WorldWideScience

Sample records for group recursive partitioning

  1. Risk-group definition by recursive partitioning analysis of patients with squamous cell head and neck carcinoma treated with surgery and postoperative radiotherapy

    NARCIS (Netherlands)

    Langendijk, JA; Slotman, BJ; van der Waal, [No Value; Doornaert, P; Berkof, J; Leemans, CR

    2005-01-01

    BACKGROUND. The objective of this study was to define different prognostic groups with regard to locoregional control (LRC) derived from recursive partitioning analysis (RPA). METHODS. Eight hundred one patients with squamous cell head and neck carcinoma underwent with primary surgery and received

  2. Model-based Recursive Partitioning for Subgroup Analyses

    OpenAIRE

    Seibold, Heidi; Zeileis, Achim; Hothorn, Torsten

    2016-01-01

    The identification of patient subgroups with differential treatment effects is the first step towards individualised treatments. A current draft guideline by the EMA discusses potentials and problems in subgroup analyses and formulated challenges to the development of appropriate statistical procedures for the data-driven identification of patient subgroups. We introduce model-based recursive partitioning as a procedure for the automated detection of patient subgroups that are identifiable by...

  3. The prostate cancer risk stratification (ProCaRS) project: Recursive partitioning risk stratification analysis

    International Nuclear Information System (INIS)

    Rodrigues, George; Lukka, Himu; Warde, Padraig; Brundage, Michael; Souhami, Luis; Crook, Juanita; Cury, Fabio; Catton, Charles; Mok, Gary; Martin, Andre-Guy; Vigneault, Eric; Morris, Jim; Warner, Andrew; Gonzalez Maldonado, Sandra; Pickles, Tom

    2013-01-01

    Background: The Genitourinary Radiation Oncologists of Canada (GUROC) published a three-group risk stratification (RS) system to assist prostate cancer decision-making in 2001. The objective of this project is to use the ProCaRS database to statistically model the predictive accuracy and clinical utility of a proposed new multi-group RS schema. Methods: The RS analyses utilized the ProCaRS database that consists of 7974 patients from four Canadian institutions. Recursive partitioning analysis (RPA) was utilized to explore the sub-stratification of groups defined by the existing three-group GUROC scheme. 10-fold cross-validated C-indices and the Net Reclassification Index were both used to assess multivariable models and compare the predictive accuracy of existing and proposed RS systems, respectively. Results: The recursive partitioning analysis has suggested that the existing GUROC classification system could be altered to accommodate as many as six separate and statistical unique groups based on differences in BFFS (C-index 0.67 and AUC 0.70). GUROC low-risk patients would be divided into new favorable-low and low-risk groups based on PSA ⩽6 and PSA >6. GUROC intermediate-risk patients can be subclassified into low-intermediate and high-intermediate groups. GUROC high-intermediate-risk is defined as existing GUROC intermediate-risk with PSA >=10 AND either T2b/c disease or T1T2a disease with Gleason 7. GUROC high-risk patients would be subclassified into an additional extreme-risk group (GUROC high-risk AND (positive cores ⩾87.5% OR PSA >30). Conclusions: Proposed RS subcategories have been identified by a RPA of the ProCaRS database

  4. Identifying risk profiles for childhood obesity using recursive partitioning based on individual, familial, and neighborhood environment factors.

    Science.gov (United States)

    Van Hulst, Andraea; Roy-Gagnon, Marie-Hélène; Gauvin, Lise; Kestens, Yan; Henderson, Mélanie; Barnett, Tracie A

    2015-02-15

    Few studies consider how risk factors within multiple levels of influence operate synergistically to determine childhood obesity. We used recursive partitioning analysis to identify unique combinations of individual, familial, and neighborhood factors that best predict obesity in children, and tested whether these predict 2-year changes in body mass index (BMI). Data were collected in 2005-2008 and in 2008-2011 for 512 Quebec youth (8-10 years at baseline) with a history of parental obesity (QUALITY study). CDC age- and sex-specific BMI percentiles were computed and children were considered obese if their BMI was ≥95th percentile. Individual (physical activity and sugar-sweetened beverage intake), familial (household socioeconomic status and measures of parental obesity including both BMI and waist circumference), and neighborhood (disadvantage, prestige, and presence of parks, convenience stores, and fast food restaurants) factors were examined. Recursive partitioning, a method that generates a classification tree predicting obesity based on combined exposure to a series of variables, was used. Associations between resulting varying risk group membership and BMI percentile at baseline and 2-year follow up were examined using linear regression. Recursive partitioning yielded 7 subgroups with a prevalence of obesity equal to 8%, 11%, 26%, 28%, 41%, 60%, and 63%, respectively. The 2 highest risk subgroups comprised i) children not meeting physical activity guidelines, with at least one BMI-defined obese parent and 2 abdominally obese parents, living in disadvantaged neighborhoods without parks and, ii) children with these characteristics, except with access to ≥1 park and with access to ≥1 convenience store. Group membership was strongly associated with BMI at baseline, but did not systematically predict change in BMI. Findings support the notion that obesity is predicted by multiple factors in different settings and provide some indications of potentially

