-premaxillary area displayed its highest growth activity during prepuberty, showing thereafter a continuous decline during puberty and adulthood. A similar age-dependent pattern in growth activity was found in the caudal prolongation of the septal cartilage. No age-dependent variations could be detected in the posterior area of the septal cartilage

  14. Effect of azolla-incorporated diets on the growth and survival of Labeo fimbriatus during fry-to-fingerling rearing

    Directory of Open Access Journals (Sweden)

    B. Gangadhar

    2015-12-01

    Full Text Available An experiment of 75 days duration was conducted in fertilized outdoor circular cement tanks (1,000 L with soil base for evaluating the growth and survival of Labeo fimbriatus fry fed with pelleted feed containing varied levels of dried azolla (Azolla pinnata. The Control feed contained 45% groundnut oilcake plus 45% rice bran and 10% finger millet flour added as binder for pelleting. Dried azolla powder was incorporated into the feed at 10, 20, 30 and 40% levels, replacing the groundnut cake and rice bran proportionately. L. fimbriatus (mean length 2.42 cm fry were stocked in all the tanks at 30 m−3. The fish were fed 10% of body weight during the first month, followed by 7% during the second month and 5% during the last 15 days. Incorporation of azolla did not affect (p > 0.05 the water quality, growth and survival of fingerlings at harvest. Incorporation of azolla in the diet reduced the cost of feed (Rs. per 100 g biomass; Rs: Indian rupee, INR; 1 INR ≈ 0.015 EUR from 3.35 to 2.53, with a cost saving of 24.48%. The study indicated the possibility of incorporating azolla in diets of L. fimbriatus up to 40% during fry-to-fingerling rearing, resulting in savings on feed cost.

  15. Thermal stability and surface acidity of mesoporous silica doubly doped by incorporation of sulfate and zirconium ions

    International Nuclear Information System (INIS)

    Salas, P.; Chen, L.F.; Wang, J.A.; Armendariz, H.; Guzman, M.L.; Montoya, J.A.; Acosta, D.R.

    2005-01-01

    A sulfated Si-Zr-MCM-41 solid with highly ordered mesostructure was synthesized through a templated synthesis route where the CTAB surfactant was used as template. During the synthesis procedure, various amounts of (NH 4 ) 2 SO 4 were added into the mixed solution of Zr and Si precursors to in situ sulfate the MCM-41 solids, aiming to enhance the acidity and thermal stability. The resultant materials showed a long-range ordered hexagonal arrangement with high surface area larger than 797 m 2 /g and an average pore size distributed at approximate 2.5-2.8 nm. The high-resolution TEM observations confirmed that the order of the mesostructure gained when the molar ratio of SO 4 2- /(ZrO 2 + SiO 2 ) increased from 0.1 to 0.3 but decreased as it reached 0.5, which is consistent with the results of 29 Si MAS-NMR and XRD analysis. Compared to Si-MCM-41, the (Q 2 + Q 3 )/Q 4 ratio derived from the NMR spectra of the Zr-doped sample was higher, indicating that zirconium atoms were incorporated into the silica framework. Unexpectedly, in situ sulfation does not enhance the surface Broensted acidity, most likely due to the sulfur retained within the bulk of the materials; however, it indeed improved the thermal stability of the solid and long-range order of the structure

  16. Cover cropping under temperate conditions: influence of growth period and incorporation time

    DEFF Research Database (Denmark)

    Thomsen, Ingrid Kaag; Hansen, Elly Møller

    . To encourage increased use of CC and to lessen the consequences on choice of main crop new innovative ways of using CC should be considered. This study tested the potential for using CC that could allow for repeated winter wheat growing and still permit CC in breaks between crops. Cruciferous CC (Raphanus...... sativus L., Sinapis alba L.) spread in a growing winter wheat crop in July and incorporated in September (Autumn CC) before sowing the following winter wheat was compared with the same CC cultivars sown after harvest and incorporated in spring (Winter CC). The cruciferous CC were compared with Winter CC...

  17. Drying of Rhinacanthus nasutus (Linn. Kurz. using a solar dryer incorporated with a backup thermal energy storage from wood combustion

    Directory of Open Access Journals (Sweden)

    Perapong Tekasakul

    2006-05-01

    Full Text Available An indirect, natural convection, solar cabinet dryer incorporated with a backup thermal energy storage from wood combustion was designed and tested with the Thai herb, Rhinacanthus nasutus (Linn. Kurz. Most of Thai herbs are widely used as traditional medicine and drying is an initial step in the production process. Solar dryer with a biomass backup heating system is the most feasible solution to drying in Thailand. In this work, a 4 m x 5 m solar collector was used to absorb solar radiation for heating the incoming air during the daytime, while a biomass burner was used to supply heat when solar energy was not possible. Heat from fuelwood combustion was accumulated in the thermal storage system made of bricks, and was used to heat up the incoming air. Results showed that the herb was dried uniformly and the temperature inside the drying cabinet could be maintained above 50ºC for more than 10 hours. Thermal efficiency when using solar energy was 10.5%, but the value was less than 1% when using the heat from biomass burning. This resulted from the low moisture content of the products after being dried by the solar energy. The dryer is beneficial to the operators, particularly in southern Thailand, where continuous drying is required. This dryer is by no means limited to drying of the herb. Currently, four dryers of the same model have been used by farmer groups in southern Thailand for drying bananas, several types of herbs, fish, and other products. In economic consideration, its payback period is 5.5 years when compared with the LPG-equipped dryer. When the total cost and production capacity are considered, its payback period is about 6 years.

  18. Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum

    Science.gov (United States)

    Kopf, Sebastian H.; Sessions, Alex L.; Cowley, Elise S.; Reyes, Carmen; Van Sambeek, Lindsey; Hu, Yang; Orphan, Victoria J.; Kato, Roberta; Newman, Dianne K.

    2016-01-01

    Effective treatment for chronic infections is undermined by a significant gap in understanding of the physiological state of pathogens at the site of infection. Chronic pulmonary infections are responsible for the morbidity and mortality of millions of immunocompromised individuals worldwide, yet drugs that are successful in laboratory culture are far less effective against pathogen populations persisting in vivo. Laboratory models, upon which preclinical development of new drugs is based, can only replicate host conditions when we understand the metabolic state of the pathogens and the degree of heterogeneity within the population. In this study, we measured the anabolic activity of the pathogen Staphylococcus aureus directly in the sputum of pediatric patients with cystic fibrosis (CF), by combining the high sensitivity of isotope ratio mass spectrometry with a heavy water labeling approach to capture the full range of in situ growth rates. Our results reveal S. aureus generation times with a median of 2.1 d, with extensive growth rate heterogeneity at the single-cell level. These growth rates are far below the detection limit of previous estimates of CF pathogen growth rates, and the rates are slowest in acutely sick patients undergoing pulmonary exacerbations; nevertheless, they are accessible to experimental replication within laboratory models. Treatment regimens that include specific antibiotics (vancomycin, piperacillin/tazobactam, tobramycin) further appear to correlate with slow growth of S. aureus on average, but follow-up longitudinal studies must be performed to determine whether this effect holds for individual patients.

  19. Crystal growth and comparison of vibrational and thermal properties ...

    Indian Academy of Sciences (India)

    The TGA–DTA studies showed the thermal properties of the crystals. ... impact on laser technology, optical communication and optical storage technology. [1,2]. .... UTHC and UTHS crystals in the temperature range of 25–1100◦C with a heat-.

  20. Thermal stability and surface acidity of mesoporous silica doubly doped by incorporation of sulfate and zirconium ions

    Energy Technology Data Exchange (ETDEWEB)

    Salas, P. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D.F. (Mexico)]. E-mail: psalas@imp.mx; Chen, L.F. [Departamento de Ingenieria Quimica, Universidad Autonoma Metropolitana-A, Av. San Pablo 180, Col. Reynosa-Tamaulipas, 02200 Mexico D.F. (Mexico); Wang, J.A. [Laboratorio de Catalisis y Materiales, ESIQIE, Instituto Politecnico Nacional, Col. Zacatenco, 07738 Mexico D.F. (Mexico); Armendariz, H. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D.F. (Mexico); Guzman, M.L. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D.F. (Mexico); Montoya, J.A. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D.F. (Mexico); Acosta, D.R. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A. P. 20-364, 01000 Mexico D.F. (Mexico)

    2005-11-15

    A sulfated Si-Zr-MCM-41 solid with highly ordered mesostructure was synthesized through a templated synthesis route where the CTAB surfactant was used as template. During the synthesis procedure, various amounts of (NH{sub 4}){sub 2}SO{sub 4} were added into the mixed solution of Zr and Si precursors to in situ sulfate the MCM-41 solids, aiming to enhance the acidity and thermal stability. The resultant materials showed a long-range ordered hexagonal arrangement with high surface area larger than 797 m{sup 2}/g and an average pore size distributed at approximate 2.5-2.8 nm. The high-resolution TEM observations confirmed that the order of the mesostructure gained when the molar ratio of SO{sub 4} {sup 2-}/(ZrO{sub 2} + SiO{sub 2}) increased from 0.1 to 0.3 but decreased as it reached 0.5, which is consistent with the results of {sup 29}Si MAS-NMR and XRD analysis. Compared to Si-MCM-41, the (Q{sup 2} + Q{sup 3})/Q{sup 4} ratio derived from the NMR spectra of the Zr-doped sample was higher, indicating that zirconium atoms were incorporated into the silica framework. Unexpectedly, in situ sulfation does not enhance the surface Broensted acidity, most likely due to the sulfur retained within the bulk of the materials; however, it indeed improved the thermal stability of the solid and long-range order of the structure.

  1. Growth, optical, thermal and mechanical characterization of an ...

    Indian Academy of Sciences (India)

    Growth from solution; X-ray diffraction; organic compounds; optical properties. 1. Introduction. Materials exhibiting nonlinear optical (NLO) properties have been studied ..... The fracture toughness (Kc) (Marshall and Lawn 1986) is given by.

  2. Influence of growth temperature and temperature ramps on deep level defect incorporation in m-plane GaN

    International Nuclear Information System (INIS)

    Armstrong, A. M.; Kelchner, K.; Nakamura, S.; DenBaars, S. P.; Speck, J. S.

    2013-01-01

    The dependence of deep level defect incorporation in m-plane GaN films grown by metal-organic chemical vapor deposition on bulk m-plane GaN substrates as a function of growth temperature (T g ) and T g ramping method was investigated using deep level optical spectroscopy. Understanding the influence of T g on GaN deep level incorporation is important for InGaN/GaN multi-quantum well (MQW) light emitting diodes (LEDs) and laser diodes (LDs) because GaN quantum barrier (QB) layers are grown much colder than thin film GaN to accommodate InGaN QW growth. Deep level spectra of low T g (800 °C) GaN films grown under QB conditions were compared to deep level spectra of high T g (1150 °C) GaN. Reducing T g , increased the defect density significantly (>50×) through introduction of emergent deep level defects at 2.09 eV and 2.9 eV below the conduction band minimum. However, optimizing growth conditions during the temperature ramp when transitioning from high to low T g substantially reduced the density of these emergent deep levels by approximately 40%. The results suggest that it is important to consider the potential for non-radiative recombination in QBs of LED or LD active regions, and tailoring the transition from high T g GaN growth to active layer growth can mitigate such non-radiative channels

  3. Growth and structure of rapid thermal silicon oxides and nitroxides studied by spectroellipsometry and Auger electron spectroscopy

    Science.gov (United States)

    Gonon, N.; Gagnaire, A.; Barbier, D.; Glachant, A.

    1994-11-01

    Rapid thermal oxidation of Czochralski-grown silicon in either O2 or N2O atmospheres have been studied using spectroellipsometry and Auger electron spectroscopy. Multiwavelength ellipsometric data were processed in order to separately derive the thickness and refractive indexes of rapid thermal dielectrics. Results revealed a significant increase of the mean refractive index as the film thickness falls below 20 nm for both O2 or N2O oxidant species. A multilayer structure including an about 0.3-nm-thick interfacial region of either SiO(x) or nitroxide in the case of O2 and N2O growth, respectively, followed by a densified SiO2 layer, was found to accurately fit the experimental data. The interfacial region together with the densified state of SiO2 close to the interface suggest a dielectric structure in agreement with the continuous random network model proposed for classical thermal oxides. Auger electron spectroscopy analysis confirmed the presence of noncrystalline Si-Si bonds in the interfacial region, mostly in the case of thin oxides grown in O2. It was speculated that the initial fast growth regime was due to a transient oxygen supersaturation in the interfacial region. Besides, the self-limiting growth in N2O was confirmed and explained in agreement with several recently published data, by the early formation of a very thin nitride or oxynitride membrane in the highly densified oxide beneath the interface. The beneficial effect of direct nitrogen incorporation by rapid thermal oxidation in N2O instead of O2 for the electrical behavior of metal-oxide-semiconductor capacitors is likely a better SiO2/Si lattice accommodation through the reduction of stresses and Si-Si bonds in the interfacial region of the dielectric.

  4. Methodology for evaluating the insect growth regulator (IGR) methoprene incorporated into packaging films

    Science.gov (United States)

    The insect growth regulator methoprene has been impregnated onto various packaging materials to control stored product insects, and is labeled for use in this manner in the United States. Different methodologies were utilized to evaluate efficacy towards Tribolium castaneum (Herbst), the red flour b...

  5. Estimating blue whale skin isotopic incorporation rates and baleen growth rates: Implications for assessing diet and movement patterns in mysticetes

    Science.gov (United States)

    Busquets-Vass, Geraldine; Newsome, Seth D.; Calambokidis, John; Serra-Valente, Gabriela; Jacobsen, Jeff K.; Aguíñiga-García, Sergio; Gendron, Diane

    2017-01-01

    Stable isotope analysis in mysticete skin and baleen plates has been repeatedly used to assess diet and movement patterns. Accurate interpretation of isotope data depends on understanding isotopic incorporation rates for metabolically active tissues and growth rates for metabolically inert tissues. The aim of this research was to estimate isotopic incorporation rates in blue whale skin and baleen growth rates by using natural gradients in baseline isotope values between oceanic regions. Nitrogen (δ15N) and carbon (δ13C) isotope values of blue whale skin and potential prey were analyzed from three foraging zones (Gulf of California, California Current System, and Costa Rica Dome) in the northeast Pacific from 1996–2015. We also measured δ15N and δ13C values along the lengths of baleen plates collected from six blue whales stranded in the 1980s and 2000s. Skin was separated into three strata: basale, externum, and sloughed skin. A mean (±SD) skin isotopic incorporation rate of 163±91 days was estimated by fitting a generalized additive model of the seasonal trend in δ15N values of skin strata collected in the Gulf of California and the California Current System. A mean (±SD) baleen growth rate of 15.5±2.2 cm y-1 was estimated by using seasonal oscillations in δ15N values from three whales. These oscillations also showed that individual whales have a high fidelity to distinct foraging zones in the northeast Pacific across years. The absence of oscillations in δ15N values of baleen sub-samples from three male whales suggests these individuals remained within a specific zone for several years prior to death. δ13C values of both whale tissues (skin and baleen) and potential prey were not distinct among foraging zones. Our results highlight the importance of considering tissue isotopic incorporation and growth rates when studying migratory mysticetes and provide new insights into the individual movement strategies of blue whales. PMID:28562625

  6. Antimicrobial, Rheological, and Thermal Properties of Plasticized Polylactide Films Incorporated with Essential Oils to Inhibit Staphylococcus aureus and Campylobacter jejuni.

    Science.gov (United States)

    Ahmed, Jasim; Hiremath, Nikhil; Jacob, Harsha

    2016-02-01

    Polylactide (PLA) is the most mature biobased and biodegradable polymer. Due to its inherent brittleness, the polymer cannot be used as a packaging material without plasticizer. An attempt was made to develop antimicrobial plasticized PLA film by incorporating polyethylene glycol (PEG) and 3 essential oils (EO), namely cinnamon, garlic, and clove by solvent casting method. Physical, thermal, and rheological properties of those films were evaluated for practical applications whereas the antimicrobial properties were tested against Staphylococcus aureus and Campylobacter jejuni-pathogens related to poultry industry. Both PEG and EOs led to the formation of flexible PLA/PEG/EO films with significant drop in the glass transition temperature (Tg ), and mechanical property. Time-temperature superposition (TTS) principle was employed to melt rheology of EO-based films at selected temperature, and rheological moduli superimposed well in an extended frequency range. Among EOs, cinnamon and clove oil-based films (PLA/PEG/CIN and PLA/PEG/CLO) exhibited a complete zone of inhibition against C. jejuni at the maximum concentration (1.6 mL per 2 g PLA/PEG blend) whereas the garlic oil-based film (PLA/PEG/GAR) had the lowest activity. © 2016 Institute of Food Technologists®

  7. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles.

    Science.gov (United States)

    Oleyaei, Seyed Amir; Zahedi, Younes; Ghanbarzadeh, Babak; Moayedi, Ali Akbar

    2016-08-01

    In this research, potato starch and TiO2 nanoparticles (0.5, 1 and 2wt%) films were developed. Influences of different concentrations of TiO2 on the functional properties of nanocomposite films (water-related properties, mechanical characteristics, and UV transmittance) were investigated. XRD, FTIR, and DSC analyses were used to characterize the morphology and thermal properties of the films. The results revealed that TiO2 nanoparticles dramatically decreased the values of water-related properties (water vapor permeability: 11-34%; water solubility: 1.88-9.26%; moisture uptake: 2.15-11.18%). Incorporation of TiO2 led to a slight increment of contact angle and tensile strength, and a decrease in elongation at break of the films. TiO2 successfully blocked more than 90% of UV light, while opacity and white index of the films were enhanced. Glass transition temperature and melting point of the films were positively affected by the addition of TiO2 nanoparticles. The result of XRD study exhibited that due to a limited agglomeration of TiO2 nanoparticles, the mean crystal size of TiO2 increased. Formation of new hydrogen bonds between the hydroxyl groups of starch and nanoparticles was confirmed by FTIR spectroscopy. In conclusion, TiO2 nanoparticles improved the functional properties of potato starch film and extended the potential for food packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Pequi leaves incorporated into the soil reduce the initial growth of cultivated, invasive and native species.

    Science.gov (United States)

    Allem, Laísa N; Gomes, Anabele S; Borghetti, Fabian

    2014-12-01

    Studies have identified the phytotoxicity of many native species of the Cerrado; however, most of them were conducted either in inert substrates, or using exaggerate proportions of plant material. We investigated the phytotoxicity of pequi leaves added to substrate soil in quantities compatible with the litter produced by this species. Pequi leaves were triturated and added to red latosol in concentrations of 0.75%, 1.5% and 3%; the control was constituted of leafless soil. These mixtures were added to pots and irrigated daily to keep them moist. Germinated seeds of the cultivated sorghum and sesame, of the invasive brachiaria and of the native purple ipê, were disposed in the pots to grow for five to seven days at 30°C within a photoperiod of 12 h. Seedlings of all the species presented a reduction in their initial growth in a dose-dependent way. In general, the root growth was more affected by the treatments than the shoot growth; moreover, signs of necrosis were observed in the roots of the sorghum, sesame and brachiaria. The phytotoxic effects generated by relatively small quantities of leaves, in a reasonable range of species within a soil substrate, suggest potential allelopathy of pequi leaves under natural conditions.

  9. Pequi leaves incorporated into the soil reduce the initial growth of cultivated, invasive and native species

    Directory of Open Access Journals (Sweden)

    LAÍSA N. ALLEM

    2014-12-01

    Full Text Available Studies have identified the phytotoxicity of many native species of the Cerrado; however, most of them were conducted either in inert substrates, or using exaggerate proportions of plant material. We investigated the phytotoxicity of pequi leaves added to substrate soil in quantities compatible with the litter produced by this species. Pequi leaves were triturated and added to red latosol in concentrations of 0.75%, 1.5% and 3%; the control was constituted of leafless soil. These mixtures were added to pots and irrigated daily to keep them moist. Germinated seeds of the cultivated sorghum and sesame, of the invasive brachiaria and of the native purple ipê, were disposed in the pots to grow for five to seven days at 30°C within a photoperiod of 12 h. Seedlings of all the species presented a reduction in their initial growth in a dose-dependent way. In general, the root growth was more affected by the treatments than the shoot growth; moreover, signs of necrosis were observed in the roots of the sorghum, sesame and brachiaria. The phytotoxic effects generated by relatively small quantities of leaves, in a reasonable range of species within a soil substrate, suggest potential allelopathy of pequi leaves under natural conditions.

  10. Incorporating Measurement Non-Equivalence in a Cross-Study Latent Growth Curve Analysis.

    Science.gov (United States)

    Flora, David B; Curran, Patrick J; Hussong, Andrea M; Edwards, Michael C

    2008-10-01

    A large literature emphasizes the importance of testing for measurement equivalence in scales that may be used as observed variables in structural equation modeling applications. When the same construct is measured across more than one developmental period, as in a longitudinal study, it can be especially critical to establish measurement equivalence, or invariance, across the developmental periods. Similarly, when data from more than one study are combined into a single analysis, it is again important to assess measurement equivalence across the data sources. Yet, how to incorporate non-equivalence when it is discovered is not well described for applied researchers. Here, we present an item response theory approach that can be used to create scale scores from measures while explicitly accounting for non-equivalence. We demonstrate these methods in the context of a latent curve analysis in which data from two separate studies are combined to create a single longitudinal model spanning several developmental periods.

  11. Crystal growth and comparison of vibrational and thermal properties

    Indian Academy of Sciences (India)

    During the course of a literature survey of metal compounds containing both thiourea and urea ligands, the title paper by Gunasekaran et al [1] reporting on the growth of the so-called urea thiourea mercuric chloride (UTHC) and urea thiourea mercuric sulphate. (UTHS) crystals attracted our attention. For formulating these ...

  12. Modeling water scarcity over south Asia: Incorporating crop growth and irrigation models into the Variable Infiltration Capacity (VIC) model

    Science.gov (United States)

    Troy, Tara J.; Ines, Amor V. M.; Lall, Upmanu; Robertson, Andrew W.

    2013-04-01

    Large-scale hydrologic models, such as the Variable Infiltration Capacity (VIC) model, are used for a variety of studies, from drought monitoring to projecting the potential impact of climate change on the hydrologic cycle decades in advance. The majority of these models simulates the natural hydrological cycle and neglects the effects of human activities such as irrigation, which can result in streamflow withdrawals and increased evapotranspiration. In some parts of the world, these activities do not significantly affect the hydrologic cycle, but this is not the case in south Asia where irrigated agriculture has a large water footprint. To address this gap, we incorporate a crop growth model and irrigation model into the VIC model in order to simulate the impacts of irrigated and rainfed agriculture on the hydrologic cycle over south Asia (Indus, Ganges, and Brahmaputra basin and peninsular India). The crop growth model responds to climate signals, including temperature and water stress, to simulate the growth of maize, wheat, rice, and millet. For the primarily rainfed maize crop, the crop growth model shows good correlation with observed All-India yields (0.7) with lower correlations for the irrigated wheat and rice crops (0.4). The difference in correlation is because irrigation provides a buffer against climate conditions, so that rainfed crop growth is more tied to climate than irrigated crop growth. The irrigation water demands induce hydrologic water stress in significant parts of the region, particularly in the Indus, with the streamflow unable to meet the irrigation demands. Although rainfall can vary significantly in south Asia, we find that water scarcity is largely chronic due to the irrigation demands rather than being intermittent due to climate variability.

  13. Stability evaluation of tocopheryl acetate and ascorbyl tetraisopalmitate in isolation and incorporated in cosmetic formulations using thermal analysis

    Directory of Open Access Journals (Sweden)

    Mariana Mandelli de Almeida

    2010-03-01

    Full Text Available In view of the increase in the number of cosmetic preparations containing antioxidant vitamins, chiefly, due to their action in preventing the process of skin aging, there is a need to develop pre-formulation studies and to validate analytical methods in order to obtain high quality products. Thus, the objective of this research was to evaluate and compare the thermal behavior of tocopheryl acetate and ascorbyl tetraisopalmitate as raw materials, and incorporated into a base cream. Thermogravimetry (TG / DTG and differential scanning calorimetry (DSC were used for this purpose. Both vitamins were found to be stable up to 250ºC. The base cream (placebo and the sample (base cream containing the vitamins presented different weight loss. Thermal analysis has shown itself to be an excellent tool for the characterization of these vitamins and can be used in routine analysis for quality control of this type of cosmetic formulation.Considerando o potencial antioxidante das vitaminas utilizadas em produtos cosméticos, seu uso na prevenção do processo de envelhecimento da pele e a necessidade de estudos de pré-formulação que garantam o desenvolvimento de cosméticos de qualidade, foi objetivo deste trabalho avaliar e comparar o comportamento térmico dos ativos acetato de tocoferila e tetraisopalmitato de ascorbila, matérias-primas, isoladamente e incorporados em creme base. As técnicas termogravimetria/termogravimetria derivada (TG/DTG e calorimetria exploratória diferencial (DSC foram utilizadas para tal finalidade. Verificou-se que as vitaminas mantiveram-se estáveis até a temperatura de, aproximadamente, 250 ºC, observando-se diferença na perda de massa entre o creme base e o creme base associado às vitaminas. Assim sendo, a análise térmica mostrou-se como excelente ferramenta para caracterização das vitaminas e do creme base, podendo ser empregada em análises de rotina no controle de qualidade deste tipo de formulação cosmética.

  14. Thermal fatigue crack growth in mixing tees nuclear piping - An analytical approach

    International Nuclear Information System (INIS)

    Radu, V.

    2009-01-01

    The assessment of fatigue crack growth due to cyclic thermal loads arising from turbulent mixing presents significant challenges, principally due to the difficulty of establishing the actual loading spectrum. So-called sinusoidal methods represent a simplified approach in which the entire spectrum is replaced by a sine-wave variation of the temperature at the inner pipe surface. The need for multiple calculations in this process has lead to the development of analytical solutions for thermal stresses in a pipe subject to sinusoidal thermal loading, described in previous work performed at JRC IE Petten, The Netherlands, during the author's stage as seconded national expert. Based on these stress distributions solutions, the paper presents a methodology for assessment of thermal fatigue crack growth life in mixing tees nuclear piping. (author)

  15. Thermal and Driven Stochastic Growth of Langmuir Waves in the Solar Wind and Earth's Foreshock

    Science.gov (United States)

    Cairns, Iver H.; Robinson, P. A.; Anderson, R. R.

    2000-01-01

    Statistical distributions of Langmuir wave fields in the solar wind and the edge of Earth's foreshock are analyzed and compared with predictions for stochastic growth theory (SGT). SGT quantitatively explains the solar wind, edge, and deep foreshock data as pure thermal waves, driven thermal waves subject to net linear growth and stochastic effects, and as waves in a pure SGT state, respectively, plus radiation near the plasma frequency f(sub p). These changes are interpreted in terms of spatial variations in the beam instability's growth rate and evolution toward a pure SGT state. SGT analyses of field distributions are shown to provide a viable alternative to thermal noise spectroscopy for wave instruments with coarse frequency resolution, and to separate f(sub p) radiation from Langmuir waves.

  16. Thermal legacies: transgenerational effects of temperature on growth in a vertebrate.

    Science.gov (United States)

    Salinas, Santiago; Munch, Stephan B

    2012-02-01

    Transgenerational plasticity (TGP), a generalisation of more widely studied maternal effects, occurs whenever environmental cues experienced by either parent prior to fertilisation results in a modification of offspring reaction norms. Such effects have been observed in many traits across many species. Despite enormous potential importance-particularly in an era of rapid climate change-TGP in thermal growth physiology has never been demonstrated for vertebrates. We provide the first evidence for thermal TGP in a vertebrate: given sufficient time, sheepshead minnows adaptively program their offspring for maximal growth at the present temperature. The change in growth over a single generation (c. 30%) exceeds the single-generation rate of adaptive evolution by an order of magnitude. If widespread, transgenerational effects on thermal performance may have important implications on physiology, ecology and contemporary evolution, and may significantly alter the extinction risk posed by changing climate. © 2011 Blackwell Publishing Ltd/CNRS.

  17. A comparison between Japanese and French A16 defect assessment procedures for thermal fatigue crack growth

    International Nuclear Information System (INIS)

    Wakai, T.; Horikiri, M.; Poussard, C.; Drubay, B.

    2005-01-01

    This paper presents the results of a benchmark on thermal fatigue crack growth evaluation for a thick-wall cylinder subjected to cyclic thermal transients. The simplified crack growth evaluation methods of both JNC in JAPAN and A16 procedures proposed by CEA in France are presented. The predictions obtained using both methods are compared with the experimental data. The JNC method, which accounts for the non-linear stress component provides predictions of crack advance in a good agreement with the experimental data. In contrast, significant differences are observed between the A16 predictions and the experimental data. The discrepancies are mainly due to the non-linear stress component which is not accounted for in the A16 method. When using the JNC stress intensity factor solution determined by finite element analysis to account for the non-linear stress component, the A16 method well predicts the thermal fatigue crack growth behavior

  18. Growth, morphology, spectral and thermal studies of gel grown diclofenac acid crystals

    Science.gov (United States)

    Ramachandran, E.; Ramukutty, S.

    2014-03-01

    The crystal growth of diclofenac acid in silica gel is the first to be reported in literature. The growth parameters were varied to optimize the suitable growth condition. Single crystal X-ray diffraction method was used for the conformation of the crystal structure. Morphology studies showed that the growth is prominent along the b-axis and the prominent face is {002}. Fourier transform infrared spectral study was performed to identify the functional groups present in the crystal. Thermal stability and decomposition of the material were analyzed using thermo calorimetry in the temperature range 30-500 °C.

  19. Oxidation phase growth diagram of vanadium oxides film fabricated by rapid thermal annealing

    Institute of Scientific and Technical Information of China (English)

    Tamura KOZO; Zheng-cao LI; Yu-quan WANG; Jie NI; Yin HU; Zheng-jun ZHANG

    2009-01-01

    Thermal evaporation deposited vanadium oxide films were annealed in air by rapid thermal annealing (RTP). By adjusting the annealing temperature and time, a series of vanadium oxide films with various oxidation phases and surface morphologies were fabricated, and an oxidation phase growth diagram was established. It was observed that different oxidation phases appear at a limited and continuous annealing condition range, and the morphologic changes are related to the oxidation process.

  20. Induction of ovarian growth in Aegla platensis (Crustacea, Aeglidae by means of neuroregulators incorporated to food

    Directory of Open Access Journals (Sweden)

    Alejandra V Cahansky

    2008-09-01

    Full Text Available The freshwater crab Aegla platensis was used as a model to induce ovarian growth by adding different neuroregulators to a pellet food formulation. Added compounds were the dopaminergic inhibitor spiperone or the enkephalinergic inhibitor naloxone, both of them at a dose of 10-8 mol/animal. Animals were fed on the enriched pellets twice a week. After 7 wk, the gonadosomatic index (GI was calculated as (gonad fresh weight / body fresh weight x 100. GI significantly increased only for those females fed on spiperone pellets, compared to a control group receiving pellets with no compound added. During the assayed period, spiperone would be reverting the arrest exerted by dopamine on the neuroendocrine stimulation of ovarian growth. On the other hand, for both spiperone and naloxone a higher GI was correlated to a higher lipid content of both gonads and/or hepatopancreas, suggesting an increased energetic demand in accordance with an active investment in reproduction. Rev. Biol. Trop. 56 (3: 1201-1207. Epub 2008 September 30.Se utilizó al anomuro de agua dulce Aegla platensis como modelo para inducir el crecimiento ovárico mediante el agregado de diferentes neuroreguladores a una formulación de alimento pelleteado. Los compuestos agregados fueron el inhibidor dopaminergico spiperona ó el inhibidor encefalinérgico naloxone, ambos a una dosis de 10-8 moles/animal. Los animales fueron alimentados dos veces a la semana con pellets enriquecidos con alguno de los neuroreguladores. Luego de 7 semanas, se calculó el índice gonadomático (IG como (peso gonadal fresco/ peso corporal fresco x 100. El IG mostró un incremento significativamente sólo en aquellas hembras alimentadas con pellets enriquecidos con spiperona, en comparación con un grupo control que recibió pellets sin agregado alguno. Durante el período ensayado, la spiperona estaría revirtiendo el arresto ejercido por la dopamina sobre la estimulación neuroendocrina del crecimiento ov

  1. A rapid [3H]glucose incorporation assay for determination of lymphoid cell-mediated inhibition of Candida albicans growth

    International Nuclear Information System (INIS)

    Djeu, J.Y.; Parapanissios, A.; Halkias, D.; Friedman, H.

    1986-01-01

    [ 3 H]glucose uptake by Candida albicans after interaction with lymphoid effector cells was used to provide a quick, accurate and objective assessment of the growth inhibitory potential of lymphoid cells on candida. After 18 h coincubation of effector cells with candida, [ 3 H]glucose was added for 3 h and the amount of radiolabel incorporated into residual candida was measured. The results showed that [ 3 H]glucose uptake was proportional to the number of candida organisms left in the microwell and is dose dependent on the effector/target (E/T) ratio. At an E/T ratio of 300/1, complete inhibition of candida was seen, with significant inhibition still present at 30/1. In addition, monocytes and polymorphonuclear cells were found to be the primary cells responsible for eliminating candida. (Auth.)

  2. Incorporating an extended dendritic growth model into the CAFE model for rapidly solidified non-dilute alloys

    International Nuclear Information System (INIS)

    Ma, Jie; Wang, Bo; Zhao, Shunli; Wu, Guangxin; Zhang, Jieyu; Yang, Zhiliang

    2016-01-01

    We have extended the dendritic growth model first proposed by Boettinger, Coriell and Trivedi (here termed EBCT) for microstructure simulations of rapidly solidified non-dilute alloys. The temperature-dependent distribution coefficient, obtained from calculations of phase equilibria, and the continuous growth model (CGM) were adopted in the present EBCT model to describe the solute trapping behaviors. The temperature dependence of the physical properties, which were not used in previous dendritic growth models, were also considered in the present EBCT model. These extensions allow the present EBCT model to be used for microstructure simulations of non-dilute alloys. The comparison of the present EBCT model with the BCT model proves that the considerations of the distribution coefficient and physical properties are necessary for microstructure simulations, especially for small particles with high undercoolings. Finally, the EBCT model was incorporated into the cellular automaton-finite element (CAFE) model to simulate microstructures of gas-atomized ASP30 high speed steel particles that were then compared with experimental results. Both the simulated and experimental results reveal that a columnar dendritic microstructure preferentially forms in small particles and an equiaxed microstructure forms otherwise. The applications of the present EBCT model provide a convenient way to predict the microstructure of non-dilute alloys. - Highlights: • A dendritic growth model was developed considering non-equilibrium distribution coefficient. • The physical properties with temperature dependence were considered in the extended model. • The extended model can be used to non-dilute alloys and the extensions are necessary in small particles. • Microstructure of ASP30 steel was investigated using the present model and verified by experiment.

  3. Incorporating an extended dendritic growth model into the CAFE model for rapidly solidified non-dilute alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jie; Wang, Bo [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhao, Shunli [Research Institute, Baoshan Iron & Steel Co., Ltd, Shanghai 201900 (China); Wu, Guangxin [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhang, Jieyu, E-mail: zjy6162@staff.shu.edu.cn [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Yang, Zhiliang [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China)

    2016-05-25

    We have extended the dendritic growth model first proposed by Boettinger, Coriell and Trivedi (here termed EBCT) for microstructure simulations of rapidly solidified non-dilute alloys. The temperature-dependent distribution coefficient, obtained from calculations of phase equilibria, and the continuous growth model (CGM) were adopted in the present EBCT model to describe the solute trapping behaviors. The temperature dependence of the physical properties, which were not used in previous dendritic growth models, were also considered in the present EBCT model. These extensions allow the present EBCT model to be used for microstructure simulations of non-dilute alloys. The comparison of the present EBCT model with the BCT model proves that the considerations of the distribution coefficient and physical properties are necessary for microstructure simulations, especially for small particles with high undercoolings. Finally, the EBCT model was incorporated into the cellular automaton-finite element (CAFE) model to simulate microstructures of gas-atomized ASP30 high speed steel particles that were then compared with experimental results. Both the simulated and experimental results reveal that a columnar dendritic microstructure preferentially forms in small particles and an equiaxed microstructure forms otherwise. The applications of the present EBCT model provide a convenient way to predict the microstructure of non-dilute alloys. - Highlights: • A dendritic growth model was developed considering non-equilibrium distribution coefficient. • The physical properties with temperature dependence were considered in the extended model. • The extended model can be used to non-dilute alloys and the extensions are necessary in small particles. • Microstructure of ASP30 steel was investigated using the present model and verified by experiment.

  4. Incorporation of chitosan microspheres into collagen-chitosan scaffolds for the controlled release of nerve growth factor.

    Directory of Open Access Journals (Sweden)

    Wen Zeng

    Full Text Available Artifical nerve scaffold can be used as a promising alternative to autologous nerve grafts to enhance the repair of peripheral nerve defects. However, current nerve scaffolds lack efficient microstructure and neurotrophic support.Microsphere-Scaffold composite was developed by incorporating chitosan microspheres loaded with nerve growth factor (NGF-CMSs into collagen-chitosan scaffolds (CCH with longitudinally oriented microchannels (NGF-CMSs/CCH. The morphological characterizations, in vitro release kinetics study, neurite outgrowth assay, and bioactivity assay were evaluated. After that, a 15-mm-long sciatic nerve gap in rats was bridged by the NGF-CMSs/CCH, CCH physically absorbed NGF (NGF/CCH, CCH or nerve autograft. 16 weeks after implantation, electrophysiology, fluoro-gold retrograde tracing, and nerve morphometry were performed.The NGF-CMSs were evenly distributed throughout the longitudinally oriented microchannels of the scaffold. The NGF-CMSs/CCH was capable of sustained release of bioactive NGF within 28 days as compared with others in vitro. In vivo animal study demonstrated that the outcomes of NGF-CMSs/CCH were better than those of NGF/CCH or CCH.Our findings suggest that incorporation of NGF-CMSs into the CCH may be a promising tool in the repair of peripheral nerve defects.

  5. Aerosol nucleation and growth and their coupling to thermal hydraulics

    International Nuclear Information System (INIS)

    Clement, C.F.

    1985-01-01

    We examine the physical processes leading to vapour condensation as an aerosol in the formation and cooling of vapour-gas mixtures. Requirements for mathematical, computer and experimental modelling are discussed in relation to nuclear aerosols. In the absence of sudden pressure drops we give a complete schematic set of equations which govern the motion of aerosol, vapour, gas and heat including radiation. The coupling to the aerosol equation is mainly through the droplet growth rate, R, and a nucleation term whose possible forms are described. Rapid equilibration between vapour and aerosol means that the likely heterogeneous nucleation term must be treated separately. General forms are given for the coupling terms in the equations for vapour concentration and temperature in terms of the local mass transfer rate to the aerosol. The properties of this quantity are shown clearly by an expression for it obtained in terms of Lewis and condensation numbers and the quantify, zeta, whose derivative gives the local total heat transfer rate. Sizes of these numbers are given for some relevant vapour-gas mixtures. Throughout the paper we give the physical requirements necessary to make the transitions to the more calculable cases of uniform or well-mixed aerosols, and finally we discuss the case of initially unsaturated vapour-gas mixtures. (orig.)

  6. Three-dimensional modelling of thermal stress in floating zone silicon crystal growth

    Science.gov (United States)

    Plate, Matiss; Krauze, Armands; Virbulis, Jānis

    2018-05-01

    During the growth of large diameter silicon single crystals with the industrial floating zone method, undesirable level of thermal stress in the crystal is easily reached due to the inhomogeneous expansion as the crystal cools down. Shapes of the phase boundaries, temperature field and elastic material properties determine the thermal stress distribution in the solid mono crystalline silicon during cylindrical growth. Excessive stress can lead to fracture, generation of dislocations and altered distribution of intrinsic point defects. Although appearance of ridges on the crystal surface is the decisive factor of a dislocation-free growth, the influence of these ridges on the stress field is not completely clear. Here we present the results of thermal stress analysis for 4” and 5” diameter crystals using a quasi-stationary three dimensional mathematical model including the material anisotropy and the presence of experimentally observed ridges which cannot be addressed with axis-symmetric models. The ridge has a local but relatively strong influence on thermal stress therefore its relation to the origin of fracture is hypothesized. In addition, thermal stresses at the crystal rim are found to increase for a particular position of the crystal radiation reflector.

  7. Plasma processes and film growth of expanding thermal plasma deposited textured zinc oxide

    NARCIS (Netherlands)

    Groenen, R.; Linden, J.L.; Sanden, van de M.C.M.

    2005-01-01

    Plasma processes and film growth of textured zinc oxide deposited from oxygen and diethyl zinc utilizing expanding thermal argon plasma created by a cascaded arc is discussed. In all conditions explored, an excess of argon ions and low temperature electrons is available, which represent the

  8. In Situ Determination of Thermal Profiles during Czochralski Silicon Crystal Growth by an Eddy Current Technique.

    Science.gov (United States)

    Choe, Kwang Su.

    An eddy current testing method was developed to continuously monitor crystal growth process and determine thermal profiles in situ during Czochralski silicon crystal growth. The work was motivated by the need to improve the quality of the crystal by controlling thermal gradients and annealing history over the growth cycle. The experimental concept is to monitor intrinsic electrical conductivities of the growing crystal and deduce temperature values from them. The experiments were performed in a resistance-heated Czochralski puller with a 203 mm (8 inch) diameter crucible containing 6.5 kg melt. The silicon crystals being grown were about 80 mm in diameter and monitored by an encircling sensor operating at three different test frequencies (86, 53 and 19 kHz). A one-dimensional analytical solution was employed to translate the detected signals into electrical conductivities. In terms of experiments, the effects of changes in growth condition, which is defined by crystal and crucible rotation rates, crucible position, pull rate, and hot-zone configuration, were investigated. Under a given steady-state condition, the thermal profile was usually stable over the entire length of crystal growth. The profile shifted significantly, however, when the crucible rotation rate was kept too high. As a direct evidence to the effects of melt flow on heat transfer process, a thermal gradient minimum was observed about the crystal/crucible rotation combination of 20/-10 rpm cw. The thermal gradient reduction was still most pronounced when the pull rate or the radiant heat loss to the environment was decreased: a nearly flat axial thermal gradient was achieved when either the pull rate was halved or the height of the exposed crucible wall was effectively doubled. Under these conditions, the average axial thermal gradient along the surface of the crystal was about 4-5 ^{rm o}C/mm. Regardless of growth condition, the three-frequency data revealed radial thermal gradients much larger

  9. Carriers' localization and thermal redistribution in post growth voluntarily tuned quantum dashes' size/composition distribution

    International Nuclear Information System (INIS)

    Alouane, M.H. Hadj; Helali, A.; Morris, D.; Maaref, H.; Aimez, V.; Salem, B.; Gendry, M.

    2014-01-01

    This paper treats the impact of post growth tuned InAs/InP quantum dashes' (QDas) size/composition distribution on carriers' localization and thermal redistribution. The spread of this distribution depends on the experimental conditions used for the phosphorus ion implantation enhanced intermixing process. Atypical temperature-dependent luminescence properties have been observed and found to be strongly dependent on the amount of QDas size/composition dispersion. The experimental results have been reproduced by a model that takes into account the width of the QDas localized states distribution and consequent thermally induced carriers' redistribution. This model gives critical temperature values marking the beginning and the end of carriers delocalization and thermal transfer processes via an intermixing induced carrier's transfer channel located below the wetting layer states. -- Highlights: • We examine optical properties of post growth tuned QDas size/composition distribution. • Carriers' localization and thermal redistribution within inhomogeneously intermixed QDas are the origin of the atypical temperature-dependent luminescence properties. • Localized states ensemble's model is successively used to interpret the experimental results. • The carriers thermal transfer processes occur via an intermixing induced channel located below the wetting layer states. • Intermixing degree strongly influence the critical temperatures marking the beginning and the end of the carriers thermal transfer processes

  10. On the driving force for crack growth during thermal actuation of shape memory alloys

    Science.gov (United States)

    Baxevanis, T.; Parrinello, A. F.; Lagoudas, D. C.

    2016-04-01

    The effect of thermomechanically induced phase transformation on the driving force for crack growth in polycrystalline shape memory alloys is analyzed in an infinite center-cracked plate subjected to a thermal actuation cycle under mechanical load in plain strain. Finite element calculations are carried out to determine the mechanical fields near the static crack and the crack-tip energy release rate using the virtual crack closure technique. A substantial increase of the energy release rate - an order of magnitude for some material systems - is observed during the thermal cycle due to the stress redistribution induced by large scale phase transformation. Thus, phase transformation occurring due to thermal variations under mechanical load may result in crack growth if the crack-tip energy release rate reaches a material specific critical value.

  11. Quantifying Variability in Growth and Thermal Inactivation Kinetics of Lactobacillus plantarum.

    Science.gov (United States)

    Aryani, D C; den Besten, H M W; Zwietering, M H

    2016-08-15

    The presence and growth of spoilage organisms in food might affect the shelf life. In this study, the effects of experimental, reproduction, and strain variabilities were quantified with respect to growth and thermal inactivation using 20 Lactobacillus plantarum strains. Also, the effect of growth history on thermal resistance was quantified. The strain variability in μmax was similar (P > 0.05) to reproduction variability as a function of pH, aw, and temperature, while being around half of the reproduction variability (P plantarum strains, and the pHmin was between 3.2 and 3.5, the aw,min was between 0.936 and 0.953, the [HLamax], at pH 4.5, was between 29 and 38 mM, and the Tmin was between 3.4 and 8.3°C. The average D values ranged from 0.80 min to 19 min at 55°C, 0.22 to 3.9 min at 58°C, 3.1 to 45 s at 60°C, and 1.8 to 19 s at 63°C. In contrast to growth, the strain variability in thermal resistance was on average six times higher than the reproduction variability and more than ten times higher than the experimental variability. The strain variability was also 1.8 times higher (P 10-log10 differences after thermal treatment. Accurate control and realistic prediction of shelf life is complicated by the natural diversity among microbial strains, and limited information on microbiological variability is available for spoilage microorganisms. Therefore, the objectives of the present study were to quantify strain variability, reproduction (biological) variability, and experimental variability with respect to the growth and thermal inactivation kinetics of Lactobacillus plantarum and to quantify the variability in thermal resistance attributed to growth history. The quantitative knowledge obtained on experimental, reproduction, and strain variabilities can be used to improve experimental designs and to adequately select strains for challenge growth and inactivation tests. Moreover, the integration of strain variability in prediction of microbial growth and

  12. Stochastic modelling of thermal fatigue crack growth for applying in the structural reliability of nuclear piping

    International Nuclear Information System (INIS)

    Radu, V.

    2016-01-01

    The problem of thermal fatigue in mixing areas arises in nuclear piping where a turbulent mixing or vortices produce rapid fluid temperature fluctuations with random frequencies. The assessment of fatigue crack growth due to cyclic thermal loads arising from turbulent mixing presents significant challenges, principally due to the difficulty of establishing the actual loading spectrum. To apply the Stochastic approach of thermal fatigue, a frequency temperature response function is proposed. For the elastic thermal stresses distribution solutions, the magnitude of the frequency response function is first derived and checked against the prediction by FEA. The connection between SIF.s power spectral density (PSD) and temperature.s PSD is assured with SIF frequency response function modulus. The frequency of the peaks of each magnitude for KI is supposed to be a stationary narrow-band Gaussian process. The probabilities of failure are estimated by means of the Monte Carlo methods considering a limit state function. (authors)

  13. A conceptual framework towards more holistic freshwater conservation planning through incorporation of stream connectivity and thermal vulnerability

    Science.gov (United States)

    Ramulifho, P. A.; Rivers-Moore, N. A.; Dallas, H. F.; Foord, S. H.

    2018-01-01

    The thermal regime of rivers plays an important role in the overall health and composition of aquatic ecosystems, and together with flow, is recognised as one of the most influential abiotic drivers of aquatic ecosystem processes affecting species distribution. Changes in thermal conditions in aquatic systems are driven by on-going human-induced climate change, hydrological, regional and structural factors. Here, we quantified the impact of instream impoundments on the natural longitudinal connectivity and estimated thermal vulnerability of catchments based on the functional relationship between changing temperature and the profile gradient of rivers in the eastern portion of South Africa. We identified catchments that are most vulnerable to thermal stress based on cold-water adapted species' tolerance to thermal changes. More than half of all studied catchments include rivers that are relatively intact longitudinally, with notable exceptions being rivers in the central portion of the study area. Thermal condition of high elevation sites is more heavily impacted by impoundments and consequently thermal vulnerability of these sites are higher. Blephariceridae and Notonemouridae, the most thermophobic families, are likely to become locally threatened or extinct, in the absence of connectivity. The quantification of stream connectivity and vulnerability of organisms to thermal changes in river systems are important decision making tools for effective adaptive and holistic conservation planning strategies.

  14. Thermal conductivity and stability of a three-phase blend of carbon nanotubes, conductive polymer, and silver nanoparticles incorporated into polycarbonate nanocomposites

    KAUST Repository

    Patole, Archana

    2015-04-16

    Metallic and non-metallic nanofillers can be used together in the design of polycarbonate (PC) nanocomposites with improved electrical properties. Here, the preparation of three-phase blend (carbon nanotubes (CNT), silver nanoparticles, and conductive polymer) in a two-step process before incorporation in the PC is reported. First, ethylene diamine functionalized multiwall carbon nanotubes (MWCNT-EDA) were decorated with Ag nanoparticles. Next, the Ag-decorated CNTs were coated with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Due to the high thermal conductivity instrinsic to both metallic and non-metallic phases, it is expected that the thermal properties of the resulting nanocomposite would largely differ from those of pristine PC. We thus investigated in detail how this hybrid conductive blend affected properties such as the glass transition temperature, the thermal stability, and the thermal conductivity of the nanocomposite. It was found that this strategy results in improved thermal conductivity and thermal stability of the material. © 2015 Wiley Periodicals, Inc.

  15. Thermal conductivity and stability of a three-phase blend of carbon nanotubes, conductive polymer, and silver nanoparticles incorporated into polycarbonate nanocomposites

    KAUST Repository

    Patole, Archana; Ventura, Isaac Aguilar; Lubineau, Gilles

    2015-01-01

    Metallic and non-metallic nanofillers can be used together in the design of polycarbonate (PC) nanocomposites with improved electrical properties. Here, the preparation of three-phase blend (carbon nanotubes (CNT), silver nanoparticles, and conductive polymer) in a two-step process before incorporation in the PC is reported. First, ethylene diamine functionalized multiwall carbon nanotubes (MWCNT-EDA) were decorated with Ag nanoparticles. Next, the Ag-decorated CNTs were coated with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Due to the high thermal conductivity instrinsic to both metallic and non-metallic phases, it is expected that the thermal properties of the resulting nanocomposite would largely differ from those of pristine PC. We thus investigated in detail how this hybrid conductive blend affected properties such as the glass transition temperature, the thermal stability, and the thermal conductivity of the nanocomposite. It was found that this strategy results in improved thermal conductivity and thermal stability of the material. © 2015 Wiley Periodicals, Inc.

  16. Incorporation of low energy activated nitrogen onto HOPG surface: Chemical states and thermal stability studies by in-situ XPS and Raman spectroscopy

    Science.gov (United States)

    Chandran, Maneesh; Shasha, Michal; Michaelson, Shaul; Hoffman, Alon

    2016-09-01

    In this paper we report the chemical states analysis of activated nitrogen incorporated highly oriented pyrolytic graphite (HOPG) surface under well-controlled conditions. Nitrogen incorporation is carried out by two different processes: an indirect RF nitrogen plasma and low energy (1 keV) N2+ implantation. Bonding configuration, concentration and thermal stability of the incorporated nitrogen species by aforesaid processes are systematically compared by in-situ X-ray photoelectron spectroscopy (XPS). Relatively large concentration of nitrogen is incorporated onto RF nitride HOPG surface (16.2 at.%), compared to N2+ implanted HOPG surface (7.7 at.%). The evolution of N 1s components (N1, N2, N3) with annealing temperature is comprehensively discussed, which indicates that the formation and reorganization of local chemical bonding states are determined by the process of nitridation and not by the prior chemical conditioning (i.e., amorphization or hydrogenation) of the HOPG surface. A combined XPS and Raman spectroscopy studies revealed that N2+ implantation process resulted in a high level of defects to the HOPG surface, which cannot be annealed-out by heat treatment up to 1000 °C. On the other hand, the RF nitrogen plasma process did not produce a high level of surface defects, while incorporating nearly the same amount of stable nitrogen species.

  17. Thermal oxidation of seeds for the hydrothermal growth of WO3 nanorods on ITO glass substrate

    International Nuclear Information System (INIS)

    Ng, Chai Yan; Abdul Razak, Khairunisak; Lockman, Zainovia

    2015-01-01

    This work reports a simple seed formation method for the hydrothermal growth of tungsten oxide (WO 3 ) nanorods. A WO 3 seed layer was prepared by thermal oxidation, where a W-sputtered substrate was heated and oxidized in a furnace. Oxidation temperatures and periods were varied at 400–550 °C and 5–60 min, respectively, to determine an appropriate seed layer for nanorod growth. Thermal oxidation at 500 °C for 15 min was found to produce a seed layer with sufficient crystallinity and good adhesion to the substrate. These properties prevented the seed from peeling off during the hydrothermal process, thereby allowing nanorod growth on the seed. The nanorod film showed better electrochromic behavior (higher current density of − 1.11 and + 0.65 mA cm −2 ) than compact film (lower current density of − 0.54 and + 0.28 mA cm −2 ). - Highlights: • A simple seed formation method (thermal oxidation) on sputtered W film is reported. • Crystalline seed with good adhesion to substrate is required for nanorod growth. • The appropriate temperature and period for seed formation were 500 °C and 15 min. • WO 3 nanorods exhibited higher electrochromic current density than WO 3 compact film.

  18. Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance.

    Science.gov (United States)

    Ping, Linquan; Hou, Peng-Xiang; Liu, Chang; Li, Jincheng; Zhao, Yang; Zhang, Feng; Ma, Chaoqun; Tai, Kaiping; Cong, Hongtao; Cheng, Hui-Ming

    2017-06-22

    A vertically aligned carbon nanotube (VACNT) array is a promising candidate for a high-performance thermal interface material in high-power microprocessors due to its excellent thermal transport property. However, its rough and entangled free tips always cause poor interfacial contact, which results in serious contact resistance dominating the total thermal resistance. Here, we employed a thin carbon cover to restrain the disorderly growth of the free tips of a VACNT array. As a result, all the free tips are seamlessly connected by this thin carbon cover and the top surface of the array is smoothed. This unique structure guarantees the participation of all the carbon nanotubes in the array in the heat transport. Consequently the VACNT array grown on a Cu substrate shows a record low thermal resistance of 0.8 mm 2 K W -1 including the two-sided contact resistances, which is 4 times lower than the best result previously reported. Remarkably, the VACNT array can be easily peeled away from the Cu substrate and act as a thermal pad with excellent flexibility, adhesive ability and heat transport capability. As a result the CNT array with a thin carbon cover shows great potential for use as a high-performance flexible thermal interface material.

  19. Incorporation of diffusion-weighted magnetic resonance imaging data into a simple mathematical model of tumor growth

    International Nuclear Information System (INIS)

    Atuegwu, N C; Colvin, D C; Loveless, M E; Gore, J C; Yankeelov, T E; Xu, L

    2012-01-01

    We build on previous work to show how serial diffusion-weighted MRI (DW-MRI) data can be used to estimate proliferation rates in a rat model of brain cancer. Thirteen rats were inoculated intracranially with 9L tumor cells; eight rats were treated with the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea and five rats were untreated controls. All animals underwent DW-MRI immediately before, one day and three days after treatment. Values of the apparent diffusion coefficient (ADC) were calculated from the DW-MRI data and then used to estimate the number of cells in each voxel and also for whole tumor regions of interest. The data from the first two imaging time points were then used to estimate the proliferation rate of each tumor. The proliferation rates were used to predict the number of tumor cells at day three, and this was correlated with the corresponding experimental data. The voxel-by-voxel analysis yielded Pearson's correlation coefficients ranging from −0.06 to 0.65, whereas the region of interest analysis provided Pearson's and concordance correlation coefficients of 0.88 and 0.80, respectively. Additionally, the ratio of positive to negative proliferation values was used to separate the treated and control animals (p <0.05) at an earlier point than the mean ADC values. These results further illustrate how quantitative measurements of tumor state obtained non-invasively by imaging can be incorporated into mathematical models that predict tumor growth. (paper)

  20. Nanostructured gold microelectrodes for SERS and EIS measurements by incorporating ZnO nanorod growth with electroplating

    Science.gov (United States)

    Zong, Xianli; Zhu, Rong; Guo, Xiaoliang

    2015-01-01

    In this paper, a fine gold nanostructure synthesized on selective planar microelectrodes in micro-chip is realized by using an advanced hybrid fabrication approach incorporating growth of nanorods (NRs) with gold electroplating. By this developed nanostructure, integration of in-situ surface-enhanced Raman spectroscopy (SERS) detection with electrochemical impedance spectroscopy (EIS) measurement for label-free, nondestructive, real-time and rapid monitoring on a single cell has been achieved. Moreover, parameters of Au nanostructures such as size of nanoholes/nanogaps can be controllably adjusted in the fabrication. We have demonstrated a SERS enhancement factor of up to ~2.24 × 106 and double-layer impedance decrease ratio of 90% ~ 95% at low frequency range below 200 kHz by using nanostructured microelectrodes. SERS detection and in-situ EIS measurement of a trapped single cell by using planar microelectrodes are realized to demonstrate the compatibility, multi-functions, high-sensitivity and simplicity of the micro-chip system. This dual function platform integrating SERS and EIS is of great significance in biological, biochemical and biomedical applications. PMID:26558325

  1. Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth. II - Processing strategies

    Science.gov (United States)

    Derby, J. J.; Brown, R. A.

    1986-01-01

    The pseudosteady-state heat transfer model developed in a previous paper is augmented with constraints for constant crystal radius and melt/solid interface deflection. Combinations of growth rate, and crucible and bottom-heater temperatures are tested as processing parameters for satisfying the constrained thermal-capillary problem over a range of melt volumes corresponding to the sequence occuring during the batchwise Czochralski growth of a small-diameter silicon crystal. The applicability of each processing strategy is judged by the range of existence of the solution, in terms of melt volume and the values of the axial and radial temperature gradients in the crystal.

