WorldWideScience

Sample records for growth crystal field

  1. Crystal growth under external electric fields

    International Nuclear Information System (INIS)

    Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo

    2014-01-01

    This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal

  2. Crystal growth under external electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2014-10-06

    This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal.

  3. Phase-field crystal simulation facet and branch crystal growth

    Science.gov (United States)

    Chen, Zhi; Wang, Zhaoyang; Gu, Xinrui; Chen, Yufei; Hao, Limei; de Wit, Jos; Jin, Kexin

    2018-05-01

    Phase-field crystal model with one mode is introduced to describe morphological transition. The relationship between growth morphology and smooth density distribution was investigated. The results indicate that the pattern selection of dendrite growth is caused by the competition between interface energy anisotropy and interface kinetic anisotropy based on the 2D phase diagram. When the calculation time increases, the crystal grows to secondary dendrite at the dimensionless undercooling equal to - 0.4. Moreover, when noise is introduced in the growth progress, the symmetry is broken in the growth mode, and there becomes irregular fractal-like growth morphology. Furthermore, the single crystal shape develops into polycrystalline when the noise amplitude is large enough. When the dimensionless undercooling is less than - 0.3, the noise has a significant effect on the growth shape. In addition, the growth velocity of crystal near to liquid phase line is slow, while the shape far away from the liquid adapts to fast growth. Based on the simulation results, the method was proved to be effective, and it can easily obtain different crystal shapes by choosing the different points in 2D phase diagram.

  4. Phase field simulations of ice crystal growth in sugar solutions

    NARCIS (Netherlands)

    Sman, Van Der R.G.M.

    2016-01-01

    We present the first model ever, that describes explicitly ice crystal growth in a sugar solution during freezing. This 2-D model uses the phase field method, supplemented with realistic, and predictive theories on the thermodynamics and (diffusion) kinetics of this food system. We have to make

  5. Magnetic Field Applications in Semiconductor Crystal Growth and Metallurgy

    Science.gov (United States)

    Mazuruk, Konstantin; Ramachandran, Narayanan; Grugel, Richard; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The Traveling Magnetic Field (TMF) technique, recently proposed to control meridional flow in electrically conducting melts, is reviewed. In particular, the natural convection damping capability of this technique has been numerically demonstrated with the implication of significantly improving crystal quality. Advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, are discussed. Finally, results of experiments with mixing metallic alloys in long ampoules using TMF is presented

  6. Modelling of thermal field and point defect dynamics during silicon single crystal growth using CZ technique

    Science.gov (United States)

    Sabanskis, A.; Virbulis, J.

    2018-05-01

    Mathematical modelling is employed to numerically analyse the dynamics of the Czochralski (CZ) silicon single crystal growth. The model is axisymmetric, its thermal part describes heat transfer by conduction and thermal radiation, and allows to predict the time-dependent shape of the crystal-melt interface. Besides the thermal field, the point defect dynamics is modelled using the finite element method. The considered process consists of cone growth and cylindrical phases, including a short period of a reduced crystal pull rate, and a power jump to avoid large diameter changes. The influence of the thermal stresses on the point defects is also investigated.

  7. Numerical investigation of magnetic field effect on pressure in cylindrical and hemispherical silicon CZ crystal growth

    International Nuclear Information System (INIS)

    Mokhtari, F.; Bouabdallah, A.; Merah, A.; Oualli, H.

    2012-01-01

    The effect of axial magnetic field of different intensities on pressure in silicon Czochralski crystal growth is investigated in cylindrical and hemispherical geometries with rotating crystal and crucible and thermocapillary convection. As one important thermodynamic variable, the pressure is found to be more sensitive than temperature to magnetic field with strong dependence upon the vorticity field. The pressure at the triple point is proposed as a convenient parameter to control the homogeneity of the grown crystal. With a gradual increase of the magnetic field intensity the convection effect can be reduced without thermal fluctuations in the silicon melt. An evaluation of the magnetic interaction parameter critical value corresponding to flow, pressure and temperature homogenization leads to the important result that a relatively low axial magnetic field is required for the spherical system comparatively to the cylindrical one. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Numerical investigation of magnetic field effect on pressure in cylindrical and hemispherical silicon CZ crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, F. [Universite Mouloud Mammeri de Tizi Ouzou (Algeria); LTSE Laboratory, University of Science and Technology. BP 32 Elalia, Babezzouar, Algiers (Algeria); Bouabdallah, A. [LTSE Laboratory, University of Science and Technology. BP 32 Elalia, Babezzouar, Algiers (Algeria); Merah, A. [LTSE Laboratory, University of Science and Technology. BP 32 Elalia, Babezzouar, Algiers (Algeria); M' hamed Bougara University, Boumerdes (Algeria); Oualli, H. [EMP, Bordj ElBahri, Algiers (Algeria)

    2012-12-15

    The effect of axial magnetic field of different intensities on pressure in silicon Czochralski crystal growth is investigated in cylindrical and hemispherical geometries with rotating crystal and crucible and thermocapillary convection. As one important thermodynamic variable, the pressure is found to be more sensitive than temperature to magnetic field with strong dependence upon the vorticity field. The pressure at the triple point is proposed as a convenient parameter to control the homogeneity of the grown crystal. With a gradual increase of the magnetic field intensity the convection effect can be reduced without thermal fluctuations in the silicon melt. An evaluation of the magnetic interaction parameter critical value corresponding to flow, pressure and temperature homogenization leads to the important result that a relatively low axial magnetic field is required for the spherical system comparatively to the cylindrical one. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Self-Aligned Growth of Organic Semiconductor Single Crystals by Electric Field.

    Science.gov (United States)

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2016-01-19

    We proposed a novel but facile method for growing organic semiconductor single-crystals via solvent vapor annealing (SVA) under electric field. In the conventional SVA growth process, nuclei of crystals appeared anywhere on the substrate and their crystallographic axes were randomly distributed. We applied electric field during the SVA growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) on the SiO2/Si substrate on which a pair of electrodes had been deposited beforehand. Real-time observation of the SVA process revealed that rodlike single crystals grew with their long axes parallel to the electric field and bridged the prepatterned electrodes. As a result, C8-BTBT crystals automatically formed a field effect transistor (FET) structure and the mobility reached 1.9 cm(2)/(V s). Electric-field-assisted SVA proved a promising method for constructing high-mobility single-crystal FETs at the desired position by a low-cost solution process.

  10. Crystal growth of pure substances: Phase-field simulations in comparison with analytical and experimental results

    Science.gov (United States)

    Nestler, B.; Danilov, D.; Galenko, P.

    2005-07-01

    A phase-field model for non-isothermal solidification in multicomponent systems [SIAM J. Appl. Math. 64 (3) (2004) 775-799] consistent with the formalism of classic irreversible thermodynamics is used for numerical simulations of crystal growth in a pure material. The relation of this approach to the phase-field model by Bragard et al. [Interface Science 10 (2-3) (2002) 121-136] is discussed. 2D and 3D simulations of dendritic structures are compared with the analytical predictions of the Brener theory [Journal of Crystal Growth 99 (1990) 165-170] and with recent experimental measurements of solidification in pure nickel [Proceedings of the TMS Annual Meeting, March 14-18, 2004, pp. 277-288; European Physical Journal B, submitted for publication]. 3D morphology transitions are obtained for variations in surface energy and kinetic anisotropies at different undercoolings. In computations, we investigate the convergence behaviour of a standard phase-field model and of its thin interface extension at different undercoolings and at different ratios between the diffuse interface thickness and the atomistic capillary length. The influence of the grid anisotropy is accurately analyzed for a finite difference method and for an adaptive finite element method in comparison.

  11. Melt Motion Due to Peltier Marking During Bridgman Crystal Growth with an Axial Magnetic Field

    Science.gov (United States)

    Sellers, C. C.; Walker, John S.; Szofran, Frank R.; Motakef, Shariar

    2000-01-01

    This paper treats a liquid-metal flow inside an electrically insulating cylinder with electrically conducting solids above and below the liquid region. There is a uniform axial magnetic field, and there is an electric current through the liquid and both solids. Since the lower liquid-solid interface is concave into the solid and since the liquid is a better electrical conductor than the adjacent solid, the electric current is locally concentrated near the centerline. The return to a uniform current distribution involves a radial electric current which interacts with the axial magnetic field to drive an azimuthal flow. The axial variation of the centrifugal force due to the azimuthal velocity drives a meridional circulation with radial and axial velocities. This problem models the effects of Peltier marking during the vertical Bridgman growth of semiconductor crystals with an externally applied magnetic field, where the meridional circulation due to the Peltier Current may produce important mixing in the molten semiconductor.

  12. Orientation selection process during the early stage of cubic dendrite growth: A phase-field crystal study

    International Nuclear Information System (INIS)

    Tang Sai; Wang Zhijun; Guo Yaolin; Wang Jincheng; Yu Yanmei; Zhou Yaohe

    2012-01-01

    Using the phase-field crystal model, we investigate the orientation selection of the cubic dendrite growth at the atomic scale. Our simulation results reproduce how a face-centered cubic (fcc) octahedral nucleus and a body-centered cubic (bcc) truncated-rhombic dodecahedral nucleus choose the preferred growth direction and then evolve into the dendrite pattern. The interface energy anisotropy inherent in the fcc crystal structure leads to the fastest growth velocity in the 〈1 0 0〉 directions. New { 1 1 1} atomic layers prefer to nucleate at positions near the tips of the fcc octahedron, which leads to the directed growth of the fcc dendrite tips in the 〈1 0 0〉 directions. A similar orientation selection process is also found during the early stage of bcc dendrite growth. The orientation selection regime obtained by phase-field crystal simulation is helpful for understanding the orientation selection processes of real dendrite growth.

  13. Growth of dopamine crystals

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Vidya, E-mail: vidya.patil@ruparel.edu; Patki, Mugdha, E-mail: mugdha.patki@ruparel.edu [D. G. Ruparel College, Senapati Bapat Marg, Mahim, Mumbai – 400 016 (India)

    2016-05-06

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  14. Molecular mechanisms of crystal growth

    International Nuclear Information System (INIS)

    Pina, C. M.

    2000-01-01

    In this paper I present an example of the research that the Mineral Surface Group of the Munster University is conducting in the field of Crystal Growth. Atomic Force Microscopy (Am) in situ observations of different barite (BaSO4) faces growing from aqueous solutions, in combination with computer simulations of the surface attachment of growth units allows us to test crystal growth models. Our results demonstrate the strong structural control that a crystal can exert on its own growth, revealing also the limitation of the classical crystal growth theories (two dimensional nucleation and spiral growth models) in providing a complete explanation for the growth behaviour at a molecular scale. (Author) 6 refs

  15. A thermal model for czochralski silicon crystal growth with an axial magnetic field

    Science.gov (United States)

    Hjellming, L. N.

    1990-07-01

    This paper presents a thermal model for molten silicon in a Czochralski crystal puller system with an applied uniform axial magnetic field. The melt depth is treated as continually decreasing, which affects the thermal environment of the melt and crystal. The radiative heat loss and the input heat flux are treated as functions of time, with a constraint placed on the heat lost to the crystal from the melt. As the melt motion reaches a steady state rapidly, the temperature and flow fields are treated as instantaneously steady at each melt depth. The heat transport is a mixture of conduction and convection, and by considering the crystal and crucible to be rotating with the same angular velocity, the flows driven by buoyancy and thermocapillarity are isolated and provide the convective heat transport in the melt for the range of magnetic field strengths 0.2 ≤ B ≤ 1.0T.

  16. Crystal growth and doping

    International Nuclear Information System (INIS)

    Paorici, C.

    1980-01-01

    Section 1 contains a self-consistent review of the basic growth features. After a short introduction concerning the driving force acting in a crystallization process, three main topics are broadly discussed: (i) interface kinetics; (ii) transport kinetics, and (iii) growth stability conditions. On point (i), after definition of the nature of interface, using Temkin's model, the growth mechanisms predicted by Burton, Cabrera and Frank (BCF) and bidimensional nucleation theories are fully developed. On points (ii) and (iii), the differential equations of the constitutional (concentration) and thermal fields are presented and discussed in terms of relevant approximations, suitable boundary conditions and limit values expected in order to have growth stability. Section 2 reports various experimental procedures for growing bulk crystals from the melt, from solutions and from the vapour phase. The basic concepts of Section 1 are amply employed for a critical discussion of possibilities, advantages and drawbacks of the methods described. Along the same lines, in Section 3 the principal epitaxial deposition procedures are highlighted. Section 4 contains a brief account of doping and of stoichiometry-defect control procedures. There is a long, carefully chosen list of bibliographical references. (author)

  17. Crystal Growth Technology

    Science.gov (United States)

    Scheel, Hans J.; Fukuda, Tsuguo

    2004-06-01

    This volume deals with the technologies of crystal fabrication, of crystal machining, and of epilayer production and is the first book on industrial and scientific aspects of crystal and layer production. The major industrial crystals are treated: Si, GaAs, GaP, InP, CdTe, sapphire, oxide and halide scintillator crystals, crystals for optical, piezoelectric and microwave applications and more. Contains 29 contributions from leading crystal technologists covering the following topics: General aspects of crystal growth technology Silicon Compound semiconductors Oxides and halides Crystal machining Epitaxy and layer deposition Scientific and technological problems of production and machining of industrial crystals are discussed by top experts, most of them from the major growth industries and crystal growth centers. In addition, it will be useful for the users of crystals, for teachers and graduate students in materials sciences, in electronic and other functional materials, chemical and metallurgical engineering, micro-and optoelectronics including nanotechnology, mechanical engineering and precision-machining, microtechnology, and in solid-state sciences.

  18. Three-dimensional study of the pressure field and advantages of hemispherical crucible in silicon Czochralski crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, F. [LTSE Laboratory, University of Science and Technol., USTHB BP 32 Elalia, Babezzouar, Algiers (Algeria); University Mouloud Mammeri, Tizi Ouzou (Algeria); Merah, A. [University M' hammed Bougara, Boumerdes (Algeria); Zizi, M. [LTSE Laboratory, University of Science and Technol., USTHB BP 32 Elalia, Babezzouar, Algiers (Algeria); Hanchi, S. [UER Mecanique/ E.M.P B.P 17 Bordj El Bahri, Algiers (Algeria); Alemany, A. [Laboratoire EPM, CNRS, Grenoble (France); Bouabdallah, A.

    2010-06-15

    The effects of several growth parameters in cylindrical and spherical Czochralski crystal process are studied numerically and particularly, we focus on the influence of the pressure field. We present a set of three-dimensional computational simulations using the finite volume package Fluent in two different geometries, a new geometry as cylindro-spherical and the traditional configuration as cylindro-cylindrical. We found that the evolution of pressure which is has not been studied before; this important function is strongly related to the vorticity in the bulk flow, the free surface and the growth interface. It seems that the pressure is more sensitive to the breaking of symmetry than the other properties that characterize the crystal growth as temperature or velocity fields. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Numerical modeling perspectives on zircon crystallization and magma reservoir growth at the Laguna del Maule volcanic field, central Chile

    Science.gov (United States)

    Andersen, N. L.; Dufek, J.; Singer, B. S.

    2017-12-01

    Magma reservoirs in the middle to upper crust are though to accumulate incrementally over 104 -105 years. Coupled crystallization ages and compositions of zircon are a potentially powerful tracer of reservoir growth and magma evolution. However, complex age distributions and disequilibrium trace element partitioning complicate the interpretation of the zircon record in terms of magmatic processes. In order to make quantitative predictions of the effects of magmatic processes that contribute reservoir growth and evolution—such as cooling and crystallization, magma recharge and mixing, and rejuvenation and remelting of cumulate-rich reservoir margins—we develop a model of zircon saturation and growth within a numerical framework of coupled thermal transfer, phase equilibrium, and magma dynamics. We apply this model to the Laguna del Maule volcanic field (LdM), located in central Chile. LdM has erupted at least 40 km3 of rhyolite from 36 vents distributed within a 250 km2 lake basin. Ongoing unrest demonstrates the large, silicic magma system beneath LdM remains active to this day. Zircon from rhyolite erupted between c. 23 and 1.8 ka produce a continuous distribution of 230Th-238U ages ranging from eruption to 40 ka, as well as less common crystal domains up to 165 ka and rare xenocrysts. Zircon trace element compositions fingerprint compositionally distinct reservoirs that grew within the larger magma system. Despite the dominantly continuous distributions of ages, many crystals are characterized by volumetrically substantial, trace element enriched domains consistent with rapid crystal growth. We utilize numerical simulations to assess the magmatic conditions required to catalyze these "blooms" of crystallization and the magma dynamics that contributed to the assembly of the LdM magma system.

  20. Crystal Growth of High-Quality Protein Crystals under the Presence of an Alternant Electric Field in Pulse-Wave Mode, and a Strong Magnetic Field with Radio Frequency Pulses Characterized by X-ray Diffraction

    Directory of Open Access Journals (Sweden)

    Adela Rodríguez-Romero

    2017-06-01

    Full Text Available The first part of this research was devoted to investigating the effect of alternate current (AC using four different types of wave modes (pulse-wave at 2 Hz on the crystal growth of lysozyme in solution. The best results, in terms of size and crystal quality, were obtained when protein crystals were grown under the influence of electric fields in a very specific wave mode (“breathing” wave, giving the highest resolution up to 1.34 Å in X-ray diffraction analysis compared with controls and with those crystals grown in gel. In the second part, we evaluated the effect of a strong magnetic field of 16.5 Tesla combined with radiofrequency pulses of 0.43 μs on the crystal growth in gels of tetragonal hen egg white (HEW lysozyme. The lysozyme crystals grown, both in solution applying breathing-wave and in gel under the influence of this strong magnetic field with pulses of radio frequencies, produced the larger-in-size crystals and the highest resolution structures. Data processing and refinement statistics are very good in terms of the resolution, mosaicity and Wilson B factor obtained for each crystal. Besides, electron density maps show well-defined and distinctly separated atoms at several selected tryptophan residues for the crystal grown using the “breathing wave pulses”.

  1. Hydrothermal Growth of Polyscale Crystals

    Science.gov (United States)

    Byrappa, Kullaiah

    In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.

  2. The influence of magnetic fields on protein crystal growth and quality; Zum Einfluss magnetischer Felder auf das Wachstum und die Qualitaet von Proteinkristallen

    Energy Technology Data Exchange (ETDEWEB)

    Meents, Alke

    2005-08-01

    Magnetic fields can affect protein crystal growth in several ways. In homogeneous magnetic fields molecules and crystallites line up themselves along the magnetic field direction due to their magnetic anisotropy. Inhomogeneous magnetic fields exert a force on diamagnetic and paramagnetic compounds towards regions of lower or higher field strength. This effect can be used to create a microgravity-like environment for diamagnetic proteins and an environment comparable to hypergravity for paramagnetic proteins. Crystallization in homogeneous magnetic fields and a microgravity-like environment are reported to have a positive effect on crystal quality. The aim of this work was to systematically investigate the effect of protein crystallization in magnetic fields on the crystal quality by comparing a large number of crystals grown under identical conditions with- and without magnetic fields. Crystal quality was determined by means of high resolution rocking-curve measurements. Furthermore in certain cases complete diffraction datasets were collected. Any possible influence of magnetic fields on the mosaicity and the quality of the diffraction data was evaluated statistically by applying Wilcoxon-Ranksum tests. To investigate the effect of protein crystallization in homogeneous magnetic fields the diamagnetic proteins Thaumatin, Trypsin, and Lysozyme and paramagnetic Myoglobin were crystallized in magnetic fields of 5 T, 8.8 T, and 15.8 T. The analysis of crystal mosaicity and quality of the diffraction data of the diamagnetic proteins did not reveal a significant influence on the crystal quality. In contrast the crystals of paramagnetic Myoglobin grew up to 14 times larger than the ones in the control experiment. In addition they had a significant lower mosaicity, and diffracted to a higher resolution than ever reported before. Special pole pieces for an existing magnet were designed and build to grow protein crystals in an inhomogeneous magnetic field The experimental

  3. In-situ temperature field measurements and direct observation of crystal/melt at vertical Bridgman growth of lead chloride under stationary and dynamic arrangement

    Czech Academy of Sciences Publication Activity Database

    Král, Robert; Nitsch, Karel

    2015-01-01

    Roč. 427, Oct (2015), 7-15 ISSN 0022-0248 R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : single crystal growth * temperature field measurements * crystal/melt interface * lead chloride * vertical Bridgman method Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.462, year: 2015

  4. Hopper Growth of Salt Crystals.

    Science.gov (United States)

    Desarnaud, Julie; Derluyn, Hannelore; Carmeliet, Jan; Bonn, Daniel; Shahidzadeh, Noushine

    2018-06-07

    The growth of hopper crystals is observed for many substances, but the mechanism of their formation remains ill understood. Here we investigate their growth by performing evaporation experiments on small volumes of salt solutions. We show that sodium chloride crystals that grow very fast from a highly supersaturated solution form a peculiar form of hopper crystal consisting of a series of connected miniature versions of the original cubic crystal. The transition between cubic and such hopper growth happens at a well-defined supersaturation where the growth rate of the cubic crystal reaches a maximum (∼6.5 ± 1.8 μm/s). Above this threshold, the growth rate varies as the third power of supersaturation, showing that a new mechanism, controlled by the maximum speed of surface integration of new molecules, induces the hopper growth of cubic crystals in cascade.

  5. Principles of crystallization, and methods of single crystal growth

    International Nuclear Information System (INIS)

    Chacra, T.

    2010-01-01

    Most of single crystals (monocrystals), have distinguished optical, electrical, or magnetic properties, which make from single crystals, key elements in most of technical modern devices, as they may be used as lenses, Prisms, or grating sin optical devises, or Filters in X-Ray and spectrographic devices, or conductors and semiconductors in electronic, and computer industries. Furthermore, Single crystals are used in transducer devices. Moreover, they are indispensable elements in Laser and Maser emission technology.Crystal Growth Technology (CGT), has started, and developed in the international Universities and scientific institutions, aiming at some of single crystals, which may have significant properties and industrial applications, that can attract the attention of international crystal growth centers, to adopt the industrial production and marketing of such crystals. Unfortunately, Arab universities generally, and Syrian universities specifically, do not give even the minimum interest, to this field of Science.The purpose of this work is to attract the attention of Crystallographers, Physicists and Chemists in the Arab universities and research centers to the importance of crystal growth, and to work on, in the first stage to establish simple, uncomplicated laboratories for the growth of single crystal. Such laboratories can be supplied with equipment, which are partly available or can be manufactured in the local market. Many references (Articles, Papers, Diagrams, etc..) has been studied, to conclude the most important theoretical principles of Phase transitions,especially of crystallization. The conclusions of this study, are summarized in three Principles; Thermodynamic-, Morphologic-, and Kinetic-Principles. The study is completed by a brief description of the main single crystal growth methods with sketches, of equipment used in each method, which can be considered as primary designs for the equipment, of a new crystal growth laboratory. (author)

  6. Springer Handbook of Crystal Growth

    CERN Document Server

    Dhanaraj, Govindhan; Prasad, Vishwanath; Dudley, Michael

    2010-01-01

    Over the years, many successful attempts have been made to describe the art and science of crystal growth. Most modern advances in semiconductor and optical devices would not have been possible without the development of many elemental, binary, ternary, and other compound crystals of varying properties and large sizes. The objective of the Springer Handbook of Crystal Growth is to present state-of-the-art knowledge of both bulk and thin-film crystal growth. The goal is to make readers understand the basics of the commonly employed growth processes, materials produced, and defects generated. Almost 100 leading scientists, researchers, and engineers from 22 different countries from academia and industry have been selected to write chapters on the topics of their expertise. They have written 52 chapters on the fundamentals of bulk crystal growth from the melt, solution, and vapor, epitaxial growth, modeling of growth processes and defects, techniques of defect characterization as well as some contemporary specia...

  7. Protein Crystal Growth

    Science.gov (United States)

    2003-01-01

    In order to rapidly and efficiently grow crystals, tools were needed to automatically identify and analyze the growing process of protein crystals. To meet this need, Diversified Scientific, Inc. (DSI), with the support of a Small Business Innovation Research (SBIR) contract from NASA s Marshall Space Flight Center, developed CrystalScore(trademark), the first automated image acquisition, analysis, and archiving system designed specifically for the macromolecular crystal growing community. It offers automated hardware control, image and data archiving, image processing, a searchable database, and surface plotting of experimental data. CrystalScore is currently being used by numerous pharmaceutical companies and academic and nonprofit research centers. DSI, located in Birmingham, Alabama, was awarded the patent Method for acquiring, storing, and analyzing crystal images on March 4, 2003. Another DSI product made possible by Marshall SBIR funding is VaporPro(trademark), a unique, comprehensive system that allows for the automated control of vapor diffusion for crystallization experiments.

  8. Student Augmentation for Crystal Growth Research

    National Research Council Canada - National Science Library

    Prasad, V

    1999-01-01

    ... intelligent modeling, design and control of crystal growth processes. One doctoral student worked on integrating the radiation heat transfer model into MASTRAPP, the crystal growth model developed by the Consortium for Crystal Growth Research...

  9. Numerical simulation of the oxygen concentration distribution in silicon melt for different crystal lengths during Czochralski growth with a transverse magnetic field

    Science.gov (United States)

    Chen, Jyh-Chen; Chiang, Pei-Yi; Nguyen, Thi Hoai Thu; Hu, Chieh; Chen, Chun-Hung; Liu, Chien-Cheng

    2016-10-01

    A three-dimensional simulation model is used to study the oxygen concentration distribution in silicon crystal during the Czochralski growth process under a transverse uniform magnetic field. The flow, temperature, and oxygen concentration distributions inside the furnace are calculated for different crystal lengths. There is significant variation in the flow structure in the melt with the growth length. The results show that in the initial stages, there is a decrease in the oxygen concentration at the crystal-melt interface as the length of the growing crystal increases. As the crystal lengthens further, a minimum value is reached after which the oxygen concentration increases continuously. This trend is consistent with that shown in the experimental results. The variation of the oxygen concentration with the growth length is strongly related to the depth of the melt in the crucible and the flow structure inside the melt. Better uniformity of the axial oxygen concentration can be achieved by proper adjustment of the crucible rotation rate during the growth process.

  10. Effect of rotating magnetic field on thermocapillary flow stability and the FZ crystal growth on the ground and in space

    Science.gov (United States)

    Feonychev, A. I.

    It is well known that numerous experiments on crystal growth by the Bridgman method in space had met with only limited success. Because of this, only floating zone method is promising at present. However, realization of this method demands solution of some problems, in particular reduction of dopant micro- and macrosegregation. Rotating magnetic field is efficient method for control of flow in electrically conducting fluid and transfer processes. Investigation of rotating magnetic field had initiated in RIAME MAI in 1994 /3/. Results of the last investigations had been presented in /4/. Mathematical model of flow generated by rotating magnetic field and computer program were verified by comparison with experiment in area of developed oscillatory flow. Nonlinear analysis of flow stability under combination of thermocapillary convection and secondary flow generated by rotating magnetic field shows that boundary of transition from laminar to oscillatory flow is nonmonotone function in the plane of Marangoni number (Ma) - combined parameter Reω Ha2 (Ha is Hartman number, Reω is dimensionless velocity of magnetic field rotation). These data give additional knowledge of mechanism of onset of oscillations. In this case, there is reason to believe that the cause is Eckman's viscous stresses in rotating fluid on solid end-walls. It was shown that there is a possibility to increase stability of thermocapillary convection and in doing so to remove the main cause of dopant microsegregation. In doing so, if parameters of rotating magnetic field had been incorrectly chosen the dangerous pulsating oscillations are to develop. Radial macrosegregation of dopant can result from correct choosing of parameters of rotating magnetic field. As example, optimization of rotating magnetic field had been carried out for Ge(Ga) under three values of Marangoni number in weightlessness conditions. In the case when rotating magnetic field is used in terrestrial conditions, under combination of

  11. A continuous Czochralski silicon crystal growth system

    Science.gov (United States)

    Wang, C.; Zhang, H.; Wang, T. H.; Ciszek, T. F.

    2003-03-01

    Demand for large silicon wafers has driven the growth of silicon crystals from 200 to 300 mm in diameter. With the increasing silicon ingot sizes, melt volume has grown dramatically. Melt flow becomes more turbulent as melt height and volume increase. To suppress turbulent flow in a large silicon melt, a new Czochralski (CZ) growth furnace has been designed that has a shallow melt. In this new design, a crucible consists of a shallow growth compartment in the center and a deep feeding compartment around the periphery. Two compartments are connected with a narrow annular channel. A long crystal may be continuously grown by feeding silicon pellets into the dedicated feeding compartment. We use our numerical model to simulate temperature distribution and velocity field in a conventional 200-mm CZ crystal growth system and also in the new shallow crucible CZ system. By comparison, advantages and disadvantages of the proposed system are observed, operating conditions are determined, and the new system is improved.

  12. Growth of emerald single crystals

    International Nuclear Information System (INIS)

    Bukin, G.V.; Godovikov, A.A.; Klyakin, V.A.; Sobolev, V.S.

    1986-01-01

    In addition to its use for jewelry, emerald can also be used in low-noise microwave amplifiers. The authors discuss flux crystallization of emerald and note that when emerald is grown by this method, it is desirable to use solvents which dissolve emerald with minimum deviations from congruence but at the same time with sufficient high efficiency. Emerald synthesis and crystal growth from slowly cooled solutions is discussed as another possibility. The techniques are examined. Vapor synthesis and growht of beryl crystals re reviewed and the authors experimentally study the seeded CVD crystallization of beryl from BeO, Al 2 O 3 and SiO 2 oxides, by using complex compounds as carrier agents. The color of crystals of emerald and other varieties of beryl is detemined by slelective light absorption in teh visible part of the spectrum and depends on the density and structural positions of chromphore ions: chromium, iron, vanadium, nickel, manganese and cobalt

  13. Crystal growth and computational materials science

    International Nuclear Information System (INIS)

    Jayakumar, S.; Ravindran, P.; Arun Kumar, R.; Sudarshan, C.

    2012-01-01

    The proceedings of the international conference on advanced materials discusses the advances being made in the area of single crystals, their preparation and device development from these crystals and details of the progress that is taking place in the computational field relating to materials science. Computational materials science makes use of advanced simulation tools and computer interfaces to develop a virtual platform which can provide a model for real-time experiments. This book includes selected papers in topics of crystal growth and computational materials science. We are confident that the new concepts and results presented will stimulate and enhance progress of research on crystal growth and computational materials science. Papers relevant to INIS are indexed separately

  14. Internal bias field in glycine phosphite crystal

    International Nuclear Information System (INIS)

    Nayeem, Jannatul; Wakabayashi, Hiroshi; Kikuta, Toshio; Yamazaki, Toshinari; Nakatani, Noriyuki

    2003-01-01

    The distributions of internal bias field E b have been investigated under the carbon-powder pattern and mercury electrode techniques in GPI ferroelectric crystals. Polarity and intensity of E b are distributed depending on crystal growth sectors. Crystal symmetry 2/m is observed obviously in the distribution of E b . The polarities of E b are head-to-head manner in those growth sectors where a surface is growing parallel to the crystallographic a-axis and tail-to-tail manner in the other growth sectors in the crystal. The maximum intensity of E b is found in the sectors (010) where the growing surfaces are perpendicular to the ferroelectric b-axis

  15. Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model

    International Nuclear Information System (INIS)

    Yang Tao; Chen Zheng; Zhang Jing; Wang Yongxin; Lu Yanli

    2016-01-01

    By employing the phase-field-crystal models, the atomic crystallization process of hexagonal and square crystals is investigated with the emphasis on the growth mechanism and morphological change. A unified regime describing the crystallization behavior of both crystals is obtained with the thermodynamic driving force varying. By increasing the driving force, both crystals (in the steady-state) transform from a faceted polygon to an apex-bulged polygon, and then into a symmetric dendrite. For the faceted polygon, the interface advances by a layer-by-layer (LL) mode while for the apex-bulged polygonal and the dendritic crystals, it first adopts the LL mode and then transits into the multi-layer (ML) mode in the later stage. In particular, a shift of the nucleation sites from the face center to the area around the crystal tips is detected in the early growth stage of both crystals and is rationalized in terms of the relation between the crystal size and the driving force distribution. Finally, a parameter characterizing the complex shape change of square crystal is introduced. (paper)

  16. Growth morphologies of crystal surfaces

    Science.gov (United States)

    Xiao, Rong-Fu; Alexander, J. Iwan D.; Rosenberger, Franz

    1991-03-01

    We have expanded our earlier Monte Carlo model [Phys. Rev. A 38, 2447 (1988); J. Crystal Growth 100, 313 (1990)] to three dimensions and included reevaporation after accommodation and growth on dislocation-induced steps. We found again that, for a given set of growth parameters, the critical size, beyond which a crystal cannot retain its macroscopically faceted shape, scales linearly with the mean free path in the vapor. However, the three-dimensional (3D) the systems show increased shape stability compared to corresponding 2D cases. Extrapolation of the model results to mean-free-path conditions used in morphological stability experiments leads to order-of-magnitude agreement of the predicted critical size with experimental findings. The stability region for macroscopically smooth (faceted) surfaces in the parameter space of temperature and supersaturation depends on both the surface and bulk diffusion. While surface diffusion is seen to smooth the growth morphology on the scale of the surface diffusion length, bulk diffusion is always destabilizing. The atomic surface roughness increases with increase in growth temperature and supersaturation. That is, the tendency of surface kinetics anisotropies to stabilize the growth shape is reduced through thermal and kinetic roughening. It is also found that the solid-on-solid assumption, which can be advantageously used at low temperatures and supersaturations, is insufficient to describe the growth dynamics of atomically rough interfaces where bulk diffusion governs the process. For surfaces with an emerging screw dislocation, we find that the spiral growth mechanism dominates at low temperatures and supersaturations. The polygonization of a growth spiral decreases with increasing temperature or supersaturation. When the mean free path in the nutrient is comparable to the lattice constant, the combined effect of bulk and surface diffusion reduces the terrace width of a growth spiral in its center region. At elevated

  17. Crystal growth of various ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Kunkemoeller, Stefan; Braden, Markus [II. Physikalisches Institut, Universitaet zu Koeln (Germany); Nugroho, Agung [Institut Teknologi Bandung (Indonesia)

    2013-07-01

    Ruthenates of the Ruddlesdon-Popper series exhibit a variety of interesting phenomena ranging from unconventional superconductivity to orbitally polarized Mott insulators. Unfortunately the crystal growth of most of these ruthenates is extremely difficult partially due to the high evaporation of ruthenium; this strongly limits the research on these fascinating materials. We have started to grow single crystals of layered and perovskite ruthenates by the travelling floating-zone method using a Canon SC1-MDH mirror furnace. For the layered Ca{sub 2-x}Sr{sub x}RuO{sub 4} series we focused first on the range of concentration where recent My-SR experiments reveal spin-density wave ordering to occur at relatively high temperature and with a sizeable ordered moment. Good quality crystals of Ca{sub 1.5}Sr{sub 0.5}RuO{sub 4} can be obtained, when an excess of 15 percent of ruthenium is added to the initial preparation of the rod and when a high growth speed up to 40mm/h is used. Even slight modifications of the growing conditions result in large amounts of (Sr/Ca)RuO{sub 3} and (Sr/Ca){sub 3}Ru{sub 2}O{sub 7} intergrowth phases. First attempts to grow perovskite and double-layered ruthenates are discussed as well.

  18. Introduction to crystal growth and characterization

    CERN Document Server

    Benz, Klaus-Werner

    2014-01-01

    This new textbook provides for the first time a comprehensive treatment of the basics of contemporary crystallography and crystal growth in a single volume. The reader will be familiarized with the concepts for the description of morphological and structural symmetry of crystals. The architecture of crystal structures of selected inorganic and molecular crystals is illustrated. The main crystallographic databases as data sources of crystal structures are described. Nucleation processes, their kinetics and main growth mechanism will be introduced in fundamentals of crystal growth. Some phase d

  19. Hanging drop crystal growth apparatus

    Science.gov (United States)

    Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  20. Local fields in ionic crystals

    International Nuclear Information System (INIS)

    Claro, F.

    1981-08-01

    Local fields arising from the electronic distortion in perfect ionic crystals are described in terms of multipolar excitations. Field factors for the alkali halides and chalcogenide ions are found to differ significantly from the Lorentz value of 4π/3, the correction size following an exponential dependence on the difference in ionic radii. Local fields are only slightly modified by these corrections however, and together with the Clausius-Mossotti relation may be regarded as accurate to within 2% if the Lorentz value is adopted. (author)

  1. Measurements of Protein Crystal Face Growth Rates

    Science.gov (United States)

    Gorti, S.

    2014-01-01

    Protein crystal growth rates will be determined for several hyperthermophile proteins.; The growth rates will be assessed using available theoretical models, including kinetic roughening.; If/when kinetic roughening supersaturations are established, determinations of protein crystal quality over a range of supersaturations will also be assessed.; The results of our ground based effort may well address the existence of a correlation between fundamental growth mechanisms and protein crystal quality.

  2. The effective crystal field potential

    CERN Document Server

    Mulak, J

    2000-01-01

    As it results from the very nature of things, the spherical symmetry of the surrounding of a site in a crystal lattice or an atom in a molecule can never occur. Therefore, the eigenfunctions and eigenvalues of any bound ion or atom have to differ from those of spherically symmetric respective free ions. In this way, the most simplified concept of the crystal field effect or ligand field effect in the case of individual molecules can be introduced. The conventional notion of the crystal field potential is narrowed to its non-spherical part only through ignoring the dominating spherical part which produces only a uniform energy shift of gravity centres of the free ion terms. It is well understood that the non-spherical part of the effective potential "seen" by open-shell electrons localized on a metal ion plays an essential role in most observed properties. Light adsorption, electron paramagnetic resonance, inelastic neutron scattering and basic characteristics derived from magnetic and thermal measurements, ar...

  3. Economic analysis of crystal growth in space

    Science.gov (United States)

    Ulrich, D. R.; Chung, A. M.; Yan, C. S.; Mccreight, L. R.

    1972-01-01

    Many advanced electronic technologies and devices for the 1980's are based on sophisticated compound single crystals, i.e. ceramic oxides and compound semiconductors. Space processing of these electronic crystals with maximum perfection, purity, and size is suggested. No ecomonic or technical justification was found for the growth of silicon single crystals for solid state electronic devices in space.

  4. Innovation in crystal growth: A personal perspective

    Science.gov (United States)

    Mullin, J. B.

    2008-04-01

    The evolution of crystal growth has been crucially dependent on revolutionary innovations and initiatives involving ideas, technology and communication. A personal perspective is presented on some of these aspects in connection with the early history of semiconductors that have helped evolve our knowledge and advance the science and technology of crystal growth. The presentation considers examples from work on germanium, silicon, indium antimonide, gallium arsenide, indium phosphide, gallium phosphide and mercury cadmium telluride. In connection with metal organic vapour phase epitaxy (MOVPE), the influence of adduct purification for alkyls is noted together with the growth of Hg xCd 1-xTe. The role of crystal growth organisations together with initiatives in the publication of the Journal of Crystal Growth (JCG) and the pivotal role of the International Organisation of Crystal Growth (IOCG) are also highlighted in the quest for scientific excellence.

  5. Dendritic growth forms of borax crystals

    International Nuclear Information System (INIS)

    Takoo, R.K.; Patel, B.R.; Joshi, M.S.

    1983-01-01

    A variety of dendritic forms of borax grown from solutions by the film formation method is given. The changing growth morphology is followed as a function of concentration and temperature. The initial, intermediate and final growth morphologies are described and discussed. Influence of evaporation rate and supersaturation on the mechanism of growth is assessed. It is suggested that under all crystallization conditions, borax crystals have dendritic form in the initial stages of growth. (author)

  6. Crystal growth from low-temperature solutions

    International Nuclear Information System (INIS)

    Sangwal, K.

    1994-01-01

    The state of the art in crystal growth from solutions at low-temperatures has been done. The thermodynamic and kinetic parameters have been discussed in respect to different systems. The methods of crystal growth from water and organic solutions and different variants of their technical realizations have been reviewed. Also the growth by chemical reactions and gel growth have been described. The large number of examples have been shown. 21 refs, 30 figs, 3 tabs

  7. DKDP crystal growth controlled by cooling rate

    Science.gov (United States)

    Xie, Xiaoyi; Qi, Hongji; Shao, Jianda

    2017-08-01

    The performance of deuterated potassium dihydrogen phosphate (DKDP) crystal directly affects beam quality, energy and conversion efficiency in the Inertial Confinement Fusion(ICF)facility, which is related with the initial saturation temperature of solution and the real-time supersaturation during the crystal growth. However, traditional method to measure the saturation temperature is neither efficient nor accurate enough. Besides, the supersaturation is often controlled by experience, which yields the higher error and leads to the instability during the crystal growth. In this paper, DKDP solution with 78% deuteration concentration is crystallized in different temperatures. We study the relation between solubility and temperature of DKDP and fit a theoretical curve with a parabola model. With the model, the measurement of saturation temperature is simplified and the control precision of the cooling rate is improved during the crystal growth, which is beneficial for optimizing the crystal growth process.

  8. Protein-crystal growth experiment (planned)

    Science.gov (United States)

    Fujita, S.; Asano, K.; Hashitani, T.; Kitakohji, T.; Nemoto, H.; Kitamura, S.

    1988-01-01

    To evaluate the effectiveness of a microgravity environment on protein crystal growth, a system was developed using 5 cubic feet Get Away Special payload canister. In the experiment, protein (myoglobin) will be simultaneously crystallized from an aqueous solution in 16 crystallization units using three types of crystallization methods, i.e., batch, vapor diffusion, and free interface diffusion. Each unit has two compartments: one for the protein solution and the other for the ammonium sulfate solution. Compartments are separated by thick acrylic or thin stainless steel plates. Crystallization will be started by sliding out the plates, then will be periodically recorded up to 120 hours by a still camera. The temperature will be passively controlled by a phase transition thermal storage component and recorded in IC memory throughout the experiment. Microgravity environment can then be evaluated for protein crystal growth by comparing crystallization in space with that on Earth.

  9. Effects of impurities on crystal growth in fructose crystallization

    Science.gov (United States)

    Chu, Y. D.; Shiau, L. D.; Berglund, K. A.

    1989-10-01

    The influence of impurities on the crystallization of anhydrous fructose from aqueous solution was studied. The growth kinetics of fructose crystals in the fructose-water-glucose and fructose-water-difructose dianhydrides systems were investigated using photomicroscopic contact nucleation techniques. Glucose is the major impurity likely to be present in fructose syrup formed during corn wet milling, while several difructose dianhydrides are formed in situ under crystallization conditions and have been proposed as a cause in the decrease of overall yields. Both sets of impurities were found to cause inhibition of crystal growth, but the mechanisms responsible in each case are different. It was found that the presence of glucose increases the solubility of fructose in water and thus lowers the supersaturation of the solution. This is probably the main effect responsible for the decrease of crystal growth. Since the molecular structures of difructose dianhydrides are similar to that of fructose, they are probably "tailor-made" impurities. The decrease of crystal growth is probably caused by the incorporation of these impurities into or adsorption to the crystal surface which would accept fructose molecules in the orientation that existed in the difructose dianhydride.

  10. Growth of single crystals of BaFe12O19 by solid state crystal growth

    Science.gov (United States)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-10-01

    Single crystals of BaFe12O19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe12O19 are buried in BaFe12O19+1 wt% BaCO3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe12O19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe12O19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth.

  11. Growth of single crystals of BaFe12O19 by solid state crystal growth

    International Nuclear Information System (INIS)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-01-01

    Single crystals of BaFe 12 O 19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe 12 O 19 are buried in BaFe 12 O 19 +1 wt% BaCO 3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe 12 O 19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe 12 O 19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth. - Highlights: • Single crystals of BaFe 12 O 19 are grown by solid state crystal growth. • A single crystal up to ∼130 μm thick (c-axis direction) grows on the seed crystal. • The single crystal and surrounding ceramic matrix have similar composition. • Micro-Raman scattering shows the single crystal has the BaFe 12 O 19 structure.

  12. Iron sulfide crystal growth: a literature review

    International Nuclear Information System (INIS)

    Dewar, E.J.

    1977-04-01

    Iron pyrite (FeS 2 ) is often found on trays and in heat exchangers in Girdler-Sulfide (G.S.) plants used to extract D 2 O from fresh water. A critical review of the literature was made to find: (i) what is known about FeS 2 crystal growth; (ii) which techniques could be used to study FeS 2 crystal growth experimentally; (iii) potential chemical additives that could be used in trace amounts to poison FeS 2 crystals and reduce their growth rate in G.S. plants. (author)

  13. A high compression crystal growth system

    International Nuclear Information System (INIS)

    Nieman, H.F.; Walton, A.A.; Powell, B.M.; Dolling, G.

    1980-01-01

    This report describes the construction and operating procedure for a high compression crystal growth system, capable of growing single crystals from the fluid phase over the temperature range of 4.2 K to 300 K, at pressures up to 900 MPa. Some experimental results obtained with the system are given for solid β-nitrogen. (auth)

  14. Photographic appraisal of crystal lattice growth technique

    Directory of Open Access Journals (Sweden)

    Kapoor D

    2005-01-01

    Full Text Available Concept of creating mechanical retention for bonding through crystal growth has been successfully achieved in the present study. By using polyacrylic acid, sulphated with sulphuric acid as etchant, abundant crystal growth was demonstrated. Keeping in view the obvious benefits of crystal growth technique, the present SEM study was aimed to observe and compare the changes brought about by different etching agents (phosphoric acid, polyacrylic acid and polyacrylic acid sulphated and to evaluate their advantages and disadvantages in an attempt to reduce iatrogenic trauma caused due to surface enamel alteration. Control and experimental groups were made of 24 and 30 premolars, respectively, for scanning electron microscopic appraisal of normal unetched and etched enamel surface and fracture site and finished surface evaluation. When compared with conventional phosphoric acid and weaker polyacrylic acid, investigations indicated that crystal growth treatment on enamel surface caused minimal iatrogenic trauma and surface alteration were restored to the original untreated condition to a large extent.

  15. Protein crystal growth in low gravity

    Science.gov (United States)

    Feigelson, Robert S.

    1993-01-01

    This Final Technical Report for NASA Grant NAG8-774 covers the period from April 27, 1989 through December 31, 1992. It covers five main topics: fluid flow studies, the influence of growth conditions on the morphology of isocitrate lyase crystals, control of nucleation, the growth of lysozyme by the temperature gradient method and graphoepitaxy of protein crystals. The section on fluid flow discusses the limits of detectability in the Schlieren imaging of fluid flows around protein crystals. The isocitrate lyase study compares crystals grown terrestrially under a variety of conditions with those grown in space. The controlling factor governing the morphology of the crystals is the supersaturation. The lack of flow in the interface between the drop and the atmosphere in microgravity causes protein precipitation in the boundary layer and a lowering of the supersaturation in the drop. This lowered supersaturation leads to improved crystal morphology. Preliminary experiments with lysozyme indicated that localized temperature gradients could be used to nucleate crystals in a controlled manner. An apparatus (thermonucleator) was designed to study the controlled nucleation of protein crystals. This apparatus has been used to nucleate crystals of materials with both normal (ice-water, Rochelle salt and lysozyme) and retrograde (horse serum albumin and alpha chymotrypsinogen A) solubility. These studies have lead to the design of an new apparatus that small and more compatible with use in microgravity. Lysozyme crystals were grown by transporting nutrient from a source (lysozyme powder) to the crystal in a temperature gradient. The influence of path length and cross section on the growth rate was demonstrated. This technique can be combined with the thermonucleator to control both nucleation and growth. Graphoepitaxy utilizes a patterned substrate to orient growing crystals. In this study, silicon substrates with 10 micron grooves were used to grow crystals of catalase

  16. Crystal-field effect in UO2

    International Nuclear Information System (INIS)

    Gajek, Z.; Lahalle, M.P.; Krupa, J.C.; Mulak, J.

    1988-01-01

    Simple ab initio model perturbation calculations of the crystal-field parameters for the U 4+ ion in UO 2 crystals are reported. The crystal-field parameters obtained, B 0 4 = -7130 cm -1 and B 0 6 = 2890 cm -1 , turn out to be much lower in value, particularly the first one, than those usually assumed for this compound. They are found, however, to agree with new spectroscopic data and recent inelastic neutron scattering measurements. (orig.)

  17. Macromolecular Crystal Growth by Means of Microfluidics

    Science.gov (United States)

    vanderWoerd, Mark; Ferree, Darren; Spearing, Scott; Monaco, Lisa; Molho, Josh; Spaid, Michael; Brasseur, Mike; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We have performed a feasibility study in which we show that chip-based, microfluidic (LabChip(TM)) technology is suitable for protein crystal growth. This technology allows for accurate and reliable dispensing and mixing of very small volumes while minimizing bubble formation in the crystallization mixture. The amount of (protein) solution remaining after completion of an experiment is minimal, which makes this technique efficient and attractive for use with proteins, which are difficult or expensive to obtain. The nature of LabChip(TM) technology renders it highly amenable to automation. Protein crystals obtained in our initial feasibility studies were of excellent quality as determined by X-ray diffraction. Subsequent to the feasibility study, we designed and produced the first LabChip(TM) device specifically for protein crystallization in batch mode. It can reliably dispense and mix from a range of solution constituents into two independent growth wells. We are currently testing this design to prove its efficacy for protein crystallization optimization experiments. In the near future we will expand our design to incorporate up to 10 growth wells per LabChip(TM) device. Upon completion, additional crystallization techniques such as vapor diffusion and liquid-liquid diffusion will be accommodated. Macromolecular crystallization using microfluidic technology is envisioned as a fully automated system, which will use the 'tele-science' concept of remote operation and will be developed into a research facility for the International Space Station as well as on the ground.

  18. Method for solid state crystal growth

    Science.gov (United States)

    Nolas, George S.; Beekman, Matthew K.

    2013-04-09

    A novel method for high quality crystal growth of intermetallic clathrates is presented. The synthesis of high quality pure phase crystals has been complicated by the simultaneous formation of both clathrate type-I and clathrate type-II structures. It was found that selective, phase pure, single-crystal growth of type-I and type-II clathrates can be achieved by maintaining sufficient partial pressure of a chemical constituent during slow, controlled deprivation of the chemical constituent from the primary reactant. The chemical constituent is slowly removed from the primary reactant by the reaction of the chemical constituent vapor with a secondary reactant, spatially separated from the primary reactant, in a closed volume under uniaxial pressure and heat to form the single phase pure crystals.

  19. Growth and Characterization of Tetraphenylphosphonium Bromide Crystal

    Directory of Open Access Journals (Sweden)

    Guangqiang Wang

    2017-05-01

    Full Text Available Multiple-phenyl phosphorous compounds are a group of chemical materials that have been used as reactants, pharmaceutical intermediates, extractants, and catalysts in organic synthetic reactions. However, the crystal growth of bulk crystals of multiple-phenyl phosphorous compounds, which may expand their applications in photonics technology, have been largely overlooked. In this article, the crystal growth of tetraphenylphosphonium bromide (TPPB has been studied in organic solvents and water. The crystal structures and crystallization features are analyzed by X-ray diffraction data. By a slow temperature-lowering method, a single-crystal of TPPB (2H2O with the size of 27 × 20 × 20 mm3 has been obtained in water. The basic thermal and optical properties were characterized. We find that the TPPB (2H2O crystal shows excellent transparent property in the near-IR region. Large Raman shifts and strong Raman scattering intensity indicate that TPPB is a potential candidate in Raman-scattering-based nonlinearity applications.

  20. Silicon Crystal Growth by the Electromagnetic Czochralski (EMCZ) Method

    Science.gov (United States)

    Watanabe, Masahito; Eguchi, Minoru; Hibiya, Taketoshi

    1999-01-01

    A new method for growing silicon crystals by using electromagnetic force to rotate the melt without crucible rotation has been developed. We call it electromagnetic Czochralski (EMCZ) growth. An electromagnetic force in the azimuthal direction is generated in the melt by the interaction between an electric current (I) through the melt in the radial direction and a vertical magnetic field (B). The rotation rate (ωm) of the silicon melt is continuously changed from 0 to over 105 rpm under I = 0 to 8 A and B = 0 to 0.1 T. Thirty-mm-diameter silicon single crystals free of dislocations could be grown under two conditions: I = 2.0 A and B = 0.05 T (ωm = 105 rpm); and I =0.2 A and B = 0.1 T (ωm = 15 rpm). The oxygen concentration in the crystals was 8 ×1017 atoms/cm3 for the high rotation rate and 1×1017 atoms/cm3 for the low rotation rate. The oxygen-concentration distributions in the radial direction in both crystals were more homogeneous than those in the crystals grown by conventional CZ and/or MCZ growth. This new crystal-growth method can be easily adopted for growing large-diameter silicon crystals.

  1. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization

    Science.gov (United States)

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-03-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8-133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared.

  2. Modelisation and numerical simulation for bulk crystal growth processes

    International Nuclear Information System (INIS)

    Duffar, F.; Dusserre, P.; Barat, C.; Nabot, J.P.

    1993-01-01

    The aim of this work is to study the relevance of numerical simulation for improving the process control in the field of crystal growth. This investigation focused on the growth of semiconductor and halide crystals by the Bridgman solidification technique, the principle of which is to cool a seeded feed material contained in a crucible, either by pulling the crucible or by decreasing the temperature in the furnace. Calculations are performed with the finite element method, and for comparison, experiments are carried out on Bridgman pulling machines operating either in a laboratory or in industrial plants. Calculations and experimental data have shown a good agreement and a satisfactory reliability

  3. Fluorination of Metal Phthalocyanines: Single-Crystal Growth, Efficient N-Channel Organic Field-Effect Transistors, and Structure-Property Relationships

    Science.gov (United States)

    Jiang, Hui; Ye, Jun; Hu, Peng; Wei, Fengxia; Du, Kezhao; Wang, Ning; Ba, Te; Feng, Shuanglong; Kloc, Christian

    2014-01-01

    The fluorination of p-type metal phthalocyanines produces n-type semiconductors, allowing the design of organic electronic circuits that contain inexpensive heterojunctions made from chemically and thermally stable p- and n-type organic semiconductors. For the evaluation of close to intrinsic transport properties, high-quality centimeter-sized single crystals of F16CuPc, F16CoPc and F16ZnPc have been grown. New crystal structures of F16CuPc, F16CoPc and F16ZnPc have been determined. Organic single-crystal field-effect transistors have been fabricated to study the effects of the central metal atom on their charge transport properties. The F16ZnPc has the highest electron mobility (~1.1 cm2 V−1 s−1). Theoretical calculations indicate that the crystal structure and electronic structure of the central metal atom determine the transport properties of fluorinated metal phthalocyanines. PMID:25524460

  4. Meniscus Imaging for Crystal-Growth Control

    Science.gov (United States)

    Sachs, E. M.

    1983-01-01

    Silicon crystal growth monitored by new video system reduces operator stress and improves conditions for observation and control of growing process. System optics produce greater magnification vertically than horizontally, so entire meniscus and melt is viewed with high resolution in both width and height dimensions.

  5. Fluid Physics and Macromolecular Crystal Growth in Microgravity

    Science.gov (United States)

    Helliwell, John R.; Snell, Edward H.; Chayen, Naomi E.; Judge, Russell A.; Boggon, Titus J.; Pusey, M. L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    " is often historically used to describe these microgravity experiments. This is somewhat inaccurate as the field involves the study of many varied biological molecules including viruses, proteins, DNA, RNA and complexes of those structures. For this reason we use the term macromolecular crystal growth. In this chapter we review a series of diagnostic microgravity crystal growth experiments carried out principally using the European Space Agency (ESA) Advanced Protein Crystallization Facility (APCF). We also review related research, both experimental and theoretical, on the aspects of microgravity fluid physics that affect microgravity protein crystal growth. Our experiments have revealed some surprises that were not initially expected. We discuss them here in the context of practical lessons learnt and how to maximize the limited microgravity opportunities available.

  6. Growth of optical grade germanium crystals

    International Nuclear Information System (INIS)

    Waris, M.; Akhtar, M.J.; Mehmood, N.; Ashraf, M.; Siddique, M.

    2011-01-01

    A novel design of Czochralski( CZ ) growth station in a low frequency induction furnace is described and growth of optical grade Ge crystal as a test material is performed achieving a flat solid-liquid interface shape. Grown Ge crystals are annealed in air at 450 -500 deg. C for 4 hrs and then characterized by determination of crystallographic orientation by Laue (back-reflection of X-rays) method, dislocation density studies by etch-pits formation, measuring electrical resistivity by 4-probe technique, conductivity type determination by hot probe method, measurement of hardness on Moh's scale and optical transmission measurement in IR region. The results obtained are compared to those reported in the literature. The use of this growth station for other materials is suggested. (author)

  7. Metal Halide Perovskite Single Crystals: From Growth Process to Application

    Directory of Open Access Journals (Sweden)

    Shuigen Li

    2018-05-01

    Full Text Available As a strong competitor in the field of optoelectronic applications, organic-inorganic metal hybrid perovskites have been paid much attention because of their superior characteristics, which include broad absorption from visible to near-infrared region, tunable optical and electronic properties, high charge mobility, long exciton diffusion length and carrier recombination lifetime, etc. It is noted that perovskite single crystals show remarkably low trap-state densities and long carrier diffusion lengths, which are even comparable with the best photovoltaic-quality silicon, and thus are expected to provide better optoelectronic performance. This paper reviews the recent development of crystal growth in single-, mixed-organic-cation and fully inorganic halide perovskite single crystals, in particular the solution approach. Furthermore, the application of metal hybrid perovskite single crystals and future perspectives are also highlighted.