  2. Thermal system design and modeling of meniscus controlled silicon growth process for solar applications

    Science.gov (United States)

    Wang, Chenlei

    The direct conversion of solar radiation to electricity by photovoltaics has a number of significant advantages as an electricity generator. That is, solar photovoltaic conversion systems tap an inexhaustible resource which is free of charge and available anywhere in the world. Roofing tile photovoltaic generation, for example, saves excess thermal heat and preserves the local heat balance. This means that a considerable reduction of thermal pollution in densely populated city areas can be attained. A semiconductor can only convert photons with the energy of the band gap with good efficiency. It is known that silicon is not at the maximum efficiency but relatively close to it. There are several main parts for the photovoltaic materials, which include, single- and poly-crystalline silicon, ribbon silicon, crystalline thin-film silicon, amorphous silicon, copper indium diselenide and related compounds, cadmium telluride, et al. In this dissertation, we focus on melt growth of the single- and poly-crystalline silicon manufactured by Czochralski (Cz) crystal growth process, and ribbon silicon produced by the edge-defined film-fed growth (EFG) process. These two methods are the most commonly used techniques for growing photovoltaic semiconductors. For each crystal growth process, we introduce the growth mechanism, growth system design, general application, and progress in the numerical simulation. Simulation results are shown for both Czochralski and EFG systems including temperature distribution of the growth system, velocity field inside the silicon melt and electromagnetic field for the EFG growth system. Magnetic field is applied on Cz system to reduce the melt convection inside crucible and this has been simulated in our numerical model. Parametric studies are performed through numerical and analytical models to investigate the relationship between heater power levels and solidification interface movement and shape. An inverse problem control scheme is developed to

  3. Thermally activated growth of lath martensite in Fe–Cr–Ni–Al stainless steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen

    2015-01-01

    The austenite to martensite transformation in a semi-austenitic stainless steel containing 17 wt-%Cr, 7 wt-%Ni and 1 wt-%Al was investigated with vibrating sample magnetometry and electron backscatter diffraction. Magnetometry demonstrated that, within experimental accuracy, martensite formation...... can be suppressed on fast cooling to 77 K as well as on subsequent fast heating to 373 K. Surprisingly, martensite formation was observed during moderate heating from 77 K, instead. Electron backscatter diffraction demonstrated that the morphology of martensite is lath type. The kinetics...... of the transformation is interpreted in terms of athermal nucleation of lath martensite followed by thermally activated growth. It is anticipated that substantial autocatalytic martensite formation occurs during thermally activated growth. The observation of a retardation of the transformation followed by a new...

  4. The growth, spectral and thermal properties of the coordination compound crystal-strontium malate

    International Nuclear Information System (INIS)

    Jini, T.; Saban, K.V.; Varghese, G.

    2006-01-01

    Growth of single crystals of the title compound Sr(C 4 H 4 O 5 ).3H 2 O is achieved using the gel diffusion technique. Multifaceted single crystals of size up to 4x3x3 mm 3 are obtained. X-Ray Diffraction (XRD) pattern of the grown crystal and the Fourier Transform Infra-Red (FTIR) spectrum in the range 400-4000 cm -1 are recorded. The vibrational bands corresponding to different functional groups are assigned. Thermal behavior of the material is investigated using Thermo Gravimetry (TG) and Differential Thermal Analysis (DTA). Thermal studies are indicative of a five-stage decomposition scheme. copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim. (orig.)

  5. Dendrimer-assisted controlled growth of carbon nanotubes for enhanced thermal interface conductance

    International Nuclear Information System (INIS)

    Amama, Placidus B; Cola, Baratunde A; Sands, Timothy D; Xu, Xianfan; Fisher, Timothy S

    2007-01-01

    Multi-walled carbon nanotubes (MWCNTs) with systematically varied diameter distributions and defect densities were reproducibly grown from a modified catalyst structure templated in an amine-terminated fourth-generation poly(amidoamine) (PAMAM) dendrimer by microwave plasma-enhanced chemical vapor deposition. Thermal interface resistances of the vertically oriented MWCNT arrays as determined by a photoacoustic technique reveal a strong correlation with the quality as assessed by Raman spectroscopy. This study contributes not only to the development of an active catalyst via a wet chemical route for structure-controlled MWCNT growth, but also to the development of efficient and low-cost MWCNT-based thermal interface materials with thermal interface resistances ≤10 mm 2 K W -1

  6. Thermal stability, thermal expansion and grain-growth in exchange-coupled Fe-Pt-Ag-B bulk nanocomposite magnets

    International Nuclear Information System (INIS)

    Nicula, R.; Crisan, O.; Crisan, A.D.; Mercioniu, I.; Stir, M.; Vasiliu, F.

    2015-01-01

    Highlights: • Formation of the L10 FePt hard-magnetic phase (>90%) directly in the as-cast state. • Specific alternating hard/soft nanostructure is stable to 600 °C without grain growth. • Anisotropic and non-linear thermal expansion effects. • The FePtAgB alloy behaves like a single magnetic phase (full exchange coupling). - Abstract: Rare-earth free (RE-free) exchange coupling nanocomposite magnets are intensively studied nowadays due to their potential use in applications demanding stable high-temperature operation and corrosion resistance. In this respect, the FePt alloy system is one of the most actively addressed potential permanent magnet solutions. In FePt alloys, promising magnetic features arise from the co-existence of hard magnetic L1 0 FePt and soft magnetic L1 2 Fe 3 Pt phases emerged from the same metastable precursor. The present work deals with an in-situ temperature-resolved synchrotron radiation study of the thermal stability, thermal expansion and microstructure evolution in exchange-coupled FePtAgB alloys. The as-cast microstructural state as well as the optimized magnetic behavior are given as reference and correlated to the observed microstructural evolution with temperature. The melt-spun Fe 48 Pt 28 Ag 6 B 18 alloy ribbons were examined in situ by synchrotron X-ray powder diffraction from ambient temperature up to 600 °C. The FePt-Fe 3 Pt exchange-coupled microstructure achieved by rapid solidification is not significantly altered during the high temperature exposure. The thermal expansion of the FePt L1 0 unit cell has been found to be strongly anisotropic, being essentially an in-plane expansion which may be seen as an anisotropic invar effect. For the FePt L1 0 phase, a significant deviation from linear thermal expansion is observed at the Curie temperature T C = 477 °C. This non-linear behavior above T C is tentatively linked to a diffusion/segregation mechanism of Ag. The promising hard magnetic properties as well as the

  7. Unraveling the role of SiC or Si substrates in water vapor incorporation in SiO 2 films thermally grown using ion beam analyses

    Science.gov (United States)

    Corrêa, S. A.; Soares, G. V.; Radtke, C.; Stedile, F. C.

    2012-02-01

    The incorporation of water vapor in SiO 2 films thermally grown on 6H-SiC(0 0 0 1) and on Si (0 0 1) was investigated using nuclear reaction analyses. Water isotopically enriched in deuterium ( 2H or D) and in 18O was used. The dependence of incorporated D with the water annealing temperature and initial oxide thickness were inspected. The D amount in SiO 2/SiC structures increases continuously with temperature and with initial oxide thickness, being incorporated in the surface, bulk, and interface regions of SiO 2 films. However, in SiO 2/Si, D is observed mostly in near-surface regions of the oxide and no remarkable dependence with temperature or initial oxide thickness was observed. At any annealing temperature, oxygen from water vapor was incorporated in all depths of the oxide films grown on SiC, in contrast with the SiO 2/Si.

  8. Ranking procedure based on mechanical, durability and thermal behavior of mortars with incorporation of phase change materials

    Directory of Open Access Journals (Sweden)

    Cunha, S.

    2015-12-01

    Full Text Available Nowadays, considering the high variety of construction products, adequate material selection, based on their properties and function, becomes increasingly important. In this research, a ranking procedure developed by Czarnecki and Lukowski is applied in mortars with incorporation of phase change materials (PCM. The ranking procedure transforms experimental results of properties into one numerical value. The products can be classified according to their individual properties or even an optimized combination of different properties. The main purpose of this study was the ranking of mortars with incorporation of different contents of PCM based in different binders. Aerial lime, hydraulic lime, gypsum and cement were the binders studied. For each binder, three different mortars were developed. Reference mortars, mortars with incorporation of 40% of PCM and mortars with incorporation of 40% of PCM and 1% of fibers, were tested. Results show that the incorporation of PCM in mortars changes their global performance.Actualmente, existen varios productos de construcción, siendo importante una adecuada selección, con base en sus principales propiedades y funciones. En esta investigación se aplicó un procedimiento de clasificación desarrollado por Czarnecki y Lukowski, en morteros con incorporación de materiales de cambio de fase (PCM. Este procedimiento transforma los resultados experimentales de las propiedades en un único valor numérico. Los productos se clasifican de acuerdo con sus propiedades individuales o en una combinación optimizada de diferentes propiedades. El principal objetivo de este estudio fue la clasificación de morteros basado en los diferentes aglutinantes con incorporación de diferentes cantidades de PCM. Los aglutinantes utilizados fueran la cal aérea, cal hidráulica, yeso y cemento. Para cada aglutinante se han desarrollado tres morteros, siendo morteros de referencia, con incorporación de 40% de PCM y con incorporaci

  9. Sensiprobe—a miniature thermal device incorporating Peltier technology as a diagnostic tool for studying human oesophageal sensitivity

    International Nuclear Information System (INIS)

    Reeves, J W; Birch, M J; Al-Zinaty, M; Woodland, P; Sifrim, D; Aziz, Q

    2014-01-01

    Heightened perception of gastrointestinal sensation is termed visceral hypersensitivity (VH) and is commonly observed in patients with gastrointestinal disorders. VH is thought to be a major contributory factor in oesophageal disease, particularly gastro-oesophageal reflux disease that does not respond to standard (proton pump inhibitor) treatment, and in functional heartburn. Clinical tools that can help phenotype according to the mechanism of chronic pain and thus allow targeted drug treatment (e.g. with pain modulator therapy) would be very desirable. A technique that produces repeatable and controllable thermal stimuli within the oesophagus could meet this need. The aims of this study were to develop a method for linear control of the heat stimulation in the oesophagus, to assess the reproducibility of this method, and obtain normal thermal sensitivity values in the distal and proximal oesophagus. The 7 mm diameter Peltier-based thermal device was investigated on 27 healthy subjects using a heating ramp of 0.2 °C s −1 . The pain detection threshold (PDT) temperature was recorded. To assess the reproducibility of the device, each subject underwent the procedure twice, with a minimum of two weeks between each procedure. The mean PDT temperature measured in the distal oesophagus, was 53.8 ± 2.9 °C and 53.6 ± 2.6 °C, for visits 1 and 2 respectively. The mean PDT temperature measured in the proximal oesophagus was 54.1 ± 2.4 °C and 54.0 ± 2.8 °C, for visits 1 and 2 respectively. The reproducibility of the PDT temperature in the distal and proximal oesophagus, was good (intra-class correlation >0.6). Future studies should be aimed to determine whether oesophageal thermal sensitivity can act as a biomarker of transient receptor potential vallanoid 1 upregulation. (paper)

  10. Distributed generation incorporated with the thermal generation for optimum operation of a smart grid considering forecast error

    International Nuclear Information System (INIS)

    Howlader, Harun Or Rashid; Matayoshi, Hidehito; Senjyu, Tomonobu

    2015-01-01

    Highlights: • Optimal operation of the thermal generation for the smart grid system. • Different distributed generations are considered as the power generation sources. • Forecast error of the renewable energy systems is considered. • Controllable loads of the smart houses are considered to achieve the optimal operation. • Economical benefits can be achieved for the smart grid system. - Abstract: This paper concentrates on the optimal operation of the conventional thermal generators with distributed generations for a smart grid considering forecast error. The distributed generations are considered as wind generators, photovoltaic generators, battery energy storage systems in the supply side and a large number of smart houses in the demand side. A smart house consists of the electric vehicle, heat pump, photovoltaic generator and solar collector. The electric vehicle and heat pump are considered as the controllable loads which can compensate the power for the forecast error of renewable energy sources. As a result, power generation cost of the smart grid can reduce through coordinated with distributed generations and thermal units scheduling process. The electric vehicles of the smart house are considered as the spinning reserve in the scheduling process which lead to lessen the additional operation of thermal units. Finally, obtained results of the proposed system have been compared with the conventional method. The conventional method does not consider the electric vehicle in the smart houses. The acquired results demonstrate that total power generation cost of the smart grid has been reduced by the proposed method considering forecast error. Effectiveness of the proposed method has been verified by the extensive simulation results using MATLAB® software

  11. On the Growth and Microstructure of Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Handuja Sangeeta

    2010-01-01

    Full Text Available Abstract Carbon nanotubes (CNTs were deposited on various substrates namely untreated silicon and quartz, Fe-deposited silicon and quartz, HF-treated silicon, silicon nitride-deposited silicon, copper foil, and stainless steel mesh using thermal chemical vapor deposition technique. The optimum parameters for the growth and the microstructure of the synthesized CNTs on these substrates are described. The results show that the growth of CNTs is strongly influenced by the substrate used. Vertically aligned multi-walled CNTs were found on quartz, Fe-deposited silicon and quartz, untreated silicon, and on silicon nitride-deposited silicon substrates. On the other hand, spaghetti-type growth was observed on stainless steel mesh, and no CNT growth was observed on HF-treated silicon and copper. Silicon nitride-deposited silicon substrate proved to be a promising substrate for long vertically aligned CNTs of length 110–130 μm. We present a possible growth mechanism for vertically aligned and spaghetti-type growth of CNTs based on these results.

  12. Growth and male reproduction improvement of non-thermal dielectric barrier discharge plasma treatment on chickens

    Science.gov (United States)

    Jiao Zhang, Jiao; Luong Huynh, Do; Chandimali, Nisansala; Kang, Tae Yoon; Kim, Nameun; Mok, Young Sun; Kwon, Taeho; Jeong, Dong Kee

    2018-05-01

    This study investigated whether plasma treatment of fertilized eggs before hatching could affect the growth and reproduction of chickens. Three point five-day-incubated fertilized eggs exposed to non-thermal dielectric barrier discharge plasma at 2.81 W of power for 2 min resulted in the highest growth in chickens. Plasma growth-promoting effect was regulated by the reactive oxygen species homeostasis and the improvement of energy metabolism via increasing serum hormones and adenosine triphosphate levels which were resulted from the regulation of genes involved in antioxidant defense, hormone biosynthesis and energetic metabolism. Interestingly, plasma-treated male chickens conspicuously grew faster than females. Further, aspects of male reproductive system (testosterone level and sperm quality) were improved by the plasma treatment but female reproduction (estradiol and progesterone levels, egg-laying rate and egg weight) had no significant changes. Unfortunately, offspring whose parents were the optimal plasma-treated chickens did not show any difference on growth characteristics and failed to inherit excellent growth features from their parents. Our results suggest a new method to improve the growth rate and male reproductive capacity in poultry but it is only effective in the plasma direct-treated generation.

  13. Growth form-dependent response to physical disturbance and thermal stress in Acropora corals

    Science.gov (United States)

    Muko, S.; Arakaki, S.; Nagao, M.; Sakai, Kazuhiko

    2013-03-01

    To predict the community structure in response to changing environmental conditions, it is necessary to know the species-specific reaction and relative impact strength of each disturbance. We investigated the coral communities in two sites, an exposed and a protected site, at Iriomote Island, Japan, from 2005 to 2008. During the study period, a cyclone and thermal stress were observed. All Acropora colonies, classified into four morphologies (arborescent, tabular, corymbose, and digitate), were identified and tracked through time to calculate the annual mortality and growth rate. The mortality of all Acropora colonies in the protected site was lower than that in the exposed site during the period without disturbances. Extremely higher mortality due to bleaching was observed in tabular and corymbose Acropora, compared to other growth forms, at the protected sites after thermal stress. In contrast, physical disturbance by a tropical cyclone induced the highest mortality in arborescent and digitate corals at the exposed site. Moreover, arborescent corals exhibited a remarkable decline 1 year after the tropical cyclone at the exposed site. The growth of colonies that survived coral bleaching did not decrease in the following year compared to previous year for all growth forms, but the growth of arborescent and tabular remnant corals at the exposed site declined severely after the tropical cyclone compared to previous year. The delayed mortality and lowered growth rate after the tropical cyclone were probably due to the damage caused by the tropical cyclone. These results indicate that the cyclone had a greater impact on fragile corals than expected. This study provides useful information for the evaluation of Acropora coral response to progressing global warming conditions, which are predicted to increase in frequency and intensity in the near future.

  14. Growth and structure of thermally evaporated Bi{sub 2}Te{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rogacheva, E.I., E-mail: rogacheva@kpi.kharkov.ua [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine); Budnik, A.V. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine); Dobrotvorskaya, M.V.; Fedorov, A.G.; Krivonogov, S.I.; Mateychenko, P.V. [Institute for Single Crystals of NAS of Ukraine, 60 Lenin Prospect, Kharkov 61001 (Ukraine); Nashchekina, O.N.; Sipatov, A.Yu. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine)

    2016-08-01

    The growth mechanism, microstructure, and crystal structure of the polycrystalline n-Bi{sub 2}Te{sub 3} thin films with thicknesses d = 15–350 nm, prepared by thermal evaporation in vacuum onto glass substrates, were studied. Bismuth telluride with Te excess was used as the initial material for the thin film preparation. The thin film characterization was performed using X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scan electron microscopy, and electron force microscopy. It was established that the chemical composition of the prepared films corresponded rather well to the starting material composition and the films did not contain any phases apart from Bi{sub 2}Te{sub 3}. It was shown that the grain size and the film roughness increased with increasing film thickness. The preferential growth direction changed from [00l] to [015] under increasing d. The X-ray photoelectron spectroscopy studies showed that the thickness of the oxidized surface layer did not exceed 1.5–2.0 nm and practically did not change in the process of aging at room temperature, which is in agreement with the results reported earlier for single crystals. The obtained data show that using simple and inexpensive method of thermal evaporation in vacuum and appropriate technological parameters, one can grow n-Bi{sub 2}Te{sub 3} thin films of a sufficiently high quality. - Highlights: • The polycrystalline n-Bi{sub 2}Te{sub 3} thin films were grown thermal evaporation onto glass. • The growth mechanism and film structure were studied by different structure methods. • The grain size and film roughness increased with increasing film thickness. • The growth direction changes from [00l] to [015] under film thickness increasing. • The oxidized layer thickness (1–2 nm) did not change under aging at room temperature.

  15. In Vivo Assessment of Bone Regeneration in Alginate/Bone ECM Hydrogels with Incorporated Skeletal Stem Cells and Single Growth Factors

    Science.gov (United States)

    Gothard, David; Smith, Emma L.; Kanczler, Janos M.; Black, Cameron R.; Wells, Julia A.; Roberts, Carol A.; White, Lisa J.; Qutachi, Omar; Peto, Heather; Rashidi, Hassan; Rojo, Luis; Stevens, Molly M.; El Haj, Alicia J.; Rose, Felicity R. A. J.; Shakesheff, Kevin M.; Oreffo, Richard O. C.

    2015-01-01

    The current study has investigated the use of decellularised, demineralised bone extracellular matrix (ECM) hydrogel constructs for in vivo tissue mineralisation and bone formation. Stro-1-enriched human bone marrow stromal cells were incorporated together with select growth factors including VEGF, TGF-β3, BMP-2, PTHrP and VitD3, to augment bone formation, and mixed with alginate for structural support. Growth factors were delivered through fast (non-osteogenic factors) and slow (osteogenic factors) release PLGA microparticles. Constructs of 5 mm length were implanted in vivo for 28 days within mice. Dense tissue assessed by micro-CT correlated with histologically assessed mineralised bone formation in all constructs. Exogenous growth factor addition did not enhance bone formation further compared to alginate/bone ECM (ALG/ECM) hydrogels alone. UV irradiation reduced bone formation through degradation of intrinsic growth factors within the bone ECM component and possibly also ECM cross-linking. BMP-2 and VitD3 rescued osteogenic induction. ALG/ECM hydrogels appeared highly osteoinductive and delivery of angiogenic or chondrogenic growth factors led to altered bone formation. All constructs demonstrated extensive host tissue invasion and vascularisation aiding integration and implant longevity. The proposed hydrogel system functioned without the need for growth factor incorporation or an exogenous inducible cell source. Optimal growth factor concentrations and spatiotemporal release profiles require further assessment, as the bone ECM component may suffer batch variability between donor materials. In summary, ALG/ECM hydrogels provide a versatile biomaterial scaffold for utilisation within regenerative medicine which may be tailored, ultimately, to form the tissue of choice through incorporation of select growth factors. PMID:26675008

  16. Controlled growth of gold nanoparticles in zeolite L via ion-exchange reactions and thermal reduction processes

    KAUST Repository

    Zeng, Shangjing; Ding, Shuang; Li, Shangyu; Wang, Runwei; Zhang, Zongtao

    2014-01-01

    The growth of gold nanoparticles in zeolite can be controlled using ion-exchange reactions and thermal reduction processes. We produce a number of different sizes of the gold nanoparticles with the particle size increasing with increased temperature

  17. Effects of thermal treatment on the anodic growth of tungsten oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Y., E-mail: yqchai85@gmail.com; Tam, C.W.; Beh, K.P.; Yam, F.K.; Hassan, Z.

    2015-08-03

    This work reports the investigation of the effects of thermal treatment on anodic growth tungsten oxide (WO{sub 3}). The increase of the thermal treatment temperature above 400 °C significantly influences WO{sub 3} film where high porosity structure reduces to more compact film. As-grown film is amorphous, which transforms to monoclinic/orthorhombic phase upon annealing at 300–600 °C. With the reducing of porous structure, preferential growth of (002) plane shifts to (020) plane at 600 °C with more than twentyfold increase of peak's intensity compared to the film annealed at 500 °C. Films annealed at low thermal treatment show better ion intercalation and reversibility during electrochemical measurements; however, it has larger optical band gap. Photoelectrochemical measurement reveals that film annealed at 400 °C exhibits the best photocatalytic performance among the films annealed at 300–600 °C. - Highlights: • Porosity of the WO{sub 3} reduces as annealing temperature increases above 400 °C. • As-grown film is amorphous which transforms to monoclinic/orthorhombic upon annealing. • As-grown film shows better ion intercalation in electrochemical process. • Optical band gap of WO{sub 3} reduces as the annealing temperature increases. • Film annealed at 400 °C exhibits best photocatalytic performance.

  18. Thermal Thresholds of Phytoplankton Growth in Polar Waters and Their Consequences for a Warming Polar Ocean

    KAUST Repository

    Coello-Camba, Alexandra

    2017-06-02

    Polar areas are experiencing the steepest warming rates on Earth, a trend expected to continue in the future. In these habitats, phytoplankton communities constitute the basis of the food web and their thermal tolerance may dictate how warming affects these delicate environments. Here, we compiled available data on thermal responses of phytoplankton growth in polar waters. We assembled 53 growth-vs.-temperature curves (25 from the Arctic, 28 from the Southern oceans), indicating the limited information available for these ecosystems. Half of the data from Arctic phytoplankton came from natural communities where low ambient concentrations could limit growth rates. Phytoplankton from polar waters grew faster under small temperature increases until reaching an optimum (TOPT), and slowed when temperatures increased beyond this value. This left-skewed curves were characterized by higher activation energies (Ea) for phytoplankton growth above than below the TOPT. Combining these thermal responses we obtained a community TOPT of 6.5°C (±0.2) and 5.2°C (±0.1) for Arctic and Southern Ocean phytoplankton communities, respectively. These threshold temperatures were already exceeded at 70°N during the first half of August 2013, evidenced by sea surface temperatures (SSTs, satellite data, http://www.ncdc.noaa.gov). We forecasted SSTs for the end of the twenty-first century by assuming an overall 3°C increase, equivalent to a low emission scenario. Our forecasts show that SSTs at 70°N are expected to exceed TOPT during summer by 2100, and during the first half of August at 75°N. While recent Arctic spring temperatures average 0.5°C and −0.7°C at 70°N and 75°N, respectively, they could increase to 2.8°C at 70°N and 2.2°C at 75°N as we approach 2100. Such temperature increases could lead to intense phytoplankton blooms, shortened by fast nutrient consumption. As SSTs increase, thermal thresholds for phytoplankton growth would be eventually exceeded during bloom

  19. Thermal Thresholds of Phytoplankton Growth in Polar Waters and Their Consequences for a Warming Polar Ocean

    Directory of Open Access Journals (Sweden)

    Alexandra Coello-Camba

    2017-06-01

    Full Text Available Polar areas are experiencing the steepest warming rates on Earth, a trend expected to continue in the future. In these habitats, phytoplankton communities constitute the basis of the food web and their thermal tolerance may dictate how warming affects these delicate environments. Here, we compiled available data on thermal responses of phytoplankton growth in polar waters. We assembled 53 growth-vs.-temperature curves (25 from the Arctic, 28 from the Southern oceans, indicating the limited information available for these ecosystems. Half of the data from Arctic phytoplankton came from natural communities where low ambient concentrations could limit growth rates. Phytoplankton from polar waters grew faster under small temperature increases until reaching an optimum (TOPT, and slowed when temperatures increased beyond this value. This left-skewed curves were characterized by higher activation energies (Ea for phytoplankton growth above than below the TOPT. Combining these thermal responses we obtained a community TOPT of 6.5°C (±0.2 and 5.2°C (±0.1 for Arctic and Southern Ocean phytoplankton communities, respectively. These threshold temperatures were already exceeded at 70°N during the first half of August 2013, evidenced by sea surface temperatures (SSTs, satellite data, http://www.ncdc.noaa.gov. We forecasted SSTs for the end of the twenty-first century by assuming an overall 3°C increase, equivalent to a low emission scenario. Our forecasts show that SSTs at 70°N are expected to exceed TOPT during summer by 2100, and during the first half of August at 75°N. While recent Arctic spring temperatures average 0.5°C and −0.7°C at 70°N and 75°N, respectively, they could increase to 2.8°C at 70°N and 2.2°C at 75°N as we approach 2100. Such temperature increases could lead to intense phytoplankton blooms, shortened by fast nutrient consumption. As SSTs increase, thermal thresholds for phytoplankton growth would be eventually exceeded

  20. Thermal Thresholds of Phytoplankton Growth in Polar Waters and Their Consequences for a Warming Polar Ocean

    KAUST Repository

    Coello-Camba, Alexandra; Agusti, Susana

    2017-01-01

    Polar areas are experiencing the steepest warming rates on Earth, a trend expected to continue in the future. In these habitats, phytoplankton communities constitute the basis of the food web and their thermal tolerance may dictate how warming affects these delicate environments. Here, we compiled available data on thermal responses of phytoplankton growth in polar waters. We assembled 53 growth-vs.-temperature curves (25 from the Arctic, 28 from the Southern oceans), indicating the limited information available for these ecosystems. Half of the data from Arctic phytoplankton came from natural communities where low ambient concentrations could limit growth rates. Phytoplankton from polar waters grew faster under small temperature increases until reaching an optimum (TOPT), and slowed when temperatures increased beyond this value. This left-skewed curves were characterized by higher activation energies (Ea) for phytoplankton growth above than below the TOPT. Combining these thermal responses we obtained a community TOPT of 6.5°C (±0.2) and 5.2°C (±0.1) for Arctic and Southern Ocean phytoplankton communities, respectively. These threshold temperatures were already exceeded at 70°N during the first half of August 2013, evidenced by sea surface temperatures (SSTs, satellite data, http://www.ncdc.noaa.gov). We forecasted SSTs for the end of the twenty-first century by assuming an overall 3°C increase, equivalent to a low emission scenario. Our forecasts show that SSTs at 70°N are expected to exceed TOPT during summer by 2100, and during the first half of August at 75°N. While recent Arctic spring temperatures average 0.5°C and −0.7°C at 70°N and 75°N, respectively, they could increase to 2.8°C at 70°N and 2.2°C at 75°N as we approach 2100. Such temperature increases could lead to intense phytoplankton blooms, shortened by fast nutrient consumption. As SSTs increase, thermal thresholds for phytoplankton growth would be eventually exceeded during bloom

  1. Adsorption, Desorption, Surface Diffusion, Lattice Defect Formation, and Kink Incorporation Processes of Particles on Growth Interfaces of Colloidal Crystals with Attractive Interactions

    Directory of Open Access Journals (Sweden)

    Yoshihisa Suzuki

    2016-07-01

    Full Text Available Good model systems are required in order to understand crystal growth processes because, in many cases, precise incorporation processes of atoms or molecules cannot be visualized easily at the atomic or molecular level. Using a transmission-type optical microscope, we have successfully observed in situ adsorption, desorption, surface diffusion, lattice defect formation, and kink incorporation of particles on growth interfaces of colloidal crystals of polystyrene particles in aqueous sodium polyacrylate solutions. Precise surface transportation and kink incorporation processes of the particles into the colloidal crystals with attractive interactions were observed in situ at the particle level. In particular, contrary to the conventional expectations, the diffusion of particles along steps around a two-dimensional island of the growth interface was not the main route for kink incorporation. This is probably due to the number of bonds between adsorbed particles and particles in a crystal; the number exceeds the limit at which a particle easily exchanges its position to the adjacent one along the step. We also found novel desorption processes of particles from steps to terraces, attributing them to the assistance of attractive forces from additionally adsorbing particles to the particles on the steps.

  2. Seeded growth of boron arsenide single crystals with high thermal conductivity

    Science.gov (United States)

    Tian, Fei; Song, Bai; Lv, Bing; Sun, Jingying; Huyan, Shuyuan; Wu, Qi; Mao, Jun; Ni, Yizhou; Ding, Zhiwei; Huberman, Samuel; Liu, Te-Huan; Chen, Gang; Chen, Shuo; Chu, Ching-Wu; Ren, Zhifeng

    2018-01-01

    Materials with high thermal conductivities are crucial to effectively cooling high-power-density electronic and optoelectronic devices. Recently, zinc-blende boron arsenide (BAs) has been predicted to have a very high thermal conductivity of over 2000 W m-1 K-1 at room temperature by first-principles calculations, rendering it a close competitor for diamond which holds the highest thermal conductivity among bulk materials. Experimental demonstration, however, has proved extremely challenging, especially in the preparation of large high quality single crystals. Although BAs crystals have been previously grown by chemical vapor transport (CVT), the growth process relies on spontaneous nucleation and results in small crystals with multiple grains and various defects. Here, we report a controllable CVT synthesis of large single BAs crystals (400-600 μm) by using carefully selected tiny BAs single crystals as seeds. We have obtained BAs single crystals with a thermal conductivity of 351 ± 21 W m-1 K-1 at room temperature, which is almost twice as conductive as previously reported BAs crystals. Further improvement along this direction is very likely.

  3. Atmospheric non-thermal argon-oxygen plasma for sunflower seedling growth improvement

    Science.gov (United States)

    Matra, Khanit

    2018-01-01

    Seedling growth enhancement of sunflower seeds by DC atmospheric non-thermal Ar-O2 plasma has been proposed. The plasma reactor was simply designed by the composition of multi-pin electrodes bonded on a solderable printed circuit board (PCB) anode. A stable plasma was exhibited in the non-periodical self-pulsing discharge mode during the seed treatment. The experimental results showed that non-thermal plasma treatment had a significant positive effect on the sunflower seeds. Ar-O2 mixed gas ratio, treatment time and power source voltage are the important parameters affecting growth stimulation of sunflower sprouts. In this research, the sunflower seeds treated with 3:3 liters per minute (LPM) of Ar-O2 plasma at a source voltage of 8 kV for 1 min showed the best results in stimulating the seedling growth. The results in this case showed that the dry weight and average shoot length of the sunflower sprouts were 1.79 and 2.69 times higher and heavier than those of the untreated seeds, respectively.

  4. Growth model of the pineapple guava fruit as a function of thermal time and altitude

    Directory of Open Access Journals (Sweden)

    Alfonso Parra-Coronado

    2016-09-01

    Full Text Available The growth of the pineapple guava fruit is primarily stimulated by temperature but is also influenced by other climactic factors, such as altitude. The goal of this study was to develop a growth model for the pineapple guava fruit as a function of thermal time (GDD, growing-degree day and altitude (H of the production area. Twenty trees per farm were marked in two sites in the Cundinamarca department (Colombia during the 2012 and 2014 seasons. The measurements were performed every seven days after day 96 and 99 post-anthesis until harvest in the sites of Tenjo (2,580 m.a.s.l. and San Francisco de Sales (1,800 m.a.s.l., respectively. A growth model was produced for weight as a function of fruit length and diameter as well as for the weight of the fruit as a function of GDD and H, with this last measure adjusted to a sigmoidal logistic growth model. The parameters for the regression analysis showed that the models satisfactorily predicted fruit growth for both of the sites, with a high determination coefficient. The cross-validation showed good statistical fit between the predicted and observed models; the intercept was not significantly different than zero, and the slope was statistically equal to one.

  5. Growth Stresses in Thermally Grown Oxides on Nickel-Based Single-Crystal Alloys

    Science.gov (United States)

    Rettberg, Luke H.; Laux, Britta; He, Ming Y.; Hovis, David; Heuer, Arthur H.; Pollock, Tresa M.

    2016-03-01

    Growth stresses that develop in α-Al2O3 scale that form during isothermal oxidation of three Ni-based single crystal alloys have been studied to elucidate their role in coating and substrate degradation at elevated temperatures. Piezospectroscopy measurements at room temperature indicate large room temperature compressive stresses in the oxides formed at 1255 K or 1366 K (982 °C or 1093 °C) on the alloys, ranging from a high of 4.8 GPa for René N4 at 1366 K (1093 °C) to a low of 3.8 GPa for René N5 at 1255 K (982 °C). Finite element modeling of each of these systems to account for differences in coefficients of thermal expansion of the oxide and substrate indicates growth strains in the range from 0.21 to 0.44 pct at the oxidation temperature, which is an order of magnitude higher than the growth strains measured in the oxides on intermetallic coatings that are typically applied to these superalloys. The magnitudes of the growth strains do not scale with the parabolic oxidation rate constants measured for the alloys. Significant spatial inhomogeneities in the growth stresses were observed, due to (i) the presence of dendritic segregation and (ii) large carbides in the material that locally disrupts the structure of the oxide scale. The implications of these observations for failure during cyclic oxidation, fatigue cycling, and alloy design are considered.

  6. A novel challenge test incorporating irradiation (60Co) of compost sub-samples to validate thermal lethality towards pathogenic bacteria.

    Science.gov (United States)

    Moore, John E; Watabe, Miyuki; Stewart, Andrew; Cherie Millar, B; Rao, Juluri R

    2009-01-01

    Maturing compost heaps normally attaining temperatures ranging from 55 to 65 degrees C is generally regarded to conform to recommended biological risks and sanitation standards for composts stipulated by either EU or US-EPA. Composted products derived from animal sources are further required by EU biohazard safety regulatory legislation that such composts either attain 70 degrees C for over 3h during maturation or via treatment at 70 degrees C for 1h before being considered for dispensation on land. The setting of the upper limit of thermal lethality at 70 degrees C/1h for achieving biosecurity of the animal waste composted products (e.g. pelleted fertilizer formulations) is not properly substantiated by specific validation tests, comprising a 'wipe-out' step (usually via autoclaving) followed by inoculation of a prescribed bacterium, exposure to 70 degrees C/1h and the lethality determined. Pelleted formulations of composts are not amenable for wet methods (autoclaving) for wipe-out sterilization step as this is detrimental to the pellet and compromises sample integrity. This study describes a laboratory method involving the employment of ((60)Co) irradiation 'wipe-out' step to: (a) compost sub-samples drawn from compost formulation heaps and (b) pelleted products derived from composted animal products while determining the thermal lethality of a given time/temperature (70 degrees C/1h) treatment process and by challenging the irradiated sample (not just with one bacterium but), out with 10 potential food-poisoning organisms from the bacterial genera (Campylobacter, Escherichia, Listeria, Salmonella, Yersinia) frequently detected in pig and poultry farm wastes. This challenge test on compost sub-samples can be a useful intervention ploy for 'inspection and validation' technique for composters during the compost maturity process, whose attainment of temperatures of 55-65 degrees C is presumed sufficient for attainment of sanitation. Stringent measures are further

  7. Extension of the Johnson-Mehl-Avrami-Kolmogorov theory incorporating anisotropic growth studied by Monte Carlo simulations

    NARCIS (Netherlands)

    Kooi, BJ

    An analytical theory has been developed, based on Monte Carlo (MC) simulations, describing the kinetics of isothermal phase transformations proceeding by nucleation and subsequent growth for d-1 dimensional growth in d dimensional space (with d 2 or 3). This type of growth is of interest since it is

  8. Thermal Responses of Growth and Toxin Production in Four Prorocentrum Species from the Central Red Sea

    KAUST Repository

    Aynousah, Arwa

    2017-06-01

    Harmful algae studies, in particular toxic dinoflagellates, and their response to global warming in the Red Sea are still limited. This study was aimed to be the first to characterize the identity, thermal responses and toxin production of four Prorocentrum strains isolated from the Central Red Sea, Saudi Arabia. Morphological and molecular phylogenetic analysis identified the strains as P. elegans, P. rhathymum and P. emarginatum. However, the identity of strain P. sp.6 is currently unresolved, albeit sharing close affinity with P. leve. Growth experiments showed that all species could grow at 24-32°C, but only P. sp.6 survived the 34°C treatment. The optimum temperatures (Topt) estimated from the Gaussian model corresponded to 27.17, 29.33, 26.87, and 27.64°C for P. sp.6, P. elegans, P. rhathymum and P. emarginatum, respectively. However, some discrepancy with the Topt derived from the growth performance were observed for P. elegans and P. emarginatum, as thermal responses differed from the typical Gaussian fit. The Prorocentrum species examined showed a sharp decrease after the optimum temperature resulting in very high activation energies for the fall slope, especially for P. elegans and P. emarginatum. The minimum critical temperature limit for growth was not detected within the range of temperatures examined. Subsequently, high performance liquid chromatography coupled with mass spectrometry (HPLC-MS) analysis revealed all species as non okadaic acid (OA, common toxin of the Prorocentrum genus) producers at any temperature treatment. However, other forms of toxin (i.e. fast acting toxins) not examined here could be produced. Therefore, further investigations are required. The results of this study provided significant contribution to our knowledge regarding the presence, thermal response and toxin production of four Prorocentrum species from the Central Red Sea, Saudi Arabia.

  9. Helicity, membrane incorporation, orientation and thermal stability of the large conductance mechanosensitive ion channel from E. coli

    Science.gov (United States)

    Arkin, I. T.; Sukharev, S. I.; Blount, P.; Kung, C.; Brunger, A. T.

    1998-01-01

    In this report, we present structural studies on the large conductance mechanosensitive ion channel (MscL) from E. coli in detergent micelles and lipid vesicles. Both transmission Fourier transform infrared spectroscopy and circular dichroism (CD) spectra indicate that the protein is highly helical in detergents as well as liposomes. The secondary structure of the proteins was shown to be highly resistant towards denaturation (25-95 degrees C) based on an ellipticity thermal profile. Amide H+/D+ exchange was shown to be extensive (ca. 66%), implying that two thirds of the protein are water accessible. MscL, reconstituted in oriented lipid bilayers, was shown to possess a net bilayer orientation using dichroic ratios measured by attenuated total-reflection Fourier transform infrared spectroscopy. Here, we present and discuss this initial set of structural data on this new family of ion-channel proteins.

  10. Micrometeorological and Thermal Control of Frost Flower Growth and Decay on Young Sea Ice

    DEFF Research Database (Denmark)

    Galley, Ryan J.; Else, Brent G. T.; Geilfus, Nicolas-Xavier

    2015-01-01

    -wave radiation balance at the surface. The observed crystal habits of the frost flowers were long needles, betraying their origin from the vapour phase at temperatures between -20°C and -30°C. After a night of growth, frost flowers decayed associated with increased solar radiation, a net surface radiation...... and the physical and thermal properties of the sea ice and atmosphere that form, decay and destroy frost flowers on young sea ice. Frost flower formation occurred during a high-pressure system that caused air temperatures to drop to -30°C, with relative humidity of 70% (an under saturated atmosphere), and very...

  11. Computational analysis of heat transfer, thermal stress and dislocation density during resistively Czochralski growth of germanium single crystal

    Science.gov (United States)

    Tavakoli, Mohammad Hossein; Renani, Elahe Kabiri; Honarmandnia, Mohtaram; Ezheiyan, Mahdi

    2018-02-01

    In this paper, a set of numerical simulations of fluid flow, temperature gradient, thermal stress and dislocation density for a Czochralski setup used to grow IR optical-grade Ge single crystal have been done for different stages of the growth process. A two-dimensional steady state finite element method has been applied for all calculations. The obtained numerical results reveal that the thermal field, thermal stress and dislocation structure are mainly dependent on the crystal height, heat radiation and gas flow in the growth system.

  12. Effects of photoperiod and thermal time on the growth rhythm of Pinus sylvestris seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Partanen, Jouni; Beuker, Egbert [Finnish Forest Research Inst., Punkaharju (Finland). Punkaharju Research Station

    1999-07-01

    The effects of photoperiod and thermal time and their interaction on the timing of growth cessation were examined in seedlings of Scots pine (Pinus sylvestris L.) in greenhouses with 20 deg C day and 10 deg C night temperatures combined with the natural development of the photoperiod. Sowing was repeated five times during both 1995 and 1996 using origins from different altitudes and latitudes (> 60 deg N) in Sweden and Finland. In this way, gradients in temperature sums at a nearly constant photoperiod and different photoperiods at constant temperature sums were obtained. After the first growing season the timing of growth cessation of seedlings from different origins was flexible, i.e. it was determined by the specific combinations of accumulated temperature sum and night length illustrated by fitted straight lines. The photoperiod at the site of origin was a dominant factor in determining the timing of growth cessation in origins from northern latitudes. Because of predetermined growth, the sowing date did not affect the phenology during the second growing season.

  13. Studies on the thermal and electrical properties of polyethylene oxide/polyvinyl alcohol blend by incorporating of Cesium Chloride

    Science.gov (United States)

    Ragab, H. M.

    The composites PVA/PEO filled with various concentrations of CsCl samples, which were prepared for using a solvent casting technique and studied via Fourier transform infrared spectroscopy (FTIR), ultraviolet - visible (UV-Vis), X-ray spectroscopy, Scanning electron microscopy (SEM), AC conductivity and dielectric properties to use as sensor in electronic devices. The FTIR indicated the interaction between PVA/PEO and CsCl. From data of UV. Vis. was observed band gap (Eg) reduces with addition CsCl to polymer blend. The XRD shows the degree of crystallinity (χ%) decreasing with increasing concentration of CsCl from 2.93 to 2.45. The SEM of the surface of composite PVA/PEO filled with various concentrations of CsCl in magnification 1500 times its change with compare of pure blend. From TGA was observed improvement in the thermal stability of the samples after addition of CsCl. The AC conductivity rise more rapidly with temperature and associated with activation energy Ea, for conduction and enhanced with increasing both temperature and frequency.

  14. Studies on the thermal and electrical properties of polyethylene oxide/polyvinyl alcohol blend by incorporating of Cesium Chloride

    Directory of Open Access Journals (Sweden)

    H.M. Ragab

    Full Text Available The composites PVA/PEO filled with various concentrations of CsCl samples, which were prepared for using a solvent casting technique and studied via Fourier transform infrared spectroscopy (FTIR, ultraviolet – visible (UV–Vis, X-ray spectroscopy, Scanning electron microscopy (SEM, AC conductivity and dielectric properties to use as sensor in electronic devices. The FTIR indicated the interaction between PVA/PEO and CsCl. From data of UV. Vis. was observed band gap (Eg reduces with addition CsCl to polymer blend. The XRD shows the degree of crystallinity (χ% decreasing with increasing concentration of CsCl from 2.93 to 2.45. The SEM of the surface of composite PVA/PEO filled with various concentrations of CsCl in magnification 1500 times its change with compare of pure blend. From TGA was observed improvement in the thermal stability of the samples after addition of CsCl. The AC conductivity rise more rapidly with temperature and associated with activation energy Ea, for conduction and enhanced with increasing both temperature and frequency. Keywords: PVA/PEO composite, X-ray, TGA, AC conductivity, Dielectric loss

  15. Vertically aligned carbon nanotube growth by pulsed laser deposition and thermal chemical vapor deposition methods

    International Nuclear Information System (INIS)

    Sohn, Jung Inn; Nam, Chunghee; Lee, Seonghoon

    2002-01-01

    We have grown vertically aligned carbon nanotubes on the various substrates such as a planar p-type Si(1 0 0) wafer, porous Si wafer, SiO 2 , Si 3 N 4 , Al 2 O 3 , and Cr by thermal chemical vapor deposition (CVD) at 800 deg.C, using C 2 H 2 gas as a carbon source and Fe catalyst films deposited by a pulsed laser on the substrates. The Fe films were deposited for 5 min by pulsed laser deposition (PLD). The advantage of Fe deposition by PLD over other deposition methods lies in the superior adhesion of Fe to a Si substrate due to high kinetic energies of the generated Fe species. Scanning electron microscopy (SEM) images show that vertically well-aligned carbon nanotubes are grown on Fe nanoparticles formed from the thermal annealing of the Fe film deposited by PLD on the various substrates. Atomic force microscopy (AFM) images show that the Fe film annealed at 800 deg.C is broken to Fe nanoparticles of 10-50 nm in size. We show that the appropriate density of Fe nanoparticles formed from the thermal annealing of the film deposited by PLD is crucial in growing vertically aligned carbon nanotubes. Using a PLD and a lift-off method, we developed the selective growth of carbon nanotubes on a patterned Fe-coated Si substrate

  16. Thermal fatigue crack growth on a thick wall tube containing a semi elliptical circumferential crack

    International Nuclear Information System (INIS)

    Deschanels, H.; Wakai, T.; Lacire, M.H.; Michel, B.

    2001-01-01

    In order to check the ability of the simplified assessment procedure (A16 guide) to predict fatigue crack growth, a benchmark problem was conducted. This work is carried out under the project ''agreement on the Exchange of Information and Collaboration in the field of Research and Development of Fast Breeder Reactor (FBR) between Europe (EU) and Japan''. Experimental work is conducted by PNC using Air cooled Thermal transient Test Facility (ATTF). Specimen is a thick wall tube containing a semi elliptical (3-D) circumferential crack and subjected to cyclic thermal transients. The constitutive material is the 304 austenitic stainless steel type SUS304. Due to thermal shock (650 C-300 C) the stress distribution through the wall is non-linear and well approximated using a 3 rd order polynomial. When comparing computations and tests data we observe a good agreement for the crack propagation in length. In crack depth, accurate results are obtained in the first part of the test, but on the later stage of the experiment the computations slightly underestimate the propagation (deep crack). In addition, we notice the importance of good evaluation of fracture mechanics parameters for non-linear stress distribution through the wall. At present A16 guide handbook gives stress intensity factor solutions for non-linear stress distribution through the wall. (author)

  17. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof

    Energy Technology Data Exchange (ETDEWEB)

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy, E-mail: jlundholm@smu.ca

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%–26% volumetric moisture content) and temperature (21 °C–36 °C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  18. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof

    International Nuclear Information System (INIS)

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-01-01

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%–26% volumetric moisture content) and temperature (21 °C–36 °C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  19. Incorporation of a Helical Tube Heat Transfer Model in the MARS Thermal Hydraulic Systems Analysis Code for the T/H Analyses of the SMART Reactor

    International Nuclear Information System (INIS)

    Young Jin Lee; Bub Dong Chung; Jong Chull Jo; Hho Jung Kim; Un Chul Lee

    2004-01-01

    SMART is a medium sized integral type advanced pressurized water reactor currently under development at KAERI. The steam generators of SMART are designed with helically coiled tubes and these are designed to produce superheated steam. The helical shape of the tubes can induce strong centrifugal effect on the secondary coolant as it flows inside the tubes. The presence of centrifugal effect is expected to enhance the formation of cross-sectional circulation flows within the tubes that will increase the overall heat transfer. Furthermore, the centrifugal effect is expected to enhance the moisture separation and thus make it easier to produce superheated steam. MARS is a best-estimate thermal-hydraulic systems analysis code with multi-phase, multi-dimensional analysis capability. The MARS code was produced by restructuring and merging the RELAP5 and the COBRA-TF codes. However, MARS as well as most other best-estimate systems analysis codes in current use lack the detailed models needed to describe the thermal hydraulics of helically coiled tubes. In this study, the heat transfer characteristics and relevant correlations for both the tube and shell sides of helical tubes have been investigated, and the appropriate models have been incorporated into the MARS code. The newly incorporated helical tube heat transfer package is available to the MARS users via selection of the appropriate option in the input. A performance analysis on the steam generator of SMART under full power operation was carried out using the modified MARS code. The results of the analysis indicate that there is a significant improvement in the code predictability. (authors)

  20. Urban vegetation and thermal patterns following city growth in different socio-economic contexts

    Science.gov (United States)

    Dronova, I.; Clinton, N.; Yang, J.; Radke, J.; Marx, S. S.; Gong, P.

    2015-12-01

    Urban expansion accompanied by losses of vegetated spaces and their ecological services raises significant concerns about the future of humans in metropolitan "habitats". Despite recent growth of urban studies globally, it is still not well understood how environmental effects of urbanization vary with the rate and socioeconomic context of development. Our study hypothesized that with urban development, spatial patterns of surface thermal properties and green plant cover would shift towards higher occurrence of relatively warmer and less vegetated spaces such as built-up areas, followed by losses of greener and cooler areas such as urban forests, and that these shifts would be more pronounced with higher rate of economic and/or population growth. To test these ideas, we compared 1992-2011 changes in remotely sensed patterns of green vegetation and surface temperature in three example cities that experienced peripheral growth under contrasting socio-economic context - Dallas, TX, USA, Beijing, China and Kyiv, Ukraine. To assess their transformation, we proposed a metric of thermal-vegetation angle (TVA) estimated from per-pixel proxies of vegetation greenness and surface temperature from Landsat satellite data and examined changes in TVA distributions within each city's core and two decadal zones of peripheral sprawl delineated from nighttime satellite data. We found that higher economic and population growth were coupled with more pronounced changes in TVA distributions, and more urbanized zones often exhibited higher frequencies of warmer, less green than average TVA values with novel patterns such as "cooler" clusters of building shadows. Although greener and cooler spaces generally diminished with development, they remained relatively prevalent in low-density residential areas of Dallas and peripheral zones of Kyiv with exurban subsistence farming. Overall, results indicate that the effects of modified green space and thermal patterns within growing cities

  1. Physico-chemical and mechanical characterization of in-situ forming xyloglucan gels incorporating a growth factor to promote cartilage reconstruction

    International Nuclear Information System (INIS)

    Dispenza, Clelia; Todaro, Simona; Bulone, Donatella; Sabatino, Maria Antonietta; Ghersi, Giulio; San Biagio, Pier Luigi; Lo Presti, Caterina

    2017-01-01

    The development of growth factors is very promising in the field of tissue regeneration but specifically designed formulations have to be developed in order to enable such new biological entities (NBEs). In particular, the range of therapeutic concentrations is usually very low compared to other active proteins and the confinement in the target site can be of crucial importance. In-situ forming scaffolds are very promising solutions for minimally invasive intervention in cartilage reconstruction and targeting of NBEs. In this work injectable, in-situ forming gels of a temperature responsive partially degalactosylated xyloglucan (Deg-XG) incorporating the growth factor FGF-18 are formulated and characterized. In particular, injectability and shear viscosity at room temperature, time-to-gel at body temperature, morphology and mechanical properties of gels are investigated. The highly hydrophobic growth factor is favorably incorporated and retained by the gel. Gels undergo a slow erosion process when immersed in PBS at 37 °C that opens up their porous structure. The prolonged hydrothermal treatment leads to structural rearrangements towards tougher networks with increased dynamic shear modulus. Preliminary biological evaluations confirm absence of cytotoxicity and the ability of these scaffolds to host cells and promote their proliferation. - Highlights: • In-situ forming gels incorporating a growth factor are formulated and characterized. • The gel retains the growth factor and is colonized by chondrocytes. • Mechanical properties and porosity of gels are controlled by polymer concentration. • Incubation at 37 °C increases the gel strength and opens up the porous structure.

  2. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    International Nuclear Information System (INIS)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C.

    2013-01-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  3. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    Energy Technology Data Exchange (ETDEWEB)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C. [Stuttgart Univ. (Germany). Materials Testing Inst.

    2013-07-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  4. Growth of High-Density Zinc Oxide Nanorods on Porous Silicon by Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Nurul Izni Rusli

    2012-12-01

    Full Text Available The formation of high-density zinc oxide (ZnO nanorods on porous silicon (PS substrates at growth temperatures of 600–1000 °C by a simple thermal evaporation of zinc (Zn powder in the presence of oxygen (O2 gas was systematically investigated. The high-density growth of ZnO nanorods with (0002 orientation over a large area was attributed to the rough surface of PS, which provides appropriate planes to promote deposition of Zn or ZnOx seeds as nucleation sites for the subsequent growth of ZnO nanorods. The geometrical morphologies of ZnO nanorods are determined by the ZnOx seed structures, i.e., cluster or layer structures. The flower-like hexagonal-faceted ZnO nanorods grown at 600 °C seem to be generated from the sparsely distributed ZnOx nanoclusters. Vertically aligned hexagonal-faceted ZnO nanorods grown at 800 °C may be inferred from the formation of dense arrays of ZnOx clusters. The formation of disordered ZnO nanorods formed at 1000 °C may due to the formation of a ZnOx seed layer. The growth mechanism involved has been described by a combination of self-catalyzed vapor-liquid-solid (VLS and vapor-solid (VS mechanism. The results suggest that for a more precise study on the growth of ZnO nanostructures involving the introduction of seeds, the initial seed structures must be taken into account given their significant effects.

  5. Incorporating regional growth into forecasts of greenhouse gas emissions from project-level residential and commercial development

    International Nuclear Information System (INIS)

    Rowangould, Dana; Eldridge, Melody; Niemeier, Deb

    2013-01-01

    To better understand the greenhouse gas (GHG) implications of land use planning decisions, regional planning organizations have developed tools to forecast the emissions from project-level residential and commercial development. This paper reviews the state of GHG emissions forecasting methods for project-level development. We argue that when forecasting changes in regional emissions it is important to make explicit what is assumed about a project′s effect on the population of residents and businesses in the region. We present five regional growth assumptions capturing the range of ways that project-level development might influence (i) construction and occupancy of similar developments elsewhere in a region and (ii) relocation of the initial activities that occur on-site before the project is built. We show that current forecasting tools inconsistently address the latter when they are interpreted as forecasted changes in regional emissions. Using a case study in Yolo County, California we demonstrate that forecasted changes in regional emissions are greatly affected by the regional growth assumption. In the absence of information about which regional growth assumption is accurate, we provide guidelines for selection of a conservative regional growth assumption. - Highlights: • Current tools inconsistently forecast GHG emissions from project-level development. • We outline five assumptions about how projects may affect regional growth. • Our assumptions capture a range of economic and population effects of projects. • Our case study shows that growth assumptions greatly affect regional GHG estimates. • We provide guidelines for selecting a conservative regional growth assumption

  6. Thermally controlled growth of surface nanostructures on ion-modified AIII-BV semiconductor crystals

    Science.gov (United States)

    Trynkiewicz, Elzbieta; Jany, Benedykt R.; Wrana, Dominik; Krok, Franciszek

    2018-01-01

    The primary motivation for our systematic study is to provide a comprehensive overview of the role of sample temperature on the pattern evolution of several AIII-BV semiconductor crystal (001) surfaces (i.e., InSb, InP, InAs, GaSb) in terms of their response to low-energy Ar+ ion irradiation conditions. The surface morphology and the chemical diversity of such ion-modified binary materials has been characterized by means of scanning electron microscopy (SEM). In general, all surface textures following ion irradiation exhibit transitional behavior from small islands, via vertically oriented 3D nanostructures, to smoothened surface when the sample temperature is increased. This result reinforces our conviction that the mass redistribution of adatoms along the surface plays a vital role during the formation and growth process of surface nanostructures. We would like to emphasize that this paper addresses in detail for the first time the topic of the growth kinetics of the nanostructures with regard to thermal surface diffusion, while simultaneously offering some possible approaches to supplementing previous studies and therein gaining a new insight into this complex issue. The experimental results are discussed with reference to models of the pillars growth, abutting on preferential sputtering, the self-sustained etch masking effect and the redeposition process recently proposed to elucidate the observed nanostructuring mechanism.

  7. Comparison of theoretical estimates and experimental measurements of fatigue crack growth under severe thermal shock conditions (part one - experimental observations)

    International Nuclear Information System (INIS)

    Marsh, D.; Green, D.; Parker, R.

    1984-01-01

    This paper reports the results of an experiment in which a severe thermal cycle comprising of alternate upshocks and downshocks has been applied to an axisymmetric feature with an internal, partial penetration weld and crevice. The direction of cracking and crack growth rate were observed experimentally and detailed records made of the thermal cycle. A second part to the paper, reported separately, compares a linear elastic fracture mechanics assessment of the cracking to the experimental observations

  8. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    Science.gov (United States)

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  9. Thermally induced growth of ZnO nanocrystals on mixed metal oxide surfaces.

    Science.gov (United States)

    Inayat, Alexandra; Makky, Ayman; Giraldo, Jose; Kuhnt, Andreas; Busse, Corinna; Schwieger, Wilhelm

    2014-06-23

    An in situ method for the growth of ZnO nanocrystals on Zn/Al mixed metal oxide (MMO) surfaces is presented. The key to this method is the thermal treatment of Zn/Al layered double hydroxides (Zn/Al LDHs) in the presence of nitrate anions, which results in partial demixing of the LDH/MMO structure and the subsequent crystallization of ZnO crystals on the surface of the forming MMO layers. In a first experimental series, thermal treatment of Zn/Al LDHs with different fractions of nitrate and carbonate in the interlayer space was examined by thermogravimetry coupled with mass spectrometry (TG-MS) and in situ XRD. In a second experimental series, Zn/Al LDHs with only carbonate in the interlayer space were thermally treated in the presence of different amounts of an external nitrate source (NH4NO3). All obtained Zn/Al MMO samples were analysed by electron microscopy, nitrogen physisorption and powder X-ray diffraction. The gas phase formed during nitrate decomposition turned out to be responsible for the formation of crystalline ZnO nanoparticles. Accordingly, both interlayer nitrate and the presence of ammonium nitrate led to the formation of supported ZnO nanocrystals with mean diameters between 100 and 400 nm, and both methods offer the possibility to tailor the amount and size of the ZnO crystals by means of the amount of nitrate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Rapid growth of single-layer graphene on the insulating substrates by thermal CVD

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Y. [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Dai, D.; Chen, G.X.; Yu, J.H. [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Nishimura, K. [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Advanced Nano-processing Engineering Lab, Mechanical Systems Engineering, Kogakuin University (Japan); Lin, C.-T. [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Jiang, N., E-mail: jiangnan@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhan, Z.L., E-mail: zl_zhan@sohu.com [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2015-08-15

    Highlights: • A rapid thermal CVD process has been developed to directly grow graphene on the insulating substrates. • The treating time consumed is ≈25% compared to conventional CVD procedure. • Single-layer and few-layer graphene can be formed on quartz and SiO{sub 2}/Si substrates, respectively. • The formation of thinner graphene at the interface is due to the fast precipitation rate of carbon atoms during cooling. - Abstract: The advance of CVD technique to directly grow graphene on the insulating substrates is particularly significant for further device fabrication. As graphene is catalytically grown on metal foils, the degradation of the sample properties is unavoidable during transfer of graphene on the dielectric layer. Moreover, shortening the treatment time as possible, while achieving single-layer growth of graphene, is worthy to be investigated for promoting the efficiency of mass production. Here we performed a rapid heating/cooling process to grow graphene films directly on the insulating substrates by thermal CVD. The treating time consumed is ≈25% compared to conventional CVD procedure. In addition, we found that high-quality, single-layer graphene can be formed on quartz, but on SiO{sub 2}/Si substrate only few-layer graphene can be obtained. The pronounced substrate effect is attributed to the different dewetting behavior of Ni films on the both substrates at 950 °C.

  11. Synthesis, growth, structural, optical and thermal properties of a new organic salt crystal: 3-nitroanilinium trichloroacetate

    Science.gov (United States)

    Selvakumar, E.; Chandramohan, A.; Anandha Babu, G.; Ramasamy, P.

    2014-09-01

    A new organic non-linear optical salt 3-nitroanilinium trichloroacetate has been synthesized and single crystals grown by slow solvent evaporation solution growth technique at room temperature using methanol as the solvent. The 1H and 13C Nuclear magnetic resonance spectra were recorded to establish the molecular structure of the title salt. The crystal structure of the title crystal has been determined by single crystal X-ray diffraction analysis and it belongs to monoclinic crystal system with non-centrosymmetric space group P21. Fourier transform infrared spectral study has been carried out to confirm the presence of various functional groups. The optical transmittance spectrum was recorded in the range 200-2500 nm, to find the optical transmittance window and lower cut off wavelength. The thermo gravimetric and differential thermal analyses were carried out to establish the thermal stability of the title crystal. The second harmonic generation in the title crystal was confirmed by the modified Kurtz-Perry powder test employing the Nd: YAG laser as the source for infrared radiation.

  12. Effect of thermal implying during ageing process of nanorods growth on the properties of zinc oxide nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com; Mamat, M. H., E-mail: mhmamat@salam.uitm.edu.my; Rusop, M., E-mail: rusop@salam.uitm.my [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia); Malek, M. F., E-mail: firz-solarzelle@yahoo.com; Abdullah, M. A. R., E-mail: ameerridhwan89@gmail.com; Sin, M. D., E-mail: diyana0366@johor.uitm.edu.my [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    Undoped and Sn-doped Zinc oxide (ZnO) nanostructures have been fabricated using a simple sol-gel immersion method at 95°C of growth temperature. Thermal sourced by hot plate stirrer was supplied to the solution during ageing process of nanorods growth. The results showed significant decrement in the quality of layer produced after the immersion process where the conductivity and porosity of the samples reduced significantly due to the thermal appliance. The structural properties of the samples have been characterized using field emission scanning electron microscopy (FESEM) electrical properties has been characterized using current voltage (I-V) measurement.

  13. Graphene crystal growth by thermal precipitation of focused ion beam induced deposition of carbon precursor via patterned-iron thin layers

    Directory of Open Access Journals (Sweden)

    Rius Gemma

    2014-01-01

    Full Text Available Recently, relevant advances on graphene as a building block of integrated circuits (ICs have been demonstrated. Graphene growth and device fabrication related processing has been steadily and intensively powered due to commercial interest; however, there are many challenges associated with the incorporation of graphene into commercial applications which includes challenges associated with the synthesis of this material. Specifically, the controlled deposition of single layer large single crystal graphene on arbitrary supports, is particularly challenging. Previously, we have reported the first demonstration of the transformation of focused ion beam induced deposition of carbon (FIBID-C into patterned graphitic layers by metal-assisted thermal treatment (Ni foils. In this present work, we continue exploiting the FIBID-C approach as a route for graphene deposition. Here, thin patterned Fe layers are used for the catalysis of graphenization and graphitization. We demonstrate the formation of high quality single and few layer graphene, which evidences, the possibility of using Fe as a catalyst for graphene deposition. The mechanism is understood as the minute precipitation of atomic carbon after supersaturation of some iron carbides formed under a high temperature treatment. As a consequence of the complete wetting of FIBID-C and patterned Fe layers, which enable graphene growth, the as-deposited patterns do not preserve their original shape after the thermal treatment

  14. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth did not depend on the heat transfer coefficient and only slightly depended on the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  15. Influence of Crucible Thermal Conductivity on Crystal Growth in an Industrial Directional Solidification Process for Silicon Ingots

    Directory of Open Access Journals (Sweden)

    Zaoyang Li

    2016-01-01

    Full Text Available We carried out transient global simulations of heating, melting, growing, annealing, and cooling stages for an industrial directional solidification (DS process for silicon ingots. The crucible thermal conductivity is varied in a reasonable range to investigate its influence on the global heat transfer and silicon crystal growth. It is found that the crucible plays an important role in heat transfer, and therefore its thermal conductivity can influence the crystal growth significantly in the entire DS process. Increasing the crucible thermal conductivity can shorten the time for melting of silicon feedstock and growing of silicon crystal significantly, and therefore large thermal conductivity is helpful in saving both production time and power energy. However, the high temperature gradient in the silicon ingots and the locally concave melt-crystal interface shape for large crucible thermal conductivity indicate that high thermal stress and dislocation propagation are likely to occur during both growing and annealing stages. Based on the numerical simulations, some discussions on designing and choosing the crucible thermal conductivity are presented.

  16. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth was almost the same regardless of the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  17. Hierarchical Bayesian analysis to incorporate age uncertainty in growth curve analysis and estimates of age from length: Florida manatee (Trichechus manatus) carcasses

    Science.gov (United States)

    Schwarz, L.K.; Runge, M.C.

    2009-01-01

    Age estimation of individuals is often an integral part of species management research, and a number of ageestimation techniques are commonly employed. Often, the error in these techniques is not quantified or accounted for in other analyses, particularly in growth curve models used to describe physiological responses to environment and human impacts. Also, noninvasive, quick, and inexpensive methods to estimate age are needed. This research aims to provide two Bayesian methods to (i) incorporate age uncertainty into an age-length Schnute growth model and (ii) produce a method from the growth model to estimate age from length. The methods are then employed for Florida manatee (Trichechus manatus) carcasses. After quantifying the uncertainty in the aging technique (counts of ear bone growth layers), we fit age-length data to the Schnute growth model separately by sex and season. Independent prior information about population age structure and the results of the Schnute model are then combined to estimate age from length. Results describing the age-length relationship agree with our understanding of manatee biology. The new methods allow us to estimate age, with quantified uncertainty, for 98% of collected carcasses: 36% from ear bones, 62% from length.

  18. Comment on "Experimental study of the orientation dependence of indium incorporation in GaInN" [J. Cryst. Growth 433 (2016) 7-12

    Science.gov (United States)

    Monavarian, Morteza

    2016-07-01

    The authors of the title paper (J. Cryst. Growth 433 (2016) 7-12) reported on experimental comparison of indium incorporation efficiency in wide variety of orientations tilted from the basal plane toward a-plane (a-family planes) or m-plane (m-family planes) and some mixed planes. Despite a good investigation and useful information reported in this manuscript, some points of criticism, concerning the inclination angle calculations, optical characterizations of the layers, and the final conclusions are highlighted in this comment to consider.

  19. Effect of Cu2+ ion incorporation on the phase development of ZrO2-type solid solutions during the thermal treatments

    International Nuclear Information System (INIS)

    Stefanic, Goran; Music, Svetozar; Ivanda, Mile

    2010-01-01

    The amorphous precursors of the ZrO 2 -CuO system at the ZrO 2 -rich side of the concentration range were prepared by co-precipitation from aqueous solutions of the corresponding salts. Thermal behavior of the amorphous precursors was monitored using X-ray powder diffraction, Raman spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray spectrometry, differential scanning calorimetry and thermogravimetric analysis. The crystallization temperature of the amorphous precursors rose with an increase in the CuO content for ∼180 o C. Maximum solubility of Cu 2+ ions in the ZrO 2 lattice (∼23 mol%) occurs in the metastable products obtained upon crystallization of the amorphous precursors. The results of Raman spectroscopy indicate that the incorporation of Cu 2+ ions stabilize the tetragonal ZrO 2 polymorph. A precise determination of lattice parameters, using both Rietveld and Le Bail refinements of the powder diffraction patterns, showed that the axial ratio c/a in the ZrO 2 -type solid solutions with a Cu 2+ content ≥20 mol% approach 1 (formation of t''-form of tetragonal phase). The terminal solid solubility limit of Cu 2+ ions in the ZrO 2 lattice rapidly drops with an increase in treatment temperature (up to 1000 o C) that is followed by the formation of and increase in phases structurally closely related to tenorite and monoclinic ZrO 2 . Low thermal stability of the t-ZrO 2 -type phase was attributed to the reduction of the sintering temperature in the presence of CuO and a significant difference in size and shape of zirconia and tenorite particles, which prevent surface interactions.

  20. A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment

    KAUST Repository

    Duddu, Ravindra

    2009-05-01

    We present a two-dimensional biofilm growth model in a continuum framework using an Eulerian description. A computational technique based on the eXtended Finite Element Method (XFEM) and the level set method is used to simulate the growth of the biofilm. The model considers fluid flow around the biofilm surface, the advection-diffusion and reaction of substrate, variable biomass volume fraction and erosion due to the interfacial shear stress at the biofilm-fluid interface. The key assumptions of the model and the governing equations of transport, biofilm kinetics and biofilm mechanics are presented. Our 2D biofilm growth results are in good agreement with those obtained by Picioreanu et al. (Biotechnol Bioeng 69(5):504-515, 2000). Detachment due to erosion is modeled using two continuous speed functions based on: (a) interfacial shear stress and (b) biofilm height. A relation between the two detachment models in the case of a 1D biofilm is established and simulated biofilm results with detachment in 2D are presented. The stress in the biofilm due to fluid flow is evaluated and higher stresses are observed close to the substratum where the biofilm is attached. © 2008 Wiley Periodicals, Inc.

  1. Growth and thermal oxidation of Ru and ZrO2 thin films as oxidation protective layers

    NARCIS (Netherlands)

    Coloma Ribera, R.

    2017-01-01

    This thesis focuses on the study of physical and chemical processes occurring during growth and thermal oxidation of Ru and ZrO2 thin films. Acting as oxidation resistant capping materials to prevent oxidation of layers underneath, these films have several applications, i.e., in microelectronics

  2. Controlled growth of gold nanoparticles in zeolite L via ion-exchange reactions and thermal reduction processes

    KAUST Repository

    Zeng, Shangjing

    2014-09-01

    The growth of gold nanoparticles in zeolite can be controlled using ion-exchange reactions and thermal reduction processes. We produce a number of different sizes of the gold nanoparticles with the particle size increasing with increased temperature of the final heat treatment. © 2014 Elsevier B.V.

  3. Different arsenate and phosphate incorporation effects on the nucleation and growth of iron(III) (Hydr)oxides on quartz.

    Science.gov (United States)

    Neil, Chelsea W; Lee, Byeongdu; Jun, Young-Shin

    2014-10-21

    Iron(III) (hydr)oxides play an important role in the geochemical cycling of contaminants in natural and engineered aquatic systems. The ability of iron(III) (hydr)oxides to immobilize contaminants can be related to whether the precipitates form heterogeneously (e.g., at mineral surfaces) or homogeneously in solution. Utilizing grazing incidence small-angle X-ray scattering (GISAXS), we studied heterogeneous iron(III) (hydr)oxide nucleation and growth on quartz substrates for systems containing arsenate and phosphate anions. For the iron(III) only system, the radius of gyration (Rg) of heterogeneously formed precipitates grew from 1.5 to 2.5 (± 1.0) nm within 1 h. For the system containing 10(-5) M arsenate, Rg grew from 3.6 to 6.1 (± 0.5) nm, and for the system containing 10(-5) M phosphate, Rg grew from 2.0 to 4.0 (± 0.2) nm. While the systems containing these oxyanions had more growth, the system containing only iron(III) had the most nucleation events on substrates. Ex situ analyses of homogeneously and heterogeneously formed precipitates indicated that precipitates in the arsenate system had the highest water content and that oxyanions may bridge iron(III) hydroxide polymeric embryos to form a structure similar to ferric arsenate or ferric phosphate. These new findings are important because differences in nucleation and growth rates and particle sizes will impact the number of available reactive sites and the reactivity of newly formed particles toward aqueous contaminants.

  4. Bacterial production and growth rate estimation from [3H]thymidine incorporation for attached and free-living bacteria in aquatic systems

    International Nuclear Information System (INIS)

    Iriberri, J.; Unanue, M.; Ayo, B.; Barcina, I.; Egea, L.

    1990-01-01

    Production and specific growth rates of attached and free-living bacteria were estimated in an oligotrophic marine system, La Salvaje Beach, Vizcaya, Spain, and in a freshwater system having a higher nutrient concentration, Butron River, Vizcaya, Spain. Production was calculated from [methyl- 3 H]thymidine incorporation by estimating specific conversion factors (cells or micrograms of C produced per mole of thymidine incorporated) for attached and free-living bacteria, respectively, in each system. Conversion factors were not statistically different between attached and free-living bacteria: 6.812 x 10 11 and 8.678 x 10 11 μg of C mol -1 for free-living and attached bacteria in the freshwater system, and 1.276 x 10 11 and 1.354 x 10 11 μg of C mol -1 for free-living and attached bacteria in the marine system. Therefore, use of a unique conversion factor for the mixed bacterial population is well founded. However, conversion factors were higher in the freshwater system than in the marine system. This could be due to the different tropic conditions of the two systems. Free-living bacteria contributed the most to production in the two systems (85% in the marine system and 67% in the freshwater system) because of their greater contribution to total biomass. Specific growth rates calculated from production data and biomass data were similar for attached and free-living bacteria

  5. Thermally oxidized aluminum as catalyst-support layer for vertically aligned single-walled carbon nanotube growth using ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Azam, Mohd Asyadi, E-mail: asyadi@jaist.ac.jp [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Fujiwara, Akihiko [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo, Hyogo 679-5198 (Japan); Shimoda, Tatsuya [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2011-11-01

    Characteristics and role of Al oxide (Al-O) films used as catalyst-support layer for vertical growth of single-walled carbon nanotubes (SWCNTs) were studied. EB-deposited Al films (20 nm) were thermally oxidized at 400 deg. C (10 min, static air) to produce the most appropriate surface structure of Al-O. Al-O catalyst-support layers were characterized using various analytical measurements, i.e., atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and spectroscopy ellipsometry (SE). The thermally oxidized Al-O has a highly roughened surface, and also has the most suitable surface chemical states compared to other type of Al-O support layers. We suggest that the surface of thermally oxidized Al-O characterized in this work enhanced Co catalyst activity to promote the vertically aligned SWCNT growth.

  6. A numerical study of thermal conditions in the THM growth of HgTe

    Science.gov (United States)

    Martínez-Tomás, M. C.; Muñoz-Sanjosé, V.; Reig, C.

    2002-09-01

    A numerical simulation of the travelling heater method (THM) process in the growth of HgTe is carried out. The whole system (furnace, ampoule and charge) is taken into account in the frame of a quasi-steady-state model. The mass conservation condition for the solute in the liquid zone permits the determination of the rate of advance of the crystallisation isotherm as a function of the heater position. We claim to study the evolution of different magnitudes along the growth process, searching for the physical reasons which could be at the origin of defects in the form of thin layers observed in some growing experiences. To solve the governing equations of fluid flow, heat transfer and mass transport we have made use of a commercial code which can run in a PC. The simulation is made by using a three-level strategy, which allows the reduction of the computational effort. In the first level, heat transport is assumed to be by conduction, convection and radiation between the furnace and the ampoule, and by conduction through the ampoule wall, coating, solid and liquid zones. The temperature calculated at this level in the air/ampoule boundary is used as boundary condition for the second and third level. In these two levels the ampoule and its content are studied in detail. Convection in the liquid zone is considered at the second level and thermosolutal convection is finally included at the third level. The analysis of the incoming/outcoming heat flux per second through the ampoule for the whole system shows that the lower part of the ampoule exhibits some ineffectiveness for the heat evacuation at certain positions of the growth run, depending on thermal properties of the whole system and the particular material to be grown. As a consequence, the growth rate suffers a significant variation just for these positions of the heater. From these considerations a plausible interpretation has been proposed to understand the apparition of solvent inclusions in the form of thin

  7. Thermal fatigue crack growth tests and analyses of thick wall cylinder made of Mod.9Cr–1Mo steel

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, Takashi, E-mail: wakai.takashi@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-cho Oarai, Ibaraki 3111393 (Japan); Inoue, Osamu [IX Knowledge Inc., 3-22-23 MSC Center Bldg, Kaigan Minato-ku, Tokyo 1080022 Japan (Japan); Ando, Masanori; Kobayashi, Sumio [Japan Atomic Energy Agency, 4002 Narita-cho Oarai, Ibaraki 3111393 (Japan)

    2015-12-15

    Highlights: • A thermal fatigue crack growth test was performed using Mod.9Cr–1Mo steel cylinder. • Axial/circumferential notches were machined on the inner surface of the cylinder. • Simplified analytical results were compared to the test data. • Crack length could not be predicted by the analyses because of crack conjunctions. • If there are no surface cracks, the calculations might agree with the observations. - Abstract: In Japan, the basic designing works for a demonstration plant of Japan Sodium cooled Fast Reactor (JSFR) are now conducted. JSFR is an advanced loop type reactor concept. To enhance the safety and the economic competitiveness, JSFR employs modified 9% chromium–1% molybdenum (Mod.9Cr–1Mo) steel as a material for coolant pipes and components, because the steel has both excellent high temperature strength and thermal properties. The steel has been standardized as a nuclear material in Japan Society of Mechanical Engineers (JSME) code in 2012. In JSFR pipes, demonstration of Leak Before Break (LBB) aspect is strongly expected because the safety assessment may be performed on the premise of leak rate where the LBB aspect is assured. Although the authors have already performed a series of thermal fatigue crack growth tests of austenitic stainless steel cylinders (Wakai et al., 2005), crack growth behavior in the structures made of Mod.9Cr–1Mo steel has not been investigated yet. Especially for the welded joints of Mod.9Cr–1Mo steel, “Type-IV” cracking may occur at heat affected zone (HAZ). Therefore, this study performed a series of thermal fatigue crack growth tests of thick wall cylinders made of Mod.9Cr–1Mo steel including welds, to obtain the crack growth data under cyclic thermal transients. The test results were compared to the analytical results obtained from JAEA's simplified methods (Wakai et al., 2005).

  8. Understanding the growth of micro and nano-crystalline AlN by thermal plasma process

    Science.gov (United States)

    Kanhe, Nilesh S.; Nawale, Ashok B.; Gawade, Rupesh L.; Puranik, Vedavati G.; Bhoraskar, Sudha V.; Das, Asoka K.; Mathe, Vikas L.

    2012-01-01

    We report the studies related to the growth of crystalline AlN in a DC thermal plasma reactor, operated by a transferred arc plasma torch. The reactor is capable of producing the nanoparticles of Al and AlN depending on the composition of the reacting gas. Al and AlN micro crystals are formed at the anode placed on the graphite and nano crystalline Al and AlN gets deposited on the inner surface of the plasma reactor. X-ray diffraction, Raman spectroscopy analysis, single crystal X-ray diffraction and TGA-DTA techniques are used to infer the purity of post process crystals as a hexagonal AlN. The average particle size using SEM was found to be around 30 μm. The morphology of nanoparticles of Al and AlN, nucleated by gas phase condensation in a homogeneous medium were studied by transmission electron microscopy analysis. The particle ranged in size between 15 and 80 nm in diameter. The possible growth mechanism of crystalline AlN at the anode has been explained on the basis of non-equilibrium processes in the core of the plasma and steep temperature gradient near its periphery. The gas phase species of AlN and various constituent were computed using Murphy code based on minimization of free energy. The process provides 50% yield of microcrystalline AlN and remaining of Al at anode and that of nanocrystalline h-AlN and c-Al collected from the walls of the chamber is about 33% and 67%, respectively.

  9. Oil Palm Defensin: A Thermal Stable Peptide that Restricts the Mycelial Growth of Ganoderma boninense.

    Science.gov (United States)

    Tan, Yung-Chie; Ang, Cheng-Liang; Wong, Mui-Yun; Ho, Chai-Ling

    2016-01-01

    Plant defensins are plant defence peptides that have many different biological activities, including antifungal, antimicrobial, and insecticidal activities. A cDNA (EgDFS) encoding defensin was isolated from Elaeis guineensis. The open reading frame of EgDFS contained 231 nucleotides encoding a 71-amino acid protein with a predicted molecular weight at 8.69 kDa, and a potential signal peptide. The eight highly conserved cysteine sites in plant defensins were also conserved in EgDFS. The EgDFS sequence lacking 30 amino acid residues at its N-terminus (EgDFSm) was cloned into Escherichia coli BL21 (DE3) pLysS and successfully expressed as a soluble recombinant protein. The recombinant EgDFSm was found to be a thermal stable peptide which demonstrated inhibitory activity against the growth of G. boninense possibly by inhibiting starch assimilation. The role of EgDFSm in oil palm defence system against the infection of pathogen G. boninense was discussed.

  10. Effects of constant and cyclical thermal regimes on growth and feeding of juvenile cutthroat trout of variable sizes

    Science.gov (United States)

    Meeuwig, M.H.; Dunham, J.B.; Hayes, J.P.; Vinyard, G.L.

    2004-01-01

    The effects of constant (12, 18, and 24 A?C) and cyclical (daily variation of 15a??21 and 12a??24 A?C) thermal regimes on the growth and feeding of Lahontan cutthroat trout (Oncorhynchus clarki henshawi) of variable sizes were examined. Higher constant temperatures (i.e., 24 A?C) and more variable daily temperatures (i.e., 12a??24 A?C daily cycle) negatively affected growth rates. As fish mass increased (from 0.24 to 15.52 g) the effects of different thermal regimes on mass growth became more pronounced. Following 14 days exposure to the thermal regimes, feeding rates of individual fish were assessed during acute exposure (40 min) to test temperatures of 12, 18, and 24 A?C. Feeding rate was depressed during acute exposure to 24 A?C, but was not significantly affected by the preceding thermal regime. Our results indicate that even brief daily exposure to higher temperatures (e.g., 24 A?C) can have considerable sublethal effects on cutthroat trout, and that fish size should be considered when examining the effects of temperature.

  11. The Core Mass Growth and Stellar Lifetime of Thermally Pulsing Asymptotic Giant Branch Stars

    Science.gov (United States)

    Kalirai, Jason S.; Marigo, Paola; Tremblay, Pier-Emmanuel

    2014-02-01

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M initial = 2.8-3.8 M ⊙. We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M initial = 1.6 and 2.0 M ⊙. Over this range of initial masses, stellar evolutionary models for metallicity Z initial = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M initial = 1.6 to 2.0 M ⊙. At larger masses, the core-mass growth decreases steadily to ~10% at M initial = 3.4 M ⊙, after which there is a small hint of a upturn out to M initial = 3.8 M ⊙. These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t ~ 3 Myr and E = 1.2 × 1010 L ⊙ yr for M initial ~ 2 M ⊙ (t ~ 2 Myr

  12. The core mass growth and stellar lifetime of thermally pulsing asymptotic giant branch stars

    International Nuclear Information System (INIS)

    Kalirai, Jason S.; Tremblay, Pier-Emmanuel; Marigo, Paola

    2014-01-01

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M initial = 2.8-3.8 M ☉ . We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M initial = 1.6 and 2.0 M ☉ . Over this range of initial masses, stellar evolutionary models for metallicity Z initial = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M initial = 1.6 to 2.0 M ☉ . At larger masses, the core-mass growth decreases steadily to ∼10% at M initial = 3.4 M ☉ , after which there is a small hint of a upturn out to M initial = 3.8 M ☉ . These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t ∼ 3 Myr and E = 1.2 × 10 10 L ☉ yr for M initial ∼ 2 M

  13. The core mass growth and stellar lifetime of thermally pulsing asymptotic giant branch stars

    Energy Technology Data Exchange (ETDEWEB)

    Kalirai, Jason S.; Tremblay, Pier-Emmanuel [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marigo, Paola, E-mail: jkalirai@stsci.edu, E-mail: paola.marigo@unipd.it, E-mail: ptremblay@lsw.uni-heidelberg.de [Department of Physics and Astronomy, University of Padova, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy)

    2014-02-10

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M {sub initial} = 2.8-3.8 M {sub ☉}. We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M {sub initial} = 1.6 and 2.0 M {sub ☉}. Over this range of initial masses, stellar evolutionary models for metallicity Z {sub initial} = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M {sub initial} = 1.6 to 2.0 M {sub ☉}. At larger masses, the core-mass growth decreases steadily to ∼10% at M {sub initial} = 3.4 M {sub ☉}, after which there is a small hint of a upturn out to M {sub initial} = 3.8 M {sub ☉}. These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t

  14. Thermal oxidation of seeds for the hydrothermal growth of WO{sub 3} nanorods on ITO glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Chai Yan [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Department of Mechanical and Material Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Abdul Razak, Khairunisak, E-mail: khairunisak@usm.my [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); NanoBiotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lockman, Zainovia, E-mail: zainovia@usm.my [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2015-11-30

    This work reports a simple seed formation method for the hydrothermal growth of tungsten oxide (WO{sub 3}) nanorods. A WO{sub 3} seed layer was prepared by thermal oxidation, where a W-sputtered substrate was heated and oxidized in a furnace. Oxidation temperatures and periods were varied at 400–550 °C and 5–60 min, respectively, to determine an appropriate seed layer for nanorod growth. Thermal oxidation at 500 °C for 15 min was found to produce a seed layer with sufficient crystallinity and good adhesion to the substrate. These properties prevented the seed from peeling off during the hydrothermal process, thereby allowing nanorod growth on the seed. The nanorod film showed better electrochromic behavior (higher current density of − 1.11 and + 0.65 mA cm{sup −2}) than compact film (lower current density of − 0.54 and + 0.28 mA cm{sup −2}). - Highlights: • A simple seed formation method (thermal oxidation) on sputtered W film is reported. • Crystalline seed with good adhesion to substrate is required for nanorod growth. • The appropriate temperature and period for seed formation were 500 °C and 15 min. • WO{sub 3} nanorods exhibited higher electrochromic current density than WO{sub 3} compact film.

  15. Incorporated Woodchips as a Novel Intervention to Support Plant Growth through Increased Water Holding Capacity and Nutrient Retention in Sandy Degraded Soils

    Science.gov (United States)

    Menzies, E.; Schneider, R.; Walter, T.

    2017-12-01

    According to the World Wildlife Federation's most recent Plow Print report 53 million acres of temperate, water limited, grasslands across the Great Plains have been converted to agriculture since 2009. This conversion very often begins the process of soil degradation which can lead to desertification and the necessity to convert more land to agriculture. The most common solution to this problem is improved crop efficiency to reduce conversion of grasslands to agriculture while still producing enough food for us all. We suggest that while that may be the beginning of the solution, degraded soils need to be rehabilitated and brought back into production to adequately provide food crops for the increasing population of the globe. Incorporated woodchips can be used to improve the soils' water holding capacity and nutrient (N and P) retention. In a previous study we observed an increase in the gravimetric water content and a decrease in soluble N and P losses when fertilizers were applied in liquid form in soil columns with incorporated woodchips (see attached figure). In this study we examine the availability of the retained water and nutrients to grasses to determine the extent to which this intervention might be used to reestablish plant growth in degraded sandy soils. We also begin examining the quantity of woodchips necessary to retain sufficient water and nutrients to sustain the growth of grasses over the course of a growing season. A laboratory soil column study is currently underway to examine these questions; the results of this study will be presented at the Fall Meeting.

  16. The Impacts of Thermal and Smouldering Remediation on Soil Properties Related to Rehabilitation and Plant Growth

    Science.gov (United States)

    Pape, A.; Knapp, C.; Switzer, C.

    2012-04-01

    Tens of thousands of sites worldwide are contaminated with toxic non-aqueous phase liquids (NAPLs) reducing their economic and environmental value. As a result a number of treatments involving heat and smouldering have been developed to desorb and extract or destroy these contaminants including; steam injection (treatments are efficient enough for the soil to be safe for use, but the heating may unintentionally reduce the capability of the soil to act as a growing media. To investigate the effects of elevated temperature soils samples were heated at fixed temperatures (ambient to 1000°C) for one hour or smouldered after artificial contamination. Temperatures up to 105°C resulted in very little change in soil properties but at 250°C nutrients became more available. At 500°C little organic matter or nitrogen remained in the soil and clay sized particles started to decompose and aggregate. By 1000°C total and available phosphorus were very low, cation exchange capacity had been reduced, pH had increased and the clay fraction had been completely lost. Similar changes were observed in smouldered soils with variations dependent upon remediation conditions. As a result the smouldered soils will require nutrient supplementation to facilitate plant growth. Nutrient addition will also improve the physical properties of the soil and serve to re-inoculate it with microbes, particularly if an organic source such as compost or sewage sludge is used. The soils may remain effective growing media during lower temperature treatments; however some sort of soil inoculant would also be beneficial as these temperatures are sufficient to sterilise the system, which may impact nutrient cycling. Further work involving months-long exposure to the elevated temperatures that are typical of thermal remediation would be necessary to evaluate these changes relative to treatment conditions. Using this information rehabilitation packages can be developed and tailored to specific treatments as

  17. X-ray CT monitoring of iceball growth and thermal distribution during cryosurgery

    International Nuclear Information System (INIS)

    Sandison, G.A.; Loye, M.P.; Rewcastle, J.C.; Hahn, L.J.; Saliken, J.C.; McKinnon, J.G.; Donnelly, B.J.

    1998-01-01

    X-ray CT is able to image the internal architecture of frozen tissue. Phantoms of distilled water, a saline-gelatin mixture, lard and a calf liver-gelatin suspension cooled by a plastic tube acting as a long liquid nitrogen cryoprobe were used to study the relationship between Hounsfield unit (HU) values and temperature. There is a signature change in HU value from unfrozen to completely frozen tissue. No discernible relation exists between temperature in a completely frozen tissue and its HU value for the temperature range achieved with commercial cryoprobes. However, such a relation does exist in the typically narrow region of phase change and it is this change in HU value that is the parameter of concern for quantitative monitoring of the freezing process. Calibration of temperature against change in HU value allows a limited set of isotherms to be generated in the phase change region for direct monitoring of iceball growth. The phase change temperature range, mid-phase change temperature and the absolute value of HU change from completely frozen to unfrozen tissue are shown to be sensitive to the medium. Modelling of the temperature distribution within the region of completely frozen phantom using the infinite cylinder solution to the Fourier heat equation allows the temperature history of the phantom to be predicted. A set of isotherms, generated using a combination of thermal modelling and calibrated HU values demonstrates the feasibility of routine x-ray CT assisted cryotherapy. Isotherm overlay will be a major aid to the cryosurgeon who adopts a fixed target temperature as the temperature below which there is a certainty of ablation of the diseased tissue. (author)

  18. X-ray CT monitoring of iceball growth and thermal distribution during cryosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Sandison, G.A.; Loye, M.P.; Rewcastle, J.C. [Departments of Oncology and Medical Physics, Tom Baker Cancer Centre, Calgary, Canada T2N 4N2 (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Canada T2N 2N4 (Canada); Hahn, L.J. [Department of Physics and Astronomy, University of Calgary, Calgary, Canada T2N 2N4 (Canada); Department of Diagnostic Imaging, Foothills Hospital, Calgary, Canada T2N 2T7 (Canada); Saliken, J.C. [Department of Diagnostic Imaging, Foothills Hospital, Calgary, Canada T2N 2T7 (Canada); Department of Surgery, Tom Baker Cancer Centre, Calgary, Canada T2N 4N2 (Canada); McKinnon, J.G. [Department of Surgery, Foothills Hospital, Calgary, Canada T2N 2T7 (Canada); Donnelly, B.J. [Department of Surgery, Tom Baker Cancer Centre, Calgary, Canada T2N 4N2 (Canada)

    1998-11-01

    X-ray CT is able to image the internal architecture of frozen tissue. Phantoms of distilled water, a saline-gelatin mixture, lard and a calf liver-gelatin suspension cooled by a plastic tube acting as a long liquid nitrogen cryoprobe were used to study the relationship between Hounsfield unit (HU) values and temperature. There is a signature change in HU value from unfrozen to completely frozen tissue. No discernible relation exists between temperature in a completely frozen tissue and its HU value for the temperature range achieved with commercial cryoprobes. However, such a relation does exist in the typically narrow region of phase change and it is this change in HU value that is the parameter of concern for quantitative monitoring of the freezing process. Calibration of temperature against change in HU value allows a limited set of isotherms to be generated in the phase change region for direct monitoring of iceball growth. The phase change temperature range, mid-phase change temperature and the absolute value of HU change from completely frozen to unfrozen tissue are shown to be sensitive to the medium. Modelling of the temperature distribution within the region of completely frozen phantom using the infinite cylinder solution to the Fourier heat equation allows the temperature history of the phantom to be predicted. A set of isotherms, generated using a combination of thermal modelling and calibrated HU values demonstrates the feasibility of routine x-ray CT assisted cryotherapy. Isotherm overlay will be a major aid to the cryosurgeon who adopts a fixed target temperature as the temperature below which there is a certainty of ablation of the diseased tissue. (author)

  19. Growth of thermal oxide layers on GaAs and InP in the presence of ammonium heptamolybdate

    International Nuclear Information System (INIS)

    Mittova, I.Ya.; Lavrushina, S.S.; Afonchikova, A.V.

    2004-01-01

    Processes of thermal oxidation of GaAs and InP in the presence of ammonium heptamolybdate were studied using the methods of X-ray fluorescence analysis and IR spectroscopy at temperatures 480-580 Deg C. It was ascertained that introduction of the activator into the system results in accelerated growth of layers on semiconductors due to participation of anionic component of the chemostimulator in oxidation processes. The activator is integrated into the salts formed [ru

  20. Studies on the incorporation of velvet bean (Mucuna pruriens var. utilis) as an alternative protein source in poultry feed and its effect on growth performance of broiler chickens.

    Science.gov (United States)

    Vadivel, Vellingiri; Pugalenthi, Muthiah

    2010-10-01

    The effect of replacement of soybean meal by the velvet bean meal as an alternative protein ingredient on the growth performance of broiler chickens was investigated. The raw seeds of velvet bean [Mucuna pruriens (L.) DC. var. utilis (Wall. ex Wight) Baker ex Burck], an under-utilized food legume collected from South India, was found to contain appreciable levels of crude protein (273.2 g/kg DM), lipid (60.61 g/kg DM), neutral detergent fiber (84.3 g/kg DM), and ash content (56.04 g/kg DM). Soaking in 0.2% sodium bicarbonate solution + autoclaving treatment caused a substantial reduction on the levels of various antinutritional compounds such as tannins (84%), L: -Dopa (79%), phytic acid (87%), raffinose (93%), stachyose (83%), verbascose (73%), haemagglutinating activity (84%), trypsin inhibitor activity (77%), and alpha-amylase inhibitor activity (78%) without affecting the nutritional quality of velvet bean seeds. The processed velvet bean meal was incorporated as an alternative protein source by replacing soybean meal protein at 0, 20%, 40%, 60%, 80%, and 100% levels in the broiler diets. Replacement of soybean meal protein up to 40% level, which corresponds to the inclusion of velvet bean meal up to 15.7% and 11% in the starter and finisher phase poultry feeds, respectively, exhibited better growth performance of broiler birds without any adverse effects.

  1. Characteristics of OMVPE grown GaAsBi QW lasers and impact of post-growth thermal annealing

    Science.gov (United States)

    Kim, Honghyuk; Guan, Yingxin; Babcock, Susan E.; Kuech, Thomas F.; Mawst, Luke J.

    2018-03-01

    Laser diodes employing a strain-compensated GaAs1-xBix/GaAs1-yPy single quantum well (SQW) active region were grown by organometallic vapor phase epitaxy (OMVPE). High resolution x-ray diffraction, room temperature photoluminescence, and real-time optical reflectance measurements during the OMVPE growth were used to find the optimum process window for the growth of the active region material. Systematic post-growth in situ thermal anneals of various lengths were carried out in order to investigate the impacts of thermal annealing on the laser device performance characteristics. While the lowest threshold current density was achieved after the thermal annealing for 30 min at 630 °C, a gradual decrease in the external differential quantum efficiency was observed as the annealing time increases. It was observed that the temperature sensitivities of the threshold current density increase while those of lasing wavelength and slope efficiency remain nearly constant with increasing annealing time. Z-contrast scanning transmission electron microscopic) analysis revealed inhomogeneous Bi distribution within the QW active region.

  2. Effect of the incorporation of modified purified clay with different content surfactants in the thermal and mechanical PET nanocomposites; Efeito da incorporacao de argila purificada modificada com diferentes teores de surfactantes nas propriedades termicas e mecanicas dos nanocompositos de PET

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Itamara F. [Universidade Federal da Paraiba (DEMAT/UFPB), PB (Brazil); Soares, Anna P.S.; Silva, Suedina M.L., E-mail: suedina@yahoo.com.br [Universidade Federal de Campina Grande (UEAMa/CCT/UFCG), PB (Brazil); Malta, Oscar M.L. [Universidade Federal de Pernambuco (DQF/CCEN/UFPE), PE (Brazil)

    2011-07-01

    An organically modified bentonite purified with different amounts of alkyl ammonium salts and alkyl phosphonium was used as filler in the preparation of nanocomposites of poly(ethylene terephthalate) (PET). PET/organophilic bentonite masterbatch were prepared in a Haake torque rheometer at 260° C, 60 rpm for 10min. Then, the master batch obtained were mixed with PET in quantities necessary to obtain the nominal content of 1 wt% of bentonite, a twin screw extruder counter-rotating to 275°C in all heating zones and 60 rpm. Subsequently, the mixtures were injected (Arburg All Rounder), in the form of tensile specimens (ASTM D638). The effect of incorporating this type of filler on thermal and mechanical properties of nanocomposites of PET will be investigated. The incorporation of different types of organoclay to PET resulted in intercalated nanocomposites and partially exfoliated. The intercalated morphology showed higher thermal stability. (author)

  3. Structure and wettability property of the growth and nucleation surfaces of thermally treated freestanding CVD diamond films

    Science.gov (United States)

    Pei, Xiaoqiang; Cheng, Shaoheng; Ma, Yibo; Wu, Danfeng; Liu, Junsong; Wang, Qiliang; Yang, Yizhou; Li, Hongdong

    2015-08-01

    This paper reports the surface features and wettability properties of the (1 0 0)-textured freestanding chemical vapor deposited (CVD) diamond films after thermal exposure in air at high temperature. Thermal oxidation at proper conditions eliminates selectively nanodiamonds and non-diamond carbons in the films. The growth side of the films contains (1 0 0)-oriented micrometer-sized columns, while its nucleation side is formed of nano-sized tips. The examined wettability properties of the as-treated diamond films reveal a hydrophilicity and superhydrophilicity on the growth surface and nucleation surface, respectively, which is determined by oxygen termination and geometry structure of the surface. When the surface termination is hydrogenated, the wettability of nucleation side converted from superhydrophilicity to high hydrophobicity, while the hydrophilicity of the growth side does not change significantly. The findings open a possibility for realizing freestanding diamond films having not only novel surface structures but also multifunction applications, especially proposed on the selected growth side or nucleation side in one product.

  4. Evidence of counter-gradient growth in western pond turtles (Actinemys marmorata) across thermal gradients

    Science.gov (United States)

    Snover, Melissa; Adams, Michael J.; Ashton, Donald T.; Bettaso, Jamie B.; Welsh, Hartwell H.

    2015-01-01

    Counter-gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across environmental gradients. Understanding how ectothermic species respond to changing temperatures is essential to their conservation and management due to human-altered habitats and changing climates.

  5. A Thermal Evolution Model of the Earth Including the Biosphere, Continental Growth and Mantle Hydration

    Science.gov (United States)

    Höning, D.; Spohn, T.

    2014-12-01

    By harvesting solar energy and converting it to chemical energy, photosynthetic life plays an important role in the energy budget of Earth [2]. This leads to alterations of chemical reservoirs eventually affecting the Earth's interior [4]. It further has been speculated [3] that the formation of continents may be a consequence of the evolution life. A steady state model [1] suggests that the Earth without its biosphere would evolve to a steady state with a smaller continent coverage and a dryer mantle than is observed today. We present a model including (i) parameterized thermal evolution, (ii) continental growth and destruction, and (iii) mantle water regassing and outgassing. The biosphere enhances the production rate of sediments which eventually are subducted. These sediments are assumed to (i) carry water to depth bound in stable mineral phases and (ii) have the potential to suppress shallow dewatering of the underlying sediments and crust due to their low permeability. We run a Monte Carlo simulation for various initial conditions and treat all those parameter combinations as success which result in the fraction of continental crust coverage observed for present day Earth. Finally, we simulate the evolution of an abiotic Earth using the same set of parameters but a reduced rate of continental weathering and erosion. Our results suggest that the origin and evolution of life could have stabilized the large continental surface area of the Earth and its wet mantle, leading to the relatively low mantle viscosity we observe at present. Without photosynthetic life on our planet, the Earth would be geodynamical less active due to a dryer mantle, and would have a smaller fraction of continental coverage than observed today. References[1] Höning, D., Hansen-Goos, H., Airo, A., Spohn, T., 2014. Biotic vs. abiotic Earth: A model for mantle hydration and continental coverage. Planetary and Space Science 98, 5-13. [2] Kleidon, A., 2010. Life, hierarchy, and the

  6. Thermal etching rate of GaN during MOCVD growth interruption in hydrogen and ammonia ambient determined by AlGaN/GaN superlattice structures

    Science.gov (United States)

    Zhang, Feng; Ikeda, Masao; Zhang, Shuming; Liu, Jianping; Tian, Aiqin; Wen, Pengyan; Cheng, Yang; Yang, Hui

    2017-10-01

    Thermal etching effect of GaN during growth interruption in the metalorganic chemical vapor deposition reactor was investigated in this paper. The thermal etching rate was determined by growing a series of AlGaN/GaN superlattice structures with fixed GaN growth temperature at 735 °C and various AlGaN growth temperature changing from 900 °C to 1007 °C. It was observed that the GaN layer was etched off during the growth interruption when the growth temperature ramped up to AlGaN growth temperature. The etching thickness was determined by high resolution X-ray diffractometer and the etching rate was deduced accordingly. An activation energy of 2.53 eV was obtained for the thermal etching process.

  7. Simulated juvenile salmon growth and phenology respond to altered thermal regimes and stream network shape

    Science.gov (United States)

    Context. Thermally diverse habitats may afford fish protection from climate change by providing opportunities to behaviorally optimize growing conditions. However, it is unclear what role the spatial properties of river networks will play in determining risk. Objectives. We hypot...

  8. Comments on an Analytical Thermal Agglomeration for Problems with Surface Growth

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, N. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-22

    Up until Dec 2016, the thermal agglomeration was very heuristic, and as such, difficult to define. The lack of predictability became problematic, and the current notes represent the first real attempt to systematize the specification of the agglomerated process parameters.

  9. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn–Ag–Cu/Cu solder joint during different thermal conditions

    Science.gov (United States)

    Ting Tan, Ai; Wen Tan, Ai; Yusof, Farazila

    2015-01-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn–Ag–Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided. PMID:27877786

  10. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn–Ag–Cu/Cu solder joint during different thermal conditions

    International Nuclear Information System (INIS)

    Ting Tan, Ai; Wen Tan, Ai; Yusof, Farazila

    2015-01-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn–Ag–Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided. (review)

  11. Thermal Manipulation Mid-term Broiler Chicken Embryogenesis: Effect on Muscle Growth Factors and Muscle Marker Genes

    Directory of Open Access Journals (Sweden)

    MB Al-Zghoul

    Full Text Available ABSTRACT Thermal manipulation (TM during broiler chicken embryogenesis has been shown to promote muscle development and growth. However, the molecular bases of promoting broiler muscle development and growth are not fully understood. The aim of this study was to investigate the molecular bases of muscle growth and development in broiler chickens subjected to TM. This included the investigating of the changes in mRNA expression levels of muscle marker genes, namely MyoD, myogenin, paired box transcription factor (Pax7 and proliferating cell nuclear antigen (PCNA, and muscle growth factors namely insulin-like growth factor 1 (IGF-1, myostatin and growth hormone (GH during embryogenesis and on posthatch days 10 and 28. Fertile Cobb eggs (n=1500 were divided into four groups. Eggs in the first group (control were incubated at 37.8°C and 56% RH, whereas, eggs in the second group (TM1, third group (TM2, and fourth group (TM3 were subjected to 39 ºC and 65% RH daily during embryonic days (ED 12-18 for 9, 12, and 18 hours, respectively. Body weight (BW during embryogenesis and posthatch days (1, 3, 5, 7, 14, 21, 28 and 35 was recorded. mRNA expression levels of muscle marker genes and muscle growth factor genes during ED 12, 14, 16 and 18 and on posthatch days 10 and 28 were analyzed using real-time RT-PCR. TM upregulated the mRNA expressions of muscle marker and growth factors genes. This upregulation was accompanied by improvement of body weight near and at market age.

  12. Optimized Pyroelectric Vidicon Thermal Imager. Volume II. Improper Ferroelectric Crystal Growth.

    Science.gov (United States)

    1980-09-01

    4.2.1 Apparatus .......................... 77 4.2.2 Growth from Acidic Media .................o 78 4.2.3 Hydrothermal Growth in Basic Media ...... 99...method of hydrothermal growth was examined using both acidic and basic solvents. (1) Standard Composition Our standard composition was derived from... Acid 10 Good, well formed crystals. Acrylic Acid 10 Very good, clear crystals. Glycine 10 Poor crystals. Oxalic Acid 10 Precipitation of calcium and

  13. Fractal and probability analysis of creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Mengjia; Xu, Jijin, E-mail: xujijin_1979@sjtu.edu.cn; Lu, Hao; Chen, Jieshi; Chen, Junmei; Wei, Xiao

    2015-12-30

    Graphical abstract: - Highlights: • Statistical and fractal analysis is applied to study the creep fracture surface. • The tensile residual stresses promote the initiation of creep crack. • The fractal dimension of a mixed mode fracture surface shows a wavy variation. • The fractal dimension increases with increasing intergranular fracture percentage. • Height coordinates of intergranular fracture surface fit Gaussian distribution. - Abstract: In order to clarify creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses, creep crack tests were carried out on the tension creep specimens, in which the residual stresses were generated by local remelting and cooling. Residual stresses in the specimens were measured using Synchrotron X-ray diffraction techniques. The fracture surface of the creep specimen was analyzed using statistical methods and fractal analysis. The relation between fractal dimension of the fracture surface and fracture mode of the creep specimen was discussed. Due to different fracture mechanisms, the probability density functions of the height coordinates vary with the intergranular crack percentage. Good fitting was found between Gaussian distribution and the probability function of height coordinates of the high percentage intergranular crack surface.

  14. Fractal and probability analysis of creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses

    International Nuclear Information System (INIS)

    Xu, Mengjia; Xu, Jijin; Lu, Hao; Chen, Jieshi; Chen, Junmei; Wei, Xiao

    2015-01-01

    Graphical abstract: - Highlights: • Statistical and fractal analysis is applied to study the creep fracture surface. • The tensile residual stresses promote the initiation of creep crack. • The fractal dimension of a mixed mode fracture surface shows a wavy variation. • The fractal dimension increases with increasing intergranular fracture percentage. • Height coordinates of intergranular fracture surface fit Gaussian distribution. - Abstract: In order to clarify creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses, creep crack tests were carried out on the tension creep specimens, in which the residual stresses were generated by local remelting and cooling. Residual stresses in the specimens were measured using Synchrotron X-ray diffraction techniques. The fracture surface of the creep specimen was analyzed using statistical methods and fractal analysis. The relation between fractal dimension of the fracture surface and fracture mode of the creep specimen was discussed. Due to different fracture mechanisms, the probability density functions of the height coordinates vary with the intergranular crack percentage. Good fitting was found between Gaussian distribution and the probability function of height coordinates of the high percentage intergranular crack surface.

  15. Impacts of weld residual stresses and fatigue crack growth threshold on crack arrest under high-cycle thermal fluctuations

    International Nuclear Information System (INIS)

    Taheri, Said; Julan, Emricka; Tran, Xuan-Van; Robert, Nicolas

    2017-01-01

    Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in

  16. Impacts of weld residual stresses and fatigue crack growth threshold on crack arrest under high-cycle thermal fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Said, E-mail: Said.taheri@edf.fr [EDF-LAB, IMSIA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Julan, Emricka [EDF-LAB, AMA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Tran, Xuan-Van [EDF Energy R& D UK Centre/School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom); Robert, Nicolas [EDF-DPN, UNIE, Strategic Center, Saint Denis (France)

    2017-01-15

    Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in

  17. Synthesis, growth, structural, optical, thermal, dielectric and mechanical studies of an organic guanidinium p-nitrophenolate crystal

    Science.gov (United States)

    Dhavamurthy, M.; Peramaiyan, G.; Mohan, R.

    2014-08-01

    Guanidinium p-nitrophenolate (GUNP), a novel organic compound, was synthesized and crystals were grown from methanol solution by a slow evaporation solution growth technique. A single crystal X-ray diffraction study elucidated the crystal structure of GUNP belonging to the orthorhombic crystal system with space group Pnma. Thermal studies revealed that the GUNP crystal is thermally stable up to 192 °C. The lower cut-off wavelength of GUNP was found to be 505 nm by UV-vis-NIR spectral studies. The luminescence properties of the GUNP crystal were investigated. The three independent tensor coefficients ε11, ε22 and ε33 of the dielectric permittivity were calculated. The mechanical properties of the grown crystal were studied by Vickers' microhardness hardness technique.

  18. Synthesis, growth, structural, optical, thermal, electrical and mechanical properties of hydrogen bonded organic salt crystal: Triethylammonium-3, 5-dinitrosalicylate

    Science.gov (United States)

    Rajkumar, Madhu; Chandramohan, Angannan

    2017-04-01

    Triethylammonium-3, 5-dinitrosalicylate, an organic salt was synthesized and single crystals grown by slow solvent evaporation solution growth technique using methanol as a solvent. The presence of various functional groups and mode of vibrations has been confirmed by FT-IR spectroscopic technique. The UV-vis-NIR Spectrum was recorded in the range 200-1200 nm to find optical transmittance window and lower cut off wavelength of the title crystal. The formation of the salt and the molecular structure was confirmed by NMR spectroscopic technique. Crystal system, crystalline nature, cell parameters and hydrogen bonding interactions of the grown crystal were determined by single crystal x-ray diffraction analysis. The thermal characteristics of grown crystal were analyzed by thermo gravimetric and differential thermal analyses. Dielectric studies were carried out to study the distribution of charges within the crystal. The mechanical properties of the title crystal were studied by Vicker's microhardness technique.

  19. Growth, thermal and laser properties of Yb:YxLu1−xVO4 mixed crystal

    International Nuclear Information System (INIS)

    Zhong, Degao; Teng, Bing; Kong, Weijin; Li, Jianhong; Zhang, Shiming; Li, Yuyi; Cao, Lifeng; Yang, Liting; He, Linxiang; Huang, Wanxia

    2015-01-01

    New mixed crystal of Yb: Y 0.78 Lu 0.22 VO 4 with Yb ion concentration of 0.3 at% was grown by Czochralski method. Transmission synchrotron X-ray topography implies that this mixed crystal follows a rotational growth pattern. Crystal structure of this crystal was determined by X-ray diffraction. It showed that this crystal possesses a tetragonal zircon structure (ZrSiO 4 , space group I41/amd), as YVO 4 and LuVO 4 do. Thermal properties of this crystal were characterized by measuring its specific heat, thermal expansion coefficients and thermal conductivities. The specific heat was determined to be 0.500 J g −1 K −1 at 293 K. The average linear thermal expansion coefficients were calculated to be α 11 = 1.73 × 10 −6 K −1 and α 33 = 9.43 × 10 −6 K −1 , over the temperature range of 300–777 K. The thermal conductivities were calculated to be κ 11 = 5.47 W m −1 K −1 and κ 33 = 6.64 W m −1 K −1 at 303 K. Continuous-wave (cw) laser test on Yb: Y 0.78 Lu 0.22 VO 4 was conducted at room temperature in the wavelength range of 1035.7–1048.3 nm, and a 13.5% optical-to-optical efficiency was achieved. The good thermal properties of Yb:Y 0.78 Lu 0.22 VO 4 mixed crystal and its attractive cw laser performance make it very suitable for practical applications. - Highlights: • New Yb:Y 0.78 Lu 0.22 VO 4 mixed laser crystals were grown. • The thermal expansion, thermal diffusivity and specific heat were measured. • Cw laser operation was realized at room temperature in the range of 1035.7–1048.3 nm

  20. Thermal conductivity of vertically aligned carbon nanotube arrays: Growth conditions and tube inhomogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Matthew L.; Pham, Quang N.; Saltonstall, Christopher B.; Norris, Pamela M. [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904-4746 (United States)

    2014-10-13

    The thermal conductivity of vertically aligned carbon nanotube arrays (VACNTAs) grown on silicon dioxide substrates via chemical vapor deposition is measured using a 3ω technique. For each sample, the VACNTA layer and substrate are pressed to a heating line at varying pressures to extract the sample's thermophysical properties. The nanotubes' structure is observed via transmission electron microscopy and Raman spectroscopy. The presence of hydrogen and water vapor in the fabrication process is tuned to observe the effect on measured thermal properties. The presence of iron catalyst particles within the individual nanotubes prevents the array from achieving the overall thermal conductivity anticipated based on reported measurements of individual nanotubes and the packing density.

  1. Effects of chronic thermal stress on growth performance, carcass traits, antioxidant indices and the expression of HSP70, growth hormone and superoxide dismutase genes in two broiler strains.

    Science.gov (United States)

    Roushdy, Elshimaa M; Zaglool, Asmaa W; El-Tarabany, Mahmoud S

    2018-05-01

    The objective was to investigate the effects of genetic type and the duration of chronic thermal stress (36 °C) on the growing efficiency, carcass traits, antioxidant status, and the expression of liver heat shock protein 70 (HSP70), growth hormone (GH) and superoxide dismutase (SOD) genes. Two hundred and seventy one-day-old chicks (135 male chicks of each breed; Ross 308 and Cobb 500) were used in this work. On the 21st day of age, birds were allocated randomly into 3 equal groups till the 42 days of age (CON:raised in a thermoneutral condition; HS 1 and HS 2 groups were subjected to 4 and 6 h of daily thermal stress, respectively). Regardless of genetic type, thermal stress decreased the dressing percentage in broilers when compared with the thermoneutral conditions (p = 0.039). In both broiler strains, thermal stress for 6 h (HS 2 ) increased the heterophil to lymphocyte ratio (p = 0.036) and the serum albumin, cholesterol and triglyceride levels (p = 0.023, 0.012 and 0.005, respectively) compared with the thermoneutral group. Under the thermonuteral and heat stress conditions, the Ross broiler chickens showed a significant lower serum triiodothyronine level compared with the Cobb boilers (p = 0.042). It is interesting to note that the expression of HSP70 in the liver of heat-stressed Ross broilers, either 4 or 6 h, was significantly (p = 0.002) higher than that reported in the heat-stressed Cobb broilers. In both broiler strains, the thermal stress for 6 h up-regulate the expression of SOD gene (p = 0.001), but down-regulate the expression of GH gene (p = 0.021) when compared with the CON group. In conclusion, chronic thermal stress down-regulate the mRNA expression of liver GH, concomitantly with an increase in the expression of HSP70 and SOD genes in both broiler strains. This could be useful in the identification of molecular genetic markers to assist in selecting broilers that are more tolerant to heat stress

  2. Effects of irradiation and thermal aging upon fatigue-crack growth behavior of reactor pressure boundary materials. [Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    James, L. A.

    1978-10-01

    Two processes that have the potential to produce degradation in the properties of pressure boundary materials are neutron irradiation and long-time thermal aging. This paper uses linear-elastic fracture mechanics techniques to assess the effect of these two processes upon the fatigue-crack growth behavior of a number of alloys commonly employed in reactor pressure boundaries. The materials evaluated include ferritic steels, austenitic stainless steels, and nickel-base alloys typical of those employed in a number of reactor types including water-cooled, gas-cooled, and liquid-metal-cooled designs.

  3. Dynamic analysis of crack growth and arrest in a pressure vessel subjected to thermal and pressure loading

    International Nuclear Information System (INIS)

    Brickstad, B.

    1984-01-01

    Predictions of crack arrest behaviour are performed for a cracked reactor pressure vessel under both thermal and pressure loading. The object is to compare static and dynamic calculations. The dynamic calculations are made using an explicit finite element technique where crack growth is simulated by gradual nodal release. Three different load cases and the effect of different velocity dependence on the crack propagation toughness are studied. It is found that for the analysed cases the static analysis is slightly conservative, thus justifying its use for these problems. (orig.)

  4. A Comparison of Simple Methods to Incorporate Material Temperature Dependency in the Green's Function Method for Estimating Transient Thermal Stresses in Thick-Walled Power Plant Components.