  8. Crystallization and Growth of Colloidal Nanocrystals

    CERN Document Server

    Leite, Edson Roberto

    2012-01-01

    Since the size, shape, and microstructure of nanocrystalline materials strongly impact physical and chemical properties, the development of new synthetic routes to  nanocrystals with controlled composition and morphology is a key objective of the nanomaterials community. This objective is dependent on control of the nucleation and growth mechanisms that occur during the synthetic process, which in turn requires a fundamental understanding of both classical nucleation and growth and non-classical growth processes in nanostructured materials.  Recently, a novel growth process called Oriented Attachment (OA) was identified which appears to be a fundamental mechanism during the development of nanoscale  materials. OA is a special case of aggregation that provides an important route by which nanocrystals grow, defects are formed, and unique—often symmetry-defying—crystal morphologies can be produced. This growth mechanism involves reversible self-assembly of primary nanocrystals followed by reorientati...

  9. Integrated Intelligent Modeling, Design and Control of Crystal Growth Processes

    National Research Council Canada - National Science Library

    Prasad, V

    2000-01-01

    .... This MURI program took an integrated approach towards modeling, design and control of crystal growth processes and in conjunction with growth and characterization experiments developed much better...

  10. On the growth of ammonium nitrate(III) crystals

    NARCIS (Netherlands)

    Vogels, L.J.P.; Marsman, H.A.M.; Verheijen, M.A.; Bennema, P.; Elwenspoek, Michael Curt

    The growth rate of NH4NO3 phase III crystals is measured and interpreted using two models. The first is a standard crystal growth model based on a spiral growth mechanism, the second outlines the concept of kinetical roughening. As the crystal becomes rough a critical supersaturation can be

  11. Studying Crystal Growth With the Peltier Effect

    Science.gov (United States)

    Larsen, David J., Jr.; Dressler, B.; Silberstein, R. P.; Poit, W. J.

    1986-01-01

    Peltier interface demarcation (PID) shown useful as aid in studying heat and mass transfer during growth of crystals from molten material. In PID, two dissimilar "metals" solid and liquid phases of same material. Current pulse passed through unidirectionally solidifying sample to create rapid Peltier thermal disturbance at liquid/solid interface. Disturbance, measured by thermocouple stationed along path of solidification at or near interface, provides information about position and shape of interface.

  12. Magnetic Control in Crystal Growth from a Melt

    Science.gov (United States)

    Huang, Yue

    Control of bulk melt crystal growth techniques is desirable for producing semiconductors with the highest purity and ternary alloys with tunable electrical properties. Because these molten materials are electrically conducting, external magnetic fields are often employed to regulate the flow in the melt. However, complicated by the coupled flow, thermal, electromagnetic and chemical physics, such magnetic control is typically empirical or even an educated guess. Two magnetic flow control mechanisms: flow damping by steady magnetic fields, and flow stirring by alternating magnetic fields, are investigated numerically. Magnetic damping during optically-heated float-zone crystal growth is modeled using a spectral collocation method. The Marangoni convection at the free melt-gas interface is suppressed when exposed to a steady axial magnetic field, measured by the Hartmann number Ha. As a result, detrimental flow instabilities are suppressed, and an almost quiescent region forms in the interior, ideal for single crystal growth. Using normal mode linear stability analyses, dominant flow instabilities are determined in a range applicable to experiments (up to Ha = 300 for Pr = 0.02, and up to Ha = 500 for Pr = 0.001). The hydrodynamic nature of the instability for small Prandtl number Pr liquid bridges is confirmed by energy analyses. Magnetic stirring is modeled for melt crystal growth in an ampule exposed to a transverse rotating magnetic field. Decoupled from the flow field at small magnetic Reynolds number, the electromagnetic field is first solved via finite element analysis. The flow field is then solved using the spectral element method. At low to moderate AC frequencies (up to a few kHz), the electromagnetic body force is dominant in the azimuthal direction, which stirs a steady axisymmetric flow primarily in the azimuthal direction. A weaker secondary flow develops in the meridional plane. However, at high AC frequencies (on the order of 10 kHz and higher), only

  13. Optical Investigation of Nanoconfined Crystal Growth

    Science.gov (United States)

    Kohler, F.; Dysthe, D. K.

    2015-12-01

    Crystals growing in a confined space exert forces on their surroundings. This crystallization force causes deformation of solids and is therefore particularly relevant for the comprehension of geological processes such as replacement and weathering [1]. In addition, these forces are relevant for the understanding of damages in porous building materials caused by crystallization, which is of great economical importance and fundamental for methods that can help to preserve our cultural heritage [2,3]. However, the exact behavior of the growth and the dissolution process in close contact to an interface are still not known in detail. The crystallization, the dissolution and the transport of material is mediated by a nanoconfined water film. We observe brittle NaClO3 crystals growing against a glass surface by optical methods such as reflective interference contrast microscopy (RICM) [4]. In order to carefully control the supersaturation of the fluid close to the crystal interface, a temperature regulated microfluidic system is used (fig. A). The interference based precision of RICM enables to resolve distance variations down to the sub nanometer range without any unwanted disturbances by the measuring method. The combination of RICM with a sensitive camera allows us to observe phenomena such as periodic, wavelike growth of atomic layers. These waves are particularly obvious when observing the difference between two consecutive images (fig. B). In contradiction to some theoretical results, which predict a smooth interface, some recent experiments have shown that the nanoconfined growth surfaces are rough. In combination with theoretical studies and Kinetic Monte Carlo simulations we aim at providing more realistic descriptions of surface energies and energy barriers which are able to explain the discrepancies between experiments and current theory. References:[1] Maliva, Diagenetic replacement controlled by force of crystallization, Geology, August (1988), v. 16 [2] G

  14. Crystal orientation effects on wurtzite quantum well electromechanical fields

    DEFF Research Database (Denmark)

    Duggen, Lars; Willatzen, Morten

    2010-01-01

    in the literature for semiconductors, is inaccurate for ZnO/MgZnO heterostructures where shear-strain components play an important role. An interesting observation is that a growth direction apart from [1̅ 21̅ 0] exists for which the electric field in the quantum well region becomes zero. This is important for, e......A one-dimensional continuum model for calculating strain and electric field in wurtzite semiconductor heterostructures with arbitrary crystal orientation is presented and applied to GaN/AlGaN and ZnO/MgZnO heterostructure combinations. The model is self-consistent involving feedback couplings...... of spontaneous polarization, strain, and electric field. Significant differences between fully coupled and semicoupled models are found for the longitudinal and shear-strain components as a function of the crystal-growth direction. In particular, we find that the semicoupled model, typically used...

  15. YbNi{sub 4}P{sub 2}. Single crystal growth by the Czochralski method and high-field magnetization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kliemt, Kristin; Krellner, Cornelius [Goethe-University, Frankfurt (Germany); Foerster, Tobias [HLD, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Brando, Manuel [MPI for Chemical Physics of Solids, Dresden (Germany)

    2016-07-01

    We have investigated a new generation of YbNi{sub 4}P{sub 2} single crystals that were grown from a levitating melt by the Czochralski method. With T{sub C}= 0.17 K, this ferromagnetic material has the lowest Curie temperature ever observed among stoichiometric compounds. A quantum critical point occurs in the substitution series YbNi{sub 4}(P{sub 1-x}As{sub x}){sub 2} at x ∼ 0.1. The hybridization between localized f-electrons and the conduction electrons leads to a Fermi-liquid ground state with narrow bands and strongly enhanced effective electronic masses (heavy fermion system, Kondo temperature 8 K). An external magnetic field can split the bands, deform the Fermi surface and simultaneously suppress the Kondo interaction. If such a deformation changes the topology, it is called a Lifshitz transition. Previous thermodynamic and electrical transport studies have found indications for Lifshitz transitions in this Kondo lattice system. We report on results of high-field magnetization measurements at low temperature to further investigate the putative Lifshitz transitions in YbNi{sub 4}P{sub 2}.

  16. Historical review of quartz crystal growth

    Science.gov (United States)

    Iwasaki, Fumiko; Iwasaki, Hideo

    2002-04-01

    The history of quartz crystal growth is reviewed from the origin to the industrialization. The developing process of growth techniques is divided into the following three stages: (1) The fundamental work based on the mineralogical genetic view point, which was performed in Italy during the end of the 19th to the beginning of the 20th centuries. (2) The works to attempt the industrial application made in Germany and in England during World War II. (3) The industrialization of quartz growth after World War II. These were initiated in England, in USA and independently in Russia. The highest mass production process was developed in Japan. The historical flow is traced by the interview of several persons based on the original references.

  17. Crystal growth of emerald by flux method

    International Nuclear Information System (INIS)

    Inoue, Mikio; Narita, Eiichi; Okabe, Taijiro; Morishita, Toshihiko.

    1979-01-01

    Emerald crystals have been formed in two binary fluxes of Li 2 O-MoO 2 and Li 2 O-V 2 O 5 using the slow cooling method and the temperature gradient method under various conditions. In the flux of Li 2 O-MoO 3 carried out in the range of 2 -- 5 of molar ratios (MoO 3 /Li 2 O), emerald was crystallized in the temperature range from 750 to 950 0 C, and the suitable crystallization conditions were found to be the molar ratio of 3 -- 4 and the temperature about 900 0 C. In the flux of Li 2 O-V 2 O 5 carried out in the range of 1.7 -- 5 of molar ratios (V 2 O 5 /Li 2 O), emerald was crystallized in the temperature range from 900 to 1150 0 . The suitable crystals were obtained at the molar ratio of 3 and the temperature range of 1000 -- 1100 0 C. The crystallization temperature rised with an increase in the molar ratio of the both fluxes. The emeralds grown in two binary fluxes were transparent green, having the density of 2.68, the refractive index of 1.56, and the two distinct bands in the visible spectrum at 430 and 600nm. The emerald grown in Li 2 O-V 2 O 5 flux was more bluish green than that grown in Li 2 O-MoO 3 flux. The size of the spontaneously nucleated emerald grown in the former flux was larger than the latter, when crystallized by the slow cooling method. As for the solubility of beryl in the two fluxes, Li 2 O-V 2 O 5 flux was superior to Li 2 O-MoO 3 flux whose small solubility of SiO 2 caused an experimental problem to the temperature gradient method. The suitability of the two fluxes for the crystal growth of emerald by the flux method was discussed from the view point of various properties of above-mentioned two fluxes. (author)

  18. Growth of the (001) face of borax crystals

    OpenAIRE

    Suharso, Suharso

    2010-01-01

    he growth rates of borax crystals from aqueous solutions in the (001) direction at various relative supersaturations were measured using in situ cell optical microscopy method. The result shows that the growth mechanism of the (001) face of borax crystal at temperature of 20 °C is spiral growth mechanism.   Keywords: Growth mechanism, borax.

  19. Iron inhibits hydroxyapatite crystal growth in vitro.

    Science.gov (United States)

    Guggenbuhl, Pascal; Filmon, Robert; Mabilleau, Guillaume; Baslé, Michel F; Chappard, Daniel

    2008-07-01

    Hemochromatosis is a known cause of osteoporosis in which the pathophysiology of bone loss is largely unknown and the role of iron remains questionable. We have investigated the effects of iron on the growth of hydroxyapatite crystals in vitro on carboxymethylated poly(2-hydroxyethyl methacrylate) pellets. This noncellular and enzyme-independent model mimics the calcification of woven bone (composed of calcospherites made of hydroxyapatite crystals). Polymer pellets were incubated with body fluid containing iron at increasing concentrations (20, 40, 60 micromol/L). Hydroxyapatite growth was studied by chemical analysis, scanning electron microscopy, and Raman microscopy. When incubated in body fluid containing iron, significant differences were observed with control pellets. Iron was detected at a concentration of 5.41- to 7.16-fold that of controls. In pellets incubated with iron, there was a approximately 3- to 4-fold decrease of Ca and P and a approximately 1.3- to 1.4-fold increase in the Ca/P ratio. There was no significant difference among the iron groups of pellets, but a trend to a decrease of Ca with the increase of iron concentration was noted. Calcospherite diameters were significantly lower on pellets incubated with iron. Raman microspectroscopy showed a decrease in crystallinity (measured by the full width of the half height of the 960 Deltacm(-1) band) with a significant increase in carbonate substitution (measured by the intensity ratio of 1071 to 960 Deltacm(-1) band). Energy dispersive x-ray analysis identified iron in the calcospherites. In vitro, iron is capable to inhibit bone crystal growth with significant changes in crystallinity and carbonate substitution.

  20. Materials of construction for silicon crystal growth

    Science.gov (United States)

    Leipold, M. H.; Odonnell, T. P.; Hagan, M. A.

    1980-01-01

    The performance of materials for construction and in contact with molten silicon for crystal growth is presented. The basis for selection considers physical compatibility, such as thermal expansion and strength, as well as chemical compatibility as indicated by contamination of the silicon. A number of new high technology materials are included as well as data on those previously used. Emphasis is placed on the sources and processing of such materials in that results are frequently dependent on the way a material is prepared as well as its intrinsic constituents.

  1. Advances in the understanding of crystal growth mechanisms

    CERN Document Server

    Nishinaga, T; Harada, J; Sasaki, A; Takei, H

    1997-01-01

    This book contains the results of a research project entitled Crystal Growth Mechanisms on an Atomic Scale, which was carried out for 3 years by some 72 reseachers. Until recently in Japan, only the technological aspects of crystal growth have been emphasized and attention was paid only to its importance in industry. However the scientific aspects also need to be considered so that the technology of crystal growth can be developed even further. This project therefore aimed at understanding crystal growth and the emphasis was on finding growth mechanisms on an atomic scale.

  2. Phosphorus diffusion in float zone silicon crystal growth

    DEFF Research Database (Denmark)

    Larsen, Theis Leth

    2000-01-01

    This Ph.D thesis encompasses a global numerical simulation of the needle-eye oat zone process, used to grow silicon single crystals. The numerical models includes coupled electromagnetic and free surface models and a global heat transfer model, with moving boundaries. An axisymmetric uidow model......, including centrifugal, buoyancy, thermocapillary and electromagnetic forces, is used to determine flow field, after the phase boundaries have been determined, by the heat transfer model. A finite element model for calculating dopant transport, using the calculated unsteady flow field, has been developed...... within this project. This model has furthermore been expanded to two equations coupled by a non-zero right hand side, for simulating transport of point defects in the crystal during growth. Free surface shapes and induced electric surface current are calculated for t wo different 4'' congurations and a 0...

  3. Beginner’s guide to flux crystal growth

    CERN Document Server

    Tachibana, Makoto

    2017-01-01

    This book introduces the principles and techniques of crystal growth by the flux method, which is arguably the most useful way to obtain millimeter- to centimeter-sized single crystals for physical research. As it is possible to find an appropriate solvent (“flux”) for nearly all inorganic materials, the flux method can be applied to the growth of many crystals ranging from transition metal oxides to intermetallic compounds. Both important principles and experimental procedures are described in a clear and accessible manner. Practical advice on various aspects of the experiment, which is not readily available in the literature, will assist the beginning graduate students in setting up the lab and conducting successful crystal growth. The mechanisms of crystal growth at an elementary level are also provided to better understand the techniques and to help in assessing the quality of the crystals. The book also contains many photographs of beautiful crystals with important physical properties of current inte...

  4. On standardization of low symmetry crystal fields

    Science.gov (United States)

    Gajek, Zbigniew

    2015-07-01

    Standardization methods of low symmetry - orthorhombic, monoclinic and triclinic - crystal fields are formulated and discussed. Two alternative approaches are presented, the conventional one, based on the second-rank parameters and the standardization based on the fourth-rank parameters. Mainly f-electron systems are considered but some guidelines for d-electron systems and the spin Hamiltonian describing the zero-field splitting are given. The discussion focuses on premises for choosing the most suitable method, in particular on inadequacy of the conventional one. Few examples from the literature illustrate this situation.

  5. Crystal growth in zinc borosilicate glasses

    Science.gov (United States)

    Kullberg, Ana T. G.; Lopes, Andreia A. S.; Veiga, João P. B.; Monteiro, Regina C. C.

    2017-01-01

    Glass samples with a molar composition (64+x)ZnO-(16-x)B2O3-20SiO2, where x=0 or 1, were successfully synthesized using a melt-quenching technique. Based on differential thermal analysis data, the produced glass samples were submitted to controlled heat-treatments at selected temperatures (610, 615 and 620 °C) during various times ranging from 8 to 30 h. The crystallization of willemite (Zn2SiO4) within the glass matrix was confirmed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Under specific heat-treatment conditions, transparent nanocomposite glass-ceramics were obtained, as confirmed by UV-vis spectroscopy. The influence of temperature, holding time and glass composition on crystal growth was investigated. The mean crystallite size was determined by image analysis on SEM micrographs. The results indicated an increase on the crystallite size and density with time and temperature. The change of crystallite size with time for the heat-treatments at 615 and 620 °C depended on the glass composition. Under fixed heat-treatment conditions, the crystallite density was comparatively higher for the glass composition with higher ZnO content.

  6. Magnetic islands modelled by a phase-field-crystal approach

    Science.gov (United States)

    Faghihi, Niloufar; Mkhonta, Simiso; Elder, Ken R.; Grant, Martin

    2018-03-01

    Using a minimal model based on the phase-field-crystal formalism, we study the coupling between the density and magnetization in ferromagnetic solids. Analytical calculations for the square phase in two dimensions are presented and the small deformation properties of the system are examined. Furthermore, numerical simulations are conducted to study the influence of an external magnetic field on various phase transitions, the anisotropic properties of the free energy functional, and the scaling behaviour of the growth of the magnetic domains in a crystalline solid. It is shown that the energy of the system can depend on the direction of the magnetic moments, with respect to the crystalline direction. Furthermore, the growth of the magnetic domains in a crystalline solid is studied and is shown that the growth of domains is in agreement with expected behaviour.

  7. Crystal growth of uranium compounds and study of UGe2

    International Nuclear Information System (INIS)

    Taufour, V.

    2011-01-01

    In this thesis, the study on the superconducting ferromagnet UGe 2 is presented. Crystal growth of UGe 2 single crystals was realized in a tetra-arc furnace using the Czochralski technique. This technique was also used to obtain high quality single crystals of other uranium compounds, notably UCoGe and URu 2 Si 2 . The Curie temperature of UGe 2 (T(Curie) = 53 K) decreases with pressure and is suppressed at p c = 1.5 GPa. Before being suppressed, the ferromagnetic transition changes from second to first order at a tricritical point. Precise resistivity and Hall resistivity measurements under pressure and magnetic field revealed the position of the tricritical point as well as its evolution under magnetic field which draw a wing structure phase diagram. Despite the theoretical prediction that this diagram is general for a ferromagnet, here we present the first experimental observation. Other measurements focus on the superconductivity (T sc = 0.75 K) which coexists with ferromagnetism under pressure. The bulk nature of the superconductivity is investigated by AC calorimetry measurements under pressure. The attention is turned to the interesting phenomenon of field enhanced superconductivity. (author) [fr

  8. Temperature fields in a growing solar silicon crystal

    Directory of Open Access Journals (Sweden)

    Kondrik A. I.

    2012-06-01

    Full Text Available The optimal thermal terms for growing by Czochralski method Si single-crystals, suitable for making photoelectric energy converters, has been defined by the computer simulation method. Dependences of temperature fields character and crystallization front form on the diameter of the crystal, stage and speed of growing, and also on correlation between diameter and height of the crystal has been studied.

  9. A versatile Czochralski crystal growth system with automatic diameter control

    Science.gov (United States)

    Aggarwal, M. D.; Metzl, R.; Wang, W. S.; Choi, J.

    1995-07-01

    A versatile Czochralski crystal pulling system with automatic diameter control for the growth of nonlinear optical oxide crystals is discussed. Pure and doped bulk single crystals of bismuth silicon oxide (Bi12SiO20) have been successfully grown using this system. The system consists of a regular Czochralski type pulling system with provision for continuous weighing of the growing crystal to provide feedback for power control.

  10. Theory of electrolyte crystallization in magnetic field

    DEFF Research Database (Denmark)

    Madsen, Hans Erik Lundager

    2007-01-01

    phenomena. The basis of the theory is a crystal model of a sparingly soluble salt with NaCl structure, where the ions are divalent, and the anion is a base. It is assumed that almost all the anions in the surface layer are protonized, and that an approaching metal ion pushes the proton away...... enter an excited state due to its momentum. Spin relaxation in magnetic field may remove hindrances to proton transfer. The theory is supported by numerical results from model calculations....

  11. Oxidation and crystal field effects in uranium

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Booth, C. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shuh, D. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); van der Laan, G. [Diamond Light Source, Didcot (United Kingdom); Sokaras, D. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States); Weng, T. -C. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States); Yu, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bagus, P. S. [Univ. of North Texas, Denton, TX (United States); Tyliszczak, T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nordlund, D. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States)

    2015-07-06

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO2), uranium trioxide (UO3), and uranium tetrafluoride (UF4). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.

  12. Development and melt growth of novel scintillating halide crystals

    Science.gov (United States)

    Yoshikawa, Akira; Yokota, Yuui; Shoji, Yasuhiro; Kral, Robert; Kamada, Kei; Kurosawa, Shunsuke; Ohashi, Yuji; Arakawa, Mototaka; Chani, Valery I.; Kochurikhin, Vladimir V.; Yamaji, Akihiro; Andrey, Medvedev; Nikl, Martin

    2017-12-01

    Melt growth of scintillating halide crystals is reviewed. The vertical Bridgman growth technique is still considered as very popular method that enables production of relatively large and commercially attractive crystals. On the other hand, the micro-pulling-down method is preferable when fabrication of small samples, sufficient for preliminary characterization of their optical and/or scintillation performance, is required. Moreover, bulk crystal growth is also available using the micro-pulling-down furnace. The examples of growths of various halide crystals by industrially friendly melt growth techniques including Czochralski and edge-defined film-fed growth methods are also discussed. Finally, traveling molten zone growth that in some degree corresponds to horizontal zone melting is briefly overviewed.

  13. Acquisition of Single Crystal Growth and Characterization Equipment. Final report

    International Nuclear Information System (INIS)

    Maple, M. Brian; Zocco, Diego A.

    2008-01-01

    Final Report for DOE Grant No. DE-FG02-04ER46178 'Acquisition of Single Crystal Growth and Characterization Equipment'. There is growing concern in the condensed matter community that the need for quality crystal growth and materials preparation laboratories is not being met in the United States. It has been suggested that there are too many researchers performing measurements on too few materials. As a result, many user facilities are not being used optimally. The number of proficient crystal growers is too small. In addition, insufficient attention is being paid to the enterprise of finding new and interesting materials, which is the driving force behind much of condensed matter research and, ultimately, technology. While a detailed assessment of this situation is clearly needed, enough evidence of a problem already exists to compel a general consensus that the situation must be addressed promptly. This final report describes the work carried out during the last four years in our group, in which a state-of-the-art single crystal growth and characterization facility was established for the study of novel oxides and intermetallic compounds of rare earth, actinide and transition metal elements. Research emphasis is on the physics of superconducting (SC), magnetic, heavy fermion (HF), non-Fermi liquid (NFL) and other types of strongly correlated electron phenomena in bulk single crystals. Properties of these materials are being studied as a function of concentration of chemical constituents, temperature, pressure, and magnetic field, which provide information about the electronic, lattice, and magnetic excitations at the root of various strongly correlated electron phenomena. Most importantly, the facility makes possible the investigation of material properties that can only be achieved in high quality bulk single crystals, including magnetic and transport phenomena, studies of the effects of disorder, properties in the clean limit, and spectroscopic and scattering

  14. Connection between the growth rate distribution and the size dependent crystal growth

    Science.gov (United States)

    Mitrović, M. M.; Žekić, A. A.; IIić, Z. Z.

    2002-07-01

    The results of investigations of the connection between the growth rate dispersions and the size dependent crystal growth of potassium dihydrogen phosphate (KDP), Rochelle salt (RS) and sodium chlorate (SC) are presented. A possible way out of the existing confusion in the size dependent crystal growth investigations is suggested. It is shown that the size independent growth exists if the crystals belonging to one growth rate distribution maximum are considered separately. The investigations suggest possible reason for the observed distribution maxima widths, and the high data scattering on the growth rate versus the crystal size dependence.

  15. Growth and fabrication of large size sodium iodide crystal scintillator

    International Nuclear Information System (INIS)

    Sabharwal, S.C.; Karandikar, S.C.; Mirza, T.; Ghosh, B.; Deshpande, R.Y.

    1979-01-01

    The growth of 80 - 135 mm dia. Sodium iodide crystals activated with thallium is described in the present report. The growth is effected in a glazed porcelain crucible in a protective ambient of dry nitrogen. The technical details of the equipment developed have been fully described. The results of measurements on the rate of growth of crystal and the optimization of different growth parameters are reported. The dependence of various factors upon the performance characteristics of the scintillator detectors made using these crystals is also discussed. The energy resolution obtained for a typical detector of dimensions 76 mm dia x 76 mm ht. is 10 percent. (auth.)

  16. Growth and surface topography of WSe_2 single crystal

    International Nuclear Information System (INIS)

    Dixit, Vijay; Vyas, Chirag; Pataniya, Pratik; Jani, Mihir; Pathak, Vishal; Patel, Abhishek; Pathak, V. M.; Patel, K. D.; Solanki, G. K.

    2016-01-01

    Tungsten Di-Selenide belongs to the family of TMDCs showing their potential applications in the fields of Optoelectronics and PEC solar cells. Here in the present investigation single crystals of WSe_2 were grown by Direct Vapour Transport Technique in a dual zone furnace having temperature difference of 50 K between the two zones. These single crystals were characterized by EDAX which confirms the stiochiometry of the grown crystals. Surface topography of the crystal was studied by optical micrograph showing the left handed spirals on the surface of WSe_2 crystals. Single crystalline nature of the crystals was confirmed by SAED.

  17. Patterned solid state growth of barium titanate crystals

    Science.gov (United States)

    Ugorek, Michael Stephen

    An understanding of microstructure evolution in ceramic materials, including single crystal development and abnormal/enhanced grain growth should enable more controlled final ceramic element structures. In this study, two different approaches were used to control single crystal development in a patterned array. These two methods are: (1) patterned solid state growth in BaTiO 3 ceramics, and (2) metal-mediated single crystal growth in BaTiO 3. With the patterned solid state growth technique, optical photolithography was used to pattern dopants as well as [001] and [110] BaTiO3 single crystal template arrays with a 1000 microm line pattern array with 1000 microm spacings. These patterns were subsequently used to control the matrix grain growth evolution and single crystal development in BaTiO3. It was shown that the growth kinetics can be controlled by a small initial grain size, atmosphere conditions, and the introduction of a dopant at selective areas/interfaces. By using a PO2 of 1x10-5 atm during high temperature heat treatment, the matrix coarsening has been limited (to roughly 2 times the initial grain size), while retaining single crystal boundary motion up to 0.5 mm during growth for dwell times up to 9 h at 1300°C. The longitudinal and lateral growth rates were optimized at 10--15 microm/h at 1300°C in a PO2 of 1x10 -5 atm for single crystal growth with limited matrix coarsening. Using these conditions, a patterned microstructure in BaTiO3 was obtained. With the metal-mediated single crystal growth technique, a novel approach for fabricating 2-2 single crystal/polymer composites with a kerf texture development were studied using both [001] and [110] BaTiO3 single crystals templates. By using a PO 2 of 1x10-11 atm during high temperature heat treatment, matrix coarsening was limited while enabling single crystal boundary motion up to 0.35 mm during growth between 1250°C and 1300°C with growth rates ˜ 3--4 microm/h for both single crystal orientations. By

  18. Impact of Heterogeneity and Lattice Bond Strength on DNA Triangle Crystal Growth.

    Science.gov (United States)

    Stahl, Evi; Praetorius, Florian; de Oliveira Mann, Carina C; Hopfner, Karl-Peter; Dietz, Hendrik

    2016-09-07

    One key goal of DNA nanotechnology is the bottom-up construction of macroscopic crystalline materials. Beyond applications in fields such as photonics or plasmonics, DNA-based crystal matrices could possibly facilitate the diffraction-based structural analysis of guest molecules. Seeman and co-workers reported in 2009 the first designed crystal matrices based on a 38 kDa DNA triangle that was composed of seven chains. The crystal lattice was stabilized, unprecedentedly, by Watson-Crick base pairing. However, 3D crystallization of larger designed DNA objects that include more chains such as DNA origami remains an unsolved problem. Larger objects would offer more degrees of freedom and design options with respect to tailoring lattice geometry and for positioning other objects within a crystal lattice. The greater rigidity of multilayer DNA origami could also positively influence the diffractive properties of crystals composed of such particles. Here, we rationally explore the role of heterogeneity and Watson-Crick interaction strengths in crystal growth using 40 variants of the original DNA triangle as model multichain objects. Crystal growth of the triangle was remarkably robust despite massive chemical, geometrical, and thermodynamical sample heterogeneity that we introduced, but the crystal growth sensitively depended on the sequences of base pairs next to the Watson-Crick sticky ends of the triangle. Our results point to weak lattice interactions and high concentrations as decisive factors for achieving productive crystallization, while sample heterogeneity and impurities played a minor role.

  19. Growth of Ga2O3 single crystal

    OpenAIRE

    龍見, 雅美; 小池, 裕之; 市木, 伸明; Tatsumi, Masami; Koike, Hiroyuki; Ichiki, Nobuaki

    2010-01-01

    Single crystals of β-Ga2O3 for substrates of GaN LED were grown by Floating Zone(FZ) method. The transparent single crystals of 5-6 mm in diameter were reproducibly obtained by applying necking procedure and the preferential growth direction was . Many cracks were induced along the cleavage plane of (100) in slicing process, which is related to thermal stress and the growth direction. However, this preliminary growth experiments suggested that β-Ga2O3 single crystal is promising as a substrat...

  20. Study on growth techniques and macro defects of large-size Nd:YAG laser crystal

    Science.gov (United States)

    Quan, Jiliang; Yang, Xin; Yang, Mingming; Ma, Decai; Huang, Jinqiang; Zhu, Yunzhong; Wang, Biao

    2018-02-01

    Large-size neodymium-doped yttrium aluminum garnet (Nd:YAG) single crystals were grown by the Czochralski method. The extinction ratio and wavefront distortion of the crystal were tested to determine the optical homogeneity. Moreover, under different growth conditions, the macro defects of inclusion, striations, and cracking in the as-grown Nd:YAG crystals were analyzed. Specifically, the inclusion defects were characterized using scanning electron microscopy and energy dispersive spectroscopy. The stresses of growth striations and cracking were studied via a parallel plane polariscope. These results demonstrate that improper growth parameters and temperature fields can enhance defects significantly. Thus, by adjusting the growth parameters and optimizing the thermal environment, high-optical-quality Nd:YAG crystals with a diameter of 80 mm and a total length of 400 mm have been obtained successfully.

  1. A Genetic Analysis of Crystal Growth

    DEFF Research Database (Denmark)

    Brown, Stanley; Sarikaya, Mehmet; Johnson, E.

    2000-01-01

    The regulation of crystal morphology by proteins is often observed in biology. It is a central feature in the formation of hard tissues such as bones, teeth and mollusc shells. We have developed a genetic system in the bacterium Escherichia coli to study the protein-mediated control of crystal...

  2. Growth and characterization of heavily doped silicon crystals

    Energy Technology Data Exchange (ETDEWEB)

    Scala, R.; Porrini, M. [MEMC Electronic Materials SpA, via Nazionale 59, 39012 Merano (Italy); Borionetti, G. [MEMC Electronic Materials SpA, viale Gherzi 31, Novara (Italy)

    2011-08-15

    Silicon crystals grown with the Czochralski method are still the most common material used for the production of electronic devices. In recent years, a growing need of large diameter crystals with increasingly higher doping levels is observed, especially to support the expanding market of discrete devices and its trend towards lower and lower resistivity levels for the silicon substrate. The growth of such heavily doped, large-diameter crystals poses several new challenges to the crystal grower, and the presence of a high dopant concentration in the crystal affects significantly its main properties, requiring also the development of dedicated characterization techniques. This paper illustrates the recent advances in the growth and characterization of silicon crystals heavily doped with antimony, arsenic, phosphorus and boron. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. High-pressure growth of NaMn7O12 crystals

    International Nuclear Information System (INIS)

    Gilioli, Edi; Calestani, Gianluca; Licci, Francesca; Paorici, Carlo; Gauzzi, Andrea; Bolzoni, Fulvio; Prodi, Andrea

    2006-01-01

    With the aim of producing large crystals of metastable NaMn 7 O 12 manganite, suitable for physical measurements (i.e.: RXS, Raman, EPR, STS, single-crystal neutron diffraction), we carried out a systematic investigation of the parameters controlling the growth of crystals, including the thermodynamic variables (T, P, and reagent composition) and the kinetic factors, such as reaction time and heating/cooling rate. By varying each parameter while maintaining constant the other ones, we found the thermodynamic conditions under which an optimum equilibrium is reached between the competing nucleation and growth rates. They were found to range between 400 and 700 o C (T) and between 20 and 60 Kbars (P), respectively. Under these conditions, we further optimized the growth process, by establishing the most appropriate growth duration (several hours), reagent type (pre-reacted precursor) and composition (presence of 0.4 mole% water and of 5% Na excess with respect to the stoichiometric composition). Typical crystals having several hundreds μm in linear sizes were reproducibly obtained, while the largest sample was about 800 μm. A description of the crystal growth mechanism, based on the experimental results, is also presented and discussed. It assumes that two different mechanisms control the crystal growth, depending on whether the crystallization is taking place outside the stability field, i.e. in presence of native reagents, or inside it, i.e. in a polycrystalline NaMn 7 O 12 phase matrix. In the first case, large crystal growth occurs thanks to the low nucleation and high diffusion rates, while in the second one the crystallization is due to the solid-state mechanism based on the free energy reduction caused by grain boundary migration. - Graphical abstract: Optical (a) and SEM images (b) of NaMn 7 O 12 crystals. Note the markers: 300 μm, top-right corner (a) and 40 μm, bottom left (b)

  4. Needle-shaped and platelet growth of borax crystals

    International Nuclear Information System (INIS)

    Takoo, R.K.; Patel, B.R.; Joshi, M.S.

    1983-01-01

    Needle-shaped and platelet growth of borax crystals from solutions is reported. Results of microtopographical studies on both the varieties are discussed. It is suggested that a slow rate of evaporation favours needle growth and a faster rate is conducive to the growth of platelets. (author)

  5. Method of Promoting Single Crystal Growth During Melt Growth of Semiconductors

    Science.gov (United States)

    Su, Ching-Hua (Inventor)

    2013-01-01

    The method of the invention promotes single crystal growth during fabrication of melt growth semiconductors. A growth ampoule and its tip have a semiconductor source material placed therein. The growth ampoule is placed in a first thermal environment that raises the temperature of the semiconductor source material to its liquidus temperature. The growth ampoule is then transitioned to a second thermal environment that causes the semiconductor source material in the growth ampoule's tip to attain a temperature that is below the semiconductor source material's solidus temperature. The growth ampoule so-transitioned is then mechanically perturbed to induce single crystal growth at the growth ampoule's tip.

  6. A Cannibalistic Approach to Grand Canonical Crystal Growth.

    Science.gov (United States)

    Karmakar, Tarak; Piaggi, Pablo M; Perego, Claudio; Parrinello, Michele

    2018-04-04

    Canonical molecular dynamics simulations of crystal growth from solution suffer from severe finite-size effects. As the crystal grows, the solute molecules are drawn from the solution to the crystal, leading to a continuous drop in the solution concentration. This is in contrast to experiments in which the crystal grows at an approximately constant supersaturation of a bulk solution. Recently, Perego et al. [ J. Chem. Phys. 2015, 142, 144113] showed that in a periodic setup in which the crystal is represented as a slab, the concentration in the vicinity of the two surfaces can be kept constant while the molecules are drawn from a part of the solution that acts as a molecular reservoir. This method is quite effective in studying crystallization under controlled supersaturation conditions. However, once the reservoir is depleted, the constant supersaturation conditions cannot be maintained. We propose a variant of this method to tackle this depletion problem by simultaneously dissolving one side of the crystal while letting the other side grow. A continuous supply of particles to the solution due to the crystal dissolution maintains a steady solution concentration and avoids reservoir depletion. In this way, a constant supersaturation condition can be maintained for as long as necessary. We have applied this method to study the growth and dissolution of urea crystal from water solution under constant supersaturation and undersaturation conditions, respectively. The computed growth and dissolution rates are in good agreement with those obtained in previous studies.

  7. Growth features of ammonium hydrogen d-tartrate single crystals

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Ammonium hydrogen d-tartrate (d-AHT) single crystals were grown in silica gel. The growth fea- ... solution (specific gravity, 1⋅04 g/cc) with d-tartaric acid solution having ... resulting in the production of crystal nuclei. The interface.

  8. On the growth of calcium tartrate tetrahydrate single crystals

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Calcium tartrate single crystals were grown using silica gel as the growth medium. Calcium for- mate mixed with formic acid was taken as the supernatant solution. It was observed that the nucleation den- sity was reduced and the size of the crystals was improved to a large extent compared to the conventional way.

  9. Cross-twinning model of fcc crystal growth

    NARCIS (Netherlands)

    van de Waal, B.W.

    1995-01-01

    The theory developed in 1960 by Wagner, Hamilton and Seidensticker (WHS-theory) to explain observed crystal growth phenomena in Ge is critically reviewed and shown to be capable of explaining preservation of ABC stacking order in two dimensions in fcc crystals of effectively spherical closed shell

  10. Growth of strontium oxalate crystals in agar–agar gel

    Indian Academy of Sciences (India)

    Growth of strontium oxalate crystals in agar–agar gel. P V DALAL. ∗ and K B SARAF. Postgraduate Department of Physics, Pratap College, Amalner 425 401, India. MS received 16 March 2008; revised 5 April 2010. Abstract. Single crystals of strontium oxalate have been grown by using strontium chloride and oxalic acid in.

  11. Modeling and simulation of Si crystal growth from melt

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lijun; Liu, Xin; Li, Zaoyang [National Engineering Research Center for Fluid Machinery and Compressors, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Miyazawa, Hiroaki; Nakano, Satoshi; Kakimoto, Koichi [Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan)

    2009-07-01

    A numerical simulator was developed with a global model of heat transfer for any crystal growth taking place at high temperature. Convective, conductive and radiative heat transfers in the furnace are solved together in a conjugated way by a finite volume method. A three-dimensional (3D) global model was especially developed for simulation of heat transfer in any crystal growth with 3D features. The model enables 3D global simulation be conducted with moderate requirement of computer resources. The application of this numerical simulator to a CZ growth and a directional solidification process for Si crystals, the two major production methods for crystalline Si for solar cells, was introduced. Some typical results were presented, showing the importance and effectiveness of numerical simulation in analyzing and improving these kinds of Si crystal growth processes from melt. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Liquid nitrogen dewar for protein crystal growth

    Science.gov (United States)

    2001-01-01

    Gaseous Nitrogen Dewar apparatus developed by Dr. Alex McPherson of the University of California, Irvine for use aboard Mir and the International Space Station allows large quantities of protein samples to be crystallized in orbit. The specimens are contained either in plastic tubing (heat-sealed at each end). Biological samples are prepared with a precipitating agent in either a batch or liquid-liquid diffusion configuration. The samples are then flash-frozen in liquid nitrogen before crystallization can start. On orbit, the Dewar is placed in a quiet area of the station and the nitrogen slowly boils off (it is taken up by the environmental control system), allowing the proteins to thaw to begin crystallization. The Dewar is returned to Earth after one to four months on orbit, depending on Shuttle flight opportunities. The tubes then are analyzed for crystal presence and quality

  13. Fatigue effect in ferroelectric crystals: Growth of the frozen domains

    Science.gov (United States)

    Shur, V. Ya.; Akhmatkhanov, A. R.; Baturin, I. S.

    2012-06-01

    The model of the fatigue effect during cyclic switching caused by growth of the frozen domain area with charged domain walls has been proposed. It was claimed on the basis of the previous experimental results that for switching in increasing field the frozen domain area started to grow at the given sub-threshold field value and stopped at the threshold field. The influence of the shape and frequency of the field pulses used for cyclic switching has been considered. The uniaxial ferroelectric stoichiometric lithium tantalate single crystals produced by vapor transport equilibration with record low value of coercive field have been chosen as a model material for experimental verification of the model. The formation of the charged domain walls as a result of cyclic switching has been revealed by analysis of the domain images obtained by optical and Raman confocal microscopy. It has been shown that the fatigue degree is equal to the fraction of the frozen domain area. The experimental dependence of the switched charge on the cycle number has been successfully fitted by modified Kolmogorov-Avrami formula. The experimentally observed frequency independence of fatigue profile for rectangular pulses and frequency dependence for triangular pulses has been explained by proposed model.

  14. Silicon crystal growth using a liquid-feeding Czochralski method

    Science.gov (United States)

    Shiraishi, Yutaka; Kurosaka, Shoei; Imai, Masato

    1996-09-01

    Silicon single crystals with uniformity along the growth direction were grown using a new continuous Czochralski (CCZ) method. Polycrystalline silicon rods used as charge materials are melted by carbon heaters over a crucible without contact between the raw material and other substances. Using this method, silicon crystals with diameters as large as 6 or 8 inch and good uniformity along the growth direction were grown.

  15. Controlled growth of filamentary crystals and fabrication of single-crystal whisker probes

    International Nuclear Information System (INIS)

    Givargizov, E. I.

    2006-01-01

    The growth of filamentary crystals (whiskers) on a single-crystal substrate through the vapour-liquid-solid mechanism is described. The possibility of fabricating oriented systems of whiskers on the basis of this mechanism of crystal growth is noted. A phenomenon that is important for nanotechnology is noted: the existence of a critical diameter of whiskers, below which they are not formed. The phenomenon of radial periodic instability, which is characteristic of nanowhiskers, is described and the ways of its elimination are shown. The possibility of transforming whiskers into single-crystal tips and the growth of crystalline diamond particles at their apices are noted as important for practice. Possible applications of systems of whiskers and tips are described briefly. Particular attention is paid to the latest direction in whisker technology-fabrication of single-crystal whisker probes for atomic force microscopy

  16. Nucleation and growth of the Naica giant gypsum crystals.

    Science.gov (United States)

    Otálora, Fermín; García-Ruiz, JuanMa

    2014-04-07

    The Cave of Giant Crystals in the Naica mine (Mexico) is one of the most amazing displays of mineral beauty ever created in nature. In addition to the colossal crystals of gypsum, which in some cases exceed eleven meters in length and one meter in thickness, the scenery fashioned by the crystalline beams that thrust through the darkness of the cave from floor to ceiling with a luster like moonlight is a unique example of harmony based on crystal symmetry. We review the crystallogenesis of this remarkable and challenging phenomenon of mineralization near equilibrium that can be used to teach the basics of nucleation and crystal growth.

  17. Hydrothermal growth of PbSO4 (Anglesite) single crystal

    International Nuclear Information System (INIS)

    Kikuta, Ko-ichi; Yoneta, Yasuhito; Yogo, Toshinobu; Hirano, Shin-ichi

    1994-01-01

    Hydrothermal growth of single crystals of PbSO 4 , which is known as a natural mineral called anglesite, was investigated. Lead nitrate and nitric acid solutions were found to be useful for the growth of angle-site on the basis of the experimental results on the dissolution behavior. Relatively large euhedral single crystals bound by {210} and {101} planes were successfully grown in 1.5 mol/kg Pb(NO 3 ) 2 at 400degC and 100 MPa. Optical characterization revealed that the grown anglesite crystals can be useful for scintillators material. (author)

  18. Effect of amino acid doping on the growth and ferroelectric properties of triglycine sulphate single crystals

    International Nuclear Information System (INIS)

    Raghavan, C.M.; Sankar, R.; Mohan Kumar, R.; Jayavel, R.

    2008-01-01

    Effect of amino acids (L-leucine and isoleucine) doping on the growth aspects and ferroelectric properties of triglycine sulphate crystals has been studied. Pure and doped crystals were grown from aqueous solution by low temperature solution growth technique. The cell parameter values were found to significantly vary for doped crystals. Fourier transform infrared analysis confirmed the presence of functional groups in the grown crystal. Morphology study reveals that amino acid doping induces faster growth rate along b-direction leading to a wide b-plane and hence suitable for pyroelectric detector applications. Ferroelectric domain structure has been studied by atomic force microscopy and hysteresis measurements reveal an increase of coercive field due to the formation of single domain pattern

  19. Development of a model for on-line control of crystal growth by the AHP method

    Science.gov (United States)

    Gonik, M. A.; Lomokhova, A. V.; Gonik, M. M.; Kuliev, A. T.; Smirnov, A. D.

    2007-05-01

    The possibility to apply a simplified 2D model for heat transfer calculations in crystal growth by the axial heat close to phase interface (AHP) method is discussed in this paper. A comparison with global heat transfer calculations with the CGSim software was performed to confirm the accuracy of this model. The simplified model was shown to provide adequate results for the shape of the melt-crystal interface and temperature field in an opaque (Ge) and a transparent crystal (CsI:Tl). The model proposed is used for identification of the growth setup as a control object, for synthesis of a digital controller (PID controller at the present stage) and, finally, in on-line simulations of crystal growth control.

  20. Advanced crystal growth techniques for thallium bromide semiconductor radiation detectors

    Science.gov (United States)

    Datta, Amlan; Becla, Piotr; Guguschev, Christo; Motakef, Shariar

    2018-02-01

    Thallium Bromide (TlBr) is a promising room-temperature radiation detector candidate with excellent charge transport properties. Currently, Travelling Molten Zone (TMZ) technique is widely used for growth of semiconductor-grade TlBr crystals. However, there are several challenges associated with this type of crystal growth process including lower yield, high thermal stress, and low crystal uniformity. To overcome these shortcomings of the current technique, several different crystal growth techniques have been implemented in this study. These include: Vertical Bridgman (VB), Physical Vapor Transport (PVT), Edge-defined Film-fed Growth (EFG), and Czochralski Growth (Cz). Techniques based on melt pulling (EFG and Cz) were demonstrated for the first time for semiconductor grade TlBr material. The viability of each process along with the associated challenges for TlBr growth has been discussed. The purity of the TlBr crystals along with its crystalline and electronic properties were analyzed and correlated with the growth techniques. Uncorrected 662 keV energy resolutions around 2% were obtained from 5 mm x 5 mm x 10 mm TlBr devices with virtual Frisch-grid configuration.

  1. The growth of crystals of erbium hydride

    International Nuclear Information System (INIS)

    Grimshaw, J.A.; Spooner, F.J.; Wilson, C.G.; McQuillan, A.D.

    1981-01-01

    Crystals of the rare-earth hydride ErH 2 have been produced with face areas greater than a square millimetre and corresponding volumes exceeding those of earlier crystals by orders of magnitude. The hydride, which was produced in bulk polycrystalline form by hydriding erbium metal at 950 0 C, has been examined by optical and X-ray techniques. For material of composition ErH 2 and ErHsub(1.8) the size of the grains and their degree of strain appears to depend more on oxygen contamination during formation and on the subsequent cooling procedure, than on the size of erbium metal crystals in the starting material. (author)

  2. Crystal growth of CVD diamond and some of its peculiarities

    CERN Document Server

    Piekarczyk, W

    1999-01-01

    Experiments demonstrate that CVD diamond can form in gas environments that are carbon undersaturated with respect to diamond. This fact is, among others, the most serious violation of principles of chemical thermodynamics. In this $9 paper it is shown that none of the principles is broken when CVD diamond formation is considered not a physical process consisting in growth of crystals but a chemical process consisting in accretion of macro-molecules of polycyclic $9 saturated hydrocarbons belonging to the family of organic compounds the smallest representatives of which are adamantane, diamantane, triamantane and so forth. Since the polymantane macro-molecules are in every respect identical with $9 diamond single crystals with hydrogen-terminated surfaces, the accretion of polymantane macro- molecules is a process completely equivalent to the growth of diamond crystals. However, the accretion of macro-molecules must be $9 described in a way different from that used to describe the growth of crystals because so...

  3. Crystal growth and scintillation properties of Lu substituted CeBr.sub.3./sub. single crystals

    Czech Academy of Sciences Publication Activity Database

    Ito, T.; Yokota, Y.; Kurosawa, S.; Král, Robert; Kamada, K.; Pejchal, Jan; Ohashi, Y.; Yoshikawa, A.

    2016-01-01

    Roč. 452, Oct (2016), s. 65-68 ISSN 0022-0248. [American Conference on Crystal Growth and Epitaxy /20./ (ACCGE) / 17th Biennial Workshop on Organometallic Vapor Phase Epitaxy (OMVPE) / 2nd 2D Electronic Materials Symposium. Big Sky, MT, 02.08.2015-07.08.2015] Institutional support: RVO:68378271 Keywords : radiation * halides * scintillator materials * crystal growth Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.751, year: 2016

  4. Czochralski growth of gallium indium antimonide alloy crystals

    Energy Technology Data Exchange (ETDEWEB)

    Tsaur, S.C.

    1998-02-01

    Attempts were made to grow alloy crystals of Ga{sub 1{minus}x}In{sub x}Sb by the conventional Czochralski process. A transparent furnace was used, with hydrogen purging through the chamber during crystal growth. Single crystal seeds up to about 2 to 5 mole% InSb were grown from seeds of 1 to 2 mole% InSb, which were grown from essentially pure GaSb seeds of the [111] direction. Single crystals were grown with InSb rising from about 2 to 6 mole% at the seed ends to about 14 to 23 mole% InSb at the finish ends. A floating-crucible technique that had been effective in reducing segregation in doped crystals, was used to reduce segregation in Czochralski growth of alloy crystals of Ga{sub 1{minus}x}In{sub x}Sb. Crystals close to the targeted composition of 1 mole% InSb were grown. However, difficulties were encountered in reaching higher targeted InSb concentrations. Crystals about 2 mole% were grown when 4 mole% was targeted. It was observed that mixing occurred between the melts rendering the compositions of the melts; and, hence, the resultant crystal unpredictable. The higher density of the growth melt than that of the replenishing melt could have triggered thermosolutal convection to cause such mixing. It was also observed that the floating crucible stuck to the outer crucible when the liquidus temperature of the replenishing melt was significantly higher than that of the growth melt. The homogeneous Ga{sub 1{minus}x}In{sub x}Sb single crystals were grown successfully by a pressure-differential technique. By separating a quartz tube into an upper chamber for crystal growth and a lower chamber for replenishing. The melts were connected by a capillary tube to suppress mixing between them. A constant pressure differential was maintained between the chambers to keep the growth melt up in the growth chamber. The method was first tested with a low temperature alloy Bi{sub 1{minus}x}Sb{sub x}. Single crystals of Ga{sub 1{minus}x}In{sub x}Sb were grown with uniform

  5. Precipitation of thin-film organic single crystals by a novel crystal growth method using electrospray and ionic liquid film

    Science.gov (United States)

    Ueda, Hiroyuki; Takeuchi, Keita; Kikuchi, Akihiko

    2018-04-01

    We report an organic single crystal growth technique, which uses a nonvolatile liquid thin film as a crystal growth field and supplies fine droplets containing solute from the surface of the liquid thin film uniformly and continuously by electrospray deposition. Here, we investigated the relationships between the solute concentration of the supplied solution and the morphology and size of precipitated crystals for four types of fluorescent organic low molecule material [tris(8-hydroxyquinoline)aluminum (Alq3), 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), N,N‧-bis(3-methylphenyl)-N,N‧-diphenylbenzidine (TPD), and N,N-bis(naphthalene-1-yl)-N,N-diphenyl-benzidine (NPB)] using an ionic liquid as the nonvolatile liquid. As the concentration of the supplied solution decreased, the morphology of precipitated crystals changed from dendritic or leaf shape to platelike one. At the solution concentration of 0.1 mg/ml, relatively large platelike single crystals with a diagonal length of over 100 µm were obtained for all types of material. In the experiment using ionic liquid and dioctyl sebacate as nonvolatile liquids, it was confirmed that there is a clear positive correlation between the maximum volume of the precipitated single crystal and the solubility of solute under the same solution supply conditions.

  6. Three-dimensional modelling of thermal stress in floating zone silicon crystal growth

    Science.gov (United States)

    Plate, Matiss; Krauze, Armands; Virbulis, Jānis

    2018-05-01

    During the growth of large diameter silicon single crystals with the industrial floating zone method, undesirable level of thermal stress in the crystal is easily reached due to the inhomogeneous expansion as the crystal cools down. Shapes of the phase boundaries, temperature field and elastic material properties determine the thermal stress distribution in the solid mono crystalline silicon during cylindrical growth. Excessive stress can lead to fracture, generation of dislocations and altered distribution of intrinsic point defects. Although appearance of ridges on the crystal surface is the decisive factor of a dislocation-free growth, the influence of these ridges on the stress field is not completely clear. Here we present the results of thermal stress analysis for 4” and 5” diameter crystals using a quasi-stationary three dimensional mathematical model including the material anisotropy and the presence of experimentally observed ridges which cannot be addressed with axis-symmetric models. The ridge has a local but relatively strong influence on thermal stress therefore its relation to the origin of fracture is hypothesized. In addition, thermal stresses at the crystal rim are found to increase for a particular position of the crystal radiation reflector.

  7. Advances in the Growth and Characterization of Relaxor-PT-Based Ferroelectric Single Crystals

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2014-07-01

    Full Text Available Compared to Pb(Zr1−xTixO3 (PZT polycrystalline ceramics, relaxor-PT single crystals offer significantly improved performance with extremely high electromechanical coupling and piezoelectric coefficients, making them promising materials for piezoelectric transducers, sensors and actuators. The recent advances in crystal growth and characterization of relaxor-PT-based ferroelectric single crystals are reviewed in this paper with emphases on the following topics: (1 the large crystal growth of binary and ternary relaxor-PT-based ferroelectric crystals for commercialization; (2 the composition segregation in the crystals grown from such a solid-solution system and possible solutions to reduce it; (3 the crystal growth from new binary and ternary compositions to expand the operating temperature and electric field; (4 the crystallographic orientation dependence and anisotropic behaviors of relaxor-PT-based ferroelectriccrystals; and (5 the characterization of the dielectric, elastic and piezoelectric properties of the relaxor-PT-based ferroelectriccrystals under small and large electric fields.

  8. Rotation of dust plasma crystals in an axial magnetic field

    International Nuclear Information System (INIS)

    Cheung, F.; Prior, N.; Mitchell, L.

    2000-01-01

    Full text: Micron-sized melamine formaldehyde particles were introduced into argon plasma. As a result, the particles were negatively charged due to collision with the electrons within the plasma. With the right conditions, these particles formed a stable macroscopic crystal lattice, known as dust plasma crystal. In our experiment we conduct at Flinders University, we apply an external axial magnetic field to various configurations of dust plasma crystal. These configurations include small crystal lattices consisting of one to several particles, and large crystal lattices with many hundreds of particles. The magnetic field strength ranged from 0-32G and was uniform over the extent of the crystal. The crystals were observed to be rotating collectively in the left-handed direction under the influence of the axial magnetic field. In the case of the large crystals, the angular velocity was about 2 complete rotations per minute and was proportional to the applied magnetic field. The angular velocity changes only slightly depending on the plasma conditions. Neither radial variance in the angular velocity nor shear velocity in the vertical direction was observed in the crystal's rotational motion. In the case of the small crystals, we managed to rotate 2-6 particles (whether they are planar, 2 layers or tetrahedral). We discovered that the ease and the uniformity of the rotation of the different crystals increase as its rotational symmetry increases. Also an increase in the magnetic field strength will correspond to an increase in the angular velocity. Crystals in the shape of an annulus were also tested for theoretical reasons. The poster presentation will contain the experimental procedures, a detailed analysis and an explanation for such dust plasma crystal rotational motion

  9. Shallow Melt Apparatus for Semicontinuous Czochralski Crystal Growth

    Science.gov (United States)

    Wang, T.; Ciszek, T. F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  10. Crystallization of inorganic salts from aqueous solutions in a microwave field

    International Nuclear Information System (INIS)

    Kochetkov, S. E.; Kuznetsov, V. A.; Lyashenko, A. V.; Bakshutov, V. S.

    2006-01-01

    The crystallization of some inorganic salts (KH 2 PO 4 , NaCl, Sr(NO 3 ) 2 , KNO 2 , Ca(OH) 2 ) by the thermal-gradient (with decreasing temperature) and solvent-evaporation methods using microwave heating of solutions is investigated. It is established that the growth rates of single crystals in a microwave field are an order of magnitude higher than obtained in other known techniques at comparable crystallization temperatures and supersaturations. For example, the growth rate of prismatic faces {100} of KH 2 PO 4 crystals is as high as 11 mm/day at supersaturations of ∼1.2%. The results obtained are discussed in the context of the effect of microwave radiation on the adsorption surface layers of crystals. Fine-grained phases of the salts under study are obtained by evaporation of the solvent

  11. Monte Carlo simulation of continuous-space crystal growth

    International Nuclear Information System (INIS)

    Dodson, B.W.; Taylor, P.A.

    1986-01-01

    We describe a method, based on Monte Carlo techniques, of simulating the atomic growth of crystals without the discrete lattice space assumed by conventional Monte Carlo growth simulations. Since no lattice space is assumed, problems involving epitaxial growth, heteroepitaxy, phonon-driven mechanisms, surface reconstruction, and many other phenomena incompatible with the lattice-space approximation can be studied. Also, use of the Monte Carlo method circumvents to some extent the extreme limitations on simulated timescale inherent in crystal-growth techniques which might be proposed using molecular dynamics. The implementation of the new method is illustrated by studying the growth of strained-layer superlattice (SLS) interfaces in two-dimensional Lennard-Jones atomic systems. Despite the extreme simplicity of such systems, the qualitative features of SLS growth seen here are similar to those observed experimentally in real semiconductor systems

  12. Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment

    Science.gov (United States)

    Su, Ching-Hua

    2014-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). There are two sections of the flight experiment: (I) crystal growth of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT) and (II) melt growth of CdZnTe by directional solidification. The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  13. Crystal growth and physical properties of Ferro-pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Aswartham, Saicharan

    2012-11-08

    The thesis work presented here emphasizes important aspects of crystal growth and the influence of chemical substitution in Fe-As superconductors. High temperature solution growth technique is one of most powerful and widely used technique to grow single crystals of various materials. The biggest advantage of high temperature solution growth technique is the, possibility of growing single crystals from both congruently and incongruently melting materials. Solution growth technique has the potential to control high vapour pressures, given the fact that, in Fe-based superconductors elements with high vapour pressure like As, K, Li and Na have to be handled during the crystal growth procedure. In this scenario high temperature solution growth is the best suitable growth technique to synthesize sizable homogeneous single crystals. Using self-flux high temperature solution growth technique, large centimeter-sized high quality single crystals of BaFe{sub 2}As{sub 2} were grown. This pristine compound BaFe{sub 2}As{sub 2} undergoes structural and magnetic transition at T{sub S/N} = 137 K. By suppressing this magnetic transition and stabilizing tetragonal phase with chemical substitution, like Co-doping and Na-doping, bulk superconductivity is achieved. Superconducting transitions of as high as T{sub c} = 34 K with Na substitution and T{sub c} = 25 K with Co-doping were obtained. A combined electronic phase diagram has been achieved for both electron doping with Co and hole doping with Na in BaFe{sub 2}As{sub 2}. Single crystals of LiFe{sub 1-x}Co{sub x}As with x = 0, 0.025, 0.05 and 0.075 were grown by a self-flux high temperature solution growth technique. The charge doping in LiFeAs is achieved with the Co-doping in Fe atoms. The superconducting properties investigated by means of temperature dependent magnetization and resistivity revealed that superconductivity is shifted to lower temperatures and with higher amount of charge carriers superconductivity is killed

  14. Development of n- and p-type Doped Perovskite Single Crystals Using Solid-State Single Crystal Growth (SSCG) Technique

    Science.gov (United States)

    2017-10-09

    for AGG should be minimal. For this purpose, the seeds for AGG may also be provided externally. This process is called the solid-state single...bonding process . Figure 31 shows (a) the growth of one large single crystal from one small single crystal seed as well as (b) the growth of one...one bi-crystal seed : One large bi-crystal can be grown from one small bi-crystal by SSCG process . Fig. 32. Diffusion bonding process for

  15. Growth of mercuric iodide single crystals from dimethylsulfoxide

    International Nuclear Information System (INIS)

    Carlston, R.C.

    1976-01-01

    Dimethylsulfoxide is used as a solvent for the growth of red mercuric iodide (HgI 2 ) crystals for use in radiation detectors. The hygroscopic property of the solvent allows controlled amounts of water to enter into the solvent phase and diminish the large solubility of HgI 2 so that the precipitating solid collects as well-defined euhedral crystals which grow into a volume of several cc

  16. Defect reduction in seeded aluminum nitride crystal growth

    Science.gov (United States)

    Bondokov, Robert T.; Schowalter, Leo J.; Morgan, Kenneth; Slack, Glen A; Rao, Shailaja P.; Gibb, Shawn Robert

    2017-09-26

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  17. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Tachibana, M. [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027 (Japan); Kojima, K. [Department of Education, Yokohama Soei University, 1 Miho-tyou, Midori-ku, Yokohama, 226-0015 (Japan)

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  18. Iron single crystal growth from a lithium-rich melt

    Science.gov (United States)

    Fix, M.; Schumann, H.; Jantz, S. G.; Breitner, F. A.; Leineweber, A.; Jesche, A.

    2018-03-01

    α -Fe single crystals of rhombic dodecahedral habit were grown from a Li84N12Fe∼3 melt. Crystals of several millimeter along a side form at temperatures around T ≈ 800 ° C. Upon further cooling the growth competes with the formation of Fe-doped Li3N. The b.c.c. structure and good sample quality of α -Fe single crystals were confirmed by X-ray and electron diffraction as well as magnetization measurements and chemical analysis. A nitrogen concentration of 90 ppm was detected by means of carrier gas hot extraction. Scanning electron microscopy did not reveal any sign of iron nitride precipitates.

  19. Ultra-large single crystals by abnormal grain growth.

    Science.gov (United States)

    Kusama, Tomoe; Omori, Toshihiro; Saito, Takashi; Kise, Sumio; Tanaka, Toyonobu; Araki, Yoshikazu; Kainuma, Ryosuke

    2017-08-25

    Producing a single crystal is expensive because of low mass productivity. Therefore, many metallic materials are being used in polycrystalline form, even though material properties are superior in a single crystal. Here we show that an extraordinarily large Cu-Al-Mn single crystal can be obtained by abnormal grain growth (AGG) induced by simple heat treatment with high mass productivity. In AGG, the sub-boundary energy introduced by cyclic heat treatment (CHT) is dominant in the driving pressure, and the grain boundary migration rate is accelerated by repeating the low-temperature CHT due to the increase of the sub-boundary energy. With such treatment, fabrication of single crystal bars 70 cm in length is achieved. This result ensures that the range of applications of shape memory alloys will spread beyond small-sized devices to large-scale components and may enable new applications of single crystals in other metallic and ceramics materials having similar microstructural features.Growing large single crystals cheaply and reliably for structural applications remains challenging. Here, the authors combine accelerated abnormal grain growth and cyclic heat treatments to grow a superelastic shape memory alloy single crystal to 70 cm.

  20. Crystal growth velocity in deeply undercooled Ni-Si alloys

    Science.gov (United States)

    Lü, Y. J.

    2012-02-01

    The crystal growth velocity of Ni95Si5 and Ni90Si10 alloys as a function of undercooling is investigated using molecular dynamics simulations. The modified imbedded atom method potential yields the equilibrium liquidus temperatures T L ≈ 1505 and 1387 K for Ni95Si5 and Ni90Si10 alloys, respectively. From the liquidus temperatures down to the deeply undercooled region, the crystal growth velocities of both the alloys rise to the maximum with increasing undercooling and then drop slowly, whereas the athermal growth process presented in elemental Ni is not observed in Ni-Si alloys. Instead, the undercooling dependence of the growth velocity can be well-described by the diffusion-limited model, furthermore, the activation energy associated with the diffusion from melt to interface increases as the concentration increases from 5 to 10 at.% Si, resulting in the remarkable decrease of growth velocity.

  1. Hanging drop crystal growth apparatus and method

    Science.gov (United States)

    Carter, Daniel C. (Inventor); Smith, Robbie E. (Inventor)

    1989-01-01

    An apparatus (10) is constructed having a cylindrical enclosure (16) within which a disc-shaped wicking element (18) is positioned. A well or recess (22) is cut into an upper side (24) of this wicking element, and a glass cover plate or slip (28) having a protein drop disposed thereon is sealably positioned on the wicking element (18), with drop (12) being positioned over well or recess (22). A flow of control fluid is generated by a programmable gradient former (16), with this control fluid having a vapor pressure that is selectively variable. This flow of control fluid is coupled to the wicking element (18) where control fluid vapor diffusing from walls (26) of the recess (22) is exposed to the drop (12), forming a vapor pressure gradient between the drop (12) and the control fluid vapor. Initially, this gradient is adjusted to draw solvent from the drop (12) at a relatively high rate, and as the critical supersaturation point is approached (the point at which crystal nucleation occurs), the gradient is reduced to more slowly draw solvent from the drop (12). This allows discrete protein molecules more time to orient themselves into an ordered crystalline lattice, producing protein crystals which, when processed by X-ray crystallography, possess a high degree of resolution.

  2. Erythritol: crystal growth from the melt.

    Science.gov (United States)

    Lopes Jesus, A J; Nunes, Sandra C C; Ramos Silva, M; Matos Beja, A; Redinha, J S

    2010-03-30

    The structural changes occurring on erythritol as it is cooled from the melt to low temperature, and then heated up to the melting point have been investigated by differential scanning calorimetry (DSC), polarized light thermal microscopy (PLTM), X-ray powder diffraction (PXRD) and Fourier transform infrared spectroscopy (FTIR). By DSC, it was possible to set up the conditions to obtain an amorphous solid, a crystalline solid, or a mixture of both materials in different proportions. Two crystalline forms have been identified: a stable and a metastable one with melting points of 117 and 104 degrees C, respectively. The fusion curve decomposition of the stable form revealed the existence of three conformational structures. The main paths of the crystallization from the melt were followed by PLTM. The texture and colour changes allowed the characterization of the different phases and transitions in which they are involved on cooling as well as on heating processes. The type of crystallization front and its velocity were also followed by microscopic observation. These observations, together with the data provided by PXRD, allowed elucidating the transition of the metastable form into the stable one. The structural changes occurring upon the cooling and subsequent heating processes, namely those arising from intermolecular hydrogen bonds, were also accompanied by infrared spectroscopy. Particular attention was given to the spectral changes occurring in the OH stretching region. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  3. Crystal structure and crystal growth of the polar ferrimagnet CaBaFe4O7

    Science.gov (United States)

    Perry, R. S.; Kurebayashi, H.; Gibbs, A.; Gutmann, M. J.

    2018-05-01

    Magnetic materials are a cornerstone for developing spintronic devices for the transport of information via magnetic excitations. To date, relatively few materials have been investigated for the purpose of spin transport, mostly due to the paucity of suitable candidates as these materials are often chemically complex and difficult to synthesize. We present the crystal growth and a structure solution on the high-temperature crystal structure of the layered, polar ferrimagnet CaBaFe4O7 , which is a possible new contender for spintronics research. The space group is identified as P 3 by refinement of single crystal and powder neutron diffraction data. At 400 K, the trigonal lattice parameters are a =11.0114 (11 )Å and c =10.330 (3 )Å . The structure is similar to the low-temperature phase with alternating layers of triangular and Kagome-arranged Fe-O tetrahedra. We also present details of the crystal growth by traveling solvent method.

  4. Growth of large detector crystals. CRADA final report

    International Nuclear Information System (INIS)

    Boatner, L.A.; Samuelson, S.

    1997-01-01

    In the course of a collaborative research effort between L.A. Boatner of Oak Ridge National Laboratory and Prof. Alex Lempicki of the Department of Chemistry of Boston University, a new highly efficient and very fast scintillator for the detection of gamma-rays was discovered. This new scintillator consists of a single crystal of lutetium orthophosphate (LuPO 4 ) to which a small percentage of trivalent cerium is added as an activator ion. The new lutetium orthophosphate-cerium scintillator was found to be superior in performance to bismuth germanium oxide--a material that is currently widely used as a gamma-ray detector in a variety of medical, scientific, and technical applications. Single crystals of LuPO 4 and related rare-earth orthophosphates had been grown for a number of years in the ORNL Solid State Division prior to the discovery of the efficient gamma-ray-scintillation response of LuPO 4 :Ce. The high-temperature-solvent (flux-growth) method used for the growth of these crystals was capable of producing crystals in sizes that were adequate for research purposes but that were inadequate for commercial-scale production and widespread application. The CRADA between ORNL and Deltronic Crystal Industries of Dover, NJ was undertaken for the purpose of investigating alternate approaches, such as top-seeded-solution growth, to the growth of LuPO 4 :Ce scintillator crystals in sizes significantly larger than those obtainable through the application of standard flux-growth methods and, therefore, suitable for commercial sales and applications

  5. Crystal field and magnetocrystalline anisotropy in various crystalline systems

    International Nuclear Information System (INIS)

    Adam, S.A.

    1983-01-01

    Systematic derivation of the one-perticle crystal field Hamiltonians is given for all possible site symmetries in crystals. Distinct parametrizations are found to occur for the eleven Laue-symmetry groups. The functional dependence of the Hamiltonian on the choice of the coordinate axes is also investigated. A general method is developed for the derivation of the one-particle crYstal field potential characteristic of a given crystallographic symmetry, for arbitrary effective interatomic forces. Calculations performed for cubic and hexagonal structures lead to the standard representations in spherical harmonics with the coefficients given, however, by power series of rsup(n) rather than by simgle rsup(n) terms as obtained within the usual hypothesis of Coulombian interatomic forces. This result has implications on the interpretation of some theoretical and experimental data. Theoretical results are obtained for the crystal field coefficients which enable us to develop an approach to the use of the crystal field data for the derivation of information on the effective interatomic forces in crystals. The method is applied to the magnetic Sm 3+ ion in SmCo 5 , and it is shown to provide valuable results both for the effective interatomic potential and for the consistency of various sets of crystal field parameters previously proposed in the literature. Maqnetocrystalline anisotropy of the rare-earth intermetallic compounds are discussed. Single-ion anisotropy model is used for SmCo 5 and the theoreticalpr predictions are compared with the experimental data. (author)

  6. Growth and characterisation of lead iodide single crystals

    International Nuclear Information System (INIS)

    Tonn, Justus

    2012-01-01

    The work in hand deals with the growth and characterisation of lead iodide (PbI 2 ) single crystals. PbI 2 is regarded as a promising candidate for low-noise X- and gamma ray detection at room temperature. Its benefits if compared to conventional materials like HgI 2 , CdTe, Si, or GaAs lie in a band gap energy of 2.32 eV, an excellent ability to absorb radiation, and a high electrical resistivity. For an application of PbI 2 as detector material the growth and characterisation of crystals with high chemical and structural quality is extremely challenging. In light of this, the effectiveness of zone purification of the PbI 2 used for crystal growth was confirmed by spectroscopic analysis. Furthermore, technological aspects during processing of purified PbI 2 were investigated. With the help of thermal analysis, a correlation was found between the degree of exposing the source material to oxygen from the air and the structural quality of the resulting crystals. A hydrogen treatment was applied to PbI 2 as an effective method for the removal of oxidic pollutions, which resulted in a significant reduction of structural defects like polytypic growth and stress-induced cracking. The growth of PbI 2 single crystals was, among others, carried out by the Bridgman-Stockbarger method. In this context, much effort was put on the investigation of influences resulting from the design and preparation of ampoules. For the first time, crystal growth of PbI 2 was also carried out by the Czochralski method. If compared to the Bridgman-Stockbarger method, the Czochralski technique allowed a significantly faster growth of nearly crack-free crystals with a reproducible predetermination of crystallographic orientation. By an optimised sample preparation of PbI 2 , surface orientations perpendicular to the usually cleaved (0001) plane were realised. It is now possible to determine the material properties along directions which were so far not accessible. Thus, for example, the ratio of

  7. Effects of growth conditions on thermal profiles during Czochralski silicon crystal growth

    Science.gov (United States)

    Choe, Kwang Su; Stefani, Jerry A.; Dettling, Theodore B.; Tien, John K.; Wallace, John P.

    1991-01-01

    An eddy current testing method was used to continuously monitor crystal growth process and investigate the effects of growth conditions on thermal profiles during Czochralski silicon crystal growth. The experimental concept was to monitor the intrinsic electrical conductivities of the growing crystal and deduce temperature values from them. In terms of the experiments, the effects of changes in growth parameters, which include the crystal and crucible rotation rates, crucible position, and pull rate, and hot-zone geometries were investigated. The results show that the crystal thermal profile could shift significantly as a function of crystal length if the closed-loop control fails to maintain a constant thermal condition. As a direct evidence to the effects of the melt flow on heat transfer processes, a thermal gradient minimum was observed when the crystal/crucible rotation combination was 20/-10 rpm cw. The thermal gradients in the crystal near the growth interface were reduced most by decreasing the pull rate or by reducing the radiant heat loss to the environment; a nearly constant axial thermal gradient was achieved when either the pull rate was decreased by half, the height of the exposed crucible wall was doubled, or a radiation shield was placed around the crystal. Under these conditions, the average axial thermal gradient along the surface of the crystal was about 4-5°C/mm. When compared to theoretical results found in literature, the axial profiles correlated well with the results of the models which included radiant interactions. However, the radial gradients estimated from three-frequency data were much higher than what were predicted by known theoretical models. This discrepancy seems to indicate that optical phenomenon within the crystal is significant and should be included in theoretical modeling.

  8. Vertical Gradient Freezing Using Submerged Heater Growth With Rotation and With Weak Magnetic and Electric Fields

    National Research Council Canada - National Science Library

    Bliss, D. F; Holmes, A. M; Wang, X; Ma, N; Iseler, G. W

    2005-01-01

    ...) method utilizing a submerged heater. Electromagnetic stirring can be induced in the gallium-antimonide melt just above the crystal growth interface by applying a weak radial electric current in the melt together with a weak axial magnetic field...

  9. The Growth of Protein Crystals Using McDUCK

    Science.gov (United States)

    Ewing, Felicia; Wilson, Lori; Nadarajah, Arunan; Pusey, Marc

    1998-01-01

    Most of the current microgravity crystal growth hardware is optimized to produce crystals within the limited time available on orbit. This often results in the actual nucleation and growth process being rushed or the system not coming to equilibrium within the limited time available. Longer duration hardware exists, but one cannot readily pick out crystals grown early versus those which nucleated and grew more slowly. We have devised a long duration apparatus, the Multi-chamber Dialysis Unit for Crystallization Kinetics, or McDUCK. This apparatus-is a series of protein chambers, stacked upon a precipitant reservoir chamber. All chambers are separated by a dialysis membrane, which serves to pass small molecules while retaining the protein. The volume of the Precipitant chamber is equal to the sum of the volumes of the protein chamber. In operation, the appropriate chambers are filled with precipitant solution or protein solution, and the McDUCK is placed standing upright, with the precipitant chamber on the bottom. The precipitant diffuses upwards over time, with the time to reach equilibration a function of the diffusivity of the precipitant and the overall length of the diffusion pathway. Typical equilibration times are approximately 2-4 months, and one can readily separate rapid from slow nucleation and growth crystals. An advantage on Earth is that the vertical precipitant concentration gradient dominates that of the solute, thus dampening out solute density gradient driven convective flows. However, large Earth-grown crystals have so far tended to be more two dimensional. Preliminary X-ray diffraction analysis of lysozyme crystals grown in McDUCK have indicated that the best, and largest, come from the middle chambers, suggesting that there is an optimal growth rate. Further, the improvements in diffraction resolution have been better signal to noise ratios in the low resolution data, not an increase in resolution overall. Due to the persistently large crystals

  10. Growth and scintillation properties of gadolinium and yttrium orthovanadate crystals

    International Nuclear Information System (INIS)

    Voloshina, O.V.; Baumer, V.N.; Bondar, V.G.; Kurtsev, D.A.; Gorbacheva, T.E.; Zenya, I.M.; Zhukov, A.V.; Sidletskiy, O.Ts.

    2012-01-01

    Aiming to explore the possibility of using the undoped rare-earth orthovanadates as scintillation materials, we developed the procedure for growth of gadolinium (GdVO 4 ) and yttrium (YVO 4 ) orthovanadate single crystals by Czochralski method, and determined the optimal conditions of their after-growth annealing. Optical, luminescent, and scintillation properties of YVO 4 and GdVO 4 were discussed versus known literature data. Scintillation characteristics of GdVO 4 were determined for the first time.

  11. Growth, spectral and thermal studies of ibuprofen crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ramukutty, S.; Ramachandran, E. [Department of Physics, Thiruvalluvar College, Papanasam (India)

    2012-01-15

    RS -Ibuprofen was crystallized for the first time in silica gel under suitable pH conditions by reduction of solubility method. The grown crystals were characterized by single crystal X-ray diffraction and density measurement. The functional groups present in the crystal were identified using Fourier transform infrared spectroscopy. Optical bandgap energy of ibuprofen was estimated as 3.19(3) eV from UV-Vis spectrum. Thermogravimetric analysis revealed that ibuprofen is thermally stable upto 102.9 C and the initial loss of mass was due to evaporation only. Morphological study showed that the growth is prominent along b-axis and the prominent face is {l_brace}100{r_brace}. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Growth morphology of zinc tris(thiourea) sulphate crystals

    Indian Academy of Sciences (India)

    The growth morphology of crystals of zinc tris(thiourea) sulphate (ZTS) is investigated experimentally, and computed using the Hartman–Perdok approach. Attachment energies of the observed habit faces are calculated for determining their relative morphological importance. A computer code is developed for carrying out ...

  13. Direction-specific interactions control crystal growth by oriented attachment

    DEFF Research Database (Denmark)

    Li, Dongsheng; Nielsen, Michael H; Lee, Jonathan R.I.

    2012-01-01

    The oriented attachment of molecular clusters and nanoparticles in solution is now recognized as an important mechanism of crystal growth in many materials, yet the alignment process and attachment mechanism have not been established. We performed high-resolution transmission electron microscopy ...

  14. Crystal growth of Li10B3O5

    International Nuclear Information System (INIS)

    Sugiyama, Akira; Gallagher, Hugh G.; Han, Thomas P.J.

    1999-09-01

    The growth of boron 10 isotope enriched L 10 BO (Li 10 B 3 O 5 ) optical crystal has been developed from Top-Seeded-Solution-Growth using a resistance furnace. In the preparation for growth materials, we have made further improvement on a charge loading technique to a crucible and succeeded in forming suitable high temperature flux for producing crystals. Adequate temperature gradient of 1K/cm inside the crucible was achieved from searching for a combination of setting temperatures in the vertical three-zone furnace and installing a ceramic ring under the crucible. We have also optimized seed holder configuration and established growth conditions by several attempts. As a result, two good quality L 10 BO crystals were produced with sizes of 14 x 25 x 22 mm and 13 x 10 x 12 mm from oriented seed crystals. Although these sizes were limited by the size of the crucible used, appropriate oriented samples were extracted for detailed studies in optical measurements. (author)

  15. Growth of lead molybdate crystals by vertical Bridgman method

    Indian Academy of Sciences (India)

    Unknown

    The seeds were put in the seed wells, then the feed materials were filled in the cylinder of crucibles. The assembled crucible was sealed in order to prevent the volatilization of the melt during crystal growth. The cru- cible was installed in a refractory tube filled with Al2O3 powder to isolate it from external temperature fluctua-.

  16. Crystal growth and comparison of vibrational and thermal properties

    Indian Academy of Sciences (India)

    During the course of a literature survey of metal compounds containing both thiourea and urea ligands, the title paper by Gunasekaran et al [1] reporting on the growth of the so-called urea thiourea mercuric chloride (UTHC) and urea thiourea mercuric sulphate. (UTHS) crystals attracted our attention. For formulating these ...

  17. Solution-mediated growth of NBA-ZSM-5 crystals retarded by gel entrapment

    Science.gov (United States)

    Aguilar-Mamani, Wilson; Akhtar, Farid; Hedlund, Jonas; Mouzon, Johanne

    2018-04-01

    The synthesis of flat tablet-shaped ZSM-5 crystals from a gel using metakaolin as aluminosilicate source and n-butyl amine as structure directing agent was investigated. The evolution inside the solid phase was characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetry and mass spectrometry. A kinetic study indicated that the nucleation of the majority crystals occurred concurrently with the formation of the gel upon heating the starting liquid suspension. Microstructural evidences undeniably showed that the gel precipitated on ZSM-5 crystals and mineral impurities originating from kaolin. As a result, crystal growth was retarded by gel entrapment, as indicated by the configuration and morphology of the embedded crystals. The results presented herein are harmonized with a solution-mediated nucleation and growth mechanism. Our observations differ from the autocatalytic model that suggests that the nuclei rest inside the gel until released when the gel is consumed. Our results show instead that it is crystals that formed in an early stage before entrapment inside the gel that rest inside the gel until exposed at the gel surface. These results illustrate the limitation of the classical method used in the field to determine nucleation profiles when the crystals become trapped inside the gel.

  18. The 1993 annual conference of the Israeli Association for Crystal Growth. Program and abstracts

    International Nuclear Information System (INIS)

    1993-11-01

    Papers presented in oral and poster sessions of one day conference, organized by Israeli Association for Crystal Growth, are compiled in this document. Main topics covered in this document can be classified as: (i) Fundamental and numerical analysis of crystal growth. (ii) Techniques of crystal growth and structural analysis. (iii) Thin film growth and characterization

  19. Classical nucleation theory in the phase-field crystal model.

    Science.gov (United States)

    Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas

    2018-04-01

    A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.

  20. Classical nucleation theory in the phase-field crystal model

    Science.gov (United States)

    Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas

    2018-04-01

    A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.

  1. Control of crystal growth in water purification by directional freeze crystallization

    Science.gov (United States)

    Conlon, William M. (Inventor)

    1996-01-01

    A Directional Freeze Crystallization system employs an indirect contact heat exchanger to freeze a fraction of liquid to be purified. The unfrozen fraction is drained away and the purified frozen fraction is melted. The heat exchanger must be designed in accordance with a Growth Habit Index to achieve efficient separation of contaminants. If gases are dissolved in the liquid, the system must be pressurized.

  2. Growth of high-temperature superconductor crystals from flux

    International Nuclear Information System (INIS)

    Demianets, L.N.; Bykov, A.B.; Melnikov, O.K.; Stishov, S.M.

    1991-01-01

    Crystallization of high-temperature superconductors was studied in La-Sr-Cu-O, Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O systems. Platelet crystals YBa 2 Cu 3 Osub(6.5+x) were obtained by spontaneous crystallization from homogeneous nonstoichiometric melts enriched in barium and copper oxides. Lasub(2-x)Sr x CuO 4 was prepared by slow cooling of melts enriched in copper oxide. Bi 2 (Sr, Ca)sub(n+1)Cu n O y , (n=1;2) was obtained by melting zone travelling. The crystals show transition to superconducting state at T=93K, ΔT 0.2-0.5 K (Y, Ba cuprate), T=87K, ΔT 2K (Bi, Sr, Ca-cuprate). La, Sr-cuprate single crystals obtained by Czochralski method did not show transition to superconducting state. For flux-grown crystals T c was 5-26 K depending on the composition, growth and heat treatment. The short characterization of some accessory phases (Ba 3 Y 2 Cu 3 PtO 10 , Casub(1.75)Srsub(1.5)Cusub(0.75)PtO 6 , BaCuO 2 , Ba 41 Cu 44 O 84 Cl 2 ) is reported. (author). 15 ref s., 8 figs

  3. Semiconducting icosahedral boron arsenide crystal growth for neutron detection

    Science.gov (United States)

    Whiteley, C. E.; Zhang, Y.; Gong, Y.; Bakalova, S.; Mayo, A.; Edgar, J. H.; Kuball, M.

    2011-03-01

    Semiconducting icosahedral boron arsenide, B12As2, is an excellent candidate for neutron detectors, thermoelectric converters, and radioisotope batteries, for which high quality single crystals are required. Thus, the present study was undertaken to grow B12As2 crystals by precipitation from metal solutions (nickel) saturated with elemental boron (or B12As2 powder) and arsenic in a sealed quartz ampoule. B12As2 crystals of 10-15 mm were produced when a homogeneous mixture of the three elements was held at 1150 °C for 48-72 h and slowly cooled (3.5 °C/h). The crystals varied in color and transparency from black and opaque to clear and transparent. X-ray topography (XRT), and elemental analysis by energy dispersive X-ray spectroscopy (EDS) confirmed that the crystals had the expected rhombohedral structure and chemical stoichiometry. The concentrations of residual impurities (nickel, carbon, etc.) were low, as measured by Raman spectroscopy and secondary ion mass spectrometry (SIMS). Additionally, low etch-pit densities (4.4×107 cm-2) were observed after etching in molten KOH at 500 °C. Thus, the flux growth method is viable for growing large, high-quality B12As2 crystals.

  4. Combined effects of crucible geometry and Marangoni convection on silicon Czochralski crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, F. [Unit of Developpement of Silicon Technologie, Algiers (Algeria); Bouabdallah, A.; Zizi, M. [LTSE Laboratory, University of Science and Technology USTHB., Babezzouar, Algiers (Algeria); Hanchi, S. [UER Mecanique/ E.M.P/ B.P, El Bahri/Alger (Algeria); Alemany, A. [Laboratoire EPM, CNRS, Grenoble (France)

    2009-08-15

    In order to understand the influence of crucible geometry combined with natural convection and Marangoni convection on melt flow pattern, temperature and pressure fields in silicon Czochralski crystal growth process, a set of numerical simulations was conducted. We carry out calculation enable us to determine temperature, pressure and velocity fields in function of Grashof and Marangoni numbers. The essential results show that the hemispherical geometry of crucible seems to be adapted for the growth of a good quality crystal and the pressure field is strongly affected by natural and Marangoni convection and it is more sensitive than temperature. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Growth and optical microscopy observation of the lysozyme crystals

    OpenAIRE

    R.Vlokh; L.Marsel; I.Teslyuk; O.G.Vlokh

    2001-01-01

    The little single lysozyme crystals in the capillary after 15 days of growth process with average size 0.1´0.1´0.16mm3 were obtained. It was shown that lysozyme crystals are optically anisotropical and birefringence along a axis is Dn=(2.2±0.5)´10-3 in visible spectrum region. From the measurements of crystallographic angles follows that on the {001} faces angles equal a=81o, b=99o. On the sexangle faces angles equal e=100o, f=140o and g=120o. On the base of obtained results the lysozyme crys...

  6. Hp Ge: Purification, crystal growth, and annealing properties

    International Nuclear Information System (INIS)

    Hall, R.N.

    1984-01-01

    The prospects for growing HP Ge crystals of increased size and purity are examined. One interesting approach is to grow dislocation-free crystals, which must then be annealed to reduce the concentration of V 2 H traps. The phenomena which occur during annealing are discussed and compared with experiment. Hydrogen, present in atomic form at the growth temperature, forms H 2 molecules during cooling, causing the effective diffusion coefficient to decrease rapidly. Models representing the reactions between H and the V 2 H, A(H, Si), and D(H,O) complexes are presented and analyzed

  7. Protein crystal growth studies at the Center for Macromolecular Crystallography

    International Nuclear Information System (INIS)

    DeLucas, Lawrence J.; Long, Marianna M.; Moore, Karen M.; Harrington, Michael; McDonald, William T.; Smith, Craig D.; Bray, Terry; Lewis, Johanna; Crysel, William B.; Weise, Lance D.

    2000-01-01

    The Center for Macromolecular Crystallography (CMC) has been involved in fundamental studies of protein crystal growth (PCG) in microgravity and in our earth-based laboratories. A large group of co-investigators from academia and industry participated in these experiments by providing protein samples and by performing the x-ray crystallographic analysis. These studies have clearly demonstrated the usefulness of a microgravity environment for enhancing the quality and size of protein crystals. Review of the vapor diffusion (VDA) PCG results from nineteen space shuttle missions is given in this paper

  8. Simultaneous near field imaging of electric and magnetic field in photonic crystal nanocavities

    NARCIS (Netherlands)

    Vignolini, S.; Intonti, F.; Riboli, F.; Wiersma, D.S.; Balet, L.P.; Li, L.H.; Francardi, M.; Gerardino, A.; Fiore, A.; Gurioli, M.

    2012-01-01

    The insertion of a metal-coated tip on the surface of a photonic crystal microcavity is used for simultaneous near field imaging of electric and magnetic fields in photonic crystal nanocavities, via the radiative emission of embedded semiconductor quantum dots (QD). The photoluminescence intensity

  9. Mapping the absolute electromagnetic field strength of individual field components inside a photonic crystal

    NARCIS (Netherlands)

    Denis, T.; Reijnders, B.; Lee, J.H.H.; Vos, Willem L.; Boller, Klaus J.; van der Slot, Petrus J.M.

    2013-01-01

    We present a method to map the absolute electromagnetic field strength inside photonic crystals. We demonstrate our method by applying it to map the electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to create a

  10. Integral parameters of crystal field for RE spectra

    International Nuclear Information System (INIS)

    Kustov, E.F.; Maketov, T.K.; Prgevudsky, A.K.; Steczko, G.

    1980-01-01

    The integral parameters of the crystal field are introduced for the interpretation of the spectra of RE ions in various crystals. The main formula of the method, the expression of the parameters for various states of Ce, Pr, Nd, Eu, Tb, Er, Tu, and Yb are determined. Integral parameters of A 2 , A 4 , A 6 and parameter of the spin-orbit interaction xi are calculated for 40 laser crystals with Nd, Er. An interpretation of the symmetry of the Eu 3+ centres of the NaBaZn silicate glass is given using integral parameters A 2 , A 4 . (author)

  11. Nanoparticle-mediated nonclassical crystal growth of sodium fluorosilicate nanowires and nanoplates

    Directory of Open Access Journals (Sweden)

    Hongxia Li

    2011-12-01

    Full Text Available We observed nonclassical crystal growth of the sodium fluorosilicate nanowires, nanoplates, and hierarchical structures through self-assembly and aggregation of primary intermediate nanoparticles. Unlike traditional ion-by-ion crystallization, the primary nanoparticles formed first and their subsequent self-assembly, fusion, and crystallization generated various final crystals. These findings offer direct evidences for the aggregation-based crystallization mechanism.

  12. Crystal growth and characterization of calcium metaborate scintillators

    Science.gov (United States)

    Fujimoto, Y.; Yanagida, T.; Kawaguchi, N.; Fukuda, K.; Totsuka, D.; Watanabe, K.; Yamazaki, A.; Chani, V.; Nikl, M.; Yoshikawa, A.

    2013-03-01

    Calcium metaborate CaB2O4 single crystals were grown by the Czochralski (CZ) method with the radio-frequency (RF) heating system. In these crystals, a plane cleavage was observed along the growth direction. The crystals had an 80% transparency, and no absorption bands were detected in the 190-900 nm wavelength range. The 241Am 5.5 MeV α-ray-excited radioluminescence spectrum of CaB2O4 demonstrated a broad intrinsic luminescence peak at 300-400 nm, which originated from the lattice defects or an exciton-based emission. According to the pulse height spectrum, when irradiated by neutrons from a 252Cf source, the scintillation light yielded approximately 3200 photons per neutron (ph/n).

  13. High Field Magnetization of Tb Single Crystals

    DEFF Research Database (Denmark)

    Roeland, L. W.; Cock, G. J.; Lindgård, Per-Anker

    1975-01-01

    Hamiltonian including isotropic exchange interactions, effective single-ion anisotropy and magnetoelastic contributions. The parameters of this Hamiltonian were determined by fitting the theoretical results for the spin wave dispersion and energy gap as a function of temperature and magnetic field to existing...... data on Tb. The conduction-electron polarization at zero field and temperature is (0.33+or-0.05) mu B/ion, and the susceptibility is greater than the Pauli susceptibility calculated from the band-structure....

  14. Crystal growth and magnetic properties of equiatomic CeAl

    Science.gov (United States)

    Das, Pranab Kumar; Thamizhavel, A.

    2015-03-01

    Single crystal of CeAl has been grown by flux method using Ce-Al self-flux. Several needle like single crystals were obtained and the length of the needle corresponds to the [001] crystallographic direction. Powder x-ray diffraction revealed that CeAl crystallizes in orthorhombic CrB-type structure with space group Cmcm (no. 63). The magnetic properties have been investigated by means of magnetic susceptibility, isothermal magnetization, electrical transport, and heat capacity measurements. CeAl is found to order antiferromagnetically with a Neel temperature TN = 10 K. The magnetization data below the ordering temperature reveals two metamagentic transitions for fields less than 20 kOe. From the inverse magnetic susceptibility an effective moment of 2.66 μB/Ce has been estimated, which indicates that Ce is in its trivalent state. Electrical resistivity data clearly shows a sharp drop at 10 K due to the reduction of spin disorder scattering of conduction electrons thus confirming the magnetic ordering. The estimated residual resistivity ratio (RRR) is 33, thus indicating a good quality of the single crystal. The bulk nature of the magnetic ordering is also confirmed by heat capacity data. From the Schottky anomaly of the heat capacity we have estimated the crystal field level splitting energies of the (2J + 1) degenerate ground state as 25 K and 175 K respectively for the fist and second excited states.

  15. Centrifugal pumping during Czochralski silicon growth with a strong, non-uniform, axisymmetric magnetic field

    Science.gov (United States)

    Khine, Y. Y.; Walker, J. S.

    1996-08-01

    Centrifugal pumping flows are produced in the melt by the rotations of crystal and crucible during the Czochralski growth of silicon crystals. This paper treats the centrifugal pumping effects with a steady, strong, non-uniform axisymmetric magnetic field. We consider a family of magnetic fields ranging from a uniform axial field to a "cusp" field, which has a purely radial field at the crystal-melt interface and free surface. We present the numerical solutions for the centrifugal pumping flows as the magnetic field is changed continuously from a uniform axial field to a cusp one, and for arbitrary Hartmann number. Since the perfect alignment between the local magnetic field vector and the crystal-melt interface or free surface is not likely, we also investigate the effects of a slight misalignment.

  16. Screening and Crystallization Plates for Manual and High-throughput Protein Crystal Growth

    Science.gov (United States)

    Thorne, Robert E. (Inventor); Berejnov, Viatcheslav (Inventor); Kalinin, Yevgeniy (Inventor)

    2010-01-01

    In one embodiment, a crystallization and screening plate comprises a plurality of cells open at a top and a bottom, a frame that defines the cells in the plate, and at least two films. The first film seals a top of the plate and the second film seals a bottom of the plate. At least one of the films is patterned to strongly pin the contact lines of drops dispensed onto it, fixing their position and shape. The present invention also includes methods and other devices for manual and high-throughput protein crystal growth.

  17. Mathematical modeling and numerical simulation of Czochralski Crystal Growth

    Energy Technology Data Exchange (ETDEWEB)

    Jaervinen, J.; Nieminen, R. [Center for Scientific Computing, Espoo (Finland)

    1996-12-31

    A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)

  18. Mathematical modeling and numerical simulation of Czochralski Crystal Growth

    Energy Technology Data Exchange (ETDEWEB)

    Jaervinen, J; Nieminen, R [Center for Scientific Computing, Espoo (Finland)

    1997-12-31

    A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)

  19. Crystal growth within a phase change memory cell.

    Science.gov (United States)

    Sebastian, Abu; Le Gallo, Manuel; Krebs, Daniel

    2014-07-07

    In spite of the prominent role played by phase change materials in information technology, a detailed understanding of the central property of such materials, namely the phase change mechanism, is still lacking mostly because of difficulties associated with experimental measurements. Here, we measure the crystal growth velocity of a phase change material at both the nanometre length and the nanosecond timescale using phase-change memory cells. The material is studied in the technologically relevant melt-quenched phase and directly in the environment in which the phase change material is going to be used in the application. We present a consistent description of the temperature dependence of the crystal growth velocity in the glass and the super-cooled liquid up to the melting temperature.

  20. On the laws of disordering of the Ln3+ -ion crystal field in insulating crystals

    International Nuclear Information System (INIS)

    Kaminskij, A.A.

    1988-01-01

    Results of the study of fundamental regularities, which cause crystal field (CF) disordering on Ln 3+ ions in dielectric crystals are summed up. Analysis and systematization of the investigation results of atomic structure of disordered laser crystals and conducted investigations on spectroscopic properties and induced radiation (IR) permitted to come to the conclusion that the nature of disordering on CF is related to two fundamental regularities. The first regularity- the structural-dynamic one- is pronounced in numerous nonstoichiometric phases; the second one - determines spectroscopic properties and IR character

  1. Study of the growth and pyroelectric properties of TGS crystals doped with aniline-family dipolar molecules

    Science.gov (United States)

    Zhang, Kecong; Song, Jiancheng; Wang, Min; Fang, Changshui; Lu, Mengkai

    1987-04-01

    TGS crystals doped with aniline-family dipolar molecules (aniline, 2-aminobenzoic acid, 3-aminobenzoic acid, 3-aminobenzene-sulphonic acid, 4-aminobenzenesulphonic acid and 4-nitroraniline) have been grown by the slow-cooling solution method. The influence of these dopants on the growth habits, crystal morphology pyroelectric properties, and structure parameters of TGS crystals has been systematically investigated. The effects of the domain structure of the seed crystal on the pyroelectric properties of the doped crystals have been studied. It is found that the spontaneous polarization (P), pyroelectric coefficient (lambda), and internal bias field of the doped crystals are slightly higher than those of the pure TGS, and the larger the dipole moment of the dopant molecule, the higher the P and lambda of the doped TGS crystal.

  2. Intermittent dislocation density fluctuations in crystal plasticity from a phase-field crystal model

    DEFF Research Database (Denmark)

    Tarp, Jens M.; Angheluta, Luiza; Mathiesen, Joachim

    2014-01-01

    Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations...... propose a simple stochastic model of dislocation reaction kinetics that is able to capture these statistical properties of the dislocation density fluctuations as a function of shear rate....

  3. Growth of crystalline semiconductor materials on crystal surfaces

    CERN Document Server

    Aleksandrov, L

    2013-01-01

    Written for physicists, chemists, and engineers specialising in crystal and film growth, semiconductor electronics, and various applications of thin films, this book reviews promising scientific and engineering trends in thin films and thin-films materials science. The first part discusses the physical characteristics of the processes occurring during the deposition and growth of films, the principal methods of obtaining semiconductor films and of reparing substrate surfaces on which crystalline films are grown, and the main applications of films. The second part contains data on epitaxial i

  4. In Situ Observation of Antisite Defect Formation during Crystal Growth

    International Nuclear Information System (INIS)

    Kramer, M. J.; Napolitano, R. E.; Mendelev, M. I.

    2010-01-01

    In situ x-ray diffraction (XRD) coupled with molecular dynamics (MD) simulations have been used to quantify antisite defect trapping during crystallization. Rietveld refinement of the XRD data revealed a marked lattice distortion which involves an a axis expansion and a c axis contraction of the stable C11b phase. The observed lattice response is proportional in magnitude to the growth rate, suggesting that the behavior is associated with the kinetic trapping of lattice defects. MD simulations demonstrate that this lattice response is due to incorporation of 1% to 2% antisite defects during growth.

  5. Growth of yttrium iron garnet single crystals in Na2O-B2O3 flux system in air

    International Nuclear Information System (INIS)

    Bandyopadhyay, Tarun; Saha, Prasenjit

    1977-01-01

    Detailed studies of growth of yttrium iron garnet (YIG) in the flux system Na 2 O-B 2 O 3 were made to delineate the phase stability regions of YIG and the neighbouring crystalline phases, and a tentative working diagram of Na 2 O-B 2 O 3 -YIG in air was drawn from the results of small batch crystal growth runs and solubility studies. The occurrence of a rather narrow field of YIG crystallization in this system was explained on the basis of relative solubilities of different oxides constituting YIG. Several long-time growth runs with some typical compositions were carried out in this system to evaluate its suitability for bulk growth of YIG crystals. The system, although possessing some inherent advantages, was found to suffer from limitations because the maximum size of the self-nucleated crystals grown hardly exceeded 2.00 mm. (author)

  6. TEM studies of the crystal growth of indanthrone pigments

    International Nuclear Information System (INIS)

    McHendry, P.

    1998-01-01

    The aim of this work was to study the crystal growth of indanthrone during the pigmentation process. The colouring properties of a pigment are dependant on the chemical and crystallographic structure of the pigment. However, other factors are known to affect these properties including particle size, particle size distribution and level of dispersion in the chosen application medium. The parameters which affect the growth of the pigment particles were investigated with the emphasis placed on the mechanism by which growth took place. The final form of the crystals after growth was also investigated in some detail. Various electron microscopy techniques were employed in the investigations in this thesis. High and low magnification imaging and diffraction were studied on the CTEM (conventional transmission electron microscope) whilst PEELS (parallel electron energy loss spectroscopy) and DPC (differential phase contrast) studies took place on the VG HB5 STEM (scanning transmission electron microscope). In addition to these studies, x-ray diffraction and surface area analysis techniques were employed. The low magnification CTEM work gave good information on the size, shape and size distribution of the pigment particles and enabled detailed analysis of the level of growth attained under varied reaction conditions. (author)

  7. A Cosserat crystal plasticity and phase field theory for grain boundary migration

    Science.gov (United States)

    Ask, Anna; Forest, Samuel; Appolaire, Benoit; Ammar, Kais; Salman, Oguz Umut

    2018-06-01

    The microstructure evolution due to thermomechanical treatment of metals can largely be described by viscoplastic deformation, nucleation and grain growth. These processes take place over different length and time scales which present significant challenges when formulating simulation models. In particular, no overall unified field framework exists to model concurrent viscoplastic deformation and recrystallization and grain growth in metal polycrystals. In this work a thermodynamically consistent diffuse interface framework incorporating crystal viscoplasticity and grain boundary migration is elaborated. The Kobayashi-Warren-Carter (KWC) phase field model is extended to incorporate the full mechanical coupling with material and lattice rotations and evolution of dislocation densities. The Cosserat crystal plasticity theory is shown to be the appropriate framework to formulate the coupling between phase field and mechanics with proper distinction between bulk and grain boundary behaviour.

  8. Methods for growth of relatively large step-free SiC crystal surfaces

    Science.gov (United States)

    Neudeck, Philip G. (Inventor); Powell, J. Anthony (Inventor)

    2002-01-01

    A method for growing arrays of large-area device-size films of step-free (i.e., atomically flat) SiC surfaces for semiconductor electronic device applications is disclosed. This method utilizes a lateral growth process that better overcomes the effect of extended defects in the seed crystal substrate that limited the obtainable step-free area achievable by prior art processes. The step-free SiC surface is particularly suited for the heteroepitaxial growth of 3C (cubic) SiC, AlN, and GaN films used for the fabrication of both surface-sensitive devices (i.e., surface channel field effect transistors such as HEMT's and MOSFET's) as well as high-electric field devices (pn diodes and other solid-state power switching devices) that are sensitive to extended crystal defects.

  9. Crystal field in rare-earth metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Ray, D.K.

    1978-01-01

    Reasons for the success of the crystal-field model for the rare-earth metals and intermetallic compounds are discussed. A review of some of the available experimental results is made with emphasis on cubic intermetallic compounds. Various sources of the origin of the crystal field in these metals are discussed in the background of the recent APW picture of the conduction electrons. The importance of the non-spherical part of the muffin-tin potential on the single-ion anisotropy is stressed. (author)

  10. Correlation theory of crystal field and anisotropic exchange effects

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1985-01-01

    A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds....... The theory gives explicitly a temperature dependent renormalization of both the crystal field and the interactions, and a damping of the excitations and in addition a central park component. The general theory is illustrated by a discussion of the singlet-doublet system. The correlation effects...

  11. A Proposed Model for Protein Crystal Nucleation and Growth

    Science.gov (United States)

    Pusey, Marc; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    How does one take a molecule, strongly asymmetric in both shape and charge distribution, and assemble it into a crystal? We propose a model for the nucleation and crystal growth process for tetragonal lysozyme, based upon fluorescence, light, neutron, and X-ray scattering data, size exclusion chromatography experiments, dialysis kinetics, AFM, and modeling of growth rate data, from this and other laboratories. The first species formed is postulated to be a 'head to side' dimer. Through repeating associations involving the same intermolecular interactions this grows to a 4(sub 3) helix structure, that in turn serves as the basic unit for nucleation and subsequent crystal growth. High salt attenuates surface charges while promoting hydrophobic interactions. Symmetry facilitates subsequent helix-helix self-association. Assembly stability is enhanced when a four helix structure is obtained, with each bound to two neighbors. Only two unique interactions are required. The first are those for helix formation, where the dominant interaction is the intermolecular bridging anion. The second is the anti-parallel side-by-side helix-helix interaction, guided by alternating pairs of symmetry related salt bridges along each side. At this stage all eight unique positions of the P4(sub3)2(sub 1),2(sub 1) unit cell are filled. The process is one of a) attenuating the most strongly interacting groups, such that b) the molecules begin to self-associate in defined patterns, so that c) symmetry is obtained, which d) propagates as a growing crystal. Simple and conceptually obvious in hindsight, this tells much about what we are empirically doing when we crystallize macromolecules. By adjusting the growth parameters we are empirically balancing the intermolecular interactions, preferentially attenuating the dominant strong (for lysozyme the charged groups) while strengthening the lesser strong (hydrophobic) interactions. In the general case for proteins the lack of a singularly defined

  12. Thermal conductivity of niobium single crystals in a magnetic field

    International Nuclear Information System (INIS)

    Gladun, C.; Vinzelberg, H.

    1980-01-01

    The thermal conductivity in longitudinal magnetic fields up to 5 T and in the temperature range 3.5 to 15 K is measured in two high purity niobium single crystals having residual resistivity ratios of 22700 and 19200 and orientations of the rod axis [110] and [100]. The investigations show that by means of the longitudinal magnetic field the thermal conductivity may decrease only to a limiting value. In the crystal directions [110] and [100] for the ratio of the thermal conductivity in zero field and the thermal conductivity in the saturation field the temperature-independent factors 1.92 and 1.27, respectively, are determined. With the aid of these factors the thermal conductivity in the normal state is evaluated from the measured values of thermal conductivity below Tsub(c) in the magnetic field. The different conduction and scattering mechanisms are discussed. (author)

  13. Improving NASICON Sinterability through Crystallization under High Frequency Electrical Fields

    Directory of Open Access Journals (Sweden)

    Ilya eLisenker

    2016-03-01

    Full Text Available The effect of high frequency (HF electric fields on the crystallization and sintering rates of a lithium aluminum germanium phosphate (LAGP ion conducting ceramic was investigated. LAGP with the nominal composition Li1.5Al0.5Ge1.5(PO43 was crystallized and sintered, both conventionally and under effect of electrical field. Electrical field application, of 300V/cm at 1MHz, produced up to a 40% improvement in sintering rate of LAGP that was crystallized and sintered under the HF field. Heat sink effect of the electrodes appears to arrest thermal runaway and subsequent flash behavior. Sintered pellets were characterized using XRD, SEM, TEM and EIS to compare conventionally and field sintered processes. The as-sintered structure appears largely unaffected by the field as the sintering curves tend to converge beyond initial stages of sintering. Differences in densities and microstructure after 1 hour of sintering were minor with measured sintering strains of 31% vs. 26% with and without field, respectively . Ionic conductivity of the sintered pellets was evaluated and no deterioration due to the use of HF field was noted, though capacitance of grain boundaries due to secondary phases was significantly increased.

  14. Effect of an external magnetic field on polytypism of CdI2 crystals grown from solutions

    International Nuclear Information System (INIS)

    Palosz, B.; Przedmojski, J.

    1982-01-01

    The effect of growth conditions on the polytypic structure of crystals of CdI 2 was analyzed for crystallization from solutions. Three solvents were used: H 2 O, 3 H 2 O + 1 C 2 H 5 OH and 1 H 2 O + 1 C 2 H 5 OH. Crystals were grown at two temperatures: 5 and 25 0 C with low and high growth rates; an external magnetic field of about 0.25 tesla was used. The effect of the above three parameters on the formation of the basic polytypes 2H and 4H and on the ordering of faults in disordered structures and in polytype cells was studied by X-ray analysis of crystal surfaces. Some distinct relations between the polytypic structure of crystals of CdI 2 and the magnetic field were found. (author)

  15. Crystal growth and scintillation properties of selected fluoride crystals for VUV scintillators

    Czech Academy of Sciences Publication Activity Database

    Pejchal, Jan; Fukuda, K.; Yamaji, A.; Yokota, Y.; Kurosawa, S.; Král, Robert; Nikl, Martin; Yoshikawa, A.

    2014-01-01

    Roč. 401, Sep (2014), s. 833-838 ISSN 0022-0248. [International Conference on Crystal Growth and Epitaxy /17./. Warsaw, 11.08.2013-16..08.2013] R&D Projects: GA MŠk LH12150 Institutional support: RVO:68378271 Keywords : vacuum-ultra-violet emission * micro-pulling-down method * barium -lutetium fluoride * erbium fluoride Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.698, year: 2014

  16. Modeling Conformal Growth in Photonic Crystals and Comparing to Experiment

    Science.gov (United States)

    Brzezinski, Andrew; Chen, Ying-Chieh; Wiltzius, Pierre; Braun, Paul

    2008-03-01

    Conformal growth, e.g. atomic layer deposition (ALD), of materials such as silicon and TiO2 on three dimensional (3D) templates is important for making photonic crystals. However, reliable calculations of optical properties as a function of the conformal growth, such as the optical band structure, are hampered by difficultly in accurately assessing a deposited material's spatial distribution. A widely used approximation ignores ``pinch off'' of precursor gas and assumes complete template infilling. Another approximation results in non-uniform growth velocity by employing iso-intensity surfaces of the 3D interference pattern used to create the template. We have developed an accurate model of conformal growth in arbitrary 3D periodic structures, allowing for arbitrary surface orientation. Results are compared with the above approximations and with experimentally fabricated photonic crystals. We use an SU8 polymer template created by 4-beam interference lithography, onto which various amounts of TiO2 are grown by ALD. Characterization is performed by analysis of cross-sectional scanning electron micrographs and by solid angle resolved optical spectroscopy.

  17. [Growth of codoped CdWO4 crystals by Bridgman method and their optical spectra].

    Science.gov (United States)

    Yu, Can; Xia, Hai-Ping; Wang, Dong-Jie; Chen, Hong-Bing

    2011-09-01

    The CdWO4 crystals with good quality in the size of Phi25 mm x 120 mm, doped with Co in 0.5% molar fraction in the raw composition, were grown by the Bridgman method by taking -70 degrees C x cm(-1) of solid-liquid interface and -0.50 mm x h(-1) growth rate. The crystal presents transparence and deep blue. The X-ray diffraction (XRD) was used to characterize the crystals. Three absorption peaks at 518, 564 and 655 nm respectively, which are attributed to the overlapping of 4 T1 (4F) --> 4A2 (4F) and 4 T1 (4F) --> 4 T1 (4P) of Co2+ octahedrons, and a wide band centered at 1 863 nm, which is attributed to 4Ti (4F) --> 4 T2 (4F), was observed. The absorption results indicated that the Co ions presented +2 valence in crystal and located within the distorted oxygen octahedrons. The crystal-field parameter D(q) and the Racah parameter B were estimated to be 990 and 726.3 cm(-1) respectively based on the absorption spectra. A fluorescence emission at 778 nm (4T1 (4P) --> 4 T1 (4F)) for codoped CdWO4 crystals was observed under excitation by 520 nm light. It can be deduced from the changes in absorption and emission intensity of different parts of crystal that the concentration of Co2+ ion in crystal increased along growing direction and the effective distribution coefficient of Co2+ ion in CdWO4 crystal is less than 1.

  18. Fine structure of fields in 2D photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Volkov, V. S.; Bozhevolnyi, S. I.

    2006-01-01

    We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis....

  19. Near-field characterization of photonic crystal Y-splitters

    DEFF Research Database (Denmark)

    Volkov, V. S.; Bozhevolnyi, S. I.; Borel, Peter Ingo

    2005-01-01

    A scanning near-field optical microscope (SNOM) is used to directly map the propagation of light in a specially designed 50/50 photonic crystal (PC) Y-splitter fabricated on silicon-on-insulator (SOI) wafers. SNOM images are obtained for TE- and TM-polarized light in the wavelength range 1425...

  20. An energy-stable convex splitting for the phase-field crystal equation

    KAUST Repository

    Vignal, P.; Dalcin, L.; Brown, D. L.; Collier, N.; Calo, V. M.

    2015-01-01

    Abstract The phase-field crystal equation, a parabolic, sixth-order and nonlinear partial differential equation, has generated considerable interest as a possible solution to problems arising in molecular dynamics. Nonetheless, solving this equation is not a trivial task, as energy dissipation and mass conservation need to be verified for the numerical solution to be valid. This work addresses these issues, and proposes a novel algorithm that guarantees mass conservation, unconditional energy stability and second-order accuracy in time. Numerical results validating our proofs are presented, and two and three dimensional simulations involving crystal growth are shown, highlighting the robustness of the method. © 2015 Elsevier Ltd.

  1. An energy-stable convex splitting for the phase-field crystal equation

    KAUST Repository

    Vignal, P.

    2015-10-01

    Abstract The phase-field crystal equation, a parabolic, sixth-order and nonlinear partial differential equation, has generated considerable interest as a possible solution to problems arising in molecular dynamics. Nonetheless, solving this equation is not a trivial task, as energy dissipation and mass conservation need to be verified for the numerical solution to be valid. This work addresses these issues, and proposes a novel algorithm that guarantees mass conservation, unconditional energy stability and second-order accuracy in time. Numerical results validating our proofs are presented, and two and three dimensional simulations involving crystal growth are shown, highlighting the robustness of the method. © 2015 Elsevier Ltd.

  2. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei

    2017-04-01

    crystals will be discussed in Chapter 3 and 4. Despite their outstanding charge transport characteristics, organolead halide perovskite single crystals grown by hitherto reported crystallization methods are not suitable for most optoelectronic devices due to their small aspect ratios and free standing growth. As the other major part of work of this dissertation, explorative work on growing organolead halide perovskite monocrystalline films and further their application in solar cells will be discussed in Chapter 5.

  3. Forced and thermocapillary convection in silicon Czochralski crystal growth in semispherical crucible

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, F [Physics Department, Faculty of Science, University of Mouloud Mammeri, Tizi Ouzou (Algeria); Bouabdallah, A; Zizi, M [LTSE Laboratory, University of Science and Technology USTHB. BP 32 Elalia, Babezzouar, Algiers (Algeria); Hanchi, S [UER Mecanique/ E.M.P B.P 17, Bordj El Bahri, Algiers (Algeria); Alemany, A, E-mail: abouab2002@yahoo.f [Laboratoire EPM, CNRS, Grenoble (France)

    2010-03-01

    In order to understand the influence of a semispherical crucible geometry combined with different convection modes as a thermocapillary convection, natural convection and forced convection, induced by crystal rotation, on melt flow pattern in silicon Czochralski crystal growth process, a set of numerical simulations are conducted using Fluent Software. We solve the system of equations of heat and momentum transfer in classical geometry as cylindrical and modified crystal growth process geometry as cylindro-spherical. In addition, we adopt hypothesis adapted to boundary conditions near the interface and calculations are executed to determine temperature, pressure and velocity fields versus Grashof and Reynolds numbers. The analysis of the obtained results led to conclude that there is advantage to modify geometry in comparison with the traditional one. The absence of the stagnation regions of fluid in the hemispherical crucible corner and the possibility to control the melt flow using the crystal rotation enhances the quality of the process comparatively to the cylindrical one. The pressure field is strongly related to the swirl velocity.