    Science.gov (United States)

    Rouse, James; Hyde, Christopher

    2016-01-06

    The threat of thermal fatigue is an increasing concern for thermal power plant operators due to the increasing tendency to adopt "two-shifting" operating procedures. Thermal plants are likely to remain part of the energy portfolio for the foreseeable future and are under societal pressures to generate in a highly flexible and efficient manner. The Green's function method offers a flexible approach to determine reference elastic solutions for transient thermal stress problems. In order to simplify integration, it is often assumed that Green's functions (derived from finite element unit temperature step solutions) are temperature independent (this is not the case due to the temperature dependency of material parameters). The present work offers a simple method to approximate a material's temperature dependency using multiple reference unit solutions and an interpolation procedure. Thermal stress histories are predicted and compared for realistic temperature cycles using distinct techniques. The proposed interpolation method generally performs as well as (if not better) than the optimum single Green's function or the previously-suggested weighting function technique (particularly for large temperature increments). Coefficients of determination are typically above 0 . 96 , and peak stress differences between true and predicted datasets are always less than 10 MPa.

  5. Impact of thermal stress on the growth, size-distribution and biomass ...

    African Journals Online (AJOL)

    This paper reports an in-vivo account of the impact of thermal stress on the biomass and sizedistribution of estuarine populations of Pachymelania aurita in Epe Lagoon, Nigeria. Off all physicochemical variables investigated only water temperature was statistically different among study stations. A total of 7626 individuals of ...

  6. Ridge augmentation using recombinant human fibroblast growth factor-2 with biodegradable gelatin sponges incorporating β-tricalcium phosphate: a preclinical study in dogs.

    Science.gov (United States)

    Hoshi, S; Akizuki, T; Matsuura, T; Ikawa, T; Kinoshita, A; Oda, S; Tabata, Y; Matsui, M; Izumi, Y

    2016-02-01

    Fibroblast growth factor-2 (FGF-2) regulates the proliferation and differentiation of osteogenic cells, resulting in the promotion of bone formation. Biodegradable gelatin sponges incorporating β-tricalcium phosphate (β-TCP) have been reported as a scaffold, which has the ability to control growth factor release, offering sufficient mechanical strength and efficient migration of mesenchymal cells. In this study, we evaluated the effects of the combined use of recombinant human FGF-2 (rhFGF-2) and gelatin/β-TCP sponge on ridge augmentation in dogs. Six male beagle dogs were used in this study. Twelve wk after tooth extraction, bilateral 10 × 5 mm (width × depth) saddle-type defects were created 3 mm apart from the mesial side of the maxillary canine. At the experimental sites, the defects were filled with gelatin/β-TCP sponge infiltrated with 0.3% rhFGF-2, whereas gelatin/β-TCP sponge infiltrated with saline was applied to the control sites. Eight wk after surgery, qualitative and quantitative analyses were performed. There were no signs of clinical inflammation at 8 wk after surgery. Histometric measurements revealed that new bone height at the experimental sites (2.98 ± 0.65 mm) was significantly greater than that at the control sites (1.56 ± 0.66 mm; p = 0.004). The total tissue height was greater at the experimental sites (6.62 ± 0.66 mm) than that at the control sites (5.95 ± 0.74 mm), although there was no statistical significant difference (p = 0.051). Cast model measurements revealed that the residual defect height at the experimental sites (2.31 ± 0.50 mm) was significantly smaller than that at the control sites (3.51 ± 0.78 mm; p = 0.012). The combined use of rhFGF-2 and gelatin/β-TCP sponge promotes ridge augmentation in canine saddle-type bone defects. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Physiological Responses, Growth Rate and Blood Metabolites Under Feed Restriction and Thermal Exposure in Kids

    Directory of Open Access Journals (Sweden)

    O.K. Hooda

    2014-05-01

    Full Text Available The study was carried out to study the cumulative effect of thermal stress and feed restriction in kids. Twelve kids of Alpine x Beetle cross were divided into two groups. Group 1 served as control and group 2 was put on restricted feeding and exposed at 40, 42 and 44oC. Body weights of both groups were similar before thermal exposure and feed restriction. Body weight of group 1 increased significantly and were higher than group 2 throughout the experiment. Body weight gain, average daily gain and feed conversion efficiency were comparable in both groups after removal of thermal stress and switching over to ad libitum feeding (42-63 days. Body weights of group 2 remained lower than group 1, the losses in body weights of group 2 could not be compensated and there was approximately 25% loss in body weight at the end of experiment. Physiological responses of group 2 were significantly lower before exposure to high temperature but increased significantly after exposure at temperature 40, 42 and 44oC and the increase was in commensurate with the increase in exposure temperature. Blood glucose, total protein, albumin and serum enzymes decreased significantly on exposure at higher temperature and differences were higher in feed restricted group. T3, T4 and cortisol concentration were similar in both groups before feed restriction and thermal stress. T3, T4 concentration decreased while cortisol concentration increased significantly after exposure to high temperature. Variations in plasma enzymes, acid phosphatase, alkaline phosphatase, SGOT and SGPT were not significant before feed restriction and thermal stress. The activities of acid phosphatase and alkaline phosphatase decreased whereas that of SGOT and SGPT increased significantly on exposure at temperature 40oC and subsequent changes at temperature 42 and 44oC were not significant. The study indicated that animals of group 2 experienced more stress as observed by significant alteration in body

  8. Growth, optical, thermal and dielectric studies of an amino acid organic nonlinear optical material: L-Alanine

    International Nuclear Information System (INIS)

    Caroline, M. Lydia; Sankar, R.; Indirani, R.M.; Vasudevan, S.

    2009-01-01

    Good transparent bulk single crystals of L-alanine (nonlinear optical material) have been grown successfully by slow cooling technique from aqueous solution at pH value of 2.0. Optically transparent crystals with dimensions 2.4 cm x 1.2 cm x 1.6 cm, were grown by optimizing the growth parameters within a growth period of 2 weeks. The crystallinity of L-alanine crystal was confirmed by the powder X-ray diffraction study and diffraction peaks are indexed. The vibrational structure of the molecule is elucidated from FTIR spectra. The thermal behaviour of the grown crystal was investigated by thermogravimetric (TG) and differential thermal analyses (DTA) techniques in a nitrogen atmosphere. The result showed that the material starts decomposing at 297 deg. C. Its optical behaviour has been examined by UV-vis spectral analysis, which shows the absence of absorbance between the wavelengths ranging from 200 to 1200 nm. The NLO property was confirmed by the powder technique of Kurtz and Perry. The dielectric behaviour of the sample was also studied for the first time

  9. Enhanced energy density and thermal conductivity in poly(fluorovinylidene-co-hexafluoropropylene) nanocomposites incorporated with boron nitride nanosheets exfoliated under assistance of hyperbranched polyethylene

    Science.gov (United States)

    Ye, Huijian; Lu, Tiemei; Xu, Chunfeng; Zhong, Mingqiang; Xu, Lixin

    2018-03-01

    Polymer dielectric film with a large dielectric constant, high energy density and enhanced thermal conductivity are of significance for the development of impulse capacitors. However, the fabrication of polymer dielectrics combining high energy density and thermal conductivity is still a challenge at the moment. Here we demonstrate the facile exfoliation of hexagonal boron nitride nanosheets (BNNSs) in common organic solvents under sonication with the assistance of hyperbranched polyethylene (HBPE). The noncovalent CH-π interactions between the nanosheets and HBPE ensure the dispersion of BNNSs in organic solvents with high concentrations, because of the highly branched chain structure of HBPE. Subsequently, the resultant BNNSs with a few defects are distributed uniformly in the poly(fluorovinylidene-co-hexafluoropropylene) (P(VDF-HFP)) nanocomposite films prepared via simple solution casting. The BNNS/P(VDF-HFP) nanocomposite exhibits outstanding dielectric properties, high energy density and high thermal conductivity. The dielectric constant of the 0.5 wt% nanocomposite film is 35.5 at 100 Hz with an energy density of 5.6 J cm-3 at 325 MV m-1 and a high charge-discharge efficiency of 79% due to the depression of the charge injection and chemical species ionization in a high field. Moreover, a thermal conductivity of 1.0 wt% nanocomposite film reaches 0.91 W·m-1 · K-1, which is 3.13 times higher than that of the fluoropolymer matrix. With dipole accumulation and orientation in the interfacial zone, lightweight, flexible BNNS/P(VDF-HFP) nanocomposite films with high charge-discharge performance and thermal conductivity, exhibit promising applications in relatively high-temperature electronics and energy storage devices.

  10. A thermal model for czochralski silicon crystal growth with an axial magnetic field

    Science.gov (United States)

    Hjellming, L. N.

    1990-07-01

    This paper presents a thermal model for molten silicon in a Czochralski crystal puller system with an applied uniform axial magnetic field. The melt depth is treated as continually decreasing, which affects the thermal environment of the melt and crystal. The radiative heat loss and the input heat flux are treated as functions of time, with a constraint placed on the heat lost to the crystal from the melt. As the melt motion reaches a steady state rapidly, the temperature and flow fields are treated as instantaneously steady at each melt depth. The heat transport is a mixture of conduction and convection, and by considering the crystal and crucible to be rotating with the same angular velocity, the flows driven by buoyancy and thermocapillarity are isolated and provide the convective heat transport in the melt for the range of magnetic field strengths 0.2 ≤ B ≤ 1.0T.

  11. Controlling Growth High Uniformity Indium Selenide (In2Se3) Nanowires via the Rapid Thermal Annealing Process at Low Temperature.

    Science.gov (United States)

    Hsu, Ya-Chu; Hung, Yu-Chen; Wang, Chiu-Yen

    2017-09-15

    High uniformity Au-catalyzed indium selenide (In 2 Se 3) nanowires are grown with the rapid thermal annealing (RTA) treatment via the vapor-liquid-solid (VLS) mechanism. The diameters of Au-catalyzed In 2 Se 3 nanowires could be controlled with varied thicknesses of Au films, and the uniformity of nanowires is improved via a fast pre-annealing rate, 100 °C/s. Comparing with the slower heating rate, 0.1 °C/s, the average diameters and distributions (standard deviation, SD) of In 2 Se 3 nanowires with and without the RTA process are 97.14 ± 22.95 nm (23.63%) and 119.06 ± 48.75 nm (40.95%), respectively. The in situ annealing TEM is used to study the effect of heating rate on the formation of Au nanoparticles from the as-deposited Au film. The results demonstrate that the average diameters and distributions of Au nanoparticles with and without the RTA process are 19.84 ± 5.96 nm (30.00%) and about 22.06 ± 9.00 nm (40.80%), respectively. It proves that the diameter size, distribution, and uniformity of Au-catalyzed In 2 Se 3 nanowires are reduced and improved via the RTA pre-treated. The systemic study could help to control the size distribution of other nanomaterials through tuning the annealing rate, temperatures of precursor, and growth substrate to control the size distribution of other nanomaterials. Graphical Abstract Rapid thermal annealing (RTA) process proved that it can uniform the size distribution of Au nanoparticles, and then it can be used to grow the high uniformity Au-catalyzed In 2 Se 3 nanowires via the vapor-liquid-solid (VLS) mechanism. Comparing with the general growth condition, the heating rate is slow, 0.1 °C/s, and the growth temperature is a relatively high growth temperature, > 650 °C. RTA pre-treated growth substrate can form smaller and uniform Au nanoparticles to react with the In 2 Se 3 vapor and produce the high uniformity In 2 Se 3 nanowires. The in situ annealing TEM is used to realize the effect of heating

  12. Selective growth of Ge nanowires by low-temperature thermal evaporation.

    Science.gov (United States)

    Sutter, Eli; Ozturk, Birol; Sutter, Peter

    2008-10-29

    High-quality single-crystalline Ge nanowires with electrical properties comparable to those of bulk Ge have been synthesized by vapor-liquid-solid growth using Au growth seeds on SiO(2)/Si(100) substrates and evaporation from solid Ge powder in a low-temperature process at crucible temperatures down to 700 °C. High nanowire growth rates at these low source temperatures have been identified as being due to sublimation of GeO from substantial amounts of GeO(2) on the powder. The Ge nanowire synthesis from GeO is highly selective at our substrate temperatures (420-500 °C), i.e., occurs only on Au vapor-liquid-solid growth seeds. For growth of nanowires of 10-20 µm length on Au particles, an upper bound of 0.5 nm Ge deposition was determined in areas of bare SiO(2)/Si substrate without Au nanoparticles.

  13. On the Fracture Toughness and Crack Growth Resistance of Bio-Inspired Thermal Spray Hybrid Composites

    Science.gov (United States)

    Resnick, Michael Murray

    Surface exploration of the Moon and Asteroids can provide important information to scientists regarding the origins of the solar-system and life . Small robots and sensor modules can enable low-cost surface exploration. In the near future, they are the main machines providing these answers. Advanced in electronics, sensors and actuators enable ever smaller platforms, with compromising functionality. However similar advances haven't taken place for power supplies and thermal control system. The lunar south pole has temperatures in the range of -100 to -150 °C. Similarly, asteroid surfaces can encounter temperatures of -150 °C. Most electronics and batteries do not work below -40 °C. An effective thermal control system is critical towards making small robots and sensors module for extreme environments feasible. In this work, the feasibility of using thermochemical storage materials as a possible thermal control solution is analyzed for small robots and sensor modules for lunar and asteroid surface environments. The presented technology will focus on using resources that is readily generated as waste product aboard a spacecraft or is available off-world through In-Situ Resource Utilization (ISRU). In this work, a sensor module for extreme environment has been designed and prototyped. Our intention is to have a network of tens or hundreds of sensor modules that can communicate and interact with each other while also gathering science data. The design contains environmental sensors like temperature sensors and IMU (containing accelerometer, gyro and magnetometer) to gather data. The sensor module would nominally contain an electrical heater and insulation. The thermal heating effect provided by this active heater is compared with the proposed technology that utilizes thermochemical storage chemicals. Our results show that a thermochemical storage-based thermal control system is feasible for use in extreme temperatures. A performance increase of 80% is predicted for

  14. Characterization of dynamic thermal control schemes and heat transfer pathways for incorporating variable emissivity electrochromic materials into a space suit heat rejection system

    Science.gov (United States)

    Massina, Christopher James

    The feasibility of conducting long duration human spaceflight missions is largely dependent on the provision of consumables such as oxygen, water, and food. In addition to meeting crew metabolic needs, water sublimation has long served as the primary heat rejection mechanism in space suits during extravehicular activity (EVA). During a single eight hour EVA, approximately 3.6 kg (8 lbm) of water is lost from the current suit. Reducing the amount of expended water during EVA is a long standing goal of space suit life support systems designers; but to date, no alternate thermal control mechanism has demonstrated the ability to completely eliminate the loss. One proposed concept is to convert the majority of a space suit's surface area into a radiator such that the local environment can be used as a radiative thermal sink for rejecting heat without mass loss. Due to natural variations in both internal (metabolic) loads and external (environmental) sink temperatures, radiative transport must be actively modulated in order to maintain an acceptable thermal balance. Here, variable emissivity electrochromic devices are examined as the primary mechanism for enabling variable heat rejection. This dissertation focuses on theoretical and empirical evaluations performed to determine the feasibility of using a full suit, variable emissivity radiator architecture for space suit thermal control. Operational envelopes are described that show where a given environment and/or metabolic load combination may or may not be supported by the evaluated thermal architecture. Key integration considerations and guidelines include determining allowable thermal environments, defining skin-to-radiator heat transfer properties, and evaluating required electrochromic performance properties. Analysis also considered the impacts of dynamic environmental changes and the architecture's extensibility to EVA on the Martian surface. At the conclusion of this work, the full suit, variable emissivity

  15. Thermal effects on growth and respiration rates of the mayfly, Dolania americana (ephemeroptera)

    International Nuclear Information System (INIS)

    Harvey, R.S.

    1975-01-01

    The mayfly Dolania Americana, common in the sand of Upper Three Runs Creek, Savannah River Plant, was studied to determine the effects of seasonal changes in temperature on population growth rates and to determine the effects of slight elevations in water temperature on respiration rates of this benthic species. Growth of the population increased with stream temperature until peak emergence of adults in June and July. There was a strong inverse correlation between body weight and respiration rates of immature nymphs. Respiration rates at 2.5, 5, and 10 0 C above ambient creekwater temperatures were not significantly higher than those measured at ambient creekwater temperatures. (auth)

  16. Influence of thermally peroxidized soybean oil on growth performance and oxidative status in growing pigs

    Science.gov (United States)

    The objective of this study was to evaluate the effect of feeding peroxidized soybean oil (SO) on growth performance and oxidative status in growing pigs. Fifty-six barrows (25.3 ± 3.3 kg initial BW) were randomly assigned to one of four diets containing either 10% fresh SO (22.5 C) or SO exposed to...

  17. Growth

    Science.gov (United States)

    John R. Jones; George A. Schier

    1985-01-01

    This chapter considers aspen growth as a process, and discusses some characteristics of the growth and development of trees and stands. For the most part, factors affecting growth are discussed elsewhere, particularly in the GENETICS AND VARIATION chapter and in chapters in PART 11. ECOLOGY. Aspen growth as it relates to wood production is examined in the WOOD RESOURCE...

  18. Growth and Characterization of Indium Doped ZnO Nano wires Using Thermal Evaporation Method

    International Nuclear Information System (INIS)

    Abrar Ismardi; Dee, C.F.; Majlis, B.Y.

    2011-01-01

    Indium doped ZnO nano wires were grown on silicon substrate using vapor thermal deposition method without using any catalyst. Morphological structures were extensively investigated using field emission scanning electron microscopy (FESEM) and show that the nano wires have uniformly hexagonal nano structures with diameters less than 100 nm and lengths from one to a few microns. The sample was measured for elemental composition with energy dispersive X-ray (EDX) spectroscopy, Zn, In and O elements were found on the sample. XRD spectrum of indium doped ZnO nano wires revealed that the nano wires have a high crystalline structure. (author)

  19. Growth, structural, optical, thermal and mechanical studies on 4-Aminopyridinium monophthalate: A novel nonlinear optical crystal

    Science.gov (United States)

    Marudhu, G.; Krishnan, S.; Palanichamy, M.

    2016-03-01

    A novel nonlinear optical crystal of 4-Aminopyridinium monophthalate (4-APMP) was grown by slow evaporation technique using methanol as solvent. Single crystal X-ray diffraction analysis confirms that the grown crystal belongs to orthorhombic system. The presence of functional groups was qualitatively determined by FTIR analysis. The optical absorption studies reveal very low absorption in the entire visible region. The fluorescence emission spectrum shows the emission is in blue region. The thermal stability of the grown crystal is found to be around 197.2 °C. The SHG efficiency of the grown crystal is found to be 1.1 times than that of KDP crystals.

  20. Growth Mechanism and Surface Structure of Ge Nanocrystals Prepared by Thermal Annealing of Cosputtered GeSiO Ternary Precursor

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-01-01

    Full Text Available Ge nanocrystals (Ge-ncs embedded in a SiO2 superlattice structure were prepared by magnetron cosputtering and postdeposition annealing. The formation of spherical nanocrystals was confirmed by transmission electron microscopy and their growth process was studied by a combination of spectroscopic techniques. The crystallinity volume fraction of Ge component was found to increase with crystallite size, but its overall low values indicated a coexistence of crystalline and noncrystalline phases. A reduction of Ge-O species was observed in the superlattice during thermal annealing, accompanied by a transition from oxygen-deficient silicon oxide to silicon dioxide. A growth mechanism involving phase separation of Ge suboxides (GeOx was then proposed to explain these findings and supplement the existing growth models for Ge-ncs in SiO2 films. Further analysis of the bonding structure of Ge atoms suggested that Ge-ncs are likely to have a core-shell structure with an amorphous-like surface layer, which is composed of GeSiO ternary complex. The surface layer thickness was extracted to be a few angstroms and equivalent to several atomic layer thicknesses.

  1. Preliminary results on the non-thermal effects of 200-350 GHz radiation on the growth rate of S. cerevisiae cells in microcolonies

    Science.gov (United States)

    Hadjiloucas, S.; Chahal, M. S.; Bowen, J. W.

    2002-11-01

    We report preliminary results from studies of biological effects induced by non-thermal levels of non-ionizing electromagnetic radiation. Exponentially growing Saccharomyces cerevisiae yeast cells grown on dry media were exposed to electromagnetic fields in the 200-350 GHz frequency range at low power density to observe possible non-thermal effects on the microcolony growth. Exposure to the electromagnetic field was conducted over 2.5 h. The data from exposure and control experiments were grouped into either large-, medium- or small-sized microcolonies to assist in the accurate assessment of growth. The three groups showed significant differences in growth between exposed and control microcolonies. A statistically significant enhanced growth rate was observed at 341 GHz. Growth rate was assessed every 30 min via time-lapse photography. Possible interaction mechanisms are discussed, taking into account Frohlich's hypothesis.

  2. Preliminary results on the non-thermal effects of 200-350 GHz radiation on the growth rate of S. cerevisiae cells in microcolonies

    Energy Technology Data Exchange (ETDEWEB)

    Hadjiloucas, S; Chahal, M S; Bowen, J W [Department of Cybernetics, University of Reading, Whiteknights, RG6 6AY, Berkshire (United Kingdom)

    2002-11-07

    We report preliminary results from studies of biological effects induced by non-thermal levels of non-ionizing electromagnetic radiation. Exponentially growing Saccharomyces cerevisiae yeast cells grown on dry media were exposed to electromagnetic fields in the 200-350 GHz frequency range at low power density to observe possible non-thermal effects on the microcolony growth. Exposure to the electromagnetic field was conducted over 2.5 h. The data from exposure and control experiments were grouped into either large-, medium- or small-sized microcolonies to assist in the accurate assessment of growth. The three groups showed significant differences in growth between exposed and control microcolonies. A statistically significant enhanced growth rate was observed at 341 GHz. Growth rate was assessed every 30 min via time-lapse photography. Possible interaction mechanisms are discussed, taking into account Frohlich's hypothesis.

  3. Rooting and early growth of red mangrove seedlings from thermally stressed trees

    International Nuclear Information System (INIS)

    Banus, M.D.; Kolehmainen, S.E.

    At Guayanilla on the south coast of Puerto Rico a fossil fueled electric generating station of 1100 MW(e) discharges its cooling water into a nearly enclosed lagoon of about 25 hectares area. The plume and lagoon typically have water temperatures 10 0 C and 8 0 C above ambient so that the winter and summer lagoon temperatures are 34 and 39 0 C, respectively. The north, east, and south shores of this lagoon have extensive stands of red and black mangrove trees which are visibly stressed by the elevated temperatures. Ripe red mangrove seedlings from the bearing trees are significantly smaller than those from trees in Guayanilla Bay not thermally stressed and in unpolluted bays from western Puerto Rico. Seedlings from thermally stressed trees developed negative buoyancy and initial roots faster but first pair of leaves slower than seedlings from control areas. This behavior will be discussed in relation to the propagation of seedlings from non-stressed areas. (U.S.)

  4. Effect of magnetic field on the growth of Be films prepared by thermal evaporation

    International Nuclear Information System (INIS)

    Li, Kai; Luo, Bing-chi; Tan, Xiu-lan; Zhang, Ji-qiang; Wu, Wei-dong; Liu, Ying

    2014-01-01

    Highlights: • The Be films were prepared on Si (1 0 0) substrates with and without a magnetic field by thermal evaporation, respectively. • The grain diameter in the Be film transited from 300 nm to 18 nm by application of the magnetic field. • The surface roughness of the Be film decreased from 61 nm to 3 nm by application of the magnetic field. • The Be film grown with the magnetic field was easily oxidized due to its refined grains and the oxidation was gradually decreased with increasing the etching depth in the film. - Abstract: Grain refinement of beryllium deposits is studied as a significant subject for beryllium capsule in the Inertial Confinement Fusion project. The Be films were prepared on the Si (1 0 0) substrates by thermal evaporation with and without a magnetic field, respectively. The two separate groups of prepared Be films were characterized. The results showed the grain diameter in the Be film transited from 300 nm to 18 nm and the surface roughness of the Be film decreased from 61 nm to 3 nm by application of the magnetic field during the deposition process of Be coating. However, the Be film grown with the magnetic field was easily oxidized in comparison with that grown without magnetic field due to the refined grains, and the oxidation was gradually decreased with the increase of etching depth in the Be film. The reason for grain refinement of Be film was also qualitatively described

  5. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds

    Directory of Open Access Journals (Sweden)

    Nigel V. Gale

    2016-08-01

    Full Text Available Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME–gas chromatography–mass spectrometry (GC-MS to qualitatively describe organic compounds in both biochar (through headspace extraction, and in the water leachates (through direct injection. Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species

  6. Revisiting the constant growth angle: Estimation and verification via rigorous thermal modeling

    Science.gov (United States)

    Virozub, Alexander; Rasin, Igal G.; Brandon, Simon

    2008-12-01

    Methods for estimating growth angle ( θgr) values, based on the a posteriori analysis of directionally solidified material (e.g. drops) often involve assumptions of negligible gravitational effects as well as a planar solid/liquid interface during solidification. We relax both of these assumptions when using experimental drop shapes from the literature to estimate the relevant growth angles at the initial stages of solidification. Assumed to be constant, we use these values as input into a rigorous heat transfer and solidification model of the growth process. This model, which is shown to reproduce the experimental shape of a solidified sessile water drop using the literature value of θgr=0∘, yields excellent agreement with experimental profiles using our estimated values for silicon ( θgr=10∘) and germanium ( θgr=14.3∘) solidifying on an isotropic crystalline surface. The effect of gravity on the solidified drop shape is found to be significant in the case of germanium, suggesting that gravity should either be included in the analysis or that care should be taken that the relevant Bond number is truly small enough in each measurement. The planar solidification interface assumption is found to be unjustified. Although this issue is important when simulating the inflection point in the profile of the solidified water drop, there are indications that solidified drop shapes (at least in the case of silicon) may be fairly insensitive to the shape of this interface.

  7. MODELING THE GROWTH OF EUCALYPTUS PLANTS BASED ON THE THERMAL SUM

    Directory of Open Access Journals (Sweden)

    Aline Santana de Oliveira

    Full Text Available ABSTRACT Among the environmental variables that affect the growth and development of plants, the air temperature is of great importance. In this context, the objectives of this work were to model the growth of eucalyptus seedlings in terms of accumulated degree-days during the production process and model validation. The study was conducted in the forest research nursery of the Department of Forestry, located in Viçosa (MG, during the periods of 08/02/2011 to 28/04/2011 and 03/08/2012 to 01/11/2012, making it possible to contemplate seasonal variations in the production cycle. The monitored variables were shoot height, stem diameter, leaf area, root length and fresh and dry biomass. Results showed that it took 1065 degree-days for the production of seedlings and sigmoidal models obtained showed high correlation and Willmott coefficients, indicating good performance for estimating the growth and development of eucalyptus seedlings. This tool has great potential for planning and monitoring the production of eucalyptus seedlings in nurseries.

  8. Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition.

    Science.gov (United States)

    Nessim, Gilbert D

    2010-08-01

    Carbon nanotubes (CNTs) have been extensively investigated in the last decade because their superior properties could benefit many applications. However, CNTs have not yet made a major leap into industry, especially for electronic devices, because of fabrication challenges. This review provides an overview of state-of-the-art of CNT synthesis techniques and illustrates their major technical difficulties. It also charts possible in situ analyses and new reactor designs that might enable commercialization. After a brief description of the CNT properties and of the various techniques used to synthesize substrate-free CNTs, the bulk of this review analyzes chemical vapor deposition (CVD). This technique receives special attention since it allows CNTs to be grown in predefined locations, provides a certain degree of control of the types of CNTs grown, and may have the highest chance to succeed commercially. Understanding the primary growth mechanisms at play during CVD is critical for controlling the properties of the CNTs grown and remains the major hurdle to overcome. Various factors that influence CNT growth receive a special focus: choice of catalyst and substrate materials, source gases, and process parameters. This review illustrates important considerations for in situ characterization and new reactor designs that may enable researchers to better understand the physical growth mechanisms and to optimize the synthesis of CNTs, thus contributing to make carbon nanotubes a manufacturing reality.

  9. Influence of Cu, Co and Ni cations incorporated in brucite-type layers on thermal behaviour of hydrotalcites and reducibility of the derived mixed oxide systems

    Energy Technology Data Exchange (ETDEWEB)

    Chmielarz, Lucjan; Kustrowski, Piotr; Rafalska-Lasocha, Alicja; Dziembaj, Roman

    2002-01-03

    Thermal decomposition of M-Mg-Al-CO{sub 3}-NO{sub 3} hydrotalcites (where M is Cu{sup 2+}, Co{sup 2+} or Ni{sup 2+}) with intended M/Mg (0.10/0.61) and M/Al (0.10/0.29) ratios prepared under the same conditions was studied using high temperature X-ray diffraction (HT-XRD) and thermogravimetry coupling with mass spectrometry (TGA-DTA-MS). Introduction of transition metals to the brucite-like layers of hydrotalcites changed their thermal behaviour. The decomposition of nitrate or carbonate anions was coupled with oxidation from Ni{sup 2+} to Ni{sup 3+} and Co{sup 2+} to Co{sup 3+}. Further increase of temperature resulted in reduction of these cations. Reduction from Cu{sup 2+} to Cu{sup +} was also observed above 700 deg. C. Stabilisation of carbonate anions by Cu{sup 2+} introduced into hydrotalcite matrix was found at temperatures above 600 deg. C. The thermal treatment of hydrotalcite precursors resulted in the formation of mixed oxide and spinel phases, which were stable after cooling to ambient temperature with exception of CuO phase that appeared during cooling down due to segregation effects. Reducibility of the hydrotalcites calcined at different temperatures was determined by temperature-programmed reduction (TPR) experiments. Specific surface areas of hydrotalcites calcined at 600 deg. C ranged from 226 to 196 m{sup 2}/g dropping with increase in the calcination temperatures to values ranging between 138 and 49 m{sup 2}/g depending on transition metal contents.

  10. Pretreatment with platelet derived growth factor-BB modulates the ability of costochondral resting zone chondrocytes incorporated into PLA/PGA scaffolds to form new cartilage in vivo.

    Science.gov (United States)

    Lohmann, C H; Schwartz, Z; Niederauer, G G; Carnes, D L; Dean, D D; Boyan, B D

    2000-01-01

    Optimal repair of chondral defects is likely to require both a suitable population of chondrogenic cells and a biodegradable matrix to provide a space-filling structural support during the early stages of cartilage formation. This study examined the ability of chondrocytes to support cartilage formation when incorporated into biodegradable scaffolds constructed from copolymers (PLG) of polylactic acid (PLA) and polyglycolic acid (PGA) and implanted in the calf muscle of nude mice. Scaffolds were fabricated to be more hydrophilic (PLG-H) or were reinforced with 10% PGA fibers (PLG-FR), increasing the stiffness of the implant by 20-fold. Confluent primary cultures of rat costochondral resting zone chondrocytes (RC) were loaded into PLG-H foams and implanted intramuscularly. To determine if growth factor pretreatment could modulate the ability of the cells to form new cartilage, RC cells were pretreated with recombinant human platelet derived growth factor-BB IPDGF-BB) for 4 or 24 h prior to implantation. To assess whether scaffold material properties could affect the ability of chondrogenic cells to form cartilage, RC cells were also loaded into PLG-FR scaffolds. To determine if the scaffolds or treatment with PDGF-BB affected the rate of chondrogenesis, tissue at the implant site was harvested at four and eight weeks post-operatively, fixed, decalcified and embedded in paraffin. Sections were obtained along the transverse plane of the lower leg, stained with haematoxylin and eosin, and then assessed by morphometric analysis for area of cartilage, area of residual implant, and area of fibrous connective tissue formation (fibrosis). Whether or not the cartilage contained hypertrophic cells was also assessed. The amount of residual implant did not change with time in any of the implanted tissues. The area occupied by PLG-FR implants was greater than that occupied by PLG-H implants at both time points. All implants were surrounded by fibrous connective tissue, whether

  11. Thermal growth and cathodoluminescence of Bi doped ZnO nanowires and rods

    International Nuclear Information System (INIS)

    Aleman, B; Hidalgo, P; Fernandez, P; Piqueras, J

    2009-01-01

    Bi doped ZnO nanowires and rods have been grown by a catalyst free evaporation-deposition method with precursors containing either ZnO and Bi 2 O 3 or ZnS and Bi 2 O 3 powders. The use of ZnS as a precursor was found to lead to a higher density of nano- and microstructures at lower temperatures than by using ZnO. Energy dispersive x-ray spectroscopy (EDS) shows that the Bi content in the wires and rods is in the range 0.15-0.35 at%. Bi incorporation was found to induce a red shift of the near band gap luminescence but no quantitative correlation between the shift and the amount of Bi, as measured by EDS, was observed. The I-V curves of single Bi doped wires had linear behaviour at low current and non-linear behaviour for high currents, qualitatively similar to that of undoped wires.

  12. Fatigue crack growth rate behaviour of friction-stir aluminium alloy AA2024-T3 welds under transient thermal tensioning

    International Nuclear Information System (INIS)

    Ilman, M.N.; Kusmono,; Iswanto, P.T.

    2013-01-01

    Highlights: • FSW enables unweldable aircraft material AA2024-T3 to be welded without cracking. • FSW applied to aircraft structure is required to have superior fatigue resistance. • Transient thermal tensioning (TTT) is being developed for stress relieving in FSW. • The fatigue crack growth rates of FSW joints under TTT are studied. - Abstract: Friction stir welding (FSW) has become a serious candidate technology to join metallic fuselage panels for the next generation of civil aircrafts. However, residual stress introduced during welding which subsequently affects fatigue performance is still a major problem that needs to be paid attention. The present investigation aims to improve fatigue crack growth resistance of friction stir aluminium alloy AA2024-T3 welds using transient thermal tensioning (TTT) treatment. In this investigation, aluminium alloy AA2024-T3 plates were joined using FSW process with and without TTT. The welding parameters used including tool rotation speed (Rt) and the plate travelling speed (v) were 1450 rpm and 30 mm/min respectively. The TTT treatments were carried out by heating both sides of friction stir weld line using moving electric heaters ahead of, beside and behind the tool at a heating temperature of 200 °C. Subsequently, a sequence of tests was carried out including microstructural examination, hardness measurement, tensile test and fatigue crack growth rate (FCGR) test in combination with fractography using scanning electron microscopy (SEM). The FCGR test was carried out using a constant amplitude fatigue experiment with stress ratio (R) of 0.1 and frequency (f) of 11 Hz whereas specimens used were centre-crack tension (CCT) type with the initial crack located at the weld nugget. Results of this investigation showed that at low ΔK, typically below 9 MPa m 0.5 , the friction stir welds under TTT treatments lowered fatigue crack growth rate (da/dN) and the lowest (da/dN) was achieved as the heaters were located ahead of

  13. The use of thermally stimulated depolarization currents to study grain growth in ceramic thorium dioxide

    International Nuclear Information System (INIS)

    Muccillo, R.; Campos, L.L.

    1979-01-01

    Depolarization Current Spectra resulting from the destruction of the thermoelectret state in polycrystalline ThO 2 samples have been detected in the temperature range 100K-350K. The induced polarization is found to be due to migration of charge carriers over microscopic distances in the bulk of the specimens with trapping at grain boundaries. Moreover the density of charge carriers released from trapping sites, upon heating the cooled previously dc biased specimen decreases for increasing sintering temperature, suggesting the use of the technique to the study of grain growth in the bulk of ceramic oxides. (Author) [pt

  14. Growth of manganese sulfide (α-MnS) thin films by thermal vacuum evaporation: Structural, morphological and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Hannachi, Amira, E-mail: amira.hannachi88@gmail.com [MALTA-Consolider Team, Institut de Ciència dels Materials – Departamento de Fisica Aplicada, University of Valencia, E-46100 Burjassot, Valencia (Spain); Université de Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie, LR99ES15, 2092 Tunis (Tunisia); Segura, Alfredo [MALTA-Consolider Team, Institut de Ciència dels Materials – Departamento de Fisica Aplicada, University of Valencia, E-46100 Burjassot, Valencia (Spain); Maghraoui-Meherzi, Hager [Université de Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie, LR99ES15, 2092 Tunis (Tunisia)

    2016-09-15

    MnS thin films have been successfully prepared by thermal evaporation method at different substrate temperatures using different masses of MnS powder. The prepared films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and UV–visible spectrophotometry. The XRD measurements show that the films crystallized in the pure α-MnS for substrate temperatures above 100 °C. The optical bandgap of thin films is found to be in the range of 3.2–3.3 eV. A factorial experimental design was used for determining the influence of the two experimental parameters on the films growth. - Highlights: • α-MnS films were deposited on glass and quartz substrates using the thermal evaporation technique. • The effect of substrate temperature on the properties of the MnS films has been studied. • The factorial design was used to determine the most influence parameters.

  15. Numerical investigation of thermal and residual stress of sapphire during c-axis vertical Bridgman growth process considering the solidification history effect

    Science.gov (United States)

    Hwang, Ji Hoon; Lee, Young Cheol; Lee, Wook Jin

    2018-01-01

    Sapphire single crystals have been highlighted for epitaxial of gallium nitride films in high-power laser and light emitting diode industries. In this study, the evolution of thermally induced stress in sapphire during the vertical Bridgman crystal growth process was investigated using a finite element model that simplified the real Bridgman process. A vertical Bridgman process of cylindrical sapphire crystal with a diameter of 50 mm was considered for the model. The solidification history effect during the growth was modeled by the quite element technique. The effects of temperature gradient, seeding interface shape and seeding position on the thermal stress during the process were discussed based on the finite element analysis results.

  16. Studies of metallic species incorporation during growth of SrBi2Ta2O9 films on YBa2Cu3O7-x substrates using mass spectroscopy of recoiled ions

    International Nuclear Information System (INIS)

    Dhote, A. M.

    1999-01-01

    The incorporation of metallic species (Bi, Sr and Ta) during the growth of layered perovskite SrBi 2 Ta 2 O 9 (SBT) on a-axis oriented YBa 2 Cu 3 O 7-x (YBCO) conducting oxide substrates has been investigated using in situ low energy mass spectroscopy of recoiled ions (MSRI). This technique is capable of providing monolayer-specific surface information relevant to the growth of single and multi-component thin films and layered heterostructures. The data show a temperature dependence of metallic species incorporation during co-deposition of Sr, Bi and Ta on YBCO surfaces. At high temperatures (400 400 C. SBT films grown at temperatures ≤ 400 C and annealed in oxygen or air at 800 C exhibit a polycrystalline structure with partial a-axis orientation

  17. Data on cell growth inhibition induced by anti-VEGF siRNA delivered by Stealth liposomes incorporating G2 PAMAM-cholesterol versus Metafectene® as a function of exposure time and siRNA concentration

    Directory of Open Access Journals (Sweden)

    Nasim Golkar

    2016-09-01

    Full Text Available In this data article, carboxyfluorescein-loaded liposomes were prepared and purified from free carboxyfluorescein using gel filtration chromatography in the first part. In the next part, following preparation of anti-VEGF siRNA loaded liposomes incorporating hydrophobically modified G2 PAMAM dendrimer (G2-Chol40% (Golkar et al., 2016 [1], the cell growth inhibition induced by the formulations (siRNA/Metafectene complexes and siRNA loaded liposomes incorporating hydrophobic G2 was evaluated at two exposure times through MTT assay in a breast cancer cell (SKBR-3 and compared by two-way ANOVA. Keywords: Anti-VEGF siRNA, Cell growth inhibition, Polyamidoaminedendrimer, Liposome

  18. A hybrid method of incorporating extended priority list into equal incremental principle for energy-saving generation dispatch of thermal power systems

    International Nuclear Information System (INIS)

    Cheng, Chuntian; Li, Shushan; Li, Gang

    2014-01-01

    The energy-saving generation dispatch (ESGD) policy released by Chinese Government in 2007 is a new code for optimally dispatching electric power generation portfolio in the country with the dual objectives of improving energy efficiency and reducing environmental pollution. The ESGD is substantially different from the competitive market in the developed economies, the traditional economic dispatching or the rational dispatching principle implemented in China prior to the new policy. This paper develops a hybrid method that integrates the extended priority list (EPL), the equal incremental principle (EIP) and a heuristic method to optimize daily generation schedules under ESGD. The EPL is presented to search desirable units set that satisfies the complicated duration period requirements based on thermal unit generation priority list. The EIP is developed to allocate load among the committed units within the combined set. A heuristic method is proposed to deal with inequality constraints, which usually result in difficulty for power allocation, and used to improve these results. The algorithm has been embedded into a newly developed decision support system that is currently being used by operators of the Guizhou Province Power Grid to make day-ahead quarter-hourly generation schedules. - Highlights: • Electric power industry is one of key and important fields for energy conservation and emission reduction in China. • The energy-saving generation dispatch policy was released by Chinese government in 2007. • A Hybrid algorithm for energy-saving generation dispatch scheduling of thermal power system is presented. • The algorithm has been embedded into a newly developed decision support system

  19. Thermal growth and cathodoluminescence of Bi doped ZnO nanowires and rods

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, B; Hidalgo, P; Fernandez, P; Piqueras, J, E-mail: balemanl@fis.ucm.e [Departamento de Fisica de Materiales, Facultad de Ciencias FIsicas, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2009-11-21

    Bi doped ZnO nanowires and rods have been grown by a catalyst free evaporation-deposition method with precursors containing either ZnO and Bi{sub 2}O{sub 3} or ZnS and Bi{sub 2}O{sub 3} powders. The use of ZnS as a precursor was found to lead to a higher density of nano- and microstructures at lower temperatures than by using ZnO. Energy dispersive x-ray spectroscopy (EDS) shows that the Bi content in the wires and rods is in the range 0.15-0.35 at%. Bi incorporation was found to induce a red shift of the near band gap luminescence but no quantitative correlation between the shift and the amount of Bi, as measured by EDS, was observed. The I-V curves of single Bi doped wires had linear behaviour at low current and non-linear behaviour for high currents, qualitatively similar to that of undoped wires.

  20. Continental growth and mantle hydration as intertwined feedback cycles in the thermal evolution of Earth

    Science.gov (United States)

    Höning, Dennis; Spohn, Tilman

    2016-06-01

    A model of Earth's continental coverage and mantle water budget is discussed along with its thermal evolution. The model links a thermal evolution model based on parameterized mantle convection with a model of a generic subduction zone that includes the oceanic crust and a sedimentary layer as carriers of water. Part of the subducted water is used to produce continental crust while the remainder is subducted into the mantle. The total length of the subduction zones is calculated from the total surface area of continental crust assuming randomly distributed continents. The mantle viscosity is dependent of temperature and the water concentration. Sediments are generated by continental crust erosion, and water outgassing at mid-oceanic ridges closes the water cycle. We discuss the strongly coupled, non-linear model using a phase plane defined by the continental coverage and mantle water concentration. Fixed points are found in the phase plane at which the rates of change of both variables are zero. These fixed points evolve with time, but in many cases, three fixed points emerge of which two are stable and an intermediate point is unstable with respect to continental coverage. With initial conditions from a Monte-Carlo scheme we calculate evolution paths in the phase plane and find a large spread of final states that all have a mostly balanced water budget. The present day observed 40% continental surface coverage is found near the unstable fixed point. Our evolution model suggests that Earth's continental coverage formed early and has been stable for at least 1.5 Gyr. The effect of mantle water regassing (and mantle viscosity depending on water concentration) is found to lower the present day mantle temperature by about 120 K, but the present day mantle viscosity is affected little. The water cycle thus complements the well-known thermostat effect of viscosity and mantle temperature. Our results further suggest that the biosphere could impact the feedback cycles by

  1. On the thermal growth and properties of doped TiO{sub 2} and In{sub 2}O{sub 3} elongated nanostructures and nanoplates

    Energy Technology Data Exchange (ETDEWEB)

    Cremades, A. [Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Herrera, M. [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada (Mexico); Bartolomé, J.; Vásquez, G.C. [Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Maestre, D., E-mail: davidmaestre@fis.ucm.es [Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Piqueras, J. [Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2014-11-15

    In this work, the driving forces behind the growth mechanisms of In{sub 2}O{sub 3} and TiO{sub 2} micro- and nano-structures grown by an evaporation–solidification method are discussed. Effective or limited doping incorporation and its influence on the growth and morphology of the low dimensional structures are also assessed. A dislocation driven growth mechanism is proposed for indium oxide, indium tin oxide (ITO) and zinc doped indium oxide (IZO) nanowires. This growth mechanism is extended to the growth of IZO nano-plates. On the other hand, different low dimensional TiO{sub 2} morphologies, mainly nanowires, needles, and bidimensional leaf-like nanostructures, have been obtained by an anisotropic induced growth. By introducing Cr in the precursor mixture, needles are formed showing stepped lateral faces related to oxygen defect stoichiometry areas as observed by EDS mapping.

  2. On the thermal growth and properties of doped TiO2 and In2O3 elongated nanostructures and nanoplates

    International Nuclear Information System (INIS)

    Cremades, A.; Herrera, M.; Bartolomé, J.; Vásquez, G.C.; Maestre, D.; Piqueras, J.

    2014-01-01

    In this work, the driving forces behind the growth mechanisms of In 2 O 3 and TiO 2 micro- and nano-structures grown by an evaporation–solidification method are discussed. Effective or limited doping incorporation and its influence on the growth and morphology of the low dimensional structures are also assessed. A dislocation driven growth mechanism is proposed for indium oxide, indium tin oxide (ITO) and zinc doped indium oxide (IZO) nanowires. This growth mechanism is extended to the growth of IZO nano-plates. On the other hand, different low dimensional TiO 2 morphologies, mainly nanowires, needles, and bidimensional leaf-like nanostructures, have been obtained by an anisotropic induced growth. By introducing Cr in the precursor mixture, needles are formed showing stepped lateral faces related to oxygen defect stoichiometry areas as observed by EDS mapping

  3. Thermal transport during the growth of crystalline fibers by the laser-heated float zone method

    International Nuclear Information System (INIS)

    Feigelson, R.S.

    1990-01-01

    Single crystal fibers may someday prove useful in a variety of advanced device applications. At the current time, fibers for optical, superconducting, and structural applications are under investigation. The advantage of single crystal fibers for optical devices lies in the enhanced light guiding properties one can obtain compared to a bulk crystal of the same material. Potential fiber-optic applications include optical transmission lines for remote temperature sensing and spectroscopy, solid-state lasers and amplifiers, and nonlinear devices such as harmonic generators, Raman shifters and optical parameters oscillators. In the area of superconductivity, the potential for producing long flexible fibers of the Bi 2 Sr 2 CaCu 2 O 8 high temperature superconductor which are capable of carrying high electrical current has been demonstrated. This superconductor, like other high T c materials is incongruently melting and growth rates (fiber throughput), therefore, have to be reduced to optimize the superconducting properties. Interest in single crystal fibers for structural applications stems from a strong technological interest in high strength, light weight fiber-matrix composites capable of operating at elevated temperatures. The very high crystalline perfection possible in single crystal fibers of certain materials, for example Al 2 O 3 , make them very attractive for special high temperature structural applications. Single crystal fibers are noted for having greater lower defects and hence higher strength than comparable bulk crystals. For most of the fiber applications mentioned above, stringent requirements exist for uniform diameter, homogeneous composition, and a low density of crystalline defects. Excellent growth stability is needed to obtain such fibers

  4. Major Transcriptome Changes Accompany the Growth of Pseudomonas aeruginosa in Blood from Patients with Severe Thermal Injuries.

    Directory of Open Access Journals (Sweden)

    Cassandra Kruczek

    Full Text Available Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes serious infections in immunocompromised hosts including severely burned patients. After multiplying within the burn wound, P. aeruginosa translocate into the bloodstream causing bacterial sepsis frequently leading to organ dysfunction and septic shock. Although the pathogenesis of P. aeruginosa infection of thermally-injured wounds has been extensively analyzed, little is known regarding the ability of P. aeruginosa to adapt and survive within the blood of severely burned patients during systemic infection. To identify such adaptations, transcriptome analyses (RNA-seq were conducted on P. aeruginosa strain PA14 that was grown in whole blood from a healthy volunteer or three severely burned patients. Compared with growth in blood from healthy volunteers, growth of PA14 in the blood from severely burned patients significantly altered the expression of 2596 genes, with expression of 1060 genes enhanced, while that of 1536 genes was reduced. Genes whose expression was significantly reduced included genes related to quorum sensing, quorum sensing-controlled virulence factors and transport of heme, phosphate, and phosphonate. Genes whose expression was significantly enhanced were related to the type III secretion system, the pyochelin iron-acquisition system, flagellum synthesis, and pyocyanin production. We confirmed changes in expression of many of these genes using qRT-PCR. Although severe burns altered the levels of different blood components in each patient, the growth of PA14 in their blood produced similar changes in the expression of each gene. These results suggest that, in response to changes in the blood of severely burned patients and as part of its survival strategy, P. aeruginosa enhances the expression of certain virulence genes and reduces the expression of others.

  5. Interlayer growth in Mo/B4C multilayered structures upon thermal annealing

    International Nuclear Information System (INIS)

    Nyabero, S. L.; Kruijs, R. W. E. van de; Yakshin, A. E.; Zoethout, E.; Bosgra, J.; Loch, R. A.; Blanckenhagen, G. von; Bijkerk, F.

    2013-01-01

    Both multilayer period thickness expansion and compaction were observed in Mo/B 4 C multilayers upon annealing, and the physical causes for this were explored in detail. Using in situ time-dependent grazing incidence X-ray reflectometry, period changes down to picometer-scale were resolved. It was shown that the changes depend on the thickness of the B 4 C layers, annealing temperature, and annealing time. Although strong stress relaxation during annealing was observed, it was excluded as a cause for period expansion. Auger electron spectroscopy and wide angle X-ray diffraction measurements revealed the growth of interlayers, with associated period changes influenced by the supply of B and C atoms to the growing compound interlayers. For multilayers with a Mo thickness of 3 nm, two regimes were recognized, depending on the deposited B 4 C thickness: in multilayers with B 4 C ≤ 1.5 nm, the supply of additional Mo into the already formed MoB x C y interlayer was dominant and led to densification, resulting in period compaction. For multilayers with B 4 C ≥ 2 nm, the B and C enrichment of interlayers formed low density compounds and yielded period expansion.

  6. Evaluating Growth of Zeolites on Fly Ash in Hydro-Thermally Heated Low Alkaline Solution

    Science.gov (United States)

    Jha, Bhagwanjee; Singh, D. N.

    2017-12-01

    Fly ash has been well established materials for synthesis of zeolites, under hydrothermally heated aqueous NaOH solution. Efficacy of such technique is reported to be improved when high molarity of NaOH is used. Consequently, highly alkaline waste solution, as by-product, is generally disposed of in the surrounding, which may contaminate the environment. In this context, less alkaline NaOH solution may become a safer option, which has not been tried in the past as per the literature. With this in view, the present study demonstrates effectiveness of the 0.5 M NaOH solution and critically monitors transition on the fly ash after hydrothermal treatment. As an enhancement over previous researchers, such activation of the fly ash finally results in remarkable morphological and mineralogical growth on the bulk material (the residue), which comprises of new nano-sized crystals (the zeolites Na-P1 and natrolite), after 24 h of activation of the fly ash.

  7. A facile route for growth of CNTs on Si@hard carbon for conductive agent incorporating anodes for lithium-ion batteries.

    Science.gov (United States)

    Kim, Chanhoon; Choi, Sinho; Yoo, Seungmin; Kwon, Dohyoung; Ko, Seunghee; Kim, Ju-Myung; Lee, Sang-Young; Kim, Il-Doo; Park, Soojin

    2015-07-14

    Conductive agent incorporating Si anodes consisting of directly grown carbon nanotubes on hard carbon encapsulating Si nanoparticles were prepared by a one-pot chemical vapour deposition process. Owing to this fabulous structure, Si-based anodes exhibit excellent cycle retention and rate capability with a high-mass-loading of 3.5 mg cm(-2).

  8. Influence of thermally-oxidized vegetable oils and animal fats on growth performance, liver gene expression, and liver and serum cholesterol and triglycerides in young pigs

    Science.gov (United States)

    To evaluate the effect of feeding thermally-oxidized vegetable oils and animal fats on growth performance, liver gene expression, and liver and serum fatty acid and cholesterol concentration in young pigs, 102 barrows (6.67 ± 0.03 kg BW) were divided into 3 groups and randomly assigned to dietary tr...

  9. Enhancement of Glycerol Steam Reforming Activity and Thermal Stability by Incorporating CeO2 and TiO2 in Ni- and Co-MCM-41 Catalysts

    Science.gov (United States)

    Dade, William N.

    Hydrogen (H2) has many applications in industry with current focus shifted to production of hydrocarbon fuels and valuable oxygenates using the Fischer-Tropsch technology and direct use in proton exchange membrane fuel cell (PEMFC). Hydrogen is generally produced via steam reforming of natural gas or alcohols like methanol and ethanol. Glycerol, a by-product of biodiesel production process, is currently considered to be one of the most attractive sources of sustainable H2 due to its high H/C ratio and bio-based origin. Ni and Co based catalysts have been reported to be active in glycerol steam reforming (GSR); however, deactivation of the catalysts by carbon deposition and sintering under GSR operating conditions is a major challenge. In this study, a series of catalysts containing Ni and Co nanoparticles incorporated in CeO2 and TiO2 modified high surface area MCM-41 have been synthesized using one-pot method. The catalysts are tested for GSR (at H2O/Glycerol mole ratio of 12 and GHSV of 2200 h-1) to study the effect of support modification and reaction temperature (450 - 700 °C) on the product selectivity and long term stability. GSR results revealed that all the catalysts performed significantly well exhibiting over 85% glycerol conversion at 650 °C except Ni catalysts that showed better low temperature activities. Deactivation studies of the catalysts conducted at 650 °C indicated that the Ni-TiO2-MCM-41 and Ni-CeO 2-MCM-41 were resistant to deactivation with ˜100% glycerol conversion for 40 h. In contrast, Co-TiO2-MCM-41 perform poorly as the catalyst rapidly deactivated after 12 h to yield ˜20% glycerol conversion after 40 h. The WAXRD and TGA-DSC analyses of spent catalysts showed a significant amount of coke deposition that might explain catalysts deactivation. The flattening shape of the original BET type IV isotherm with drastic reduction of catalyst surface area can also be responsible for observed drop in catalysts activities.

  10. Nuclear Thermal Propulsion (NTP): A Proven, Growth Technology for Fast Transit Human Missions to Mars

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2014-01-01

    The "fast conjunction" long surface stay mission option was selected for NASA's recent Mars Design Reference Architecture (DRA) 5.0 study because it provided adequate time at Mars (approx. 540 days) for the crew to explore the planet's geological diversity while also reducing the "1-way" transit times to and from Mars to approx. 6 months. Short transit times are desirable in order to reduce the debilitating physiological effects on the human body that can result from prolonged exposure to the zero-gravity (0-gE) and radiation environments of space. Recent measurements from the RAD detector attached to the Curiosity rover indicate that astronauts would receive a radiation dose of approx. 0.66 Sv (approx. 66 rem)-the limiting value established by NASA-during their 1-year journey in deep space. Proven nuclear thermal rocket (NTR) technology, with its high thrust and high specific impulse (Isp approx. 900 s), can cut 1-way transit times by as much as 50 percent by increasing the propellant capacity of the Mars transfer vehicle (MTV). No large technology scale-ups in engine size are required for these short transit missions either since the smallest engine tested during the Rover program-the 25 klbf "Pewee" engine is sufficient when used in a clustered arrangement of three to four engines. The "Copernicus" crewed MTV developed for DRA 5.0 is a 0-gE design consisting of three basic components: (1) the NTP stage (NTPS); (2) the crewed payload element; and (3) an integrated "saddle truss" and LH2 propellant drop tank assembly that connects the two elements. With a propellant capacity of approx. 190 t, Copernicus can support 1-way transit times ranging from approx. 150 to 220 days over the 15-year synodic cycle. The paper examines the impact on vehicle design of decreasing transit times for the 2033 mission opportunity. With a fourth "upgraded" SLS/HLV launch, an "in-line" LH2 tank element can be added to Copernicus allowing 1-way transit times of 130 days. To achieve 100

  11. Self-catalyst growth of novel GaN nanowire flowers on Si (111) using thermal evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Saron, K.M.A., E-mail: kamalmohammedabdalla@yahoo.com [Nano-Optoelectronics Research and Technology Laboratory (NOR), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia); Hashim, M.R., E-mail: roslan@usm.my [Nano-Optoelectronics Research and Technology Laboratory (NOR), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia)

    2013-05-15

    We investigated the effect of substrate temperature on nanowire (NW) flower GaN epitaxial layers grown on catalyst-free Si (111) through physical vapor deposition via the thermal evaporation of GaN powder at 1150 °C in the absence of NH{sub 3} gas. The NW flowers were grown at various substrate temperatures from 1000 °C to 1100 °C for 60 min in N{sub 2} ambient. The surface morphology as well as the structural and optical properties of GaN NW flowers were examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy, X-ray diffraction, and photoluminescence (PL). The results showed that the increase in substrate temperature resulted in a variation in crystal quality and surface morphology. SEM showed that the substrate temperature has a stronger effect on NW density and growth rate with respect to time. The average length of GaN flowers is estimated to be longer than 300 μm after 1 h at 1100 °C, which corresponds to a fast growth rate of more than 200 μm h{sup −1} at all substrate temperatures. The PL measurements showed strong near-band-edge (NBE) emission with a weak deep level emission. The green-yellow emission (GYE) can be attributed to N vacancies or to the V{sub Ga}–O{sub N}-complexes. The NBE peak exhibited a redshift with increasing substrate temperature, which results from the increase in strain level. The growth mechanism of the polycrystalline GaN NWs was also discussed. - Highlights: ► GaN nanowired flowers were grown on free-catalysts Si (111) using PVD. ► A higher temperature, higher uniformity, larger lengths and diameters of the NW flowers. ► As substrate temperature increases the diameters and growth rate of NWs increases. ► A lower temperature resulted in a high density and good crystal quality of GaN NWs. ► The increase in substrate temperature increased the redshift in UV band emission.

  12. Self-catalyst growth of novel GaN nanowire flowers on Si (111) using thermal evaporation technique

    International Nuclear Information System (INIS)

    Saron, K.M.A.; Hashim, M.R.

    2013-01-01

    We investigated the effect of substrate temperature on nanowire (NW) flower GaN epitaxial layers grown on catalyst-free Si (111) through physical vapor deposition via the thermal evaporation of GaN powder at 1150 °C in the absence of NH 3 gas. The NW flowers were grown at various substrate temperatures from 1000 °C to 1100 °C for 60 min in N 2 ambient. The surface morphology as well as the structural and optical properties of GaN NW flowers were examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy, X-ray diffraction, and photoluminescence (PL). The results showed that the increase in substrate temperature resulted in a variation in crystal quality and surface morphology. SEM showed that the substrate temperature has a stronger effect on NW density and growth rate with respect to time. The average length of GaN flowers is estimated to be longer than 300 μm after 1 h at 1100 °C, which corresponds to a fast growth rate of more than 200 μm h −1 at all substrate temperatures. The PL measurements showed strong near-band-edge (NBE) emission with a weak deep level emission. The green-yellow emission (GYE) can be attributed to N vacancies or to the V Ga –O N -complexes. The NBE peak exhibited a redshift with increasing substrate temperature, which results from the increase in strain level. The growth mechanism of the polycrystalline GaN NWs was also discussed. - Highlights: ► GaN nanowired flowers were grown on free-catalysts Si (111) using PVD. ► A higher temperature, higher uniformity, larger lengths and diameters of the NW flowers. ► As substrate temperature increases the diameters and growth rate of NWs increases. ► A lower temperature resulted in a high density and good crystal quality of GaN NWs. ► The increase in substrate temperature increased the redshift in UV band emission

  13. Interfacial and thermal energy driven growth and evolution of Langmuir-Schaefer monolayers of Au-nanoparticles.

    Science.gov (United States)

    Mukhopadhyay, Mala; Hazra, S

    2018-01-03

    Structures of Langmuir-Schaefer (LS) monolayers of thiol-coated Au-nanoparticles (DT-AuNPs) deposited on H-terminated and OTS self-assembled Si substrates (of different hydrophobic strength and stability) and their evolution with time under ambient conditions, which plays an important role for their practical use as 2D-nanostructures over large areas, were investigated using the X-ray reflectivity technique. The strong effect of substrate surface energy (γ) on the initial structures and the competitive role of room temperature thermal energy (kT) and the change in interfacial energy (Δγ) at ambient conditions on the evolution and final structures of the DT-AuNP LS monolayers are evident. The strong-hydrophobic OTS-Si substrate, during transfer, seems to induce strong attraction towards hydrophobic DT-AuNPs on hydrophilic (repulsive) water to form vertically compact partially covered (with voids) monolayer structures (of perfect monolayer thickness) at low pressure and nearly covered buckled monolayer structures (of enhanced monolayer thickness) at high pressure. After transfer, the small kT-energy (in absence of repulsive water) probably fluctuates the DT-AuNPs to form vertically expanded monolayer structures, through systematic exponential growth with time. The effect is prominent for the film deposited at low pressure, where the initial film-coverage and film-thickness are low. On the other hand, the weak-hydrophobic H-Si substrate, during transfer, appears to induce optimum attraction towards DT-AuNPs to better mimic the Langmuir monolayer structures on it. After transfer, the change in the substrate surface nature, from weak-hydrophobic to weak-hydrophilic with time (i.e. Δγ-energy, apart from the kT-energy), enhances the size of the voids and weakens the monolayer/bilayer structure to form a similar expanded monolayer structure, the thickness of which is probably optimized by the available thermal energy.

  14. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue

    International Nuclear Information System (INIS)

    Lv, Jia; Xiu, Peng; Tan, Jie; Cai, Hong; Liu, Zhongjun; Jia, Zhaojun

    2015-01-01

    Electron beam melting (EBM)-fabricated porous titanium implants possessing low elastic moduli and tailored structures are promising biomaterials for orthopedic applications. However, the bio-inert nature of porous titanium makes reinforcement with growth factors (GFs) a promising method to enhance implant in vivo performance. Bone-morphogenic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) are key factors of angiogenesis and osteogenesis. Therefore, the present study is aimed at evaluating EBM-fabricated porous titanium implants incorporating GF-doped fibrin glue (FG) as composite scaffolds providing GFs for improvement of angiogenesis and osteogenesis in rabbit femoral condyle defects. BMP-2 and VEGF were added into the constituent compounds of FG, and then this GF-doped FG was subsequently injected into the porous scaffolds. In five groups of implants, angiogenesis and osteogenesis were evaluated at 4 weeks post-implantation using Microfil perfusion and histological analysis: eTi (empty scaffolds), cTi (containing undoped FG), BMP/cTi (containing 50 μg rhBMP-2), VEGF/cTi (containing 0.5 μg VEGF) and Dual/cTi (containing 50 μg rhBMP-2 and 0.5 μg VEGF). The results demonstrate that these composite implants are biocompatible and provide the desired gradual release of the bioactive growth factors. Incorporation of GF delivery, whether a single factor or dual factors, significantly enhanced both angiogenesis and osteogenesis inside the porous scaffolds. However, the synergistic effect of the dual factors combination was observable on angiogenesis but absent on osteogenesis. In conclusion, fibrin glue is a biocompatible material that could be employed as a delivery vehicle in EBM-fabricated porous titanium for controlled release of BMP-2 and VEGF. Application of this method for loading a porous titanium scaffold to incorporate growth factors is a convenient and promising strategy for improving osteogenesis of critical-sized bone defects

  15. Phonon thermal conductivity of scandium nitride for thermoelectrics from first-principles calculations and thin-film growth

    DEFF Research Database (Denmark)

    Kerdsongpanya, Sit; Hellman, Olle; Sun, Bo

    2017-01-01

    The knowledge of lattice thermal conductivity of materials under realistic conditions is vitally important since many modern technologies require either high or low thermal conductivity. Here, we propose a theoretical model for determining lattice thermal conductivity, which takes into account......-domain thermoreflectance. Our experimental results show a trend of reduction in lattice thermal conductivity with decreasing domain size predicted by the theoretical model. These results suggest a possibility to control thermal conductivity by microstructural tailoring and provide a predictive tool for the effect...... of the microstructure on the lattice thermal conductivity of materials based on ab initio calculations....

  16. Crystal growth, vibrational, optical, thermal and theoretical studies of a nonlinear optical material: 2-Methyl 3,5-dinitrobenzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, K. [Department of Physics, Sri Sarada College for Women, Salem-16 (India); Guru Prasad, L. [Department of Science & Humanities, M. Kumarasamy College of Engineering, Karur (India); Mathammal, R. [Department of Physics, Sri Sarada College for Women, Salem-16 (India)

    2016-11-15

    Single crystals of 2-methyl 3,5-dinitro benzoic acid with reasonable size have been grown by slow evaporation solution growth method using ethanol as solvent. Quantum chemical calculation of 2-methyl 3,5-Dinitro benzoic acid was carried out by using DFT/B3LYP/6-31+G(d,p) method. The powder X-ray diffraction pattern was recorded and indexed. Both the experimental and theoretical vibrational spectrum validates the presence of functional groups. Polarizability, first order hyperpolarizability and the electric dipole moment values have been computed theoretically. The {sup 1}H and {sup 13}C NMR chemical shift of the molecule was calculated and compared with experimental results. TG/DSC analysis has been employed to understand the thermal and physio-chemical stability of the title compound. Frequency conversion property of the crystal was tested by Kurtz and Perry method. Optical absorption behavior of the grown crystal was examined by recording the optical spectrum and band gap energy was also estimated. The calculated HOMO and LUMO energy shows the charge transfer nature of the molecule.

  17. Synthesis, crystal growth, optical, thermal, and mechanical properties of a nonlinear optical single crystal: ammonium sulfate hydrogen sulphamate (ASHS)

    Science.gov (United States)

    Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.

    2018-04-01

    Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.

  18. Incorporating Small Fatigue Crack Growth in Probabilistic Life Prediction: Effect of Stress Ratio in Ti-6Al-2Sn-4Zr-6-Mo (Preprint)

    Science.gov (United States)

    2012-08-01

    contains color. 14. ABSTRACT The effect of stress ratio on the statistical aspects of small fatigue crack growth behavior was studied in a duplex ...on the statistical aspects of small fatigue crack growth behavior was studied in a duplex microstructure of Ti-6Al-2Sn-4Zr-6Mo (Ti-6-2-4-6) at 260°C...Similarly, an accurate representation of the R effect is required in problems where the crack grows through regions of varying stress state, such as a weld

  19. Growth temperature dependence of Si doping efficiency and compensating deep level defect incorporation in Al0.7Ga0.3N

    International Nuclear Information System (INIS)

    Armstrong, Andrew M.; Moseley, Michael W.; Allerman, Andrew A.; Crawford, Mary H.; Wierer, Jonathan J.

    2015-01-01

    The growth temperature dependence of Si doping efficiency and deep level defect formation was investigated for n-type Al 0.7 Ga 0.3 N. It was observed that dopant compensation was greatly reduced with reduced growth temperature. Deep level optical spectroscopy and lighted capacitance-voltage were used to understand the role of acceptor-like deep level defects on doping efficiency. Deep level defects were observed at 2.34 eV, 3.56 eV, and 4.74 eV below the conduction band minimum. The latter two deep levels were identified as the major compensators because the reduction in their concentrations at reduced growth temperature correlated closely with the concomitant increase in free electron concentration. Possible mechanisms for the strong growth temperature dependence of deep level formation are considered, including thermodynamically driven compensating defect formation that can arise for a semiconductor with very large band gap energy, such as Al 0.7 Ga 0.3 N

  20. CN distribution in flame deposition of diamond and its relation to the growth rate, morphology, and nitrogen incorporation of the diamond layer

    NARCIS (Netherlands)

    Klein-Douwel, R.J.H.; Schermer, J.J.; Meulen, ter J.J.

    1998-01-01

    Two-dimensional laser-induced fluorescence (2D-LIF) measurements areapplied to the chemical vapour deposition (CVD) of diamond by anoxyacetylene flame to visualize the distribution of CN in the gas phaseduring the diamond growth process. The obtained diamond deposits arecharacterized by optical as

  1. Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance.

    Science.gov (United States)

    Cheng, Zhe; Bougher, Thomas; Bai, Tingyu; Wang, Steven Y; Li, Chao; Yates, Luke; Foley, Brian M; Goorsky, Mark; Cola, Baratunde A; Faili, Firooz; Graham, Samuel

    2018-02-07

    The maximum output power of GaN-based high-electron mobility transistors is limited by high channel temperature induced by localized self-heating, which degrades device performance and reliability. Chemical vapor deposition (CVD) diamond is an attractive candidate to aid in the extraction of this heat and in minimizing the peak operating temperatures of high-power electronics. Owing to its inhomogeneous structure, the thermal conductivity of CVD diamond varies along the growth direction and can differ between the in-plane and out-of-plane directions, resulting in a complex three-dimensional (3D) distribution. Depending on the thickness of the diamond and size of the electronic device, this 3D distribution may impact the effectiveness of CVD diamond in device thermal management. In this work, time-domain thermoreflectance is used to measure the anisotropic thermal conductivity of an 11.8 μm-thick high-quality CVD diamond membrane from its nucleation side. Starting with a spot-size diameter larger than the thickness of the membrane, measurements are made at various modulation frequencies from 1.2 to 11.6 MHz to tune the heat penetration depth and sample the variation in thermal conductivity. We then analyze the data by creating a model with the membrane divided into ten sublayers and assume isotropic thermal conductivity in each sublayer. From this, we observe a two-dimensional gradient of the depth-dependent thermal conductivity for this membrane. The local thermal conductivity goes beyond 1000 W/(m K) when the distance from the nucleation interface only reaches 3 μm. Additionally, by measuring the same region with a smaller spot size at multiple frequencies, the in-plane and cross-plane thermal conductivities are extracted. Through this use of multiple spot sizes and modulation frequencies, the 3D anisotropic thermal conductivity of CVD diamond membrane is experimentally obtained by fitting the experimental data to a thermal model. This work provides an improved

  2. The effects of thermal manipulations during embryogenesis of broiler chicks on growth of embryo and skeletal traits

    Energy Technology Data Exchange (ETDEWEB)

    Aygün, Ali, E-mail: aaygun@selcuk.edu.tr [Selcuk University, Faculty of Agriculture, Department of Animal Science, Konya, 42075 (Turkey); Narinç, Doğan, E-mail: narincd@gmail.com [Namik Kemal University, Faculty of Veterinary Medicine, Department of Genetics, Tekirdag, 59100 (Turkey)

    2016-04-18

    Incubation temperature is one of the important environmental factors that can induce epigenetic thermal adaptation of different physiological control systems. Thus, post hatch thermo tolerance ability of birds may be gained using these manipulations during different incubation periods. The current study was carried out to reveal the effects of temperature manipulations during early and late embryogenesis on weight of embryo and size of skeletal bilateral traits (face, wings, metatarsus, tibia, and femur) in broiler chicken embryos. One thousand commercial broiler eggs from 46 week old breeder flock were used in study. Treatments consisted of eggs incubated at 37.8°C and 55% relative humidity throughout (control; DG1), heated to 36.9°C and supplied 60% relative humidity for 6 hours daily from day 0 to 8 (DG2), heated to 36.9°C and supplied 60% relative humidity for 6 hours daily from day 10 to 18 (DG3), heated to 41°C and supplied 65% relative humidity for 3 hours daily from day 8 to 10 (DG4), and heated to 41°C and supplied 65% relative humidity for 3 hours daily from day 16 to 18 (DG5). Measurements of embryo weight and bilateral traits were obtained at 20 day of incubation and at hatch (at day 21). It was determined that the live weights of embryo and chick were affected significantly by treatment; DG3 group has shown higher mean values than the other treatment groups (P<0.05). There were differences in lengths of femur, tibia and metatarsus among treatment groups at hatch. Particularly, the high incubator temperatures at the second half of incubation accelerated growth of body and bone in embryos. These consequences of the treatments performed at different temperatures and times indicate that the different metabolic shifts realized by the embryos.

  3. Marker experiments in growth studies of Ni2Si, Pd2Si, and CrSi2 formed both by thermal annealing and by ion mixing

    International Nuclear Information System (INIS)

    Hung, L.S.; Mayer, J.W.; Pai, C.S.; Lau, S.S.

    1985-01-01

    Inert markers (evaporated tungsten and silver) were used in growth studies of silicides formed both by thermal annealing and by ion mixing in the Ni/Si, Pd/Si, and Cr/Si systems. The markers were initially imbedded inside silicides and backscattering spectrometry was used to determine the marker displacement after different processing conditions. The results obtained in thermal annealing are quite consistent with that found in previous investigations. Ni is the dominant diffusing species in Ni 2 Si, while Si is the diffusing species in CrSi 2 . In Pd 2 Si, both Pd and Si are moving species with Pd the faster of the two. In contrast, in growth of silicides by ion irradiation Si is the faster diffusing species in all three systems

  4. Thermal and optical properties of polycrystalline CdS thin films deposited by the gradient recrystallization and growth (GREG) technique using photoacoustic methods

    International Nuclear Information System (INIS)

    Albor-Aguilera, M.L.; Gonzalez-Trujillo, M.A.; Cruz-Orea, A.; Tufino-Velazquez, M.

    2009-01-01

    In this work we report the study of the thermal and optical properties of polycrystalline CdS thin films deposited by the gradient recrystallization and growth technique. CdS films were grown on pyrex glass substrates. These studies were carried out using an open photoacoustic cell made out of an electret microphone. From X-ray diffraction, atomic force microscope and photoluminescence measurements we observed polycrystalline CdS films with good morphology and crystalline quality. We obtained a thermal diffusivity coefficient of our samples with values ranging from 3.15 to 3.89 x 10 -2 cm 2 /s. For comparison, we measured a value of 1.0 x 10 -2 cm 2 /s for the thermal diffusivity coefficient of a CdS single crystal. We measured an energy gap value of 2.42 eV for our samples by using a photoacoustic spectroscopy system

  5. The Influence of Growth Temperature on Sb Incorporation in InAsSb, and the Temperature-dependent Impact of Bi Surfactants

    Science.gov (United States)

    2014-01-01

    temperature was set to give a beam equivalent pressure ( BEP ) of 4.8x10-7 Torr, as measured in this configuration. 10 4 We have shown in prior...to the value needed to grow lattice matched InAsSb on GaSb without using Bi surfactant at 415 C. The In growth rate was 1 m/hr. The Sb BEP was...1.2x10-7 Torr and the As BEP was 5.71x10-7 Torr. The absolute flux of all the constituents and the V/III ratios were kept constant for both layers of

  6. Distinction of [220] and [204] textures of Cu(In,Ga)Se{sub 2} film and their growth behaviors depending on substrate nature and Na incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dae-Hyung, E-mail: dhcho@etri.re.kr [IT Components and Materials Industry Technology Research Department, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeongno, Yuseong-gu, Daejeon 305-700 (Korea, Republic of); Kim, Jeha [Department of Solar & Energy Engineering, Cheongju University, 298 Daeseongro, Sangdang-gu, Cheongju, Chungbuk 360-764 (Korea, Republic of); Chung, Yong-Duck [IT Components and Materials Industry Technology Research Department, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeongno, Yuseong-gu, Daejeon 305-700 (Korea, Republic of); Korea University of Science and Technology (UST), 217 Gajeongno, Yuseong-gu, Daejeon 305-350 (Korea, Republic of)

    2015-08-31

    For better understanding of the structural property of polycrystalline tetragonal Cu(In,Ga)Se{sub 2} (CIGS) thin films grown on soda-lime glass, it is necessary to characterize the [220]- and [204]-oriented textures clearly that are related to the different physical properties. However, the distinction between the [220]- and [204]-oriented textures is very difficult because of their nearly identical plane spacings and atomic arrangements. Using X-ray diffraction techniques of high resolution θ–2θ scanning and reciprocal space mapping, we distinguished the [220]- and [204]-oriented textures of CIGS films and observed that the behaviors of [220] and [204] textures independently depended on both substrate nature and Na presence. We report the Na- and substrate-related dependence of the physical properties of the CIGS film was attributed to the independent growth behaviors of the [220] and [204] textures in the CIGS. - Highlights: • We investigated [220]- and [204]-oriented textures of Cu(In,Ga)Se{sub 2} (CIGS) films. • X-ray diffraction methods distinguished two textures. • The growth behaviors were influenced by underlying substrate and Na. • The [220] and [204] textures in CIGS should be differentially observed.

  7. SCC growth behavior of cast stainless steels in high-temperature water. Influences of corrosion potential, steel type, thermal aging and cold-work

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2011-01-01

    Recent studies on crack growth rate (CGR) measurement in oxygenated high-temperature pure water conditions, such as normal water chemistry (NWC) in BWRs, using compact tension (CT) type specimens have shown that stainless steel weld metal are susceptible to stress corrosion cracking (SCC). On the other hand, the authors reported that no significant SCC growth was observed on stainless steel weld metals in PWR primary water at temperatures from 250degC to 340degC. Cast austenitic stainless steels are widely used in light water reactors, and there is a similarity between welded and cast stainless steels in terms of the microstructure of the ferrite/austenite duplex structure. However, there are a few reports giving CGR data on cast stainless steels in the BWRs and PWRs. The principal purpose of this study was to examine the SCC growth behavior of cast stainless steels in simulated PWR primary water. A second objective was to examine the effects on SCC growth in hydrogenated and oxygenated water environments at 320degC of: (1) corrosion potential; (2) steels type (Mo in alloy); (3) thermal-aging (up to 400degC x 40 kh); and (4) cold-working (10%). The results were as follows: (1) No significant SCC growth was observed on all types of cast stainless steels: aged (400degC x 40 kh) of SCS14A and SCS13A and 10% cold-working, in hydrogenated (low-potential) water at 320degC. (2) Aging at 400degC x 40 kh SCS14A (10%CW) markedly accelerated the SCC growth of cast material in high-potential water at 320degC, but no significant SCC growth was observed in the hydrogenated water, even after long-term thermal aging (400degC x 40 kh). (3) Thus, cast stainless steels have excellent SCC resistance in PWR primary water. (4) On the other hand, significant SCC growth was observed on all types of cast stainless steels: 10%CW SCS14A and SCS13A, in 8 ppm-oxygenated (high-potential) water at 320degC. (5) No large difference in SCC growth was observed between SCS14A (Mo) and SCS13A. (6) No

  8. Numerical analysis of temperature profile and thermal-stress during excimer laser induced heteroepitaxial growth of patterned amorphous silicon and germanium bi-layers deposited on Si(100)

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J.C., E-mail: jconde@uvigo.e [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Martin, E. [Dpto. de Mecanica, Maquinas y Motores Termicos y Fluidos, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Gontad, F.; Chiussi, S. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Fornarini, L. [Enea-Frascati, Via Enrico Fermi 45, I-00044 Frascati (Roma) (Italy); Leon, B. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain)

    2010-02-26

    A Finite Element Method (FEM) study of the coupled thermal-stress during the heteroepitaxial growth induced by excimer laser radiation of patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bi-layers deposited on a Si(100) wafer is presented. The ArF (193 nm) excimer laser provides high energy densities during very short laser pulse (20 ns) provoking, at the same time, melting and solidification phenomena in the range of several tenths of nanoseconds. These phenomena play an important role during the growth of heteroepitaxial SiGe structures characterized by high Ge concentration buried under a Si rich surface. In addition, the thermal-stresses that appear before the melting and after the solidification processes can also affect to the epitaxial growth of high quality SiGe alloys in these patterned structures and, in consequence, it is necessary to predict their effects. The aim of this work is to estimate the energy threshold and the corresponding thermal-stresses in the interfaces and the borders of these patterned structures.

  9. Growth of wrinkle-free graphene on texture-controlled platinum films and thermal-assisted transfer of large-scale patterned graphene.

    Science.gov (United States)

    Choi, Jae-Kyung; Kwak, Jinsung; Park, Soon-Dong; Yun, Hyung Duk; Kim, Se-Yang; Jung, Minbok; Kim, Sung Youb; Park, Kibog; Kang, Seoktae; Kim, Sung-Dae; Park, Dong-Yeon; Lee, Dong-Su; Hong, Suk-Kyoung; Shin, Hyung-Joon; Kwon, Soon-Yong

    2015-01-27

    Growth of large-scale patterned, wrinkle-free graphene and the gentle transfer technique without further damage are most important requirements for the practical use of graphene. Here we report the growth of wrinkle-free, strictly uniform monolayer graphene films by chemical vapor deposition on a platinum (Pt) substrate with texture-controlled giant grains and the thermal-assisted transfer of large-scale patterned graphene onto arbitrary substrates. The designed Pt surfaces with limited numbers of grain boundaries and improved surface perfectness as well as small thermal expansion coefficient difference to graphene provide a venue for uniform growth of monolayer graphene with wrinkle-free characteristic. The thermal-assisted transfer technique allows the complete transfer of large-scale patterned graphene films onto arbitrary substrates without any ripples, tears, or folds. The transferred graphene shows high crystalline quality with an average carrier mobility of ∼ 5500 cm(2) V(-1) s(-1) at room temperature. Furthermore, this transfer technique shows a high tolerance to variations in types and morphologies of underlying substrates.

  10. Numerical analysis of temperature profile and thermal-stress during excimer laser induced heteroepitaxial growth of patterned amorphous silicon and germanium bi-layers deposited on Si(100)

    International Nuclear Information System (INIS)

    Conde, J.C.; Martin, E.; Gontad, F.; Chiussi, S.; Fornarini, L.; Leon, B.

    2010-01-01

    A Finite Element Method (FEM) study of the coupled thermal-stress during the heteroepitaxial growth induced by excimer laser radiation of patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bi-layers deposited on a Si(100) wafer is presented. The ArF (193 nm) excimer laser provides high energy densities during very short laser pulse (20 ns) provoking, at the same time, melting and solidification phenomena in the range of several tenths of nanoseconds. These phenomena play an important role during the growth of heteroepitaxial SiGe structures characterized by high Ge concentration buried under a Si rich surface. In addition, the thermal-stresses that appear before the melting and after the solidification processes can also affect to the epitaxial growth of high quality SiGe alloys in these patterned structures and, in consequence, it is necessary to predict their effects. The aim of this work is to estimate the energy threshold and the corresponding thermal-stresses in the interfaces and the borders of these patterned structures.

  11. The influence of surface and incorporated lime and gypsiferous by-products on surface and subsurface soil acidity. II. Root growth and agronomic implications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Hedley, M.J.; Bolan, N.S.; Horne, D.J. [New Zealand Forest Research Institute, Rotorua (New Zealand)

    1999-04-01

    Lucerne (Medicago sativa. L) root elongation in acid soils amended by gypsiferous coal combustion by-products was investigated in a glasshouse study. Lime, fluidised bed boiler ash (FBA), and flue gas desulfurisation gypsum (FGDG) were mixed into the surface 50 mm of either an Allophanic (the Patua sand loam) or an Ultic (the Kaawa clay loam) soil column, at rates containing calcium equivalent to 5000 kg/ha of CaCO{sub 3}. Lucerne was grown on each column after it was leached with 400 mm of water. Whereas the lime treatment had no effect on root elongation in the acidic subsurface of the Patua soil, the FBA and FGDG treatments significantly improved lucerne root penetration into the subsurface soil. This was due to the `self liming effect` induced by sulfate adsorption. In contrast, topsoil incorporated amendments did not influence root penetration into the acidic subsurface of the Kaawa soil, which is dominated by permanently charged clay minerals. The `self-liming erect` caused by gypsum application is not a sustainable practice. Lime should be applied to neutralise the topsoil acidity, when gypsum is used as subsurface soil acidity ameliorant. FBA, which contains both lime and gypsum, can meet these requirements.

  12. Effect of epidermal growth factor (EGF) on [3H]TdR incorporation into DNA in ad lib fed and fasted CD2F1 mice

    International Nuclear Information System (INIS)

    Scheving, L.A.; Tsai, T.H.; Scheving, L.E.; Hoke, W.S.

    1987-01-01

    The effect of EGF on the incorporation of [ 3 H]TdR into DNA (DNA synthesis) was determined in the esophagus, liver, pancreas, and kidney in mice standardized to 12 hours (hr) of light alternating with 12 hr of darkness. A question asked was whether intraperitoneally administered EGF could alter the circadian patterns of DNA synthesis in these organs. The most marked effects of EGF were: an increase in DNA synthesis but only after a specific duration of time after treatment, ranging from 8 to 23 hr, which differed for each tissue, a similarity in the response of the esophagus in both ad lib fed and fasted mice, but not in the response of the liver, where the stimulatory effect of EGF observed in fed mice was dramatically reduced in fasted ones, and an advance in the phasing of the circadian rhythm in DNA synthesis of the esophagus by about 12 hr. In addition, no sex differences in fasted animals were found under the conditions of this study

  13. The effect of concentration and exposure time on 15N uptake and incorporation from urea and ammonium nitrate by spring barley in the initial growth period

    International Nuclear Information System (INIS)

    Matula, J.; Knop, K.

    1978-01-01

    The uptake and incorporation of 15 N from urea and ammonium nitrate by spring barley were studied in aquaculture at three nitrogen concentrations in complex nutrient solutions (28, 140 and 700 mg N per 1 litre) and for three lengths of exposure to 15 N-labelled nutrient solutions. The 'Diamant' variety plants were precultivated up to the stage of the 3rd to 4th leaf in a complex nutrient solution, and five days prior to exposure to 15 N-labelled solutions the plants were cultivated in a nutrient solution without nitrogen. At a concentration of 28 mg N per litre the course of urea absorption was similar to the absorption of ammonium nitrate, but at a lower level. The results suggest that urea uptake is basically controlled by the metabolic requirement, particularly at lower concentrations. Only at the highest concentrations of nitrogen in the nutrient solutions did the 15 N of urea and ammonium nitrate penetrate into the roots, passive uptake being preferred. The uptake of urea is controlled by the metabolic requirement but its availability for barley metabolism is lower. Ammonium nitrate NO 3 - was taken up at a lower rate than NH 4 + from the same compound. Nitrate nitrogen was transported relatively more intensively to the above-ground parts of barley. The increasing concentration of nitrogen and exposure to nutrient solutions induced a rise in the proportion of ethanol-soluble forms of nitrogen, particularly in the roots. (author)

  14. Stress relaxed nanoepitaxy GaN for growth of phosphor-free indium-rich nanostructures incorporated in apple-white LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Soh, C.B.; Liu, W.; Ang, N.S.S.; Yong, A.M.; Lai, S.C.; Teng, J.H. [Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 3 Research Link, Singapore 117602 (Singapore); Chua, S.J. [Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 3 Research Link, Singapore 117602 (Singapore); Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore 117576 (Singapore)

    2010-06-15

    Phosphor-free apple-white light emitting diodes (LEDs) have been fabricated using dual stacked InGaN/GaN multiple quantum wells (MQWs) comprising a lower set of long wavelength emitting indium rich nanostructures incorporated in MQWs with an upper set of cyan-green emitting MQWs. The LEDs were grown on nano-epitaxial lateral overgrown (ELO) GaN template formed by regrowth of GaN over SiO{sub 2} film patterned using an anodic alumina oxide mask with holes of {proportional_to}125 nm diameter and a period of 250 nm. The MQWs grown on the nano-ELO GaN templates show stronger photoluminescence intensity and a higher activation energy for their peak emission. A minimal shift in the electroluminescence (EL) spectra with higher injection current applied for LEDs grown on ELO-GaN compared to conventional GaN template, suggests a reduction in strain of the quantum well layers on the nano-ELO GaN template. An enhancement in the light extraction efficiency is also achieved with multiple scattering via the embedded SiO{sub 2} mask. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  15. Effects of thermal stress on the growth of an intertidal population of Ellisolandia elongata (Rhodophyta) from N-W Mediterranean Sea.

    Science.gov (United States)

    Nannini, Matteo; De Marchi, Lucia; Lombardi, Chiara; Ragazzola, Federica

    2015-12-01

    Coralline algae are calcareous algae able to build biogenic structures, thus playing a key-role as marine biodiversity promoters and calcium carbonate producers. The aim was to estimate the growth of Ellisolandia elongata under thermal stress. E. elongata were cultured for 2, 4 and 6 months under "natural" temperature (Tc) and increased temperature (Ti = Tc + 3 °C). In order to determine a possible culturing effect, growth in the field was also measured. For the first time, Alizarin Red S dye was used in high energy shallow water environments. Thallus linear extension was higher in the cultured specimens (Tc and Ti) compared to the field specimens. The carbonate mass in the field was higher than in Ti and Tc after 2, 4 months but decreased after 6 months. Partly unknown in situ environmental factors could have affected growth and calcification rates in the field while thermal adaptation could explain growth rates in the culturing experiment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Numerical analysis of thermal stress and dislocation density distributions in large size multi-crystalline silicon ingots during the seeded growth process

    Science.gov (United States)

    Nguyen, Thi Hoai Thu; Chen, Jyh-Chen; Hu, Chieh; Chen, Chun-Hung; Huang, Yen-Hao; Lin, Huang-Wei; Yu, Andy; Hsu, Bruce

    2017-06-01

    In this study, a global transient numerical simulation of silicon growth from the beginning of the solidification process until the end of the cooling process is carried out modeling the growth of an 800 kg ingot in an industrial seeded directional solidification furnace. The standard furnace is modified by the addition of insulating blocks in the hot zone. The simulation results show that there is a significant decrease in the thermal stress and dislocation density in the modified model as compared to the standard one (a maximal decrease of 23% and 75% along the center line of ingot for thermal stress and dislocation density, respectively). This modification reduces the heating power consumption for solidification of the silicon melt by about 17% and shortens the growth time by about 2.5 h. Moreover, it is found that adjusting the operating conditions of modified model to obtain the lower growth rate during the early stages of the solidification process can lower dislocation density and total heater power.

  17. Use of joint-growth directions and rock textures to infer thermal regimes during solidification of basaltic lava flows

    Science.gov (United States)

    Degraff, James M.; Long, Philip E.; Aydin, Atilla

    1989-09-01

    Thermal contraction joints form in the upper and lower solidifying crusts of basaltic lava flows and grow toward the interior as the crusts thicken. Lava flows are thus divided by vertical joints that, by changes in joint spacing and form, define horizontal intraflow layers known as tiers. Entablatures are tiers with joint spacings less than about 40 cm, whereas colonnades have larger joint spacings. We use structural and petrographic methods to infer heat-transfer processes and to constrain environmental conditions that produce these contrasting tiers. Joint-surface morphology indicates overall joint-growth direction and thus identifies the level in a flow where the upper and lower crusts met. Rock texture provides information on relative cooling rates in the tiers of a flow. Lava flows without entablature have textures that develop by relatively slow cooling, and two joint sets that usually meet near their middles, which indicate mostly conductive cooling. Entablature-bearing flows have two main joint sets that meet well below their middles, and textures that indicate fast cooling of entablatures and slow cooling of colonnades. Entablatures always occur in the upper joint sets and sometimes alternate several times with colonnades. Solidification times of entablature-bearing flows, constrained by lower joint-set thicknesses, are much less than those predicted by a purely conductive cooling model. These results are best explained by a cooling model based on conductive heat transfer near a flow base and water-steam convection in the upper part of an entablature-bearing flow. Calculated solidification rates in the upper parts of such flows exceed that of the upper crust of Kilauea Iki lava lake, where water-steam convection is documented. Use of the solidification rates in an available model of water-steam convection yields permeability values that agree with measured values for fractured crystalline rock. We conclude, therefore, that an entablature forms when part

  18. Influence of feeding thermally peroxidized soybean oil on growth performance, digestibility, and gut integrity in finishing pigs.

    Science.gov (United States)

    Overholt, Martin F; Dilger, Anna C; Boler, Dustin D; Kerr, Brian J

    2018-05-26

    Consumption of peroxidized lipids has been shown to reduce pig performance and energy and lipid digestibility. Objectives of the current study were to evaluate the effect of feeding soybean oil (SO) with different levels of peroxidation on growth performance, lipid, N, and GE digestibility, plasma Trp, and gut integrity in finishing pigs. Fifty-six barrows (46.7 ± 5.1 kg initial BW) were randomly assigned to one of four diets in each of two dietary phases, containing either 10% fresh SO (22.5 °C) or thermally processed SO (45 °C for 288 h, 90 °C for 72 h, or 180 °C for 6 h), each infused with of 15 L/min of air. Peroxide values were 2.0, 17.4, 123.6, and 19.4 mEq/kg; 2,4-decadienal values were 2.07, 1.90, 912.15, and 915.49 mg/kg; and 4-hydroxynonenal concentrations were 0.66, 1.49, 170.48, and 82.80 mg/kg, for the 22.5, 45, 90, and 180 °C processed SO, respectively. Pigs were individually housed and fed ad libitum for 81 d to measure growth performance, including a metabolism period to collect urine and feces for determination of GE, lipid, N digestibility, and N retention. Following the last day of fecal and urine collection when pigs were in the metabolism crates, lactulose and mannitol were fed and subsequently measured in the urine to evaluate gut permeability, while markers of oxidative stress were evaluated in plasma, urine, and liver. There were no differences observed in ADFI (P = 0.91), but average daily gain (ADG) and gain:feed G:F were decreased in pigs fed 90 °C SO diet (P ≤ 0.07) compared to pigs fed the other SO diets. Pigs fed the 90 and 180 °C SO had the lowest (P = 0.05) DE as a % of GE compared to pigs fed the 22.5 °C SO, with pigs fed the 45 °C SO being intermediate. Lipid digestibility was similarly affected (P = 0.01) as energy digestibility, but ME as a % of DE was not affected by dietary treatment (P = 0.16). There were no effects of lipid peroxidation on N digested, N retained, or the urinary lactulose:mannitol ratio (P ≥ 0

  19. Growth-Environment Dependent Modulation of Staphylococcus aureus Branched-Chain to Straight-Chain Fatty Acid Ratio and Incorporation of Unsaturated Fatty Acids.

    Science.gov (United States)

    Sen, Suranjana; Sirobhushanam, Sirisha; Johnson, Seth R; Song, Yang; Tefft, Ryan; Gatto, Craig; Wilkinson, Brian J

    2016-01-01

    The fatty acid composition of membrane glycerolipids is a major determinant of Staphylococcus aureus membrane biophysical properties that impacts key factors in cell physiology including susceptibility to membrane active antimicrobials, pathogenesis, and response to environmental stress. The fatty acids of S. aureus are considered to be a mixture of branched-chain fatty acids (BCFAs), which increase membrane fluidity, and straight-chain fatty acids (SCFAs) that decrease it. The balance of BCFAs and SCFAs in USA300 strain JE2 and strain SH1000 was affected considerably by differences in the conventional laboratory medium in which the strains were grown with media such as Mueller-Hinton broth and Luria broth resulting in high BCFAs and low SCFAs, whereas growth in Tryptic Soy Broth and Brain-Heart Infusion broth led to reduction in BCFAs and an increase in SCFAs. Straight-chain unsaturated fatty acids (SCUFAs) were not detected. However, when S. aureus was grown ex vivo in serum, the fatty acid composition was radically different with SCUFAs, which increase membrane fluidity, making up a substantial proportion of the total (37%) and BCFAs (>36%) making up the rest. Staphyloxanthin, an additional major membrane lipid component unique to S. aureus, tended to be greater in content in cells with high BCFAs or SCUFAs. Cells with high staphyloxanthin content had a lower membrane fluidity that was attributed to increased production of staphyloxanthin. S. aureus saves energy and carbon by utilizing host fatty acids for part of its total fatty acids when growing in serum, which may impact biophysical properties and pathogenesis given the role of SCUFAs in virulence. The nutritional environment in which S. aureus is grown in vitro or in vivo in an infection is likely to be a major determinant of membrane fatty acid composition.

  20. SCC growth behavior of stainless steel weld metals in high-temperature water. Influence of corrosion potential, weld type, thermal aging, cold-work and temperature

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2009-01-01

    Recent studies on crack growth rate measurement in oxygenated high-temperature pure water conditions, such as normal water chemistry in boiling water reactors, using compact tension type specimens have shown that weld stainless steels are susceptible to stress corrosion cracking. However, to our knowledge, there is no crack growth data of weld stainless steels in pressurized water reactor primary water. The principal purpose of this study was to examine the SCC growth behavior of stainless steel weld metals in simulated PWR primary water. A second objective was to examine the effect of (1) corrosion potential, (2) thermal-aging, (3) Mo in alloy and (4) cold-working on SCC growth in hydrogenated and oxygenated water environments at 320degC. In addition, the temperature dependence of SCC growth in simulated PWR primary water was also studied. The results were as follows: (1) No significant SCC growth was observed on all types of stainless steel weld metals: as-welded, aged (400degC x 10 kh) 308L and 316L, in 2.7 ppm-hydrogenated (low-potential) water at 320degC. (2) 20% cold-working markedly accelerated the SCC growth of weld metals in high-potential water at 320degC, but no significant SCC growth was observed in the hydrogenated water, even after 20% cold-working. (3) No significant SCC growth was observed on stainless steel weld metals in low-potential water at 250degC and 340degC. Thus, stainless steel weld metals have excellent SCC resistance in PWR primary water. On the other hand, (4) significant SCC growth was observed on all types of stainless steel weld metals: as-weld, aged (400degC x 10 kh) and 20% cold-worked 308L and 316L, in 8 ppm-oxygenated (high-potential) water at 320degC. (5) No large difference in SCC growth was observed between 316L (Mo) and 308L. (6) No large effect on SCC growth was observed between before and after aging up to 400degC for 10 kh. (7) 20% cold-working markedly accelerated the SCC growth of stainless steel weld metals. (author)

  1. High temperature oxidation interfacial growth kinetics in YSZ thermal barrier coatings with bond coatings of NiCoCrAlY with 0.25% Hf

    Energy Technology Data Exchange (ETDEWEB)

    Soboyejo, W.O. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Mensah, P., E-mail: mensah@engr.subr.edu [Department of Mechanical Engineering, Southern University and A and M College, Baton Rouge, LA 70813 (United States); Diwan, R. [Department of Mechanical Engineering, Southern University and A and M College, Baton Rouge, LA 70813 (United States); Crowe, J. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Akwaboa, S. [Department of Mechanical Engineering, Southern University and A and M College, Baton Rouge, LA 70813 (United States)

    2011-03-15

    Research highlights: {yields} Isothermal oxidation of standard (STD) and vertically cracked (VC) TBCs has been investigated. {yields} The temporal TGO growth kinetics is parabolic in the temperature range between 900 and 1100 deg. C. {yields} Activation energies correspond to growth kinetics controlled by the diffusion of O{sub 2} in Al{sub 2}O{sub 3}. {yields} Variation in oxidation of TBCs is attributed to its microstructure and in-situ oxygen ingression. {yields} Doping TBC bond coat with Hf appears to have potential for enhancing the development of robust TBCs. - Abstract: The results of an experimental study of the high-temperature isothermal oxidation behavior and microstructural evolution in two variations of air plasma sprayed ceramic thermal barrier coatings (TBCs) are discussed in the paper. Two types of TBC specimens were produced for testing. These include a standard and vertically cracked APS. High temperature oxidation was carried out at 900, 1000, 1100 and 1200 deg. C. The experiments were performed in air under isothermal conditions. At each temperature, the specimens were exposed for 25, 50, 75 and 100 h. The corresponding microstructures and microchemistries of the TBC layers were examined using scanning electron microscopy and energy dispersive X-ray spectroscopy. Changes in the dimensions of the thermally grown oxide layer were determined as functions of time and temperature. The evolution of bond coat microstructures/interdiffusion zones and thermally grown oxide layers were compared in the TBC specimens with standard and vertically cracked microstructures.

  2. Finite-Element Thermal Analysis and Grain Growth Behavior of HAZ on Argon Tungsten-Arc Welding of 443 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Yichen Wang

    2016-03-01

    Full Text Available This paper presents a numerical and infrared experimental study of thermal and grain growth behavior during argon tungsten arc welding of 443 stainless steel. A 3D finite element model was proposed to simulate the welding process. The simulations were carried out via the Ansys Parametric Design Language (APDL available in the finite-element code, ANSYS. To validate the simulation accuracy, a series of experiments using a fully-automated welding process was conducted. The results of the numerical analysis show that the simulation weld bead size and the experiment results have good agreement. The grain growth in the heat-affected zone of 443 stainless steel is influenced via three factors: (1 the thermal cycle experienced; (2 grain boundary migration; and (3 particle precipitation. Grain boundary migration is the main factor. The modified coefficient k of the grain growth index is calculated. The value is 1.16. Moreover, the microhardness of the weld bead softened slightly compared to the base metal.

  3. Growth, structural, optical, thermal and laser damage threshold studies of an organic single crystal: 1,3,5 – triphenylbenzene (TPB)

    International Nuclear Information System (INIS)

    Raja, R. Subramaniyan; Babu, G. Anandha; Ramasamy, P.

    2016-01-01

    Good quality single crystals of pure hydrocarbon 1,3,5-Triphenylbenzene (TPB) have been successfully grown using toluene as a solvent using controlled slow cooling solution growth technique. TPB crystallizes in orthorhombic structure with the space group Pna2 1 . The structural perfection of the grown crystal has been analysed by high resolution X-ray diffraction measurements. The range and percentage of the optical transmission are ascertained by recording the UV-vis spectrum. Thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study its thermal properties. Powder second harmonic generation studies were carried out to explore its NLO properties. Laser damage threshold value has been determined using Nd:YAG laser operating at 1064 nm.

  4. Growth stress buildup in ion beam sputtered Mo thin films and comparative study of stress relaxation upon thermal annealing or ion irradiation

    International Nuclear Information System (INIS)

    Debelle, A.; Abadias, G.; Michel, A.; Jaouen, C.; Pelosin, V.

    2007-01-01

    In an effort to address the understanding of the origin of growth stress in thin films deposited under very energetic conditions, the authors investigated the stress state and microstructure of Mo thin films grown by ion beam sputtering (IBS) as well as the stress relaxation processes taking place during subsequent thermal annealing or ion irradiation. Different sets of samples were grown by varying the IBS deposition parameters, namely, the energy E 0 and the flux j of the primary ion beam, the target-to-sputtering gas mass ratio M 1 /M 2 as well as film thickness. The strain-stress state was determined by x-ray diffraction using the sin 2 ψ method and data analyzed using an original stress model which enabled them to correlate information at macroscopic (in terms of stress) and microscopic (in terms of defect concentration) levels. Results indicate that these refractory metallic thin films are characterized by a high compressive growth stress (-2.6 to -3.8 GPa), resulting from the creation of a large concentration (up to ∼1.4%) of point or cluster defects, due to the atomic peening mechanism. The M 1 /M 2 mass ratio enables tuning efficiently the mean deposited energy of the condensing atoms; thus, it appears to be the more relevant deposition parameter that allows modifying both the microstructure and the stress level in a significant way. The growth stress comes out to be highly unstable. It can be easily relaxed either by postgrowth thermal annealing or ion irradiation in the hundred keV range at very low dose [<0.1 dpa (displacement per atom)]. It is shown that thermal annealing induces deleterious effects such as oxidation of the film surface, decrease of the film density, and in some cases adhesion loss at the film/substrate interface, while ion irradiation allows controlling the stress level without generating any macroscopic damage

  5. The French market of thermal solar and its perspectives. Conditions are met for a sustained and durable market growth

    International Nuclear Information System (INIS)

    2011-03-01

    This article presents the content of a market study which aimed at assessing the rebound ability of the thermal solar energy market, at assessing the impact of the large legal framework which aims at developing thermal solar energy, at assessing the weight of French industries with respect to the German giants, and at understanding the strategy of equipment manufacturers and installers/integrators. The report presents the operating principles and applications of thermal solar energy production, presents the European and the French regulatory context, discusses the situation of France with respect to its commitments in terms of renewable energy as heat source, comments the dynamics of the French market, discusses the business model of this sector, and comments the position and strategies of front-end and back-end actors, i.e. equipment manufacturers on the one hand, and installers on the other hand

  6. Influence of feeding thermally peroxidized soybean oil on growth performance, digestibility, and gut integrity in growing pigs

    Science.gov (United States)

    Consumption of peroxidized oils has been shown to affect pig performance and oxidative status through the development of compounds which differ according to how oils are thermally processed. The objective of this study was to evaluate the effect of feeding varying degrees of peroxidized soybean oil ...

  7. Estimation of the base temperature and growth phase duration in terms of thermal time for four grapevine cultivars

    Science.gov (United States)

    Zapata, D.; Salazar, M.; Chaves, B.; Keller, M.; Hoogenboom, G.

    2015-12-01

    Thermal time models have been used to predict the development of many different species, including grapevine ( Vitis vinifera L.). These models normally assume that there is a linear relationship between temperature and plant development. The goal of this study was to estimate the base temperature and duration in terms of thermal time for predicting veraison for four grapevine cultivars. Historical phenological data for four cultivars that were collected in the Pacific Northwest were used to develop the thermal time model. Base temperatures ( T b) of 0 and 10 °C and the best estimated T b using three different methods were evaluated for predicting veraison in grapevine. Thermal time requirements for each individual cultivar were evaluated through analysis of variance, and means were compared using the Fisher's test. The methods that were applied to estimate T b for the development of wine grapes included the least standard deviation in heat units, the regression coefficient, and the development rate method. The estimated T b varied among methods and cultivars. The development rate method provided the lowest T b values for all cultivars. For the three methods, Chardonnay had the lowest T b ranging from 8.7 to 10.7 °C, while the highest T b values were obtained for Riesling and Cabernet Sauvignon with 11.8 and 12.8 °C, respectively. Thermal time also differed among cultivars, when either the fixed or estimated T b was used. Predictions of the beginning of ripening with the estimated temperature resulted in the lowest variation in real days when compared with predictions using T b = 0 or 10 °C, regardless of the method that was used to estimate the T b.

  8. Molecular beam epitaxy growth of In0.52Al0.48As/In0.53Ga0.47As metamorphic high electron mobility transistor employing growth interruption and in situ rapid thermal annealing

    International Nuclear Information System (INIS)

    Ihn, Soo-Ghang; Jo, Seong June; Song, Jong-In

    2006-01-01

    We investigated the effects of high temperature (∼700 deg. C) in situ rapid thermal annealing (RTA) carried out during growth interruption between spacer and δ-doping layers of an In 0.52 Al 0.48 As/In 0.53 Ga 0.47 As metamorphic high electron mobility transistor (MHEMT) grown on a compositionally graded InGaAlAs buffer layer. The in situ RTA improved optical and structural properties of the MHEMT without degradation of transport property, while postgrowth RTA improved the structural property of the MHEMT but significantly degraded mobility due to the defect-assisted Si diffusion. The results indicate the potential of the in situ RTA for use in the growth of high-quality metamorphic epitaxial layers for optoelectronic applications requiring improved optical and electrical properties

  9. The effects of design and operating factors on the frost growth and thermal performance of a flat plate fin-tube heat exchanger under the frosting condition

    International Nuclear Information System (INIS)

    Lee, Kwan Soo; Kim, Woo Seung

    1999-01-01

    An experimental study of the effects of various factors(fin pitch, fin arrangement, air temperature, air humidity, and air velocity) on the frost growth and thermal performance of a fin-tube heat exchanger has been conducted under the frosting condition. It is found that the thermal performance of a heat exchanger is closely related to the blockage ratio of the air flow passages due to the frost growth. The maximum allowable blockage ratio is used to determine the criteria for the optimal operating conditions of a fin-tube heat exchanger. It is also shown that heat transfer rate of heat exchanger with staggered fin arrangement increases about 17% and the time required for heat transfer rate to reach a maximum value becomes longer, compared with those of an inline fin-tube heat exchanger under the frosting condition. The energy transfer resistance between the air and coolant decreases with the increase of inlet air temperature and velocity and with decreasing inlet air humidity

  10. Effect of Thermal Annealing and Second Harmonic Generation on Bulk Damage Performance of Rapid-Growth KDP Type I Doublers at 1064 nm

    International Nuclear Information System (INIS)

    Runkel, M; Maricle, S; Torres, R; Auerbach, J; Floyd, R; Hawley-Fedder, R; Burnham, A K

    2000-01-01

    This paper discusses the results of thermal annealing and in-situ second harmonic generation (SHG) damage tests performed on six rapid growth KDP type 1 doubler crystals at 1064 nm (1 ω) on the Zeus automated damage test facility. Unconditioned (S/1) and conditioned (R/1) damage probability tests were performed before and after thermal annealing, then with and without SHG on six doubler crystals from the NIF-size, rapid growth KDP boule F6. The tests revealed that unannealed, last-grown material from the boule in either prismatic or pyramidal sectors exhibited the highest damage curves. After thermal annealing at 160 C for seven days, the prismatic sector samples increased in performance ranging from 1.6 to 2.4X, while material from the pyramidal sector increased only modestly, ranging from 1.0 to 1.4X. Second harmonic generation decreased the damage fluence by an average of 20 percent for the S/1 tests and 40 percent for R/1 tests. Conversion efficiencies under test conditions were measured to be 20 to 30 percent and compared quite well to predicted behavior, as modeled by LLNL frequency conversion computer codes. The damage probabilities at the 1 ω NIF redline fluence (scaled to 10 ns via t 0.5 ) for S/1 tests for the unannealed samples ranged from 20 percent in one sample to 90-100 percent for the other 5 samples. Thermal annealing reduced the damage probabilities to less than 35 percent for 3 of the poor-performing crystals, while two pyramidal samples remained in the 80 to 90 percent range. Second harmonic generation in the annealed crystal increased the S/1 damage probabilities on all the crystals and ranged from 40 to 100 percent. In contrast, R/1 testing of an unannealed crystal resulted in a damage probability at the NIF redline fluence of 16%. Annealing increased the damage performance to the extent that all test sites survived NIF redline fluences without damage. Second harmonic generation in the R/1 test yielded a damage probability of less than 2

  11. Growth and dielectric, mechanical, thermal and etching studies of an organic nonlinear optical L-arginine trifluoroacetate (LATF) single crystal

    International Nuclear Information System (INIS)

    Arjunan, S.; Mohan Kumar, R.; Mohan, R.; Jayavel, R.

    2008-01-01

    L-arginine trifluoroacetate, an organic nonlinear optical material, has been synthesized from aqueous solution. Bulk single crystal of dimension 57 mm x 5 mm x 3 mm has been grown by temperature lowering technique. Powder X-ray diffraction studies confirmed the monoclinic structure of the grown L-arginine trifluoroacetate crystal. Linear optical property of the grown crystal has been studied by UV-vis spectrum. Dielectric response of the L-arginine trifluoroacetate crystal was analysed for different frequencies and temperatures in detail. Microhardness study on the sample reveals that the crystal possesses relatively higher hardness compared to many organic crystals. Thermal analyses confirmed that the L-arginine trifluoroacetate material is thermally stable upto 212 deg. C. The etching studies have been performed to assess the perfection of the L-arginine trifluoroacetate crystal. Kurtz powder second harmonic generation test confirms the nonlinear optical properties of the as-grown L-arginine trifluoroacetate crystal

  12. Thermal instability and the growth of the InGaAs/AlGaAs pseudomorphic high electron mobility transistor system

    International Nuclear Information System (INIS)

    Pellegrino, Joseph G.; Qadri, Syed B.; Mahadik, Nadeemullah A.; Rao, Mulpuri V.; Tseng, Wen F.; Thurber, Robert; Gajewski, Donald; Guyer, Jonathan

    2007-01-01

    The effects of temperature overshoot during molecular beam epitaxy growth on the transport properties of conventionally and delta-doped pseudomorphic high electron mobility transistor (pHEMT) structures have been examined. A diffuse reflectance spectroscopy (DRS)-controlled versus a thermocouple (TC)-controlled, growth scheme is compared. Several advantages of the DRS-grown pHEMTs over the TC-controlled version were observed. Modest improvements in mobility, on the order of 2%-3%, were observed in addition to a 20% reduction in carrier freeze-out for the DRS-grown pHEMTs at 77 K

  13. Growth, thermal and spectral characteristics of Yb{sup 3+}:Sr{sub 6}YSc(BO{sub 3}){sub 6} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Feifei [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Lizhen; Huang, Yisheng; Sun, Shijia [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Lin, Zhoubin, E-mail: lzb@fjirsm.ac.cn [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Wang, Guofu [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China)

    2014-09-15

    Highlights: • A new crystal of Yb{sup 3+}:Sr{sub 6}YSc(BO{sub 3}){sub 6} was grown successfully from a Li{sub 6}B{sub 4}O{sub 9} flux. • Yb{sup 3+}:Sr{sub 6}YSc(BO{sub 3}){sub 6} crystal has good thermal, mechanical and spectral properties. • Yb{sup 3+}:Sr{sub 6}YSc(BO{sub 3}){sub 6} has long fluorescence lifetime, broad absorption and emission bands. - Abstract: A crystal of Yb{sup 3+}:Sr{sub 6}YSc(BO{sub 3}){sub 6} was grown successfully from Li{sub 6}B{sub 4}O{sub 9} flux by the top-seeded solution growth method. The crystal's thermal, mechanical and spectral characteristics were investigated in detail. It possesses small thermal expansion coefficients, moderate thermal conductivities, and large hardness. The crystal has a strong absorption band at 967 nm with a full width at half-maximum of about 3.4 nm. The crystal has a broad emission band at 1016 nm with the full width at half-maximum of about 64 nm. The emission cross sections were calculated by reciprocity method and Füchtbauer-Ladenburg formula. The fluorescence lifetime is 5.98 ms. The results reveal that Yb{sup 3+}:Sr{sub 6}YSc(BO{sub 3}){sub 6} crystal is a new promising tunable and ultrashort pulse laser crystal.

  14. Nanocrystal Growth in Thermally Treated Fe75Ni2Si8B13C2 Amorphous Alloy

    Czech Academy of Sciences Publication Activity Database

    Minić, Dragica M.; Blagojević, V.; Minić, Dušan M.; David, Bohumil; Pizúrová, Naděžda; Žák, Tomáš

    43A, č. 9 (2012), s. 3062-3069 ISSN 1073-5623 R&D Projects: GA MŠk 1M0512 Institutional support: RVO:68081723 Keywords : Nanocrystal growth * Fe75Ni2Si8B13C2 * Amorphous alloy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.627, year: 2012

  15. Growth Structural and Optical Properties of the Thermally Evaporated Tin Diselenide (SnSe2) Thin Films

    OpenAIRE

    R. Sachdeva1,; M. Sharma1,; A. Devi1,; U. Parihar1,; N. Kumar1,; N. Padha1,; C.J. Panchal

    2011-01-01

    Tin diselenide (SnSe2) compound was prepared by melt-quenching technique from its constituent elements. The phase structure and composition of the chemical constituents present in the bulk has been determined using X-ray diffraction (XRD) and energy dispersion X-ray analysis (EDAX) respectively. SnSe2 thin films were grown using direct thermal evaporation of SnSe2 compound material on chemically cleaned glass substrate, which were held at different substrate temperatures. X-ray diffraction an...

  16. The effect of residual thermal stresses on the fatigue crack growth of laser-surface-annealed AISI 304 stainless steel Part I: computer simulation

    International Nuclear Information System (INIS)

    Shiue, R.K.; Chang, C.T.; Young, M.C.; Tsay, L.W.

    2004-01-01

    The effect of residual thermal stresses on the fatigue crack growth of the laser-surface-annealed AISI 304 stainless steel, especially the effect of stress redistribution ahead of the crack tip was extensively evaluated in the study. Based on the finite element simulation, the longitudinal residual tensile stress field has a width of roughly 20 mm on the laser-irradiated surface and was symmetric with respect to the centerline of the laser-annealed zone (LAZ). Meanwhile, residual compressive stresses distributed over a wide region away from the LAZ. After introducing a notch perpendicular to the LAZ, the distribution of longitudinal residual stresses became unsymmetrical about the centerline of LAZ. High residual compressive stresses exist within a narrow range ahead of notch tip. The improved crack growth resistance of the laser-annealed specimen might be attributed to those induced compressive stresses. As the notch tip passed through the centerline of the LAZ, the residual stress ahead of the notch tip was completely reverted into residual tensile stresses. The existence of unanimous residual tensile stresses ahead of the notch tip was maintained, even if the notch tip extended deeply into the LAZ. Additionally, the presence of the residual tensile stress ahead of the notch tip did not accelerate the fatigue crack growth rate in the compact tension specimen

  17. Thermal tolerance, net CO2 exchange and growth of a tropical tree species, Ficus insipida, cultivated at elevated daytime and nighttime temperatures.

    Science.gov (United States)

    Krause, G Heinrich; Cheesman, Alexander W; Winter, Klaus; Krause, Barbara; Virgo, Aurelio

    2013-06-15

    Global warming and associated increases in the frequency and amplitude of extreme weather events, such as heat waves, may adversely affect tropical rainforest plants via significantly increased tissue temperatures. In this study, the response to two temperature regimes was assessed in seedlings of the neotropical pioneer tree species, Ficus insipida. Plants were cultivated in growth chambers at strongly elevated daytime temperature (39°C), combined with either close to natural (22°C) or elevated (32°C) nighttime temperatures. Under both growth regimes, the critical temperature for irreversible leaf damage, determined by changes in chlorophyll a fluorescence, was approximately 51°C. This is comparable to values found in F. insipida growing under natural ambient conditions and indicates a limited potential for heat tolerance acclimation of this tropical forest tree species. Yet, under high nighttime temperature, growth was strongly enhanced, accompanied by increased rates of net photosynthetic CO2 uptake and diminished temperature dependence of leaf-level dark respiration, consistent with thermal acclimation of these key physiological parameters. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Microstructure evolution, thermal stability and fractal behavior of water vapor flow assisted in situ growth poly(vinylcarbazole)-titania quantum dots nanocomposites

    Science.gov (United States)

    Mombrú, Dominique; Romero, Mariano; Faccio, Ricardo; Mombrú, Alvaro W.