  4. Forced and thermocapillary convection in silicon Czochralski crystal growth in semispherical crucible

    International Nuclear Information System (INIS)

    Mokhtari, F; Bouabdallah, A; Zizi, M; Hanchi, S; Alemany, A

    2010-01-01

    In order to understand the influence of a semispherical crucible geometry combined with different convection modes as a thermocapillary convection, natural convection and forced convection, induced by crystal rotation, on melt flow pattern in silicon Czochralski crystal growth process, a set of numerical simulations are conducted using Fluent Software. We solve the system of equations of heat and momentum transfer in classical geometry as cylindrical and modified crystal growth process geometry as cylindro-spherical. In addition, we adopt hypothesis adapted to boundary conditions near the interface and calculations are executed to determine temperature, pressure and velocity fields versus Grashof and Reynolds numbers. The analysis of the obtained results led to conclude that there is advantage to modify geometry in comparison with the traditional one. The absence of the stagnation regions of fluid in the hemispherical crucible corner and the possibility to control the melt flow using the crystal rotation enhances the quality of the process comparatively to the cylindrical one. The pressure field is strongly related to the swirl velocity.

  5. Buoyant convection during Czochralski silicon growth with a strong, non-uniform, axisymmetric magnetic field

    Science.gov (United States)

    Khine, Y. Y.; Walker, J. S.

    1995-02-01

    This paper treats the buoyant convection during the Czochralski growth of silicon crystals with a steady, strong, non-uniform, axisymmetric magnetic field. We consider a family of magnetic fields which includes a uniform axial magnetic field and a "cusp" field which is produced by identical solenoids placed symmetrically above and below the plane of the crystal-melt interface and free surface. We investigate the evolution of the buoyant convection as the magnetic field is changed continuously from a uniform axial field to a cusp field, with a constant value of the root-mean-squared magnetic flux density in the melt. We also investigate changes as the magnetic flux density is increased. While the cusp field appears very promising, perfect alignment between the local magnetic field vector and the crystal-melt interface or free surface is not possible, so the effects of a slight misalignment are also investigated.

  6. Research on crystal growth by using pressure as a control parameter; Atsuryoku seigyo ni yoru kessho seicho ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-31

    This research project aims to establish a technique for crystal growth using pressure as a principal control parameter, and combining it with a microgravity condition, to develop a novel process material fabrication. Since the solubility of materials depends on pressure, it is possible to control a supersaturated condition for crystal growth by changing pressure. The growth condition can be controlled precisely, which is not possible by conventional methods that vary temperature and other factors. On the other hand, because a concentration diffusing field is formed autonomically around crystals in association with their growth, density convection is generated under gravity as a result of difference in the concentrations, making the growth conditions severely complex and uncontrollable. Ideal crystal growth condition control may be possible if the pressure control is performed under micro-gravity by which generation of the density convection can be suppressed. Realization has been achieved on in-situ observation by using high-magnification microscope which uses a diamond anvil cell, development of a hydraulic type optic pressure cell, and a high- speed crystal growing technology by means of pressure control utilizing the cell. New findings were also obtained on effects of pressure on crystal forms, and the pressure induced solid phase transfer mechanism. 67 refs., 49 figs., 3 tabs.

  7. Method for fitting crystal field parameters and the energy level fitting for Yb3+ in crystal SC2O3

    International Nuclear Information System (INIS)

    Qing-Li, Zhang; Kai-Jie, Ning; Jin, Xiao; Li-Hua, Ding; Wen-Long, Zhou; Wen-Peng, Liu; Shao-Tang, Yin; Hai-He, Jiang

    2010-01-01

    A method to compute the numerical derivative of eigenvalues of parameterized crystal field Hamiltonian matrix is given, based on the numerical derivatives the general iteration methods such as Levenberg–Marquardt, Newton method, and so on, can be used to solve crystal field parameters by fitting to experimental energy levels. With the numerical eigenvalue derivative, a detailed iteration algorithm to compute crystal field parameters by fitting experimental energy levels has also been described. This method is used to compute the crystal parameters of Yb 3+ in Sc 2 O 3 crystal, which is prepared by a co-precipitation method and whose structure was refined by Rietveld method. By fitting on the parameters of a simple overlap model of crystal field, the results show that the new method can fit the crystal field energy splitting with fast convergence and good stability. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Crystal plasticity modeling of irradiation growth in Zircaloy-2

    Science.gov (United States)

    Patra, Anirban; Tomé, Carlos N.; Golubov, Stanislav I.

    2017-08-01

    A physically based reaction-diffusion model is implemented in the visco-plastic self-consistent (VPSC) crystal plasticity framework to simulate irradiation growth in hcp Zr and its alloys. The reaction-diffusion model accounts for the defects produced by the cascade of displaced atoms, their diffusion to lattice sinks and the contribution to crystallographic strain at the level of single crystals. The VPSC framework accounts for intergranular interactions and irradiation creep, and calculates the strain in the polycrystalline ensemble. A novel scheme is proposed to model the simultaneous evolution of both, number density and radius, of irradiation-induced dislocation loops directly from experimental data of dislocation density evolution during irradiation. This framework is used to predict the irradiation growth behaviour of cold-worked Zircaloy-2 and trends compared to available experimental data. The role of internal stresses in inducing irradiation creep is discussed. Effects of grain size, texture and external stress on the coupled irradiation growth and creep behaviour are also studied and compared with available experimental data.

  9. Crystal-field-modulated magnon squeezing states in a ferromagnet

    International Nuclear Information System (INIS)

    Peng Feng

    2003-01-01

    The magnon squeezing states in some magnetic crystals allow a reduction in the quantum fluctuations of the spin component to below the zero-point quantum noise level of the coherent magnon states. It is known that there are the magnon squeezing states in an antiferromagnet. However, their generating mechanism is not suitable for the ferromagnet. In this paper, we discuss the possibility of generating the magnon squeezing states in a ferromagnet, and discuss the effect of the crystal field on the magnon squeezing states

  10. Organic field-effect transistors using single crystals

    International Nuclear Information System (INIS)

    Hasegawa, Tatsuo; Takeya, Jun

    2009-01-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm 2 Vs -1 , achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps. (topical review)

  11. Organic field-effect transistors using single crystals

    Directory of Open Access Journals (Sweden)

    Tatsuo Hasegawa and Jun Takeya

    2009-01-01

    Full Text Available Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs, the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20–40 cm2 Vs−1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  12. Far-field coupling in nanobeam photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, Ian, E-mail: ian.rousseau@epfl.ch; Sánchez-Arribas, Irene; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas [Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2016-05-16

    We optimized the far-field emission pattern of one-dimensional photonic crystal nanobeams by modulating the nanobeam width, forming a sidewall Bragg cross-grating far-field coupler. By setting the period of the cross-grating to twice the photonic crystal period, we showed using three-dimensional finite-difference time-domain simulations that the intensity extracted to the far-field could be improved by more than three orders of magnitude compared to the unmodified ideal cavity geometry. We then experimentally studied the evolution of the quality factor and far-field intensity as a function of cross-grating coupler amplitude. High quality factor (>4000) blue (λ = 455 nm) nanobeam photonic crystals were fabricated out of GaN thin films on silicon incorporating a single InGaN quantum well gain medium. Micro-photoluminescence spectroscopy of sets of twelve identical nanobeams revealed a nine-fold average increase in integrated far-field emission intensity and no change in average quality factor for the optimized structure compared to the unmodulated reference. These results are useful for research environments and future nanophotonic light-emitting applications where vertical in- and out-coupling of light to nanocavities is required.

  13. Near-field probing of photonic crystal directional couplers

    DEFF Research Database (Denmark)

    Volkov, V. S.; Bozhevolnyi, S. I.; Borel, Peter Ingo

    2006-01-01

    We report the design, fabrication and characterization of a photonic crystal directional with a size of ~20 x 20 mm2 fabricated in silicon-on-insulator material. Using a scanning near-field optical microscope we demonstrate a high coupling efficiency for TM polarized light at telecom wavelengths....... By comparing the near-field optical images recorded in and after the directional coupler area, the features of light distribution are analyzed. Finally, the scanning near-field optical microscope observations are found to be in agreement with the transmission measurements conducted with the same sample....

  14. Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review

    Science.gov (United States)

    Gránásy, László; Rátkai, László; Szállás, Attila; Korbuly, Bálint; Tóth, Gyula I.; Környei, László; Pusztai, Tamás

    2014-04-01

    Advances in the orientation-field-based phase-field (PF) models made in the past are reviewed. The models applied incorporate homogeneous and heterogeneous nucleation of growth centers and several mechanisms to form new grains at the perimeter of growing crystals, a phenomenon termed growth front nucleation. Examples for PF modeling of such complex polycrystalline structures are shown as impinging symmetric dendrites, polycrystalline growth forms (ranging from disordered dendrites to spherulitic patterns), and various eutectic structures, including spiraling two-phase dendrites. Simulations exploring possible control of solidification patterns in thin films via external fields, confined geometry, particle additives, scratching/piercing the films, etc. are also displayed. Advantages, problems, and possible solutions associated with quantitative PF simulations are discussed briefly.

  15. Growth and structural, optical, and electrical properties of zincite crystals

    Science.gov (United States)

    Kaurova, I. A.; Kuz'micheva, G. M.; Rybakov, V. B.

    2013-03-01

    An X-ray diffraction study of ZnO crystals grown by the hydrothermal method has revealed reflections that give grounds to assign them to the sp. gr. P3 rather than to P63 mc. The distribution of Zn1, Zn2, O1, and O2 over structural positions, along with vacancies and incorporated zinc atoms, explains the dissymmetrization observed in terms of the kinetic (growth) phase transition of the order-disorder type, which is caused by ordering Zn and O atoms over structural positions. The color of crystals of refined compositions (Zn0.975□0.025)Zn i(0.015)(O0.990□0.010) (green) and (Zn0.965□0.035)Zn i(0.035)O (bright green) is related to different oxygen contents, which is confirmed by the results of electron probe X-ray microanalysis and absorption spectroscopy. The degree of the structural quality of crystals, their resistivity, and activation energy are also related to oxygen vacancies.

  16. Inclusion free cadmium zinc tellurium and cadmium tellurium crystals and associated growth method

    Science.gov (United States)

    Bolotnikov, Aleskey E [South Setauket, NY; James, Ralph B [Ridge, NY

    2010-07-20

    The present disclosure provides systems and methods for crystal growth of cadmium zinc tellurium (CZT) and cadmium tellurium (CdTe) crystals with an inverted growth reactor chamber. The inverted growth reactor chamber enables growth of single, large, high purity CZT and CdTe crystals that can be used, for example, in X-ray and gamma detection, substrates for infrared detectors, or the like. The inverted growth reactor chamber enables reductions in the presence of Te inclusions, which are recognized as an important limiting factor in using CZT or CdTe as radiation detectors. The inverted growth reactor chamber can be utilized with existing crystal growth techniques such as the Bridgman crystal growth mechanism and the like. In an exemplary embodiment, the inverted growth reactor chamber is a U-shaped ampoule.

  17. Crystal Growth of New Radiation Detector Materials in Microgravity, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — RMD proposes to conduct a series of crystal growth experiments on the International Space Station in the SUBSA furnace inside the MSG glovebox to grow crystals of...

  18. Creating physically-based three-dimensional microstructures: Bridging phase-field and crystal plasticity models.

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Owen, Steven J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Abdeljawad, Fadi F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hanks, Byron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct link between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.

  19. An atomic-scale model of fcc crystal-growth

    Energy Technology Data Exchange (ETDEWEB)

    Waal, B.W. van de (Technische Hogeschool Twente, Enschede (Netherlands). Dept. of Physics)

    1991-01-01

    Nearly perfect fcc growth may be simulated by the application of a simple growth-algorithm - only sites that are at least 4-coordinated are occupied - to a selected seed. The seed is a 22-atom cluster, being the smallest close-packed structure with two crossing stacking-faults. The stacking-faults produce active surface-sites, that can not be exhausted by occupation; they are arranged in non-vanishing steps, similar to those produced by screw-dislocations. The algorithm prevents further stacking-faults, and ensures ABC-stacking of close-packed (111)-layers, characteristic of the fcc structure. The same algorithm would not produce further growth of perfect fcc clusters or of Mackay icosahedra. It is proposed that the ability to grow fast under near-equilibrium conditions is a better criterion to select clusters as precursors of the bulk-structure than their cohesive energy. The crystal structure problem of the rare gases - why fcc, not hcp - is discussed in connection with the apparent impossibility to simulate hcp growth by an analogous procedure. (orig.).

  20. A peek into the history of sapphire crystal growth

    Science.gov (United States)

    Harris, Daniel C.

    2003-09-01

    After the chemical compositions of sapphire and ruby were unraveled in the middle of the 19th century, chemists set out to grow artificial crystals of these valuable gemstones. In 1885 a dealer in Geneva began to sell ruby that is now believed to have been created by flame fusion. Gemnologists rapidly concluded that the stones were artificial, but the Geneva ruby stimulated A. V. L. Verneuil in Paris to develop a flame fusion process to produce higher quality ruby and sapphire. By 1900 there was brisk demand for ruby manufactured by Verneuil's method, even though Verneuil did not publicly announce his work until 1902 and did not publish details until 1904. The Verneuil process was used with little alteration for the next 50 years. From 1932-1953, S. K. Popov in the Soviet Union established a capability for manufacturing high quality sapphire by the Verneuil process. In the U.S., under government contract, Linde Air Products Co. implemented the Verneuil process for ruby and sapphire when European sources were cut off during World War II. These materials were essential to the war effort for jewel bearings in precision instruments. In the 1960s and 1970s, the Czochralski process was implemented by Linde and its successor, Union Carbide, to make higher crystal quality material for ruby lasers. Stimulated by a government contract for structural fibers in 1966, H. LaBelle invented edge-defined film-fed growth (EFG). The Saphikon company, which is currently owned by Saint-Gobain, evolved from this effort. Independently and simultaneously, Stepanov developed edge-defined film-fed growth in the Soviet Union. In 1967 F. Schmid and D. Viechnicki at the Army Materials Research Lab grew sapphire by the heat exchanger method (HEM). Schmid went on to establish Crystal Systems, Inc. around this technology. Rotem Industries, founded in Israel in 1969, perfected the growth of sapphire hemispheres and near-net-shape domes by gradient solidification. In the U.S., growth of near

  1. Low-frequency electromagnetic field in a Wigner crystal

    OpenAIRE

    Stupka, Anton

    2016-01-01

    Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.

  2. Pulsed zero field NMR of solids and liquid crystals

    International Nuclear Information System (INIS)

    Thayer, A.M.

    1987-02-01

    This work describes the development and applications to solids and liquid crystals of zero field nuclear magnetic resonance (NMR) experiments with pulsed dc magnetic fields. Zero field NMR experiments are one approach for obtaining high resolution spectra of amorphous and polycrystalline materials which normally (in high field) display broad featureless spectra. The behavior of the spin system can be coherently manipulated and probed in zero field with dc magnetic field pulses which are employed in a similar manner to radiofrequency pulses in high field NMR experiments. Nematic phases of liquid crystalline systems are studied in order to observe the effects of the removal of an applied magnetic field on sample alignment and molecular order parameters. In nematic phases with positive and negative magnetic susceptibility anisotropies, a comparison between the forms of the spin interactions in high and low fields is made. High resolution zero field NMR spectra of unaligned smectic samples are also obtained and reflect the symmetry of the liquid crystalline environment. These experiments are a sensitive measure of the motionally induced asymmetry in biaxial phases. Homonuclear and heteronuclear solute spin systems are compared in the nematic and smectic phases. Nonaxially symmetric dipolar couplings are reported for several systems. The effects of residual fields in the presence of a non-zero asymmetry parameter are discussed theoretically and presented experimentally. Computer programs for simulations of these and other experimental results are also reported. 179 refs., 75 figs

  3. Crystal growth and spectroscopic characterization of Yb3+:LiTaO3

    International Nuclear Information System (INIS)

    Gruber, John B.; Allik, Toomas H.; Sardar, Dhiraj K.; Yow, Raylon M.; Scripsick, Michael; Wechsler, Barry

    2006-01-01

    Spectroscopic properties are presented for Yb 3+ incorporated into single crystals of LiTaO 3 grown by the top-seeded solution growth method. From an analysis of the absorption and fluorescence spectra, we are able to determine the Stark-level components of the 2 F 7/2 (the ground-state multiplet manifold) and the 2 F 5/2 (the excited-state multiplet manifold of Yb 3+ (4f 13 )). The room-temperature fluorescence lifetime of 2 F 5/2 is 678μs as measured on a thin sample to reduce possibilities for reabsorption. Spectral comparisons of Yb 3+ -doped LiTaO 3 and LiNbO 3 are drawn. The crystal-field splitting of Yb 3+ (4f 13 ) in both crystal hosts is modeled using a set of crystal-field splitting parameters, B nm , determined from a recent spectroscopic analysis of Er 3+ (4f 11 ) in LiNbO 3 . Without adjustment of the B nm parameters, the model predicts the Stark-level energy and the symmetry label for each level in reasonable agreement with the experimental values. Less photorefractive than its niobate cousin, LiTaO 3 has potential for use in numerous integrated electro-optical circuits and devices

  4. Optimized Pyroelectric Vidicon Thermal Imager. Volume II. Improper Ferroelectric Crystal Growth.

    Science.gov (United States)

    1980-09-01

    4.2.1 Apparatus .......................... 77 4.2.2 Growth from Acidic Media .................o 78 4.2.3 Hydrothermal Growth in Basic Media ...... 99...method of hydrothermal growth was examined using both acidic and basic solvents. (1) Standard Composition Our standard composition was derived from... Acid 10 Good, well formed crystals. Acrylic Acid 10 Very good, clear crystals. Glycine 10 Poor crystals. Oxalic Acid 10 Precipitation of calcium and

  5. EFFECT OF SODIUM DODECYLBENZENESULFONIC ACID (SDBS ON THE GROWTH RATE AND MORPHOLOGY OF BORAX CRYSTAL

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available An investigation of the effect of sodium dodecylbenzenesulfonic acid (SDBS on both growth rate and morphology of borax crystal has been carried out.  This experiment was carried out at temperature of 25 °C and relative supersaturation of 0.21 and 0.74 under in situ cell optical microscopy method.  The result shows that SDBS inhibits the growth rate and changes the morphology of borax crystal.   Keywords: Borax; growth rate; crystallization, SDBS

  6. Crystal-field magnetic anisotropy of dilute dysprosium or erbium in yttrium single crystals

    DEFF Research Database (Denmark)

    Høg, J.; Touborg, P.

    1974-01-01

    Magnetization measurements have been performed between 1.3 and 300 K in fields up to 50 × 105 A/m in the a, b, and c directions of hcp crystals of pure Y and Y doped with 0.14-at.% Dy or 0.14-at.% Er, using the Faraday method and a vibrating-sample method. The characteristic behavior of both...

  7. The performance studies of DKDP crystals grown by a rapid horizontal growth method

    Science.gov (United States)

    Xie, Xiaoyi; Qi, Hongji; Wang, Bin; Wang, Hu; Chen, Duanyang; Shao, Jianda

    2018-04-01

    A deuterated potassium dihydrogen phosphate (DKDP) crystal with about 70% deuterium level was grown by a rapid horizontal growth method with independent design equipment, which includes a continuous filtration system. The cooling program during crystal growth was designed according to a self-developed software to catch the size of growing crystal in real time. The crystal structure, optical performance and laser induced damage threshold (LIDT) of this DKDP crystal were investigated in this paper. The deuterium concentration of the crystal was confirmed by the neutron diffraction technique, which was effective and available in determining a complete range of deuteration level. The dielectric property was measured to evaluate the perfection of the lattice. The transmittance and LIDT were carried out further to evaluate the optical and functional properties of this DKDP crystal grown in the rapid horizontal growth technique. All of the detailed characterization for DKDP figured out that the 70% deuterated KDP crystal grown in this way had relatively good qualities.

  8. Investigation of grain competitive growth during directional solidification of single-crystal nickel-based superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xinbao [National Energy R and D Center of Clean and High-Efficiency Fossil-Fired Power Generation Technology, Xi' an Thermal Power Research Institute Co. Ltd., Xi' an (China); Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an (China); Liu, Lin; Zhang, Jun [Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an (China)

    2015-08-15

    Grain competitive growth of nickel-based single-crystal superalloys during directional solidification was investigated. A detailed characterization of bi-crystals' competitive growth was performed to explore the competitive grain evolution. It was found that high withdrawal rate improved the efficiency of grain competitive growth. The overgrowth rate was increased when the misorientation increased. Four patterns of grain competitive growth with differently oriented dispositions were characterized. The results indicated that the positive branching of the dendrites played a significant role in the competitive growth process. The effect of crystal orientation and heat flow on the competitive growth can be attributed to the blocking mechanism between the adjacent grains. (orig.)

  9. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    Energy Technology Data Exchange (ETDEWEB)

    Koparanova, N.; Simov, S. (Bylgarska Akademiya na Naukite, Sofia. Inst. po Fizika na Tvyrdoto Tyalo); Genchev, D. (Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika); Metchenov, G. (Research Inst. of Criminalistics and Criminology, Sofia (Bulgaria))

    1985-02-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more.

  10. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    International Nuclear Information System (INIS)

    Koparanova, N.; Simov, S.

    1985-01-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more. (author)

  11. Growth, morphology, spectral and thermal studies of gel grown diclofenac acid crystals

    Science.gov (United States)

    Ramachandran, E.; Ramukutty, S.

    2014-03-01

    The crystal growth of diclofenac acid in silica gel is the first to be reported in literature. The growth parameters were varied to optimize the suitable growth condition. Single crystal X-ray diffraction method was used for the conformation of the crystal structure. Morphology studies showed that the growth is prominent along the b-axis and the prominent face is {002}. Fourier transform infrared spectral study was performed to identify the functional groups present in the crystal. Thermal stability and decomposition of the material were analyzed using thermo calorimetry in the temperature range 30-500 °C.

  12. Crystal growth and characterization of bulk Sb2Te3 topological insulator

    Science.gov (United States)

    Sultana, Rabia; Gurjar, Ganesh; Patnaik, S.; Awana, V. P. S.

    2018-04-01

    The Sb2Te3 crystals are grown using the conventional self flux method via solid state reaction route, by melting constituent elements (Sb and Te) at high temperature (850 °C), followed by slow cooling (2 °C/h). As grown Sb2Te3 crystals are analysed for various physical properties by x-ray diffraction (XRD), Raman Spectroscopy, Scanning Electron Microscopy (SEM) coupled with Energy Dispersive x-ray Spectroscopy (EDAX) and electrical measurements under magnetic field (6 Tesla) down to low temperature (2.5 K). The XRD pattern revealed the growth of synthesized Sb2Te3 sample along (00l) plane, whereas the SEM along with EDAX measurements displayed the layered structure with near stoichiometric composition, without foreign contamination. The Raman scattering studies displayed known ({{{{A}}}1{{g}}}1, {{{{E}}}{{g}}}2 and {{{{A}}}1{{g}}}2) vibrational modes for the studied Sb2Te3. The temperature dependent electrical resistivity measurements illustrated the metallic nature of the as grown Sb2Te3 single crystal. Further, the magneto—transport studies represented linear positive magneto-resistance (MR) reaching up to 80% at 2.5 K under an applied field of 6 Tesla. The weak anti localization (WAL) related low field (±2 Tesla) magneto-conductance at low temperatures (2.5 K and 20 K) has been analysed and discussed using the Hikami—Larkin—Nagaoka (HLN) model. Summarily, the short letter reports an easy and versatile method for crystal growth of bulk Sb2Te3 topological insulator (TI) and its brief physical property characterization.

  13. Computational analysis of heat transfer, thermal stress and dislocation density during resistively Czochralski growth of germanium single crystal

    Science.gov (United States)

    Tavakoli, Mohammad Hossein; Renani, Elahe Kabiri; Honarmandnia, Mohtaram; Ezheiyan, Mahdi

    2018-02-01

    In this paper, a set of numerical simulations of fluid flow, temperature gradient, thermal stress and dislocation density for a Czochralski setup used to grow IR optical-grade Ge single crystal have been done for different stages of the growth process. A two-dimensional steady state finite element method has been applied for all calculations. The obtained numerical results reveal that the thermal field, thermal stress and dislocation structure are mainly dependent on the crystal height, heat radiation and gas flow in the growth system.

  14. Electric field stimulated growth of Zn whiskers

    Science.gov (United States)

    Niraula, D.; McCulloch, J.; Warrell, G. R.; Irving, R.; Karpov, V. G.; Shvydka, Diana

    2016-07-01

    We have investigated the impact of strong (˜104 V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  15. Electric field stimulated growth of Zn whiskers

    Energy Technology Data Exchange (ETDEWEB)

    Niraula, D.; McCulloch, J.; Irving, R.; Karpov, V. G. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Warrell, G. R.; Shvydka, Diana, E-mail: diana.shvydka@utoledo.edu [Department of Radiation Oncology, University of Toledo Health Science Campus, Toledo, Ohio 43614 (United States)

    2016-07-15

    We have investigated the impact of strong (∼10{sup 4} V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  16. Diffusion and crystal growth in plasma deposed thin ITO films

    International Nuclear Information System (INIS)

    Steffen, H.; Wulff, H.; Quaas, M.; Tun, Tin Maung.; Hipple, R.

    2000-01-01

    Tin-doped indium oxide (ITO) films were deposited by means of DC-planar magnetron sputtering. A metallic In/Sn (90/10) target an Ar/O 2 gas mixture were used. The oxygen flow was varied between 0 and 2 sccm. Substrate voltages between 0 and -100 V were used. With increasing oxygen flow film structure and composition change from crystalline metallic In/Sn to amorphous ITO. Simultaneously the deposition rate decreases and the film density increases. The diffusion of oxygen into metallic In/Sn films and the amorphous-to-crystalline transformation of ITO were studied using in situ grazing incidence X-ray diffractometry (GIXRD), grazing incidence reflectometry (GIXR), and AFM. From the X-ray integral intensities diffusion constants, activation energies of the diffusion, reaction order and activation energy of the crystal growth were extracted. (authors)

  17. Crystal Growth and Other Materials Physical Researches in Space Environment

    Science.gov (United States)

    Pan, Mingxiang

    Material science researches in space environment are based on reducing the effects of buoyancy driven transport, the effects of atomic oxygen, radiation, extremes of heat and cold and the ultrahigh vacuum, so as to unveil the underlying fundamental phenomena, lead maybe to new potential materials or new industrial processes and develop space techniques. Currently, research program on materials sciences in Chinese Manned Space Engineering (CMSE) is going on. More than ten projects related to crystal growth and materials processes are selected as candidates to be executed in Shenzhou spacecraft, Tiangong Space Laboratory and Chinese Space Station. In this talk, we will present some examples of the projects, which are being prepared and executed in the near future flight tasks. They are both basic and applied research, from discovery to technology.

  18. Growth of single-crystal YAG fiber optics.

    Science.gov (United States)

    Nie, Craig D; Bera, Subhabrata; Harrington, James A

    2016-07-11

    Single-crystal YAG (Y3Al5O12) fibers have been grown by the laser heated pedestal growth technique with losses as low as 0.3 dB/m at 1.06 μm. These YAG fibers are as long as about 60 cm with diameters around 330 μm. The early fibers were grown from unoriented YAG seed fibers and these fibers exhibited facet steps or ridges on the surface of the fiber. However, recently we have grown fibers using an oriented seed to grow step-free fibers. Scattering losses made on the fibers indicate that the scattering losses are equal to about 30% of the total loss.

  19. Strong crystal field effect in ? - optical absorption study

    Science.gov (United States)

    Gajek, Z.; Krupa, J. C.

    1998-12-01

    =-1 Results of optical absorption measurements in polarized light on tetravalent neptunium diluted in a 0953-8984/10/50/021/img6 single crystal are reported. The recorded spectra are complex, pointing to the presence of an 0953-8984/10/50/021/img7 impurity. The electronic transitions assigned to the 0953-8984/10/50/021/img8 ion are interpreted in terms of the usual model, following the actual understanding of the neptunium electronic structure and independent theoretical predictions. R.m.s. deviations of the order of 0953-8984/10/50/021/img9 have been obtained for 42 levels fitted with 11 free parameters. The crystal field effect resulting from the fitting is considerably larger than that observed for the uranium ion in the same host.

  20. Rotation-limited growth of three-dimensional body-centered-cubic crystals.

    Science.gov (United States)

    Tarp, Jens M; Mathiesen, Joachim

    2015-07-01

    According to classical grain growth laws, grain growth is driven by the minimization of surface energy and will continue until a single grain prevails. These laws do not take into account the lattice anisotropy and the details of the microscopic rearrangement of mass between grains. Here we consider coarsening of body-centered-cubic polycrystalline materials in three dimensions using the phase field crystal model. We observe, as a function of the quenching depth, a crossover between a state where grain rotation halts and the growth stagnates and a state where grains coarsen rapidly by coalescence through rotation and alignment of the lattices of neighboring grains. We show that the grain rotation per volume change of a grain follows a power law with an exponent of -1.25. The scaling exponent is consistent with theoretical considerations based on the conservation of dislocations.

  1. Growth and Characterization of ZnTe Crystal

    International Nuclear Information System (INIS)

    Nann Thazin

    2011-12-01

    High quality ZnTe crystals have been synthesized by vapor Transport method. The grown crystals were p-type. The concentration and mobility were 2.5 x 10 16 cm-3 and 23 cm2/Vs at 300K, according to Hall effect measurements. Surface morphology of the crystal was investigated by scanning electron microscope (SEM). Crystal orientation and lattice parameters of the crystals were also analysed by XRD. From X-ray diffraction studies the structure of the grown crystals were found to be zinc-blende. The crystal emitted light in the visible range at room temperature.

  2. Crystal growth iron based pnictide compounds; Kristallzuechtung eisenbasierter Pniktidverbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Nacke, Claudia

    2012-11-15

    The present work is concerned with selected crystal growth method for producing iron-based superconductors. The first part of this work introduces significant results of the crystal growth of BaFe{sub 2}As{sub 2} and the cobalt-substituted compound Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} with x{sub Nom} = 0.025, 0.05, 0.07, 0.10 and 0.20. For this purpose a test procedure for the vertical Bridgman method was developed. The second part of this work contains substantial results for growing a crystal of LiFeAs and the nickel-substituted compound Li{sub 1-δ}Fe{sub 1-x}Ni{sub x}As with x{sub Nom} = 0.015, 0.025, 0.05, 0.06, 0.075 and 0.10. For this purpose a test procedure for the melt flow process has been developed successfully. [German] Die vorliegende Arbeit befasst sich mit ausgewaehlten Kristallzuechtungsverfahren zur Herstellung eisenbasierter Supraleiter. Der erste Teil dieser Arbeit fuehrt wesentliche Ergebnisse der Kristallzuechtung von BaFe{sub 2}As{sub 2} sowie der Cobalt-substituierten Verbindung Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} mit x{sub Nom} =0.025, 0.05, 0.07, 0.10 und 0.20 auf. Hierzu wurde eine Versuchsdurchfuehrung fuer das vertikale Bridgman-Verfahren konzipiert, mit welcher erfolgreich Kristalle dieser Zusammensetzungen gezuechtet wurden. Der zweite Teil dieser Arbeit enthaelt wesentliche Ergebnisse zur Kristallzuechtung von LiFeAs sowie der Nickel-substituierten Verbindung Li{sub 1-δ}Fe{sub 1-x}Ni{sub x}As mit x{sub Nom} = 0.015, 0.025, 0.05, 0.06, 0.075 und 0.10. Hierfuer wurde erfolgreich eine Versuchsdurchfuehrung fuer das Schmelzfluss-Verfahren entwickelt.

  3. Impact of interaction range and curvature on crystal growth of particles confined to spherical surfaces

    NARCIS (Netherlands)

    Paquay, S.; Both, G.-J.; Van Der Schoot, P.P.A.M.

    2017-01-01

    When colloidal particles form a crystal phase on a spherical template, their packing is governed by the effective interaction between them and the elastic strain of bending the growing crystal. For example, if growth commences under appropriate conditions, and the isotropic crystal that forms

  4. Numerical computation of the linear stability of the diffusion model for crystal growth simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.; Sorensen, D.C. [Rice Univ., Houston, TX (United States); Meiron, D.I.; Wedeman, B. [California Institute of Technology, Pasadena, CA (United States)

    1996-12-31

    We consider a computational scheme for determining the linear stability of a diffusion model arising from the simulation of crystal growth. The process of a needle crystal solidifying into some undercooled liquid can be described by the dual diffusion equations with appropriate initial and boundary conditions. Here U{sub t} and U{sub a} denote the temperature of the liquid and solid respectively, and {alpha} represents the thermal diffusivity. At the solid-liquid interface, the motion of the interface denoted by r and the temperature field are related by the conservation relation where n is the unit outward pointing normal to the interface. A basic stationary solution to this free boundary problem can be obtained by writing the equations of motion in a moving frame and transforming the problem to parabolic coordinates. This is known as the Ivantsov parabola solution. Linear stability theory applied to this stationary solution gives rise to an eigenvalue problem of the form.

  5. Approach for growth of high-quality and large protein crystals

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Hiroyoshi, E-mail: matsumura@chem.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); JST (Japan); SOSHO Inc., Osaka 541-0053 (Japan); Sugiyama, Shigeru; Hirose, Mika; Kakinouchi, Keisuke; Maruyama, Mihoko; Murai, Ryota [Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); JST (Japan); Adachi, Hiroaki; Takano, Kazufumi [Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); JST (Japan); SOSHO Inc., Osaka 541-0053 (Japan); Murakami, Satoshi [JST (Japan); SOSHO Inc., Osaka 541-0053 (Japan); Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Mori, Yusuke; Inoue, Tsuyoshi [Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); JST (Japan); SOSHO Inc., Osaka 541-0053 (Japan)

    2011-01-01

    Three crystallization methods, including crystallization in the presence of a semi-solid agarose gel, top-seeded solution growth (TSSG) and a large-scale hanging-drop method, have previously been presented. In this study, crystallization has been further evaluated in the presence of a semi-solid agarose gel by crystallizing additional proteins. A novel crystallization method combining TSSG and the large-scale hanging-drop method has also been developed. Three crystallization methods for growing large high-quality protein crystals, i.e. crystallization in the presence of a semi-solid agarose gel, top-seeded solution growth (TSSG) and a large-scale hanging-drop method, have previously been presented. In this study the effectiveness of crystallization in the presence of a semi-solid agarose gel has been further evaluated by crystallizing additional proteins in the presence of 2.0% (w/v) agarose gel, resulting in complete gelification with high mechanical strength. In TSSG the seed crystals are hung by a seed holder protruding from the top of the growth vessel to prevent polycrystallization. In the large-scale hanging-drop method, a cut pipette tip was used to maintain large-scale droplets consisting of protein–precipitant solution. Here a novel crystallization method that combines TSSG and the large-scale hanging-drop method is reported. A large and single crystal of lysozyme was obtained by this method.

  6. Synthesis, crystal growth, optical, thermal, and mechanical properties of a nonlinear optical single crystal: ammonium sulfate hydrogen sulphamate (ASHS)

    Science.gov (United States)

    Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.

    2018-04-01

    Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.

  7. Crystal growth of hexaferrite architecture for magnetoelectrically tunable microwave semiconductor integrated devices

    Science.gov (United States)

    Hu, Bolin

    Hexaferrites (i.e., hexagonal ferrites), discovered in 1950s, exist as any one of six crystallographic structural variants (i.e., M-, X-, Y-, W-, U-, and Z-type). Over the past six decades, the hexaferrites have received much attention owing to their important properties that lend use as permanent magnets, magnetic data storage materials, as well as components in electrical devices, particularly those operating at RF frequencies. Moreover, there has been increasing interest in hexaferrites for new fundamental and emerging applications. Among those, electronic components for mobile and wireless communications especially incorporated with semiconductor integrated circuits at microwave frequencies, electromagnetic wave absorbers for electromagnetic compatibility, random-access memory (RAM) and low observable technology, and as composite materials having low dimensions. However, of particular interest is the magnetoelectric (ME) effect discovered recently in the hexaferrites such as SrScxFe12-xO19 (SrScM), Ba2--xSrxZn 2Fe12O22 (Zn2Y), Sr4Co2Fe 36O60 (Co2U) and Sr3Co2Fe 24O41 (Co2Z), demonstrating ferroelectricity induced by the complex internal alignment of magnetic moments. Further, both Co 2Z and Co2U have revealed observable magnetoelectric effects at room temperature, representing a step toward practical applications using the ME effect. These materials hold great potential for applications, since strong magnetoelectric coupling allows switching of the FE polarization with a magnetic field (H) and vice versa. These features could lead to a new type of storage devices, such as an electric field-controlled magnetic memory. A nanoscale-driven crystal growth of magnetic hexaferrites was successfully demonstrated at low growth temperatures (25--40% lower than the temperatures required often for crystal growth). This outcome exhibits thermodynamic processes of crystal growth, allowing ease in fabrication of advanced multifunctional materials. Most importantly, the

  8. Ultrasound Flow Mapping for the Investigation of Crystal Growth.

    Science.gov (United States)

    Thieme, Norman; Bonisch, Paul; Meier, Dagmar; Nauber, Richard; Buttner, Lars; Dadzis, Kaspars; Patzold, Olf; Sylla, Lamine; Czarske, Jurgen

    2017-04-01

    A high energy conversion and cost efficiency are keys for the transition to renewable energy sources, e.g., solar cells. The efficiency of multicrystalline solar cells can be improved by enhancing the understanding of its crystallization process, especially the directional solidification. In this paper, a novel measurement system for the characterization of flow phenomena and solidification processes in low-temperature model experiments on the basis of ultrasound (US) Doppler velocimetry is described. It captures turbulent flow phenomena in two planes with a frame rate of 3.5 Hz and tracks the shape of the solid-liquid interface during multihour experiments. Time-resolved flow mapping is performed using four linear US arrays with a total of 168 transducer elements. Long duration measurements are enabled through an online, field-programmable gate array (FPGA)-based signal processing. Nine single US transducers allow for in situ tracking of a solid-liquid interface. Results of flow and solidification experiments in the model experiment are presented and compared with numerical simulation. The potential of the developed US system for measuring turbulent flows and for tracking the solidification front during a directional crystallization process is demonstrated. The results of the model experiments are in good agreement with numerical calculations and can be used for the validation of numerical models, especially the selection of the turbulence model.

  9. Crystal field parameters in UCl4: Experiment versus theory

    International Nuclear Information System (INIS)

    Zolnierek, Z.; Gajek, Z.; Khan Malek, C.

    1984-01-01

    Crystal field effect on U 4+ ion with the 3 H 4 ground term in tetragonal ligand field of UCl 4 has been studied in detail. Crystal field parameters determined experimentally from optical spectroscopy and magnetic susceptibility are in good agreement with CEP sets derived from the modified point charge model and the ab initio method. Theoretical calculations lead to overestimating the A 4 4 4 > and lowering the A 2 0 2 > values in comparison to those found in the experiments. The discrepancies are, however, within an accuracy of calculations. A large reduction of expectation values of the magnetic moment operator for the eigenvectors of lowest CF levels (17.8%), determined from magnetic susceptibility, cannot be attributed to the overlap and covalency effects only. The detailed calculations have shown that the latter effects provide about 4.6% reduction of respective matrix elements, and the applied J-J mixing procedure increases this factor up to 6.5%. Since similar, as in UCl 4 , reduction factor (proportional15%) has already been observed in a number of different uranium compounds, it seems to be likely that this feature is involved in the intrinsic properties of the U 4+ ion. We endeavor to explain this effect in terms of configuration interaction mechanisms. (orig.)

  10. Crystal field parameters in UCI 4: Experiment versus theory

    Science.gov (United States)

    Zolnierek, Z.; Gajek, Z.; Malek, Ch. Khan

    1984-08-01

    Crystal field effect on U 4+ ion with the 3H 4 ground term in tetragonal ligand field of UCl 4 has been studied in detail. Crystal field parameters determined experimentally from optical spectroscopy and magnetic susceptibility are in good agreement with CFP sets derived from the modified point charge model and the ab initio method. Theoretical calculations lead to overestimating the A44 and lowering the A02 values in comparison to those found in the experiments. The discrepancies are, however, within an accuracy of calculations. A large reduction of expectation values of the magnetic moment operator for the eigenvectors of lowest CF levels (17.8%), determined from magnetic susceptibility, cannot be attributed to the overlap and covalency effects only. The detailed calculations have shown that the latter effects provide about 4.6% reduction of respective matrix elements, and the applied J-J mixing procedure increases this factor up to 6.5%. Since similar, as in UCl 4, reduction factor(≈15%) has already been observed in a number of different uranium compounds, it seems likely that this feature is involved in the intrinsic properties of the U 4+ ion. We endeavor to explain this effect in terms of configuration interaction mechanisms.

  11. Variable valence ion spectra in a crystal field

    International Nuclear Information System (INIS)

    Ghiordanescu, V.

    1979-01-01

    Using the Cadmium chloride as a host lattice, the optical spectra and RES of Mnsup(2+) were studied and the following results were obtained: a) By controlled dopings, the absorbtion and excitation spectra of ion Mnsup(2+) in CdCl 2 within the concentration range between 0.01 M and 25 M were plotted. Thus, the band structure for small concentrations was pointed out to differ from the structure observed for high concentrations. In the literature, this effect has not been observed on similar compounds, due to the small intensity values of the absorbtion spectra. b) Considering that for CdCl 2 :Mnsup(2+) 0.1 M, the optical spectra correspond to the isolated ion in the lattice, the energy levels were evaluated using electrostatic and spin-orbit terms in a perturbation calculation of the crystal field approximation. c) The calculation of parameter a which represents the effect of the cubic field in the spjn Hamiltonian of Mnsup(2+), is closer to the experjmental value -0.5.10 -4 cm -1 of the crystal field Dq and zeta parameters are used, respectively, parameters of the spin-orbit interaction obtained under b). d) The coupling effects of spins into more concentrated crystals with Mn 2+ are a function of temperature. The emjssion yield was given a quasi-cantitative evaluation in thjs paper as a function of temperature and concentratjon on the basis of which the isolated centers of Mn 2+ were found to display ectra whose intensity vary with temperature according to the Laporte forbidden transitions and spin rule theory, and the clusters including Mn 2+ - Mn 2+ pairs provide spectra whose intensity vary with the strength of the spin-spin coupling. (author)

  12. Formation and growth mechanism of TiC crystal in TiCp/Ti composites

    Institute of Scientific and Technical Information of China (English)

    金云学; 王宏伟; 曾松岩; 张二林

    2002-01-01

    Ti-C and Ti-Al-C alloys were prepared using gravity and directional solidification processes. Morphologies of TiC crystal were investigated by using SEM, XRD and EDX. Also, the formation and growth mechanism of TiC crystal have been analyzed on the basis of coordination polyhedron growth unit theory. During solidification of titanium alloys, the coordination polyhedron growth unit is TiC6. TiC6 growth units stack in a linking mode of edge to edge and form octahedral TiC crystal with {111} planes as present faces. Although the growing geometry of TiC crystal is decided by its lattice structure, the final morphology of TiC crystal depends on the effects of its growth environment. In solute concentration distribution, the super-saturation of C or TiC6 at the corners of octahedral TiC crystal is much higher than that of edges and faces of octahedral TiC crystal. At these corners the driving force for crystal growth is greater and the interface is instable which contribute to quick stacking rate of growth units at these corners and result in secondary dendrite arms along TiC crystallographic 〈100〉 directions. TiC crystal finally grows to be dendrites.

  13. Crystal growth of new charge-transfer salts based on π-conjugated donor molecules

    Energy Technology Data Exchange (ETDEWEB)

    Morherr, Antonia, E-mail: morherr@stud.uni-frankfurt.de [Physikalisches Institut, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany); Witt, Sebastian [Physikalisches Institut, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany); Chernenkaya, Alisa [Graduate School Materials Science in Mainz, 55128 Mainz (Germany); Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Bäcker, Jan-Peter [Physikalisches Institut, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany); Schönhense, Gerd [Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Bolte, Michael [Institut für anorganische Chemie, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany); Krellner, Cornelius [Physikalisches Institut, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany)

    2016-09-01

    New charge transfer crystals of π-conjugated, aromatic molecules (phenanthrene and picene) as donors were obtained by physical vapor transport. The melting behavior, optimization of crystal growth and the crystal structure are reported for charge transfer salts with (fluorinated) tetracyanoquinodimethane (TCNQ-F{sub x}, x=0, 2, 4), which was used as acceptor material. The crystal structures were determined by single-crystal X-ray diffraction. Growth conditions for different vapor pressures in closed ampules were applied and the effect of these starting conditions for crystal size and quality is reported. The process of charge transfer was investigated by geometrical analysis of the crystal structure and by infrared spectroscopy on single crystals. With these three different acceptor strengths and the two sets of donor materials, it is possible to investigate the distribution of the charge transfer systematically. This helps to understand the charge transfer process in this class of materials with π-conjugated donor molecules.

  14. ICCG-10: Tenth International Conference on Crystal Growth. Poster presentation abstracts

    Science.gov (United States)

    1992-01-01

    Poster presentation abstracts from the tenth International Conference on Crystal Growth (ICCG) (Aug. 16-21, 1992) are provided. Topics discussed at the conference include crystal growth mechanisms, superconductors, semiconductors, laser materials, optical materials, and biomaterials. Organizing committees, ICCG advisory board and officers, and sponsors of the conference are also included.

  15. Homogeneous SiGe crystal growth in microgravity by the travelling liquidus-zone method

    International Nuclear Information System (INIS)

    Kinoshita, K; Arai, Y; Inatomi, Y; Sakata, K; Takayanagi, M; Yoda, S; Miyata, H; Tanaka, R; Sone, T; Yoshikawa, J; Kihara, T; Shibayama, H; Kubota, Y; Shimaoka, T; Warashina, Y

    2011-01-01

    Homogeneous SiGe crystal growth experiments will be performed on board the ISS 'Kibo' using a gradient heating furnace (GHF). A new crystal growth method invented for growing homogeneous mixed crystals named 'travelling liquidus-zone (TLZ) method' is evaluated by the growth of Si 0.5 Ge 0.5 crystals in space. We have already succeeded in growing homogeneous 2mm diameter Si 0.5 Ge 0.5 crystals on the ground but large diameter homogeneous crystals are difficult to be grown due to convection in a melt. In microgravity, larger diameter crystals can be grown with suppressing convection. Radial concentration profiles as well as axial profiles in microgravity grown crystals will be measured and will be compared with our two-dimensional TLZ growth model equation and compositional variation is analyzed. Results are beneficial for growing large diameter mixed crystals by the TLZ method on the ground. Here, we report on the principle of the TLZ method for homogeneous crystal growth, results of preparatory experiments on the ground and plan for microgravity experiments.

  16. Solid-melt interface structure and growth of Cu alloy single crystals

    International Nuclear Information System (INIS)

    Tomimitsu, Hiroshi; Kamada, Kohji.

    1983-01-01

    Crystal-melt interface behavior during the growth of Cu-base solid solutions by the Bridgman method is discussed on the basis of experimental evidence obtained by neutron diffraction topography. Advantages of neutron diffraction topography for the characterization of large single crystals, such as dealt with in this paper, are emphasized. Evidence was odserved of extremely regular crystal growth along directions, irrespective of the macroscopic growth direction. This contrasts with the previously believed (110) normal growth which is a conclusion of growth theory based on molecular kinetics at the solid-melt interface. In consequence, we believe that the kinetics at the interface is a minor factor in the meltgrowth of metal single crystals. Revised melt-growth theory should include both the growth and the formation of the regular structure as evidenced by neutron diffraction topography. (author)

  17. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei

    2017-01-01

    Despite their outstanding charge transport characteristics, organolead halide perovskite single crystals grown by hitherto reported crystallization methods are not suitable for most optoelectronic devices due to their small aspect ratios

  18. Growth and characterization of nonlinear optical single crystals: bis ...

    Indian Academy of Sciences (India)

    Administrator

    molecules have received great attention for NLO applica- tions. However ... Figure 3. Single crystals of bis(cyclohexylammonium) terephthalate (crystal a) and cyclohexylammo- .... from ground state to higher energy states.17 Optical window ...

  19. Laboratory studies on the uptake of aromatic hydrocarbons by ice crystals during vapor depositional crystal growth

    Science.gov (United States)

    Fries, Elke; Starokozhev, Elena; Haunold, Werner; Jaeschke, Wolfgang; Mitra, Subir K.; Borrmann, Stephan; Schmidt, Martin U.

    Uptake of aromatic hydrocarbons (AH) by ice crystals during vapor deposit growth was investigated in a walk-in cold chamber at temperatures of 242, 251, and 260 K, respectively. Ice crystals were grown from ambient air in the presence of gaseous AH namely: benzene (C 6H 6), toluene (methylbenzene, C 7H 8), the C 8H 10 isomers ethylbenzene, o-, m-, p-xylene (dimethylbenzenes), the C 9H 12 isomers n-propylbenzene, 4-ethyltoluene, 1,3,5-trimethylbenzene (1,3,5-TMB), 1,2,4-trimethylbenzene (1,2,4-TMB), 1,2,3-trimethylbenzene (1,2,3-TMB), and the C 10H 14 compound tert.-butylbenzene. Gas-phase concentrations calculated at 295 K were 10.3-20.8 μg m -3. Uptake of AH was detected by analyzing vapor deposited ice with a very sensitive method composed of solid-phase micro-extraction (SPME), followed by gas chromatography/mass spectrometry (GC/MS). Ice crystal size was lower than 1 cm. At water vapor extents of 5.8, 6.0 and 8.1 g m -3, ice crystal shape changed with decreasing temperatures from a column at a temperature of 260 K, to a plate at 251 K, and to a dendrite at 242 K. Experimentally observed ice growth rates were between 3.3 and 13.3×10 -3 g s -1 m -2 and decreased at lower temperatures and lower value of water vapor concentration. Predicted growth rates were mostly slightly higher. Benzene, toluene, ethylbenzene, and xylenes (BTEX) were not detected in ice above their detection limits (DLs) of 25 pg g ice-1 (toluene, ethylbenzene, xylenes) and 125 pg g ice-1 (benzene) over the entire temperature range. Median concentrations of n-propylbenzene, 4-ethyltoluene, 1,3,5-TMB, tert.-butylbenzene, 1,2,4-TMB, and 1,2,3-TMB were between 4 and 176 pg g ice-1 at gas concentrations of 10.3-10.7 μg m -3 calculated at 295 K. Uptake coefficients ( K) defined as the product of concentration of AH in ice and density of ice related to the product of their concentration in the gas phase and ice mass varied between 0.40 and 10.23. K increased with decreasing temperatures. Values of

  20. Growth and time dependent alignment of KCl crystals in Hemoglobin LB monolayer

    International Nuclear Information System (INIS)

    Mahato, Mrityunjoy; Pal, Prabir; Tah, Bidisha; Kamilya, Tapanendu; Talapatra, G.B.

    2012-01-01

    Nature and organism often use the biomineralization technique to build up various highly regular structures such as bone, teeth, kidney stone etc., and recently this becomes the strategy to design and synthesis of novel biocomposite materials. We report here the controlled crystallization of KCl in Langmuir and Langmuir Blodgett (LB) monolayer of Hemoglobin (Hb) at ambient condition. The nucleation and growth of KCl crystals in Hb monolayer has temporal and KCl concentration dependency. The growth of KCl crystals in LB film of Hb has distinct behavior in the alignment of crystals from linear to fractal like structures depending on growth time. The crystallographic identity of the biomineralized KCl crystal is confirmed from HR-TEM, XRD, and from powder diffraction simulation. Our results substantiated that the template of Langmuir monolayer of proteins plays a crucial role in biomineralization as well as in designing and synthesizing of novel biocomposite materials. Highlights: ► Biomineralization of KCl crystal has been studied in Hemoglobin LB film. ► KCl crystal growth is time and concentration of KCl dependent. ► The alignment of KCl crystal growth is fractal nature with time. ► The unfolding of Hb and evaporation factor has some role in crystallization and fractal growth.

  1. Using Quartz Crystal Microbalance for Field Measurement of Liquid Viscosities

    Directory of Open Access Journals (Sweden)

    Qingsong Bai

    2016-01-01

    Full Text Available The field measurement of liquid viscosities, especially the high viscous liquids, is challenging and often requires expensive equipment, long processing time, and lots of reagent. We use quartz crystal microbalances (QCMs operating in solution which are also sensitive to the viscosity and density of the contacting solution. QCMs are typically investigated for sensor applications in which one surface of QCM completely immersed in Newtonian liquid, but the viscous damping in liquids would cause not only large frequency shifts but also large losses in the quality factor Q leading to instability and even cessation of oscillation. A novel mass-sensitivity-based method for field measurement of liquid viscosities using a QCM is demonstrated in this paper and a model describing the influence of the liquid properties on the oscillation frequency is established as well. Two groups of verified experiments were performed and the experimental results show that the presented method is effective and possesses potential applications.

  2. Crystallization Kinetics of Organic–Inorganic Trihalide Perovskites and the Role of the Lead Anion in Crystal Growth

    KAUST Repository

    Moore, David T.

    2015-02-18

    © 2015 American Chemical Society. Methylammonium lead halide perovskite solar cells continue to excite the research community due to their rapidly increasing performance which, in large part, is due to improvements in film morphology. The next step in this progression is control of the crystal morphology which requires a better fundamental understanding of the crystal growth. In this study we use in situ X-ray scattering data to study isothermal transformations of perovskite films derived from chloride, iodide, nitrate, and acetate lead salts. Using established models we determine the activation energy for crystallization and find that it changes as a function of the lead salt. Further analysis enabled determination of the precursor composition and showed that the primary step in perovskite formation is removal of excess organic salt from the precursor. This understanding suggests that careful choice of the lead salt will aid in controlling crystal growth, leading to superior films and better performing solar cells.

  3. Control of the structural parameters in the (Zn – Zn16Ti single crystal growth

    Directory of Open Access Journals (Sweden)

    W. Wołczyński

    2011-10-01

    Full Text Available The (Zn - single crystal was obtained by means of the Bridgman system. Several growth rates were applied during the experiment. The graphite crucible was used in order to perform the solidification process. The unidirectional solidification occurred with the presence of the moving temperature field. The thermal gradient was positive so that the constrained growth of the single crystal was ensured. The (Zn single crystal was doped with small addition of titanium and copper. The titanium formed an intermetallic compound Zn16-Ti. The copper was solved in the solid solution (Zn. The precipitates of (Zn and Zn16-Ti formed a stripes localized cyclically along the single crystal length. The intermetallic compound Zn16-Ti strengthened the (Zn single crystal. The structural transitions were observed in the stripes with the increasing solidification rate. Within the first range of the solidification rates ( the irregular L-shape rod-like intermetalliccompoundwas revealed. At the- threshold growth rate branches disappear continuously till the growth rate equal to. At the same range of growth rates the regular lamellar eutectic structure (Zn – Zn16-Ti appeared continuously and it existed exclusively till the second threshold growth rate equal to. Above the second threshold growth rate the regular rod-like eutectic structure was formed, only. Thegeneral theory for the stationary eutectic solidification was developed. According to this theory the eutectic structure localized within the stripes is formed under stationary state. Therefore, the criterion of the minimum entropy production defines well the stationary solidification. The entropy production was calculated for the regular rod-like eutectic structure formation and for the regular lamellar eutectic structure formation. It was postulated that the observed structure are subjected to the competition. That is why the structural transitionwere observed at therevealedthreshold growth rates.Moreover, it was

  4. The inhibition of crystal growth of mirabilite in aqueous solutions in the presence of phosphonates

    Science.gov (United States)

    Vavouraki, A. I.; Koutsoukos, P. G.

    2016-02-01

    The formation of sodium sulfate decahydrate (Mirabilite) has been known to cause serious damages to structural materials both of modern and of historical buildings. Methods which can retard or completely suppress the development of mirabilte crystals are urgently needed especially as remedies or preventive measures for the preservation of the built cultural heritage. In the present work we present results on the effect of the presence of phosphonate compounds on the kinetics of crystal growth from aqueous supersaturated solutions at 18 °C using the seeded growth technique. The phosphonate compounds tested differed with respect to the number of ionizable phosphonate groups and with respect to the number of amino groups in the respective molecules. The crystal growth process was monitored by the temperature changes during the exothermic crystallization of mirabilite in the stirred supersaturated solutions. The crystal growth of mirabilite in the presence of: (1-hydroxyethylidene)-1, 1-diphosphonic acid (HEDP), amino tri (methylene phosphonic acid) (ATMP), hexamethylenediaminetetra (methylene)phosphonic acid (HTDMP), and diethylene triamine penta(methylene phosphonic acid)(DETPMP) over a range of concentrations between 0.1-5% w/w resulted in significant decrease of the rates of mirabilite crystal growth. All phosphonic compounds tested reduced the crystallization rates up to 60% in comparison with additive-free solutions. The presence of the test compounds did not cause changes of the mechanism of crystal growth which was surface diffusion controlled, as shown by the second order dependence of the rates of mirabilite crystal growth on the relative supersaturation. The excellent fit of the measured rates to a kinetic Langmuir-type model suggested that the activity of the tested inhibitors could be attributed to the adsorption and subsequent reduction of the active crystal growth sites of the seed crystals. In all cases, the inhibitory activity was reduced with

  5. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI

    Science.gov (United States)

    Karthigha, S.; Krishnamoorthi, C.

    2018-03-01

    An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.

  6. Protein crystal growth on board Shenzhou 3: a concerted effort improves crystal diffraction quality and facilitates structure determination

    International Nuclear Information System (INIS)

    Han, Y.; Cang, H.-X.; Zhou, J.-X.; Wang, Y.-P.; Bi, R.-C.; Colelesage, J.; Delbaere, L.T.J.; Nahoum, V.; Shi, R.; Zhou, M.; Zhu, D.-W.; Lin, S.-X.