    2017-12-01

    Here, we report a novel strategy for the preparation of TiO2 quantum dots fillers prepared from alkoxide precursor via in situ water vapor flow diffusion into poly(N-vinylcarbazole) host. A detailed characterization by means of infrared and Raman spectroscopy, X-ray powder diffraction, small angle X-ray scattering and differential scanning calorimetry is reported. The growth mechanism of both crystallites and particles was mostly governed by the classical coarsening reaction limited growth and the polymer host showed no detectable chemical modifications at the interface or active participation in the growing process. The main relevance of our strategy respect to the typical sol-gel growth in solution is the possibility of the interruption of the reaction by simple stopping the water vapor flow diffusion into the polymer host thus achieving good control in the nanoparticles size. The thermal stability and fractal behavior of our nanocomposites were also studied by differential scanning calorimetry and in situ small angle X-ray scattering versus temperature. Strong correlations between modifications in the fractal behavior and glass transition or fusion processes were observed for these nanocomposites.

  19. Synthesis, growth, spectral, electrical, mechanical and thermal characterization of a potential optical material: γ-glycine single crystal

    Science.gov (United States)

    Sivakumar, N.; Jayavel, R.; Anbalagan, G.; Yadav, R. R.

    2018-06-01

    Gamma glycine, an organic material was grown by slow solvent evaporation method. Conventional polythermal method was employed in the temperature range, 30-50 °C to obtain the solubility and the metastable zonewidth. The crystal and molecular structures were analyzed by X-ray powder diffraction, FT-IR and FT-Raman spectral studies. Optical refractive index was determined by prism coupling technique and was found to be 1.4488. Electrical properties such as ac conductivity and activation energy were studied for different temperatures in the frequency range from 40 Hz to 6 MHz. The dc electrical conductivity was estimated from the Cole-Cole plot and the values were found to be 2.19 × 10-6 Sm-1 at 353K and 1.46 × 10-6 Sm-1 at 373K respectively. Mechanical studies on the grown crystal revealed that the material belongs to soft materials category. Thermal conductivity and specific heat capacities were estimated by Hot Disk Thermal Constants Analyzer.

  20. Non-thermal plasma modified growth and differentiation process of Capsicum annuum PP805 Godiva in in vitro conditions

    Science.gov (United States)

    Safari, Nasrin; Iranbakhsh, Alireza; Ardebili, Zahra Oraghi

    2017-05-01

    With the aim of evaluating the possible impacts of cold plasma on the structure and growth pattern of Capsicum annuum, the current study was carried out. The seeds were exposed to an argon-derived plasma (0.84 W cm-2 surface power densities) for 0, 1 or 2 minutes. Plasma-treated seeds were grown in the Murashige and Skoog (MS) medium or MS medium supplemented with BA and IAA. The presence of purple stems was recorded in plasma-treated plants grown in the medium supplemented with hormones. The recorded morphological differences were dependent on the exposure time of plasma treatments and/or the presence of hormones in the culture media. Plasma treatment of 1 minute had an improving effect on the shoot and root lengths as well as total leaf area, whereas plasma treatment of 2 minutes had an adverse effect. In contrast to the 1 minute treatment, plasma treatment of 2 minutes significantly impaired growth and hence reduced the total biomass. Alterations in stem diameter and differences in tissue patterns (especially in the vascular system) occurred, and were mainly dependent on the plasma exposure time and/or the presence of hormones. This is a first report on the effects of cold plasma on plant growth in in vitro conditions.

  1. Ambient aging of rhenium filaments used in thermal ionization mass spectrometry: Growth of oxo-rhenium crystallites and anti-aging strategies

    Directory of Open Access Journals (Sweden)

    Joseph M. Mannion

    2017-01-01

    Full Text Available Degassing is a common preparation technique for rhenium filaments used for thermal ionization mass spectrometric analysis of actinides, including plutonium. Although optimization studies regarding degassing conditions have been reported, little work has been done to characterize filament aging after degassing. In this study, the effects of filament aging after degassing were explored to determine a “shelf-life” for degassed rhenium filaments, and methods to limit filament aging were investigated. Zone-refined rhenium filaments were degassed by resistance heating under high vacuum before exposure to ambient atmosphere for up to 2 months. After degassing the nucleation and preferential growth of oxo-rhenium crystallites on the surface of polycrystalline rhenium filaments was observed by atomic force microscopy and scanning electron microscopy (SEM. Compositional analysis of the crystallites was conducted using SEM-Raman spectroscopy and SEM energy dispersive X-ray spectroscopy, and grain orientation at the metal surface was investigated by electron back-scatter diffraction mapping. Spectra collected by SEM-Raman suggest crystallites are composed primarily of perrhenic acid. The relative extent of growth and crystallite morphology were found to be grain dependent and affected by the dissolution of carbon into filaments during annealing (often referred to as carbonization or carburization. Crystallites were observed to nucleate in region specific modes and grow over time through transfer of material from the surface. Factors most likely to affect the rates of crystallite growth include rhenium substrate properties such as grain size, orientation, levels of dissolved carbon, and relative abundance of defect sites; as well as environmental factors such as length of exposure to oxygen and relative humidity. Thin (∼180 nm hydrophobic films of poly(vinylbenzyl chloride were found to slow the growth of oxo-rhenium crystallites on the filament

  2. Effect of Nickel sulphate on Growth, Structural, Optical, Mechanical and thermal properties of L-alanine Single Crystals (LANS)

    Science.gov (United States)

    Jothimani, R.; Selvarajan, P.

    2017-08-01

    The nonlinear optical materials find excellent place in frequency conversion, optical telecommunication, image processing, optical computing, and data storage. Due to possessing chiral symmetry and nature of crystallize in noncentro-symmetric space groups, the amino acids are applicable in NLO applications. A transparent nickel sulphate admixtured L-alanine crystal has been developed by solution method. X ray diffraction analysis depicts the orthorhombic crystal system of the sample. NLO efficiency of the sample was found to be highly pronounced compare to KDP. An enhanced linear optical property of the sample shows its suitability for NLO applications. Thermal behaviour of the sample was found by TGA/DTA analysis. Hardness parameters were also found for the sample by microhardness measurements. Laser damage threshold were also measured using Nd: YAG laser.

  3. Growth, optical, ICP and thermal studies of nonlinear optical single crystal: Sodium acid phthalate (NaAP)

    Science.gov (United States)

    Mahadevan, M.; Arivanandhan, M.; Elangovan, K.; Anandan, P.; Ramachandran, K.

    2017-07-01

    Good quality single crystals of sodium acid phthalate (NaAP) were grown by slow evaporation technique. Single crystal X-ray diffraction study of the grown crystal reveals that the crystal belongs to orthorhombic system with space group B2ab. Fourier transform infrared spectrum confirms the presence of the functional groups of the grown material. Inductively coupled plasma emission spectroscopy analysis is used to confirm the presence of Na element in the sample. Thermal analysis of the NaAP crystal shows that the crystal is stable up to 140°C. Optical transmittance of the grown crystal was recorded in the wavelength range from 200 and 800 nm using UV-Vis-NIR spectrophotometer. The second harmonic generation of NaAP was analysed using Kurtz powder technique.

  4. Catalyst-free growth of ZnO nanowires on ITO seed/glass by thermal evaporation method: Effects of ITO seed layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Alsultany, Forat H., E-mail: foratusm@gmail.com; Ahmed, Naser M. [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Hassan, Z. [Institute of Nano-Optoelectronics Research and Technology Laboratory (INOR), Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2016-07-19

    A seed/catalyst-free growth of ZnO nanowires (ZnO-NWs) on a glass substrate were successfully fabricated using thermal evaporation technique. These nanowires were grown on ITO seed layers of different thicknesses of 25 and 75 nm, which were deposited on glass substrates by radio frequency (RF) magnetron sputtering. Prior to synthesized ITO nanowires, the sputtered ITO seeds were annealed using the continuous wave (CW) CO2 laser at 450 °C in air for 15 min. The effect of seed layer thickness on the morphological, structural, and optical properties of ZnO-NWs were systematically investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and UV-Vis spectrophotometer.

  5. Crystal growth, morphology, thermal and spectral studies of an organosulfur nonlinear optical bis(guanidinium) 5-sulfosalicylate (BG5SS) single crystals

    Science.gov (United States)

    Dhavamurthy, M.; Peramaiyan, G.; Babu, K. Syed Suresh; Mohan, R.

    2015-04-01

    Organosulfur nonlinear optical single crystals of orthorhombic bis(guanidinium) 5-sulfosalicylate (2CH6N3 +·C7H4O6S2-·H2O) with dimension 14 mm × 4 mm × 5 mm have been grown from methanol and water solvents in 1:1 ratio by the slow evaporation growth technique. The crystal structure and morphology of the crystals have been studied by single-crystal X-ray diffraction. FTIR spectroscopic studies were carried out to identify the functional groups and vibrational modes present in the grown crystals. The UV-Vis spectrum was studied to analyze the linear optical properties of the grown crystals. The thermal gravimetric analysis was conducted on the grown crystals, and the result revealed that the grown crystal is thermally stable up to 65 °C. The dielectric tensor components ɛ 11, ɛ 22 and ɛ 33 of BG5SS crystal were evaluated as a function of frequency at 40 °C. The surface laser damage threshold for the grown crystal was measured using Nd:YAG laser. Further, Vickers micro-hardness study was carried out to analyze the mechanical strength of the grown crystals for various loads.

  6. Solar thermal barometer

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    After the bad year of 2002, the european solar thermal market returned to double-digit growth rate in 2003: 22%. Nevertheless, the sector still has not recovered the growth rate it had in the early 2000 and European Commission targets are still far from being reached. This paper presents the thermal solar industry barometer. Data on the evolution of annually installed surfaces in the european union since 1993, the cumulated capacity of thermal collectors installed in the European Union, the estimation of the annual energy production associated to european solar thermal capacities and the main companies of the European Union thermal solar sector are presented and discussed. (A.L.B.)

  7. Controlled growth and thermal decomposition of well-dispersed and uniform ZnSn(OH)6 submicrocubes

    International Nuclear Information System (INIS)

    He, Qin; Zi, Junfeng; Huang, Baojun; Yan, Lingyu; Fa, Wenjun; Li, Dapeng; Zhang, Yange; Gao, Yuanhao; Zheng, Zhi

    2014-01-01

    Graphical abstract: Schematic illustration of the growth of the ZnSn(OH) 6 submicrocubes. - Highlights: • ZnSn(OH) 6 with perfect cubic shapes was formed through the chemical conversion. • We could control the morphologies of ZnSn(OH) 6 by changing reaction conditions. • Calcination of ZnSn(OH) 6 could produce different products. - Abstract: Well-dispersed and uniform ZnSn(OH) 6 submicrocubes with the average size of about 400 nm were successfully synthesized through the chemical conversion of different precipitates assisted by ultrasonic treatment and the subsequent aging process in an economical aqueous solution. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TG) and Differential scanning calorimetry (DSC). The growth mechanism has been proposed and the reaction conditions were carefully investigated. It was found experimentally that ultrasound irradiation, aging process and the presence of Na 2 CO 3 in the synthetic process had an impact on the formation of the ZnSn(OH) 6 submicrocubes. Additionally, the obtained ZnSn(OH) 6 submicrocubes can be applied for the preparation of the Zn 2 SnO 4 /SnO 2 mixtures by simple calcination

  8. Initiation and growth of thermal fatigue crack networks in an AISI 304 L type austenitic stainless steel (X2 CrNi18-09)

    International Nuclear Information System (INIS)

    Maillot, V.

    2004-01-01

    We studied the behaviour of a 304 L type austenitic stainless steel submitted to thermal fatigue. Using the SPLASH equipment of CEA/SRMA we tested parallelepipedal specimens on two sides: the specimens are continuously heated by Joule effect, while two opposites faces are cyclically. cooled by a mixed spray of distilled water and compressed air. This device allows the reproduction and the study of crack networks similar to those observed in nuclear power plants, on the inner side of circuits fatigued by mixed pressurized water flows at different temperatures. The crack initiation and the network constitution at the surface were observed under different thermal conditions (Tmax = 320 deg C, ΔT between 125 and 200 deg C). The experiment produced a stress gradient in the specimen, and due to this gradient, the in-depth growth of the cracks finally stopped. The obtained crack networks were studied quantitatively by image analysis, and different parameters were studied: at the surface during the cycling, and post mortem by step-by-step layer removal by grinding. The maximal depth obtained experimentally, 2.5 mm, is relatively coherent with the finite element modelling of the SPLASH test, in which compressive stresses appear at a depth of 2 mm. Some of the crack networks obtained by thermal fatigue were also tested in isothermal fatigue crack growth under 4-point bending, at imposed load. The mechanisms of the crack selection, and the appearance of the dominating crack are described. Compared to the propagation of a single crack, the crack networks delay the propagation, depending on the severity of the crack competition for domination. The dominating crack can be at the network periphery, in that case it is not as shielded by its neighbours as a crack located in the center of the network. It can also be a straight crack surrounded by more sinuous neighbours. Indeed, on sinuous cracks, the loading is not the same all along the crack path, leading to some morphological

  9. A Comparison of Simple Methods to Incorporate Material Temperature Dependency in the Green’s Function Method for Estimating Transient Thermal Stresses in Thick-Walled Power Plant Components

    Directory of Open Access Journals (Sweden)

    James Rouse

    2016-01-01

    Full Text Available The threat of thermal fatigue is an increasing concern for thermal power plant operators due to the increasing tendency to adopt “two-shifting” operating procedures. Thermal plants are likely to remain part of the energy portfolio for the foreseeable future and are under societal pressures to generate in a highly flexible and efficient manner. The Green’s function method offers a flexible approach to determine reference elastic solutions for transient thermal stress problems. In order to simplify integration, it is often assumed that Green’s functions (derived from finite element unit temperature step solutions are temperature independent (this is not the case due to the temperature dependency of material parameters. The present work offers a simple method to approximate a material’s temperature dependency using multiple reference unit solutions and an interpolation procedure. Thermal stress histories are predicted and compared for realistic temperature cycles using distinct techniques. The proposed interpolation method generally performs as well as (if not better than the optimum single Green’s function or the previously-suggested weighting function technique (particularly for large temperature increments. Coefficients of determination are typically above 0 . 96 , and peak stress differences between true and predicted datasets are always less than 10 MPa.

  10. Growth, structural, thermal, dielectric and nonlinear optical properties of potassium hexachloro cadmate (IV) a novel single crystal

    Science.gov (United States)

    Umarani, P.; Jagannathan, K.

    2018-02-01

    The Potassium hexachloro cadmate (IV) (PHC) single crystal was grown from the aqueous of the solution by a controlled evaporation method. Single crystal XRD solved the structure. FTIR is used to identify the functional groups of grown crystal. The UV-Vis-NIR spectrometer was used to find out the UV cut off region and to calculate the optical band gap of the Potassium hexachloro cadmate (IV) single crystal. The EDAX spectrum has been used to identify the compounds present in title compound. The TG-DTA profile shows the thermal stability of the grown crystal of Potassium hexachloro cadmate (IV). The Vicker's hardness measurement was used to calculate the material hardness of the title compound. The dielectric loss and constant varied with frequencies and activation energy is also calculated. The solid state parameters like plasma energy, Penn gap, Fermi energy, electronic polarizability using Penn analysis and Clausius-Mossotti equation were also calculated for the title compound. The Z-scan technique is used to calculate the third order nonlinear susceptibility of a real and imaginary part.

  11. A study of growth and thermal dewetting behavior of ultra-thin gold films using transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    Sudheer

    2017-07-01

    Full Text Available The growth and solid-state dewetting behavior of Au thin films (0.7 to 8.4 nm deposited on the formvar film (substrate by sputtering technique have been studied using transmission electron microscopy. The size and number density of the Au nanoparticles (NPs change with an increase in the film thickness (0.7 to 2.8 nm. Nearly spherical Au NPs are obtained for 6 nm show capability to be used as an irreversible temperature sensor with a sensitivity of ∼0.1 CAF/°C. It is observed that annealing affects the crystallinity of the Au grains in the films. The electron diffraction measurement also shows annealing induced morphological evolution in the percolated Au thin films (≥3 nm during solid-state dewetting and recrystallization of the grains.

  12. Synthesis of Cubic Phase-Co Microspheres by Mechanical Solid-State Reaction-Thermal Decomposition and Research on Its Growth Kinetics

    Directory of Open Access Journals (Sweden)

    Ying Deng

    2016-01-01

    Full Text Available Cubic phase cobalt (Co, which can be used as a key component for composite materials given its excellent ductility and internal structure, is not easy to obtain at room temperature. In this study, oxalic acid and cobalt nitrate are used as raw materials to synthesize the cobalt oxalate precursor, which has a stable structure with a five-membered chelate ring. Cobalt oxalate microspheres, having a high internal energy content, were prepared by using mechanical solid-state reaction in the presence of a surfactant, which can produce spherical micelles. The thermal decomposition of the precursor was carried out by maintaining it in a nitrogen atmosphere at 450°C for 3 h. At the end of the procedure, 100 nm cubic phase-Co microspheres, stable at room temperature, were obtained. Isothermal and nonisothermal kinetic mechanisms of cobalt grain growth were investigated. The cubic-Co grain growth activation energy, Q, was calculated in this study to be 71.47 kJ/mol. The required reaction temperature was low, making the production process simple and suitable for industrial applications.

  13. Characteristics of six small heat shock protein genes from Bactrocera dorsalis: Diverse expression under conditions of thermal stress and normal growth.

    Science.gov (United States)

    Dou, Wei; Tian, Yi; Liu, Hong; Shi, Yan; Smagghe, Guy; Wang, Jin-Jun

    2017-11-01

    To explore the functions of small heat shock proteins (sHsps) in relation to thermal stress and development in Bactrocera dorsalis (Hendel), one of the most economically important pest species attacking a wide range of fruits and vegetables, six full-length cDNAs of sHsp genes (BdHsp17.7, 18.4, 20.4, 20.6, 21.6 and 23.8) were cloned, and the expression patterns in different developmental stages and tissues, as well as in response to both thermal and 20-hydroxyecdysone (20E) exposures, were examined using real time quantitative PCR. The open reading frames (ORFs) of six sHsps are 453, 489, 537, 543, 567 and 630bp in length, encoding proteins with molecular weights of 17.7, 18.4, 20.4, 20.6, 21.6 and 23.8kDa, respectively. BdHsp18.4 and BdHsp20.4 maintained lower expression levels in both eggs and larvae, whereas remarkably up-regulated after the larval-pupal transformation, suggesting that these two sHsps may be involved in metamorphosis. Significant tissue specificity exists among sHsps: the highest expression of BdHsp20.6 and BdHsp23.8 in the Malpighian tubules and ovary, respectively, versus a peak in the fat body for others. BdHsp20.4 and BdHsp20.6 were significantly up-regulated by thermal stress. In contrast, BdHsp18.4 and BdHsp23.8 reacted only to heat stress. BdHsp17.7 and BdHsp21.6 were insensitive to both heat and cold stresses. The degree of sHsps response depends on intensity of 20E treatment, i.e., dose and time. These results strongly suggest functional differentiation within the sHsp subfamily in B. dorsalis. The physiological function of sHsp members under thermal stress and normal growth remains the subjects of further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Acute and persistent effects of pre- and posthatching thermal environments on growth and metabolism in the red-eared slider turtle, Trachemys scripta elegans.

    Science.gov (United States)

    Ligon, Day B; Peterson, Charles C; Lovern, Matthew B

    2012-04-01

    Many ectotherms possess the capacity to survive a wide range of thermal conditions. Long-term exposure to temperature can induce acclimational and/or organizational effects, and the developmental stage at which temperature exposure occurs may affect the type, degree, and persistence of these effects. We incubated red-eared slider turtle embryos at three different constant temperatures (T(inc); 26.5, 28.5, 30.5°C), then divided the resulting hatchlings between two water temperatures (T(water); 25, 30°C). We calculated growth rates to assess the short- and long-term effects of thermal experience on this metabolically costly process. We also measured resting metabolic rate (RMR) at three body temperatures (T(body;) 26.5, 28.5, 30.5°C) shortly after hatching and 6 months posthatching to characterize the degree and persistence of acclimation to T(inc) and T(water) . Hatchling RMRs were affected by T(body) and T(inc) , and fit a pattern consistent with positive but incomplete metabolic compensation to T(inc) . Average growth rates over the first 11 weeks posthatching were strongly affected by T(water) but only marginally influenced by T(inc) , and only at T(water) = 30°C. Six-month RMRs exhibited strong acclimation to T(water) consistent with positive metabolic compensation. However, within each T(water) treatment, RMR fit patterns indicative of inverse metabolic compensation to T(inc) , opposite of the pattern observed in hatchlings. Average growth rates calculated over 6 months continued to show a strong effect of T(water) , and the previously weak effect of T(inc) observed within the 30°C T(water) treatment became more pronounced. Our results suggest that metabolic compensation was reversible regardless of the life stage during which exposure occurred, and therefore is more appropriately considered acclimational than organizational. © 2012 WILEY PERIODICALS, INC.

  15. The effects of thermal manipulations during embryogenesis of broiler chicks on growth of embryo and skeletal traits

    Science.gov (United States)

    Aygün, Ali; Narinç, Doǧan

    2016-04-01

    Incubation temperature is one of the important environmental factors that can induce epigenetic thermal adaptation of different physiological control systems. Thus, post hatch thermo tolerance ability of birds may be gained using these manipulations during different incubation periods. The current study was carried out to reveal the effects of temperature manipulations during early and late embryogenesis on weight of embryo and size of skeletal bilateral traits (face, wings, metatarsus, tibia, and femur) in broiler chicken embryos. One thousand commercial broiler eggs from 46 week old breeder flock were used in study. Treatments consisted of eggs incubated at 37.8°C and 55% relative humidity throughout (control; DG1), heated to 36.9°C and supplied 60% relative humidity for 6 hours daily from day 0 to 8 (DG2), heated to 36.9°C and supplied 60% relative humidity for 6 hours daily from day 10 to 18 (DG3), heated to 41°C and supplied 65% relative humidity for 3 hours daily from day 8 to 10 (DG4), and heated to 41°C and supplied 65% relative humidity for 3 hours daily from day 16 to 18 (DG5). Measurements of embryo weight and bilateral traits were obtained at 20 day of incubation and at hatch (at day 21). It was determined that the live weights of embryo and chick were affected significantly by treatment; DG3 group has shown higher mean values than the other treatment groups (Pmetabolic shifts realized by the embryos.

  16. Synthesis, growth, morphology of the semiorganic nonlinear optical crystal L-glutamic acid hydrochloride and its structural, thermal and SHG characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Dhanasekaran, P.; Srinivasan, K. [Crystal Growth Laboratory, Department of Physics, School of Physical Sciences, Bharathiar University, Coimbatore-641 046, Tamil Nadu (India)

    2012-12-15

    One of the halide derivatives of L-glutamic acid which was identified as a semiorganic nonlinear optical material, L-glutamic acid hydrochloride [HOOC(CH{sub 2}){sub 2}CH(NH{sub 2})COOH.HCl], was grown as bulk single crystal and its significant properties were characterized. The stoichiometric title compound was synthesized and the solubility of its recrystallized form in DD water was determined in the temperature range 30-80 C by gravimetric method. Structural confirmation was carried out by powder X-ray diffraction study through lattice parameter verification. Optical quality smaller dimension single crystals were grown from aqueous solution by self nucleation through slow evaporation of solvent method and a large dimension single crystal was grown by slow cooling method with reversible seed rotation technique. Morphological importances of different growth facets of the as grown crystals were studied through optical goniometry. Unit cell structure of the grown crystal was refined by single crystal X-ray diffraction analysis, functional groups present in the crystal responsible for various modes of vibrations were confirmed by FTIR spectroscopy analysis, thermal stability of the grown crystal was analysed by TG/DTA and DSC and second harmonic generation (SHG) of a fundamental Nd:YAG laser beam by Kurtz technique. Results indicate that the grown crystal is in stoichiometric composition and has significant improvement in its thermal and SHG properties when compared to pure L-glutamic acid polymorphs. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Metalorganic chemical vapor deposition growth and thermal stability of the AlInN/GaN high electron mobility transistor structure

    International Nuclear Information System (INIS)

    Yu, Hongbo; Ozturk, Mustafa; Demirel, Pakize; Cakmak, Huseyin; Bolukbas, Basar; Caliskan, Deniz; Ozbay, Ekmel

    2011-01-01

    The Al x In 1−x N barrier high electron mobility transistor (HEMT) structure has been optimized with varied barrier composition and thickness grown by metalorganic chemical vapor deposition. After optimization, a transistor structure comprising a 7 nm thick nearly lattice-matched Al 0.83 In 0.17 N barrier exhibits a sheet electron density of 2.0 × 10 13 cm −2 with a high electron mobility of 1540 cm 2 V −1 s −1 . An Al 0.83 In 0.17 N barrier HEMT device with 1 µm gate length provides a current density of 1.0 A mm −1 at V GS = 0 V and an extrinsic transconductance of 242 mS mm −1 , which are remarkably improved compared to that of a conventional Al 0.3 Ga 0.7 N barrier HEMT. To investigate the thermal stability of the HEMT epi-structures, post-growth annealing experiments up to 800 °C have been applied to Al 0.83 In 0.17 N and Al 0.3 Ga 0.7 N barrier heterostructures. As expected, the electrical properties of an Al 0.83 In 0.17 N barrier HEMT structure showed less stability than that of an Al 0.3 Ga 0.7 N barrier HEMT to the thermal annealing. The structural properties of Al 0.83 In 0.17 N/GaN also showed more evidence for decomposition than that of the Al 0.3 Ga 0.7 N/GaN structure after 800 °C post-annealing

  18. Crack initiation and crack growth in high temperature materials under cyclic thermal stresses; Rissinitiierung und Risswachstum in Hochtemperaturwerkstoffen unter zyklisch thermischer Beanspruchung

    Energy Technology Data Exchange (ETDEWEB)

    Gruen, C.

    1996-12-01

    The high temperatures of use in drive units, such as the combustion chamber or the hot gas turbine, for example, usually cause high temperature changes. Great temperature differences occur for short periods in the components, and thermal shock is produced. In this work, theoretical and experimental investigations are introduced on crack initiation and crack growth in high temperature materials under cyclic thermal stresses. The experiments were carried out with the inter-metallic phase Ni{sub 3}Al, the nickel-based alloy Nimonic 80A and the iron-based alloy PM 2000 strengthened by oxide dispersion (ODS). A characteristic crack appearance picture was found for each material, which was examined more closely. The stresses occurring in the sample during one cycle were calculated with the aid of the finite element program ABAQUS, knowing the specific material parameters. Based on the linear-elastic fracture mechanics, stress intensity factors were calculated on the superimposition principle. Using the material data from isothermal crack propagation experiments, the prediction of fatigue crack spread with cyclic thermal stresses is compared with the experimental findings. (orig./AKF) [Deutsch] Die hohen Einsatztemperaturen in Antriebsaggregaten wie z.B. der Brennkammer oder der Heissgasturbine bedingen in der Regel hohe Temperaturwechsel. Dabei treten kurzzeitig grosse Temperaturunterschiede in den Bauteilen auf, ein Thermoschock wird erzeugt. In der vorliegenden Arbeit werden theoretische und experimentelle Untersuchungen zur Rissinitiierung und zum Risswachstum in Hochtemperaturwerkstoffen unter zyklisch thermischer Belastung vorgestellt. Die Experimente wurden mit der intermetallischen Phase Ni{sub 3}Al, der Nickelbasislegierung Nimonic 80A und der oxid-dispersionsverfestigten (ODS) Eisenbasislegierung PM2000 durchgefuehrt. Fuer jeden Werkstoff stellte sich ein charakteristisches Risserscheinungsbild dar, das naeher untersucht wurde. Die in der Probe auftretenden

  19. Risks and benefits of compost-like materials prepared by the thermal treatment of raw scallop hepatopancreas for supplying cadmium and the growth of alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Ushijima, Kensuke; Fukushima, Masami; Kanno, Shinya; Kanno, Itoko; Ohnishi, Mitsuhiro

    2016-01-01

    Scallop hepatopancreas, fishery waste, contains relatively high levels of Cd and organic nitrogen compounds, the latter of which represent a fertilizer. In this study, raw scallop hepatopancreas tissue was thermally treated with sawdust and red loam in the presence of an iron catalyst to produce compost-like materials (CLMs). Two CLM samples were prepared by varying the content of raw scallop hepatopancreas tissue: 46 wt.% for CLM-1 and 18 wt.% for CLM-2. Mixtures of control soil (CTL) and CLMs (CLM content: 10 and 25 wt.%) were examined for the growth of alfalfa (Medicago sativa L.) to evaluate the risks and benefits of using this material for fertilization. The Cd content in shoots and roots of alfalfa, that were grown in the presence of CLMs, was significantly higher than those for the plants grown in the CTL, indicating that Cd had accumulated in the plants from CLMs. The accumulation of Cd in the alfalfa roots was quite high in the case of the 25% CLM-1 sample. However, alfalfa growth was significantly promoted in the presence of 10% CLM-1. This can be attributed to the higher levels of nitrogen and humic substances, which serve as fertilizer components. Although the fertilization effect in case of CLM-1showed a potential benefit, the accumulation of Cd in alfalfa was clearly increased in the presence of both CLMs. In conclusion, the use of CLMs produced from raw scallop hepatopancreas tissue can be considered to have a desirable benefit from standpoint of its use as fertilizer, but is accompanied by a risk of the accumulation of Cd in alfalfa plants.

  20. The growth of high density network of MOF nano-crystals across macroporous metal substrates - Solvothermal synthesis versus rapid thermal deposition

    Science.gov (United States)

    Maina, James W.; Gonzalo, Cristina Pozo; Merenda, Andrea; Kong, Lingxue; Schütz, Jürg A.; Dumée, Ludovic F.

    2018-01-01

    Fabrication of metal organic framework (MOF) films and membranes across macro-porous metal substrates is extremely challenging, due to the large pore sizes across the substrates, poor wettability, and the lack of sufficient reactive functional groups on the surface, which prevent high density nucleation of MOF crystals. Herein, macroporous stainless steel substrates (pore size 44 × 40 μm) are functionalized with amine functional groups, and the growth of ZIF-8 crystals investigated through both solvothermal synthesis and rapid thermal deposition (RTD), to assess the role of synthesis routes in the resultant membranes microstructure, and subsequently their performance. Although a high density of well interconnected MOF crystals was observed across the modified substrates following both techniques, RTD was found to be a much more efficient route, yielding high quality membranes under 1 h, as opposed to the 24 h required for solvothermal synthesis. The RTD membranes also exhibited high gas permeance, with He permeance of up to 2.954 ± 0.119 × 10-6 mol m-2 s-1 Pa-1, and Knudsen selectivities for He/N2, Ar/N2 and CO2/N2, suggesting the membranes were almost defect free. This work opens up route for efficient fabrication of MOF films and membranes across macro-porous metal supports, with potential application in electrically mediated separation applications.

  1. Incorporating Feminist Standpoint Theory

    DEFF Research Database (Denmark)

    Ahlström, Kristoffer

    2005-01-01

    As has been noted by Alvin Goldman, there are some very interesting similarities between his Veritistic Social Epistemology (VSE) and Sandra Harding’s Feminist Standpoint Theory (FST). In the present paper, it is argued that these similarities are so significant as to motivate an incorporation...

  2. Differentiating leucine incorporation of

    NARCIS (Netherlands)

    Yokokawa, T.; Sintes, E.; de Corte, D.; Olbrich, K.; Herndl, G.J.

    2012-01-01

    The abundance (based on catalyzed reporter deposition-fluorescence in situ hybrid ization, CARD-FISH) and leucine incorporation rates of Archaea and Bacteria were determined throughout the water column in the eastern Atlantic. Bacteria dominated throughout the water column, although their

  3. Novel carboxymethyl cellulose-polyvinyl alcohol blend films stabilized by Pickering emulsion incorporation method.

    Science.gov (United States)

    Fasihi, Hadi; Fazilati, Mohammad; Hashemi, Mahdi; Noshirvani, Nooshin

    2017-07-01

    The aim of this study was to investigate the possibility of increasing the antimicrobial and antioxidant properties of biodegradable active films stabilized via Pickering emulsions. The blend films were prepared from carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA), emulsified with oleic acid (OL) and incorporated with rosemary essential oil (REO). Formation of Pickering emulsion was confirmed by scanning electron microscopy (SEM), optical microscopy, mean droplet size and emulsion stability. Morphological, optical, physical, mechanical, thermal, antifungal and antioxidant properties of the films incorporated with different concentrations of REO (0.5, 1.5 and 3%) were determined. The results showed an increase in UV absorbance and elongation at break but, a decrease in tensile strength and thermal stability of the films. Interestingly, films containing REO exhibited considerable antioxidant and antimicrobial properties. In vitro microbial tests exhibited 100% fungal inhibition against Penicillium digitatum in the films containing 3% REO. In addition, no fungal growth were observed after 60days of storage at 25°C in bread slices were stored with active films incorporated with 3% REO, could attributed to the slow and regular release of REO caused by Pickering emulsions. The results of this study suggest that Pickering emulsion is a very promising method, which significantly affects antioxidant and antimicrobial activities of the films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A New Generation of Thermal Desorption Technology Incorporating Multi Mode Sampling (NRT/DAAMS/Liquid Agent) for Both on and off Line Analysis of Trace Level Airbone Chemical Warfare Agents

    International Nuclear Information System (INIS)

    Roberts, G. M.

    2007-01-01

    A multi functional, twin-trap, electrically-cooled thermal desorption (TD) system (TT24-7) will be discussed for the analysis of airborne trace level chemical warfare agents. This technology can operate in both military environments (CW stockpile, or destruction facilities) and civilian locations where it is used to monitor for accidental or terrorist release of acutely toxic substances. The TD system interfaces to GC, GCMS or direct MS analytical platforms and provides for on-line continuous air monitoring with no sampling time blind spots and within a near real time (NRT) context. Using this technology enables on-line sub ppt levels of agent detection from a vapour sample. In addition to continuous sampling the system has the capacity for off-line single (DAAMS) tube analysis and the ability to receive an external liquid agent injection. The multi mode sampling functionality provides considerable flexibility to the TD system, allowing continuous monitoring of an environment for toxic substances plus the ability to analyse calibration standards. A calibration solution can be introduced via a conventional sampling tube on to either cold trap or as a direct liquid injection using a conventional capillary split/splitless injection port within a gas chromatograph. Low level (linearity) data will be supplied showing the TT24-7 analyzing a variety of CW compounds including free (underivitised) VX using the three sampling modes described above. Stepwise changes in vapor generated agent concentrations will be shown, and this is cross referenced against direct liquid agent introduction, and the tube sampling modes. This technology is in use today in several geographies around the world in both static and mobile analytical laboratories. (author)

  5. Use of thermal infrared imaging for monitoring renewed dome growth at Mount St. Helens, 2004: Chapter 17 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    Science.gov (United States)

    Schneider, David J.; Vallance, James W.; Wessels, Rick L.; Logan, Matthew; Ramsey, Michael S.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    A helicopter-mounted thermal imaging radiometer documented the explosive vent-clearing and effusive phases of the eruption of Mount St. Helens in 2004. A gyrostabilized gimbal controlled by a crew member housed the radiometer and an optical video camera attached to the nose of the helicopter. Since October 1, 2004, the system has provided thermal and video observations of dome growth. Flights conducted as frequently as twice daily during the initial month of the eruption monitored rapid changes in the crater and 1980-86 lava dome. Thermal monitoring decreased to several times per week once dome extrusion began. The thermal imaging system provided unique observations, including timely recognition that the early explosive phase was phreatic, location of structures controlling thermal emissions and active faults, detection of increased heat flow prior to the extrusion of lava, and recognition of new lava extrusion. The first spines, 1 and 2, were hotter when they emerged (maximum temperature 700-730°C) than subsequent spines insulated by as much as several meters of fault gouge. Temperature of gouge-covered spines was about 200°C where they emerged from the vent, and it decreased rapidly with distance from the vent. The hottest parts of these spines were as high as 500-730°C in fractured and broken-up regions. Such temperature variation needs to be accounted for in the retrieval of eruption parameters using satellite-based techniques, as such features are smaller than pixels in satellite images.

  6. A recommendation for the thermal conductivity of oxide fuels

    International Nuclear Information System (INIS)

    Kang, K. H.; Ryu, H. J.; Song, K. C.; Yang, M. S.; Na, S. H.; Lee, Y. W.; Moon, H. S.; Kim, H. S.

    2004-01-01

    The thermal conductivity of nuclear fuel is one of the most important properties because it affects the fuel operating temperature. Therefore, it influences almost all the important processes occurred in nuclear fuel during irradiation, such as gas release, swelling and grain growth. The model of the thermal conductivity of nuclear fuel should be used in the codes to evaluate the performance of it analytically and be required in the nuclear fuel research and development. The thermal conductivity, k, of UO 2 depends on the deviation from stoichiometry, x, the burnup, b, and the fractional porosity, p, as well as the temperature, T: k = k(x, b, p, T), (1) Changes in thermal conductivity occur during irradiation because of fission-gas bubble formation, pores, cracks, fission product build-up and possible changes in the oxygen to uranium ratio (O/U). The dependence on temperature and porosity has been well studied and incorporated in computer codes used for the in-pile fuel behavior analysis. There are several studies on the effect of impurity on the thermal conductivity of UO 2 . In this paper, the variables affected on the thermal conductivity were studied. The available data of the thermal conductivity of UO 2 , UO 2+x , (U, Pu)O 2 , (U, Pu)O 2 and simulated fuel for irradiation fuel were reviewed and analyzed. The best models were recommended

  7. From thermal boredom to thermal pleasure: a brief literature review

    Directory of Open Access Journals (Sweden)

    Christhina Candido

    Full Text Available The most recent review of the ASHRAE Standard 55 (2010 incorporates the dialectic between static and adaptive approaches to thermal comfort by proposing different recommendations for airconditioned and naturally ventilated buildings. Particularly in naturally ventilated buildings, this standard aligns with three important topics in research field of thermal comfort during the last decades: (i air movement enhancement versus draft, (ii control availability and its impact on occupants' satisfaction, and (iii the search for thermal pleasure. This paper presents the rationale behind these three research topics and discusses its positive influence when moving from thermal comfort towards thermal pleasure.

  8. Incorporation of Human-Platelet-Derived Growth Factor-BB Encapsulated Poly(lactic-co-glycolic acid) Microspheres into 3D CORAGRAF Enhances Osteogenic Differentiation of Mesenchymal Stromal Cells

    DEFF Research Database (Denmark)

    Mohan, Saktiswaren; Raghavendran, Hanumantharao Balaji; Karunanithi, Puvanan

    2017-01-01

    Tissue engineering aims to generate or facilitate regrowth or healing of damaged tissues by applying a combination of biomaterials, cells, and bioactive signaling molecules. In this regard, growth factors clearly play important roles in regulating cellular fate. However, uncontrolled release...... was noted to support rapid cell expansion and differentiation of stromal cells into osteogenic cells in vitro for bone tissue engineering applications....

  9. Large area sheet task: Advanced dendritic web growth development

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D.; Schruben, J.

    1981-01-01

    The growth of silicon dendritic web for photovoltaic applications was investigated. The application of a thermal model for calculating buckling stresses as a function of temperature profile in the web is discussed. Lid and shield concepts were evaluated to provide the data base for enhancing growth velocity. An experimental web growth machine which embodies in one unit the mechanical and electronic features developed in previous work was developed. In addition, evaluation of a melt level control system was begun, along with preliminary tests of an elongated crucible design. The economic analysis was also updated to incorporate some minor cost changes. The initial applications of the thermal model to a specific configuration gave results consistent with experimental observation in terms of the initiation of buckling vs. width for a given crystal thickness.

  10. Study on determination of planting time for some cauliflower cultivars (Brassica oleracea var. botrytis) under Samsun ecological conditions by using plant growth and developmental models based on thermal time

    International Nuclear Information System (INIS)

    Uzun, S.; Peksen, A.

    2000-01-01

    In this study, it was aimed to determine the effects of different planting times (01 July, 15 July and 01 August) on the growth and developmental components of some cauliflower cultivars (Snow King, White Cliff, White Rock, White Latin, Me & Carillon, SG 4004 F1 and Serrano) by using plant growth and developmental models. From the results of the present study, it was revealed that thermal time elapsing from planting to curd initiation should be high (about 1200 degree centigrade days) to stimulate vegetative growth while thermal time elapsing from curd initiation to the harvest should be low (around 200 degree centigrade days) in terms of curd weight. The highest curd weight and yield were obtained from the plants of the first planting time, namely 01 July, compared to the other planting times (15 July and 01 August). Although there were no significant differences between the cultivars, the highest yield was obtained form Cv. Me & Carillon (13.25 t ha-1), SG 4004 F1 (13.14 t ha-1) and White Rock (11.51 t ha-1) respectively

  11. Surface chemistry and growth mechanisms studies of homo epitaxial (1 0 0) GaAs by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yan Dawei; Wu Weidong; Zhang Hong; Wang Xuemin; Zhang Hongliang; Zhang Weibin; Xiong Zhengwei; Wang Yuying; Shen Changle; Peng Liping; Han Shangjun; Zhou Minjie

    2011-01-01

    In this paper, GaAs thin film has been deposited on thermally desorbed (1 0 0) GaAs substrate using laser molecular beam epitaxy. Scanning electron microscopy, in situ reflection high energy electron diffraction and in situ X-ray photoelectron spectroscopy are applied for evaluation of the surface morphology and chemistry during growth process. The results show that a high density of pits is formed on the surface of GaAs substrate after thermal treatment and the epitaxial thin film heals itself by a step flow growth, resulting in a smoother surface morphology. Moreover, it is found that the incorporation of As species into GaAs epilayer is more efficient in laser molecular beam epitaxy than conventional molecular beam epitaxy. We suggest the growth process is impacted by surface chemistry and morphology of GaAs substrate after thermal treatment and the growth mechanisms are discussed in details.

  12. Synthesis and characterization of Au incorporated Alq3 nanowires

    Science.gov (United States)

    Khan, Mohammad Bilal; Ahmad, Sultan; Parwaz, M.; Rahul, Khan, Zishan H.

    2018-05-01

    We report the synthesis and characterization of pure and Au incorporated Alq3 nanowires. These nanowires are synthesized using thermal vapor transport method. The luminescence intensity of Au incorporated Alq3 nanowires are recorded to be higher than that of pure Alq3 nanowires, which is found to increase with the increase in Au concentration. Fluorescence quenching is also observed when Au concentration is increased beyond the certain limit.

  13. Incorporating neurophysiological concepts in mathematical thermoregulation models

    Science.gov (United States)

    Kingma, Boris R. M.; Vosselman, M. J.; Frijns, A. J. H.; van Steenhoven, A. A.; van Marken Lichtenbelt, W. D.

    2014-01-01

    Skin blood flow (SBF) is a key player in human thermoregulation during mild thermal challenges. Various numerical models of SBF regulation exist. However, none explicitly incorporates the neurophysiology of thermal reception. This study tested a new SBF model that is in line with experimental data on thermal reception and the neurophysiological pathways involved in thermoregulatory SBF control. Additionally, a numerical thermoregulation model was used as a platform to test the function of the neurophysiological SBF model for skin temperature simulation. The prediction-error of the SBF-model was quantified by root-mean-squared-residual (RMSR) between simulations and experimental measurement data. Measurement data consisted of SBF (abdomen, forearm, hand), core and skin temperature recordings of young males during three transient thermal challenges (1 development and 2 validation). Additionally, ThermoSEM, a thermoregulation model, was used to simulate body temperatures using the new neurophysiological SBF-model. The RMSR between simulated and measured mean skin temperature was used to validate the model. The neurophysiological model predicted SBF with an accuracy of RMSR human thermoregulation models can be equipped with SBF control functions that are based on neurophysiology without loss of performance. The neurophysiological approach in modelling thermoregulation is favourable over engineering approaches because it is more in line with the underlying physiology.

  14. Controlled nitrogen incorporation in GaNSb alloys

    Directory of Open Access Journals (Sweden)

    M. J. Ashwin

    2011-09-01

    Full Text Available The incorporation of N in molecular-beam epitaxy of GaNxSb1−x alloys with x ⩽ 0.022 has been investigated as a function of temperature (325–400°C and growth rate 0.25–1.6 μmh−1. At fixed growth rate, the incorporated N fraction increases as the temperature is reduced until a maximum N content for the particular growth rate reached. At each temperature, there is a range of growth rates over which the N content is inversely proportional to the growth rate; the results are understood in terms of a kinetic model. The systematic growth rate- and temperature-dependence enables the N content and resulting band gap to be controlled.

  15. Combined effects of post-growth thermal treatment and chemical substitution on physical properties of CaFe2As2

    Energy Technology Data Exchange (ETDEWEB)

    Ran, Sheng [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    This thesis summarizes experimental work using process of postgrowth thermal treatment and chemical substitution as tuning parameters in the study of physical properties of CaFe2As2. Details of sample preparation and characterization are given as well as various phase diagrams.

  16. Diffusion of renewable energy technologies in South Korea on incorporating their competitive interrelationships

    International Nuclear Information System (INIS)

    Huh, Sung-Yoon; Lee, Chul-Yong

    2014-01-01

    Renewable energy technologies (RETs) have attracted significant public attention for several reasons, the most important being that they are clean alternative energy sources that help reduce greenhouse gas emissions. To increase the probability that RETs will be successful, it is essential to reduce the uncertainty about its adoption with accurate long-term demand forecasting. This study develops a diffusion model that incorporates the effect of competitive interrelationships among renewable sources to forecast the growth pattern of five RETs: solar photovoltaic, wind power, and fuel cell in the electric power sector, and solar thermal and geothermal energy in the heating sector. The 2-step forecasting procedure is based on the Bayus, (1993. Manage. Sci. 39, 11, 1319–1333) price function and a diffusion model suggested by Hahn et al. (1994. Marketing Sci. 13, 3, 224–247). In an empirical analysis, the model is applied to the South Korean renewable energy market. - Highlights: • We develop a diffusion model incorporating the competition among renewables. • A price function and a diffusion model are used in 2-step forecasting procedure. • The annual demand through 2035 for five renewables in South Korea is forecasted. • Wind power will maintain the largest market share in the electric power sector. • The supply of geothermal energy will be larger than that of solar thermal energy

  17. High Ic, YBa2Cu3O7-x films grown at very high rates by liquid assisted growth incorporating lightly Au-doped SrTiO3 buffers

    International Nuclear Information System (INIS)

    Kursumovic, A; Durrell, J H; Harrington, S; Wimbush, S; MacManus-Driscoll, J L; Maiorov, B; Zhou, H; Stan, L; Holesinger, T G; Wang, H

    2009-01-01

    YBa 2 Cu 3 O 7-x (YBCO) thick films were grown by hybrid liquid phase epitaxy (HLPE) on (001) SrTiO 3 (STO) substrates. In the presence of a 100 nm thick, 5 mol% Au-doped STO buffer, self-field critical current densities, J c sf , at 77 K of ∼2.4 MA cm -2 and critical currents, I c sf , up to 700 A (cm-width) -1 were achieved. The J c value is virtually independent of thickness and the growth rates are very high (∼1 μm min -1 ). From transmission electron microscopy (TEM), Y 2 O 3 nanocloud extended defects (∼100 nm in size) were identified as the pinning defects in the films. Enhanced random pinning was induced by the presence of Au in the buffer.

  18. Nepal CRS project incorporates.

    Science.gov (United States)

    1983-01-01

    The Nepal Contraceptive Retail Sales (CRS) Project, 5 years after lauching product sales in June 1978, incorporated as a private, nonprofit company under Nepalese management. The transition was finalized in August 1983. The Company will work through a cooperative agreement with USAID/Kathmandu to complement the national family planning goals as the program continues to provide comtraceptives through retail channels at subsidized prices. Company objectives include: increase contraceptive sales by at least 15% per year; make CRS cost effective and move towards self sufficiency; and explore the possibility of marketing noncontraceptive health products to improve primary health care. After only5 years the program can point to some impressive successes. The number of retial shops selling family planning products increased from 100 in 1978 to over 8000, extending CRS product availability to 66 of the country's 75 districts. Retail sales have climbed dramatically in the 5-year period, from Rs 46,817 in 1978 to Rs 271,039 in 1982. Sales in terms of couple year protection CYP) have grown to 24,451 CYP(1982), a 36% increase over 1980 CYP. Since the beginning of the CRS marketing program, total distribution of contraceptives--through both CRS and the Family Planning Maternal and Child Haelth (FP/MCH) Project--has been increasing. While the FP/MCH program remains the largest distributor,contribution of CRS Products is increasing, indicating that CRS is creating new product acceptors. CRS market share in 1982 was 43% for condoms and 16% for oral contraceptives (OCs). CRS markets 5 products which are subsidized in order to be affordable to consumers as well as attractive to sellers. The initial products launched in June 1978 were Gulaf standard dose OCs and Dhaal lubricated colored condoms. A less expensive lubricates, plain Suki-Dhaal condom was introduced in June 1980 in an attempt to reach poorer rural populations, but rural distribution costs are excessive and Suki

  19. Using a laboratory-based growth model to estimate mass- and temperature-dependent growth parameters across populations of juvenile Chinook Salmon

    Science.gov (United States)

    Perry, Russell W.; Plumb, John M.; Huntington, Charles

    2015-01-01

    To estimate the parameters that govern mass- and temperature-dependent growth, we conducted a meta-analysis of existing growth data from juvenile Chinook Salmon Oncorhynchus tshawytscha that were fed an ad libitum ration of a pelleted diet. Although the growth of juvenile Chinook Salmon has been well studied, research has focused on a single population, a narrow range of fish sizes, or a narrow range of temperatures. Therefore, we incorporated the Ratkowsky model for temperature-dependent growth into an allometric growth model; this model was then fitted to growth data from 11 data sources representing nine populations of juvenile Chinook Salmon. The model fit the growth data well, explaining 98% of the variation in final mass. The estimated allometric mass exponent (b) was 0.338 (SE = 0.025), similar to estimates reported for other salmonids. This estimate of b will be particularly useful for estimating mass-standardized growth rates of juvenile Chinook Salmon. In addition, the lower thermal limit, optimal temperature, and upper thermal limit for growth were estimated to be 1.8°C (SE = 0.63°C), 19.0°C (SE = 0.27°C), and 24.9°C (SE = 0.02°C), respectively. By taking a meta-analytical approach, we were able to provide a growth model that is applicable across populations of juvenile Chinook Salmon receiving an ad libitum ration of a pelleted diet.

  20. Dynamic crack growth in a nonlocal progressively cavitating solid

    DEFF Research Database (Denmark)

    Needleman, A.; Tvergaard, Viggo

    1998-01-01

    Dynamic crack growth is analyzed numerically using a nonlocal constitutive formulation for a porous ductile material. The delocalization relates to the void growth and coalescence mechanism and is incorporated in terms of an integral condition on the rate of increase of the void volume fraction....... The material is modeled as elastic-viscoplastic with the thermal softening due to adiabatic heating accounted for. Finite element computations are carried our for edge cracked specimens subject to tensile impact loading. Two values of the material characteristic length and two finite-element discretizations...... are used in most computations. The effect of the material characteristic length on the crack growth behavior and on the mesh sensitivity of the results is considered. For comparison purposes, results are also obtained For the corresponding local constitutive relation. The crack growth resistance is found...

  1. Photovoltaic. Solar thermal. Solar thermal electricity

    International Nuclear Information System (INIS)

    2009-01-01

    The year 2008 was excellent for solar energy in the European Union. The growth of the installed capacity for photovoltaic was +159% (it means +4747.018 MW) to reach 9689.952 MW and that for solar thermal was +51.5% (it means +3172.5 MW) to reach 19982.7 MW. Worldwide concentrated solar thermal capacity stood at 679 MW in 2009, while this figure may seem low, the sector has a promising future ahead of it. (A.C.)

  2. Growth-temperature- and thermal-anneal-induced crystalline reorientation of aluminum on GaAs (100) grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Liu, H. F.; Chua, S. J.; Xiang, N.

    2007-01-01

    The authors investigated the growth of Al thin films on GaAs (100) substrates by molecular beam epitaxy. It is found that the growth at 550 degree sign C results in a texture that consists of (100)Al[010](parallel sign)(100)GaAs[011] and (100)Al[010](parallel sign)(100)GaAs[010] rotated 45 degree sign with respect to each other, while the growth at 300 degree sign C leads to a mixture phase of (100)Al[010](parallel sign)(100)GaAs[011] and (110)Al[001](parallel sign)(100)GaAs[011]. In situ annealing of the Al film grown at 300 degree sign C causes a reorientation of the crystalline from (100)Al[010](parallel sign)(100)GaAs[011] to (110)Al[001](parallel sign)(100)GaAs[011]. The grain sizes of the Al film are increased by the increased growth temperature and in situ annealing; the ratio of the exposed to the covered surface is not changed significantly by changing the growth temperature but decreased by annealing; and the small islands in between the large ones are removed by annealing. These observations are explained based on island migration and coalescence

  3. Solar thermal barometer

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    The european solar thermal system market grew spectacularly in 2008 with over 4,6 million m 2 installed as against less than 3,1 million in 2007. This was largely due to the doubling of the German market, bu strong growth in Southern Europe also played a vital part. While 2009 is looking uncertain, the medium and long term growth prospects are still very exciting. This barometer provides statistical data on the production, market, capacity and enterprises. (A.L.B.)

  4. Nanofibers extraction from palm mesocarp fiber for biodegradable polymers incorporation

    International Nuclear Information System (INIS)

    Kuana, Vanessa A.; Rodrigues, Vanessa B.; Takahashi, Marcio C.; Campos, Adriana de; Sena Neto, Alfredo R.; Mattoso, Luiz H.C.; Marconcini, Jose M.

    2015-01-01

    The palm mesocarp fibers are residues produced by the palm oil industries. The objective of this paper is to determine an efficient treatment to extract crystal cellulose nanofibers from the palm mesocarp fibers to be incorporated in biodegradable polymeric composites. The fibers were saponified, bleached and analyzed with thermal gravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. (author)

  5. Incorporation feasibility of leather residues in bricks

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, J.B. [Minho Univ. (Portugal). Civil Engineering Dept.; Valente, A.; Pires, M.J. [Inst. of Development and Innovation Technology of Minho, Braga (Portugal); Tavares, T. [Biological Engineering Dept., Univ. of Minho, Braga (Portugal)

    2002-07-01

    The footwear industry has strips of leather as one of its by-products. These leather residues, due to their high chromium content, can be regarded as a threat to the environment, particularly if no care is taken with their disposal. With the incorporation of the residues in ceramic products, after trituration, is possible to neutralise the eventual toxicity of chromium. In a laboratory study we produced prismatic bricks using clay from the region and incorporating 1, 3 and 5% (by mass) of leather residues. This corresponds at about 20, 60 and 100% (by apparent volume). The moulds were filled up with paste and, in order to have some compactness, the ceramic paste was compressed with a spatula. After that, it began the process of drying and burning the bricks. They were tested to flexure, compression and leaching. The results showed that the toxicity of chromium disappeared in the bricks. The mechanical tests showed a decrease in strength for the specimens with leather residue. The compressive strength decreases about 22% for 1% of incorporation of leather residue. However, as bricks were lighter and more porous, we can expect that they are better for thermal isolation. (orig.)

  6. A low energy electron microscopy study of the initial growth, structure, and thermal stability of 4,4'-biphenyldicarboxylic acid domains on Cu(001)

    International Nuclear Information System (INIS)

    Khokhar, Fawad S.; Gastel, Raoul van; Schwarz, Daniel; Zandvliet, Harold J. W.; Poelsema, Bene

    2011-01-01

    The growth of 4,4 ' -biphenyldicarboxylic acid (BDA) on Cu(001) has been studied using low energy electron microscopy and selective area low energy electron diffraction. The emergence of large islands and hydrogen bonding to perpendicularly oriented, adjacent molecules is confirmed. The two benzene rings of adsorbed BDA are twisted along the molecular axis. Unconventional growth of the domains, followed by a second nucleation stage, is observed at room temperature. This unanticipated feature is attributed to the accumulation of stress in the islands. Ostwald ripening in the films and the decay of BDA domains at 448 K exhibits features that are consistent with diffusion limited behavior.

  7. A low energy electron microscopy study of the initial growth, structure, and thermal stability of 4,4{sup '}-biphenyldicarboxylic acid domains on Cu(001)

    Energy Technology Data Exchange (ETDEWEB)

    Khokhar, Fawad S.; Gastel, Raoul van; Schwarz, Daniel; Zandvliet, Harold J. W.; Poelsema, Bene [Physics of Interfaces and Nanomaterials, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, NL-7500AE Enschede (Netherlands)

    2011-09-28

    The growth of 4,4{sup '}-biphenyldicarboxylic acid (BDA) on Cu(001) has been studied using low energy electron microscopy and selective area low energy electron diffraction. The emergence of large islands and hydrogen bonding to perpendicularly oriented, adjacent molecules is confirmed. The two benzene rings of adsorbed BDA are twisted along the molecular axis. Unconventional growth of the domains, followed by a second nucleation stage, is observed at room temperature. This unanticipated feature is attributed to the accumulation of stress in the islands. Ostwald ripening in the films and the decay of BDA domains at 448 K exhibits features that are consistent with diffusion limited behavior.

  8. The thermal signature of wormlike micelles

    International Nuclear Information System (INIS)

    Ito, Thiago Heiji; Clinckspoor, Karl Jan; Nunes de Souza, Renato; Sabadini, Edvaldo

    2016-01-01

    Highlights: • Giant micelle formation has a characteristic exothermic profile, for these systems. • The enthalpy of formation is dependent on the planarity of the co-solute. • The affinity is dependent on the enthalpy and critical concentration of the species. • The higher the affinity, the higher thermal stability and size of the micelles. - Abstract: The variations in enthalpy (Δ f H WLM ) and critical concentrations associated with the formation of wormlike micelles (WLMs) from combinations of tetradecyltrimethylammonium bromide (C 14 TAB) and various aromatic co-solutes were determined using isothermal titration calorimetry (ITC). Three groups of aromatic molecules were investigated: neutral (phenol), benzoate derivatives and cinnamate derivatives. In addition, the thermal stabilities of the WLMs (of hexadecyltrimethylammonium bromide, C 16 TAB) and the aromatic co-solutes of the three groups were investigated by measuring the temperatures at which the WLMs break and lose their ability to produce hydrodynamic drag reduction. A comparison of the results was used to establish correlations between the spontaneity of WLMs formation, their thermal stability and the molecular structure of the aromatic co-solutes. A characteristic thermal pattern with four steps was observed when WLMs are formed, that depended on the co-solute structure. Micellar growth was found to be an exothermic process, related to the fusion of the end caps allied with the incorporation of more co-solutes. The co-solutes that had negative charge and were able to maintain planar configuration demonstrated stronger interactions and also showed higher thermal stability through drag reduction.

  9. A low energy electron microscopy study of the initial growth, structure and thermal stability of BDA-domains on Cu(001)

    NARCIS (Netherlands)

    Khokhar, F.S.; van Gastel, Raoul; Schwarz, Daniel; Schwarz, Daniel; Zandvliet, Henricus J.W.; Poelsema, Bene

    2011-01-01

    The growth of 4,4′-biphenyldicarboxylic acid (BDA) on Cu(001) has been studied using low energy electron microscopy and selective area low energy electron diffraction. The emergence of large islands and hydrogen bonding to perpendicularly oriented, adjacent molecules is confirmed. The two benzene

  10. Vertically aligned CNT growth on a microfabricated silicon heater with integrated temperature control—determination of the activation energy from a continuous thermal gradient

    DEFF Research Database (Denmark)

    Engstrøm, Daniel Southcott; Rupesinghe, Nalin L; Teo, Kenneth B K

    2011-01-01

    Silicon microheaters for local growth of a vertically aligned carbon nanotube (VACNT) were fabricated. The microheaters had a four-point-probe structure that measured the silicon conductivity variations in the heated region which is a measure of the temperature. Through FEM simulations the temper...

  11. Stable material modication with polymers incorporation for broad application in microfabrication

    DEFF Research Database (Denmark)

    Mednova, Olga

    The aim of this thesis is to improve SU-8 fracture resistance in order to eliminate micro crack formation during fabrication of microelectromechanical system (MEMS). An amphiphilic block copolymer incorporation, as an efficient method of material toughening without changing its original properties...... analytical techniques. The second part of the thesis describes modified SU-8 blends. Thermal stability, structural organization, components interaction, hardness and brittleness of the composites are described. Finally, lithographic properties of modified SU-8 blends have been tested. Commercial SU-8...... and the modified blends demonstrate identically patternability and high aspect ratio structures can be obtained regardless of PEE-b-P2VP content. In conclusion, a recommendation of SU-8 modification with as little as 5 wt.% of PEE30-b-P2VP69 is made in order to avoid micro crack formation and its growth during...

  12. Survival and growth of Alfalfa (Medicago sativa l.) inoculated with an am fungus (Glomus intraradices) in contaminated soils treated with two different remediation technologies (bio-pile and thermal desorption)

    International Nuclear Information System (INIS)

    Norini, M.P.; Beguiristain, Th.; Leyval, C.

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) represent a group of persistent and toxic soil pollutants that are of major public concern due to their mutagenic and carcinogenic property. Phyto-remediation is the use of plants and their associated microorganisms for remediation of polluted soils. Phyto-remediation could be used in conjunction with other remediation technologies to reduce the contamination to safe levels and maintain or restore soil physico-chemical and biological properties. Most plant species form mycorrhizas with symbiotic fungi. It was shown that AM fungi enhance survival and plant growth in PAH contaminated soils. Mycorrhizal fungi also enhance the biotransformation or biodegradation of PAH, although the effect differed between soils. A rhizosphere and myco-rhizosphere gradient of PAH concentrations was observed, with decreased PAH concentration with decreased distance to roots. Different microbial communities were found in the rhizosphere of AM and non-mycorrhizal plants in comparison to bulk soil, suggesting that AM could affect PAH degradation by changing microbial communities. We investigated the effect of mycorrhizal fungi and nutrients on the ability of alfalfa to grow on soil contaminated with PAHs before and after two remediation treatments. We used soil from an industrial site (Homecourt, North East part of France) highly contaminated with PAH (2000 mg kg -1 ), which has been partially treated by two different remediation technologies (bio-pile and thermal desorption). The bio-pile treatment consisted of piling the contaminated soil with stimulation of aerobic microbial activity by aeration and addition of nutrient solution, and reduced PAH concentration to around 300 mg kg-1. With the thermal desorption treatment the soil was heated to around 500 deg. C so that PAH vaporized and were separated from the soil. The residual PAH concentration in soil was 40 mg kg -1 . Treated and non-treated contaminated soil was planted with alfalfa (Medicago

  13. A new ~1 μm laser crystal Nd:Gd2SrAl2O7: growth, thermal, spectral and lasing properties

    Science.gov (United States)

    Yuan, Feifei; Liao, Wenbin; Huang, Yisheng; Zhang, Lizhen; Sun, Shijia; Wang, Yeqing; Lin, Zhoubin; Wang, Guofu; Zhang, Ge

    2018-03-01

    Nd:Gd2SrAl2O7 crystals were grown by the Czochralski technique; thermal, spectral and laser properties were investigated in detail. The average thermal expansion coefficients along a- and c-axis are 12.6  ×  10-6 K-1 and 14.9  ×  10-6 K-1, respectively. At room temperature, the thermal conductivities are 4.98 and 5.24 W (m-1 * K-1) along the a- and c-axis, respectively. The absorption cross sections at ~808 nm are 13.7  ×  10-20 cm2 with a FWHM of 3.3 nm for π-polarization and 11.84  ×  10-20 cm2 with a FWHM of 3.4 nm for σ-polarization. The emission cross sections at ~1080 nm are 15  ×  10-20 cm2 and 12.7  ×  10-20 cm2 with a FWHM of about 5.1 nm and 12.5 nm for π- and σ-polarization, respectively. The fluorescence lifetime for the 4F3/2  →  4I11/2 transition was fitted to be 118 µs. Pumped by a fiber-coupled 808 nm laser diode, the maximum 1.55 W continuous-wave laser output at ~1.08 µm was achieved with a slope efficiency of 30.5%. All the results show that Nd:Gd2SrAl2O7 crystal is a promising laser material.

  14. Growth and characterization of Ga(As,N) and (In,Ga)(As,N)

    International Nuclear Information System (INIS)

    Mussler, G.

    2005-01-01

    This dissertation deals with the MBE growth and characterization of Ga(As,N) and (In,Ga)(As,N). The work commences with the optimization of the Ga(As,N) growth. Owing to a large miscibility gap of GaN in GaAs, the incorporation of nitrogen into GaAs causes a structural degradation that is dependent on the substrate temperature, the nitrogen concentration, and the quantum well thickness. Another problem related to the growth of Ga(As,N) are point defects that have a detrimental influence on optical properties. A thermal treatment of Ga(As,N) reduces the concentration of these point defects. This leads to a substantial improvement of optical properties. We will show that nitrogen split interstitials that incorporate into gallium and arsenic vacancies may be attributed to these point defects. A thermal treatment of Ga(As,N) at high temperatures, on the contrary, results in a creation of extended defects which are detrimental to optical properties. We show that the temperature of the thermal treatment that yields the highest photoluminescence intensity is nitrogen concentration-dependent. The growth of (In,Ga)(As,N) is similar with respect to Ga(As,N). Again, one has to face a high miscibility gap of (In,Ga)N in (In,Ga)As that results in a structural degradation. A thermal treatment of (In,Ga)(As,N) is also beneficial for improving optical properties. We show that a thermal treatment of (In,Ga)As results in an indium diffusion that is suppressed by the incorporation of nitrogen. The characterization of (In,Ga)(As,N) edge emitting lasers shows emission at wavelengths up to 1366 nm. With higher nitrogen concentrations, there is a strong increase of the threshold current density and a decrease of the output power

  15. The early thermal evolution of Mars

    Science.gov (United States)

    Bhatia, G. K.; Sahijpal, S.

    2016-01-01

    Hf-W isotopic systematics of Martian meteorites have provided evidence for the early accretion and rapid core formation of Mars. We present the results of numerical simulations performed to study the early thermal evolution and planetary scale differentiation of Mars. The simulations are confined to the initial 50 Myr (Ma) of the formation of solar system. The accretion energy produced during the growth of Mars and the decay energy due to the short-lived radio-nuclides 26Al, 60Fe, and the long-lived nuclides, 40K, 235U, 238U, and 232Th are incorporated as the heat sources for the thermal evolution of Mars. During the core-mantle differentiation of Mars, the molten metallic blobs were numerically moved using Stoke's law toward the center with descent velocity that depends on the local acceleration due to gravity. Apart from the accretion and the radioactive heat energies, the gravitational energy produced during the differentiation of Mars and the associated heat transfer is also parametrically incorporated in the present work to make an assessment of its contribution to the early thermal evolution of Mars. We conclude that the accretion energy alone cannot produce widespread melting and differentiation of Mars even with an efficient consumption of the accretion energy. This makes 26Al the prime source for the heating and planetary scale differentiation of Mars. We demonstrate a rapid accretion and core-mantle differentiation of Mars within the initial ~1.5 Myr. This is consistent with the chronological records of Martian meteorites.

  16. Kinetics and intermediate phases in epitaxial growth of Fe{sub 3}O{sub 4} films from deposition and thermal reduction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaozhe [School of Science, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049, ShaanXi (China); Department of Physics and Astronomy, Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States); Yang, Sen; Yang, Zhimao, E-mail: zmyang@xjtu.edu.cn, E-mail: xiaoshan.xu@unl.edu [School of Science, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049, ShaanXi (China); Xu, Xiaoshan, E-mail: zmyang@xjtu.edu.cn, E-mail: xiaoshan.xu@unl.edu [Department of Physics and Astronomy, Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States)

    2016-08-28

    We have studied the kinetics of the transitions between the Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} phases as thin epilayers (∼2.5 nm) on Al{sub 2}O{sub 3} (001) substrates using time-resolved reflection high energy electron diffraction. The different iron oxide phases were identified using a combination of in-situ and ex-situ characterizations. The transition from an α-Fe{sub 2}O{sub 3} (001) epilayer to a Fe{sub 3}O{sub 4} (111) epilayer through thermal reduction was found to be determined by the Fe-O bonding energy, resulting in a long time scale. The oxidation at high temperature converts a Fe{sub 3}O{sub 4} (111) epilayer to an α-Fe{sub 2}O{sub 3} (001) epilayer quickly; at low temperature, a γ-Fe{sub 2}O{sub 3} (111) epilayer was slowly generated instead. By repeating the deposition/thermal reduction processes, a thicker Fe{sub 3}O{sub 4} (111) film was obtained, which exhibit high crystallinity and moderate magnetic coercivity.

  17. Crystal growth, structural, spectral, thermal, dielectric, linear and nonlinear optical characteristics of a new organic acentric material: L-Methionine-Succinic acid (2/1)

    Science.gov (United States)

    Nageshwari, M.; Kumari, C. Rathika Thaya; Vinitha, G.; Mohamed, M. Peer; Sudha, S.; Caroline, M. Lydia

    2018-03-01

    L-Methionine-Succinic acid (2/1) (LMSA), 2C5H11NO2S·C4H6O4, a novel nonlinear optical material which belongs to the class of organic category was grown-up for the first time by the technique of slow evaporation. Purity of LMSA was improved using repetitive recrystallization. LMSA was analyzed by single crystal and powder X-ray diffraction investigation to affirm the crystal structure and crystalline character. The single crystal XRD revealed that LMSA corresponds to the crystal system of triclinic with P1 as space group showing the asymmetric unit consists of a neutral succinic acid molecule and two methionine residues which are crystallographically independent existing in zwitterionic form. The functional groups existing in LMSA was accomplished using Fourier transform infrared spectroscopy. The optical transparency and the band gap energy were identified utilizing UV-Visible spectrum. The optical constants specifically reflectance and extinction coefficient clearly indicate the elevated transparency of LMSA. The thermal analyses affirmed its thermal stability. The luminescence behavior of LMSA has been analyzed by Photoluminescence (PL) spectral study. The mechanical, laser damage threshold and dielectric investigation of LMSA was done to suggest the material for practical applications. The second and third harmonic generation efficacy was confirmed by means of Kurtz-Perry and Z-scan procedure which attest its potentiality in the domain of nonlinear optics.

  18. Synthesis, growth, structural, optical and thermal properties of a new organic nonlinear optical crystal: 2-amino 5-chloropyridinium-L-tartarate

    Science.gov (United States)

    Jayanalina, T.; Rajarajan, G.; Boopathi, K.; Sreevani, K.

    2015-09-01

    A new organic nonlinear optical crystal 2-amino-5-chloropyridinium-L-tartarate [2A5CPLTA] has been synthesized and the crystals were grown by slow evaporation solution technique at room temperature using methanol as solvent. The crystal structure of the title compound has been determined by the single crystal X-ray diffraction study and it belongs to the monoclinic system with noncentrosymmetric space group P21. The presence of functional groups was ascertained by Fourier transform infrared analysis. The transmittance and lower cut off of the grown crystal was ascertained by the UV-vis-NIR spectroscopy. Thermal studies reveled that 2A5CPLTA crystal is thermally stable up to 144 °C. The dielectric measurements of the grown crystal were carried out with different frequencies and temperatures. Vickers micro hardness measurement was carried out to study the mechanical behavior of the grown crystal. The second harmonic generation of the title crystal was confirmed by the Kurtz-Perry powder test employing the Nd: YAG laser as the source.

  19. Growth of single crystals, thermal dependency of lattice parameters and Raman scattering in the Nd 2- xCe xCuO 4- δ system

    Science.gov (United States)

    Sadowski, W.; Hagemann, H.; François, M.; Bill, H.; Peter, M.; Walker, E.; Yvon, K.

    1990-09-01

    We report on the growth of Nd 2- xCe xCuO 4- δ single crystals (0590(18) Å). Room temperature Raman spectra reveal a new band at 320 cm -1 which is not observed in Nd 2CuO 4. Raman spectra of crystals with Tc ranging from 7 to 22 K show a systematic intensity change of the broad band at 590 cm -1.

  20. Stress-related hormonal alterations, growth and pelleted starter intake in pre-weaning Holstein calves in response to thermal stress.

    Science.gov (United States)

    López, E; Mellado, M; Martínez, A M; Véliz, F G; García, J E; de Santiago, A; Carrillo, E

    2018-04-01

    This study aimed to investigate the effect of heat stress and month of birth on growth performance, pelleted starter intake, and stress-related hormones in Holstein calves. Birth weight and growth records, representing 4735 Holstein calves from a large commercial dairy herd in northern Mexico (25° N; 22.3 °C mean annual temperature) from 2013 to 2015, were analyzed. Temperature-humidity index (THI) at calving, season of birth, and month of birth were the independent variables, whereas growth traits were the dependent variables. Increased THI at birth from  85 units was associated with a decrease in birth weight from 39.3 to 38.7 kg. Calves subjected to high THI (> 75 units) at calving showed lesser (P calves born with THI calves born in the fall was about 70 g less (P calves delivered in winter months. Plasma triiodothyronine and tetraiodothyronine levels were lower (1.02 ± 0.21 and 48 ± 7.9 ng/mL, respectively; P calves born in summer (59 ± 40 ng/mL) than calves born in winter (20 ± 28 ng/mL). Pelleted starter intake 1 week before weaning was lowest (P calves. Thus, environmental management of the newborn calf during hot spring and summer months is warranted to optimize pelleted starter intake and calf growth rates.

  1. EFFECT OF FINITE LARMOR RADIUS CORRECTIONS ON THE THERMAL INSTABILITY OF THERMALLY CONDUCTING VISCOUS PLASMA WITH HALL CURRENT AND ELECTRON INERTIA

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Shweta; Sharma, Prerana [Physics Department, Ujjain Engineering College, Ujjain, MP-456010 (India); Kaothekar, Sachin [Physics Department, Mahakal Institute of Technology, Ujjain, MP-456664 (India); Chhajlani, R. K., E-mail: sackaothekar@gmail.com [Retired, School of Studies in Physics, Vikram University Ujjain, MP-456010 (India)

    2016-10-01

    The thermal instability of an infinite homogeneous, thermally conducting, and rotating plasma, incorporating finite electrical resistivity, finite electron inertia, and an arbitrary radiative heat-loss function in the presence of finite Larmor radius corrections and Hall current, has been studied. Analysis has been made with the help of linearized magnetohydrodynamics (MHD) equations. A general dispersion relation is obtained using the normal mode analysis method, and the dispersion relation is discussed for longitudinal propagation and transverse propagation separately. The dispersion relation has been solved numerically to obtain the dependence of the growth rate on the various parameters involved. The conditions of modified thermal instability and stability are discussed in the different cases of interest.

  2. Thermal comfort

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available Thermal comfort is influenced by environmental parameters as well as other influences including asymmetric heating and cooling conditions. Additionally, some aspects of thermal comfort may be exploited so as to enable a building to operate within a...

  3. Advances in solar thermal energy in Uruguay

    International Nuclear Information System (INIS)

    Franco Noceto, P.

    2012-01-01

    This article is about the law 18585 which declared de solar thermal energy as national interest. This law establishes the obligation to incorporate solar heating systems in health care centers, hotels and sports clubs.

  4. Growth, thermal properties and laser operation of a novel disordered Yb:Ca3La2(BO3)4 laser crystal

    Science.gov (United States)

    Pan, Zhongben; Cai, Huaqiang; Huang, Hui; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2014-10-01

    A high quality disordered Yb:Ca3La2(BO3)4 laser crystal has been successfully grown by the Czochralski method. The complete set of anisotropic thermal properties were systematically measured for the first time. In addition, continuous-wave laser along the three crystallographic axis were obtained. Passively Q-switched by a Cr4+:YAG saturable absorber, the laser yielded an average output power of 0.47 W with a slope efficiency of 7.6% for the first time. The generated pulse energy, duration, and peak power were 94 μJ, 33 ns, and 2.85 KW, respectively. We believe that the reliability and stability of these lasers makes the disordered Yb:Ca3La2(BO3)4 crystal of considerable interest for future applications.

  5. Studies on the growth aspects, structural, thermal, dielectric and third order nonlinear optical properties of solution grown 4-methylpyridinium p-nitrophenolate single crystal

    Science.gov (United States)

    Devi, S. Reena; Kalaiyarasi, S.; Zahid, I. MD.; Kumar, R. Mohan

    2016-11-01

    An ionic organic optical crystal of 4-methylpyridinium p-nitrophenolate was grown from methanol by slow evaporation method at ambient temperature. Powder and single crystal X-ray diffraction studies revealed the crystal system and its crystalline perfection. The rocking curve recorded from HRXRD study confirmed the crystal quality. FTIR spectral analysis confirmed the functional groups present in the title compound. UV-visible spectral study revealed the optical window and band gap of grown crystal. The thermal, electrical and surface laser damage threshold properties of harvested crystal were examined by using TGA/DTA, LCR/Impedance Analyzer and Nd:YAG laser system respectively. The third order nonlinear optical property of grown crystal was elucidated by Z-scan technique.

  6. Single crystal growth, magnetic and thermal properties of perovskite YFe{sub 0.6}Mn{sub 0.4}O{sub 3} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tao [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Synthetio Single Crystal Research Center, Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Shen, Hui, E-mail: hshen@sit.edu.cn [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Zhao, Xiangyang; Man, Peiwen [Synthetio Single Crystal Research Center, Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Wu, Anhua, E-mail: wuanhua@mail.sic.ac.cn [Synthetio Single Crystal Research Center, Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Su, Liangbi [Synthetio Single Crystal Research Center, Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Xu, Jiayue, E-mail: xujiayue@sit.edu.cn [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China)

    2016-11-01

    High quality YFe{sub 0.6}Mn{sub 0.4}O{sub 3} single crystal was grown by floating zone technique using a four-mirror-image-furnace under flowing air. Powder X-ray diffraction gives well evidence that the specimen has an orthorhombic structure, with space group Pbnm. Temperature dependence of the magnetizations of YFe{sub 0.6}Mn{sub 0.4}O{sub 3} single crystal were studied under ZFC and FC modes in the temperature range from 5 K to 400 K. A clear spin reorientation transition behavior (Γ{sub 4}→Γ{sub 1}) is observed in the temperature range of 322–316 K, due to the substitution of Mn at the Fe site of YFeO{sub 3}. Its Néel temperature is around 385 K. Moreover, the spin reorientation is verified by the change of magnetic hysteresis loops of the sample along [001] axis in the temperature range of 50–385 K. The thermal properties of the sample were measured by the differential scanning calorimeter (DSC) from 300 K to 500 K, which also clearly appear anomaly in the spin reorientation region. - Highlights: • High quality YFe{sub 0.6}Mn{sub 0.4}O{sub 3} single crystal was grown by floating zone technique. • The thermal properties appear anomaly in the spin reorientation region. • A clear spin reorientation transition behavior (Γ{sub 4}→Γ{sub 1}) is observed in the temperature range of 322–316 K, due to the substitution of Mn at the Fe site of YFeO{sub 3}.

  7. Radiation Shielding Materials and Containers Incorporating Same

    Energy Technology Data Exchange (ETDEWEB)

    Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  8. Crystal growth, structural, optical, thermal, mechanical, laser damage threshold and electrical properties of triphenylphosphine oxide 4-nitrophenol (TP4N) single crystals for nonlinear optical applications

    Science.gov (United States)

    Karuppasamy, P.; Senthil Pandian, Muthu; Ramasamy, P.; Verma, Sunil

    2018-05-01

    The optically good quality single crystals of triphenylphosphine oxide 4-nitrophenol (TP4N) with maximum dimension of 15 × 10 × 5 mm3 were grown by slow evaporation solution technique (SEST) at room temperature. The cell dimensions of the grown TP4N crystal were confirmed by single crystal X-ray diffraction (SXRD) and the crystalline purity was confirmed and planes were indexed by powder X-ray diffraction (PXRD) analysis. Functional groups of TP4N crystal were confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance of the grown crystal was determined by the UV-Vis NIR spectral analysis and it has good optical transparency in the entire visible region. The band tail (Urbach) energy of the grown crystal was analyzed and it appears to be minimum, which indicates that the TP4N has good crystallinity. The position of valence band (Ev) and conduction band (Ec) of the TP4N have been determined from the electron affinity energy (EA) and the ionization energy (EI) of its elements and using the optical band gap. The thermal behaviour of the grown crystal was investigated by thermogravimetric and differential thermal analysis (TG-DTA). Vickers microhardness analysis was carried out to identify the mechanical stability of the grown crystal and their indentation size effect (ISE) was explained by the Meyer's law (ML), Hays-Kendall's (HK) approach, proportional specimen resistance (PSR) model, modified PSR model (MPSR), elastic/plastic deformation (EPD) model and indentation induced cracking (IIC) model. Chemical etching study was carried out to find the etch pit density (EPD) of the grown crystal. Laser damage threshold (LDT) value was measured by using Nd:YAG laser (1064 nm). The dielectric permittivity (ε՛) and dielectric loss (tan δ) as a function of frequency was measured. The electronic polarizability (α) of the TP4N crystal was calculated. It is well matched to the value which was calculated from Clausius-Mossotti relation

  9. Investigation of SiO{sub 2} film growth on 4H-SiC by direct thermal oxidation and postoxidation annealing techniques in HNO{sub 3} and H{sub 2}O vapor at varied process durations

    Energy Technology Data Exchange (ETDEWEB)

    Poobalan, Banu [Electronic Materials Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Penang (Malaysia); Moon, Jeong Hyun; Kim, Sang-Cheol; Joo, Sung-Jae; Bahng, Wook; Kang, In Ho; Kim, Nam-Kyun [Power Semiconductor Research Centre, Korea Electrotechnology Research Institute, PO Box 20, Changwon, Gyungnam 641120 (Korea, Republic of); Cheong, Kuan Yew, E-mail: cheong@eng.usm.my [Electronic Materials Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Penang (Malaysia)

    2014-11-03

    This study has revealed that HNO{sub 3} and H{sub 2}O vapors can be utilized as direct thermal oxidation or postoxidation annealing agents at a temperature above 1000 °C; as they play a major role in simultaneous oxidation/nitridation/hydrogenation processes at the bulk oxide and SiO{sub 2}/SiC interface. The varied process durations of the above-mentioned techniques contribute to the development of thicker gate oxides for high power device applications with improved electrical properties, lower interface-state density and higher breakdown voltage as compared to oxides grown through a more conventional wet (H{sub 2}O vapor only) oxidation technique. The study highlights the effects of hydrogen and nitrogen species on the passivation of structural defects at the bulk oxide and the SiO{sub 2}/SiC interface, which are revealed through the use of Time-of-Flight Secondary Ion Mass Spectroscopy and X-ray Photoelectron Spectroscopy. The physical properties of the substrate after oxide removal show that the surface roughness decreases as the process durations increase with longer hours of H{sub 2}O and HNO{sub 3} vapor exposures on the samples, which is mainly due to the significant reduction of carbon content at the SiO{sub 2}/SiC interface. - Highlights: • Direct thermal oxidation and postoxidation annealing techniques in HNO{sub 3}/H{sub 2}O vapor • SiO{sub 2} film growth in H{sub 2}O/HNO{sub 3}vapor at varied process durations • Thicker SiO{sub 2} film growth via annealing than direct growth in HNO{sub 3}/H{sub 2}O vapor • Nitrogen and hydrogen as passivation elements in SiO{sub 2}/SiC interface and SiO{sub 2} bulk • Significant reduction of carbon and Si-dangling bonds at the SiC/SiO{sub 2} interface.

  10. PUBLIC GOODS, CORRUPTION AND GROWTH???

    OpenAIRE

    Ratbek Dzhumashev

    2006-01-01

    In this paper, we analyse implications of corruption on growth. We extend existing growth models by incorporating ubiquitous corruption as a by-product of the public sector. Corruption affects both taxation and public good provision, and therefore causes income redistribution and inefficiencies in the public sector. These effects of corruption lead to lower growth through distortions of investment incentives and resources allocation.

  11. Tuning thermal conductivity in homoepitaxial SrTiO{sub 3} films via defects

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Charles M. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853-1501 (United States); Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Wilson, Richard B.; Cahill, David G. [Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Schäfer, Anna; Schubert, Jürgen [Peter Grünberg Institute (PGI9-IT), JARA-Fundamentals of Future Information Technology, Research Centre Jülich, D-52425 Jülich (Germany); Mundy, Julia A.; Holtz, Megan E. [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Muller, David A. [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States); Schlom, Darrell G. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853-1501 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States)

    2015-08-03

    We demonstrate the ability to tune the thermal conductivity of homoepitaxial SrTiO{sub 3} films deposited by reactive molecular-beam epitaxy by varying growth temperature, oxidation environment, and cation stoichiometry. Both point defects and planar defects decrease the longitudinal thermal conductivity (k{sub 33}), with the greatest decrease in films of the same composition observed for films containing planar defects oriented perpendicular to the direction of heat flow. The longitudinal thermal conductivity can be modified by as much as 80%—from 11.5 W m{sup −1}K{sup −1} for stoichiometric homoepitaxial SrTiO{sub 3} to 2 W m{sup −1}K{sup −1} for strontium-rich homoepitaxial Sr{sub 1+δ}TiO{sub x} films—by incorporating (SrO){sub 2} Ruddlesden-Popper planar defects.

  12. Thermal fatigue. Materials modelling

    International Nuclear Information System (INIS)

    Siegele, D.; Fingerhuth, J.; Mrovec, M.

    2012-01-01

    In the framework of the ongoing joint research project 'Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behavior under transient thermal-mechanical stress conditions (high cycle fatigue V HCF and low cycle fatigue - LCF) are carried out. The primary objective of the research is the further development of simulation methods applied in safety evaluations of nuclear power plant components. In this context the modeling of crack initiation and growth inside the material structure induced by varying thermal loads are of particular interest. Therefore, three scientific working groups organized in three sub-projects of the joint research project are dealing with numerical modeling and simulation at different levels ranging from atomistic to micromechanics and continuum mechanics, and in addition corresponding experimental data for the validation of the numerical results and identification of the parameters of the associated material models are provided. The present contribution is focused on the development and experimental validation of material models and methods to characterize the damage evolution and the life cycle assessment as a result of thermal cyclic loading. The individual purposes of the subprojects are as following: - Material characterization, Influence of temperature and surface roughness on fatigue endurances, biaxial thermo-mechanical behavior, experiments on structural behavior of cruciform specimens and scatter band analysis (IfW Darmstadt) - Life cycle assessment with micromechanical material models (MPA Stuttgart) - Life cycle assessment with atomistic and damage-mechanical material models associated with material tests under thermal fatigue (Fraunhofer IWM, Freiburg) - Simulation of fatigue crack growth, opening and closure of a short crack under

  13. Growth, spectral, thermal, laser damage threshold, microhardness, dielectric, linear and nonlinear optical properties of an organic single crystal: L-phenylalanine DL-mandelic acid

    Energy Technology Data Exchange (ETDEWEB)

    Jayaprakash, P. [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604 407, Tamil Nadu (India); Peer Mohamed, M. [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604 407, Tamil Nadu (India); Department of Physics, C. Abdul Hakeem College, Melvisharam 632 509, Tamil Nadu (India); Krishnan, P. [Department of Physics, St. Joseph’s College of Engineering, Chennai 600 119, Tamil Nadu (India); Nageshwari, M.; Mani, G. [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604 407, Tamil Nadu (India); Lydia Caroline, M., E-mail: lydiacaroline2006@yahoo.co.in [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604 407, Tamil Nadu (India)

    2016-12-15

    Single crystals of L-phenylalanine dl-mandelic acid [C{sub 9}H{sub 11}NO{sub 2}. C{sub 8}H{sub 8}O{sub 3}], have been grown by the slow evaporation technique at room temperature using aqueous solution. The single crystal XRD study confirms monoclinic system for the grown crystal. The functional groups present in the grown crystal have been identified by FTIR and FT-Raman analyses. The optical absorption studies show that the crystal is transparent in the visible region with a lower cut-off wavelength of 257 nm and the optical band gap energy E{sub g} is determined to be 4.62 eV. The Kurtz powder second harmonic generation was confirmed using Nd:YAG laser with fundamental wavelength of 1064 nm. Further, the thermal studies confirmed no weight loss up to 150°C for the as-grown crystal. The photoluminescence spectrum exhibited three peaks (414 nm, 519 nm, 568 nm) due to the donation of protons from carboxylic acid to amino group. Laser damage threshold value was found to be 4.98 GW/cm{sup 2}. The Vickers microhardness test was carried out on the grown crystals and there by Vickers hardness number (H{sub v}), work hardening coefficient (n), yield strength (σ{sub y}), stiffness constant C{sub 11} were evaluated. The dielectric behavior of the crystal has been determined in the frequency range 50 Hz–5 MHz at various temperatures.

  14. Bulk monocrystal growth, optical, dielectric, third order nonlinear, thermal and mechanical studies on HCl added L-alanine: An organic NLO material

    Energy Technology Data Exchange (ETDEWEB)

    Shkir, Mohd, E-mail: shkirphysics@gmail.com [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Physics Department, Faculty of Science, King Khalid University, Abha (Saudi Arabia); Yahia, I.S., E-mail: dr_isyahia@yahoo.com [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Physics Department, Faculty of Science, King Khalid University, Abha (Saudi Arabia); Nano-Science & Semiconductor Labs, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Al-Qahtani, A.M.A. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Physics Department, Faculty of Science, King Khalid University, Abha (Saudi Arabia)

    2016-12-01

    In the current work, good quality bulk size (∼32 mm × 23 mm × 10 mm) single crystals of HCl added L-alanine with well-defined morphology are successfully grown using slow evaporation technique. Crystal structure and other structural parameters were evaluated from X-ray diffraction data. Vibrational assessment of the grown crystal was done by FT-Raman analysis. The presence of chlorine and good quality of the grown crystal was confirmed by SEM/EDX analysis. Solid state UV–Vis–NIR diffused reflectance was measured and direct and indirect optical band gap was calculated using Kubelka-Munk relation and found to be 5.64 and 5 eV respectively. Dielectric measurement was carried out in high frequency range. Third order nonlinear optical susceptibility value was found to be enhanced from 1.91 × 10{sup −6} (pure) to 8.6 × 10{sup −6} esu (LAHCl). Good thermal stability of grown crystals was confirmed from DSC analysis. The enhancement in mechanical strength and crystalline perfection was also observed. - Highlights: • Bulk size (32 mm × 23 mm × 10 mm), good crystalline perfection HCl added L-alanine monocrystal is grown. • The shift in X-ray diffraction and vibrational peaks confirms the interaction of HCl. • The high optical transparency and band gap confirms its application in optoelectronic devices. • Third order NLO properties are found to be enhanced in HCl added L-alanine crystals. • The mechanical strength of the grown crystals is found to be enhanced due HCl addition.

  15. Host thin films incorporating nanoparticles

    Science.gov (United States)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  16. Microwave Thermal Propulsion

    Science.gov (United States)

    Parkin, Kevin L. G.; Lambot, Thomas

    2017-01-01

    We have conducted research in microwave thermal propulsion as part of the space exploration access technologies (SEAT) research program, a cooperative agreement (NNX09AF52A) between NASA and Carnegie Mellon University. The SEAT program commenced on the 19th of February 2009 and concluded on the 30th of September 2015. The DARPA/NASA Millimeter-wave Thermal Launch System (MTLS) project subsumed the SEAT program from May 2012 to March 2014 and one of us (Parkin) served as its principal investigator and chief engineer. The MTLS project had no final report of its own, so we have included the MTLS work in this report and incorporate its conclusions here. In the six years from 2009 until 2015 there has been significant progress in millimeter-wave thermal rocketry (a subset of microwave thermal rocketry), most of which has been made under the auspices of the SEAT and MTLS programs. This final report is intended for multiple audiences. For researchers, we present techniques that we have developed to simplify and quantify the performance of thermal rockets and their constituent technologies. For program managers, we detail the facilities that we have built and the outcomes of experiments that were conducted using them. We also include incomplete and unfruitful lines of research. For decision-makers, we introduce the millimeter-wave thermal rocket in historical context. Considering the economic significance of space launch, we present a brief but significant cost-benefit analysis, for the first time showing that there is a compelling economic case for replacing conventional rockets with millimeter-wave thermal rockets.

  17. Thermal insulation

    International Nuclear Information System (INIS)

    Aspden, G.J.; Howard, R.S.

    1988-01-01

    The patent concerns high temperature thermal insulation of large vessels, such as the primary vessel of a liquid metal cooled nuclear reactor. The thermal insulation consists of multilayered thermal insulation modules, and each module comprises a number of metal sheet layers sandwiched between a back and front plate. The layers are linked together by straps and clips to control the thickness of the module. (U.K.)

  18. Poultry rearing on perforated plastic floors and the effect on air quality, growth performance, and carcass injuries-Experiment 1: Thermal Comfort.

    Science.gov (United States)

    de Almeida, Eduardo Alves; Arantes de Souza, Lilian Francisco; Sant'Anna, Aline Cristina; Bahiense, Raphael Nogueira; Macari, Marcos; Furlan, Renato Luis

    2017-09-01

    The present study investigated the use of perforated plastic floors in the rearing of male and female poultry under thermal comfort conditions. The study was conducted in 2 climate chambers, in one was conventional poultry litter (wood shavings) and in the other was a perforated plastic floor. The experimental design was a completely randomized design with the factors wood shavings and plastic floor. In each chamber, the animals were divided into 16 experimental pens (8 with males and 8 with females) with a density of 12 birds/m2. The poultry rearing effect was evaluated in terms of air quality (% concentration of ammonia [NH3] and carbon dioxide [CO2]); broiler performance, e.g., weight gain (kg), feed intake (kg), feed conversion, carcass yield and parts (%), meat production (kg/m2), and viability (% of live birds at d 42); scores of hygiene and mobility; and injuries in the chest, hocks, and footpads. Treatments affected air quality, with higher concentrations of NH3 on d 42 (25 ppm vs. 2 ppm) and CO2 (1,400 ppm vs. 1,000 ppm) for wood shavings than for perforated plastic floor, respectively. Males showed a better performance (weight gain, feed intake and feed conversion) than females on d 42 in both floor types (wood shavings and plastic floor). Males reared on wood shavings showed a higher meet production (35.992 kg/m2) than females (32.257 kg/m2). On the plastic floor, males showed a better viability (100%) than females (94.05%), as well better meet production for males (38.55 kg·m-2) than females (31.64 kg/m2). There was no incidence of breast lesions in any of the studied systems. The birds reared on the plastic floor had better hygiene scores and lower hock injury rates than birds reared in the wood shavings chambers. The results of the present study show that the use of perforated plastic floors in chicken farming is an efficient method, which promotes a better-quality environment, superior production rates, and reduced incidence of injuries.

  19. Si-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sinterability

    International Nuclear Information System (INIS)

    Bianco, Alessandra; Cacciotti, Ilaria; Lombardi, Mariangela; Montanaro, Laura

    2009-01-01

    Synthetic hydroxyapatites incorporating small amounts of Si have shown improved biological performances in terms of enhanced bone apposition, bone in-growth and cell-mediated degradation. This paper reports a systematic investigation on Si-substituted hydroxyapatite (Si 1.40 wt%) nanopowders produced following two different conventional wet methodologies: (a) precipitation of Ca(NO 3 ) 2 .4H 2 O and (b) titration of Ca(OH) 2 . The influence of the synthesis process on composition, thermal behaviour and sinterability of the resulting nanopowders is studied. Samples were characterised by electron microscopy, induced coupled plasma atomic emission spectroscopy, thermal analysis, infrared spectroscopy, N 2 adsorption measurements, X-ray diffraction and dilatometry. Semicrystalline Si-substituted hydroxyapatite powders made up of needle-like nanoparticles were obtained, the specific surface area ranged between 84 and 110 m 2 /g. Pure and Si-substituted hydroxyapatite nanopowders derived from Ca(NO 3 ) 2 .4H 2 O decomposed around 1000 deg. C. Si-substituted hydroxyapatite nanopowders obtained from Ca(OH) 2 were thermally stable up to 1200 deg. C and showed a distinct decreased thermal stability with respect to the homologous pure sample. Si-substituted hydroxyapatites exhibited higher sintering temperature and increased total shrinkage with respect to pure powders. Nanostructured dense ceramics were obtained by sintering at 1100 deg. C Si-substituted hydroxyapatites derived from Ca(OH) 2

  20. Ba incorporation in benthic foraminifera

    NARCIS (Netherlands)

    de Nooijer, L.J.; Brombacher, Anieke; Mewes, A.; Langer, Gerald; Nehrke, G.; Bijma, Jelle; Reichart, G.J.

    2017-01-01

    Barium (Ba) incorporated in the calcite of many foraminiferal species is proportional to the concentration of Ba in seawater. Since the open ocean concentration of Ba closely follows seawater alkalinity, foraminiferal Ba ∕ Ca can be used to reconstruct the latter. Alternatively, Ba ∕ Ca from

  1. Incorporating Argumentation through Forensic Science

    Science.gov (United States)

    Wheeler, Lindsay B.; Maeng, Jennifer L.; Smetana, Lara K.

    2014-01-01

    This article outlines how to incorporate argumentation into a forensic science unit using a mock trial. Practical details of the mock trial include: (1) a method of scaffolding students' development of their argument for the trial, (2) a clearly outlined set of expectations for students during the planning and implementation of the mock…

  2. EFFECT OF INCORPORATING EXPANDED POLYSTYRENE ...

    African Journals Online (AJOL)

    2012-11-03

    Nov 3, 2012 ... Incorporating expanded polystyrene granules in concrete matrix can produce lightweight polystyrene aggregate concrete of ... structure. [1] reported that the standard workability tests are not suitable for the polystyrene aggregate concrete since they are sensitive to the unit weight of concrete. [2] made ...

  3. Ion thermal and dispersion effects in Farley-Buneman instabilities

    International Nuclear Information System (INIS)

    Litt, S. K.; Smolyakov, A. I.; Hassan, E.; Horton, W.

    2015-01-01

    Farley-Buneman modes are an example of the collisional instability, which is thought to be the dominant mechanism for the irregularities in low ionosphere region. Despite high collisionality due to electron-neutral and ion-neutral collisions, the kinetic effects associated with finite temperature are important for determination of the mode frequencies and growth rate. This is especially important for ion component that is largely unmagnetized due to low ion cyclotron frequency. The ion thermal effects are strongly pronounced for shorter wavelengths and are crucial for the growth rate cut-off at high wavenumbers. We develop an extended fluid model for ion dynamics to incorporate the effects of ion thermal motion. The model is based on the extended MHD model that includes the evolution equations for higher order moments such as ion viscosity and ion heat flux. We also develop the generalized Chapman-Enskog closure model that provides exact linear closures based on the linearized kinetic equation. The results of these models are compared and tested against the linear kinetic model. The dispersion of Farley-Buneman modes and growth rate behavior are investigated in the short wavelength region

  4. Novel retrofit technologies incorporating silica aerogel for lower energy buildings

    OpenAIRE

    Dowson, Mark

    2012-01-01

    This thesis was submitted for the degree of Doctor of Engineering and was awarded by Brunel University. The aim of this Engineering Doctorate is to design, build and test novel environmental retrofit technologies to reduce energy consumption in existing buildings. Three contributions to knowledge are documented. The first contribution is the technical verification of a novel proof-of-principle prototype incorporating translucent silica aerogel granules to improve the thermal performance of...

  5. Solar Thermal Barometer

    International Nuclear Information System (INIS)

    Beurskens, L.W.M.; Mozaffarian, M.

    2008-09-01

    After two years of very strong growth, the solar thermal market (taking all technologies including unglazed flexible collectors into account) marked time in 2007 with 6.9% less collectors being sold with respect to year 2006. In the end, this market reached 2.9 million m 2 vs. 3.1 million m 2 in 2006, i.e. an equivalent capacity of more than 2000 MWth. This decrease is explained for a large part by a strong decline of the German market, the largest market of the European Union. Conversely, other countries are continuing to develop their markets and are showing double-digit growth rates

  6. Solar thermal barometer

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    After two years of very strong growth, the solar thermal market marked time in 2007 with 6,9% less collectors being sold with respect to year 2006. In the end this market reached 2,9 million m 2 facing 3,1 million m 2 in 2006, an equivalent capacity of more than 2000 MWth. This decrease is explained for a large part by a strong decline of the german market, the largest market of the european union. Conversely, other countries are continuing to develop their markets and are showing double-digit growth rates. (A.L.B.)

  7. Deuterium incorporation into Escherichia-coli proteins

    DEFF Research Database (Denmark)

    Lederer, H.; May, R. P.; Kjems, Jørgen

    1986-01-01

    Neutron small-angle scattering studies of single protein subunits in a protein-DNA complex require the adjustment of the neutron scattering-length densities of protein and DNA, which is attainable by specific deuteration of the protein. The neutron scattering densities of unlabelled DNA and DNA......-dependent RNA polymerase of Escherichia coli match when RNA polymerase is isolated from cells grown in a medium containing 46% D2O and unlabelled glucose as carbon source. Their contrasts vanish simultaneously in a dialysis buffer containing 65% D2O. An expression was evaluated which allows the calculation...... of the degree of deuteration and match point of any E. coli protein from the D2O content of the growth medium, taking the 2H incorporation into RNA polymerase amino acids to be representative for all amino acids in E. coli proteins. The small-angle scattering results, on which the calculation of the degree...

  8. Thermal insulation

    International Nuclear Information System (INIS)

    Pinsky, G.P.

    1977-01-01

    Thermal insulation for vessels and piping within the reactor containment area of nuclear power plants is disclosed. The thermal insulation of this invention can be readily removed and replaced from the vessels and piping for inservice inspection, can withstand repeated wettings and dryings, and can resist high temperatures for long periods of time. 4 claims, 3 figures

  9. Another brick in the cell wall: biosynthesis dependent growth model.

    Directory of Open Access Journals (Sweden)

    Adelin Barbacci

    Full Text Available Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  10. Comet thermal modeling

    International Nuclear Information System (INIS)

    Weissman, P.R.; Kieffer, H.H.

    1987-01-01

    The past year was one of tremendous activity because of the appearance of Halley's Comet. Observations of the comet were collected from a number of sources and compared with the detailed predictions of the comet thermal modeling program. Spacecraft observations of key physical parameters for cometary nucleus were incorporated into the thermal model and new cases run. These results have led to a much better understanding of physical processes on the nucleus and have pointed the way for further improvements to the modeling program. A model for the large-scale structure of cometary nuclei was proposed in which comets were envisioned as loosely bound agglomerations of smaller icy planetesimals, essentially a rubble pile of primordial dirty snowballs. In addition, a study of the physical history of comets was begun, concentrating on processes during formation and in the Oort cloud which would alter the volatile and nonvolatile materials in cometary nuclei from their pristine state before formation

  11. Method of Promoting Single Crystal Growth During Melt Growth of Semiconductors

    Science.gov (United States)

    Su, Ching-Hua (Inventor)

    2013-01-01

    The method of the invention promotes single crystal growth during fabrication of melt growth semiconductors. A growth ampoule and its tip have a semiconductor source material placed therein. The growth ampoule is placed in a first thermal environment that raises the temperature of the semiconductor source material to its liquidus temperature. The growth ampoule is then transitioned to a second thermal environment that causes the semiconductor source material in the growth ampoule's tip to attain a temperature that is below the semiconductor source material's solidus temperature. The growth ampoule so-transitioned is then mechanically perturbed to induce single crystal growth at the growth ampoule's tip.

  12. Adaptive Restoration of Airborne Daedalus AADS1268 ATM Thermal Data

    International Nuclear Information System (INIS)

    D. Yuan; E. Doak; P. Guss; A. Will

    2002-01-01

    To incorporate the georegistration and restoration processes into airborne data processing in support of U.S. Department of Energy's nuclear emergency response task, we developed an adaptive restoration filter for airborne Daedalus AADS1268 ATM thermal data based on the Wiener filtering theory. Preliminary assessment shows that this filter enhances the detectability of small weak thermal anomalies in AADS1268 thermal images

  13. Oxygen transport and GeO2 stability during thermal oxidation of Ge

    Science.gov (United States)

    da Silva, S. R. M.; Rolim, G. K.; Soares, G. V.; Baumvol, I. J. R.; Krug, C.; Miotti, L.; Freire, F. L.; da Costa, M. E. H. M.; Radtke, C.

    2012-05-01

    Oxygen transport during thermal oxidation of Ge and desorption of the formed Ge oxide are investigated. Higher oxidation temperatures and lower oxygen pressures promote GeO desorption. An appreciable fraction of oxidized Ge desorbs during the growth of a GeO2 layer. The interplay between oxygen desorption and incorporation results in the exchange of O originally present in GeO2 by O from the gas phase throughout the oxide layer. This process is mediated by O vacancies generated at the GeO2/Ge interface. The formation of a substoichiometric oxide is shown to have direct relation with the GeO desorption.

  14. Thermal expansion

    International Nuclear Information System (INIS)

    Yun, Y.

    2015-01-01

    Thermal expansion of fuel pellet is an important property which limits the lifetime of the fuels in reactors, because it affects both the pellet and cladding mechanical interaction and the gap conductivity. By fitting a number of available measured data, recommended equations have been presented and successfully used to estimate thermal expansion coefficient of the nuclear fuel pellet. However, due to large scatter of the measured data, non-consensus data have been omitted in formulating the equations. Also, the equation is strongly governed by the lack of appropriate experimental data. For those reasons, it is important to develop theoretical methodologies to better describe thermal expansion behaviour of nuclear fuel. In particular, first-principles and molecular dynamics simulations have been certainly contributed to predict reliable thermal expansion without fitting the measured data. Furthermore, the two theoretical techniques have improved on understanding the change of fuel dimension by describing the atomic-scale processes associated with lattice expansion in the fuels. (author)

  15. Periodontal tissue regeneration with PRP incorporated gelatin hydrogel sponges.

    Science.gov (United States)

    Nakajima, Dai; Tabata, Yasuhiko; Sato, Soh

    2015-10-20

    Gelatin hydrogels have been designed and prepared for the controlled release of the transforming growth factor (TGF-b1) and the platelet-derived growth factor (PDGF-BB). PRP (Platelet rich plasma) contains many growth factors including the PDGF and TGF-b1. The objective of this study was to evaluate the regeneration of periodontal tissue following the controlled release of growth factors in PRP. For the periodontal ligament cells and osteoblast, PRP of different concentrations was added. The assessment of DNA, mitochondrial activity and ALP activity were measured. To evaluate the TGF-β1 release from PRP incorporated gelatin sponge, amounts of TGF-β1 in each supernatant sample were determined by the ELISA. Transplantation experiments to prepare a bone defect in a rat alveolar bone were an implanted gelatin sponge incorporated with different concentration PRP. In DNA assay and MTT assay, after the addition of PRP to the periodontal ligament cells and osteoblast, the cell count and mitochondrial activity had increased the most in the group with the addition of 5  ×  PRP. In the ALP assay, after the addition of PRP to the periodontal ligament cells, the cell activity had increased the most in the group with the addition of 3  ×  PRP. In the transplantation, the size of the bone regenerated in the defect with 3  ×  PRP incorporated gelatin sponge was larger than that of the other group.

  16. Periodontal tissue regeneration with PRP incorporated gelatin hydrogel sponges

    International Nuclear Information System (INIS)

    Nakajima, Dai; Tabata, Yasuhiko; Sato, Soh

    2015-01-01

    Gelatin hydrogels have been designed and prepared for the controlled release of the transforming growth factor (TGF-b1) and the platelet-derived growth factor (PDGF-BB). PRP (Platelet rich plasma) contains many growth factors including the PDGF and TGF-b1. The objective of this study was to evaluate the regeneration of periodontal tissue following the controlled release of growth factors in PRP. For the periodontal ligament cells and osteoblast, PRP of different concentrations was added. The assessment of DNA, mitochondrial activity and ALP activity were measured. To evaluate the TGF-β1 release from PRP incorporated gelatin sponge, amounts of TGF-β1 in each supernatant sample were determined by the ELISA. Transplantation experiments to prepare a bone defect in a rat alveolar bone were an implanted gelatin sponge incorporated with different concentration PRP. In DNA assay and MTT assay, after the addition of PRP to the periodontal ligament cells and osteoblast, the cell count and mitochondrial activity had increased the most in the group with the addition of 5  ×  PRP. In the ALP assay, after the addition of PRP to the periodontal ligament cells, the cell activity had increased the most in the group with the addition of 3  ×  PRP. In the transplantation, the size of the bone regenerated in the defect with 3  ×  PRP incorporated gelatin sponge was larger than that of the other group. (paper)

  17. Carbon out-diffusion mechanism for direct graphene growth on a silicon surface

    International Nuclear Information System (INIS)

    Kim, Byung-Sung; Lee, Jong Woon; Jang, Yamujin; Choi, Soon Hyung; Cha, Seung Nam; Sohn, Jung Inn; Kim, Jong Min; Joo, Won-Jae; Hwang, Sungwoo; Whang, Dongmok

    2015-01-01

    Direct growth of graphene on silicon (Si) through chemical vapor deposition has predominantly focused on surface-mediated processes due to the low carbon (C) solubility in Si. However, a considerable quantity of C atoms was incorporated in Si and formed Si 1−x C x alloy with a reduced lattice dimension even in the initial stage of direct graphene growth. Subsequent high temperature annealing promoted active C out-diffusion, resulting in the formation of a graphitic layer on the Si surface. Furthermore, the significantly low thermal conductivity of the Si 1−x C x alloy shows that the incorporated C atoms affect the properties of a semiconductor adjacent to the graphene. These findings provide a key guideline for controlling desirable properties of graphene and designing hybrid semiconductor/graphene architectures for various applications

  18. Radiation exposure from incorporated isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Beleznay, F [Hungarian Academy of Sciences, Budapest. Central Research Inst. for Physics

    1985-01-01

    Recommendations for the limitation of the burden of the human body from radiation exposure were developed to avoid direct radiation health damage such that the occurrence of stochastic damage can be held below a resonable risk level. The recommendations, published under ICRP 26 and ICRP 30, contain several guidelines and concepts which are discussed here. They include the primary internal dose exposure limits, secondary and implied limits for the monitoring of internal radiation exposure (Annual Limit of Intake, Derived Air Concentrations). Methods are presented for inspection and monitoring of internal exposure in medical laboratories, inspection of incorporation of sup(131)I and sup(99m)Tc.

  19. Preferential incorporation of substitutional nitrogen near the atomic step edges in diluted nitride alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cornet, C.; Nguyen Thanh, T.; Almosni, S.; Rohel, T.; Kuyyalil, J.; Rambaud, A.; Letoublon, A.; Bertru, N.; Durand, O.; Le Corre, A. [Universite Europeenne de Bretagne, INSA Rennes, France and CNRS, UMR 6082 Foton, 20 avenue des Buttes de Coeesmes, 35708 Rennes (France); Quinci, T. [Universite Europeenne de Bretagne, INSA Rennes, France and CNRS, UMR 6082 Foton, 20 avenue des Buttes de Coeesmes, 35708 Rennes (France); CEA LCP, INES, Savoie Technolac, 73375 Le Bourget du Lac (France)

    2012-12-17

    We have investigated the influence of the surface roughness on nitrogen incorporation during the molecular beam epitaxy of diluted nitrides, independently of the other growth parameters. GaPN/GaP layers grown simultaneously on surfaces displaying different roughnesses reveal a large difference in nitrogen incorporation despite the same growth temperature and growth rate. The same difference is found on quasi-lattice-matched GaAsPN demonstrating that the phenomenon is not related to any strain-induced mechanisms. The tendency is clearly confirmed when varying the growth conditions. As a direct consequence, the incorporation of substitutional nitrogen near the atomic step edges is found to be 6.7 times more probable than the in-plane nitrogen incorporation. The formation of N-N{sub i} clusters and their stability on the surface is discussed.

  20. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy

    NARCIS (Netherlands)

    Stigter, M.; Bezemer, J.M.; de Groot, K.; Layrolle, P.

    2004-01-01

    Carbonated hydroxyapatite (CHA) coatings were applied onto titanium implants by using a biomimetic precipitation method. Different antibiotics were incorporated into the CHA coatings and their release and efficacy against bacteria growth were studied in vitro. The following antibiotics were used

  1. Thermal Properties and Thermal Analysis:

    Science.gov (United States)

    Kasap, Safa; Tonchev, Dan

    The chapter provides a summary of the fundamental concepts that are needed to understand the heat capacity C P, thermal conductivity κ, and thermal expansion coefficient α L of materials. The C P, κ, and α of various classes of materials, namely, semiconductors, polymers, and glasses, are reviewed, and various typical characteristics are summarized. A key concept in crystalline solids is the Debye theory of the heat capacity, which has been widely used for many decades for calculating the C P of crystals. The thermal properties are interrelated through Grüneisen's theorem. Various useful empirical rules for calculating C P and κ have been used, some of which are summarized. Conventional differential scanning calorimetry (DSC) is a powerful and convenient thermal analysis technique that allows various important physical and chemical transformations, such as the glass transition, crystallization, oxidation, melting etc. to be studied. DSC can also be used to obtain information on the kinetics of the transformations, and some of these thermal analysis techniques are summarized. Temperature-modulated DSC, TMDSC, is a relatively recent innovation in which the sample temperature is ramped slowly and, at the same time, sinusoidally modulated. TMDSC has a number of distinct advantages compared with the conventional DSC since it measures the complex heat capacity. For example, the glass-transition temperature T g measured by TMDSC has almost no dependence on the thermal history, and corresponds to an almost step life change in C P. The new Tzero DSC has an additional thermocouple to calibrate better for thermal lags inherent in the DSC measurement, and allows more accurate thermal analysis.

  2. Crack growth in thermally sprayed ceramic coatings

    Czech Academy of Sciences Publication Activity Database

    Kroupa, František; Náhlík, Luboš; Knésl, Zdeněk

    2004-01-01

    Roč. 49, č. 2 (2004), s. 149-168 ISSN 0001-7043 R&D Projects: GA ČR GP106/04/P084; GA ČR GA101/03/0331 Institutional research plan: CEZ:AV0Z2043910 Keywords : ceramic coatings, fracture mechanics, crack extension Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  3. Thermal comfort

    DEFF Research Database (Denmark)

    d’Ambrosio Alfano, Francesca Romana; Olesen, Bjarne W.; Palella, Boris Igor

    2014-01-01

    Thermal comfort is one of the most important aspects of the indoor environmental quality due to its effects on well-being, people's performance and building energy requirements. Its attainment is not an easy task requiring advanced design and operation of building and HVAC systems, taking...... into account all parameters involved. Even though thermal comfort fundamentals are consolidated topics for more than forty years, often designers seem to ignore or apply them in a wrong way. Design input values from standards are often considered as universal values rather than recommended values to be used...... under specific conditions. At operation level, only few variables are taken into account with unpredictable effects on the assessment of comfort indices. In this paper, the main criteria for the design and assessment of thermal comfort are discussed in order to help building and HVAC systems designers...

  4. GDP-tubulin incorporation into growing microtubules modulates polymer stability.

    Science.gov (United States)

    Valiron, Odile; Arnal, Isabelle; Caudron, Nicolas; Job, Didier

    2010-06-04

    Microtubule growth proceeds through the endwise addition of nucleotide-bound tubulin dimers. The microtubule wall is composed of GDP-tubulin subunits, which are thought to come exclusively from the incorporation of GTP-tubulin complexes at microtubule ends followed by GTP hydrolysis within the polymer. The possibility of a direct GDP-tubulin incorporation into growing polymers is regarded as hardly compatible with recent structural data. Here, we have examined GTP-tubulin and GDP-tubulin incorporation into polymerizing microtubules using a minimal assembly system comprised of nucleotide-bound tubulin dimers, in the absence of free nucleotide. We find that GDP-tubulin complexes can efficiently co-polymerize with GTP-tubulin complexes during microtubule assembly. GDP-tubulin incorporation into microtubules occurs with similar efficiency during bulk microtubule assembly as during microtubule growth from seeds or centrosomes. Microtubules formed from GTP-tubulin/GDP-tubulin mixtures display altered microtubule dynamics, in particular a decreased shrinkage rate, apparently due to intrinsic modifications of the polymer disassembly properties. Thus, although microtubules polymerized from GTP-tubulin/GDP-tubulin mixtures or from homogeneous GTP-tubulin solutions are both composed of GDP-tubulin subunits, they have different dynamic properties, and this may reveal a novel form of microtubule "structural plasticity."