    2004-01-01

    The crystallization of 16 proteins was carried out using 60 wells on board Shenzhou 3 in 2002. Although the mission was only 7 days, careful and concerted planning at all stages made it possible to obtain crystals of improved quality compared to their ground controls for some of the proteins. Significantly improved resolutions were obtained from diffracted crystals of 4 proteins. A complete data set from a space crystal of the PEP carboxykinase yielded significantly higher resolution (1.46 A vs. 1.87 A), I/sigma (22.4 vs. 15.5), and a lower average temperature factor (29.2 A 2 vs. 42.9 A 2 ) than the best ground-based control crystal. The 3-D structure of the enzyme is well improved with significant ligand density. It has been postulated that the reduced convection and absence of macromolecule sedimentation under microgravity have advantages/benefits for protein crystal growth. Improvements in experimental design for protein crystal growth in microgravity are ongoing

  7. Growth and characterization of high-purity SiC single crystals

    Science.gov (United States)

    Augustine, G.; Balakrishna, V.; Brandt, C. D.

    2000-04-01

    High-purity SiC single crystals with diameter up to 50 mm have been grown by the physical vapor transport method. Finite element analysis was used for thermal modeling of the crystal growth cavity in order to reduce stress in the grown crystal. Crystals are grown in high-purity growth ambient using purified graphite furniture and high-purity SiC sublimation sources. Undoped crystals up to 50 mm in diameter with micropipe density less than 100 cm -2 have been grown using this method. These undoped crystals exhibit resistivities in the 10 3 Ω cm range and are p-type due to the presence of residual acceptor impurities, mainly boron. Semi-insulating SiC material is obtained by doping the crystal with vanadium. Vanadium has a deep donor level located near the middle of the band gap, which compensates the residual acceptor resulting in semi-insulating behavior.

  8. Crystal growth and properties of novel organic nonlinear optical crystals of 4-Nitrophenol urea

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, M. Krishna, E-mail: krishnamohan.m@ktr.srmuniv.ac.in; Ponnusamy, S.; Muthamizhchelvan, C.

    2017-07-01

    Single crystals of 4-Nitrophenol urea have been grown from water using slow evaporation technique at constant temperature, with the vision to improve the properties of the crystals. The unit cell parameters of the grown crystals were determined by single crystal and powder X-Ray diffraction. FTIR studies reveals the presence of different vibrational bands. The Optical studies confirmed that the crystal is transparent up to 360 nm .TGA and DSC studies were carried out to understand the thermal behavior of crystals. The SHG studies show the suitability of the crystals for NLO applications. The etching studies were carried out to study the behavior of the crystals under different conditions.These studies reveal that the crystals of 4-Nitrophenol urea are suitable for device applications. - Highlights: • 4-Nitrophenol urea crystals of dimensions 14 mm × 1 mm were grown. • UV–Visible studies indicate the crystal is transparent in the region of 370–800 nm. • Thermal studies show the crystal starts decomposing at 170 °C. • SHG studies indicate that the crystals have NLO efficiency 3.5 times that of KDP.

  9. Crystal growth and magnetic property of YFeO3 crystal

    Indian Academy of Sciences (India)

    2Department of Physics, Shanghai University, Shanghai 200444, China. 3School ... YFeO3 and other rare earth substituted crystals with distorted orthorhombic pervoskite-like struc- .... gen, with rotation rates of 30 rpm for the growing crystal or.

  10. New Programs Utilizing Light Scattering and Flow Imaging Techniques for Macromolecular Crystal Growth and Fluid Dynamics Studies

    Science.gov (United States)

    2003-01-01

    Dr. Phil Segre, a physicist by training, is a recent addition to the Biotech group, SD46, having joined NASA in August of 2000. Over the past two years he has been developing a laboratory for the study of macromolecular and protein crystal growth. The main apparatus for this work is a Dynamic Light Scattering apparatus, DLS, which is capable of making highly precise measurements of size distributions of both protein solutions and protein crystals. With Drs. Chernov and Thomas (USRA), he has begun a collaboration studying the affects of protein impurities on protein crystal growth and subsequent crystal quality. One of the hypotheses behind the differences between Earth and space grown protein crystals is that the absorption of harmful impurities is reduced in space due to the absence of convective flows. Using DLS measurements we are examining crystal growth with varying amounts of impurities and testing whether there is a strong physical basis behind this hypothesis. With Dr. Joe Ng of UAH he has been collaborating on a project to examine the folding/unfolding dynamics of large RNA complexes. A detailed understanding of this process is necessary for the handling of RNA in biotech applications, and the DLS instrument gives details and results beyond that of other instruments. With Prof. Jim McClymer of the University of Maine (summer faculty visitor to NASA in 2001, 2002), we have been studying the crystallization process in model colloidal suspensions whose behavior in some cases can mimic that of much smaller protein solutions. An understanding of the self-assembly of colloids is the first step in the process of engineering novel materials for photonic and light switching applications. Finally, he has begun an investigation into the physics of particle sedimentation. In addition to the DLS instrument he also has an instrument (called PIV) that can measure flow fields of fluids. The applications are to the dynamics of protein crystal motions both on earth and in

  11. Influence of magnetic field on the morphology of the andrographolide crystal from supercritical carbon dioxide extraction crystallization

    Science.gov (United States)

    Chen, Kexun; Zhang, Xingyuan; Pan, Jian; Zhang, Wencheng; Yong, Ji; Yin, Wenhong

    2003-10-01

    In this paper, a supercritical fluid extraction-crystallization of andrographolide, a kind of Chinese traditional medicine, was investigated. We have studied the extraction-crystallization process with or without magnet in the extractor, respectively. It was found that the presence of magnetic field is an important factor influencing the quality of the products. SEM images showed that the crystal was slice-like in shape, and many slices reunited together in the absence of magnet. Further research showed that pressure had a certain effect on the morphology of the crystal.

  12. Stacking fault growth of FCC crystal: The Monte-Carlo simulation approach

    International Nuclear Information System (INIS)

    Jian Jianmin; Ming Naiben

    1988-03-01

    The Monte-Carlo method has been used to simulate the growth of the FCC (111) crystal surface, on which is presented the outcrop of a stacking fault. The comparison of the growth rates has been made between the stacking fault containing surface and the perfect surface. The successive growth stages have been simulated. It is concluded that the outcrop of stacking fault on the crystal surface can act as a self-perpetuating step generating source. (author). 7 refs, 3 figs

  13. Optical spectroscopy and crystal-field analysis of U3+: Ba2YCl7

    International Nuclear Information System (INIS)

    Karbowiak, M.; Mech, A.; Drozdzyndki, J.; Gajek, Z.; Edelstein, N.M.

    2002-01-01

    High resolution absorption spectra of a U 3+ (0.3%): Ba 2 YCl 7 single crystal were recorded in the 4000-50 000 cm -1 range at 7 K. The observed crystal-field levels were assigned and fit to the parameters of the simplified angular overlap model (AOM) as well as a semi-empirical Hamiltonian representing the combined atomic and one-electron crystal-field interactions. The starting values of the AOM parameters were obtained from ab initio calculations. The analysis of the spectra allowed the assignment of 65 crystal-field levels with a relatively small rms deviation of 25 cm -1 and has shown that the AOM approach can predict quite well the B q k crystal-field parameters. The value determined for the crystal-field strength parameter, N v , corresponds well with those determined for U 3+ in other chloride single crystals. (authors)

  14. Single-crystal growth of ceria-based materials

    International Nuclear Information System (INIS)

    Ulbrich, Gregor

    2015-01-01

    In this work it could be shown that Skull-Melting is a suitable method for growing ceria single crystals. Twenty different ceria-based single crystals could be manufactured. It was possible to dope ceria single crystals with Gd, Sm, Y, Zr, Ti, Ta, and Pr in different concentrations. Also co-doping with the named metals was realized. However, there remain some problems for growing ceria-based single crystals by Skull-Melting. As ignition metal zirconium was used because no ceria-based material works well. For that reason all single crystals show small zirconium contamination. Another problem is the formation of oxygen by the heat-induced reduction of ceria during the melting process. Because of that the skull of sintered material is often destroyed by gas pressure. This problem had to be solved individually for every single crystal. The obtained single crystals were characterized using different methods. To ensure the single crystal character the y were examined by Laue diffraction. All manufactured crystals are single crystals. Also powder diffraction patterns of the milled and oxidized samples were measured. For the determination of symmetry and metric the structural parameters were analyzed by the Rietveld method. All synthesized materials crystallize in space group Fm-3m known from calcium fluoride. The cubic lattice parameter a was determined for all crystals. In the case of series with different cerium and zirconium concentrations a linear correlation between cerium content and cubic lattice parameter was detected. The elemental composition was determined by WDX. All crystals show a homogeneous elemental distribution. The oxygen content was calculated because the WDX method isn't useful for determination.

  15. Experimental investigation and crystal-field modeling of Er{sup 3+} energy levels in GSGG crystal

    Energy Technology Data Exchange (ETDEWEB)

    Gao, J.Y., E-mail: jygao1985@sina.com [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Sun, D.L.; Zhang, Q.L. [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, X.F. [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Liu, W.P.; Luo, J.Q.; Sun, G.H.; Yin, S.T. [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-06-25

    The Er{sup 3+}-doped Gd{sub 3}Sc{sub 2}Ga{sub 3}O{sub 12} (Er{sup 3+}:GSGG) single crystal, a excellent medium of the mid-infrared and anti-radiation solid state laser pumped by laser diode, was grown by Czochralski method successfully. The absorption spectra were measured and analyzed in a wider spectral wavelength range of 350–1700 nm at different temperatures of 7.6, 77, 200 and 300 K. The free-ions and crystal-field parameters were fitted to the experimental energy levels with the root mean square deviation of 9.86 cm{sup −1}. According to the crystal-field calculations, 124 degenerate energy levels of Er{sup 3+} in GSGG host crystals were assigned. The fitting results of free-ions and crystal-field parameters were compared with those already reported of Er{sup 3+}:YSGG. The results indicated that the free-ions parameters for Er{sup 3+} in GSGG host are similar to those in YSGG host crystals, and the crystal-field interaction of GSGG is weaker than that of YSGG, which may result in the better laser characterization of Er{sup 3+}:GSGG crystal. - Highlights: • The efficient diode-end-pumped laser crystal Er:GSGG has been grown successfully. • The absorption spectra of Er:GSGG have been measured in range of 350–1700 nm. • The fitting result is very well for the root mean square deviation is 9.86 cm{sup −1}. • The 124 levels of Er:GSGG have been assigned from the crystal-field calculations.

  16. A Study of Biomolecules as Growth Modifiers of Calcium Oxalate Crystals

    Science.gov (United States)

    Kwak, Junha John

    Crystallization processes are ubiquitous in nature, science, and technology. Controlling crystal growth is pivotal in many industries as material properties and functions can be tailored by tuning crystal habits (e.g. size, shape, phase). In biomineralization, organisms exert excellent control over bottom-up synthesis and assembly of inorganic-organic structures (e.g. bones, teeth, exoskeletons). This is made possible by growth modifiers that range from small molecules to macromolecules, such as proteins. Molecular recognition of the mineral phase allows proteins to function as nucleation templates, matrices, and growth inhibitors or promoters. We are interested in taking a biomimetic approach to control crystallization via biomolecular growth modifiers. We investigated calcium oxalate monohydrate (COM), found in plants and kidney stones, as a model system of crystallization. We studied the effects of four common proteins on COM crystallization: bovine serum albumin (BSA), transferrin, lactoferrin, and lysozyme. Through kinetic studies of COM crystallization, we classified BSA and lysozyme as COM growth inhibitor and promoter respectively. Their inhibition and promotion effects were also evident in the macroscopic crystal habit. Through adsorption and microscopy experiments, we showed that BSA exhibits binding specificity for the apical surfaces of macroscopic COM crystals. Lysozyme, on the other, functions via a non-binding mechanism at the surface to accelerate the growth of the apical surfaces. We also synthesized and studied peptides derived from the protein primary sequences to identify putative domains responsible for these inhibition and promotion effects. Collectively, our study of physiologically relevant biomolecules suggests potential roles of COM modifiers in pathological crystallization and helps to develop guidelines for rational design of biomolecular growth modifiers for applications in crystal engineering.

  17. Crystallization in metglass: growth mechanism of crystals and radiation effects in Fe Ni P B

    International Nuclear Information System (INIS)

    Limoge, Y.; Barbu, A.

    1981-08-01

    Studying crystallization mechanisms and transport properties in amorphous metallic alloys we propose a model for systems wich are displaying eutectoid decomposition. Bringing together self diffusion, electron microscopy and electron irradiation experiments on a Fe Ni P B alloys we have shown that crystallization controlled by interfacial diffusion at the crystal surface can explain all the observed features of the experimental behaviour

  18. Surface growth mechanisms and structural faulting in the growth of large single and spherulitic titanosilicate ETS-4 crystals

    Science.gov (United States)

    Miraglia, Peter Q.; Yilmaz, Bilge; Warzywoda, Juliusz; Sacco, Albert

    2004-10-01

    Morphological, surface and crystallographic analyses of titanosilicate ETS-4 products, with diverse habits ranging from spherulitic particles composed of submicron crystallites to large single crystals, are presented. Pole figures revealed that crystal surfaces with a-, b- and c- axes corresponded to , and directions, respectively. Thus, technologically important 8-membered ring pores and titania chains in ETS-4 run along the b-axis of single crystals and terminate at the smallest crystal face. Height of the spiral growth steps observed on {1 0 0} and {0 0 1} surfaces corresponded to the interplanar spacings associated with their crystallographic orientation, and is equivalent to the thickness of building units that form the ETS-4 framework. Data suggest that the more viscous synthesis mixtures, with a large driving force for growth, increased the two- and three-dimensional nucleation, while limiting the transport of nutrients to the growth surface. These conditions increase the tendency for stacking fault formation on {1 0 0} surfaces and small angle branching, which eventually results in spherulitic growth. The growth of high quality ETS-4 single crystals (from less viscous synthesis mixtures) occurred at lower surface nucleation rates. Data suggest that these high quality, large crystals grew due to one-dimensional nucleation at spiral hillocks, and indicate that under these conditions un-faulted growth is preferred.

  19. Insights into crystal growth rates from a study of orbicular granitoids from western Australia

    Science.gov (United States)

    Zhang, J.; Lee, C. T.

    2017-12-01

    The purpose of this study is to develop new tools for constraining crystal growth rate in geologic systems. Of interest is the growth of crystals in magmatic systems because crystallization changes the rheology of a magma as well as provides surfaces on which bubbles can nucleate. To explore crystal growth in more detail, we conducted a case study of orbicular granitoids from western Australia. The orbicules occur as spheroids dispersed in a granitic matrix. Most orbicules have at least two to three concentric bands, composed of elongate and radially oriented hornblende surrounded by interstitial plagioclase. We show that mineral modes and hence bulk composition at the scale of the band is homogeneous from rim to core. Crystal number density decreases and crystal size increases from rim to core. These observations suggest that the orbicules crystallized rapidly from rim to core. We hypothesize that the orbicules are blobs of hot dioritic liquid injected into a cold granitic magma and subsequently cooled and solidified. Crystals stop growing when the mass transport rate tends to zero due to the low temperature. We estimated cooling timescales based on conductive cooling models, constraining crystal growth rates to be 10-6 to 10-5 m/s. We also show that the oscillatory banding is controlled by disequilibrium crystallization, wherein hornblende preferentially crystallizes, resulting in the diffusive growth of a chemical boundary layer enriched in plagioclase component, which in turns results in crystallization of plagioclase. We show that the correlation between the width of each crystallization couplet (band) with distance from orbicule rim is linear, with the slope corresponding to the square root of the ratio between chemical diffusivity in the growth medium and thermal diffusivity. We estimate chemical diffusivity of 2*10-7 m2/s, which is remarkably fast for silicate liquids but reasonable for diffusion in hot aqueous fluids, suggesting that crystallization

  20. Growth and characterization of magnesium chloride and lanthanum chloride doped strontium tartrate crystals - gel method

    International Nuclear Information System (INIS)

    Kalaiarasi, S.; Jaikumar, D.

    2014-01-01

    Growth of single crystals of doped strontium tartrate by controlled diffusion of strontium chloride into the silica gel charged with tartaric acid at room temperature is narrated. In this study, we synthesized magnesium chloride (5% and 10%) doped strontium tartrate crystals and Lanthanum chloride (5%, 10% and 15%) doped strontium tartrate crystals are grown. The crystal structure of the compound crystals was confirmed by single crystal X-ray diffraction. The Fourier transform infrared spectrum of pure and doped crystals are recorded and analyzed. The UV-Vis-NIR spectrum analysis reveals that the optical study of the grown crystals. The second harmonic generation efficiency was measured by using Kurtz powder technique with Nd:YAG laser of wavelength 1064 nm. (author)

  1. Phase field modeling of twinning in indentation of transparent crystals

    International Nuclear Information System (INIS)

    Clayton, J D; Knap, J

    2011-01-01

    Continuum phase field theory is applied to study elastic twinning in calcite and sapphire single crystals subjected to indentation loading by wedge-shaped indenters. An order parameter is associated with the magnitude of stress-free twinning shear. Geometrically linear and nonlinear theories are implemented and compared, the latter incorporating neo-Hookean elasticity. Equilibrium configurations of deformed and twinned crystals are attained numerically via direct energy minimization. Results are in qualitative agreement with experimental observations: a long thin twin forms asymmetrically under one side of the indenter, the tip of the twin is sharp and the length of the twin increases with increasing load. Qualitatively similar results are obtained using isotropic and anisotropic elastic constants, though the difference between isotropic and anisotropic results is greater in sapphire than in calcite. Similar results are also obtained for nanometer-scale specimens and millimeter-scale specimens. Indentation forces are greater in the nonlinear model than the linear model because of the increasing tangent bulk modulus with increasing pressure in the former. Normalized relationships between twin length and indentation force are similar for linear and nonlinear theories at both nanometer and millimeter scales. Twin morphologies are similar for linear and nonlinear theories for indentation with a 90° wedge. However, in the nonlinear model, indentation with a 120° wedge produces a lamellar twin structure between the indenter and the long sharp primary twin. This complex microstructure is not predicted by the linear theory

  2. Growth and characterization of lead-free (K,Na)NbO3-based piezoelectric single crystals

    International Nuclear Information System (INIS)

    Liu, Hairui

    2016-01-01

    Lead-free piezoelectric materials have received increasing attention in the last decade, driven by environmental issues and health concerns. Of considerable interest is the (K,Na)NbO 3 (KNN)-based system, which possesses a relatively high Curie temperature and good piezoelectric properties. Abundant publications on KNN-based polycrystalline ceramics increased the interest in studying their single-crystalline form, based on two major concerns. The first concern refers to the negative role of grain interactions on the electromechanical response. The second concern deals with domain engineering. The relationship between external electric field direction, crystallographic orientation, and spontaneous polarization vectors for a specific structure can be more readily established in single crystals and thus offers a pathway for an in-depth understanding of fundamental mechanism and potential applications. The exciting enhancement of both piezoelectric and ferroelectric response in lead-based single crystals also encourages the further exploration of KNN-based piezoelectric crystals, as they possess the same perovskite structure. The main goal of this thesis is to find possible approaches for improved electromechanical properties in KNN-based piezoelectric single crystals. In Chapter 2, the current development of KNN-based single crystals as piezoelectrics is reviewed, following a short introduction of fundamental knowledge on piezoelectrics and ferroelectrics. Both submerged-seed solution growth and top-seeded solution growth techniques were employed to produce single crystals, as described detailed in Chapter 3. Emphasis is subsequently placed on issues of the crystal growth process, effective methods to enhance electrical properties, and crystallographic orientation-dependent electrical properties in Li-, Ta-, and/or Sb-substituted KNN single crystals. The main conclusions from the crystal growth aspect are presented in Chapter 4 and can be summarized as follows: (i

  3. Growth and characterization of lead-free (K,Na)NbO{sub 3}-based piezoelectric single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hairui

    2016-10-19

    Lead-free piezoelectric materials have received increasing attention in the last decade, driven by environmental issues and health concerns. Of considerable interest is the (K,Na)NbO{sub 3} (KNN)-based system, which possesses a relatively high Curie temperature and good piezoelectric properties. Abundant publications on KNN-based polycrystalline ceramics increased the interest in studying their single-crystalline form, based on two major concerns. The first concern refers to the negative role of grain interactions on the electromechanical response. The second concern deals with domain engineering. The relationship between external electric field direction, crystallographic orientation, and spontaneous polarization vectors for a specific structure can be more readily established in single crystals and thus offers a pathway for an in-depth understanding of fundamental mechanism and potential applications. The exciting enhancement of both piezoelectric and ferroelectric response in lead-based single crystals also encourages the further exploration of KNN-based piezoelectric crystals, as they possess the same perovskite structure. The main goal of this thesis is to find possible approaches for improved electromechanical properties in KNN-based piezoelectric single crystals. In Chapter 2, the current development of KNN-based single crystals as piezoelectrics is reviewed, following a short introduction of fundamental knowledge on piezoelectrics and ferroelectrics. Both submerged-seed solution growth and top-seeded solution growth techniques were employed to produce single crystals, as described detailed in Chapter 3. Emphasis is subsequently placed on issues of the crystal growth process, effective methods to enhance electrical properties, and crystallographic orientation-dependent electrical properties in Li-, Ta-, and/or Sb-substituted KNN single crystals. The main conclusions from the crystal growth aspect are presented in Chapter 4 and can be summarized as follows

  4. Growth and microtopographic study of CuInSe{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Sanjaysinh M.; Chaki, Sunil, E-mail: sunilchaki@yahoo.co.in; Deshpande, M. P. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat - 388120 (India); Tailor, J. P. [Applied Physics Department, S.V.N.I.T., Surat, Gujarat - 395007 (India)

    2016-05-23

    The CuInSe{sub 2} single crystals were grown by chemical vapour transport (CVT) technique using iodine as transporting agent. The elemental composition of the as-grown CuInSe{sub 2} single crystals was determined by energy dispersive analysis of X-ray (EDAX). The unit cell crystal structure and lattice parameters were determined by X-ray diffraction (XRD) technique. The surface microtopographic study of the as-grown CuInSe{sub 2} single crystals surfaces were done to study the defects, growth mechanism, etc. of the CVT grown crystals.

  5. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate.

    Science.gov (United States)

    Damodaran, Srinivasan

    2007-12-26

    The inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate produced by papain action was studied. The ice crystal growth was monitored by thermal cycling between -14 and -12 degrees C at a rate of one cycle per 3 min. It is shown that the hydrolysate fraction containing peptides in the molecular weight range of about 2000-5000 Da exhibited the highest inhibitory activity on ice crystal growth in ice cream mix, whereas fractions containing peptides greater than 7000 Da did not inhibit ice crystal growth. The size distribution of gelatin peptides formed in the hydrolysate was influenced by the pH of hydrolysis. The optimum hydrolysis conditions for producing peptides with maximum ice crystal growth inhibitory activity was pH 7 at 37 degrees C for 10 min at a papain to gelatin ratio of 1:100. However, this may depend on the type and source of gelatin. The possible mechanism of ice crystal growth inhibition by peptides from gelatin is discussed. Molecular modeling of model gelatin peptides revealed that they form an oxygen triad plane at the C-terminus with oxygen-oxygen distances similar to those found in ice nuclei. Binding of this oxygen triad plane to the prism face of ice nuclei via hydrogen bonding appears to be the mechanism by which gelatin hydrolysate might be inhibiting ice crystal growth in ice cream mix.

  6. Flood field uniformity testing - effects of crystal hydration

    International Nuclear Information System (INIS)

    Dimcheva, M.; Sergieva, S.; Doldurova, M.; Jovanovska, A.

    2012-01-01

    The most basic and sensitive routine quality control (QC) of gamma camera is that of intrinsic flood-field uniformity. The routine QC test must be assessed daily and any nonuniformity must be eliminated before patient testing to eliminate artifacts and false positive or false-negative patient results. The purpose of this study was to compare uniformity analysis results for scintillation crystal hydration with symmetric and asymmetric energy window on the Siemens Symbia T2 SPECTCT camera. Integral and differential uniformity analysis was performed by placing a point source 99m Tc in front of the detector with removed collimator to measure the effect of correction matrix, a count rate and activity volume on intrinsic uniformity. A 15% energy window set symmetrically over the 99m Tc photo peak is equivalent to 140±10% keV or a window spanning 126-154 keV. The results, received from Detector 2 gave the following uniformity parameter values: Both asymmetric energy window images show clearly multiple focal spots due to crystal hydration: discrete hot spots in the asymmetric low window image and discrete cold spots in the asymmetric high window image. The above results are not seen yet on the symmetric window image. We had replaced Detector 2 in order to avoid spots become visible in flood images obtained with the clinical energy window. The uniformity of a gamma camera is maybe the most important parameter that expresses the quality of the camera's performance. Non uniform areas in the field of view can result in misdiagnosed patients and low quality of clinical services. (authors)

  7. Crystal growth of the intermetallic compound Nd{sub 2}PdSi{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y. [IFW Dresden, Leibniz-Institut fuer Festkoerper- und Werkstoffforschung, Helmholtzstr. 20, 01171 Dresden (Germany); State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Loeser, W.; Blum, C.G.F.; Buechner, B. [IFW Dresden, Leibniz-Institut fuer Festkoerper- und Werkstoffforschung, Helmholtzstr. 20, 01171 Dresden (Germany); Tang, F. [Institut fuer Festkoerperphysik, Technische Universitaet Dresden, 01062 Dresden (Germany); Liu, L. [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)

    2011-02-15

    Nd{sub 2}PdSi{sub 3} single crystals were grown by a vertical floating zone method with radiation heating at a zone traveling rate of 3 mm/h. The compound exhibits congruent melting behavior at a liquidus temperature of about 1790 C. The actual crystal composition (35.3 {+-} 0.5) at.% Nd, (16.2 {+-} 0.5) at.% Pd, and (48.5 {+-} 0.5) at.% Si is slightly depleted in Pd and Si with respect to the nominal stoichiometry. Therefore, the gradual accumulation of these elements in the traveling zone led to a decrease of the operating temperature during the growth process. Single crystalline samples exhibit a large anisotropy due to the crystal electric field effect and order ferromagnetically below the Curie temperature T{sub C}=15.1 K. The [001] orientation was identified as the magnetic easy axis at low temperatures. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Validation of mathematical model for CZ process using small-scale laboratory crystal growth furnace

    Science.gov (United States)

    Bergfelds, Kristaps; Sabanskis, Andrejs; Virbulis, Janis

    2018-05-01

    The present material is focused on the modelling of small-scale laboratory NaCl-RbCl crystal growth furnace. First steps towards fully transient simulations are taken in the form of stationary simulations that deal with the optimization of material properties to match the model to experimental conditions. For this purpose, simulation software primarily used for the modelling of industrial-scale silicon crystal growth process was successfully applied. Finally, transient simulations of the crystal growth are presented, giving a sufficient agreement to experimental results.

  9. Morphology of growth of Bi2Sr2CaCu2O8 single crystals

    Science.gov (United States)

    Indenbom, M. V.; van der Beek, C. J.; Berseth, V.; Wolf, Th.; Berger, H.; Benoit, W.

    1996-12-01

    A good correlation of twins on the basal surface of flux-grown Bi2Sr2CaCu2Ox (BSCCO) single crystals with surface. growth steps is observed, the b-axis being perpendicular to the steps and, thus, parallel to the growth direction. It is found that mono-twin BSCCO single crystals produced by the travelling solvent floating zone method also grow preferentially along b, i.e. nearly perpendicularly to the boule axis, contrary to the common belief. This new understanding of the morphology of growth explains the nature of major defects in these crystals, which considerably change their measured superconducting properties, in a different way.

  10. Supersaturation Control using Analytical Crystal Size Distribution Estimator for Temperature Dependent in Nucleation and Crystal Growth Phenomena

    Science.gov (United States)

    Zahari, Zakirah Mohd; Zubaidah Adnan, Siti; Kanthasamy, Ramesh; Saleh, Suriyati; Samad, Noor Asma Fazli Abdul

    2018-03-01

    The specification of the crystal product is usually given in terms of crystal size distribution (CSD). To this end, optimal cooling strategy is necessary to achieve the CSD. The direct design control involving analytical CSD estimator is one of the approaches that can be used to generate the set-point. However, the effects of temperature on the crystal growth rate are neglected in the estimator. Thus, the temperature dependence on the crystal growth rate needs to be considered in order to provide an accurate set-point. The objective of this work is to extend the analytical CSD estimator where Arrhenius expression is employed to cover the effects of temperature on the growth rate. The application of this work is demonstrated through a potassium sulphate crystallisation process. Based on specified target CSD, the extended estimator is capable of generating the required set-point where a proposed controller successfully maintained the operation at the set-point to achieve the target CSD. Comparison with other cooling strategies shows a reduction up to 18.2% of the total number of undesirable crystals generated from secondary nucleation using linear cooling strategy is achieved.

  11. Introducing uncertainty analysis of nucleation and crystal growth models in Process Analytical Technology (PAT) system design of crystallization processes.

    Science.gov (United States)

    Samad, Noor Asma Fazli Abdul; Sin, Gürkan; Gernaey, Krist V; Gani, Rafiqul

    2013-11-01

    This paper presents the application of uncertainty and sensitivity analysis as part of a systematic model-based process monitoring and control (PAT) system design framework for crystallization processes. For the uncertainty analysis, the Monte Carlo procedure is used to propagate input uncertainty, while for sensitivity analysis, global methods including the standardized regression coefficients (SRC) and Morris screening are used to identify the most significant parameters. The potassium dihydrogen phosphate (KDP) crystallization process is used as a case study, both in open-loop and closed-loop operation. In the uncertainty analysis, the impact on the predicted output of uncertain parameters related to the nucleation and the crystal growth model has been investigated for both a one- and two-dimensional crystal size distribution (CSD). The open-loop results show that the input uncertainties lead to significant uncertainties on the CSD, with appearance of a secondary peak due to secondary nucleation for both cases. The sensitivity analysis indicated that the most important parameters affecting the CSDs are nucleation order and growth order constants. In the proposed PAT system design (closed-loop), the target CSD variability was successfully reduced compared to the open-loop case, also when considering uncertainty in nucleation and crystal growth model parameters. The latter forms a strong indication of the robustness of the proposed PAT system design in achieving the target CSD and encourages its transfer to full-scale implementation. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. GROWTH RATE DISTRIBUTION OF BORAX SINGLE CRYSTALS ON THE (001 FACE UNDER VARIOUS FLOW RATES

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available The growth rates of borax single crystals from aqueous solutions at various flow rates in the (001 direction were measured using in situ cell method. From the growth rate data obtained, the growth rate distribution of borax crystals was investigated using Minitab Software and SPSS Software at relative supersaturation of 0807 and temperature of 25 °C. The result shows that normal, gamma, and log-normal distribution give a reasonably good fit to GRD. However, there is no correlation between growth rate distribution and flow rate of solution.   Keywords: growth rate dispersion (GRD, borax, flow rate

  13. The use of single-crystal iron frames in transient field measurements

    International Nuclear Information System (INIS)

    Zalm, P.C.; Laan, J. van der; Middelkoop, G. van

    1979-01-01

    Single-crystal Fe frames have been investigated for use as a ferromagnetic backing in transient magnetic field experiments. For this purpose the surface magnetization as a function of applied magnetic field has been determined with the magneto-optical Kerr effect. The frames, which have two sides parallel to the crystal axis, can be fully magnetized at low external fields such that fringing fields are negligibly small. These single-crystal Fe backings have been used in several transient magnetic field experiments. Comparison of the measured precession angles with previous results, obtained in polycrystalline Fe foils at high external magnetic fields, shows that the single-crystal backings are satisfactory. After extended periods of heavy-ion bombardment the crystals exhibited no radiation damage effects. The absence of fringing fields leads to a reduction of a factor of four in the measuring time for transient field experiments. (Auth.)

  14. Moessbauer radiation dynamical diffraction in crystals being subjected to the action of external variable fields

    International Nuclear Information System (INIS)

    Baryshevskii, V.G.; Skadorov, V.V.

    1986-01-01

    A dynamical theory is developed of the Moessbauer radiation diffraction by crystals being subjected to an variable external field action. Equations describing the dynamical diffraction by nonstationary crystals are obtained. It is shown that the resonant interaction between Moessbauer radiation and shift field induced in the crystal by a variable external field giving rise to an effective conversion of the incident wave into a wave with changed frequency. (author)

  15. Crystal growth and optical properties of 4-aminobenzophenone (ABP)

    Science.gov (United States)

    Li, Zhengdong; Wu, Baichang; Su, Genbo; Huang, Gongfan

    1997-02-01

    Bulk crystals of 4-aminobenzophenone (ABP) were grown from organic solution. The crystal structure was determined by X-ray analysis. The refractive indices were determined by the method of prism minimum deviation. Some effective nonlinear-optical coefficients deff were measured. A blue second-harmonic emission with wavelengths of 433 and 460 nm were observed during laser diode pumping.

  16. Phosphorus zoning as a recorder of crystal growth kinetics

    DEFF Research Database (Denmark)

    Baziotis, I.; Asimow, P.D.; Ntaflos, T.

    2017-01-01

    spectrometry. The petrogenetic history of each vein involves melt intrusion, cooling accompanied by both wall-rock reaction and crystallization, quench of melt to a glass, and possibly later modifications. Exotic secondary olivine crystals in the veins display concentric phosphorus (P)-rich zoning, P...

  17. Crystal growth and comparison of vibrational and thermal properties ...

    Indian Academy of Sciences (India)

    The TGA–DTA studies showed the thermal properties of the crystals. ... impact on laser technology, optical communication and optical storage technology. [1,2]. .... UTHC and UTHS crystals in the temperature range of 25–1100◦C with a heat-.

  18. Crystal growth and characterization of new semiorganic nonlinear optical single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kulshrestha, Shobha, E-mail: shobha011986@gmail.com; Shrivastava, A. K., E-mail: ashwaniaks@rediffmail.com [School of Studies in Physics, Jiwaji University Gwalior (M.P.) – 474 011 (India)

    2016-05-06

    An organic material of a L-histidine monohydrochloride single crystal was grown in a distilled water solution using the slow evaporation method at 40–45°C. The grown crystal was transparent and colourless, with a size of about 20 × 9 × 5 mm{sup 3}, obtained within a period of 21 days. The solubility of grown crystals have found out at various temperatures. The UV-visible transmittance studies show that the grown crystals have wide optical transparency in the entire visible region It is observed that the crystal has transparency window from 255nm to 700nm and its energy gap (Eg) found to be is 3.1eV. The grown crystal was subjected to powder X-ray diffraction analysis, confirming that the orthorhombic crystalline nature of the crystal. To identify the surface morphology, the as grown crystal was subjected to FE-SEM technique. The chemical composition of the grown crystal was estimated by Energy dispersive X-ray analysis. The optical behaviour of the grown crystal was analyzed by PL study.

  19. Effect of a static magnetic field on silicon transport in liquid phase diffusion growth of SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Armour, N.; Dost, S. [Crystal Growth Laboratory, University of Victoria, Victoria, BC V8W 3P6 (Canada)

    2010-03-15

    Liquid phase diffusion experiments have been performed without and with the application of a 0.4 T static magnetic field using a three-zone DC furnace system. SiGe crystals were grown from the germanium side for a period of 72 h. Experiments have led to the growth of single crystal sections varying from 0 to 10 mm thicknesses. Examination of the processed samples (single and polycrystalline sections) has shown that the effect of the applied static magnetic field is significant. It alters the temperature distribution in the system, reduces mass transport in the melt, and leads to a much lower growth rate. The initial curved growth interface was slightly flattened under the effect of magnetic field. There were no growth striations in the single crystal sections of the samples. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Oil, gas field growth projections: Wishful thinking or reality?

    Science.gov (United States)

    Attanasi, E.D.; Mast, R.F.; Root, D.H.

    1999-01-01

    The observed `field growth' for the period from 1992 through 1996 with the US Geological Survey's (USGS) predicted field growth for the same period are compared. Known field recovery of field size is defined as the sum of past cumulative field production and the field's proved reserves. Proved reserves are estimated quantities of hydrocarbons which geologic and engineering data demonstrate with reasonable certainty to recoverable from known fields under existing economic and operating conditions. Proved reserve estimates calculated with this definition are typically conservative. The modeling approach used by the USGS to characterize `field growth phenomena' is statistical rather that geologic in nature.

  1. The effect of an external electric field on the growth of incongruent-melting material

    Science.gov (United States)

    Uda, Satoshi; Huang, Xinming; Wang, Shou-Qi

    2005-02-01

    The significance of an electric field on the crystallization process is differentiated into two consequences; (i) thermodynamic effect and (ii) growth-dynamic effect. The former modifies the chemical potential of the associated phases which changes the equilibrium phase relationship while the latter influences the solute transport, growth kinetics, surface creation and defect generation during growth. The intrinsic electric field generating during growth is attributed to the crystallization-related electromotive force and the thermoelectric power driven by the temperature gradient at the interface which influences the solute transport and solute partitioning. The external electric field was applied to the growth apparatus in the ternary system of La2O3- Ga2O3- SiO2 so that the chemical potential of both solid and liquid phases changed leading to the variation of the equilibrium phase relationship. Imposing a 500 V/cm electric field on the system moved the boundary of primary phase field of lanthanum gallate ( LaGaO3) and Ga-bearing lanthanum silicate ( La14GaxSi9-xO) toward the SiO2 apex by 5 mol% which clearly demonstrated the change of the phase relationship by the external electric field.

  2. Numerical and experimental study of a solid pellet feed continuous Czochralski growth process for silicon single crystals

    Science.gov (United States)

    Anselmo, A.; Prasad, V.; Koziol, J.; Gupta, K. P.

    1993-07-01

    A polysilicon pellets (≅1 mm diameter) feed continuous Czochralski (CCZ) growth process for silicon single crystals is proposed and investigated. Experiments in an industrial puller (14-18 inch diameter crucible) successfully demonstrate the feasibility of this process. The advantages of the proposed scheme are: a steady state growth process, a low aspect ratio melt, uniformity of heat addition and a growth apparatus with single crucible and no baffle(s). The addition of dopant with the solid charge will allow a better control of oxygen concentration leading to crystals of uniform properties and better quality. This paper presents theoretical results on melting of fully and partially immersed silicon spheres and numerical solutions on temperature and flow fields in low aspect ration melts with and without the addition of solid pellets. The theoretical and experimental results obtained thus far show a great promise for the proposed scheme.

  3. Growth of sodium chlorate crystals in the presence of potassium sulphate

    Science.gov (United States)

    Kim, E. L.; Tsyganova, A. A.; Vorontsov, D. A.; Ovsetsina, T. I.; Katkova, M. R.; Lykov, V. A.; Portnov, V. N.

    2015-09-01

    In this work, we investigated the morphology and growth rates of NaClO3 crystals in solutions with K2SO4 additives. NaClO3 crystals were grown using the temperature gradient technique under concentration convection. We found that the crystal habitus changed from cubic to tetrahedral, and the growth of the cubic {100}, tetrahedral {111} and rhomb-dodecahedral {110} faces decelerated with an increase in the concentration of SO42- ions. The {110} face was the most and the {100} face was the least inhibited by sulphate ions. The mechanism of SO42- ions action is their adsorption on the crystal surface, which impedes attachment of the crystal's building units. We conclude that different atomic structure and charge state of various crystal faces determine their sensitivity to the action of the SO42- ions.

  4. Control of nucleation and crystal growth of a silicate apatitic phase in a glassy matrix

    International Nuclear Information System (INIS)

    Ligny, D.; Caurant, D.; Bardez, I.; Dussossoy, J.L.; Loiseau, P.; Neuville, D.R.

    2004-01-01

    Nucleation and growth of crystal in an oxide glass was studied in a Si B Al Zr Nd Ca Na O system. The nucleation and growth process were monitored by thermal analysis and isothermal experiments. The effect of the network modifier was studied. Therefore for a Ca rich sample the crystallization is homogeneous in the bulk showing a slow increase of crystallinity as temperature increases. On the other hand, a Na rich sample undergoes several crystallization processes in the bulk or from the surface, leading to bigger crystals. The activation energy of the viscous flow and the glass transition are of same magnitude when that of crystallization is a lot smaller. Early diffusion of element is done with a mechanism different than the configurational rearrangements of the liquid sate. The global density and small size of the crystals within the Ca rich matrix confirmed that it would be a profitable waste form for minor actinides. (authors)

  5. Growth of large aluminum nitride single crystals with thermal-gradient control

    Science.gov (United States)

    Bondokov, Robert T; Rao, Shailaja P; Gibb, Shawn Robert; Schowalter, Leo J

    2015-05-12

    In various embodiments, non-zero thermal gradients are formed within a growth chamber both substantially parallel and substantially perpendicular to the growth direction during formation of semiconductor crystals, where the ratio of the two thermal gradients (parallel to perpendicular) is less than 10, by, e.g., arrangement of thermal shields outside of the growth chamber.

  6. Formation and growth of crystal defects in directionally solidified multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryningen, Birgit

    2008-07-01

    crucible bottom and the subsequent growth is governed by dislocations. For the other type of ingots which is dominated by twins and has a higher minority carrier lifetime, a higher undercooling has occurred before crystal nucleation. It is suggested that this undercooling can reach the critical value for dendritic nucleation to occur (10 K). After dendritic nucleation, subsequent crystal growth is dominated by twins. Nucleation and multiplication mechanisms for dislocations are complex, and investigations on a microscopic scale have been performed. Mechanisms such as punch-out from precipitates with a thermal expansion coefficient different from that of the silicon matrix, intergranular - and intragranular hardening and development of strain fields due to differences in the elasticity module between different grains are thought to play a role in the nucleation of dislocations higher up in the cast. The multiplication has been explained by a macroscopic stress field at the solidification front, stresses developed during cooling and pinning by oxygen impurities. For dislocations nucleated by an angular grain boundary a multiplication and growth mechanism is proposed where dislocations can cross slip and line up at certain crystallographic directions during crystal growth. (Author). 134 refs., 29 figs., 4 tabs

  7. Crystal growth, optical properties, and laser operation of Yb3+-doped NYW single crystal

    Science.gov (United States)

    Cheng, Y.; Xu, X. D.; Yang, X. B.; Xin, Z.; Cao, D. H.; Xu, J.

    2009-11-01

    Laser crystal Yb3+-doped NaY(WO4)2 (Yb:NYW) with excellent quality has been grown by Czochralski technique. The rocking curves from (400) plane of as-grown Yb:NYW crystal was measured and the full-width value at half-maximum was 19.92″. The effective segregation coefficients were measured by the X-ray fluorescence method. The polarized absorption spectra and the fluorescence spectra of Yb:NYW crystal were measured at room temperature. The fluorescence decay lifetime of Yb3+ ion in NYW crystal has been investigated. The spectroscopic parameters of Yb:NYW crystal are calculated and compared with those of Yb:YAG crystal. A continuous wave output power of 3.06 W at 1031 nm was obtained with a slope efficiency of 42% by use of diode pumping.

  8. Growth, structural, optical and surface analysis of piperazinium tartrate: A NLO single crystal

    Science.gov (United States)

    Gupta, Apurva; Raseel Rahman M., K.; Nair, Lekha

    2018-05-01

    Single crystal of piperazinium tartrate (PPZT) was grown by the slow evaporation solution growth technique at room temperature. Crystallinity of grown crystal was examined by powder X-ray diffraction. High transparency and wide band gap were observed in the UV-Visible spectroscopic studies. Intense and broad emissions were observed in the blue region, as that is indicated by photoluminescence spectroscopy. The quality of the grown PPZT single crystals were analyzed by the etching studies using the water as the etchant.

  9. Controlling single and few-layer graphene crystals growth in a solid carbon source based chemical vapor deposition

    International Nuclear Information System (INIS)

    Papon, Remi; Sharma, Subash; Shinde, Sachin M.; Vishwakarma, Riteshkumar; Tanemura, Masaki; Kalita, Golap

    2014-01-01

    Here, we reveal the growth process of single and few-layer graphene crystals in the solid carbon source based chemical vapor deposition (CVD) technique. Nucleation and growth of graphene crystals on a polycrystalline Cu foil are significantly affected by the injection of carbon atoms with pyrolysis rate of the carbon source. We observe micron length ribbons like growth front as well as saturated growth edges of graphene crystals depending on growth conditions. Controlling the pyrolysis rate of carbon source, monolayer and few-layer crystals and corresponding continuous films are obtained. In a controlled process, we observed growth of large monolayer graphene crystals, which interconnect and merge together to form a continuous film. On the other hand, adlayer growth is observed with an increased pyrolysis rate, resulting few-layer graphene crystal structure and merged continuous film. The understanding of monolayer and few-layer crystals growth in the developed CVD process can be significant to grow graphene with controlled layer numbers.

  10. Crystal-fields at rare-earth sites in R2Fe14B compounds

    International Nuclear Information System (INIS)

    Adam, S.; Adam, G.; Burzo, E.

    1985-12-01

    Crystal-field effects are expected to be important in R 2 Fe 14 B compounds. Within a model-independent approach, it is proved that four distinct rare-earth sites exist with respect to the crystalline electric fields, namely, R(4f; z=0), R(4f; z=0.5 c), R(4g; z=0), and R(4g; z=0.5 c), and relationships are established between the corresponding crystal-fields coefficients. Further, generalized Stevens parametrizations of the crystal field coefficients are derived at three levels of approximation for the interatomic forces inside the crystal. A crystal lattice dressing effect upon the radial electronic integrals is found to occur, the magnitude of which depends on the deviation of the interatomic forces from Coulombian. Finally, computation of crystal-field coefficients in Nd 2 Fe 14 B leads to results which raise questions about the validity of the simple Coulomb point-charge model. (author)

  11. Studies on growth, crystal structure and characterization of novel organic nicotinium trifluoroacetate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dhanaraj, P.V. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Rajesh, N.P., E-mail: rajeshnp@hotmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Sundar, J. Kalyana; Natarajan, S. [Department of Physics, Madurai Kamaraj University, Madurai 625 021 (India); Vinitha, G. [Department of Physics, Crescent Engineering College, Chennai 600 048 (India)

    2011-09-15

    Highlights: {yields} Good quality crystals of nicotinium trifluoroacetate in monoclinic system were grown for first time. {yields} Nicotinium trifluoroacetate crystal exhibits third order nonlinear optical properties. {yields} The optical spectrum of nicotinium trifluoroacetate crystal reveals the wide transmission in the entire range with cutoff wavelength at 286 nm. {yields} Nicotinium trifluoroacetate is a low dielectric constant material. - Abstract: An organic material, nicotinium trifluoroacetate (NTF) was synthesized and single crystals in monoclinic system were grown from aqueous solution for the first time. Its solubility and metastable zone width were estimated. The crystal structure of NTF was analyzed to reveal the molecular arrangements and the formation of hydrogen bonds in the crystal. High-resolution X-ray diffraction rocking curve measurements were performed to analyze the structural perfection of the grown crystals. Functional groups in NTF were identified by Fourier transform infrared spectral analysis. Thermal behaviour and stability of NTF were studied by thermogravimetric and differential thermal analysis and differential scanning calorimetry. Mechanical and dielectric properties of NTF crystals were analyzed. Optical studies reveal that NTF crystals are transparent in the wavelength range 286-1100 nm. The third order nonlinear optical parameters of NTF were derived by the Z-scan technique.

  12. Crystal growth, characterization and theoretical studies of 4-aminopyridinium picrate

    Science.gov (United States)

    Aditya Prasad, A.; Muthu, K.; Rajasekar, M.; Meenatchi, V.; Meenakshisundaram, S. P.

    2015-01-01

    Single crystals of 4-aminopyridinium picrate (APP) were grown by slow evaporation of a mixed solvent system methanol-acetone (1:1, v/v) containing equimolar quantities of 4-aminopyridine and picric acid. Structure is elucidated by single crystal XRD analysis and the crystal belongs to monoclinic system with four molecules in the unit cell (space group P21/c) and the cell parameter values are, a = 8.513 Å (±0.015), b = 11.33 Å (±0.02), c = 14.33 Å (±0.03) and β = 104.15° (±0.019), V = 1340 A3 (±6) with refined R factors R1 = 0.0053 and wR2 = 0.0126. The electron density mapping is interpreted to find coordinates for each atom in the crystallized molecules. The various functional groups present in the molecule are confirmed by FT-IR analysis. UV-visible spectral analysis was used to determine the band gap energy of 4-aminopyridinium picrate. Powder X-ray diffraction pattern reveals the crystallinity of the as-grown crystal and it closely resembles the simulated XRD from the single crystal XRD analysis. Scanning electron microscopy reveals the surface morphology of the grown crystal. Optimized geometry is derived by Hartree-Fock theory calculations and the first-order molecular hyperpolarizability (β), theoretically calculated bond length, bond angles and excited state energy from theoretical UV-vis spectrum were estimated.

  13. A Low-Cost System Based on Image Analysis for Monitoring the Crystal Growth Process.

    Science.gov (United States)

    Venâncio, Fabrício; Rosário, Francisca F do; Cajaiba, João

    2017-05-31

    Many techniques are used to monitor one or more of the phenomena involved in the crystallization process. One of the challenges in crystal growth monitoring is finding techniques that allow direct interpretation of the data. The present study used a low-cost system, composed of a commercial webcam and a simple white LED (Light Emitting Diode) illuminator, to follow the calcium carbonate crystal growth process. The experiments were followed with focused beam reflectance measurement (FBRM), a common technique for obtaining information about the formation and growth of crystals. The images obtained in real time were treated with the red, blue, and green (RGB) system. The results showed a qualitative response of the system to crystal formation and growth processes, as there was an observed decrease in the signal as the growth process occurred. Control of the crystal growth was managed by increasing the viscosity of the test solution with the addition of monoethylene glycol (MEG) at 30% and 70% in a mass to mass relationship, providing different profiles of the RGB average curves. The decrease in the average RGB value became slower as the concentration of MEG was increased; this reflected a lag in the growth process that was proven by the FBRM.

  14. Growth and characterization of La2CoMnO6 crystals doped with Pb

    International Nuclear Information System (INIS)

    Milenov, T.I.; Rafailov, P.M.; Abrashev, M.V.; Nikolova, R.P.; Nakatsuka, A.; Avdeev, G.V.; Veleva, M.N.; Dobreva, S.; Yankova, L.; Gospodinov, M.M.

    2010-01-01

    Crystals of La 2 CoMnO 6 doped with Pb were grown by the high temperature solution growth method. Several crystals were examined by scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX), X-ray single-crystal diffractometry and polarized Raman spectroscopy. Some variations in the composition of different crystals are observed, however, within the volume of each distinct crystal the composition is found to be fairly constant. Crystals with lateral dimensions larger than 2 mm and thicker than 1 mm contain structural defects as twin lamellae and surface roughness. The results from the characterization of the grown crystals with X-ray diffraction and Raman spectroscopy are consistent with an assumption for a coexistence of an ordered monoclinic and a disordered orthorhombic phase.

  15. An Overview of Hardware for Protein Crystallization in a Magnetic Field

    Directory of Open Access Journals (Sweden)

    Er-Kai Yan

    2016-11-01

    Full Text Available Protein crystallization under a magnetic field is an interesting research topic because a magnetic field may provide a special environment to acquire improved quality protein crystals. Because high-quality protein crystals are very useful in high-resolution structure determination using diffraction techniques (X-ray, neutron, and electron diffraction, research using magnetic fields in protein crystallization has attracted substantial interest; some studies have been performed in the past two decades. In this research field, the hardware is especially essential for successful studies because the environment is special and the design and utilization of the research apparatus in such an environment requires special considerations related to the magnetic field. This paper reviews the hardware for protein crystallization (including the magnet systems and the apparatus designed for use in a magnetic field and progress in this area. Future prospects in this field will also be discussed.

  16. Growth of single crystals from solutions using semi-permeable membranes

    Science.gov (United States)

    Varkey, A. J.; Okeke, C. E.

    1983-05-01

    A technique suitable for growth of single crystals from solutions using semi-preamble membranes is described. Using this technique single crystals of copper sulphate, potassium bromide and ammonium dihydrogen phosphate have been successfully grown. Advantages of this technique over other methods are discussed.

  17. Microscopic Rate Constants of Crystal Growth from Molecular Dynamic Simulations Combined with Metadynamics

    Directory of Open Access Journals (Sweden)

    Dániel Kozma

    2012-01-01

    Full Text Available Atomistic simulation of crystal growth can be decomposed into two steps: the determination of the microscopic rate constants and a mesoscopic kinetic Monte Carlo simulation. We proposed a method to determine kinetic rate constants of crystal growth. We performed classical molecular dynamics on the equilibrium liquid/crystal interface of argon. Metadynamics was used to explore the free energy surface of crystal growth. A crystalline atom was selected at the interface, and it was displaced to the liquid phase by adding repulsive Gaussian potentials. The activation free energy of this process was calculated as the maximal potential energy density of the Gaussian potentials. We calculated the rate constants at different interfacial structures using the transition state theory. In order to mimic real crystallization, we applied a temperature difference in the calculations of the two opposite rate constants, and they were applied in kinetic Monte Carlo simulation. The novelty of our technique is that it can be used for slow crystallization processes, while the simple following of trajectories can be applied only for fast reactions. Our method is a possibility for determination of elementary rate constants of crystal growth that seems to be necessary for the long-time goal of computer-aided crystal design.

  18. Growth and study of barium oxalate single crystals in agar gel

    Indian Academy of Sciences (India)

    Barium oxalate was grown in agar gel at ambient temperature. The effect of various parameters like gel concentration, gel setting time and concentration of the reactants on the growth of these crystals was studied. Prismatic platy shaped spherulites and dendrites were obtained. The grown crystals were characterized by ...

  19. Compositional Tuning, Crystal Growth, and Magnetic Properties of Iron Phosphate Oxide

    Science.gov (United States)

    Tarne, Michael

    Iron phosphate oxide, Fe3PO4O 3, is a crystalline solid featuring magnetic Fe3+ ions on a complex lattice composed of closely-spaced triangles. Previous work from our research group on this compound has proposed a helical magnetic structure below T = 163 K attributed to J1 - J2 competing interactions between nearest-neighbor and next-nearest-neighbor iron atoms. This was based on neutron powder diffraction featuring unique broad, flat-topped magnetic reflections due to needle-like magnetic domains. In order to confirm the magnetic structure and origins of frustration, this thesis will expand upon the research focused on this compound. The first chapter focuses on single crystal growth of Fe3PO 4O3. While neutron powder diffraction provides insight to the magnetic structure, powder and domain averaging obfuscate a conclusive structure for Fe3PO4O3 and single crystal neutron scattering is necessary. Due to the incongruency of melting, single crystal growth has proven challenging. A number of techniques including flux growth, slow cooling, and optical floating zone growth were attempted and success has been achieved via heterogenous chemical vapor transport from FePO 4 using ZrCl4 as a transport agent. These crystals are of sufficient size for single crystal measurements on modern neutron diffractometers. Dilution of the magnetic sublattice in frustrated magnets can also provide insight into the nature of competing spin interactions. Dilution of the Fe 3+ lattice in Fe3PO4O3 is accomplished by substituting non-magnetic Ga3+ to form the solid solution series Fe3-xGaxPO4O3 with x = 0, 0.012, 0.06, 0.25, 0.5, 1.0, 1.5. The magnetic susceptibility and neutron powder diffraction data of these compounds are presented. A dramatic decrease of the both the helical pitch length and the domain size is observed with increasing x; for x > 0.5, the compounds lack long range magnetic order. The phases that do exhibit magnetic order show a decrease in helical pitch with increasing x

  20. Monitoring and Characterization of Crystal Nucleation and Growth during Batch Crystallization

    NARCIS (Netherlands)

    Kadam, S.S.

    2012-01-01

    Batch crystallization is commonly used in pharmaceutical, agrochemical, specialty and fine chemicals industry. The advantages of batch crystallization lie in its ease of operation and the relatively simple equipment that can be used. On the other hand a major disadvantage associated with it is the

  1. Crystal growth, spectral and laser properties of Nd:LuAG single crystal

    International Nuclear Information System (INIS)

    Xu, X D; Meng, J Q; Cheng, Y; Li, D Z; Cheng, S S; Wu, F; Zhao, Z W; Wang, X D; Xu, J

    2009-01-01

    Nd:LuAG (Nd:Lu 3 Al 5 O 12 ) crystal was grown by the Czochralski method. X-ray powder diffraction experiments show that the Nd:LuAG crystal crystallizes in the cubic with space group Ia3d and has the cell parameter: a = 1.1907 nm, V = 1.6882 nm 3 . The absorption and fluorescence spectra of Nd:LuAG crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LuAG crystal was demonstrated. The maximum output power at 1064 nm was obtained to be 3.8 W under the incident pump power of 17.3 W, with the optical conversion efficiency 22.0% and the slope efficiency 25.7%

  2. Crystal growth, spectral and laser properties of Nd:LuAG single crystal

    Science.gov (United States)

    Xu, X. D.; Wang, X. D.; Meng, J. Q.; Cheng, Y.; Li, D. Z.; Cheng, S. S.; Wu, F.; Zhao, Z. W.; Xu, J.

    2009-09-01

    Nd:LuAG (Nd:Lu3Al5O12) crystal was grown by the Czochralski method. X-ray powder diffraction experiments show that the Nd:LuAG crystal crystallizes in the cubic with space group Ia3d and has the cell parameter: a = 1.1907 nm, V = 1.6882 nm3. The absorption and fluorescence spectra of Nd:LuAG crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LuAG crystal was demonstrated. The maximum output power at 1064 nm was obtained to be 3.8 W under the incident pump power of 17.3 W, with the optical conversion efficiency 22.0% and the slope efficiency 25.7%.

  3. Crystal growth, spectral and laser properties of Nd:LSAT single crystal

    Science.gov (United States)

    Hu, P. C.; Yin, J. G.; Zhao, C. C.; Gong, J.; He, X. M.; Zhang, L. H.; Liang, X. Y.; Hang, Y.

    2011-10-01

    Nd:(La, Sr)(Al, Ta)O3 (Nd:LSAT) crystal was grown by the Czochralski method. The absorption and fluorescence spectra of Nd:LSAT crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LSAT crystal was demonstrated. The result of diode-pumped laser operation of Nd:LSAT crystal single crystal is reported for what is to our knowledge the first time. The maximum output power at 1064 nm was obtained to be 165 mW under the incident pump power of 3 W, with the slope efficiency 10.9%.

  4. Influence of Crucible Support Rod on the Growth Rate and Temperature Gradient in a Bridgman Growth of Tin Crystal

    OpenAIRE

    IMASHIMIZU, Yuji; MIURA, Koji; KAMATA, Masaki; WATANABE, Jiro

    2003-01-01

    Bridgman growth of tincrystal was carried out in a graphite crucible that was fixed on a quartz support rod or a copper one. The growth rate and axial temperature distribution were examined by recording the temperature variation with time at each of four prescribed positions in the solid-liquidsystem during solidification, l) Actual growth rate of crystal increased with progress of solidification while the furnace elevated at a constant rate, but the tendency was different depending on the ty...

  5. A study on the growth of compound semiconductor single crystal by TOM technique

    International Nuclear Information System (INIS)

    Kim, H.C.; Kwon, S.I.; Chung, M.K.; Chang, J.S.

    1981-01-01

    This paper describes the merit of the HgI 2 single crystals obtained by solution growth, 2- and 3-region temperature growth, and temperature oscillation growth for soft γ-ray detectors which can be operated at room temperature. Special efforts are put on the design, construction, and operation of the TOM (Temperature Oscillation Method) single crystal growing furnace. Experimental results show that HgI 2 detectors fabricated by vapour phase growth method usually exhibit sufficient enough detector characteristics for soft γ-ray spectrometry. However, further investigation should be carried out to eliminate detector deterioration due to polarization effect. (author)

  6. Crystal structure, growth and nonlinear optical studies of isonicotinamide p-nitrophenol: A new organic crystal for optical limiting applications

    Science.gov (United States)

    Vijayalakshmi, A.; Vidyavathy, B.; Vinitha, G.

    2016-08-01

    Isonicotinamide p-nitrophenol (ICPNP), a new organic material, was synthesized using methanol solvent. Single crystals of ICPNP were grown using a slow evaporation solution growth technique. Crystal structure of ICPNP is elucidated by single crystal X-ray diffraction analysis. It belongs to monoclinic crystal system with space group of P21/c. It forms two dimensional networks by O-H…O, N-H…O and C-H…O hydrogen bonds. The molecular structure of ICPNP was further confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance range and the lower cut-off wavelength (421 nm) with the optical band gap (2.90 eV) of the ICPNP crystal were determined by UV-vis-NIR spectral study. Thermal behavior of ICPNP was studied by thermo gravimetric and differential thermal analyses (TG/DTA). The relative dielectric permittivity was calculated for various temperature ranges. Laser damage threshold of ICPNP crystal was found to be 1.9 GW/cm2 using an Nd:YAG laser. A Z-scan technique was employed to measure the nonlinear absorption coefficient, nonlinear refractive index and nonlinear optical susceptibility. Optical limiting behavior of ICPNP was observed at 35 mW input power.

  7. Crystal Fields in Dilute Rare-Earth Metals Obtained from Magnetization Measurements on Dilute Rare-Earth Alloys

    DEFF Research Database (Denmark)

    Touborg, P.; Høg, J.

    1974-01-01

    Crystal field parameters of Tb, Dy, and Er in Sc, Y, and Lu are summarized. These parameters are obtained from magnetization measurements on dilute single crystals, and successfully checked by a number of different methods. The crystal field parameters vary unpredictably with the rare-earth solute....... B40, B60, and B66 are similar in Y and Lu. Crystal field parameters for the pure metals Tb, Dy, and Er are estimated from the crystal fields in Y and Lu....

  8. Growth of binary solid solution single crystals and calculation of melt surface displacement velocity

    International Nuclear Information System (INIS)

    Agamaliyev, Z.A.; Tahirov, V.I.; Hasanov, Z.Y.; Quliyev, A.F.

    2007-01-01

    A binary solid solution single crystal growth method has been worked out. Cylinder feeding alloy with complex content distribution and truncated cone crucible are used. Second component distribution coefficient is more than unit. Content distribution along grown crystal is found by solving continuity equation. After reaching dynamic equilibrium state second component concentration in grown crystal is saturated the value of which is less than the average ona in the feeding alloy. Using the method Ge-Si perfect single crystals has been grown. Calculation method of melt surface displacement velocity has been offered as well

  9. Crystal growth and scintillation properties of Pr-doped SrI2 single crystals

    Science.gov (United States)

    Yokota, Yuui; Ito, Tomoki; Yoshino, Masao; Yamaji, Akihiro; Ohashi, Yuji; Kurosawa, Shunsuke; Kamada, Kei; Yoshikawa, Akira

    2018-04-01

    Pr-doped SrI2 (Pr:SrI2) single crystals with various Pr concentrations were grown by the halide-micro-pulling-down (H-μ-PD) method, and the scintillation properties were investigated. Pr1%:SrI2 single crystal with high transparency could be grown by the H-μ-PD method while Pr2, 3 and 5%:SrI2 single crystals included some cracks and opaque parts. In the photoluminescence spectrum of the Pr1%:SrI2 single crystal, an emission peak originated from the Pr3+ ion was observed around 435 nm while the radioluminescence spectra showed an emission peak around 535 nm for the undoped SrI2 and Pr:SrI2 single crystals. Light yields of Pr1, 2, 3 and 5%:SrI2 single crystals under γ-ray irradiation were 7700, 8700, 7200 and 6700 photons/MeV, respectively. Decay times of Pr1 and 2%:SrI2 single crystals under γ-ray irradiation were 55.9 and 35.0 ns of the fast decay component, and 435 and 408 ns of the slow decay component, respectively.

  10. GROWTH RATE DISPERSION (GRD OF THE (010 FACE OF BORAX CRYSTALS IN FLOWING SOLUTION

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available The growth rates of borax crystals from aqueous solutions in the (010 direction at various flow rates were measured. The observed variations of the growth rate can be represented by a normal distribution.  It was found that there is no correlation between growth rate distribution and solution flow under these experimental conditions.   Keywords: Growth rate dispersion (GRD, borax, flow rate

  11. Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth. II - Processing strategies

    Science.gov (United States)

    Derby, J. J.; Brown, R. A.

    1986-01-01

    The pseudosteady-state heat transfer model developed in a previous paper is augmented with constraints for constant crystal radius and melt/solid interface deflection. Combinations of growth rate, and crucible and bottom-heater temperatures are tested as processing parameters for satisfying the constrained thermal-capillary problem over a range of melt volumes corresponding to the sequence occuring during the batchwise Czochralski growth of a small-diameter silicon crystal. The applicability of each processing strategy is judged by the range of existence of the solution, in terms of melt volume and the values of the axial and radial temperature gradients in the crystal.

  12. Crystal growth, spectroscopic and laser properties of Tm:LuAG crystal

    Science.gov (United States)

    Xu, X. D.; Wang, X. D.; Lin, Z. F.; Cheng, Y.; Li, D. Z.; Cheng, S. S.; Wu, F.; Zhao, Z. W.; Gao, C. Q.; Gao, M. W.; Xu, J.

    2009-11-01

    Tm:Lu3Al5O12 (Tm:LuAG) crystal was grown by the Czochralski method. The segregation coefficient was measured by Inductively Coupled Plasma Atomic Emission Spectrometer. The cell parameters were analyzed with X-ray powder diffraction experiments. The absorption and fluorescence spectra of Tm:LuAG crystal at room temperature were investigated. With a 20 W fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Tm:LuAG crystal was demonstrated. The maximum output power at 2020 nm was obtained to be 3.04 W, and the slope efficiency was 25.3%.

  13. Crystal growth and characterization of a semiorganic nonlinear optical single crystal of gamma glycine

    International Nuclear Information System (INIS)

    Prakash, J. Thomas Joseph; Kumararaman, S.

    2008-01-01

    Gamma glycine has been successfully synthesized by taking glycine and potassium chloride and single crystals have been grown by solvent evaporation method for the first time. The grown single crystals have been analyzed with XRD, Fourier transform infrared (FTIR), and thermo gravimetric and differential thermal analyses (TG/DTA) measurements. Its mechanical behavior has been assessed by Vickers microhardness measurements. Its nonlinear optical property has been tested by Kurtz powder technique. Its optical behavior was examined by UV-vis., and found that the crystal is transparent in the region between 240 and 1200 nm. Hence, it may be very much useful for the second harmonic generation (SHG) applications

  14. Small-Angle Neutron Scattering Investigation of Growth Modifiers on Hydrate Crystal Surfaces

    Science.gov (United States)

    Sun, Thomas; Hutter, Jeffrey L.; Lin, M.; King, H. E., Jr.

    1998-03-01

    Hydrates are crystals consisting of small molecules enclathrated within an ice-like water cage. Suppression of their growth is important in the oil industry. The presence of small quantities of specific polymers during hydrate crystallization can induce a transition from an octahedral to planar growth habit. This symmetry breaking is surprising because of the suppression of two 111 planes relative to the other six crystallographically equivalent faces. To better understand the surface effects leading to this behavior, we have studied the surface adsorption of these growth-modifing polymers onto the hydrate crytals using SANS. The total hydrate surface area, as measured by Porod scattering, increases in the presence of the growth modifier, but, no significant increase in polymer concentration on the crystal surfaces is found. Implications for possible growth mechanisms will be discussed.

  15. Potassium-cobalt sulphate crystal growth assisted by low frequency vibrations

    Science.gov (United States)

    Sadovsky, A.; Ermochenkov, I.; Dubovenko, E.; Sukhanova, E.; Bebyakin, M.; Dubov, V.; Avetissov, I.

    2018-02-01

    Single crystals of K2Co(SO4)2·6H2O were grown from solution using the temperature reduction method enhanced by the axial low frequency vibration control technique (AVC-technique). Physical modeling of heat-mass transfer in solution under the AVC action was performed. The growth rate of the AVC grown crystal was found to be twice that of the crystal grown under natural convection conditions. Analysis of spectral characteristics (absorption and Raman spectra) as well as structural properties (dislocation density and microhardness) of the grown crystals showed the significant superiority of the AVC technique for the growth of K2Co(SO4)2·6H2O crystals.

  16. Crystal growth of calcium carbonate in silk fibroin/sodium alginate hydrogel

    Science.gov (United States)

    Ming, Jinfa; Zuo, Baoqi

    2014-01-01

    As known, silk fibroin-like protein plays a pivotal role during the formation of calcium carbonate (CaCO3) crystals in the nacre sheets. Here, we have prepared silk fibroin/sodium alginate nanofiber hydrogels to serve as templates for calcium carbonate mineralization. In this experiment, we report an interesting finding of calcium carbonate crystal growth in the silk fibroin/sodium alginate nanofiber hydrogels by the vapor diffusion method. The experimental results indicate calcium carbonate crystals obtained from nanofiber hydrogels with different proportions of silk fibroin/sodium alginate are mixture of calcite and vaterite with unusual morphologies. Time-dependent growth study was carried out to investigate the crystallization process. It is believed that nanofiber hydrogels play an important role in the process of crystallization. This study would help in understanding the function of organic polymers in natural mineralization, and provide a novel pathway in the design and synthesis of new materials related unique morphology and structure.

  17. Effect of pressure on the crystal field splitting in rare earth pnictides and chalcogenides

    International Nuclear Information System (INIS)

    Schirber, J.E.; Weaver, H.T.

    1978-01-01

    The experimental situation for the pressure dependence of the crystal field of praseodymium pnictides and chalcogenides is reviewed and compared with the predictions of the point charge model. The problem of separating exchange and crystal field contributions from the measured NMR frequency shift or susceptibility measurements is discussed as well as problems explaining these effects with conduction electron related models

  18. Magnetic response of localized spins coupled to itinerant electrons in an inhomogeneous crystal field

    International Nuclear Information System (INIS)

    Iannarella, L.; Guimaraes, A.P.; Silva, X.A. da.

    1990-01-01

    The magnetic behavior at T = O K of a system consisting of conduction electrons coupled to localized electrons, the latter submitted to an inhomogeneous crystal field distribution, is studied. The study implies that the inhomogeneity of the crystal field attenuates the quenching effects. The model is interesting to the study of disordered rare-earth intermetallic compounds. (A.C.A.S.) [pt

  19. Crystal fields at light rare-earth ions in Y and Lu

    DEFF Research Database (Denmark)

    Touborg, P.; Nevald, Rolf; Johansson, Torben

    1978-01-01

    Crystal-field parameters have been deduced for the light rare-earth solutes Ce, Pr, and Nd in Y or Lu hosts from measurements of the paramagnetic susceptibilities. In the analysis all multiplets in the lowest LS term were included. For a given host, crystal-field parameters divided by Stevens fac...

  20. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores

    NARCIS (Netherlands)

    Malkin, B. Z.; Lummen, T. T. A.; van Loosdrecht, P. H. M.; Dhalenne, G.; Zakirov, A. R.

    2010-01-01

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R2Ti2O7 (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the

  1. Method to map individual electromagnetic field components inside a photonic crystal

    NARCIS (Netherlands)

    Denis, T.; Reijnders, B.; Lee, J.H.H.; van der Slot, Petrus J.M.; Vos, Willem L.; Boller, Klaus J.

    2012-01-01

    We present a method to map the absolute electromagnetic field strength inside photonic crystals. We apply the method to map the dominant electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to select Bloch standing

  2. Protein crystal growth results from the United States Microgravity Laboratory-1 mission

    Science.gov (United States)

    Delucas, Lawrence J.; Moore, K. M.; Vanderwoerd, M.; Bray, T. L.; Smith, C.; Carson, M.; Narayana, S. V. L.; Rosenblum, W. M.; Carter, D.; Clark, A. D, Jr.

    1994-01-01

    Protein crystal growth experiments have been performed by this laboratory on 18 Space Shuttle missions since April, 1985. In addition, a number of microgravity experiments also have been performed and reported by other investigators. These Space Shuttle missions have been used to grow crystals of a variety of proteins using vapor diffusion, liquid diffusion, and temperature-induced crystallization techniques. The United States Microgravity Laboratory - 1 mission (USML-1, June 25 - July 9, 1992) was a Spacelab mission dedicated to experiments involved in materials processing. New protein crystal growth hardware was developed to allow in orbit examination of initial crystal growth results, the knowledge from which was used on subsequent days to prepare new crystal growth experiments. In addition, new seeding hardware and techniques were tested as well as techniques that would prepare crystals for analysis by x-ray diffraction, a capability projected for the planned Space Station. Hardware that was specifically developed for the USML-1 mission will be discussed along with the experimental results from this mission.

  3. Unidirectional growth and characterization of L-arginine monohydrochloride monohydrate single crystals

    International Nuclear Information System (INIS)

    Sangeetha, K.; Babu, R. Ramesh; Bhagavannarayana, G.; Ramamurthi, K.

    2011-01-01

    Highlights: → L-Arginine monohydrochloride monohydrate (LAHCl) single crystal was grown successfully by unidirectional solution growth method for the first time. → High crystalline perfection was observed for UDS grown crystal compared to CS grown crystal. → The optical transparency and mechanical stability are high for UDS grown LAHCl single crystal. → Optical birefringence measurement on this material. → The piezoelectric resonance frequencies observation - first time observation on this material. - Abstract: L-Arginine monohydrochloride monohydrate (LAHCl) single crystals were grown successfully by conventional and unidirectional solution growth methods. The crystalline perfection of grown crystals was analyzed by high-resolution X-ray diffraction. The linear optical transmittance, mechanical stability of conventional and unidirectional grown LAHCl single crystals were analyzed and compared along (0 0 1) plane. The refractive index and birefringence of LAHCl single crystals were also measured using He-Ne laser source. From the dielectric studies, piezoelectric resonance frequencies were observed in kHz frequency range for both conventional and unidirectional grown LAHCl single crystals along (0 0 1) plane.

  4. Crystal growth, spectral properties, and laser demonstration of laser crystal Nd:LYSO

    International Nuclear Information System (INIS)

    Li, D Z; Xu, X D; Zhou, D H; Xia, C T; Wu, F; Zhuang, S D; Wang, Z P; Xu, J

    2010-01-01

    A Nd:LYSO crystal has been grown by the Czochralski technique. The cell parameters were analyzed with X-ray diffraction (XRD). The Judd-Ofelt intense parameters Ω 2,4,6 were obtained to be 2.65, 5.75, and 7.37×10 -20 cm 2 , respectively. The absorption and emission cross sections and the branching ratios were calculated. The large absorption cross section (6.14×10 -20 cm 2 ) and broad absorption band (5 nm) around 811 nm indicate that this crystal can be pumped efficiently by laser diodes. The broad emission band from the 4 F 3/2 multiplet shows that the crystal is a promising medium for ultrashort pulse lasers. Pumped by a laser diode, the maximum 814 mW continuous-wave laser output has been obtained with a slope efficiency of 28.9%. All the results show that this crystal is a promising laser material

  5. Defects in silicon effect on device performance and relationship to crystal growth conditions

    Science.gov (United States)

    Jastrzebski, L.

    1985-01-01

    A relationship between material defects in silicon and the performance of electronic devices will be described. A role which oxygen and carbon in silicon play during the defects generation process will be discussed. The electronic properties of silicon are a strong function of the oxygen state in the silicon. This state controls mechanical properties of silicon efficiency for internal gettering and formation of defects in the device's active area. In addition, to temperature, time, ambience, and the cooling/heating rates of high temperature treatments, the oxygen state is a function of the crystal growth process. The incorporation of carbon and oxygen into silicon crystal is controlled by geometry and rotation rates applied to crystal and crucible during crystal growths. Also, formation of nucleation centers for oxygen precipitation is influenced by the growth process, although there is still a controversy which parameters play a major role. All these factors will be reviewed with special emphasis on areas which are still ambiguous and controversial.

  6. The crystallization of a solid solution in a solvent and the stability of a growth interface

    International Nuclear Information System (INIS)

    Malmejac, Yves

    1971-03-01

    The potential uses of germanium-silicon alloys as thermoelectric generators in hitherto unexploited temperature ranges initiated the present study. Many delicate problems are encountered in the classical methods of preparation. An original technique was sought for crystallization in a metallic solvent. The thermodynamic equilibria between the various phases of the ternary System used were studied in order to justify the method used. The conditions (temperature and composition) were determined in which the cooling of a ternary liquid mixture induces the precipitation of a binary solid solution with the desired composition. If large crystals are to be obtained from the solid solution, metallic solvent precipitation must be replaced by a mono-directional solvent crystallization. The combined effect of a certain number of simple physical phenomena on the stability of a crystal liquid interface was studied: the morphological stability of the crystal growth interface is the first step towards obtaining perfect crystals. (author) [fr

  7. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications

    Science.gov (United States)

    Sun, Enwei; Cao, Wenwu

    2014-01-01

    In the past decade, domain engineered relaxor-PT ferroelectric single crystals, including (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT), (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 (PZN-PT) and (1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3 (PIN-PMN-PT), with compositions near the morphotropic phase boundary (MPB) have triggered a revolution in electromechanical devices owing to their giant piezoelectric properties and ultra-high electromechanical coupling factors. Compared to traditional PbZr1-xTixO3 (PZT) ceramics, the piezoelectric coefficient d33 is increased by a factor of 5 and the electromechanical coupling factor k33 is increased from 90%. Many emerging rich physical phenomena, such as charged domain walls, multi-phase coexistence, domain pattern symmetries, etc., have posed challenging fundamental questions for scientists. The superior electromechanical properties of these domain engineered single crystals have prompted the design of a new generation electromechanical devices, including sensors, transducers, actuators and other electromechanical devices, with greatly improved performance. It took less than 7 years from the discovery of larger size PMN-PT single crystals to the commercial production of the high-end ultrasonic imaging probe “PureWave”. The speed of development is unprecedented, and the research collaboration between academia and industrial engineers on this topic is truly intriguing. It is also exciting to see that these relaxor-PT single crystals are being used to replace traditional PZT piezoceramics in many new fields outside of medical imaging. The new ternary PIN-PMN-PT single crystals, particularly the ones with Mn-doping, have laid a solid foundation for innovations in high power acoustic projectors and ultrasonic motors, hinting another revolution in underwater SONARs and miniature actuation devices. This article intends to provide a comprehensive review on the development of relaxor-PT single crystals, spanning material discovery, crystal growth

  8. Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy.

    Science.gov (United States)

    Marcellini, Moreno; Noirjean, Cecile; Dedovets, Dmytro; Maria, Juliette; Deville, Sylvain

    2016-11-30

    Ice crystals nucleate and grow when a water solution is cooled below its freezing point. The growth velocities and morphologies of the ice crystals depend on many parameters, such as the temperature of ice growth, the melting temperature, and the interactions of solutes with the growing crystals. Three types of morphologies may appear: dendritic, cellular (or fingerlike), or the faceted equilibrium form. Understanding and controlling which type of morphology is formed is essential in several domains, from biology to geophysics and materials science. Obtaining, in situ, three dimensional observations without introducing artifacts due to the experimental technique is nevertheless challenging. Here we show how we can use laser scanning confocal microscopy to follow in real-time the growth of smoothed and faceted ice crystals in zirconium acetate solutions. Both qualitative and quantitative observations can be made. In particular, we can precisely measure the lateral growth velocity of the crystals, a measure otherwise difficult to obtain. Such observations should help us understand the influence of the parameters that control the growth of ice crystals in various systems.

  9. Growth Rate and Morphology of a Single Calcium Carbonate Crystal on Polysulfone Film Measured with Time Lapse Raman Micro Spectroscopy

    NARCIS (Netherlands)

    Liszka, B.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2016-01-01

    The growth of single, self- nucleated calcium carbonate crystals on a polysulfone (PSU) film was investigated with high resolution, time lapse Raman imaging. The Raman images were acquired on the interface of the polymer with the crystal. The growth of crystals could thus be followed in time. PSU is

  10. Investigating calcite growth rates using a quartz crystal microbalance with dissipation (QCM-D)

    Science.gov (United States)

    Cao, Bo; Stack, Andrew G.; Steefel, Carl I.; DePaolo, Donald J.; Lammers, Laura N.; Hu, Yandi

    2018-02-01

    Calcite precipitation plays a significant role in processes such as geological carbon sequestration and toxic metal sequestration and, yet, the rates and mechanisms of calcite growth under close to equilibrium conditions are far from well understood. In this study, a quartz crystal microbalance with dissipation (QCM-D) was used for the first time to measure macroscopic calcite growth rates. Calcite seed crystals were first nucleated and grown on sensors, then growth rates of calcite seed crystals were measured in real-time under close to equilibrium conditions (saturation index, SI = log ({Ca2+}/{CO32-}/Ksp) = 0.01-0.7, where {i} represent ion activities and Ksp = 10-8.48 is the calcite thermodynamic solubility constant). At the end of the experiments, total masses of calcite crystals on sensors measured by QCM-D and inductively coupled plasma mass spectrometry (ICP-MS) were consistent, validating the QCM-D measurements. Calcite growth rates measured by QCM-D were compared with reported macroscopic growth rates measured with auto-titration, ICP-MS, and microbalance. Calcite growth rates measured by QCM-D were also compared with microscopic growth rates measured by atomic force microscopy (AFM) and with rates predicted by two process-based crystal growth models. The discrepancies in growth rates among AFM measurements and model predictions appear to mainly arise from differences in step densities, and the step velocities were consistent among the AFM measurements as well as with both model predictions. Using the predicted steady-state step velocity and the measured step densities, both models predict well the growth rates measured using QCM-D and AFM. This study provides valuable insights into the effects of reactive site densities on calcite growth rate, which may help design future growth models to predict transient-state step densities.

  11. On the growth of calcium tartrate tetrahydrate single crystals

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... The grown crystals were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction analysis (XRD), microhardness measurement, Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG) and differential thermal analysis (DTA). The results obtained are compared with the ...

  12. Crystal growth and characterization of calcium metaborate scintillators

    Czech Academy of Sciences Publication Activity Database

    Fujimoto, Y.; Yanagida, T.; Kawaguchi, N.; Fukuda, K.; Totsuka, D.; Watanabe, K.; Yamazaki, A.; Chani, V.; Nikl, Martin; Yoshikawa, A.

    2013-01-01

    Roč. 703, MAR (2013), s. 7-10 ISSN 0168-9002 Institutional support: RVO:68378271 Keywords : Czochralski method * single crystal * scintillator * calcium metaborate * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.316, year: 2013

  13. Phonon-enhanced crystal growth and lattice healing

    Science.gov (United States)

    Buonassisi, Anthony; Bertoni, Mariana; Newman, Bonna

    2013-05-28

    A system for modifying dislocation distributions in semiconductor materials is provided. The system includes one or more vibrational sources for producing at least one excitation of vibrational mode having phonon frequencies so as to enhance dislocation motion through a crystal lattice.

  14. Growth morphology of zinc tris(thiourea) sulphate crystals

    Indian Academy of Sciences (India)

    computing cohesive energies cannot be used for crystals having too large a number of atoms in the unit .... The final distribution of the electron cloud is .... We checked the newly developed computer code for reliability by testing it for a large.

  15. On the growth of calcium tartrate tetrahydrate single crystals

    Indian Academy of Sciences (India)

    . Calcium formate mixed with formic acid was taken as the supernatant solution. It was observed that the nucleation density was reduced and the size of the crystals was improved to a large extent compared to the conventional way of growing ...

  16. L-alanine distribution in the growth pyramids of TGS crystals and its influence on the growth, switching and domain structure

    International Nuclear Information System (INIS)

    Brezina, B.; Havrankova, M.

    1985-01-01

    The full-faced crystals of triglycine sulphate (TGS) and deuterated homologs substituted by L-alanine (LATGS and LADTGS, resp.) were grown from growth solutions with various concentrations of the substituent. The distribution of L, alanine (L,al) in various growth pyramids of crystals was measured by the electrical switching method. The stability of domain structure of doped crystals was studied by the liquid crystal method. (author)

  17. The synergy of modeling and novel experiments for melt crystal growth research

    Science.gov (United States)

    Derby, Jeffrey J.

    2018-05-01

    Computational modeling and novel experiments, when performed together, can enable the identification of new, fundamental mechanisms important for the growth of bulk crystals from the melt. In this paper, we present a compelling example of this synergy via the discovery of previously unascertained physical mechanisms that govern the engulfment of silicon carbide particles during the growth of crystalline silicon.

  18. Interfacial morphologies and growth modes of F.C.C. metallic crystals from liquid alloys

    International Nuclear Information System (INIS)

    Camel, Denis

    1980-01-01

    Equilibrium and growth morphologies of f.c.c. metallic crystals in contact with liquid alloys have been observed in-situ using transmission electron microscopy. These morphologies have been discussed in terms of atomic interfacial structure and growth mechanisms with the help of a statistical thermodynamic model which takes into account the effects of chemical interactions and interfacial adsorption. (author) [fr

  19. Lattice Boltzmann Simulation of Water Isotope Fractionation During Growth of Ice Crystals in Clouds

    Science.gov (United States)

    Lu, G.; Depaolo, D.; Kang, Q.; Zhang, D.

    2006-12-01

    The isotopic composition of precipitation, especially that of snow, plays a special role in the global hydrological cycle and in reconstruction of past climates using polar ice cores. The fractionation of the major water isotope species (HHO, HDO, HHO-18) during ice crystal formation is critical to understanding the global distribution of isotopes in precipitation. Ice crystal growth in clouds is traditionally treated with a spherically- symmetric steady state diffusion model, with semi-empirical modifications added to account for ventilation and for complex crystal morphology. Although it is known that crystal growth rate, which depends largely on the degree of vapor over-saturation, determines crystal morphology, there are no existing quantitative models that directly relate morphology to the vapor saturation factor. Since kinetic (vapor phase diffusion-controlled) isotopic fractionation also depends on growth rate, there should be a direct relationship between vapor saturation, crystal morphology, and crystal isotopic composition. We use a 2D Lattice-Boltzmann model to simulate diffusion-controlled ice crystal growth from vapor- oversaturated air. In the model, crystals grow solely according to the diffusive fluxes just above the crystal surfaces, and hence crystal morphology arises from the initial and boundary conditions in the model and does not need to be specified a priori. The input parameters needed are the isotope-dependent vapor deposition rate constant (k) and the water vapor diffusivity in air (D). The values of both k and D can be computed from kinetic theory, and there are also experimentally determined values of D. The deduced values of k are uncertain to the extent that the sticking coefficient (or accommodation coefficient) for ice is uncertain. The ratio D/k is a length that determines the minimum scale of dendritic growth features and allows us to scale the numerical calculations to atmospheric conditions using a dimensionless Damkohler number

  20. Crystal growth, spectroscopic characterization and laser performance of Tm/Mg:LiNbO3 crystal

    Science.gov (United States)

    Zhang, P. X.; Yin, J. G.; Zhang, R.; Li, H. Q.; Xu, J. Q.; Hang, Y.

    2014-03-01

    A Tm, Mg co-doped LiNbO3 crystal was grown by the traditional Czochralski method. The room-temperature absorption, photo-luminescence spectra and fluorescence lifetime of Tm3+ ions in the crystal have been investigated. The experimental results show that the co-doped of MgO can lead to the lengthening of the measured fluorescence lifetime of the upper Tm3+:3F4 level. Based on the Judd-Ofelt approach, the intensity parameters Ω2,4,6 of Tm3+ were calculated to be Ω2 (6.29 × 10-20 cm2), Ω4 (0.54 × 10-20 cm2) and Ω6 (0.79 × 10-20 cm2). Other spectroscopic parameters that relate to laser performance were also obtained. Non-photorefractive continuous wave laser operation with a Tm, Mg:LiNbO3 single crystal is demonstrated at room temperature for the first time. We obtained 1.026 W output power at 1.885 μm with a slope efficiency of near 14%, which, to the best of our knowledge, is the largest output power and the highest slope efficiency obtained for this crystal thus far. The output power was observed to be stable, and the crystal showed no sign of photorefractive damage.

  1. Protein nanocrystallography: growth mechanism and atomic structure of crystals induced by nanotemplates.

    Science.gov (United States)

    Pechkova, E; Vasile, F; Spera, R; Fiordoro, S; Nicolini, C

    2005-11-01

    Protein nanocrystallography, a new technology for crystal growth based on protein nanotemplates, has recently been shown to produce diffracting, stable and radiation-resistant lysozyme crystals. This article, by computing these lysozyme crystals' atomic structures, obtained by the diffraction patterns of microfocused synchrotron radiation, provides a possible mechanism for this increased stability, namely a significant decrease in water content accompanied by a minor but significant alpha-helix increase. These data are shown to be compatible with the circular dichroism and two-dimensional Fourier transform spectra of high-resolution H NMR of proteins dissolved from the same nanotemplate-based crystal versus those from a classical crystal. Finally, evidence for protein direct transfer from the nanotemplate to the drop and the participation of the template proteins in crystal nucleation and growth is provided by high-resolution NMR spectrometry and mass spectrometry. Furthermore, the lysozyme nanotemplate appears stable up to 523 K, as confirmed by a thermal denaturation study using spectropolarimetry. The overall data suggest that heat-proof lysozyme presence in the crystal provides a possible explanation of the crystal's resistance to synchrotron radiation.

  2. Growth and characterization of hexaaquacobalt(II) dipotassium tetrahydrogen tetra-o-phthalate tetrahydrate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Muthu, K. [Department of Chemistry, Annamalai University, Annamalainagar 608 002 (India); Bhagavannarayana, G. [National Physical Laboratory (CSIR), New Delhi 110 012 (India); Mahadevan, C.K. [Physics Research Centre, S.T. Hindu College, Nagercoil 629002 (India); Meenakshisundaram, S.P., E-mail: aumats2009@gmail.com [Department of Chemistry, Annamalai University, Annamalainagar 608 002 (India)

    2013-05-15

    Single crystals of hexaaquacobalt(II) dipotassium tetrahydrogen tetra-o-phthalate tetrahydrate K{sub 2}[Co(H{sub 2}O){sub 6}](C{sub 8}H{sub 5}O{sub 4}){sub 4}·4H{sub 2}O (PCHP), a semiorganic light-rose colored crystal of size ∼38 × 16 × 4 mm{sup 3} have been grown by slow evaporation solution growth technique. The lattice parameters of the as-grown crystals were obtained by single crystal X-ray diffraction analysis. The functional groups of the phthalate complex were confirmed by Fourier transform infrared spectroscopy analysis. The UV–Vis optical absorption spectrum of PCHP shows the lower optical cut-off at ∼300 nm and the crystal was transparent in the visible region. The structural perfection of the grown crystal has been analyzed by high-resolution X-ray diffraction (HRXRD) rocking curves (DC). The DC contains multi-peaks showing the structural grain boundaries. The dielectric, thermal and mechanical behaviors of the specimen were also studied. - Highlights: ► Bulk growth of large size phthalate complex crystals. ► Crystalline perfection of the grown crystal has been determined. ► HRXRD curves compared with pure material and the reasons are analyzed.

  3. Imaging transport phenomena during lysozyme protein crystal growth by the hanging drop technique

    Science.gov (United States)

    Sethia Gupta, Anamika; Gupta, Rajive; Panigrahi, P. K.; Muralidhar, K.

    2013-06-01

    The present study reports the transport process that occurs during the growth of lysozyme protein crystals by the hanging drop technique. A rainbow schlieren technique has been employed for imaging changes in salt concentration. A one dimensional color filter is used to record the deflection of the light beam. An optical microscope and an X-ray crystallography unit are used to characterize the size, tetragonal shape and Bravais lattice constants of the grown crystals. A parametric study on the effect of drop composition, drop size, reservoir height and number of drops on the crystal size and quality is reported. Changes in refractive index are not large enough to create a meaningful schlieren image in the air gap between the drop and the reservoir. However, condensation of fresh water over the reservoir solution creates large changes in the concentration of NaCl, giving rise to clear color patterns in the schlieren images. These have been analyzed to obtain salt concentration profiles near the free surface of the reservoir solution as a function of time. The diffusion of fresh water into the reservoir solution at the early stages of crystal growth followed by the mass flux of salt from the bulk solution towards the free surface has been recorded. The overall crystal growth process can be classified into two regimes, as demarcated by the changes in slope of salt concentration within the reservoir. The salt concentration in the reservoir equilibrates at long times when the crystallization process is complete. Thus, transport processes in the reservoir emerge as the route to monitor protein crystal growth in the hanging drop configuration. Results show that crystal growth rate is faster for a higher lysozyme concentration, smaller drops, and larger reservoir heights.

  4. Investigation on the growth of DAST crystals of large surface area for THz applications

    International Nuclear Information System (INIS)

    Vijay, R. Jerald; Melikechi, N.; Thomas, Tina; Gunaseelan, R.; Arockiaraj, M. Antony; Sagayaraj, P.

    2012-01-01

    Graphical abstract: It is evident from the photographs that the crystal tend to grow as a needle (Fig. 1a) in the lower concentration region (2–3 g/200 mL); whereas, in the high concentration region (5 g/200 mL) though there is a marked enlargement in the size of the crystal, the morphology of the resulting DAST crystal is slightly irregular (Fig. 1d) in nature. Among the four concentrations employed, best result was obtained with the DAST–methanol solution of concentration 4 g/200 mL; which resulted in the DAST crystal of large surface area (270 mm 2 ) with high transparency and nearly square shape (Fig. 1c) in a growth period of 20–25 days. Highlights: ► DAST crystals of different sizes are obtained for different concentrations. ► The main focus is to grow DAST crystals with large surface area. ► Structural, optical, thermal and mechanical properties are investigated. - Abstract: The growth of high quality 4-N,N-dimethylamino-4-N-methyl-stilbazoliumtosylate (DAST) crystal with large surface area is reported by adopting the slope nucleation coupled slow evaporation method (SNM-SE). The structure and composition of the crystal are studied by single crystal X-ray diffraction and CHN analyses. The linear optical properties are investigated by UV–vis absorption. The melting point and thermal behavior of DAST are investigated using differential scanning calorimetric (DSC) and thermogravimetric analyses (TGA). The Vickers microhardness number (VHN) and work hardening coefficient of the grown crystal have been determined. The surface features of the DAST crystal are analyzed by scanning electron microscopy (SEM) and it confirmed the presence of narrow line defects (NLDs) in the sample.

  5. Growth and characterization of unidirectional benzil single crystal for photonic applications

    Science.gov (United States)

    Saranraj, A.; Thirupathy, J.; Dhas, S. Sahaya Jude; Jose, M.; Vinitha, G.; Dhas, S. A. Martin Britto

    2018-06-01

    Organic nonlinear optical benzil single crystal of fine quality with the dimensions of 168 × 14 mm2 was successfully grown in (100) plane from saturated solution by unidirectional SR method. The structural identity of the grown crystal was confirmed by powder XRD. High-resolution X-ray diffraction analysis indicates the crystalline perfection of the grown benzil crystal. The optical analysis was carried out by UV-visible spectroscopy which shows that the benzil crystal's cut off wavelength is 437 nm. The dielectric constant and dielectric loss of benzil crystal are found to be very much depending upon temperature and frequency. Ferroelectric nature of grown crystal was identified by P- E hysteresis analysis and to find the values of spontaneous polarization and coercive field. The laser damage threshold energy was studied with the help of Nd:YAG laser. The presence of third harmonic generation was identified by z-scan techniques.

  6. Crystal-field analysis of U3+ ions in K2LaX5 (X=Cl, Br or I) single crystals

    Science.gov (United States)

    Karbowiak, M.; Edelstein, N.; Gajek, Z.; Drożdżyński, J.

    1998-11-01

    An analysis of low temperature absorption spectra of U3+ ions doped in K2LaX5 (X=Cl, Br or I) single crystals is reported. The energy levels of the U3+ ion in the single crystals were assigned and fitted to a semiempirical Hamiltonian representing the combined atomic and crystal-field interactions at the Cs symmetry site. An analysis of the nephelauxetic effect and crystal-field splittings in the series of compounds is also reported.

  7. New developments on size-dependent growth applied to the crystallization of sucrose

    Science.gov (United States)

    Martins, P. M.; Rocha, F.

    2007-12-01

    The effect of crystal size on the growth rate of sucrose (C 12H 22O 11) at 40 °C is investigated from a theoretical and an experimental point of view. Based on new perspectives resulting from the recently introduced spiral nucleation model [P.M. Martins, F. Rocha, Surf. Sci. 601 (2007) 3400], crystal growth rates are expressed in terms of mass deposition per time and crystal volume units. This alternative definition is demonstrated to be size-independent over the considered supersaturation range. The conventional overall growth rate expressed per surface area units is found to be linearly dependent on crystal size. The advantages of the "volumetric" growth rate concept are discussed. Sucrose dissolution rates were measured under reciprocal conditions of the growth experiments in order to investigate the two-way effect of crystal size on mass transfer rates and on the integration kinetics. Both effects are adequately described by combining a well-established diffusion-integration model and the spiral nucleation mechanism.

  8. Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field.

    Science.gov (United States)

    Kim, Seonah; Orendt, Anita M; Ferraro, Marta B; Facelli, Julio C

    2009-10-01

    This article describes the application of our distributed computing framework for crystal structure prediction (CSP) the modified genetic algorithms for crystal and cluster prediction (MGAC), to predict the crystal structure of flexible molecules using the general Amber force field (GAFF) and the CHARMM program. The MGAC distributed computing framework includes a series of tightly integrated computer programs for generating the molecule's force field, sampling crystal structures using a distributed parallel genetic algorithm and local energy minimization of the structures followed by the classifying, sorting, and archiving of the most relevant structures. Our results indicate that the method can consistently find the experimentally known crystal structures of flexible molecules, but the number of missing structures and poor ranking observed in some crystals show the need for further improvement of the potential. Copyright 2009 Wiley Periodicals, Inc.

  9. Crystal growth, spectral properties, and laser demonstration of laser crystal Nd:LYSO

    Science.gov (United States)

    Li, D. Z.; Xu, X. D.; Zhou, D. H.; Zhuang, S. D.; Wang, Z. P.; Xia, C. T.; Wu, F.; Xu, J.

    2010-11-01

    A Nd:LYSO crystal has been grown by the Czochralski technique. The cell parameters were analyzed with X-ray diffraction (XRD). The Judd-Ofelt intense parameters Ω2,4,6 were obtained to be 2.65, 5.75, and 7.37×10-20 cm2, respectively. The absorption and emission cross sections and the branching ratios were calculated. The large absorption cross section (6.14×10-20 cm2) and broad absorption band (5 nm) around 811 nm indicate that this crystal can be pumped efficiently by laser diodes. The broad emission band from the 4F3/2 multiplet shows that the crystal is a promising medium for ultrashort pulse lasers. Pumped by a laser diode, the maximum 814 mW continuous-wave laser output has been obtained with a slope efficiency of 28.9%. All the results show that this crystal is a promising laser material.

  10. Crystal growth and optical properties of Sm:CaNb2O6 single crystal

    International Nuclear Information System (INIS)

    Di Juqing; Xu Xiaodong; Xia Changtai; Zeng Huidan; Cheng Yan; Li Dongzhen; Zhou Dahua; Wu Feng; Cheng Jimeng; Xu Jun

    2012-01-01

    Highlights: ► Sm:CaNb 2 O 6 single crystal was grown by the Czochralski method. ► Thermal expansion coefficients and J–O parameters were calculated. ► We found that this crystal had high quantum efficiency of 97%. - Abstract: Sm:CaNb 2 O 6 single crystal has been grown by the Czochralski method. Its high-temperature X-ray powder diffraction, optical absorption, emission spectroscopic as well as lifetime have been studied. Thermal expansion coefficients (α), J–O parameters (Ω i ), radiative lifetime (τ rad ), branching ratios (β) and stimulated emission cross-sections (σ e ) were calculated. The quantum efficiency (η) was calculated to be 97%. The intense peak emission cross section at 610, 658 nm were calculated to be 2.40 × 10 −21 , 2.42 × 10 −21 cm 2 . These results indicate that Sm:CaNb 2 O 6 crystal has potential use in visible laser and photonic devices area.

  11. Crystal growth and luminescence properties of Pr-doped LuLiF4 single crystal

    International Nuclear Information System (INIS)

    Sugiyama, Makoto; Yanagida, Takayuki; Yokota, Yuui; Kurosawa, Shunsuke; Fujimoto, Yutaka; Yoshikawa, Akira

    2013-01-01

    0.1, 1, and 3% Pr (with respect to Lu) doped LuLiF 4 (Pr:LuLiF 4 ) single crystals were grown by the micro-pulling-down (μ-PD) method. Transparency of the grown crystals was higher than 70% in the visible wavelength region with some absorption bands due to Pr 3+ 4f-4f transitions. Intense absorption bands related with the Pr 3+ 4f-5d transitions were observed at 190 and 215 nm. In radioluminescence spectra, Pr 3+ 5d-4f emissions were observed at 220, 240, 340, and 405 nm. In the pulse height spectra recorded under 137 Cs γ-ray excitation, the Pr 3% doped sample showed the highest light yield of 2050 photons/MeV and the scintillation decay time of it exhibited 23 and 72 ns also excited by 137 Cs γ-ray. -- Highlights: ► 0.1, 1, and 3% Pr-doped LuLiF 4 single crystals were grown by the μ-PD method. ► Pr 3+ 5d-4f emission peaks appeared at 220, 240, 340, and 405 nm ► The Pr 3%:LuLiF 4 crystal showed the highest light yield of 2050 photons/MeV

  12. Growth of methyl 2-(2,4-dinitrophenyl)aminopropanoate single crystals

    Science.gov (United States)

    Perigaud, A.; Nicolau, Y. F.

    1986-12-01

    Methyl 2-(2,4-dinitrophenyl)aminopropanoate single crystals, 1 cm in diameter and 7 cm in length have been grown by a travelling-heater-Bridgman method in polyethylene tubes introduced into glass ampoules, at a growth rate of 1.5-6 mm/day. The starting material was synthesised and purified by recrystallization from methanol and by vacuum evaporation to a purity of 99.994%. The period of growth, and hence the length of the crystal, is limited due to melt decomposition and polycondensation. The b-axis of the crystals is always oriented at about 72° to the ampoule axis. Good quality single crystals have been obtained giving a FWHM of the Cu Kα (040) rocking curve of about 1'.

  13. Electric field driven fractal growth dynamics in polymeric medium

    Energy Technology Data Exchange (ETDEWEB)

    Dawar, Anit; Chandra, Amita, E-mail: achandra@physics.du.ac.in

    2014-08-14

    This paper reports the extension of earlier work (Dawar and Chandra, 2012) [27] by including the influence of low values of electric field on diffusion limited aggregation (DLA) patterns in polymer electrolyte composites. Subsequently, specified cut-off value of voltage has been determined. Below the cut-off voltage, the growth becomes direction independent (i.e., random) and gives rise to ramified DLA patterns while above the cut-off, growth is governed by diffusion, convection and migration. These three terms (i.e., diffusion, convection and migration) lead to structural transition that varies from dense branched morphology (DBM) to chain-like growth to dendritic growth, i.e., from high field region (A) to constant field region (B) to low field region (C), respectively. The paper further explores the growth under different kinds of electrode geometries (circular and square electrode geometry). A qualitative explanation for fractal growth phenomena at applied voltage based on Nernst–Planck equation has been proposed. - Highlights: • The paper is an extension of earlier work [Phys. Lett. A 376 (2012) 3604] on effect of electric field on DLA. • Threshold value of electric field has been determined. • Below the threshold, growth is random. • Above the threshold, the growth is governed by diffusion, migration and convection. • Different kinds of electrode geometries have been used to simulate the growth.

  14. Electric field driven fractal growth dynamics in polymeric medium

    International Nuclear Information System (INIS)

    Dawar, Anit; Chandra, Amita

    2014-01-01

    This paper reports the extension of earlier work (Dawar and Chandra, 2012) [27] by including the influence of low values of electric field on diffusion limited aggregation (DLA) patterns in polymer electrolyte composites. Subsequently, specified cut-off value of voltage has been determined. Below the cut-off voltage, the growth becomes direction independent (i.e., random) and gives rise to ramified DLA patterns while above the cut-off, growth is governed by diffusion, convection and migration. These three terms (i.e., diffusion, convection and migration) lead to structural transition that varies from dense branched morphology (DBM) to chain-like growth to dendritic growth, i.e., from high field region (A) to constant field region (B) to low field region (C), respectively. The paper further explores the growth under different kinds of electrode geometries (circular and square electrode geometry). A qualitative explanation for fractal growth phenomena at applied voltage based on Nernst–Planck equation has been proposed. - Highlights: • The paper is an extension of earlier work [Phys. Lett. A 376 (2012) 3604] on effect of electric field on DLA. • Threshold value of electric field has been determined. • Below the threshold, growth is random. • Above the threshold, the growth is governed by diffusion, migration and convection. • Different kinds of electrode geometries have been used to simulate the growth

  15. Solubility and peculiarities of the yttrium-aluminium borate crystal growth

    International Nuclear Information System (INIS)

    Azizov, A.V.; Leonyuk, N.I.; Rezvyj, V.R.; Timchenko, T.I.; Belov, N.V.

    1982-01-01

    The nature of crystallization media and crystallization peculiarities of IAl 3 [BO 3 ] 4 yttrium-alluminium borate (YAB) were investigated. The investigation of YAB solubility was conducted in the melts of two different compositions: 88.1K 2 Mo 2 O 10 -3.5V 2 O 3 -8.4B 2 O 3 (1) and 89.5K 2 Mo 3 O 10 - - 10.5B 2 O 3 (2) at 1060-900 deg C. The YAB crystals obtained from different crystallization media had different habit and morphology. The revealed peculiarities are significant for the choice of the YAB crystal growing conditions on orientated seedings: more rapid growth can be exercised along the [0001] face from the solution in the melt (2)

  16. Growth and characterization of 2-Methylimidazolium D-tartrate single crystal

    Science.gov (United States)

    Srinivasan, T. P.; Anandhi, S.; Gopalakrishnan, R.

    2011-03-01

    Single crystal of 2-Methylimidazolium D-tartrate (2MImdT; C8N2O6H12) has been grown by slow evaporation solution growth technique at room temperature using mixed solvents of ethanol and deionized water. Single crystal X-ray diffraction study confirms that 2-Methylimidazolium D-tartrate belongs to monoclinic crystal system with non-centrosymmetric space group P21. The Fourier transform infrared spectrum of 2-Methylimidazolium D-tartrate reveals the presence of methyl and carboxyl functional groups in the compound. The mechanical properties of 2MImdT crystal were studied. The theoretical factor group analysis predicts 168 optical modes in the title compound. The dielectric behavior of 2MImdT crystals was studied at different frequencies and temperatures. Decomposition and melting point of 2MImdT were found using thermal measurements. SHG behavior of the title compound was demonstrated using Q-switched Nd:YAG laser.

  17. Modification of calcite crystal growth by abalone shell proteins: an atomic force microscope study.

    OpenAIRE

    Walters, D A; Smith, B L; Belcher, A M; Paloczi, G T; Stucky, G D; Morse, D E; Hansma, P K

    1997-01-01

    A family of soluble proteins from the shell of Haliotis rufescens was introduced over a growing calcite crystal being scanned in situ by an atomic force microscope (AFM). Atomic step edges on the crystal surface were altered in shape and speed of growth by the proteins. Proteins attached nonuniformly to the surface, indicating different interactions with crystallographically different step edges. The observed changes were consistent with the habit modification induced by this family of protei...

  18. Investigation on the bulk growth of α-LiIO 3 single crystals and the ...

    Indian Academy of Sciences (India)

    2017-07-26

    Jul 26, 2017 ... α-LiIO3 is an excellent optical material exhibiting strong nonlinear optical, ... caused by the strong influence of the growth conditions, and, in particular, pH of the solution from which α-LiIO3 crystal ... studies of the crystals grown at pH 10 reveal the higher optical radiation ... of d31 at 1.06 μm = 4.1 pm V. −1.

  19. Cytostatic versus Cytocidal Activities of Chloroquine Analogues and Inhibition of Hemozoin Crystal Growth

    OpenAIRE

    Gorka, Alexander P.; Alumasa, John N.; Sherlach, Katy S.; Jacobs, Lauren M.; Nickley, Katherine B.; Brower, Jonathan P.; de Dios, Angel C.; Roepe, Paul D.

    2013-01-01

    We report an improved, nonhazardous, high-throughput assay for in vitro quantification of antimalarial drug inhibition of β-hematin (hemozoin) crystallization performed under conditions that are more physiological relative to previous assays. The assay uses the differential detergent solubility of crystalline and noncrystalline forms of heme and is optimized via the use of lipid catalyst. Using this assay, we quantify the effect of pH on the crystal growth-inhibitory activities of current qui...

  20. The effect of magnetic field on the shape of etch pits of paracetamol crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ivashchenko, V.E. [Kemerovo State University, Novosibirsk (Russian Federation); Research and Educational Center, Novosibirsk State University (Russian Federation); Boldyrev, V.V.; Shakhtshneider, T.P. [Institute of Solid State Chemistry and Mechanochemistry, RAS, Novosibirsk (Russian Federation); Zakharov, Yu.A.; Krasheninin, V.I. [Kemerovo State University, Novosibirsk (Russian Federation); Ermakov, A.E. [Institute of Physics of Metals, Ural Branch of RAS, Ekaterinburg (Russian Federation)

    2002-04-01

    In the present study we investigate the effect of magnetic field on the shape of etch pits of the crystals of p-hydroxyacetanilide (paracetamol), which is widely used in pharmacy as antipyretic, antiphlogistic medicine. It was discovered that the magnetic field (H=0.5 T, {tau}=15 min) changes the morphology of etch pits and shifts dislocations in paracetamol crystal. Activation energy of the changes induced by the action of the magnetic field was determined to be 63 kJ/mol, which is comparable with the energy of hydrogen bonds in crystal lattice. (orig.)

  1. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores.

    Science.gov (United States)

    Malkin, B Z; Lummen, T T A; van Loosdrecht, P H M; Dhalenne, G; Zakirov, A R

    2010-07-14

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R(2)Ti(2)O(7) (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed.

  2. Global mean-field phase diagram of the spin-1 Ising ferromagnet in a random crystal field

    Science.gov (United States)

    Borelli, M. E. S.; Carneiro, C. E. I.

    1996-02-01

    We study the phase diagram of the mean-field spin-1 Ising ferromagnet in a uniform magnetic field H and a random crystal field Δi, with probability distribution P( Δi) = pδ( Δi - Δ) + (1 - p) δ( Δi). We analyse the effects of randomness on the first-order surfaces of the Δ- T- H phase diagram for different values of the concentration p and show how these surfaces are affected by the dilution of the crystal field.

  3. Crystal fields of dilute Tb, Dy, Ho, or Er in Lu obtained by magnetization measurements

    International Nuclear Information System (INIS)

    Touborg, P.; Hog, J.

    1975-01-01

    Magnetization measurements are reported on single crystals of dilute Tb, Dy, Ho, or Er in Lu. These measurements were performed in the temperature range 1.5--100 K and field range 0--6 T and include measurements of initial susceptibility, isothermal and isofield magnetization, and basal-plane anisotropy. The results show features similar to the corresponding Y-R alloys, where R is a rare earth. Crystal-field and molecular-field parameters could be unabiguously deduced from the experimental data. The effects of crystal-field level broadening were investigated and demonstrated for Ho. Comparison of the Y-R and Lu-R results makes possible an estimate of the crystal-field parameters in the pure-rare-earth metals

  4. Effect of grain boundary on the field-effect mobility of microrod single crystal organic transistors.

    Science.gov (United States)

    Kim, Jaekyun; Kang, Jingu; Cho, Sangho; Yoo, Byungwook; Kim, Yong-Hoon; Park, Sung Kyu

    2014-11-01

    High-performance microrod single crystal organic transistors based on a p-type 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) semiconductor are fabricated and the effects of grain boundaries on the carrier transport have been investigated. The spin-coating of C8-BTBT and subsequent solvent vapor annealing process enabled the formation of organic single crystals with high aspect ratio in the range of 10 - 20. It was found that the organic field-effect transistors (OFETs) based on these single crystals yield a field-effect mobility and an on/off current ratio of 8.04 cm2/Vs and > 10(5), respectively. However, single crystal OFETs with a kink, in which two single crystals are fused together, exhibited a noticeable drop of field-effect mobility, and we claim that this phenomenon results from the carrier scattering at the grain boundary.

  5. Method for single crystal growth of photovoltaic perovskite material and devices

    Science.gov (United States)

    Huang, Jinsong; Dong, Qingfeng

    2017-11-07

    Systems and methods for perovskite single crystal growth include using a low temperature solution process that employs a temperature gradient in a perovskite solution in a container, also including at least one small perovskite single crystal, and a substrate in the solution upon which substrate a perovskite crystal nucleates and grows, in part due to the temperature gradient in the solution and in part due to a temperature gradient in the substrate. For example, a top portion of the substrate external to the solution may be cooled.

  6. The melt growth of large LuAP single crystals for PET scanners

    International Nuclear Information System (INIS)

    Petrosyan, Ashot; Ovanesyan, Karine; Shirinyan, Grigory; Butaeva, Tatyana; Derdzyan, Marina; Pedrini, Christian; Dujardin, Christophe; Garnier, Nicolas; Kamenskikh, Irina

    2005-01-01

    Performance properties of LuAP, a material of highly promising potential for future PET scanners, are presented, as they relate to crystal growth and composition. The light yield measured in 2x2x10 mm 3 elements with 0.4-0.5% Ce and cut from large size crystals (100 mm long and 15 mm in diameter) grown by the Bridgman technique is improved to 40% LSO. The ratio between light yield measured in vertical and horizontal arrangements in the best crystals is near 90%. The role of chemical purity in respect to divalent impurities is studied

  7. Growth of NH4Cl Single Crystal from Vapor Phase in Vertical Furnace

    Science.gov (United States)

    Nigara, Yutaka; Yoshizawa, Masahito; Fujimura, Tadao

    1983-02-01

    A pure and internally stress-free single crystal of NH4Cl was grown successfully from the vapor phase. The crystal measured 1.6 cmφ× 2 cm and had the disordered CsCl structure, which was stable below 184°C. The crystal was grown in an ampoule in a vertical furnace, in which the vapor was efficiently transported both by diffusion and convection. In line with the growth mechanism of a single crystal, the temperature fluctuation (°C/min) on the growth interface was kept smaller than the product of the temperature gradient (°C/cm) and the growth rate (cm/min). The specific heat of the crystal was measured around -31°C (242 K) during cooling and heating cycles by AC calorimetry. The thermal hysteresis (0.4 K) obtained here was smaller than that (0.89 K) of an NH4Cl crystal grown from its aqueous solution with urea added as a habit modifier.

  8. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications.