  5. Matrix thermalization

    International Nuclear Information System (INIS)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-01-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  6. Matrix thermalization

    Science.gov (United States)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-02-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  7. Matrix thermalization

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Evnin, Oleg [Department of Physics, Faculty of Science, Chulalongkorn University, Thanon Phayathai, Pathumwan, Bangkok 10330 (Thailand); Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Nguyen, Kévin [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)

    2017-02-08

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  8. Incorporation of passive components aging into PRAs

    International Nuclear Information System (INIS)

    Phillips, J.H.; Roesener, W.S.; Magleby, H.L.; Geidl, V.

    1993-01-01

    The probabilistic risk assessments being developed at most nuclear power plants to calculate the risk of core damage generally focus on the possible failure of active components. The possible failure of passive components is given little consideration. We are developing a method for selecting risk-significant passive components and including them in probabilistic risk assessments. We demonstrated the method by selecting a weld in the auxiliary feedwater system. The selection of this component was based on expert judgement of the likelihood of failure and on an estimate of the consequence of component failure to plant safety. We then used the PRAISE computer code to perform a probabilistic structural analysis to calculate the probability that crack growth due to aging would cause the weld to fail. The calculation included the effects of mechanical loads and thermal transients considered in the design and the effects of thermal cycling caused by a leaking check valve. We modified an existing probabilistic risk assessment (NUREG-1150 plant) to include the possible failure of the auxiliary feedwater weld, and then we used the weld failure probability as input to the modified probabilistic risk assessment to calculate the change in plant risk with time. The results showed that if the failure probability of the selected weld is high, the effect on plant risk is significant. However, this particular calculation showed a very low weld failure probability and no change in plant risk for the 48 years of service analyzed. The success of this demonstration shows that this method could be applied to nuclear power plants. (orig.)

  9. Thermal condensation mode in a dusty plasma

    Indian Academy of Sciences (India)

    We find that the charge variability of the grain reduces the growth rate ..... Thus, in the short wavelength regime, thermal conductivity has stabilizing effect .... dynamics is retained, and the reason being that the momentum exchange of the grain ...

  10. Global thermal coal trade outlook

    International Nuclear Information System (INIS)

    Ewart, E.

    2008-01-01

    Wood Mackenzie operates coal consulting offices in several cities around the world and is the number one consulting company in terms of global coal coverage. The company offers a unique mine-by-mine research methodology, and owns a proprietary modeling system for coal and power market forecasting. This presentation provided an overview of global thermal markets as well as recent market trends. Seaborne markets have an impact on price far greater than the volume of trade would imply. Research has also demonstrated that the global thermal coal market is divided between the Pacific and Atlantic Basins. The current status of several major coal exporting countries such as Canada, the United States, Venezuela, Colombia, Indonesia, Australia, China, South Africa, and Russia was displayed in an illustration. The presentation included several graphs indicating that the seaborne thermal coal market is highly concentrated; traditional coal flow and pricing trends shift as Asian demand growth and supply constraints lead to chronic under supply; coal prices have risen to historic highs in recent times; and, the Asian power sector demand is a major driver of future growth. The correlation between oil and gas markets to thermal coal was illustrated along with two scenarios of coal use in the United States in a carbon-constrained world. The impact of carbon legislation on coal demand from selected coal regions in the United States was also discussed. Wood Mackenzie forecasts a very strong growth in global thermal coal demand, driven largely by emerging Asian economies. tabs., figs

  11. Numeral Incorporation in Japanese Sign Language

    Science.gov (United States)

    Ktejik, Mish

    2013-01-01

    This article explores the morphological process of numeral incorporation in Japanese Sign Language. Numeral incorporation is defined and the available research on numeral incorporation in signed language is discussed. The numeral signs in Japanese Sign Language are then introduced and followed by an explanation of the numeral morphemes which are…

  12. Delayed growth

    Science.gov (United States)

    ... Slow rate of growth; Retarded growth and development; Growth delay Images Toddler development References Cooke DW, Divall SA, Radovick S. Normal and aberrant growth in children. In: Melmed S, Polonsky KS, Larsen PR, ...

  13. Statistical and thermal physics with computer applications

    CERN Document Server

    Gould, Harvey

    2010-01-01

    This textbook carefully develops the main ideas and techniques of statistical and thermal physics and is intended for upper-level undergraduate courses. The authors each have more than thirty years' experience in teaching, curriculum development, and research in statistical and computational physics. Statistical and Thermal Physics begins with a qualitative discussion of the relation between the macroscopic and microscopic worlds and incorporates computer simulations throughout the book to provide concrete examples of important conceptual ideas. Unlike many contemporary texts on the

  14. Thermal insulation

    International Nuclear Information System (INIS)

    Durston, J.G.; Birch, W.; Facer, R.I.; Stuart, R.A.

    1977-01-01

    Reference is made to liquid metal cooled nuclear reactors. In the arrangement described the reactor vessel is clad with thermal insulation comprising a layer of insulating blocks spaced from the wall and from each other; each block is rigidly secured to the wall, and the interspaces are substantially closed against convectional flow of liquid by resilient closure members. A membrane covering is provided for the layer of blocks, with venting means to allow liquid from the reactor vessel to penetrate between the covering and the layer of blocks. The membrane covering may comprise a stainless steel sheet ribbed in orthogonal pattern to give flexibility for the accommodation of thermal strain. The insulating blocks may be comprised of stainless steel or cellular or porous material and may be hollow shells containing ceramic material or gas fillings. (U.K.)

  15. Solar thermal

    International Nuclear Information System (INIS)

    Jones, J.

    2006-01-01

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m 3 - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become increasingly important as

  16. Solar thermal

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.

    2006-07-15

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m{sup 3} - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become

  17. Influence of oxygen incorporation on the defect structure of GaN microrods and nanowires. An XPS and CL study

    International Nuclear Information System (INIS)

    Guzmán, G; Herrera, M; Silva, R; Vásquez, G C; Maestre, D

    2016-01-01

    We report a cathodoluminescence (CL) and x-ray photoelectron spectroscopy (XPS) study of the influence of oxygen incorporation on the defect structure of GaN microrods and nanowires. The micro- and nanostructures were synthesized by a thermal evaporation method, which enables us to incorporate oxygen at different concentrations by varying the growth temperature. HR-TEM measurements revealed that oxygen generates stacking fault defects and edge dislocations along the GaN nanowires. Amorphous GaO x N y compounds were segregated on the surface of the nanowires. XPS, XRD and CL measurements suggests that the microrods and nanowires were composed of amorphous oxynitride compounds at their surface and GaN at their inner region. CL measurements revealed that the nanostructures generated an emission of 2.68 eV that increased in intensity proportionally to their oxygen content. We have attributed this emission to electronic transitions between donor substitutional-oxygen (O N ) and acceptor interstitial-oxygen (O i ) state levels. (paper)

  18. Investigation of thermal fatigue behavior of thermal barrier coating systems

    International Nuclear Information System (INIS)

    Zhu Dongming; Miller, R.A.

    1997-01-01

    In the present study, the mechanisms of fatigue crack initiation and propagation, and of coating failure under thermal loads that simulate those in diesel engines are investigated. Surface cracks initiate early and grow continuously under thermal low cycle fatigue (LCF) and high cycle fatigue (HCF) stresses. It is found that, in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures. Significant LCF and HCF interactions have been observed in the thermal fatigue tests. The fatigue crack growth rate in the ceramic coating strongly depends on the characteristic HCF cycle number, N* HCF which is defined as the number of HCF cycles per LCF cycle. The crack growth rate is increased from 0.36 μm/LCF cycle for a pure LCF test to 2.8 μm/LCF cycle for a combined LCF and HCF test at N* HCF about 20 000. A surface wedging model has been proposed to account for the HCF crack growth in the coating systems. This mechanism predicts that the HCF damage effect increases with heat flux and thus with increasing surface temperature swing, thermal expansion coefficient and elastic modulus of the ceramic coating, as well as with the HCF interacting depth. Good correlation has been found between the analysis and experimental evidence. (orig.)

  19. Thermal effects on metabolic activities of thermophilic microorganisms from the thermal discharge point of Tuticorin thermal power plant area

    International Nuclear Information System (INIS)

    Muthukkannan, N.; Murugesan, A.G.

    2002-01-01

    Metabolic activities of thermophilic microorganisms isolated from the thermal water discharge point at Tuticorin thermal power station were studied by growing the microorganisms in sterile medium and at various temperature regimes of 25, 35, 45, 55 and 65degC. The optimum temperature for the growth of the bacterium isolated from the thermal power plant station was 45 degC and beyond 65 degC the growth was gradually decreased. The bacteria isolated from open sea water were mesophiles with their growth optimum at 35 degC and microbes inhabiting the thermal discharge area were thermopiles as they were tolerant even at 55 degC. The amylase production, carbohydrate metabolism and lactose fermentation activities were optimum at 45 degC. At 25 degC and beyond 65 degC biochemical activities of the organisms were inhibited to a greater extent. (author)

  20. Co-depositing Sn controls the growth of Al films as surfactant

    International Nuclear Information System (INIS)

    Barna, P. B.; Kovacs, A.; Misjak, F.; Eisenmenger-Sittner, C.; Bangert, H.; Tomastik, C.

    2002-01-01

    The present study investigates the influence of co-deposited Sn on the atomic processes involved in the structure evolution of vapour-deposited Al films. The films were prepared in HV by thermal evaporation from W sources at 1600 C substrate temperature either on Si wafers covered by a thermally grown oxide or on air cleaved mica. By applying the half-shadow technique, pure and Sn-doped Al films could be deposited simultaneously. The samples were investigated by AFM, scanning AES, X-TEM as well as by X-ray diffraction methods. The grain growth of Al is promoted by Sn in all stages of the film formation. Scanning AES measurements prove the existence of a wetting Sn layer both on the surface of Al islands and on the surface of the continuos Al layer. Excess Sn forms islands on the growth surface. The surface of pure Al layers exhibits grain boundary grooves and bunches of growth steps around terraces, while that of the Sn doped layers is more rounded. The substrate-film interface was covered by a thin Sn layer. AES measurements also prove the presence of Sn on the growth surface of Al films even after termination of Sn addition. Results of these experiments indicate that during co-deposition of Al and Sn the impinging Al atoms penetrate the wetting layer and are incorporated into the already existing Al crystals. A model has been developed for describing the growth of Al crystals in the presence Sn. (Authors)

  1. Gas thermal conductivity (GASCON, GTHCON, GJUMP)

    International Nuclear Information System (INIS)

    Hagrman, D.L.

    1979-10-01

    Revised models are presented for the thermal conductivity of initial and fission gases present in LWR fuel rods. The report will become part of an update to the Materials Properties (MATPRO) Handbook used in the fuel rod behavior modeling task performed at the INEL. The revision to the previous MATPRO gas thermal conductivity model replaces correlations based on smoothed values of thermal conductivity published by Gandhi and Saxena with correlations which incorporate new high temperature helium conductivity data. Also, uncertainty estimates have been provided and a consistent treatment of the effects of long mean free paths is employed

  2. Development of thermoplastic starch blown film by incorporating plasticized chitosan.

    Science.gov (United States)

    Dang, Khanh Minh; Yoksan, Rangrong

    2015-01-22

    The objective of the present work was to improve blown film extrusion processability and properties of thermoplastic starch (TPS) film by incorporating plasticized chitosan, with a content of 0.37-1.45%. The effects of chitosan on extrusion processability and melt flow ability of TPS, as well as that on appearance, optical properties, thermal properties, viscoelastic properties and tensile properties of the films were investigated. The possible interactions between chitosan and starch molecules were evaluated by FTIR and XRD techniques. Chitosan and starch molecules could interact via hydrogen bonds, as confirmed from the blue shift of OH bands and the reduction of V-type crystal formation. Although the incorporation of chitosan caused decreased extensibility and melt flow ability, as well as increased yellowness and opacity, the films possessed better extrusion processability, increased tensile strength, rigidity, thermal stability and UV absorption, as well as reduced water absorption and surface stickiness. The obtained TPS/chitosan-based films offer real potential application in the food industry, e.g. as edible films. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. In vitro incorporation of the phage Phi29 connector complex

    International Nuclear Information System (INIS)

    Fu Chiyu; Prevelige, Peter E.

    2009-01-01

    The incorporation of the DNA packaging connector complex during lambdoid phage assembly in vivo is strictly controlled-one and only one of the twelve identical icosahedral vertices is differentiated by the inclusion of a portal or connector dodecamer. Proposed control mechanisms include obligate nucleation from a connector containing complex, addition of the connector as the final step during assembly, and a connector-mediated increase in the growth rate. The inability to recapitulate connector incorporation in vitro has made it difficult to obtain direct biochemical evidence in support of one model over another. Here we report the development an in vitro assembly system for the well characterized dsDNA phage Phi29 which results in the co-assembly of connector with capsid and scaffolding proteins to form procapsid-like particles (PLPs). Immuno-electron microscopy demonstrates the specific incorporation of connector vertex in PLPs. The connector protein increases both the yield and the rate of capsid assembly suggesting that the incorporation of the connector in Phi29 likely promotes nucleation of assembly.

  4. Thermal Conductivity of Metallic Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Hin, Celine

    2018-03-10

    This project has developed a modeling and simulation approaches to predict the thermal conductivity of metallic fuels and their alloys. We focus on two methods. The first method has been developed by the team at the University of Wisconsin Madison. They developed a practical and general modeling approach for thermal conductivity of metals and metal alloys that integrates ab-initio and semi-empirical physics-based models to maximize the strengths of both techniques. The second method has been developed by the team at Virginia Tech. This approach consists of a determining the thermal conductivity using only ab-initio methods without any fitting parameters. Both methods were complementary. The models incorporated both phonon and electron contributions. Good agreement with experimental data over a wide temperature range were found. The models also provided insight into the different physical factors that govern the thermal conductivity under different temperatures. The models were general enough to incorporate more complex effects like additional alloying species, defects, transmutation products and noble gas bubbles to predict the behavior of complex metallic alloys like U-alloy fuel systems under burnup. 3 Introduction Thermal conductivity is an important thermal physical property affecting the performance and efficiency of metallic fuels [1]. Some experimental measurement of thermal conductivity and its correlation with composition and temperature from empirical fitting are available for U, Zr and their alloys with Pu and other minor actinides. However, as reviewed in by Kim, Cho and Sohn [2], due to the difficulty in doing experiments on actinide materials, thermal conductivities of metallic fuels have only been measured at limited alloy compositions and temperatures, some of them even being negative and unphysical. Furthermore, the correlations developed so far are empirical in nature and may not be accurate when used for prediction at conditions far from those

  5. Inhaled air quality with desk incorporated personalized ventilation (PV): parametric study

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Nagano, Hideaki; Melikov, Arsen Krikor

    A workstation consisting of a desk with installed personalized ventilation (PV) and a dressed breathing thermal manikin simulating seated occupant was set in a full-scale test room. The room was conditioned by overhead ventilation at 26 oC. The PV consisted of two confluent jets incorporated along...

  6. Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha Sankar, P.C.; Ramakrishnan, Reshmi; Rosemary, M.J., E-mail: rosemarymj@lifecarehll.com

    2016-04-01

    Cellulose pulp has a visible market share in personal hygiene products such as sanitary napkins and baby diapers. However it offers good surface for growth of microorganisms. Huge amount of research is going on in developing hygiene products that do not initiate microbial growth. The objective of the present work is to produce antibacterial cellulose pulp by depositing silver nanopowder on the cellulose fiber. The silver nanoparticles used were of less than 100 nm in size and were characterised using transmission electron microscopy and X-ray powder diffraction studies. Antibacterial activity of the functionalized cellulose pulp was proved by JIS L 1902 method. The in-vitro cytotoxicity, in-vivo vaginal irritation and intracutaneous reactivity studies were done with silver nanopowder incorporated cellulose pulp for introducing a new value added product to the market. Cytotoxicity evaluation suggested that the silver nanoparticle incorporated cellulose pulp is non-cytotoxic. No irritation and skin sensitization were identified in animals tested with specific extracts prepared from the test material in the in-vivo experiments. The results indicated that the silver nanopowder incorporated cellulose pulp meets the requirements of the standard practices recommended for evaluating the biological reactivity and has good biocompatibility, hence can be classified as a safe hygiene product. - Highlights: • Different amounts of silver nanoparticles (0.2 g–0.4 g/napkin) were added to cellulose pulp. • The silver nanoparticle incorporated cellulose pulp was proved to be antibacterial by JIS L 1902 method. • The minimum concentration of silver required for antibacterial activity with no cytotoxicity has been found out. • In-vivo vaginal irritation and intracutaneous reactivity studies confirmed the biocompatibility of the material.

  7. Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products

    International Nuclear Information System (INIS)

    Kavitha Sankar, P.C.; Ramakrishnan, Reshmi; Rosemary, M.J.

    2016-01-01

    Cellulose pulp has a visible market share in personal hygiene products such as sanitary napkins and baby diapers. However it offers good surface for growth of microorganisms. Huge amount of research is going on in developing hygiene products that do not initiate microbial growth. The objective of the present work is to produce antibacterial cellulose pulp by depositing silver nanopowder on the cellulose fiber. The silver nanoparticles used were of less than 100 nm in size and were characterised using transmission electron microscopy and X-ray powder diffraction studies. Antibacterial activity of the functionalized cellulose pulp was proved by JIS L 1902 method. The in-vitro cytotoxicity, in-vivo vaginal irritation and intracutaneous reactivity studies were done with silver nanopowder incorporated cellulose pulp for introducing a new value added product to the market. Cytotoxicity evaluation suggested that the silver nanoparticle incorporated cellulose pulp is non-cytotoxic. No irritation and skin sensitization were identified in animals tested with specific extracts prepared from the test material in the in-vivo experiments. The results indicated that the silver nanopowder incorporated cellulose pulp meets the requirements of the standard practices recommended for evaluating the biological reactivity and has good biocompatibility, hence can be classified as a safe hygiene product. - Highlights: • Different amounts of silver nanoparticles (0.2 g–0.4 g/napkin) were added to cellulose pulp. • The silver nanoparticle incorporated cellulose pulp was proved to be antibacterial by JIS L 1902 method. • The minimum concentration of silver required for antibacterial activity with no cytotoxicity has been found out. • In-vivo vaginal irritation and intracutaneous reactivity studies confirmed the biocompatibility of the material.

  8. An improved thermal model for the computer code NAIAD

    International Nuclear Information System (INIS)

    Rainbow, M.T.

    1982-12-01

    An improved thermal model, based on the concept of heat slabs, has been incorporated as an option into the thermal hydraulic computer code NAIAD. The heat slabs are one-dimensional thermal conduction models with temperature independent thermal properties which may be internal and/or external to the fluid. Thermal energy may be added to or removed from the fluid via heat slabs and passed across the external boundary of external heat slabs at a rate which is a linear function of the external surface temperatures. The code input for the new option has been restructured to simplify data preparation. A full description of current input requirements is presented

  9. ISS qualified thermal carrier equipment

    Science.gov (United States)

    Deuser, Mark S.; Vellinger, John C.; Jennings, Wm. M.

    2000-01-01

    Biotechnology is undergoing a period of rapid and sustained growth, a trend which is expected to continue as the general population ages and as new medical treatments and products are conceived. As pharmaceutical and biomedical companies continue to search for improved methods of production and, for answers to basic research questions, they will seek out new avenues of research. Space processing on the International Space Station (ISS) offers such an opportunity! Space is rapidly becoming an industrial laboratory for biotechnology research and processing. Space bioprocessing offers exciting possibilities for developing new pharmaceuticals and medical treatments, which can be used to benefit mankind on Earth. It also represents a new economic frontier for the private sector. For over eight years, the thermal carrier development team at SHOT has been working with government and commercial sector scientists who are conducting microgravity experiments that require thermal control. SHOT realized several years ago that the hardware currently being used for microgravity thermal control was becoming obsolete. It is likely that the government, academic, and industrial bioscience community members could utilize SHOT's hardware as a replacement to their current microgravity thermal carrier equipment. Moreover, SHOT is aware of several international scientists interested in utilizing our space qualified thermal carrier. SHOT's economic financing concept could be extremely beneficial to the international participant, while providing a source of geographic return for their particular region. Beginning in 2000, flight qualified thermal carriers are expected to be available to both the private and government sectors. .

  10. ESTIMATION OF THERMAL PARAMETERS OF POWER BIPOLAR TRANSISTORS BY THE METHOD OF THERMAL RELAXATION DIFFERENTIAL SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    V. S. Niss

    2015-01-01

    Full Text Available Thermal performance of electronic devices determines the stability and reliability of the equipment. This leads to the need for a detailed thermal analysis of semiconductor devices. The goal of the work is evaluation of thermal parameters of high-power bipolar transistors in plastic packages TO-252 and TO-126 by a method of thermal relaxation differential spectrometry. Thermal constants of device elements and distribution structure of thermal resistance defined as discrete and continuous spectra using previously developed relaxation impedance spectrometer. Continuous spectrum, based on higher-order derivatives of the dynamic thermal impedance, follows the model of Foster, and discrete to model of Cauer. The structure of sample thermal resistance is presented in the form of siх-chain electro-thermal RC model. Analysis of the heat flow spreading in the studied structures is carried out on the basis of the concept of thermal diffusivity. For transistor structures the area and distribution of the heat flow cross-section are determined. On the basis of the measurements the thermal parameters of high-power bipolar transistors is evaluated, in particular, the structure of their thermal resistance. For all of the measured samples is obtained that the thermal resistance of the layer planting crystal makes a defining contribution to the internal thermal resistance of transistors. In the transition layer at the border of semiconductor-solder the thermal resistance increases due to changes in the mechanism of heat transfer. Defects in this area in the form of delamination of solder, voids and cracks lead to additional growth of thermal resistance caused by the reduction of the active square of the transition layer. Method of thermal relaxation differential spectrometry allows effectively control the distribution of heat flow in high-power semiconductor devices, which is important for improving the design, improve the quality of landing crystals of power

  11. Growth Disorders

    Science.gov (United States)

    ... too little of it may be very short. Treatment with growth hormone can stimulate growth. People can also have too much growth hormone. Usually the cause is a pituitary gland tumor, which is not cancer. Too much growth hormone can cause gigantism in children, where their bones and their body ...

  12. Si Incorporation in InP Nanowires Grown by Au-Assisted Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Lorenzo Rigutti

    2009-01-01

    Full Text Available We report on the growth, structural characterization, and conductivity studies of Si-doped InP nanowires grown by Au-assisted molecular beam epitaxy. It is shown that Si doping reduces the mean diffusion length of adatoms on the lateral nanowire surface and consequently reduces the nanowire growth rate and promotes lateral growth. A resistivity as low as 5.1±0.3×10−5 Ω⋅cm is measured for highly doped nanowires. Two dopant incorporation mechanisms are discussed: incorporation via catalyst particle and direct incorporation on the nanowire sidewalls. The first mechanism is shown to be less efficient than the second one, resulting in inhomogeneous radial dopant distribution.

  13. Thermal morphing anisogrid smart space structures: thermal isolation design and linearity evaluation

    Science.gov (United States)

    Phoenix, Austin A.

    2017-04-01

    To meet the requirements for the next generation of space missions, a paradigm shift is required from current structures that are static, heavy and stiff, toward innovative structures that are adaptive, lightweight, versatile, and intelligent. A novel morphing structure, the thermally actuated anisogrid morphing boom, can be used to meet the design requirements by making the primary structure actively adapt to the on-orbit environment. The anisogrid structure is able to achieve high precision morphing control through the intelligent application of thermal gradients. This active primary structure improves structural and thermal stability performance, reduces mass, and enables new mission architectures. This effort attempts to address limits to the author's previous work by incorporating the impact of thermal coupling that was initially neglected. This paper introduces a thermally isolated version of the thermal morphing anisogrid structure in order to address the thermal losses between active members. To evaluate the isolation design the stiffness and thermal conductivity of these isolating interfaces need to be addressed. This paper investigates the performance of the thermal morphing system under a variety of structural and thermal isolation interface properties.

  14. Oxidation of Fe–22Cr Coated with Co3O4: Microstructure Evolution and the Effect of Growth Stresses

    DEFF Research Database (Denmark)

    Hansson, Anette Nørgaard; Burriel, Monica; Garcia, Gemma

    2007-01-01

    The oxidation behavior of a commercially available Fe–22Cr alloy coated with a Co3O4 layer by metal organic—chemical vapor deposition was investigated in air with 1% H2O at 1,173 K and compared to the oxidation behavior of the non-coated alloy. The oxide morphology was examined with X......-ray diffraction, electron microscopy, and energy dispersive X-ray spectroscopy. Cr2O3 developed in between the Co3O4 coating and the alloy, while alloying elements of the substrate were incorporated into the coating. Particular attention was devoted to possible sources of growth stresses and the effect...... of the growth stresses on microstructure evolution in the scales that developed on the non-coated and the coated Fe–22Cr alloy. Microstructural features suggested that scale spallation on coated Fe–22Cr occurred as a result of superimposing thermal stresses during cooling onto the growth stresses, that had...

  15. Effect of selenization conditions on the growth and properties of Cu2ZnSn(S,Se)4 thin films

    OpenAIRE

    Ranjbar, Samaneh; Rajesh Menon, M.R.; Fernandes, P.A.; da Cunha, A.F.

    2015-01-01

    The opto-electronic properties of copper zinc tin sulfide can be tuned to achieve better cell efficiencies by controlled incorporation of selenium. In this paper we report the growth of Cu2ZnSn(S,Se)4 (CZTSSe) using a hybrid process involving the sequential evaporation of Zn and sputtering of the sulfide precursors of Cu and Sn, followed by a selenization step. Two approaches for selenization were followed, one using a tubular furnace and the other using a rapid thermal processor. The effects...

  16. Thermal comfort in residential buildings: Comfort values and scales for building energy simulation

    NARCIS (Netherlands)

    Peeters, L.F.R.; Dear, de R.; Hensen, J.L.M.; D'Haeseleer, W.

    2009-01-01

    Building Energy Simulation (BES) programmes often use conventional thermal comfort theories to make decisions, whilst recent research in the field of thermal comfort clearly shows that important effects are not incorporated. The conventional theories of thermal comfort were set up based on steady

  17. Formulation of Bioadhesive Carbomer Gel Incorporating Drug ...

    African Journals Online (AJOL)

    incorporated into carbomer gel and evaluated for drug release. Results: ... localized delivery system for the treatment inflammation and infection in periodontal pockets. ..... loaded with diclofenac sodium for intra- articular administration. J Drug ...

  18. Thermal stress mitigation by Active Thermal Control

    DEFF Research Database (Denmark)

    Soldati, Alessandro; Dossena, Fabrizio; Pietrini, Giorgio

    2017-01-01

    This work proposes an Active Thermal Control (ATC) of power switches. Leveraging on the fact that thermal stress has wide impact on the system reliability, controlling thermal transients is supposed to lengthen the lifetime of electronic conversion systems. Indeed in some environments...... results of control schemes are presented, together with evaluation of the proposed loss models. Experimental proof of the ability of the proposed control to reduce thermal swing and related stress on the device is presented, too....

  19. Characterization of active paper packaging incorporated with ginger pulp oleoresin

    Science.gov (United States)

    Wiastuti, T.; Khasanah, L. U.; Atmaka Kawiji, W.; Manuhara, G. J.; Utami, R.

    2016-02-01

    Utilization of ginger pulp waste from herbal medicine and instant drinks industry in Indonesia currently used for fertilizer and fuel, whereas the ginger pulp still contains high oleoresin. Active paper packaging were developed incorporated with ginger pulp oleoresin (0%, 2%, 4%, and 6% w/w). Physical (thickness, tensile strength, and folding endurance, moisture content), sensory characteristics and antimicrobial activity of the active paper were evaluated. Selected active paper then were chemically characterized (functional groups). The additional of ginger pulp oleoresin levels are reduced tensile strength, folding endurance and sensory characteristic (color, texture and overall) and increased antimicrobial activity. Due to physical, sensory characteristic and antimicrobial activity, active paper with 2% ginger pulp oleoresin incorporation was selected. Characteristics of selected paper were 9.93% of water content; 0.81 mm of thickness; 0.54 N / mm of tensile strength; 0.30 of folding endurance; 8.43 mm inhibits the growth of Pseudomonas fluorescence and 27.86 mm inhibits the growth of Aspergillus niger (antimicrobial activity) and neutral preference response for sensory properties. For chemical characteristic, selected paper had OH functional group of ginger in 3422.83 cm-1 of wave number and indicated contain red ginger active compounds.

  20. Envisioning, quantifying, and managing thermal regimes on river networks

    Science.gov (United States)

    Steel, E. Ashley; Beechie, Timothy J.; Torgersen, Christian E.; Fullerton, Aimee H.

    2017-01-01

    Water temperatures fluctuate in time and space, creating diverse thermal regimes on river networks. Temporal variability in these thermal landscapes has important biological and ecological consequences because of nonlinearities in physiological reactions; spatial diversity in thermal landscapes provides aquatic organisms with options to maximize growth and survival. However, human activities and climate change threaten to alter the dynamics of riverine thermal regimes. New data and tools can identify particular facets of the thermal landscape that describe ecological and management concerns and that are linked to human actions. The emerging complexity of thermal landscapes demands innovations in communication, opens the door to exciting research opportunities on the human impacts to and biological consequences of thermal variability, suggests improvements in monitoring programs to better capture empirical patterns, provides a framework for suites of actions to restore and protect the natural processes that drive thermal complexity, and indicates opportunities for better managing thermal landscapes.

  1. Predicting micro thermal habitat of lizards in a dynamic thermal environment

    NARCIS (Netherlands)

    Fei, T.; Skidmore, A.K.; Venus, V.; Wang, T.; Toxopeus, A.G.; Bian, B.M.; Liu, Y.

    2012-01-01

    Understanding behavioural thermoregulation and its consequences is a central topic in ecology. In this study, a spatial explicit model was developed to simulate the movement and thermal habitat use of lizards in a controlled environment. The model incorporates a lizard's transient body temperatures

  2. Separating the Influence of Environment from Stress Relaxation Effects on Dwell Fatigue Crack Growth

    Science.gov (United States)

    Telesman, Jack; Gabb, Tim; Ghosn, Louis J.

    2016-01-01

    Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress intensity parameter, Kmax, was developed by incorporating into the formulation the remaining stress level concept as measured by simple stress relaxation tests. The newly proposed parameter, Ksrf, did an excellent job in correlating the dwell crack growth rates for the four heat treatments which were shown to have similar intrinsic environmental cyclic fatigue crack growth resistance.

  3. Fuel thermal conductivity (FTHCON). Status report

    International Nuclear Information System (INIS)

    Hagrman, D.L.

    1979-02-01

    An improvement of the fuel thermal conductivity subcode is described which is part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The original version was published in the Materials Properties (MATPRO) Handbook, Section A-2 (Fuel Thermal Conductivity). The improved version incorporates data which were not included in the previous work and omits some previously used data which are believed to come from cracked specimens. The models for the effect of porosity on thermal conductivity and for the electronic contribution to thermal coductivity have been completely revised in order to place these models on a more mechanistic basis. As a result of modeling improvements the standard error of the model with respect to its data base has been significantly reduced

  4. Microstructural characterization of ceramic floor tiles with the incorporation of wastes from ceramic tile industries

    Directory of Open Access Journals (Sweden)

    Carmeane Effting

    2010-09-01

    Full Text Available Ceramic floor tiles are widely used in buildings. In places where people are bare feet, the thermal sensation of cold or hot depends on the environmental conditions and material properties including its microstructure and crustiness surface. The introduction of the crustiness surface on the ceramic floor tiles interfere in the contact temperature and also it can be an strategy to obtain ceramic tiles more comfortable. In this work, porous ceramic tiles were obtained by pressing an industrial atomized ceramic powder incorporated with refractory raw material (residue from porcelainized stoneware tile polishing and changing firing temperature. Raw materials and obtained compacted samples were evaluated by chemical analysis, scanning electron microscopy (SEM, energy-dispersive spectrometry (EDS, thermogravimetric analysis (TGA, and differential thermal analysis (DTA. Thermal (thermal conductivity and effusivity and physical (porosity measurements were also evaluated.

  5. Growth and characterization of indium antimonide and gallium ...

    Indian Academy of Sciences (India)

    Unknown

    ous impurity distribution and low dislocation density to ... The incorporation of stress in the lattice due to differential thermal ... fabricated. It was then integrated into a home-made ..... During the course of this work some of the main problems.

  6. growth stimulant

    African Journals Online (AJOL)

    Effects of timing and duration of supplementation of LIVFIT VET ® (growth stimulant) as substitute for fish meal on the growth performance, haematology and clinical enzymes concentration of growing pigs.

  7. Molecular beam epitaxy growth of InSb1−xBix thin films

    DEFF Research Database (Denmark)

    Song, Yuxin; Wang, Shumin; Saha Roy, Ivy

    2013-01-01

    Molecular beam epitaxy growth for InSb1−xBix thin films on (100) GaAs substrates is reported. Successful Bi incorporation for 2% is achieved, and up to 70% of the incorporated Bi atoms are at substitutional sites. The effects of growth parameters on Bi incorporation and surface morphology are stu...

  8. Effect of thermo-mechanical loading histories on fatigue crack growth behavior and the threshold in SUS 316 and SCM 440 steels. For prevention of high cycle thermal fatigue failures

    International Nuclear Information System (INIS)

    Okazaki, Masakazu; Muzvidziwa, Milton; Iwasaki, Akira; Kasahara, Naoto

    2014-01-01

    High cycle thermal fatigue failure of pipes induced by fluid temperature change is one of the interdisciplinary issues to be concerned for long term structural reliability of high temperature components in energy systems. In order to explore advanced life assessment methods to prevent the failure, fatigue crack propagation tests were carried out in a low alloy steel and an austenitic stainless steel under typical thermal and thermo-mechanical histories. Special attention was paid to both the effect of thermo-mechanical loading history on the fatigue crack threshold, as well as to the applicability of continuum fracture mechanics treatment to small or short cracks. It was shown experimentally that the crack-based remaining fatigue life evaluation provided more reasonable assessment than the traditional method based on the semi-empirical law in terms of 'usage factor' for high cycle thermal fatigue failure that is employed in JSME Standard, S017. The crack propagation analysis based on continuum fracture mechanics was almost successfully applied to the small fatigue cracks of which size was comparable to a few times of material grain size. It was also shown the thermo-mechanical histories introduced unique effects to the prior fatigue crack wake, resulting in occasional change in the fatigue crack threshold. (author)

  9. Microelectromechanical (MEM) thermal actuator

    Science.gov (United States)

    Garcia, Ernest J [Albuquerque, NM; Fulcher, Clay W. G. [Sandia Park, NM

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  10. Vertically aligned N-doped CNTs growth using Taguchi experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ricardo M. [CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Fernandes, António J.S. [I3 N, Physics Department, University of Aveiro, 3810-193 Aveiro (Portugal); Ferro, Marta C. [CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Pinna, Nicola [Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin Germany (Germany); Silva, Rui F., E-mail: rsilva@ua.pt [CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal)

    2015-07-30

    Highlights: • Taguchi method is employed for the CVD growth of vertically aligned N-doped CNTs. • Optimal growth parameters: NH3 = 90 sccm, T = 825 °C and catalyst pretreatment time = 2 min. • SEM and HRTEM revealed VACNTs with bamboo-like structure of curved graphitic layers. • XPS analysis results indicated 2.00 at.% of N incorporation in the VACNTs. - Abstract: The Taguchi method with a parameter design L{sub 9} orthogonal array was implemented for optimizing the nitrogen incorporation in the structure of vertically aligned N-doped CNTs grown by thermal chemical deposition (TCVD). The maximization of the I{sub D}/I{sub G} ratio of the Raman spectra was selected as the target value. As a result, the optimal deposition configuration was NH{sub 3} = 90 sccm, growth temperature = 825 °C and catalyst pretreatment time of 2 min, the first parameter having the main effect on nitrogen incorporation. A confirmation experiment with these values was performed, ratifying the predicted I{sub D}/I{sub G} ratio of 1.42. Scanning electron microscopy (SEM) characterization revealed a uniform completely vertically aligned array of multiwalled CNTs which individually exhibit a bamboo-like structure, consisting of periodically curved graphitic layers, as depicted by high resolution transmission electron microscopy (HRTEM). The X-ray photoelectron spectroscopy (XPS) results indicated a 2.00 at.% of N incorporation in the CNTs in pyridine-like and graphite-like, as the predominant species.

  11. Thermal Properties of Carbon Nanotube–Copper Composites for Thermal Management Applications

    Directory of Open Access Journals (Sweden)

    Jia Chengchang

    2010-01-01

    Full Text Available Abstract Carbon nanotube–copper (CNT/Cu composites have been successfully synthesized by means of a novel particles-compositing process followed by spark plasma sintering (SPS technique. The thermal conductivity of the composites was measured by a laser flash technique and theoretical analyzed using an effective medium approach. The experimental results showed that the thermal conductivity unusually decreased after the incorporation of CNTs. Theoretical analyses revealed that the interfacial thermal resistance between the CNTs and the Cu matrix plays a crucial role in determining the thermal conductivity of bulk composites, and only small interfacial thermal resistance can induce a significant degradation in thermal conductivity for CNT/Cu composites. The influence of sintering condition on the thermal conductivity depended on the combined effects of multiple factors, i.e. porosity, CNTs distribution and CNT kinks or twists. The composites sintered at 600°C for 5 min under 50 MPa showed the maximum thermal conductivity. CNT/Cu composites are considered to be a promising material for thermal management applications.

  12. Inhibition of growth of human breast cancer cells in culture by neutron capture using liposomes containing 10B.

    Science.gov (United States)

    Yanagië, H; Kobayashi, H; Takeda, Y; Yoshizaki, I; Nonaka, Y; Naka, S; Nojiri, A; Shinnkawa, H; Furuya, Y; Niwa, H; Ariki, K; Yasuhara, H; Eriguchi, M

    2002-03-01

    Cell destruction in boron neutron capture therapy is effected by nuclear reaction between 10B and thermal neutrons with the release of alpha-particles (4He) and lithium-7 ions (7Li). 4He kills cells within 10 microm of the site of 4He generation, therefore it is theoretically possible to destroy tumour cells without affecting adjacent healthy tissue, given selective delivery of compounds containing 10B. Liposomes wore prepared by vortex dispersion of solutions containing 10B compounds with dried lipid films and the effects of those compounds on human breast cancer cells in culture were examined after thermal neutral irradiation. [3H]-TdR incorporation by MRKnu/nu-1 cells treated with 10B-containing liposomes showed 40% suppression compared with liposomes without 10B, at 2 x 1012 n/cm2 thermal neutron fluence. Inhibition of tumour cell growth with liposomes prepared with 100 mm 10B-compound was as significant as with those made with 500 ppm 10B solution. The concentration of 10B in liposomes was 76.5 +/- 3.4 microg/mL. Boronated liposomes can thus deliver sufficient 10B atoms to this line of breast cancer cells in culture to effect cytotoxicity and suppression of growth after thermal neutron irradiation.

  13. Application of aluminum slag incorporated in lightweigh aggregate

    International Nuclear Information System (INIS)

    Takahashi, Elisa Akiko Nakano

    2006-01-01

    The use of industrial waste materials as additives in the manufacture of ceramic product has been attracting a growing interest in the last few years and is becoming common practice. The main purpose of this work is to evaluate the possibility of incorporation of aluminum slag into clay materials. Expansive clays are obtained from a pyro plastic expansion, and are usually employed like lightweight aggregate in structural concrete as ornamental garden products. The characterization of the aluminum slag and clay materials was carried out by Xray fluorescence spectrometry, Xray diffraction, granulometry, differential thermal analysis, thermal gravimetry (DTA and TG) and scanning electron microscopy. The studied compositions contained 5, 10, 15 and 20 weight % of aluminum slag into clay mass. The linear expansion, mass variation, apparent specific mass and water absorption of all compositions were determined. Leaching and solubilization experiments were also performed. The main results show the viability of using up to 5 wt% aluminum slag for producing expansive clays with characteristics within the accepted standards. (author)

  14. Characterization of Active Packaging Films Made from Poly(Lactic Acid)/Poly(Trimethylene Carbonate) Incorporated with Oregano Essential Oil

    OpenAIRE

    Dong Liu; Hongli Li; Lin Jiang; Yongming Chuan; Minglong Yuan; Haiyun Chen

    2016-01-01

    Antimicromial and antioxidant bioactive films based on poly(lactic acid)/poly(trimenthylene carbonate) films incorporated with different concentrations of oregano essential oil (OEO) were prepared by solvent casting. The antimicrobial, antioxidant, physical, thermal, microstructural, and mechanical properties of the resulting films were examined. Scanning electron microscopy analysis revealed that the cross-section of films became rougher when OEO was incorporated into PLA/PTMC blends. Differ...

  15. Experiments on different materials (polyamide, stainless & galvanized steel) influencing geothermal CaCO3 scaling formation: Polymorphs & elemental incorporation

    Science.gov (United States)

    Wedenig, Michael; Dietzel, Martin; Boch, Ronny; Hippler, Dorothee

    2016-04-01

    Thermal water is increasingly used for heat and electric power production providing base-load capable renewable and virtually unlimited geothermal energy. Compared to other energy sources geothermal facilities are less harmful to the environment, i.e. chemically and visually. In order to promote the economic viability of these systems compared to other traditional and renewable energy sources, production hindering processes such as corrosion and scaling of components arising from the typically high salinity thermal waters have to be considered as important economic factors. In this context, using proper materials being in contact with the thermal water is crucial and a playground for further improvements. Aim of the study presented, are basic experiments and observations of scaling and corrosive effects from hydrothermal water interacting with different materials and surfaces (stainless steel, polyamide, galvanized steel) and in particular the nucleation and growth effects of these materials regarding the precipitation of solid carbonate phases. The incorporation of Mg, Sr and Ba cations into the carbonate scalings are investigated as environmental proxy. For this purpose, hydrothermal carbonate precipitating experiments were initialized by mixing NaHCO3 and Ca-Mg-Sr-Ba-chloride solutions at temperatures ranging from 40 to 80 °C in glass reactors hosting artificial substrates of the above mentioned materials. The experiments show a strong dependence of the precipitation behaviour of calcium carbonate polymorphs on the particular material being present. Stainless steel and polyamide seem to restrict aragonite formation, whereas galvanized steel supports aragonite nucleation. Vaterite formation is promoted by polyamide surfaces. Importantly, vaterite is more soluble (less stable) compared to the other anhydrous calcium carbonate polymorphs, i.e. vaterite can be more easily re-dissolved. Thus, the use of polyamide components might reduce the amount and durability of

  16. Growth initiation processes for GaAs and AlGaAs in CBE

    International Nuclear Information System (INIS)

    Hill, D.

    2002-01-01

    The aim of this work was to investigate the nature of the transient period found in reflectance anisotropy (RA) measurements of high III:V BEP ratio growth of gallium arsenide (GaAs) and aluminium gallium arsenide (AIGaAs) by chemical beam epitaxy (CBE). Growth at substrate temperatures between 510-610 deg C with arsine (AsH 3 ) thermally cracked to As 2 , triethylgallium (TEGa), trimethylgallium (TMGa), trimethylaminealane (TMAA) and diethylmethylaminealane (DEMAA) at high III:V BEP ratios reveals that the transition from 'pre-growth' to 'in-growth' reconstructions is not as straightforward as that for lower III:V BEP ratio growth. Instead of the reconstruction changing directly to the usual 2x4 'in-growth' reconstruction over 1-2 seconds it passes through several other transient reconstructions over a period of up to and greater than 60s, firstly the Ga rich 4x2 then several other 2x4 As-stable reconstructions. It has been shown that at the III:V BEP ratios and substrate temperatures used in this work growth is taking place in a transitional area of the phase diagram for 'in-growth' reconstructions. At higher III:V BEP ratio growth the transition is believed to be direct, from the 'pre-growth' reconstruction to a 4x2 Ga-rich 'in-growth' reconstruction. The surfaces grown with any of the precursors are initially saturated with Ga and then as the As coverage gradually increases the reconstructions change until enough As is present on the surface for usual 2x4 'in-growth' reconstruction to stabilise. However unlike for TMGa, GaAs growth with TEGa proceeds by a non-self limiting growth mode and TEGa rapidly dissociates. The result of this is that TEGa decomposes on top of other TEGa molecules, or their fragments and due to the high flux rate this leads to a 'stacking-up' of Ga on the surface. The presence of excess Ga provides a rapid increase of surface reflectance and then its subsequent decay as the excess Ga is incorporated by the increasing As content of the

  17. Mg Incorporation Efficiency in Pulsed MOCVD of N-Polar GaN:Mg

    Science.gov (United States)

    Marini, Jonathan; Mahaboob, Isra; Hogan, Kasey; Novak, Steve; Bell, L. D.; Shahedipour-Sandvik, F.

    2017-10-01

    We report on the effect of growth polarity and pulsed or δ -doped growth mode on impurity incorporation in metalorganic chemical vapor deposition-grown GaN. In Ga-polar orientation, up to 12× enhancement in Mg concentration for given Mg flow rate is observed, resulting in enhanced p-type conductivity for these samples. In contrast, this enhancement effect is greatly diminished for N-polar samples, falling off with increasing Mg flow and showing maximum enhancement of 2.7× at 30 nmol/min Mg flow. At higher Mg flow rates, Mg incorporation at normal levels did not correspond to p-type conductivity, which may be due to Mg incorporation at nonacceptor sites. Concentrations of C, O, and Si were also investigated, revealing dependence on Mg flow in N-polar pulsed samples. Carbon incorporation was found to decrease with increasing Mg flow, and oxygen incorporation was found to remain high across varied Mg flow. These effects combine to result in N-polar samples that are not p-type when using the pulsed growth mode.

  18. Thermalization of squeezed states

    International Nuclear Information System (INIS)

    Solomon, Allan I

    2005-01-01

    Starting with a thermal squeezed state defined as a conventional thermal state based on an appropriate Hamiltonian, we show how an important physical property, the signal-to-noise ratio, is degraded, and propose a simple model of thermalization (Kraus thermalization)

  19. Thermal Materials Drive Professional Apparel Line

    Science.gov (United States)

    2014-01-01

    Johnson Space Center investigated phase change materials (PCMs) to use in spacesuit gloves to help maintain comfortable temperatures. Years later, Boston-based Ministry of Supply developed a dress shirt that incorporated the NASA-derived PCMs, could wick away moisture, and also control odors and bacterial growth. Deemed Apollo, the shirt performs like active wear and is available in white and oxford blue.

  20. Genetic incorporation of recycled unnatural amino acids.

    Science.gov (United States)

    Ko, Wooseok; Kim, Sanggil; Jo, Kyubong; Lee, Hyun Soo

    2016-02-01

    The genetic incorporation of unnatural amino acids (UAAs) into proteins has been a useful tool for protein engineering. However, most UAAs are expensive, and the method requires a high concentration of UAAs, which has been a drawback of the technology, especially for large-scale applications. To address this problem, a method to recycle cultured UAAs was developed. The method is based on recycling a culture medium containing the UAA, in which some of essential nutrients were resupplemented after each culture cycle, and induction of protein expression was controlled with glucose. Under optimal conditions, five UAAs were recycled for up to seven rounds of expression without a decrease in expression level, cell density, or incorporation fidelity. This method can generally be applied to other UAAs; therefore, it is useful for reducing the cost of UAAs for genetic incorporation and helpful for expanding the use of the technology to industrial applications.

  1. Activity incorporation into zinc doped PWR oxides

    International Nuclear Information System (INIS)

    Maekelae, Kari

    1998-01-01

    Activity incorporation into the oxide layers of PWR primary circuit constructional materials has been studied in Halden since 1993. The first zinc injection tests showed that zinc addition resulted in thinner oxide layers on new metal surfaces and reduced further incorporation of activity into already existing oxides. These tests were continued to find out the effects of previous zinc additions on the pickup of activity onto the surface oxides which were subsequently exposed to zinc-free coolant. The results showed that previous zinc addition will continue to reduce the rate of Co-60 build-up on out-of-core surfaces in subsequent exposure to zinc-free coolants. However, the previous Zn free test was performed for a relatively short period of time and the water chemistry programme was continued to find out the long term effects for extended periods without zinc. The activity incorporation into the stainless steel oxides started to increase as soon as zinc dosing to the coolant was stopped. The Co-60 concentration was lowest on all of the coupons which were first oxidised in Zn containing primary coolant. After the zinc injection period the thickness of the oxides increased, but activity in the oxide films did not increase at the same rate. This could indicate that zinc in the oxide blocks the adsorption sites for Co-60 incorporation. The Co-60 incorporation rate into the oxides on Inconel 600 seemed to be linear whether the oxide was pre-oxidised with or without Zn. The results indicate that zinc can either replace or prevent cobalt transport in the oxides. The results show that for zinc injection to be effective it should be carried out continuously. Furthermore the actual mechanism by which Zn inhibits the activity incorporation into the oxides is still not clear. Therefore, additional work has to follow with specified materials to verify the conclusions drawn in this work. (author)

  2. Packaging properties and control of Listeria monocytogenes in bologna by cellulosic films incorporated with pediocin

    Directory of Open Access Journals (Sweden)

    Paula Judith Pérez Espitia

    2013-09-01

    Full Text Available Listeria monocytogenes is a foodborne pathogen, able to survive and proliferate at refrigeration temperatures. As a result, ready-to-eat meat products have been associated with major outbreaks. Producing meat products involves lethal preservation treatments, e.g. thermal treatments. Listeria contamination, however, may be introduced when products are sliced and packaged at retail businesses or delicatessens. In Brazil, sliced bologna is very popular at retail markets. After slicing, however, bologna has a short shelf-life. The aim of this work was to study the effects of pediocin incorporation on the load at break, water vapor permeability rate and structure, by microscopic analysis, of antimicrobial cellulosic packaging. The potential application of the developed packaging for the preservation of bologna and inhibition of Listeria biofilm formation was also studied. Cellulosic antimicrobial packaging films were produced with cellulose acetate and acetone. Pediocin (commercially available concentrate ALTA TM 2341 was incorporated at 30, 40 and 50 % w/w. The load at break of films was studied using the Universal Testing Machine (Instron at 10 °C and 25 °C. The water vapor permeability was determined by gravimetric method. A scanning electron microscope was used to study the developed packaging structure. Antimicrobial activity of films against Listeria innoucua and L. monocytogenes was tested both in vitro and in bologna samples. Results showed that values of load at break decreased with increasing concentrations of pediocin at 10 °C and 25 °C. Regarding water vapor permeability, only the control and 50 % pediocin films presented statistical difference, with the 50 % pediocin film being more permeable. In vitro tests showed antimicrobial activity against L. innocua. Cellulosic film with 50 % pediocin reduced L. monocytogenes growth on sliced bologna by 1.2 log cycles after 9 days and prevented biofilm formation on packaging and bologna

  3. Soil carbon and soil physical properties response to incorporating mulched forest slash

    Science.gov (United States)

    Felipe G. Sanchez; Emily A. Carter; John. F. Klepac

    2000-01-01

    A study was installed in the Lower Coastal Plain near Washington, NC, to test the hypothesis that incorporating organic matter in the form of comminuted forest slash would increase soil carbon and nutrient pools, and alter soil physical properties to favor pine growth. Two sites were selected, an organic and a mineral site, to compare the treatment effects on...

  4. Incorporating Duration Information in Activity Recognition

    Science.gov (United States)

    Chaurasia, Priyanka; Scotney, Bryan; McClean, Sally; Zhang, Shuai; Nugent, Chris

    Activity recognition has become a key issue in smart home environments. The problem involves learning high level activities from low level sensor data. Activity recognition can depend on several variables; one such variable is duration of engagement with sensorised items or duration of intervals between sensor activations that can provide useful information about personal behaviour. In this paper a probabilistic learning algorithm is proposed that incorporates episode, time and duration information to determine inhabitant identity and the activity being undertaken from low level sensor data. Our results verify that incorporating duration information consistently improves the accuracy.

  5. Therapy for incorporated radionuclides: scope and need

    International Nuclear Information System (INIS)

    Smith, V.H.

    1981-03-01

    In the United States the recent termination of funding for research on therapy for incorporated radionuclides has virtually halted progress on improved or new agents and procedures for removing radioactivity from the body. Research was eliminated, but is still needed on new removal agents, improved delivery system, in vitro test systems, and the toxicology of treatments. For many radionuclides, no adequate therapy exists. The relationship between radionuclide removal and reduction in cancer risk is still unanswered. Without proper research support, needed improvements in the treatment for incorporated radionuclides in the US are uncertain

  6. Infrared absorption study of hydrogen incorporation in thick nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Tang, C.J.; Neves, A.J.; Carmo, M.C.

    2005-01-01

    We present an infrared (IR) optical absorbance study of hydrogen incorporation in nanocrystalline diamond films. The thick nanocrystalline diamond films were synthesized by microwave plasma-assisted chemical vapor deposition and a high growth rate about 3.0 μm/h was achieved. The morphology, phase quality, and hydrogen incorporation were assessed by means of scanning electron microscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Large amount of hydrogen bonded to nanocrystalline diamond is clearly evidenced by the huge CH stretching band in the FTIR spectrum. The mechanism of hydrogen incorporation is discussed in light of the growth mechanism of nanocrystalline diamond. This suggests the potential of nanocrystalline diamond for IR electro-optical device applications

  7. Parameters study on the growth of GaAs nanowires on indium tin oxide by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan; Tang, Xiaohong, E-mail: exhtang@ntu.edu.sg, E-mail: wangk@sustc.edu.cn; Li, Xianqiang [OPTIMUS, Photonics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Wang, Kai, E-mail: exhtang@ntu.edu.sg, E-mail: wangk@sustc.edu.cn [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, 1088 Xueyuan Avenue, Shenzhen 518055 (China); Olivier, Aurelien [CINTRA UMI 3288, School of Electrical and Electronic Engineering, Nanyang Technological University, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, 637553 Singapore (Singapore)

    2016-03-07

    After successful demonstration of GaAs nanowire (NW) epitaxial growth on indium tin oxide (ITO) by metal organic chemical vapor deposition, we systematically investigate the effect of growth parameters' effect on the GaAs NW, including temperature, precursor molar flow rates, growth time, and Au catalyst size. 40 nm induced GaAs NWs are observed with zinc-blende structure. Based on vapor-liquid-solid mechanism, a kinetic model is used to deepen our understanding of the incorporation of growth species and the role of various growth parameters in tuning the GaAs NW growth rate. Thermally activated behavior has been investigated by variation of growth temperature. Activation energies of 40 nm Au catalyst induced NWs are calculated at different trimethylgallium (TMGa) molar flow rates about 65 kJ/mol. The GaAs NWs growth rates increase with TMGa molar flow rates whereas the growth rates are almost independent of growth time. Due to Gibbs-Thomson effect, the GaAs NW growth rates increase with Au nanoparticle size at different temperatures. Critical radius is calculated as 2.14 nm at the growth condition of 430 °C and 1.36 μmol/s TMGa flow rate. It is also proved experimentally that Au nanoparticle below the critical radius such as 2 nm cannot initiate the growth of NWs on ITO. This theoretical and experimental growth parameters investigation enables great controllability over GaAs NWs grown on transparent conductive substrate where the methodology can be expanded to other III–V material NWs and is critical for potential hybrid solar cell application.

  8. Cryogenic cooler thermal coupler

    International Nuclear Information System (INIS)

    Green, K.E.; Talbourdet, J.A.

    1984-01-01

    A thermal coupler assembly mounted to the coldfinger of a cryogenic cooler which provides improved thermal transfer between the coldfinger and the detector assembly mounted on the dewar endwell. The thermal coupler design comprises a stud and spring-loaded cap mounted on the coldfinger assembly. Thermal transfer is made primarily through the air space between the cap and coldwell walls along the radial surfaces. The cap is spring loaded to provide thermal contact between the cap and endwell end surfaces

  9. Thermal modelling of a torpedo-car

    International Nuclear Information System (INIS)

    Verdeja-Gonzalez, L. F.; Barbes-Fernandez, M. F.; Gonzalez-Ojeda, R.; Castillo, G. A.; Colas, R.

    2005-01-01

    A two-dimensional finite element model for computing the temperature distribution in a torpedo-car holding pig iron is described in this work. The model determines the temperature gradients in steady and transient conditions whiting the different parts that constitute the systems, which are considered to be the steel casing, refractory lining, liquid iron, slag and air. Heat transfer within the main fluid phases (iron and air) is computed assuming an apparent thermal conductivity term incorporating the contribution from convention and radiation, and it is affected by the dimensions of the vessel. Thermal gradients within the constituents of the torpedo-car are used to calculate heat losses during operation. It was found that the model required the incorporate of a region within the iron-refractory interface to reproduce thermographic data recorded during operation; the heat transfer coefficient of this interface was found to be equal to 30 Wm''-2K''-1. (Author) 11 refs

  10. Innovative Approaches to Creating Opportunities and Incorporating ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Given widespread population growth in Africa and the inadequacy of the formal sector in generating employment opportunities for youth, there is a widespread fear that gains in poverty ... From this evidence, researchers will determine the sources of growth and the ... University of Nairobi ... Careers · Contact Us · Site map.

  11. The initial growth stage in PVT growth of aluminum nitride

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, P.; Epelbaum, B.M.; Bickermann, M.; Winnacker, A. [Department of Materials Science 6, University of Erlangen-Nuernberg, Martensstr. 7, 91058 Erlangen (Germany); Nagata, S. [Functional Materials Development Center, Research Laboratories, JFE Mineral Company, Ltd., 1, Niihama-cho, Chuou-ku, Chiba-shi, Chiba 260-0826 (Japan)

    2006-06-15

    The main issue in homoepitaxial growth of aluminum nitride (AlN) on native seed substrates is the formation of an aluminum oxynitride (AlON) layer at temperatures between 1850-1950 C leading to polycrystalline growth. On the contrary, heteroepitaxial growth of AlN on silicon carbide (SiC) is relatively easy to achieve due to natural formation of a thin molten layer of (Al{sub 2}OC{sub x}) on the seed surface and consequent growth of AlN via the molten buffer layer. Optimization of the seeding process can be achieved by use of ultra-pure starting material. Another critical issue of AlN growth on SiC is cracking of the grown layer upon cooling as a result of different thermal expansion coefficients. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)