    Science.gov (United States)

    Fu, Yongping; Meng, Fei; Rowley, Matthew B; Thompson, Blaise J; Shearer, Melinda J; Ma, Dewei; Hamers, Robert J; Wright, John C; Jin, Song

    2015-05-06

    Understanding crystal growth and improving material quality is important for improving semiconductors for electronic, optoelectronic, and photovoltaic applications. Amidst the surging interest in solar cells based on hybrid organic-inorganic lead halide perovskites and the exciting progress in device performance, improved understanding and better control of the crystal growth of these perovskites could further boost their optoelectronic and photovoltaic performance. Here, we report new insights on the crystal growth of the perovskite materials, especially crystalline nanostructures. Specifically, single crystal nanowires, nanorods, and nanoplates of methylammonium lead halide perovskites (CH3NH3PbI3 and CH3NH3PbBr3) are successfully grown via a dissolution-recrystallization pathway in a solution synthesis from lead iodide (or lead acetate) films coated on substrates. These single crystal nanostructures display strong room-temperature photoluminescence and long carrier lifetime. We also report that a solid-liquid interfacial conversion reaction can create a highly crystalline, nanostructured MAPbI3 film with micrometer grain size and high surface coverage that enables photovoltaic devices with a power conversion efficiency of 10.6%. These results suggest that single-crystal perovskite nanostructures provide improved photophysical properties that are important for fundamental studies and future applications in nanoscale optoelectronic and photonic devices.

  9. Impact of interaction range and curvature on crystal growth of particles confined to spherical surfaces

    Science.gov (United States)

    Paquay, Stefan; Both, Gert-Jan; van der Schoot, Paul

    2017-07-01

    When colloidal particles form a crystal phase on a spherical template, their packing is governed by the effective interaction between them and the elastic strain of bending the growing crystal. For example, if growth commences under appropriate conditions, and the isotropic crystal that forms reaches a critical size, growth continues via the incorporation of defects to alleviate elastic strain. Recently, it was experimentally found that, if defect formation is somehow not possible, the crystal instead continues growing in ribbons that protrude from the original crystal. Here we report on computer simulations in which we observe both the formation of ribbons at short interaction ranges and packings that incorporate defects if the interaction is longer-ranged. The ribbons only form above some critical crystal size, below which the nucleus is disk-shaped. We find that the scaling of the critical crystal size differs slightly from the one proposed in the literature, and we argue that this is because the actual morphology transition is caused by the competition between line tension and elastic stress, rather than the competition between chemical potential and elastic stress.

  10. Growth and characterization of Nd:CLNGG crystal

    Science.gov (United States)

    Shi, Z. B.; Zhang, H. J.; Wang, J. Y.; Yu, Y. G.; Wang, Z. P.; Yu, H. H.; Sun, S. Q.; Xia, H. R.; Jiang, M. H.

    2009-07-01

    The disordered laser crystal neodymium-doped calcium lithium niobium gallium garnet (Nd:CLNGG) was successfully grown by the Czochralski method. Its thermal properties, including the average linear thermal expansion coefficient, thermal diffusion coefficient, specific heat, and thermal conductivity were measured, and continuous-wave (CW) laser performance at 1.06 μm was demonstrated. The maximum power of 1.48 W was achieved with corresponding optical conversion efficiency of 12.4% and slope efficiency of 16.2%.

  11. Crystal nucleation and dendrite growth of metastable phases in undercooled melts

    International Nuclear Information System (INIS)

    Herlach, Dieter

    2011-01-01

    Research highlights: → Homogenous nucleation. → Effects of convection on dendrite growth kinetics. → Description of disorder trapping validated by experiment. - Abstract: An undercooled melt possesses an enhanced free enthalpy that opens up the possibility to crystallize metastable crystalline solids in competition with their stable counterparts. Crystal nucleation selects the crystallographic phase whereas the growth dynamics controls microstructure evolution. We apply containerless processing techniques such as electromagnetic and electrostatic levitation to containerlesss undercool and solidify metallic melts. Owing to the complete avoidance of heterogeneous nucleation on container-walls a large undercooling range becomes accessible with the extra benefit that the freely suspended drop is direct accessible for in situ observation of crystallization far away from equilibrium. Results of investigations of maximum undercoolability on pure zirconium are presented showing the limit of maximum undercoolability set by the onset of homogeneous nucleation. Rapid dendrite growth is measured as a function of undercooling by a high-speed camera and analysed within extended theories of non-equilibrium solidification. In such both supersaturated solid solutions and disordered superlattice structure of intermetallics are formed at high growth velocities. A sharp interface theory of dendrite growth is capable to describe the non-equilibrium solidification phenomena during rapid crystallization of deeply undercooled melts. Eventually, anomalous growth behaviour of Al-rich Al-Ni alloys is presented, which may be caused by forced convection.

  12. Epitaxial crystal growth by sputter deposition: Applications to semiconductors. Part 2

    International Nuclear Information System (INIS)

    Greene, J.E.

    1984-01-01

    The understanding of the physics of ion-surface interactions has progressed sufficiently to allow sputter depositinn to be used as a crystal growth technique for depositing a wide variety of single crystal elemental, compound, alloy, and superlattice semiconductors. In many cases, films with essentially bulk values of carrier concentrations and mobilities have been obtained. The controlled use of low energy particle bombardment of the growing film during sputter deposition has been shown to affect all stages of crystal growth ranging from adatom mobilities and nucleation kinetics to elemental incorporation probabilities. Such effects provide inherent advantages for sputter deposition over other vapor phase techniques for the low temperature growth of compound and alloy semiconductors and are essential in allowing the growth of new and unique single crystal metastable semiconductors. Part 1 of this review includes sections on experimental techniques, the physics of ion-surface interactions, and ion bombardment effects on film nucleation and growth, while Part 2 presents a discussion of recent results in the growth of elemental, III-V, II-VI, IV-VI, metastable, and other compound semiconductors

  13. Electromagnetic induction heating for single crystal graphene growth: morphology control by rapid heating and quenching

    Science.gov (United States)

    Wu, Chaoxing; Li, Fushan; Chen, Wei; Veeramalai, Chandrasekar Perumal; Ooi, Poh Choon; Guo, Tailiang

    2015-03-01

    The direct observation of single crystal graphene growth and its shape evolution is of fundamental importance to the understanding of graphene growth physicochemical mechanisms and the achievement of wafer-scale single crystalline graphene. Here we demonstrate the controlled formation of single crystal graphene with varying shapes, and directly observe the shape evolution of single crystal graphene by developing a localized-heating and rapid-quenching chemical vapor deposition (CVD) system based on electromagnetic induction heating. Importantly, rational control of circular, hexagonal, and dendritic single crystalline graphene domains can be readily obtained for the first time by changing the growth condition. Systematic studies suggest that the graphene nucleation only occurs during the initial stage, while the domain density is independent of the growth temperatures due to the surface-limiting effect. In addition, the direct observation of graphene domain shape evolution is employed for the identification of competing growth mechanisms including diffusion-limited, attachment-limited, and detachment-limited processes. Our study not only provides a novel method for morphology-controlled graphene synthesis, but also offers fundamental insights into the kinetics of single crystal graphene growth.

  14. Growth, crystal structure, spectral properties and laser performance of Yb3+:NaLu(MoO4)2 crystal

    International Nuclear Information System (INIS)

    Yu, Yi; Zhang, Lizhen; Huang, Yisheng; Lin, Zhoubin; Wang, Guofu

    2013-01-01

    A double molybdate Yb 3+ :NaLu(MoO 4 ) 2 crystal was successfully grown from a flux of Na 2 Mo 2 O 7 by the top-seeded solution growth method, for the first time to our knowledge. The crystal belongs to the tetragonal system with space group I4 1 /a, and the unit-cell parameters are a = b = 5.159 Å, c = 11.246 Å. Na and Lu atoms co-occupy the same lattice site, which leads to the disordered structure of NaLu(MoO 4 ) 2 crystal. The thermal expansion coefficients of the crystal are 1.35 × 10 −5 K −1 along the c-axis, and 1.01 × 10 −5 K −1 along the a-axis. The full-width at half-maximum of the emission bands are 67 nm for the σ-polarization and 50 nm for the π-polarization at about 1020 nm. The maximum emission cross-sections for the σ- and π-polarizations are 2.79 × 10 −20 cm 2 and 2.94 × 10 −20 cm 2 , respectively. 0.3 W output power at 1025 nm was obtained at an absorbed pump power of 1.7 W, with a slope efficiency of 24%. (paper)

  15. Growth, crystal structure, spectral properties and laser performance of Yb3+:NaLu(MoO4)2 crystal

    Science.gov (United States)

    Yu, Yi; Zhang, Lizhen; Huang, Yisheng; Lin, Zhoubin; Wang, Guofu

    2013-10-01

    A double molybdate Yb3+:NaLu(MoO4)2 crystal was successfully grown from a flux of Na2Mo2O7 by the top-seeded solution growth method, for the first time to our knowledge. The crystal belongs to the tetragonal system with space group I41/a, and the unit-cell parameters are a = b = 5.159 Å, c = 11.246 Å. Na and Lu atoms co-occupy the same lattice site, which leads to the disordered structure of NaLu(MoO4)2 crystal. The thermal expansion coefficients of the crystal are 1.35 × 10-5 K-1 along the c-axis, and 1.01 × 10-5 K-1 along the a-axis. The full-width at half-maximum of the emission bands are 67 nm for the σ-polarization and 50 nm for the π-polarization at about 1020 nm. The maximum emission cross-sections for the σ- and π-polarizations are 2.79 × 10-20 cm2 and 2.94 × 10-20 cm2, respectively. 0.3 W output power at 1025 nm was obtained at an absorbed pump power of 1.7 W, with a slope efficiency of 24%.

  16. In Situ Determination of Thermal Profiles during Czochralski Silicon Crystal Growth by an Eddy Current Technique.

    Science.gov (United States)

    Choe, Kwang Su.

    An eddy current testing method was developed to continuously monitor crystal growth process and determine thermal profiles in situ during Czochralski silicon crystal growth. The work was motivated by the need to improve the quality of the crystal by controlling thermal gradients and annealing history over the growth cycle. The experimental concept is to monitor intrinsic electrical conductivities of the growing crystal and deduce temperature values from them. The experiments were performed in a resistance-heated Czochralski puller with a 203 mm (8 inch) diameter crucible containing 6.5 kg melt. The silicon crystals being grown were about 80 mm in diameter and monitored by an encircling sensor operating at three different test frequencies (86, 53 and 19 kHz). A one-dimensional analytical solution was employed to translate the detected signals into electrical conductivities. In terms of experiments, the effects of changes in growth condition, which is defined by crystal and crucible rotation rates, crucible position, pull rate, and hot-zone configuration, were investigated. Under a given steady-state condition, the thermal profile was usually stable over the entire length of crystal growth. The profile shifted significantly, however, when the crucible rotation rate was kept too high. As a direct evidence to the effects of melt flow on heat transfer process, a thermal gradient minimum was observed about the crystal/crucible rotation combination of 20/-10 rpm cw. The thermal gradient reduction was still most pronounced when the pull rate or the radiant heat loss to the environment was decreased: a nearly flat axial thermal gradient was achieved when either the pull rate was halved or the height of the exposed crucible wall was effectively doubled. Under these conditions, the average axial thermal gradient along the surface of the crystal was about 4-5 ^{rm o}C/mm. Regardless of growth condition, the three-frequency data revealed radial thermal gradients much larger

  17. Strategies for the coupling of global and local crystal growth models

    Science.gov (United States)

    Derby, Jeffrey J.; Lun, Lisa; Yeckel, Andrew

    2007-05-01

    The modular coupling of existing numerical codes to model crystal growth processes will provide for maximum effectiveness, capability, and flexibility. However, significant challenges are posed to make these coupled models mathematically self-consistent and algorithmically robust. This paper presents sample results from a coupling of the CrysVUn code, used here to compute furnace-scale heat transfer, and Cats2D, used to calculate melt fluid dynamics and phase-change phenomena, to form a global model for a Bridgman crystal growth system. However, the strategy used to implement the CrysVUn-Cats2D coupling is unreliable and inefficient. The implementation of under-relaxation within a block Gauss-Seidel iteration is shown to be ineffective for improving the coupling performance in a model one-dimensional problem representative of a melt crystal growth model. Ideas to overcome current convergence limitations using approximations to a full Newton iteration method are discussed.

  18. Development of low-cost silicon crystal growth techniques for terrestrial photovoltaic solar energy conversion

    Science.gov (United States)

    Zoutendyk, J. A.

    1976-01-01

    Because of the growing need for new sources of electrical energy, photovoltaic solar energy conversion is being developed. Photovoltaic devices are now being produced mainly from silicon wafers obtained from the slicing and polishing of cylindrically shaped single crystal ingots. Inherently high-cost processes now being used must either be eliminated or modified to provide low-cost crystalline silicon. Basic to this pursuit is the development of new or modified methods of crystal growth and, if necessary, crystal cutting. If silicon could be grown in a form requiring no cutting, a significant cost saving would potentially be realized. Therefore, several techniques for growth in the form of ribbons or sheets are being explored. In addition, novel techniques for low-cost ingot growth and cutting are under investigation.

  19. Crystal growth kinetics in undercooled melts of pure Ge, Si and Ge-Si alloys

    Science.gov (United States)

    Herlach, Dieter M.; Simons, Daniel; Pichon, Pierre-Yves

    2018-01-01

    We report on measurements of crystal growth dynamics in semiconducting pure Ge and pure Si melts and in Ge100-xSix (x = 25, 50, 75) alloy melts as a function of undercooling. Electromagnetic levitation techniques are applied to undercool the samples in a containerless way. The growth velocity is measured by the utilization of a high-speed camera technique over an extended range of undercooling. Solidified samples are examined with respect to their microstructure by scanning electron microscopic investigations. We analyse the experimental results of crystal growth kinetics as a function of undercooling within the sharp interface theory developed by Peter Galenko. Transitions of the atomic attachment kinetics are found at large undercoolings, from faceted growth to dendrite growth. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  20. Formation of temperature fields in doped anisotropic crystals under spatially inhomogeneous light beams passing through them

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, E. V.; Markelov, A. S.; Trushin, V. N., E-mail: trushin@phys.unn.ru; Chuprunov, E. V. [Nizhni Novgorod State University (Russian Federation)

    2013-12-15

    The features of formation of thermal fields in potassium dihydrophosphate crystal doped with potassium permanganate under a 532-nm laser beam passing through it have been investigated. Data on the influence of birefringence on the temperature distribution in an anisotropic crystal whose surface is illuminated by a spatially modulated light beam are presented.

  1. Phase-field model of eutectic growth

    International Nuclear Information System (INIS)

    Karma, A.

    1994-01-01

    A phase-field model which describes the solidification of a binary eutectic alloy with a simple symmetric phase diagram is introduced and the sharp-interface limit of this model is explored both analytically and numerically

  2. Effect of elastic deformation and the magnetic field on the electrical conductivity of p-Si crystals

    Science.gov (United States)

    Lys, R.; Pavlyk, B.; Didyk, R.; Shykorjak, J.; Karbovnyk, I.

    2018-03-01

    It is shown that at a deformation rate of 0.41 kg/min, the characteristic feature of the dependence of the surface resistance of the p-Si sample on the magnitude of its elastic deformation (R(σ)) is the reduction of the resistance during compression and unclamping. With the increase in the number of "compression-unclamping" cycles, the difference between the positions of the compression and unclamping curves decreases. The transformation of two types of magnetically sensitive defects occurs under the impact of a magnetic field on p-Si crystals. The defects are interrelated with two factors that cause the mutually opposite influence on the conductivity of the crystal. The first factor is that the action of the magnetic field decreases the activation energy of the dislocation holders, which leads to an increase in the electrical conductivity of the sample. The second factor is that due to the decay of molecules of oxygen-containing impurities in the magnetic field, the stable chemisorption bonds appear in the crystal that leads to a decrease in its conductivity. If the sample stays in the magnetic field for a long time, the one or the other mechanism predominates, causing a slow growth or decrease in resistance around a certain (averaged) value. Moreover, the frequency of such changes is greater in the deformed sample. The value of the surface resistance of p-Si samples does not change for a long time without the influence of the magnetic field.

  3. Analysis of Study Trend of Growth and Characterization of CdZnTe Single Crystal

    International Nuclear Information System (INIS)

    Lee, Kyu Hong; Ha, Jang Ho; Kim, Han Soo

    2011-05-01

    CdZnTe (CZT) alloys are very important semiconducting compounds due to their use in several strategic applications in medical, space, and security devices, especially, radiation detector. Specific problems of the bulk crystal growth are still to be solved. However, since industries require excellent bulk CZT crystals, a strong effort is being organized worldwide to optimize the growth process and obtain better material. This report presents the study trend of the bulk CZT crystal growth and characteristics. After the first section where the problems connected to the complicated phase diagram of CZT are presented, the second section describes the various general physical and chemical properties, together with the compensation problems of the CZT material. In the third section, various growth methods are described, paying attention to the defects generated in the different cases. Further, the annealing process which is an essential step for improving the crystal quality is described. In the last section, the general material characterization methods are presented, as a scientific approach for assessing the quality of the bulk crystal

  4. Control of heat transfer in continuous-feeding Czochralski-silicon crystal growth with a water-cooled jacket

    Science.gov (United States)

    Zhao, Wenhan; Liu, Lijun

    2017-01-01

    The continuous-feeding Czochralski method is an effective method to reduce the cost of single crystal silicon. By promoting the crystal growth rate, the cost can be reduced further. However, more latent heat will be released at the melt-crystal interface under a high crystal growth rate. In this study, a water-cooled jacket was applied to enhance the heat transfer at the melt-crystal interface. Quasi-steady-state numerical calculation was employed to investigate the impact of the water-cooled jacket on the heat transfer at the melt-crystal interface. Latent heat released during the crystal growth process at the melt-crystal interface and absorbed during feedstock melting at the feeding zone was modeled in the simulations. The results show that, by using the water-cooled jacket, heat transfer in the growing crystal is enhanced significantly. Melt-crystal interface deflection and thermal stress increase simultaneously due to the increase of radial temperature at the melt-crystal interface. With a modified heat shield design, heat transfer at the melt-crystal interface is well controlled. The crystal growth rate can be increased by 20%.

  5. Growth of 4-(dimethylamino) benzaldehyde doped triglycine sulphate single crystals and its characterization

    International Nuclear Information System (INIS)

    Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S.M.

    2009-01-01

    Single crystals of triglycine sulphate (TGS) doped with 1 mol% of 4-(dimethylamino) benzaldehyde (DB) have been grown from aqueous solution at ambient temperature by slow evaporation technique. The effect of dopant on the crystal growth and dielectric, pyroelectric and mechanical properties of TGS crystal have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. FTIR spectra were employed to confirm the presence of 4-(dimethylamino) benzaldehyde in TGS crystal, qualitatively. The dielectric permittivity has been studied as a function of temperature by cooling the sample at a rate of 1 deg. C/min. An increase in the Curie temperature T c =51 deg. C (for pure TGS, T c =48.5 deg. C) and decrease in maximum permittivity has been observed for doped TGS when compared to pure TGS crystal. Pyroelectric studies on doped TGS were carried out to determine pyroelectric coefficient. The Vickers's hardness of the doped TGS crystals along (0 1 0) face is higher than that of pure TGS crystal for the same face. Domain patterns on b-cut plates were observed using scanning electron microscope. The low dielectric constant, higher pyroelectric coefficient and higher value of hardness suggest that doped TGS crystals could be a potential material for IR detectors.

  6. Growth of 4-(dimethylamino) benzaldehyde doped triglycine sulphate single crystals and its characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Chitharanjan, E-mail: raichitharanjan@gmail.co [Department of Physics, Mangalore University, Mangalagangotri 574 199 (India); Kalpataru First Grade Science College, Tiptur 572 202 (India); Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Dharmaprakash, S.M., E-mail: smdharma@yahoo.co [Department of Physics, Mangalore University, Mangalagangotri 574 199 (India)

    2009-11-15

    Single crystals of triglycine sulphate (TGS) doped with 1 mol% of 4-(dimethylamino) benzaldehyde (DB) have been grown from aqueous solution at ambient temperature by slow evaporation technique. The effect of dopant on the crystal growth and dielectric, pyroelectric and mechanical properties of TGS crystal have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. FTIR spectra were employed to confirm the presence of 4-(dimethylamino) benzaldehyde in TGS crystal, qualitatively. The dielectric permittivity has been studied as a function of temperature by cooling the sample at a rate of 1 deg. C/min. An increase in the Curie temperature T{sub c}=51 deg. C (for pure TGS, T{sub c}=48.5 deg. C) and decrease in maximum permittivity has been observed for doped TGS when compared to pure TGS crystal. Pyroelectric studies on doped TGS were carried out to determine pyroelectric coefficient. The Vickers's hardness of the doped TGS crystals along (0 1 0) face is higher than that of pure TGS crystal for the same face. Domain patterns on b-cut plates were observed using scanning electron microscope. The low dielectric constant, higher pyroelectric coefficient and higher value of hardness suggest that doped TGS crystals could be a potential material for IR detectors.

  7. Growth of 4-(dimethylamino) benzaldehyde doped triglycine sulphate single crystals and its characterization

    Science.gov (United States)

    Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S. M.

    2009-11-01

    Single crystals of triglycine sulphate (TGS) doped with 1 mol% of 4-(dimethylamino) benzaldehyde (DB) have been grown from aqueous solution at ambient temperature by slow evaporation technique. The effect of dopant on the crystal growth and dielectric, pyroelectric and mechanical properties of TGS crystal have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. FTIR spectra were employed to confirm the presence of 4-(dimethylamino) benzaldehyde in TGS crystal, qualitatively. The dielectric permittivity has been studied as a function of temperature by cooling the sample at a rate of 1 °C/min. An increase in the Curie temperature Tc=51 °C (for pure TGS, Tc=48.5 °C) and decrease in maximum permittivity has been observed for doped TGS when compared to pure TGS crystal. Pyroelectric studies on doped TGS were carried out to determine pyroelectric coefficient. The Vickers's hardness of the doped TGS crystals along (0 1 0) face is higher than that of pure TGS crystal for the same face. Domain patterns on b-cut plates were observed using scanning electron microscope. The low dielectric constant, higher pyroelectric coefficient and higher value of hardness suggest that doped TGS crystals could be a potential material for IR detectors.

  8. Growth and characterization of air annealing Mn-doped YAG:Ce single crystal for LED

    International Nuclear Information System (INIS)

    Xiang, Weidong; Zhong, Jiasong; Zhao, Yinsheng; Zhao, Binyu; Liang, Xiaojuan; Dong, Yongjun; Zhang, Zhimin; Chen, Zhaoping; Liu, Bingfeng

    2012-01-01

    Highlights: ► The YAG:Ce,Mn single crystal was well synthesized by the Czochralski (CZ) method. ► The emission intensity of the sample has been influenced after annealing. ► Annealed in the air at 1200 °C was the most optimal annealing condition. ► The single crystal could be used in the white light LED which emitted by blue light. - Abstract: The growth of Mn-doped YAG:Ce (yttrium aluminum garnet doped cerium) single crystal by the Czochralski (CZ) method and the characterization of its spectroscopy and color-electric parameters are presented. The absorption spectra indicate that the crystal absorbed highly in the 300–500 nm wavelength range. The emission spectrum of the crystal consists of a peak around 538 nm when excited by 460 nm blue light, which prove the YAG:Ce,Mn single crystal could be used in the white light emitting doides (LED). The different charges of Mn ions have different luminescence properties, and the air annealing process for the single crystal would change the concentration of Mn ions with different charges, which could influence the emission intensity of the single crystal.

  9. Silicon transport under rotating and combined magnetic fields in liquid phase diffusion growth of SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Armour, N.; Dost, S. [Crystal Growth Laboratory, University of Victoria, Victoria, BC, V8W 3P6 (Canada)

    2010-04-15

    The effect of applied rotating and combined (rotating and static) magnetic fields on silicon transport during the liquid phase diffusion growth of SiGe was experimentally studied. 72-hour growth periods produced some single crystal sections. Single and polycrystalline sections of the processed samples were examined for silicon composition. Results show that the application of a rotating magnetic field enhances silicon transport in the melt. It also has a slight positive effect on flattening the initial growth interface. For comparison, growth experiments were also conducted under combined (rotating and static) magnetic fields. The processed samples revealed that the addition of static field altered the thermal characteristics of the system significantly and led to a complete melt back of the germanium seed. Silicon transport in the melt was also enhanced under combined fields compared with experiments with no magnetic field. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Direct growth of self-crystallized graphene and graphite nanoballs with Ni vapor-assisted growth: From controllable growth to material characterization

    Science.gov (United States)

    Yen, Wen-Chun; Chen, Yu-Ze; Yeh, Chao-Hui; He, Jr-Hau; Chiu, Po-Wen; Chueh, Yu-Lun

    2014-01-01

    A directly self-crystallized graphene layer with transfer-free process on arbitrary insulator by Ni vapor-assisted growth at growth temperatures between 950 to 1100°C via conventional chemical vapor deposition (CVD) system was developed and demonstrated. Domain sizes of graphene were confirmed by Raman spectra from ~12 nm at growth temperature of 1000°C to ~32 nm at growth temperature of 1100°C, respectively. Furthermore, the thickness of the graphene is controllable, depending on deposition time and growth temperature. By increasing growth pressure, the growth of graphite nano-balls was preferred rather than graphene growth. The detailed formation mechanisms of graphene and graphite nanoballs were proposed and investigated in detail. Optical and electrical properties of graphene layer were measured. The direct growth of the carbon-based materials with free of the transfer process provides a promising application at nanoelectronics. PMID:24810224

  11. Direct growth of self-crystallized graphene and graphite nanoballs with Ni vapor-assisted growth: from controllable growth to material characterization.

    Science.gov (United States)

    Yen, Wen-Chun; Chen, Yu-Ze; Yeh, Chao-Hui; He, Jr-Hau; Chiu, Po-Wen; Chueh, Yu-Lun

    2014-05-09

    A directly self-crystallized graphene layer with transfer-free process on arbitrary insulator by Ni vapor-assisted growth at growth temperatures between 950 to 1100 °C via conventional chemical vapor deposition (CVD) system was developed and demonstrated. Domain sizes of graphene were confirmed by Raman spectra from ~12 nm at growth temperature of 1000 °C to ~32 nm at growth temperature of 1100 °C, respectively. Furthermore, the thickness of the graphene is controllable, depending on deposition time and growth temperature. By increasing growth pressure, the growth of graphite nano-balls was preferred rather than graphene growth. The detailed formation mechanisms of graphene and graphite nanoballs were proposed and investigated in detail. Optical and electrical properties of graphene layer were measured. The direct growth of the carbon-based materials with free of the transfer process provides a promising application at nanoelectronics.

  12. In-line bulk supersaturation measurement by electrical conductometry in KDP crystal growth from aqueous solution

    Science.gov (United States)

    Bordui, P. F.; Loiacono, G. M.

    1984-07-01

    A method is presented for in-line bulk supersaturation measurement in crystal growth from aqueous solution. The method is based on a computer-controlled concentration measurement exploiting an experimentally predetermined cross-correlation between the concentration, electrical conductivity, and temperature of the growth solution. The method was applied to Holden crystallization of potassium dihydrogen phosphate (KDP). An extensive conductivity-temperature-concentration data base was generated for this system over a temperature range of 31 to 41°C. The method yielded continous, automated bulk supersaturation output accurate to within ±0.05 g KDP100 g water (±0.15% relative supersaturation).

  13. Growth of ruby crystals by the heat exchanger method, phase 1: NSF small business innovation research

    Science.gov (United States)

    Schmid, F.; Khattak, C. P.

    1980-03-01

    Conditions for the growth of large, uniformly doped laser crystals by the heat exchanger method are explored. Determination of the melt point, selection of crucible material and establishment of furnace operating parameters are discussed. The melt point of ruby was found to be 2040 plus or minus 10 C. Molybdenum crucibles can be used to contain ruby in vacuum as well as under argon atmospheres at desired superheat temperatures over extended periods required for crystal growth. Thermodynamic analysis was conducted and vapor pressures of volatile species calculated. Experimentally, volatilization of chromium oxides was suppressed by using welded covers on crucibles and operating under an argon pressure in the furnace.

  14. Dual Effect of the Cubic Ag₃PO₄ Crystal on Pseudomonas syringae Growth and Plant Immunity

    Directory of Open Access Journals (Sweden)

    Mi Kyung Kim

    2016-04-01

    Full Text Available We previously found that the antibacterial activity of silver phosphate crystals on Escherichia coli depends on their structure. We here show that the cubic form of silver phosphate crystal (SPC can also be applied to inhibit the growth of a plant-pathogenic Pseudomonas syringae bacterium. SPC pretreatment resulted in reduced in planta multiplication of P. syringae. Induced expression of a plant defense marker gene PR1 by SPC alone is suggestive of its additional plant immunity-stimulating activity. Since SPC can simultaneously inhibit P. syringae growth and induce plant defense responses, it might be used as a more effective plant disease-controlling agent.

  15. (Li1−xFexOHFeSe Superconductors: Crystal Growth, Structure, and Electromagnetic Properties

    Directory of Open Access Journals (Sweden)

    Guo-Yong Zhang

    2017-06-01

    Full Text Available This review focuses on the growth of high-quality (Li1−xFexOHFeSe single crystals by a hydrothermal method using floating-zone-grown AxFe2−ySe2 (A = K, Rb, and Cs as precursors. The structure, superconductivity, and magnetic behavior of the obtained crystals are highly influenced by the growth conditions, such as time, temperature, and composition. A phase diagram with temperature against the c-lattice constant is summarized including the antiferromagnetic spin density wave, superconducting, and paramagnetic phases.

  16. Synthesis and growth of single crystals of PrCl3

    International Nuclear Information System (INIS)

    Pei, Jen Shieh.

    1984-01-01

    An efficient method for growth of high optical quality single crystals of PrCl 3 . The method consists in careful drying of the hydrated chloride, PrCl 3 . 7H 2 O, with a protective atmosphere of anhydrous HCl and Ar. A subsequent growth was done by the zone melting technique. The hydrated chloride had prepared from dissolution of the oxide Pr 6 O 11 in hydrochloric acid. The grown crystals had characterized fluorescence and x-ray diffraction measurements. (Author) [pt

  17. Absorption measurement s in InSe single crystal under an applied electric field

    International Nuclear Information System (INIS)

    Ates, A.; Guerbulak, B.; Guer, E.; Yildirim, T.; Yildirim, M.

    2002-01-01

    InSe single crystal was grown by Bridgman-Stockberger method. Electric field effect on the absorption measurements have been investigated as a function of temperature in InSe single crystal. The absorption edge shifted towards longer wavelengths and decreased of intensity in absorption spectra under an electric field. Using absorption measurements, Urbach energy was calculated under an electric field. Applied electric field caused a increasing in the Urbach energy. At 10 K and 320 K, the first exciton energies were calculated as 1.350 and 1.311 eV for zero voltage and 1.334 and 1.301 eV for electric field respectively

  18. Transverse magnetic field impact on waveguide modes of photonic crystals.

    Science.gov (United States)

    Sylgacheva, Daria; Khokhlov, Nikolai; Kalish, Andrey; Dagesyan, Sarkis; Prokopov, Anatoly; Shaposhnikov, Alexandr; Berzhansky, Vladimir; Nur-E-Alam, Mohammad; Vasiliev, Mikhail; Alameh, Kamal; Belotelov, Vladimir

    2016-08-15

    This Letter presents a theoretical and experimental study of waveguide modes of one-dimensional magneto-photonic crystals magnetized in the in-plane direction. It is shown that the propagation constants of the TM waveguide modes are sensitive to the transverse magnetization and the spectrum of the transverse magneto-optical Kerr effect has resonant features at mode excitation frequencies. Two types of structures are considered: a non-magnetic photonic crystal with an additional magnetic layer on top and a magneto-photonic crystal with a magnetic layer within each period. We found that the magneto-optical non-reciprocity effect is greater in the first case: it has a magnitude of δ∼10-4, while the second structure type demonstrates δ∼10-5 only, due to the higher asymmetry of the claddings of the magnetic layer. Experimental observations show resonant features in the optical and magneto-optical Kerr effect spectra. The measured dispersion properties are in good agreement with the theoretical predictions. An amplitude of light intensity modulation of up to 2.5% was observed for waveguide mode excitation within the magnetic top layer of the non-magnetic photonic crystal structure. The presented theoretical approach may be utilized for the design of magneto-optical sensors and modulators requiring pre-determined spectral features.

  19. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang [Columbia Univ., New York, NY (United States); Frisbie, Daniel [Univ. of Minnesota, Minneapolis, MN (United States)

    2017-03-31

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering.

  20. Mixed spin Ising model with four-spin interaction and random crystal field

    International Nuclear Information System (INIS)

    Benayad, N.; Ghliyem, M.

    2012-01-01

    The effects of fluctuations of the crystal field on the phase diagram of the mixed spin-1/2 and spin-1 Ising model with four-spin interactions are investigated within the finite cluster approximation based on a single-site cluster theory. The state equations are derived for the two-dimensional square lattice. It has been found that the system exhibits a variety of interesting features resulting from the fluctuation of the crystal field interactions. In particular, for low mean value D of the crystal field, the critical temperature is not very sensitive to fluctuations and all transitions are of second order for any value of the four-spin interactions. But for relatively high D, the transition temperature depends on the fluctuation of the crystal field, and the system undergoes tricritical behaviour for any strength of the four-spin interactions. We have also found that the model may exhibit reentrance for appropriate values of the system parameters.

  1. Crystal growth and characterization of Ir-Te compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kurzhals, Philipp; Weber, Frank; Zocco, Diego; Adelmann, Peter; Merz, Michael; Wolf, Thomas; Kuntz, Sebastian; Grube, Kai [Karlsruhe Institute of Technology, Institute for Solid State Physics, Karlsruhe (Germany)

    2016-07-01

    IrTe{sub 2} is distinguished by a structural phase transition whose origin is not understood up to the present day. We grew crystals using the self-flux method starting from the reagents iridium and tellurium and got specimen with varying amounts of IrTe{sub 2} and Ir{sub 3}Te{sub 8}, analyzed by x-ray powder diffraction. We studied the transition near T = 280 K in magnetization measurements down to T = 1.8 K probing also for superconductivity, which was reported for intercalated samples. Results indicate that the structural transition happens over an extended range in temperature and superconductivity is absent in our samples. Ir{sub 3}Te{sub 8} is not studied to such an extent as IrTe{sub 2}. In previous publications a structural phase transition is reported. We characterized the transition by performing magnetization measurements and X-ray diffraction.

  2. New Crystal-Growth Methods for Producing Lattice-Matched Substrates for High-Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Boatner, L.A.

    2008-06-24

    This effort addressed the technical problem of identifying and growing, on a commercial scale, suitable single-crystal substrates for the subsequent deposition of epitaxial thin films of high temperature semiconductors such as GaN/AlN. The lack of suitable lattice-matched substrate materials was one of the major problem areas in the development of semiconducting devices for use at elevated temperatures as well as practical opto-electronic devices based on Al- and GaN technology. Such lattice-matched substrates are necessary in order to reduce or eliminate high concentrations of defects and dislocations in GaN/AlN and related epitaxial thin films. This effort concentrated, in particular, on the growth of single crystals of ZnO for substrate applications and it built on previous ORNL experience in the chemical vapor transport growth of large single crystals of zinc oxide. This combined expertise in the substrate growth area was further complemented by the ability of G. Eres and his collaborators to deposit thin films of GaN on the subject substrates and the overall ORNL capability for characterizing the quality of such films. The research effort consisted of research on the growth of two candidate substrate materials in conjunction with concurrent research on the growth and characterization of GaN films, i.e. the effort combined bulk crystal growth capabilities in the area of substrate production at both ORNL and the industrial partner, Commercial Crystal Growth Laboratories (CCL), Naples, Florida, with the novel thin-film deposition techniques previously developed in the ORNL SSD.

  3. Mechanism of abnormally slow crystal growth of CuZr alloy

    International Nuclear Information System (INIS)

    Yan, X. Q.; Lü, Y. J.

    2015-01-01

    Crystal growth of the glass-forming CuZr alloy is shown to be abnormally slow, which suggests a new method to identify the good glass-forming alloys. The crystal growth of elemental Cu, Pd and binary NiAl, CuZr alloys is systematically studied with the aid of molecular dynamics simulations. The temperature dependence of the growth velocity indicates the different growth mechanisms between the elemental and the alloy systems. The high-speed growth featuring the elemental metals is dominated by the non-activated collision between liquid-like atoms and interface, and the low-speed growth for NiAl and CuZr is determined by the diffusion across the interface. We find that, in contrast to Cu, Pd, and NiAl, a strong stress layering arisen from the density and the local order layering forms in front of the liquid-crystal interface of CuZr alloy, which causes a slow diffusion zone. The formation of the slow diffusion zone suppresses the interface moving, resulting in much small growth velocity of CuZr alloy. We provide a direct evidence of this explanation by applying the compressive stress normal to the interface. The compression is shown to boost the stress layering in CuZr significantly, correspondingly enhancing the slow diffusion zone, and eventually slowing down the crystal growth of CuZr alloy immediately. In contrast, the growth of Cu, Pd, and NiAl is increased by the compression because the low diffusion zones in them are never well developed

  4. AOM reconciling of crystal field parameters for UCl 3, UBr 3, UI 3 series

    Science.gov (United States)

    Gajek, Z.; Mulak, J.

    1990-07-01

    Available inelastic neutron scattering interpretations of crystal field effect in the uranium trihalides have been verified in terms of Angular Overlap Model. For UCl 3 a good reconciling of both INS and optical interpretations of crystal field effect has been obtained. On the contrary, the parameterizations for UBr 3 and UI 3 were found to be highly artificial and suggestion is given to experimentalists to reinterpret their INS spectra.

  5. AOM reconciling of crystal field parameters for UCl3, UBr3, Ul3 series

    International Nuclear Information System (INIS)

    Gajek, Z.; Mulak, J.

    1990-01-01

    Available inelastic neutron scattering interpretations of crystal field effect in the uranium trihalides have been verified in terms of Angular Overlap Model. For UCl 3 a good reconciling of both INS and optical interpretations of crystal field effect has been obtained. On the contrary, the parameterizations for UBr 3 and UI 3 were found to be highly artificial and suggestion is given to experimentalists to reinterpret their INS spectra

  6. The diluted tri-dimensional spin-one Ising model with crystal field interactions

    International Nuclear Information System (INIS)

    Saber, M.

    1988-09-01

    3D spin-one Ising models with nearest-neighbour ferromagnetic interactions with crystal-field exhibit tricritical behaviour. A new method that applies to a wide class of random systems is used to study the influence of site and bond dilution on this behaviour. We have calculated temperature-crystal-field-concentration phase diagrams and determined, in particular, the influence of dilution on the zero temperature tricritical temperature. (author). 10 refs, 8 figs

  7. Tricritical behavior in the diluted transverse spin-1 Ising model with a longitudinal crystal field

    International Nuclear Information System (INIS)

    Htoutou, K.; Oubelkacem, A.; Ainane, A.; Saber, M.

    2005-01-01

    The transverse spin-1 Ising model with a longitudinal crystal field exhibits a tricritical behavior. Within the effective field theory with a probability distribution technique that accounts for the self-spin correlations, we have studied the influence of site dilution on this behavior and have calculated the temperature-transverse field-longitudinal crystal field-concentration phase diagrams and determined, in particular, the influence of the concentration of magnetic atoms c on the tricritical behavior. We have found that the tricritical point appears for large values of the concentration c of magnetic atoms and disappears with the increase in dilution (small values of c). Results for square lattice are calculated numerically and some interesting results are obtained. In certain ranges of values of the strength of the longitudinal crystal field D/J when it becomes sufficiently negative, we found re-entrant phenomenon, which disappears with increase in the value of the strength of the transverse field

  8. Growth and characterization of calcium hydrogen phosphate dihydrate crystals from single diffusion gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, K.; Dale Keefe, C. [Department of Chemistry, Cape Breton University, Sydney, Nova Scotia (Canada)

    2010-09-15

    Calcium hydrogen phosphate dihydrate (CaHPO{sub 4}.2H{sub 2}O, CHPD) a dissolved mineral in urine is known to cause renal or bladder stones in both human and animals. Growth of CHPD or brushite using sodium metasilicate gel techniques followed by light and polarizing microscopic studies revealed its structural and morphological details. Crystal identity by powder x-ray diffraction confirmed the FT-IR and FT-Raman spectroscopic techniques as alternate methods for fast analysis of brushite crystals which could form as one type of renal stones. P-O-P asymmetric stretchings in both FT-IR (987.2, 874.1 and 792 cm{sup -1}) and FT-Raman (986.3 cm{sup -1}, 1057.6 cm{sup -1} and 875.2 cm{sup -1}) were found as characteristics of brushite crystals. Differential Scanning Calorimetry (DSC) analysis revealed brushite crystallization purity using gel method by studying their endothermic peaks. This study incorporated a multidisciplinary approach in characterizing CHPD crystals grown in vitro to help formulate prevention or dissolution strategy in controlling urinary stone growth. Initial studies with 0.2 M citric acid ions as controlling agent in the nucleation of brushite crystals further support the presented approach. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Rapid growth of ZnO hexagonal prism crystals by direct microwave heating

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhenqi; ZHOU Jian; LIU Guizhen; REN Zhiguo

    2008-01-01

    ZnO hexagonal prism crystals were synthesized from ZnO powders by microwave heating in a short time (within 20 min) without any metal catalyst or transport agent.Zinc oxide raw materials were made by evaporating from the high-temperature zone in an enclosure atmosphere and crystals were grown on the self-source substrate.The inherent asymmetry in microwave heating provides the temperature gradient for crystal growth.Substrate and temperature distribution in the oven show significant effects on the growth of the ZnO crystal.The morphologies demonstrate that these samples are pure hexagonal prism crystals with maximum 80 μm in diameter and 600 μm in length,which possess a well faceted end and side surface.X-ray diffraction (XRD) reveals that these samples are pure crystals.The photoluminescence (PL) exhibits strong ultraviolet emission at room temperature,indicating potential applications for short-wave light-emitting photonic devices.

  10. A Navier-Stokes phase-field crystal model for colloidal suspensions.

    Science.gov (United States)

    Praetorius, Simon; Voigt, Axel

    2015-04-21

    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.

  11. Reliability of conventional crystal field models in f-electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z. [Polska Akademia Nauk, Wroclaw (Poland). Inst. Niskich Temperatur i Badan Strukturalnych

    1995-03-15

    Crystal field models commonly applied to explain the electronic properties of solid f-electron compounds are discussed from the point of view of their inherent limitations and the false conclusions they may lead to. Both phenomenological and ab initio approximate models are considered. The discussion is based on generalized perturbation model calculations of the crystal field parameters for europium, uranium, plutonium and neptunium ions in various crystals. The results reveal the inadequacy of various electrostatic approaches and the correctness of models based on renormalization terms. ((orig.))

  12. Microdefects revealed by X-ray diffusion scattering in Czochralski-growth dislocation-free silicon single crystals

    International Nuclear Information System (INIS)

    Bublik, B.T.; Zotov, N.M.

    1997-01-01

    Microdefects in the regions of Si crystals having different thermal history defined by growth conditions was studied by the X-ray diffuse scattering method on a triple crystal X-ray diffractometer. It was shown that in such crystals the microdefects with positive strength are prevalent. However, between the above indicated regions the defects with the strength of opposite sign prevail

  13. Crystal growth and mechanical hardness of In{sub 2}Se{sub 2.7}Sb{sub 0.3} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Piyush, E-mail: piyush-patel130@yahoo.com; Vyas, S. M., E-mail: s-m-vyas-gu@hotmail.com; Patel, Vimal; Pavagadhi, Himanshu [Department of Physics, School of Science, Gujarat University, Ahmedabad, Gujarat, India-380009 (India); Solanki, Mitesh [panditdindayal Petroleum University, Gandhinagar. Gujarat (India); Jani, Maunik P. [BITS Edu Campus, Varnama, Vadodara, Gujarat (India)

    2015-08-28

    The III-VI compound semiconductors is important for the fabrication of ionizing radiation detectors, solid-state electrodes, and photosensitive heterostructures, solar cell and ionic batteries. In this paper, In{sub 2}Se{sub 2.7} Sb{sub 0.3} single crystals were grown by the Bridgman method with temperature gradient of 60 °C/cm and the growth velocity 0.5cm/hr. The as-grown crystals were examined under the optical microscope for surface study, a various growth features observed on top free surface of the single crystal which is predominant of layers growth mechanism. The lattice parameters of as-grown crystal was determined by the XRD analysis. A Vickers’ projection microscope were used for the study of microhardness on the as-cleaved, cold-worked and annealed samples of the crystals, the results were discussed, and reported in detail.

  14. Single-crystal growth of Group IVB and VB carbides by the floating-zone method

    International Nuclear Information System (INIS)

    Finch, C.B.; Chang, Y.K.; Abraham, M.M.

    1989-02-01

    The floating-zone method for the growth of Group IVB and VB carbides is described and reviewed. We have systematically investigated the technique and confirmed the growth of large single crystals of TiC/sub 0.95/, ZrC/sub 0.93/, ZrC/sub 0.98/, VC/sub 0.80/, NbC/sub 0.95/, TaC/sub 0.89/. Optimal growth conditions were in the 0.5-2.0 cm/h range under 8-12 atm helium. Good crystal growth results were achieved with hot-pressed starting rods of 90-95% density, using a ''double pancake'' induction coil and a 200-kHz/100- kW rf power supply. 36 refs., 5 figs., 3 tabs

  15. Single crystal growth and low-temperature properties of Er{sub 3}Al{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Suttner, Christian; Benka, Georg; Bauer, Andreas; Pfleiderer, Christian [Physik Department, Technische Universitaet Muenchen, D-85748 Garching (Germany)

    2016-07-01

    In recent years, topologically non-trivial spin whirls in condensed matter systems attracted great scientific interest. Lattices of these objects, so-called magnetic skyrmion lattices, were mainly observed in Dzyaloshinskii-Moriya driven chiral magnets with the non-centrosymmetric cubic space group P2{sub 1}3. Similar spin textures, however, may in principle also arise in a large number of further compounds. We report single-crystal growth of Er{sub 3}Al{sub 2} crystallizing in the tetragonal space group P4{sub 2}/mnm by means of optical float zoning under UHV-compatible conditions. We determined the magnetic phase diagram for fields applied along different crystallographic directions using magnetization, ac susceptibility, and specific heat measurements. Several phase pockets are observed below the Neel temperature T{sub N} = 27 K, consistent with earlier reports.

  16. Investigation of the growth defects in strontium titanate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kulagin, N A; Landar, S V; Podus, L P [Khar' kovskij Gosudarstvennyj Univ. (Ukrainian SSR)

    1981-02-01

    Investigation results of characteristics and reasons for formation of macroscopic growth defects in SrTiO/sub 3/ monocrystals grown up by Wernail method are presented. It is shown that blue colour occurring in the specimen volume is caused by shortage of oxygen during growing which results in transition of some ions from tetravalent to trivalent state. The defect of another type is characterized by increased content of Fe and Ni oxides.

  17. Facile growth of a single-crystal pattern: a case study of HKUST-1.

    Science.gov (United States)

    Li, Shaozhou; Lu, Guang; Huang, Xiao; Li, Hai; Sun, Yinghui; Zhang, Hua; Chen, Xiaodong; Huo, Fengwei

    2012-12-18

    In order to fabricate metal-organic framework (MOF) based devices, it is desirable to precisely position high-quality and mono-sized MOF crystals on supports. In this work, we demonstrate a facile solution procedure for the fabrication of oriented and monodispersed single-crystal MOF pattern. We expect that such capability will expand the scope of applications of MOFs to advanced fields.

  18. Scientific/Technical Report: Improvement in compensation and crystal growth of cadmium zinc telluride radiation detectors

    International Nuclear Information System (INIS)

    Kelvin G. Lynn; Kelly A. Jones

    2007-01-01

    Comparison of actual accomplishments with goals and objectives: (1) Growth of 12 ingots--Washington State University (WSU) more than met this goal for the project by growing 12 final ingots for the year. Nine of the twelve crystal growth ingots resolved gamma radiation at room temperature. The other three ingots where resistivity of ∼ 3 x 10 8 Ohm*cm for CG32a, CG36, and CG42 lower than expected, however none of these were tried with blocking contacts. All ingots were evaluated from tip to heel. In these three cases, the group III, dopant Aluminum (Al) was not detected to a level to compensate the Cd vacancies in the cadmium zinc telluride (CZT) thus the ingots were lower resistivity. The nine ingots that were successful radiation detectors averaged a bulk resistivity of 1.25 x 10 10 Ohm*cm and with a average μτ product for electrons of ∼ 2 x 10 -4 cm 2 /V with a 1/4 microsecond shaping time with samples ∼2 mm in thickness. (2) Attempt new compensations techniques--WSU also met this goal. Several doping schemes were attempted and investigated with various amounts of excess Tellurium added to the growth. The combination of Al and Erbium (Er) were first attempted for these ingots and subsequently CG34 was grown with Al, Er and Holmium. These compensation techniques produced radiation detectors and are currently under investigation. These growths were made with significant different doping levels to determine the affect of the dopants. CG43 was doped with Indium and Er. Indium was introduced instead of Al to determine if Indium is more soluble than Al for CZT and was less oxidized. This may decrease the amount of low resistivity ingots grown by doping with Indium instead of Al. (3) Grow large single crystals--Several changes in approach occurred in the crystal growth furnace. Steps were taken to maximize the crystal growth interface during growth by modifying liners, quartz, heat sinks, crucibles and various growth steps and temperature profiles. CG39 ingot

  19. Dependence of magnetization on crystal fields and exchange interactions in magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Ouaissa, Mohamed, E-mail: m.ouaissa@yahoo.fr [Laboratoire de Génie Physique et Environnement, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire BP 133, Kénitra 14000 (Morocco); Benyoussef, Abdelilah [Laboratory of Magnetism and Physics of High Energy, Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Abo, Gavin S. [Department of Electrical and Computer Engineering and MINT Center, The University of Alabama, Tuscaloosa, AL 35487 (United States); Ouaissa, Samia; Hafid, Mustapha [Laboratoire de Génie Physique et Environnement, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire BP 133, Kénitra 14000 (Morocco); Belaiche, Mohammed [Laboratoire de Magnétisme, Matériaux Magnétiques, Microonde et Céramique, Ecole Normale Supérieure, Université Mohammed V-Agdal, B.P. 9235, Océan, Rabat (Morocco)

    2015-11-15

    In this work, we study the magnetization of magnetite (Fe{sub 3}O{sub 4}) with different exchange interactions and crystal fields using variational method based on the Bogoliubov inequality for the Gibbs free energy within the mean field theory. The magnetic behavior was investigated in the absence and presence of crystal fields. The investigations also revealed that the transition temperature depends on the crystal fields of the octahedral and tetrahedral sites. Magnetite exhibits ferrimagnetic phase with second order transition to paramagnetic phase at 850 K. This result is confirmed using the mean field theory within the Heisenberg model. Important factors that can affect the magnetic behavior of the system are exchange interactions and crystal field. Indeed, a new magnetic behavior was observed depending on these parameters. A first order phase transition from ferrimagnetic to ferromagnetic was found at low temperature, and a second order transition from ferromagnetic to paramagnetic was observed at high temperature. - Highlights: • Magnetization of magnetite versus temperature was studied by mean field theory. • The critical temperature of magnetite (Fe{sub 3}O{sub 4}) was approximately obtained. • Effect of sublattice crystal fields on the magnetization of Fe{sub 3}O{sub 4} was investigated.

  20. Liquid crystal blue phases: stability, field effects and alignment

    OpenAIRE

    Gleeson, HF; Miller, RJ; Tian, L; Görtz, V; Goodby, JW

    2015-01-01

    The blue phases are fascinating structures in liquid crystals, fluids that exhibit cubic structures that have true crystalline order. The blue phases were discovered in the 1970s and were the subject of extensive research in the 1980s, when a deep understanding of many of their properties was established. The discovery that the blue phases could be stabilised to exist over wide temperature ranges meant that they became more than scientific curiosities and led to a recent resurgence in researc...

  1. Growth and characterization of β-Ga2O3 crystals

    Science.gov (United States)

    Nikolaev, V. I.; Maslov, V.; Stepanov, S. I.; Pechnikov, A. I.; Krymov, V.; Nikitina, I. P.; Guzilova, L. I.; Bougrov, V. E.; Romanov, A. E.

    2017-01-01

    Here we report on the growth and characterization of β-Ga2O3 bulk crystals and polycrystalline layer on different substrates. Bulk β-Ga2O3 crystals were produced by free crystallisation of gallium oxide melt in sapphire crucible. Transparent single crystals measuring up to 8 mm across were obtained. Good structural quality was confirmed by x-ray diffraction rocking curve FWHM values of 46″. Young's modulus, shear modulus and hardness of the β-Ga2O3 crystals were measured by nanoindentation and Vickers microindentation techniques. Polycrystalline β-Ga2O3 films were deposited on silicon and sapphire substrates by sublimation method. It was found that structure and morphology of the films were greatly influenced by the material and orientation of the substrates. The best results were achieved on a-plane sapphire substrates where predominantly (111) oriented films were obtained.

  2. Growth and luminescent properties of Yb3+--doped oxide single crystals for scintillator application

    International Nuclear Information System (INIS)

    Yoshikawa, A.; Ogino, H.; Shim, J.B.; Nikl, M.; Solovieva, N.; Fukuda, T.

    2004-01-01

    Rod-shaped (Lu 1-x Yb x ) 3 Al 5 O 12 with x=0.05, 0.15, 0.30 and (Y 1-x Yb x )AlO 3 with x=0.05, 0.10, 0.30 single crystals were grown by the micro-pulling-down method. Edge-defined film-fed growth method was used to prepare (Y 0.9 Yb 0.1 )VO 4 crystal, while Ca 8 (La 1.98 Yb 0.02 )(PO 4 ) 6 O 2 crystal was grown by the Czochralski method. Luminescence of these crystals was studied with main attention paid to the charge transfer emission of Yb 3+ . Temperature tuned decay times in the time scale of units--tens of nanosecond was measured as a feature possibly interesting for an application in scintillation detectors in positron emission tomography

  3. Growth of InAs/InP core-shell nanowires with various pure crystal structures.

    Science.gov (United States)

    Gorji Ghalamestani, Sepideh; Heurlin, Magnus; Wernersson, Lars-Erik; Lehmann, Sebastian; Dick, Kimberly A

    2012-07-20

    We have studied the epitaxial growth of an InP shell on various pure InAs core nanowire crystal structures by metal-organic vapor phase epitaxy. The InP shell is grown on wurtzite (WZ), zinc-blende (ZB), and {111}- and {110}-type faceted ZB twin-plane superlattice (TSL) structures by tuning the InP shell growth parameters and controlling the shell thickness. The growth results, particularly on the WZ nanowires, show that homogeneous InP shell growth is promoted at relatively high temperatures (∼500 °C), but that the InAs nanowires decompose under the applied conditions. In order to protect the InAs core nanowires from decomposition, a short protective InP segment is first grown axially at lower temperatures (420-460 °C), before commencing the radial growth at a higher temperature. Further studies revealed that the InP radial growth rate is significantly higher on the ZB and TSL nanowires compared to WZ counterparts, and shows a strong anisotropy in polar directions. As a result, thin shells were obtained during low temperature InP growth on ZB structures, while a higher temperature was used to obtain uniform thick shells. In addition, a schematic growth model is suggested to explain the basic processes occurring during the shell growth on the TSL crystal structures.

  4. Growth of InAs/InP core–shell nanowires with various pure crystal structures

    International Nuclear Information System (INIS)

    Gorji Ghalamestani, Sepideh; Heurlin, Magnus; Lehmann, Sebastian; Dick, Kimberly A; Wernersson, Lars-Erik

    2012-01-01

    We have studied the epitaxial growth of an InP shell on various pure InAs core nanowire crystal structures by metal–organic vapor phase epitaxy. The InP shell is grown on wurtzite (WZ), zinc-blende (ZB), and {111}- and {110}-type faceted ZB twin-plane superlattice (TSL) structures by tuning the InP shell growth parameters and controlling the shell thickness. The growth results, particularly on the WZ nanowires, show that homogeneous InP shell growth is promoted at relatively high temperatures (∼500 °C), but that the InAs nanowires decompose under the applied conditions. In order to protect the InAs core nanowires from decomposition, a short protective InP segment is first grown axially at lower temperatures (420–460 °C), before commencing the radial growth at a higher temperature. Further studies revealed that the InP radial growth rate is significantly higher on the ZB and TSL nanowires compared to WZ counterparts, and shows a strong anisotropy in polar directions. As a result, thin shells were obtained during low temperature InP growth on ZB structures, while a higher temperature was used to obtain uniform thick shells. In addition, a schematic growth model is suggested to explain the basic processes occurring during the shell growth on the TSL crystal structures. (paper)

  5. Growth and spectroscopic, thermodynamic and nonlinear optical studies of L-threonine phthalate crystal

    Science.gov (United States)

    Theras, J. Elberin Mary; Kalaivani, D.; Jayaraman, D.; Joseph, V.

    2015-10-01

    L-threonine phthalate (LTP) single crystal has been grown using a solution growth technique at room temperature. Single crystal X-ray diffraction analysis reveals that LTP crystallizes in monoclinic crystal system with space group C2/c. The optical absorption studies show that the crystal is transparent in the entire visible region with a cut-off wavelength 309 nm. The optical band gap is found to be 4.05 eV. The functional groups of the synthesized compound have been identified by FTIR spectral analysis. The functional groups present in the material were also confirmed by FT-RAMAN spectroscopy. Surface morphology and the presence of various elements were studied by SEM-EDAX analysis. The thermal stability of LTP single crystal has been analyzed by TGA/DTA studies. The thermodynamic parameters such as activation energy, entropy, enthalpy and Gibbs free energy were determined for the grown material using TG data and Coats-Redfern relation. Since the grown crystal is centrosymmetric, Z-Scan studies were carried out for analyzing the third order nonlinear optical property. The nonlinear absorption coefficient, nonlinear refractive index and susceptibility have been measured using Z-Scan technique.

  6. Solvent effects on the crystal growth structure and morphology of the pharmaceutical dirithromycin

    Science.gov (United States)

    Wang, Yuan; Liang, Zuozhong

    2017-12-01

    Solvent effects on the crystal structure and morphology of pharmaceutical dirithromycin molecules were systematically investigated using both experimental crystallization and theoretical simulation. Dirithromycin is one of the new generation of macrolide antibiotics with two polymorphic forms (Form I and Form II) and many solvate forms. Herein, six solvates of the dirithromycin, including acetonitrile, acetonitrile/water, acetone, 1-propanol, N,N-dimethylformamide (DMF) and cyclohexane, were studied. Experimentally, we crystallized the dirithromycin molecules in different solvents by the solvent evaporating method and measured the crystal structures with the X-ray diffraction (XRD). We compared these crystal structures of dirithromycin solvates and analyzed the solvent property-determined structure evolution. The solvents have a strong interaction with the dirithromycin molecule due to the formation of inter-molecular interactions (such as the hydrogen bonding and close contacts (sum of vdW radii)). Theoretically, we calculated the ideal crystal habit based on the solvated structures with the attachment growth (AE) model. The predicted morphologies and aspect ratios of dirithromycin solvates agree well with the experimental results. This work could be helpful to better understand the structure and morphology evolution of solvates controlled by solvents and guide the crystallization of active pharmaceutical ingredients in the pharmaceutical industry.

  7. Synthesis, growth, structural, optical and thermal properties of a new organic salt crystal: 3-nitroanilinium trichloroacetate

    Science.gov (United States)

    Selvakumar, E.; Chandramohan, A.; Anandha Babu, G.; Ramasamy, P.

    2014-09-01

    A new organic non-linear optical salt 3-nitroanilinium trichloroacetate has been synthesized and single crystals grown by slow solvent evaporation solution growth technique at room temperature using methanol as the solvent. The 1H and 13C Nuclear magnetic resonance spectra were recorded to establish the molecular structure of the title salt. The crystal structure of the title crystal has been determined by single crystal X-ray diffraction analysis and it belongs to monoclinic crystal system with non-centrosymmetric space group P21. Fourier transform infrared spectral study has been carried out to confirm the presence of various functional groups. The optical transmittance spectrum was recorded in the range 200-2500 nm, to find the optical transmittance window and lower cut off wavelength. The thermo gravimetric and differential thermal analyses were carried out to establish the thermal stability of the title crystal. The second harmonic generation in the title crystal was confirmed by the modified Kurtz-Perry powder test employing the Nd: YAG laser as the source for infrared radiation.

  8. Seeded growth of boron arsenide single crystals with high thermal conductivity

    Science.gov (United States)

    Tian, Fei; Song, Bai; Lv, Bing; Sun, Jingying; Huyan, Shuyuan; Wu, Qi; Mao, Jun; Ni, Yizhou; Ding, Zhiwei; Huberman, Samuel; Liu, Te-Huan; Chen, Gang; Chen, Shuo; Chu, Ching-Wu; Ren, Zhifeng

    2018-01-01

    Materials with high thermal conductivities are crucial to effectively cooling high-power-density electronic and optoelectronic devices. Recently, zinc-blende boron arsenide (BAs) has been predicted to have a very high thermal conductivity of over 2000 W m-1 K-1 at room temperature by first-principles calculations, rendering it a close competitor for diamond which holds the highest thermal conductivity among bulk materials. Experimental demonstration, however, has proved extremely challenging, especially in the preparation of large high quality single crystals. Although BAs crystals have been previously grown by chemical vapor transport (CVT), the growth process relies on spontaneous nucleation and results in small crystals with multiple grains and various defects. Here, we report a controllable CVT synthesis of large single BAs crystals (400-600 μm) by using carefully selected tiny BAs single crystals as seeds. We have obtained BAs single crystals with a thermal conductivity of 351 ± 21 W m-1 K-1 at room temperature, which is almost twice as conductive as previously reported BAs crystals. Further improvement along this direction is very likely.

  9. Growth of rare-earth doped single crystal yttrium aluminum garnet fibers

    Science.gov (United States)

    Bera, Subhabrata; Nie, Craig D.; Harrington, James A.; Cheng, Long; Rand, Stephen C.; Li, Yuan; Johnson, Eric G.

    2018-02-01

    Rare-earth doped single crystal (SC) yttrium aluminum garnet (YAG) fibers have great potential as high-power laser gain media. SC fibers combine the superior material properties of crystals with the advantages of a fiber geometry. Improving processing techniques, growth of low-loss YAG SC fibers have been reported. A low-cost technique that allows for the growth of optical quality Ho:YAG single crystal (SC) fibers with different dopant concentrations have been developed and discussed. This technique is a low-cost sol-gel based method which offers greater flexibility in terms of dopant concentration. Self-segregation of Nd ions in YAG SC fibers have been observed. Such a phenomenon can be utilized to fabricate monolithic SC fibers with graded index.

  10. Growth of Bulk Wide Bandgap Semiconductor Crystals and Their Potential Applications

    Science.gov (United States)

    Chen, Kuo-Tong; Shi, Detang; Morgan, S. H.; Collins, W. Eugene; Burger, Arnold

    1997-01-01

    Developments in bulk crystal growth research for electro-optical devices in the Center for Photonic Materials and Devices since its establishment have been reviewed. Purification processes and single crystal growth systems employing physical vapor transport and Bridgman methods were assembled and used to produce high purity and superior quality wide bandgap materials such as heavy metal halides and II-VI compound semiconductors. Comprehensive material characterization techniques have been employed to reveal the optical, electrical and thermodynamic properties of crystals, and the results were used to establish improved material processing procedures. Postgrowth treatments such as passivation, oxidation, chemical etching and metal contacting during the X-ray and gamma-ray device fabrication process have also been investigated and low noise threshold with improved energy resolution has been achieved.

  11. Growth, morphological properties and pulsed photo response of MoTe2 single crystal synthesized by DVT technique

    Science.gov (United States)

    Dixit, Vijay; Vyas, Chirag; Patel, Abhishek; Pathak, V. M.; Solanki, G. K.; Patel, K. D.

    2018-05-01

    Molybednum Di Telluride of group VI belongs to the family of layered transition metal di-chalcogenides (TMDCs). These TMDCs show good potential for applications in the field of optoelectronic devices as they are chemically inert trilayered structure of MX2 type. In the present investigation crystals of MoTe2 are grown by direct vapor transport technique in a dual zone horizontal furnace. The grown crystals were characterized by Energy Dispersive Analysis of X-rays (EDAX) to study its elemental and stoichiometric composition, Selected Area Electron Diffraction (SAED) confirms the hexagonal structure. Spot pattern of electron diffraction shows formation of single phase. Scanning Electron Microscope (SEM) shows the layer by layer growth of the crystals, Thermo Electric Power (TEP) reflects the p-type semiconducting nature of the grown crystals. As this material is photosensitive material having band gap of approximately 1.0 eV, a transient photo response against polychromatic radiation (40 mW/cm2) of photodetector is also measured which showed slow decay in generated photocurrent due to low trapping density within the active area of the prepared device. Thus, it shows that this material can be a good photovoltaic material for constructing a solar cell also.

  12. Stroboscopic topographies on iron borate crystal in 9.6 MHz rf magnetic field

    International Nuclear Information System (INIS)

    Mitsui, Takaya; Imai, Yasuhiko; Kikuta, Seishi

    2003-01-01

    The influence of magnetoacoustic wave on the crystal deformation was studied by stroboscopic double crystal X-ray topography. The acoustic wave was excited by the rf magnetic field, which was synchronized with synchrotron radiation X-ray pulse. In measured rocking curves of FeBO 3 (4 4 4) reflection, we observed, for the first time, that the application of rf magnetic field (|H rf | max >8.4 Oe) brought about the extreme narrowing of full width at half maximum (FWHM). Recorded topographs showed that the narrowing of FWHM was due to the magnetoacoustic standing wave which is excited in FeBO 3 crystal. In our experiments, the influence of additional static magnetic field on the magnetoacoustic standing wave of FeBO 3 crystal was investigated too

  13. Crystal growth and scintillation properties of multi-component oxide single crystals: Ce:GGAG and Ce:La-GPS

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, A., E-mail: yoshikawa@imr.tohoku.ac.jp [Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579 (Japan); C& A Corporation, 6-6-40 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan); Kamada, K. [New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579 (Japan); C& A Corporation, 6-6-40 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan); Kurosawa, S. [Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579 (Japan); Shoji, Y. [Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577 (Japan); C& A Corporation, 6-6-40 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan); Yokota, Y. [New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579 (Japan); Chani, V.I. [Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577 (Japan); Nikl, M. [Institute of Physics, AS CR, Cukrovarnická 10, 162 53 Prague (Czech Republic)

    2016-01-15

    Crystal growth by micro-pulling-down, Czochralski, and floating zone methods and scintillation properties of Ce:Gd{sub 3}(Ga,Al){sub 5}O{sub 12} (Ce:GGAG) multi-component oxide garnets, and Ce:Gd{sub 2}Si{sub 2}O{sub 7} (Ce:GPS) or Ce:(La,Gd){sub 2}Si{sub 2}O{sub 7} (Ce:La-GPS) pyro-silicates are reviewed. GGAG crystals demonstrated practically linear dependences of some of the parameters including lattice constant, emission wavelength, and band gap on Ga content. However, emission intensity, light yield and energy resolution showed maxima for intermediate compositions. GGAG crystals had the highest light yield of 56,000 photon/MeV for Ga content of 2.7 atoms per garnet formula unit. Similarly the light yield and energy resolution of La-GPS showed the highest values of 40,000 photon/MeV and 4.4%@662 keV, respectively, for La-GPS containing 10% of La. Moreover, La-GPS demonstrated stable scintillation performance up to 200 °C.

  14. Crystal growth of Li{sup 10}B{sub 3}O{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Akira [Kansai Research Establishment, Japan Atomic Energy Research Institute, Kizu, Kyoto (Japan); Gallagher, Hugh G.; Han, Thomas P.J.

    1999-09-01

    The growth of boron 10 isotope enriched L{sup 10}BO (Li{sup 10}B{sub 3}O{sub 5}) optical crystal has been developed from Top-Seeded-Solution-Growth using a resistance furnace. In the preparation for growth materials, we have made further improvement on a charge loading technique to a crucible and succeeded in forming suitable high temperature flux for producing crystals. Adequate temperature gradient of 1K/cm inside the crucible was achieved from searching for a combination of setting temperatures in the vertical three-zone furnace and installing a ceramic ring under the crucible. We have also optimized seed holder configuration and established growth conditions by several attempts. As a result, two good quality L{sup 10}BO crystals were produced with sizes of 14 x 25 x 22 mm and 13 x 10 x 12 mm from <001> oriented seed crystals. Although these sizes were limited by the size of the crucible used, appropriate oriented samples were extracted for detailed studies in optical measurements. (author)

  15. Large potassium dihydrogen phosphate crystal growth using a three-vessel system for fusion lasers

    International Nuclear Information System (INIS)

    Sasaki, T.; Yokotani, A.; Yamanaka, T.; Nakai, S.; Yamanaka, C.

    1989-01-01

    Large scale laser fusion experiments are being performed in the Institute of Laser Engineering, Osaka University, using the glass laser system Gekko-XII. For this laser, very large nonlinear crystals of potassium dihydrogen phosphate (KDP) with a cross section over 40 X 40 cm is needed as a frequency converter to obtain a short wavelength laser. Generally the temperature falling method (TFM) is used to grow such a huge crystal, but the volume of the growing vessel becomes tremendously large. The three-vessel system (TVS), which is a constant temperature and concentration method, allows better control of supersaturation than does the TFM, and the volume of the main growth vessel can be smaller than that in the case of the TFM. The authors have constructed a TVS. The KDP crystal grew in the growth tank that was kept at a constant temperature of 20 +- 0.01 0 C. The authors show the growth history of the KDP crystal of a 40- X 40-cm cross section. This system is now being operated to obtain the KDP of 100-cm height, and a theoretical estimate of the growth rate is under consideration. These results are presented

  16. Growth of Nd doped LiNbO3 crystals using Bridgman method and its ...

    Indian Academy of Sciences (India)

    Administrator

    state for several hours so that a stable solid–liquid inter- face could ... growth would hold for about one week. ... Figure 4. The absorption spectrum of the Nd : LiNbO3 crystal. Figure 5. .... This work was supported by K C Wong Magna Fund in.

  17. Mechanisms of heterogeneous crystal growth in atomic systems: insights from computer simulations.

    Science.gov (United States)

    Gulam Razul, M S; Hendry, J G; Kusalik, P G

    2005-11-22

    In this paper we analyze the atomic-level structure of solid/liquid interfaces of Lennard-Jones fcc systems. The 001, 011, and 111 faces are examined during steady-state growth and melting of these crystals. The mechanisms of crystallization and melting are explored using averaged configurations generated during these steady-state runs, where subsequent tagging and labeling of particles at the interface provide many insights into the detailed atomic behavior at the freezing and melting interfaces. The interfaces are generally found to be rough and we observe the structure of freezing and melting interfaces to be very similar. Large structural fluctuations with solidlike and liquidlike characteristics are apparent in both the freezing and melting interfaces. The behavior at the interface observed under either growth or melting conditions reflects a competition between ordering and disordering processes. In addition, we observe atom hopping that imparts liquidlike characteristics to the solid side of the interfaces for all three crystal faces. Solid order is observed to extend as rough, three-dimensional protuberances through the interface, particularly for the 001 and 011 faces. We are also able to reconcile our different measures for the interfacial width and address the onset of asymmetry in the growth rates at high rates of crystal growth/melting.

  18. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins

    NARCIS (Netherlands)

    Olijve, L.L.C.; Meister, K.; DeVries, A.L.; Duman, J.G.; Guo, S.; Bakker, H.J.; Voets, I.K.

    2016-01-01

    Antifreeze proteins (AFPs) are a unique class of proteins that bind to growing ice crystal surfaces and arrest further ice growth. AFPs have gained a large interest for their use in antifreeze formulations for water-based materials, such as foods, waterborne paints, and organ transplants. Instead of

  19. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics

    International Nuclear Information System (INIS)

    Pyzer-Knapp, Edward O.; Thompson, Hugh P. G.; Day, Graeme M.

    2016-01-01

    An empirically parameterized intermolecular force field is developed for crystal structure modelling and prediction. The model is optimized for use with an atomic multipole description of electrostatic interactions. We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%

  20. Crystal growth and optical properties of Gd admixed Ce-doped Lu.sub.2./sub.Si.sub.2./sub.O.sub.7./sub. single crystals

    Czech Academy of Sciences Publication Activity Database

    Horiai, T.; Kurosawa, S.; Murakami, R.; Yamaji, A.; Shoji, Y.; Ohashi, Y.; Pejchal, Jan; Kamada, K.; Yokota, Y.; Yoshikawa, A.

    2017-01-01

    Roč. 468, Jun (2017), s. 391-394 ISSN 0022-0248 Grant - others:AV ČR(CZ) JSPS-17-18 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : growth from melt * seed crystals * single crystal growth * oxides * scintillator materials Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.751, year: 2016

  1. Modifications of micro-pulling-down method for the growth of selected Li-containing crystals for neutron scintillator and VUV scintillation crystals

    Science.gov (United States)

    Pejchal, J.; Fujimoto, Y.; Chani, V.; Yanagida, T.; Yokota, Y.; Yoshikawa, A.; Nikl, M.; Beitlerova, A.

    2012-12-01

    To develop new and efficient neutron scintillator, Ti-doped LiAlO2 single crystal was grown by micro-pulling-down method. The X-ray excited radioluminescence spectra and neutron light yield were measured. Positive effect of Mg codoping on the overall scintillation efficiency was found. The BaLu2F8 single crystal was grown by micro-pulling-down method using low temperature gradient at growth interface and applying quenching immediately after growth process.

  2. Phase field simulation of grain growth in porous uranium dioxide

    International Nuclear Information System (INIS)

    Ahmed, Karim; Pakarinen, Janne; Allen, Todd; El-Azab, Anter

    2014-01-01

    Graphical abstract: Display Omitted -- Abstract: A novel phase field model has been developed to investigate grain growth in porous polycrystalline UO 2 . Based on a system of Cahn–Hilliard and Allen–Cahn equations, the model takes into consideration both the curvature driven grain boundary motion and pore migration by surface diffusion. As such, the model accounts for the interaction between pore and grain boundary kinetics, which tends to retard the growth process. The phase field model parameters are found in terms of measurable material properties. Hence, quantitative results that can be compared with experiments were obtained. The model has been used to investigate the effect of porosity on the kinetics of grain growth in UO 2 . It is found that, as the amount of porosity increases, grain growth in UO 2 gradually changes from boundary controlled growth to pore controlled growth. For high porosity levels, the grain growth completely stops after a short evolution time. It is also found that the inhomogeneous distribution of pores leads to abnormal grain growth even without taking into account the anisotropy in grain boundary energy and mobility. The effects of porosity, temperature and initial microstructure on grain growth were thoroughly investigated. The model predictions are in good agreement with published experimental results of grain growth in UO 2

  3. Analysis of a mathematical model related to Czochralski crystal growth

    Directory of Open Access Journals (Sweden)

    Petr Knobloch

    1998-01-01

    Full Text Available This paper is devoted to the study of a stationary problem consisting of the Boussinesq approximation of the Navier–Stokes equations and two convection–diffusion equations for the temperature and concentration, respectively. The equations are considered in 3D and a velocity–pressure formulation of the Navier–Stokes equations is used. The problem is complicated by nonstandard boundary conditions for velocity on the liquid–gas interface where tangential surface forces proportional to surface gradients of temperature and concentration (Marangoni effect and zero normal component of the velocity are assumed. The velocity field is coupled through this boundary condition and through the buoyancy term in the Navier–Stokes equations with both the temperature and concentration fields. In this paper a weak formulation of the problem is stated and the existence of a weak solution is proved. For small data, the uniqueness of the solution is established.

  4. Potassium terbium fluoride crystal growth development for faraday rotator discs fabrication, 6 July 1978--6 February 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-17

    Crystal growth experiments were performed and growth of KTb/sub 3/F/sub 10/ crystals were accomplished. The crystal growth experiments consisted of hot zone modification and development of growth parameters. Several boules of KTb/sub 3/F/sub 10/ 30 to 40mm in diameter and one boule 50mm in diameter were grown at rates varying from .5mm/hr to 3.0mm/hr. The crystals evaluated display excellent optical quality. The optical path distortion was less than 0.5 fringe/cm at 633nm as viewed in Twyman--Green interferometry. Growth of large crystals has been limited by mechanical cleavage.

  5. Determination of the rate of crystal growth from the gas phase under conditions of turbulent free convection

    Science.gov (United States)

    Alad'Ev, S. I.

    1987-04-01

    Crystal growth in vertical and horizontal cylindrical vials, with the substrate and the source serving as the vial ends, is investigated analytically, assuming that the medium consists of a binary mixture of an active and an inert gas. The active gas is made up of the gaseous products of reactions taking place at the substrate and at the source. It is shown that turbulent free convection leads to an increase in crystal growth rate. All other conditions being equal, crystal growth in vertical vials is greater than that in horizontal ones; in both cases crystal growth rate increases with the vial radius, temperature gradient in the gas phase, and gas phase density. The results are compared with experimental data on the growth of Ge crystals in the Ge-GeI4 system.

  6. Effect of Weak Magnetic Field on Bacterial Growth

    Science.gov (United States)

    Masood, Samina

    Effects of weak magnetic fields are observed on the growth of various bacterial strains. Different sources of a constant magnetic field are used to demonstrate that ion transport in the nutrient broth and bacterial cellular dynamics is perturbed in the presence of weak magnetic field which affects the mobility and absorption of nutrients in cells and hence their doubling rate. The change is obvious after a few hours of exposure and keeps on increasing with time for all the observed species. The growth rate depends on the field strength and the nature of the magnetic field. The field effect varies with the shape and the structure of the bacterial cell wall as well as the concentration of nutrient broth. We closely study the growth of three species Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis with the same initial concentrations at the same temperature in the same laboratory environment. Our results indicate that the weak static field of a few gauss after a few hours gives a measurable change in the growth rates of all bacterial species. This shows that the same magnetic field has different effects on different species in the same environment.

  7. Crystal growth, morphology, thermal and spectral studies of an organosulfur nonlinear optical bis(guanidinium) 5-sulfosalicylate (BG5SS) single crystals

    Science.gov (United States)

    Dhavamurthy, M.; Peramaiyan, G.; Babu, K. Syed Suresh; Mohan, R.

    2015-04-01

    Organosulfur nonlinear optical single crystals of orthorhombic bis(guanidinium) 5-sulfosalicylate (2CH6N3 +·C7H4O6S2-·H2O) with dimension 14 mm × 4 mm × 5 mm have been grown from methanol and water solvents in 1:1 ratio by the slow evaporation growth technique. The crystal structure and morphology of the crystals have been studied by single-crystal X-ray diffraction. FTIR spectroscopic studies were carried out to identify the functional groups and vibrational modes present in the grown crystals. The UV-Vis spectrum was studied to analyze the linear optical properties of the grown crystals. The thermal gravimetric analysis was conducted on the grown crystals, and the result revealed that the grown crystal is thermally stable up to 65 °C. The dielectric tensor components ɛ 11, ɛ 22 and ɛ 33 of BG5SS crystal were evaluated as a function of frequency at 40 °C. The surface laser damage threshold for the grown crystal was measured using Nd:YAG laser. Further, Vickers micro-hardness study was carried out to analyze the mechanical strength of the grown crystals for various loads.

  8. Numerical simulations of crystal growth in a transdermal drug delivery system

    Science.gov (United States)

    Zeng, Jianming; Jacob, Karl I.; Tikare, Veena

    2004-02-01

    Grain growth by precipitation and Ostwald ripening in an unstressed matrix of a dissolved crystallizable component was simulated using a kinetic Monte Carlo model. This model was used previously to study Ostwald ripening in the high crystallizable component regime and was shown to correctly simulate solution, diffusion and precipitation. In this study, the same model with modifications was applied to the low crystallizable regime of interest to the transdermal drug delivery system (TDS) community. We demonstrate the model's utility by simulating precipitation and grain growth during isothermal storage at different supersaturation conditions. The simulation results provide a first approximation for the crystallization occurring in TDS. It has been reported that for relatively higher temperature growth of drug crystals in TDS occurs only in the middle third of the polymer layer. The results from the simulations support these findings that crystal growth is limited to the middle third of the region, where the availability of crystallizable components is the highest, for cluster growth at relatively high temperature.

  9. Reserve Growth in Oil Fields of West Siberian Basin, Russia

    Science.gov (United States)

    Verma, Mahendra K.; Ulmishek, Gregory F.

    2006-01-01

    Although reserve (or field) growth has proven to be an important factor contributing to new reserves in mature petroleum basins, it is still a poorly understood phenomenon. Limited studies show that the magnitude of reserve growth is controlled by several major factors, including (1) the reserve booking and reporting requirements in each country, (2) improvements in reservoir characterization and simulation, (3) application of enhanced oil recovery techniques, and (4) the discovery of new and extensions of known pools in discovered fields. Various combinations of these factors can affect the estimates of proven reserves in particular fields and may dictate repeated estimations of reserves during a field's life. This study explores the reserve growth in the 42 largest oil fields in the West Siberian Basin, which contain about 55 percent of the basin's total oil reserves. The West Siberian Basin occupies a vast swampy plain between the Ural Mountains and the Yenisey River, and extends offshore into the Kara Sea; it is the richest petroleum province in Russia. About 600 oil and gas fields with original reserves of 144 billion barrels of oil (BBO) and more than 1,200 trillion cubic feet of gas (TCFG) have been discovered. The principal oil reserves and most of the oil fields are in the southern half of the basin, whereas the northern half contains mainly gas reserves. Sedimentary strata in the basin consist of Upper Triassic through Tertiary clastic rocks. Most oil is produced from Neocomian (Lower Cretaceous) marine to deltaic sandstone reservoirs, although substantial oil reserves are also in the marine Upper Jurassic and continental to paralic Lower to Middle Jurassic sequences. The majority of oil fields are in structural traps, which are gentle, platform-type anticlines with closures ranging from several tens of meters to as much as 150 meters (490 feet). Fields producing from stratigraphic traps are generally smaller except for the giant Talin field which

  10. Crystal-field splittings in rare-earth-based hard magnets: An ab initio approach

    Science.gov (United States)

    Delange, Pascal; Biermann, Silke; Miyake, Takashi; Pourovskii, Leonid

    2017-10-01

    We apply the first-principles density functional theory + dynamical mean-field theory framework to evaluate the crystal-field splitting on rare-earth sites in hard magnetic intermetallics. An atomic (Hubbard-I) approximation is employed for local correlations on the rare-earth 4 f shell and self-consistency in the charge density is implemented. We reduce the density functional theory self-interaction contribution to the crystal-field splitting by properly averaging the 4 f charge density before recalculating the one-electron Kohn-Sham potential. Our approach is shown to reproduce the experimental crystal-field splitting in the prototypical rare-earth hard magnet SmCo5. Applying it to R Fe12 and R Fe12X hard magnets (R =Nd , Sm and X =N , Li), we obtain in particular a large positive value of the crystal-field parameter A20〈r2〉 in NdFe12N resulting in a strong out-of-plane anisotropy observed experimentally. The sign of A20〈r2〉 is predicted to be reversed by substituting N with Li, leading to a strong out-of-plane anisotropy in SmFe12Li . We discuss the origin of this strong impact of N and Li interstitials on the crystal-field splitting on rare-earth sites.

  11. Growth of multiferroic Gd1-xYxMnO3 single crystals by optical floating zone technique

    International Nuclear Information System (INIS)

    Sarguna, R.M.; Ganesamoorthy, S.; Sridharan, V.; Subramanian, N.

    2014-01-01

    Rare earth manganites RMnO 3 with distorted perovskite structure are excellent multiferroic materials. The discovery of magnetic spin driven ferroelectricity in orthorhombic manganites (TbMnO 3 ) has sparked a surge in research into understanding the fundamental mechanism of multiferroic behavior. These systems fall under the category of type-2 multiferroics, the change of spatially modulated magnetic moment from sinusoidal to cycloidal gives rise to electric polarization. The magnetic structure depends upon the Mn-O-Mn bond angle. GdMnO 3 shows multiferroic properties only in the presence of applied magnetic field. When a magnetic field is applied along the b-axis, GdMnO 3 enters a ferroelectric state with an electric polarisation along the c-axis. By altering the Mn-O-Mn angle it is expected that GdMnO 3 will show multiferroic property even in the absence of magnetic field like TbMnO 3 . To alter the Mn-O-Mn bond angle GdMnO 3 was substituted with Y having lower ionic radius at Gd site. The effect of Y doping at the rare-earth site in GdMnO 3 investigated on polycrystalline samples of Gd 1-x Y x MnO 3 demonstrated a magneto-electric coupling in x=0.1-0.4. Single crystals are expected to give much amplified signal in respect of ferroelectric and magnetic properties. In this work we have grown Y substituted Gd 1-x Y x MnO 3 (x = 0.2, 0.3 and 0.4) by optical floating zone technique under different gas atmosphere. Growth rate of 1-2 mm/h yielded crack free crystals. Quality of the crystals was checked using Laue diffraction. Effect of growth rate and atmosphere pressure will be presented in this talk. (author)

  12. The growth rates of KDP crystals in solutions with potassium permanganate additives

    Science.gov (United States)

    Egorova, A. E.; Vorontsov, D. A.; Nezhdanov, A. V.; Noskova, A. N.; Portnov, V. N.

    2017-01-01

    We have found that growth of the {101} faces of a KDP (KH2PO4) crystal is suppressed, and the growth rate of the {100} faces passes through the maximum with increasing addition of KMnO4 to a solution with pH=4.7. We have concluded that the [MnH2PO4]2+ complex and MnO2 particles affect the growth kinetics. The X-ray and electronic paramagnetic resonance data show that manganese is incorporated into the crystal in the form of Mn3+ and Mn4+. The local excess of a positive charge in the area with incorporated [MnH2PO4]2+ complex can be compensated by the shift of the hydrogen atoms in the KDP structure.

  13. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field

    Directory of Open Access Journals (Sweden)

    Amanda García-García

    2016-06-01

    Full Text Available Single-wall carbon nanotubes (SWCNT are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules.

  14. High-field magnetization of UCuGe single crystal

    Czech Academy of Sciences Publication Activity Database

    Andreev, Alexander V.; Mushnikov, N. V.; Gozo, T.; Honda, F.; Sechovský, V.; Prokeš, K.

    346-347, - (2004), s. 132-136 ISSN 0921-4526 R&D Projects: GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914 Keywords : uranium intermetallics * UCuGe * high fields * magnetic anisotropy * field-induced phase transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.679, year: 2004

  15. Growth of tourmaline single crystals containing transition metal elements in hydrothermal solutions

    Science.gov (United States)

    Setkova, Tatiana; Shapovalov, Yury; Balitsky, Vladimir

    2011-03-01

    Interest in the growth of tourmaline single crystals is based on the promising piezoelectric and pyroelectric properties of this material compared to quartz crystals currently in use. Moreover, synthetic tourmaline can be used as a substitute for the natural stone in the jewelry industry similar to other synthetic analogues of gemstones. Single crystals of colored Co-, Ni-, Fe-, (Ni,Cr)-, (Ni,Fe)-, and (Co,Ni,Cr)-containing tourmalines with concentration of transition metal elements up to 16 wt% on a seed have been grown from complex boron-containing hydrothermal solutions at a range of temperatures 400-750 °C and pressures 100 MPa. Experiments were conducted under conditions of a thermal gradient in titanium and chromium-nickel autoclaves. Tourmaline growth on a seed crystal occurs only if separate tourmaline-forming components (monocrystalline corundum and quartz bars) are used as charge. All tourmalines specified above grow in analogous (+) direction of the optical axis with a speed of 0.05 mm/day by faces of the trigonal pyramid, except tourmalines containing chromium. They grow in analogous (+0001) direction with a speed 0.05 mm/day, and in antilogous (-0001) direction with a speed of 0.01 mm/day by faces of the trigonal pyramid and in prism direction with a speed of 0.001 mm/day. Along with the large single crystals, a great amount of finest (30-150 μm in size) tourmaline crystals was formed during the runs by spontaneous nucleation both on the surface of the seed crystals and in the charge.

  16. Mimicking the biomolecular control of calcium oxalate monohydrate crystal growth: effect of contiguous glutamic acids.

    Science.gov (United States)

    Grohe, Bernd; Hug, Susanna; Langdon, Aaron; Jalkanen, Jari; Rogers, Kem A; Goldberg, Harvey A; Karttunen, Mikko; Hunter, Graeme K

    2012-08-21

    Scanning confocal interference microscopy (SCIM) and molecular dynamics (MD) simulations were used to investigate the adsorption of the synthetic polypeptide poly(l-glutamic acid) (poly-glu) to calcium oxalate monohydrate (COM) crystals and its effect on COM formation. At low concentrations (1 μg/mL), poly-glu inhibits growth most effectively in ⟨001⟩ directions, indicating strong interactions of the polypeptide with {121} crystal faces. Growth in directions was inhibited only marginally by 1 μg/mL poly-glu, while growth in directions did not appear to be affected. This suggests that, at low concentrations, poly-glu inhibits lattice-ion addition to the faces of COM in the order {121} > {010} ≥ {100}. At high concentrations (6 μg/mL), poly-glu resulted in the formation of dumbbell-shaped crystals featuring concave troughs on the {100} faces. The effects on crystal growth indicate that, at high concentrations, poly-glu interacts with the faces of COM in the order {100} > {121} > {010}. This mirrors MD simulations, which predicted that poly-glu will adsorb to a {100} terrace plane (most calcium-rich) in preference to a {121} (oblique) riser plane but will adsorb to {121} riser plane in preference to an {010} terrace plane (least calcium-rich). The effects of different poly-glu concentration on COM growth (1-6 μg/mL) may be due to variations between the faces in terms of growth mechanism and/or (nano)roughness, which can affect surface energy. In addition, 1 μg/mL might not be adequate to reach the critical concentration for poly-glu to significantly pin step movement on {100} and {010} faces. Understanding the mechanisms involved in these processes is essential for the development of agents to reduce recurrence of kidney stone disease.

  17. Investigating the large degeneracy Kondo lattice metamagnet CeTiGe: Crystal growth and doping studies

    Energy Technology Data Exchange (ETDEWEB)

    Gruner, T.; Caroca-Canales, N.; Deppe, M.; Geibel, C. [MPI fuer Chemische Physik fester Stoffe, 01187, Dresden (Germany); Sereni, J. [Centro Atomico Bariloche, 8400, S. C. de Bariloche (Argentina)

    2011-07-01

    CeTiGe is a paramagnetic Kondo lattice system with a large orbital degeneracy involved in the formation of the heavy Fermion ground state. Recently we discovered that this compound presents a huge metamagnetic transition at B{sub MMT} {approx} 13 T, with much larger anomalies in magnetization, magnetoresistance and magnetostriction than in the archetypical Kondo lattice metamagnet CeRu{sub 2}Si{sub 2}. Since CeTiGe forms in a pronounced peritectic reaction the growth of single crystals is difficult. We therefore studied the Ce-Ti-Ge ternary metallographic phase diagram to get a sound basis for future crystal growth attempts. Preliminary results of growth experiments based on these studies are promising and shall be discussed. Furthermore, Ti-rich CeTiGe was recently reported to present a high temperature phase crystallizing in the closely related CeScSi structure type. In order to study this structural instability and the effect on the physical properties, we studied the effect of substituting Sc for Ti, since pure CeScGe crystallizes in the CeScSi structure type. In well annealed samples we observed a two phase region in the range 10% - 25%-Sc-substitution. Preliminary investigations of the CeSc{sub x}Ti{sub 1-x}Ge alloy suggest it is a promising candidate for the observation of a ferromagnetic quantum critical point in a large degeneracy Kondo lattice system.

  18. Advances in Single-Crystal Fibers and Thin Rods Grown by Laser Heated Pedestal Growth

    Directory of Open Access Journals (Sweden)

    Gisele Maxwell

    2017-01-01

    Full Text Available Single-crystal fibers are an intermediate between laser crystals and doped glass fibers. They have the advantages of both guiding laser light and matching the efficiencies found in bulk crystals, which is making them ideal candidates for high-power laser and fiber laser applications. This work focuses on the growth of a flexible fiber with a core of dopant (Er, Nd, Yb, etc. and a polycrystalline clad of yttrium aluminum garnet (YAG that will exhibit good wave guiding properties. Direct growth or a combination of growth and cladding experiments are described. Scattering loss measurements at visible wavelengths, along with dopant profile characterization with damage threshold results, are also presented. For single-pass amplification, a single-pass linear gain of 7.4 was obtained for 29 nJ pulses of 5 ns duration at 1 MHz repetition rate. We also obtained a laser efficiency of over 58% in a diode-pumped configuration. These results confirm the potential for single-crystal fibers to overcome the limitations of the glass fibers commonly used in fiber lasers, making them prime candidates for high-power compact fiber lasers and amplifiers.

  19. Polyol synthesis of silver nanoplates: The crystal growth mechanism based on a rivalrous adsorption

    International Nuclear Information System (INIS)

    Luo Xiaolin; Li Zongxiao; Yuan Chunlan; Chen Yashao

    2011-01-01

    Highlights: → Silver nanoplates have been successfully synthesized by polyol reduction in the presence of poly (vinylpyrrolidone) (PVP) and HNO 3 . → Due to the discovery of CN - ions in the solution, a mechanism for the anisotropic growth of silver nanoplates is systematically discussed. → TG, FT-IR and SERS were used to provide some direct evidences of rivalrous adsorption between PVP and CN - ions on the surface of the silver crystals. - Abstract: A polyol reducing approach has been applied to synthesize silver nanoplates with an average thickness of 50 nm and edge length of 3 μm in the presence of poly (vinylpyrrolidone) (PVP) and HNO 3 . X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscropy (TEM), and electron diffraction are used to characterize these silver nanoplates. Findings indicate that the nanoplates are single crystals and with their basal plane as (1 1 1) lattice plane. On the basis of the results from thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy, a crystal growth mechanism based on the rivalrous adsorption between PVP and CN - ions on the surface of silver nanoplates is supposed to explain the crystal anisotropic growth.

  20. Surface morphology and preferential orientation growth of TaC crystals formed by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Xiang, E-mail: Xiong228@sina.co [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China); Chen Zhaoke; Huang Baiyun; Li Guodong [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China); Zheng Feng [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Xiao Peng; Zhang Hongbo [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China)

    2009-04-02

    TaC film was deposited on (002) graphite sheet by isothermal chemical vapor deposition using TaCl{sub 5}-Ar-C{sub 3}H{sub 6} mixtures, with deposition temperature 1200 {sup o}C and pressure about 200 Pa. The influence of deposition position (or deposition rate) on preferential orientation and surface morphology of TaC crystals were investigated by X-ray diffraction and scanning electron microscopy methods. The deposits are TaC plus trace of C. The crystals are large individual columns with pyramidal-shape at deposition rate of 32.4-37.3 {mu}m/h, complex columnar at 37.3-45.6 {mu}m/h, lenticular-like at 45.6-54.6 {mu}m/h and cauliflower-like at 54.6-77.3 {mu}m/h, with <001>, near <001>, <110> and no clear preferential orientation, respectively. These results agree in part with the preditions of the Pangarov's model of the relationship between deposition rate and preferential growth orientation. The growth mechanism of TaC crystals in <001>, near <001>, <111> and no clear preferential orientation can be fairly explained by the growth parameter {alpha} with Van der Drift's model, deterioration model and Meakin model. Furthermore, a nucleation and coalescence model is also proposed to explain the formation mechanism of <110> lenticular-like crystals.

  1. About Small Streams and Shiny Rocks: Macromolecular Crystal Growth in Microfluidics

    Science.gov (United States)

    vanderWoerd, Mark; Ferree, Darren; Spearing, Scott; Monaco, Lisa; Molho, Josh; Spaid, Michael; Brasseur, Mike; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We are developing a novel technique with which we have grown diffraction quality protein crystals in very small volumes, utilizing chip-based, microfluidic ("LabChip") technology. With this technology volumes smaller than achievable with any laboratory pipette can be dispensed with high accuracy. We have performed a feasibility study in which we crystallized several proteins with the aid of a LabChip device. The protein crystals are of excellent quality as shown by X-ray diffraction. The advantages of this new technology include improved accuracy of dispensing for small volumes, complete mixing of solution constituents without bubble formation, highly repeatable recipe and growth condition replication, and easy automation of the method. We have designed a first LabChip device specifically for protein crystallization in batch mode and can reliably dispense and mix from a range of solution constituents. We are currently testing this design. Upon completion additional crystallization techniques, such as vapor diffusion and liquid-liquid diffusion will be accommodated. Macromolecular crystallization using microfluidic technology is envisioned as a fully automated system, which will use the 'tele-science' concept of remote operation and will be developed into a research facility aboard the International Space Station.

  2. A simple localized-itinerant model for PrAl3: crystal field and exchange effects

    International Nuclear Information System (INIS)

    Ranke, P.J. von; Palermo, L.

    1990-01-01

    We present a simple magnetic model for PrAl sub(3). The effects of crystal field are treated using a reduced set of levels and the corresponding wave functions are extracted from the actual crystal field levels of Pr sup(+3) in a hexagonal symmetry. The exchange between 4f- and conduction electrons are dealt within a molecular field approximation. An analytical magnetic state equation is derived and the magnetic behaviour discussed. The parameters of the model are estimated from a fitting of the inverse susceptibility of PrAl sub(3) given in the literature. (author)

  3. Spin-Orbit Qubits of Rare-Earth-Metal Ions in Axially Symmetric Crystal Fields

    Science.gov (United States)

    Bertaina, S.; Shim, J. H.; Gambarelli, S.; Malkin, B. Z.; Barbara, B.

    2009-11-01

    Contrary to the well-known spin qubits, rare-earth-metal qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crystal-field ground state which nutates (for several μs) and the Rabi frequency ΩR is anisotropic. Here, we present a study of the variations of ΩR(H→0) with the magnitude and direction of the static magnetic field H→0 for the odd Er167 isotope in a single crystal CaWO4:Er3+. The hyperfine interactions split the ΩR(H→0) curve into eight different curves which are fitted numerically and described analytically. These “spin-orbit qubits” should allow detailed studies of decoherence mechanisms which become relevant at high temperature and open new ways for qubit addressing using properly oriented magnetic fields.

  4. Relative work function of clean molybdenum single-crystal planes determined by field emission microscopy

    International Nuclear Information System (INIS)

    Bergeret, G.; Abon, M.; Tardy, B.; Teichner, S.J.

    1974-01-01

    A probe-hole field emission microscope was used to determine the work function of clean molybdenum single crystal planes relative to the average work function of the field emitter, assumed to be 4.20 eV. Results are compared with other available data

  5. Dislocation motion in InSb crystals under a magnetic field

    CERN Document Server

    Darinskaya, E V; Erofeeva, S A

    2002-01-01

    Dislocation displacements under the action of a permanent magnetic field without mechanical loading in differently doped InSb crystals are investigated. The dependences of the mean dislocation path length and the relative number of divergence and tightening half-loops on the magnetic induction and preliminary load are obtained. Experiments on n-InSb crystals with Te impurities and on p-InSb crystals with Ge impurities have shown a sensitivity of the magnetoplasticity to the conductivity type and the dopant content. Study of the magnetoplastic effect in the initial deformed InSb crystals shows that internal stresses decrease the lengths of divergence dislocation paths and simultaneously increase the threshold magnetic field above which the magnetoplastic effect exists. Possible reasons for the observed phenomena are discussed.

  6. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals

    Science.gov (United States)

    Alikin, D. O.; Ievlev, A. V.; Turygin, A. P.; Lobov, A. I.; Kalinin, S. V.; Shur, V. Ya.

    2015-05-01

    Currently, ferroelectric materials with designed domain structures are considered as a perspective material for new generation of photonic, data storage, and data processing devices. Application of external electric field is the most convenient way of the domain structure formation. Lots of papers are devoted to the investigation of domain kinetics on polar surface of crystals while the forward growth remains one of the most mysterious stages due to lack of experimental methods allowing to study it. Here, we performed tip-induced polarization reversal on X- and Y-non-polar cuts in single-crystal of congruent lithium niobate which allows us to study the forward growth with high spatial resolution. The revealed difference in the shape and length of domains induced on X- and Y-cuts is beyond previously developed theoretical approaches used for the theoretical consideration of the domains growth at non-polar ferroelectric surfaces. To explain experimental results, we used kinetic approach with anisotropy of screening efficiency along different crystallographic directions.

  7. Directory of crystal growth and solid state materials production and research

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, T.F.; Battle, G.C.; Keesee, A.M. (comps.)

    1979-03-01

    This directory lists only those who returned questionnaires distributed by the Research Materials Information Center during 1978. The directory includes, in addition to crystal growers, those preparing starting materials for crystal growth and ultrapure noncrystalline research specimens. It also includes responses from those characterizing, or otherwise studying, the properties of materials provided by others. The international coverage of the directory is limited to the United States, Argentina, Australia, Bulgaria, Canada, Czechoslovakia, Egypt, Finland, East Germany, Hungary, India, Israel, Japan, Mexico, Poland, Romania, South Africa, Taiwan, Yugoslavia, and Zaire.

  8. Directory of crystal growth and solid state materials production and research

    International Nuclear Information System (INIS)

    Connolly, T.F.; Battle, G.C.; Keesee, A.M.

    1979-03-01

    This directory lists only those who returned questionnaires distributed by the Research Materials Information Center during 1978. The directory includes, in addition to crystal growers, those preparing starting materials for crystal growth and ultrapure noncrystalline research specimens. It also includes responses from those characterizing, or otherwise studying, the properties of materials provided by others. The international coverage of the directory is limited to the United States, Argentina, Australia, Bulgaria, Canada, Czechoslovakia, Egypt, Finland, East Germany, Hungary, India, Israel, Japan, Mexico, Poland, Romania, South Africa, Taiwan, Yugoslavia, and Zaire

  9. Influence of Superconductivity on Crystal Electric Field Transitions in La1-xTbxAl2

    DEFF Research Database (Denmark)

    Feile, R.; Loewenhaupt, M.; Kjems, Jørgen

    1981-01-01

    Inelastic neutron scattering from the crystal electric field transitions in La1-xTbxAl2 single crystals has revealed an abrupt increase in the lifetimes of these transitions when the system becomes superconducting. An increase in the integrated intensities is also observed. The lifetime effects...... are quantitatively reproduced by existing theories, which take into account the reduced scattering of the conduction electrons by the magnetic ions due to the creation of the superconducting energy gap 2Δ(T)....

  10. Synthesis and single crystal growth of perovskite semiconductor CsPbBr3

    Science.gov (United States)

    Zhang, Mingzhi; Zheng, Zhiping; Fu, Qiuyun; Chen, Zheng; He, Jianle; Zhang, Sen; Chen, Cheng; Luo, Wei

    2018-02-01

    As a typical representative of all-inorganic lead halide perovskites, cesium lead bromine (CsPbBr3) has attracted significant attention in recent years. The direct band gap semiconductor CsPbBr3 has a wide band gap of 2.25 eV and high average atomic number (Cs: 55, Pb: 82 and Br: 35), which meet most of the requirements for detection of X- and γ-ray radiation, such as high attenuation, high resistivity, and significant photoconductivity response. However, the growth of large volume CsPbBr3 single crystals remains a challenge. In this paper, the synthesis of CsPbBr3 polycrystalline powders by a chemical co-precipitation method was investigated and the optimum synthesis conditions were obtained. A large CsPbBr3 single crystal of 8 mm diameter and 60 mm length was obtained by a creative electronic dynamic gradient (EDG) method. X-ray diffraction (XRD) patterns and X-ray rocking curve showed that the CsPbBr3 crystal preferentially oriented in the (1 1 0) direction and had a low dislocation density and small residual stress in the crystal. The IR and UV-Vis transmittance and temperature-dependent photoluminescence (PL) spectra showed the crystal had a good basic optical performance. The almost linear current-voltage (I-V) curves implied good ohmic contact between the electrodes and crystal surfaces. The resistivity of the crystal was calculated 109-1010 Ω cm. The above results showed that the quality of the obtained crystal had met the demand of optoelectronic applications.

  11. Numerical analysis of transport phenomena in Y-Ba-Cu-O melt during growth of superconducting crystal Y123 by Czochralski method

    Science.gov (United States)

    Szmyd, J. S.; Suzuki, K.

    2003-10-01

    In 1993, at the Superconductivity Research Laboratory (SRL), International Superconductivity Technology Centre (ISTEC), in Tokyo, continuous growth of large single crystals of YBa 2Cu 3O 7- x (Y123) was achieved by the application of a modified Czochralski method. This paper presents the numerical computations of the flow, thermal and Y concentration fields in the Ba-Cu-O melt for Y123 single crystal growth by this modified method. The finite volume method was used to calculate the fluid flow, heat transfer and yttrium distribution in the melt with staggered numerical grid. The flow in the melt was modelled as an incompressible Newtonian and Boussinesque fluid. Calculations are presented for a combined flow regime of buoyancy-driven natural convection and crystal-rotation-driven forced convection.

  12. Distribution of the solute in the lithium niobate crystal grown by the Stepanov method in a periodically changing external electric field

    International Nuclear Information System (INIS)

    Zhdanov, A.; Nikolayeva, L.; Red'kin, B.

    2000-01-01

    The Iithium niobate crystals with the periodic domain structure are characterised by the capacity for the light frequency adoption of the laser light. Consequently, they are promising for the development of compact light sources. There are several methods of producing periodic ferroelectric domain structures of the lithium niobate crystals in the growth process. It is evident that the main method of production of the periodic structures in the lithium niobate is the Stepanov method. The development of the mathematical model of the variation of the concentration of the alloying solute with the periodic variation of the conditions of growth of the crystal in the growth of the crystal by the Stepanov methods in the conditions of periodic changes of the drawing rate of the crystal V and the temperature of the thermal junction T have been investigated elsewhere. The formation of the domain structure is also possible in the case of the periodic variation of the electric field, during the supply of the alternating voltage between the shaper and the seed. In this work, we proposed mathematical model discounting the process of formation of the domain structure in the alternating electric field during the growth of the lithium niobate crystal by the Stepanov method. In the mathematical modelling we obtain the numerical solutions of the unidimensional nonstationary problem of the Stepanov type, the diffusion equation for concentration, and the Laplace capillary equation. The proposed mathematical model is at the present and the most complete and accurate description of the variation of the concentration of the solute in the growing crystal. The semi-discrete Galerkin method was used for the equations

  13. A combined optical, SEM and STM study of growth spirals on the polytypic cadmium iodide crystals

    Science.gov (United States)

    Singh, Rajendra; Samanta, S. B.; Narlikar, A. V.; Trigunayat, G. C.

    2000-05-01

    Some novel results of a combined sequential study of growth spirals on the basal surface of the richly polytypic CdI 2 crystals by optical microscopy, scanning electron microscopy (SEM) and scanning tunneling microscopy (STM) are presented and discussed. Under the high resolution and magnification achieved in the scanning electron microscope, the growth steps of large heights seen in the optical micrographs are found to have a large number of additional steps of smaller heights existing between any two adjacent large height growth steps. When further seen by a scanning tunneling microscope, which provides still higher resolution, sequences of unit substeps, each of height equal to the unit cell height of the underlying polytype, are revealed to exist on the surface. Several large steps also lie between the unit steps, with heights equal to an integral multiple of either the unit cell height of the underlying polytype or the thickness of a molecular sheet I-Cd-I. It is suggested that initially a giant screw dislocation may form by brittle fracture of the crystal platelet, which may gradually decompose into numerous unit dislocations during subsequent crystal growth.

  14. Nucleation and Crystal Growth of Organic-Inorganic Lead Halide Perovskites under Different Relative Humidity.

    Science.gov (United States)

    Gao, Hao; Bao, Chunxiong; Li, Faming; Yu, Tao; Yang, Jie; Zhu, Weidong; Zhou, Xiaoxin; Fu, Gao; Zou, Zhigang

    2015-05-06

    Organic-inorganic lead halide perovskite compounds are very promising materials for high-efficiency perovskite solar cells. But how to fabricate high-quality perovksite films under controlled humidity conditions is still an important issue due to their sensitivity to moisture. In this study, we investigated the influence of ambient humidity on crystallization and surface morphology of one-step spin-coated perovskite films, as well as the performance of solar cells based on these perovskite films. On the basis of experimental analyses and thin film growth theory, we conclude that the influence of ambient humidity on nucleation at spin-coating stage is quite different from that on crystal growth at annealing stage. At the spin-coating stage, high nucleation density induced by high supersaturation prefers to appear under anhydrous circumstances, resulting in layer growth and high coverage of perovskite films. But at the annealing stage, the modest supersaturation benefits formation of perovskite films with good crystallinity. The films spin-coated under low relative humidity (RH) followed by annealing under high RH show an increase of crystallinity and improved performance of devices. Therefore, a mechanism of fast nucleation followed by modest crystal growth (high supersaturation at spin-coating stage and modest supersaturation at annealing stage) is suggested in the formation of high-quality perovskite films.

  15. Dynamic light scattering study of inhibition of nucleation and growth of hydroxyapatite crystals by osteopontin.

    Directory of Open Access Journals (Sweden)

    John R de Bruyn

    Full Text Available We study the effect of isoforms of osteopontin (OPN on the nucleation and growth of crystals from a supersaturated solution of calcium and phosphate ions. Dynamic light scattering is used to monitor the size of the precipitating particles and to provide information about their concentration. At the ion concentrations studied, immediate precipitation was observed in control experiments with no osteopontin in the solution, and the size of the precipitating particles increased steadily with time. The precipitate was identified as hydroxyapatite by X-ray diffraction. Addition of native osteopontin (nOPN extracted from rat bone caused a delay in the onset of precipitation and reduced the number of particles that formed, but the few particles that did form grew to a larger size than in the absence of the protein. Recombinant osteopontin (rOPN, which lacks phosphorylation, caused no delay in initial calcium phosphate precipitation but severely slowed crystal growth, suggesting that rOPN inhibits growth but not nucleation. rOPN treated with protein kinase CK2 to phosphorylate the molecule (p-rOPN produced an effect similar to that of nOPN, but at higher protein concentrations and to a lesser extent. These results suggest that phosphorylations are critical to OPN's ability to inhibit nucleation, whereas the growth of the hydroxyapatite crystals is effectively controlled by the highly acidic OPN polypeptide. This work also demonstrates that dynamic light scattering can be a powerful tool for delineating the mechanism of protein modulation of mineral formation.

  16. Dynamic Light Scattering Study of Inhibition of Nucleation and Growth of Hydroxyapatite Crystals by Osteopontin

    Science.gov (United States)

    de Bruyn, John R.; Goiko, Maria; Mozaffari, Maryam; Bator, Daniel; Dauphinee, Ron L.; Liao, Yinyin; Flemming, Roberta L.; Bramble, Michael S.; Hunter, Graeme K.; Goldberg, Harvey A.

    2013-01-01

    We study the effect of isoforms of osteopontin (OPN) on the nucleation and growth of crystals from a supersaturated solution of calcium and phosphate ions. Dynamic light scattering is used to monitor the size of the precipitating particles and to provide information about their concentration. At the ion concentrations studied, immediate precipitation was observed in control experiments with no osteopontin in the solution, and the size of the precipitating particles increased steadily with time. The precipitate was identified as hydroxyapatite by X-ray diffraction. Addition of native osteopontin (nOPN) extracted from rat bone caused a delay in the onset of precipitation and reduced the number of particles that formed, but the few particles that did form grew to a larger size than in the absence of the protein. Recombinant osteopontin (rOPN), which lacks phosphorylation, caused no delay in initial calcium phosphate precipitation but severely slowed crystal growth, suggesting that rOPN inhibits growth but not nucleation. rOPN treated with protein kinase CK2 to phosphorylate the molecule (p-rOPN) produced an effect similar to that of nOPN, but at higher protein concentrations and to a lesser extent. These results suggest that phosphorylations are critical to OPN’s ability to inhibit nucleation, whereas the growth of the hydroxyapatite crystals is effectively controlled by the highly acidic OPN polypeptide. This work also demonstrates that dynamic light scattering can be a powerful tool for delineating the mechanism of protein modulation of mineral formation. PMID:23457612

  17. Distributions of crystals and gas bubbles in reservoir ice during growth period

    Directory of Open Access Journals (Sweden)

    Zhi-jun Li

    2011-06-01

    Full Text Available In order to understand the dominant factors of the physical properties of ice in ice thermodynamics and mechanics, in-situ observations of ice growth and decay processes were carried out. Two samplings were conducted in the fast and steady ice growth stages. Ice pieces were used to observe ice crystals and gas bubbles in ice, and to measure the ice density. Vertical profiles of the type and size of ice crystals, shape and size of gas bubbles, and gas bubble content, as well as the ice density, were obtained. The results show that the upper layer of the ice pieces is granular ice and the lower layer is columnar ice; the average crystal size increases with the ice depth and remains steady in the fast and steady ice growth stages; the shape of gas bubbles in the upper layer of ice pieces is spherical with higher total content, and the shape in the middle and lower layers is cylinder with lower total content; the gas bubble size and content vary with the ice growth stage; and the ice density decreases with the increase of the gas bubble content.

  18. Face-selective crystal growth behavior of L-aspartic acid in the presence of L-asparagine

    Science.gov (United States)

    Sato, Hiroyasu; Doki, Norihito; Yoshida, Saki; Yokota, Masaaki; Shimizu, Kenji

    2016-02-01

    The kinetic mechanism of L-asparagine (L-Asn) action on L-aspartic acid (L-Asp) crystal growth, namely the face-selective effect of L-Asn on the L-Asp crystal growth rate in each direction, was examined. In the a-axis direction, the effect of L-Asn on the L-Asp crystal growth rate was small. Enhancement and inhibition of L-Asp crystal growth, and interestingly the dissolution of the L-Asp crystal face, were observed in the b-axis direction, depending on the amount of L-Asn added. In the c-axis direction, the L-Asp crystal growth rate decreased with the increase in the amount of L-Asn added, and the experimental results were well fitted with a Langmuir adsorption isotherm. The study showed that there were crystal growth conditions where enhancement and inhibition, as well as inhibition and dissolution, coexisted in the presence of an additive with a structure similar to the growing crystal.

  19. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS)

    Energy Technology Data Exchange (ETDEWEB)

    Omori, M. [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    2000-08-15

    The graphite die set in spark plasma system (SPS) is heated by a pulse direct current. Weak plasma, discharge impact, electric field and electric current, which are based on this current, induce good effects on materials in the die. The surface films of aluminum and pure WC powders are ruptured by the spark plasma. Pure AlN powder is sintered without sintering additives in the electric field. The spark plasma leaves discharge patterns on insulators. Organic fibers are etched by the spark plasma. Thermosetting polyimide is consolidated by the spark plasma. Insoluble polymonomethylsilane is rearranged into the soluble one by the spark plasma. A single crystal of CoSb{sub 3} is grown from the compound powders in the electric field by slow heating. Coupled crystals of eutectic powder are connected with each other in the electric field. (orig.)

  20. Temperature fluctuations in a LiNbO 3 melt during crystal growth

    Science.gov (United States)

    Suzuki, Tetsuro

    2004-10-01

    Variations in temperature induced by forced convection on the surface of a LiNbO3 melt during crystal growth have been studied. Temperature measurements on the melt surface of single crystals growing (∅ 50 mm) at rotation rates of 15-40 rpm on an RF-heated Czochralski puller has revealed that the melt surface continuously alternates between a steady and unsteady state of flow. This was attributed to the intermittently turbulent flow mode at intermediate rotation rates. The fluctuation period is thought to depend on the thickness of its boundary layer. The boundary layer varies in thickness due to the melt flow, which stops as the interface moves toward the crystal and resumes once the interface reverts to its former position. By contrast, at above 60 rpm, the melt surface temperature drops without fluctuation, indicating that turbulent flow is dominant at faster rotation rates.