  5. Assessing the relative importance of correlates of loneliness in later life: Gaining insight using recursive partitioning

    DEFF Research Database (Denmark)

    Ejlskov, Linda; Wulff, Jesper; Bøggild, Henrik

    2017-01-01

    and demographic correlates were poor identifiers of loneliness. The regression tree suggested that loneliness was not raised among those with poor mental wellbeing if they identified their partner as closest confidante and had frequent social contact. CONCLUSION: Recursive partitioning can identify which......OBJECTIVES: Improving the design and targeting of interventions is important for alleviating loneliness among older adults. This requires identifying which correlates are the most important predictors of loneliness. This study demonstrates the use of recursive partitioning in exploring...... the characteristics and assessing the relative importance of correlates of loneliness in older adults. METHOD: Using exploratory regression trees and random forests, we examined combinations and the relative importance of 42 correlates in relation to loneliness at age 68 among 2453 participants from the birth cohort...

  6. Binary recursive partitioning: background, methods, and application to psychology.

    Science.gov (United States)

    Merkle, Edgar C; Shaffer, Victoria A

    2011-02-01

    Binary recursive partitioning (BRP) is a computationally intensive statistical method that can be used in situations where linear models are often used. Instead of imposing many assumptions to arrive at a tractable statistical model, BRP simply seeks to accurately predict a response variable based on values of predictor variables. The method outputs a decision tree depicting the predictor variables that were related to the response variable, along with the nature of the variables' relationships. No significance tests are involved, and the tree's 'goodness' is judged based on its predictive accuracy. In this paper, we describe BRP methods in a detailed manner and illustrate their use in psychological research. We also provide R code for carrying out the methods.

  7. Model-Based Recursive Partitioning for Subgroup Analyses.

    Science.gov (United States)

    Seibold, Heidi; Zeileis, Achim; Hothorn, Torsten

    2016-05-01

    The identification of patient subgroups with differential treatment effects is the first step towards individualised treatments. A current draft guideline by the EMA discusses potentials and problems in subgroup analyses and formulated challenges to the development of appropriate statistical procedures for the data-driven identification of patient subgroups. We introduce model-based recursive partitioning as a procedure for the automated detection of patient subgroups that are identifiable by predictive factors. The method starts with a model for the overall treatment effect as defined for the primary analysis in the study protocol and uses measures for detecting parameter instabilities in this treatment effect. The procedure produces a segmented model with differential treatment parameters corresponding to each patient subgroup. The subgroups are linked to predictive factors by means of a decision tree. The method is applied to the search for subgroups of patients suffering from amyotrophic lateral sclerosis that differ with respect to their Riluzole treatment effect, the only currently approved drug for this disease.

  8. An Introduction to Recursive Partitioning: Rationale, Application, and Characteristics of Classification and Regression Trees, Bagging, and Random Forests

    Science.gov (United States)

    Strobl, Carolin; Malley, James; Tutz, Gerhard

    2009-01-01

    Recursive partitioning methods have become popular and widely used tools for nonparametric regression and classification in many scientific fields. Especially random forests, which can deal with large numbers of predictor variables even in the presence of complex interactions, have been applied successfully in genetics, clinical medicine, and…

  9. Molecular-based recursive partitioning analysis model for glioblastoma in the temozolomide era a correlative analysis based on nrg oncology RTOG 0525

    NARCIS (Netherlands)

    Bell, Erica Hlavin; Pugh, Stephanie L.; McElroy, Joseph P.; Gilbert, Mark R.; Mehta, Minesh; Klimowicz, Alexander C.; Magliocco, Anthony; Bredel, Markus; Robe, Pierre; Grosu, Anca L.; Stupp, Roger; Curran, Walter; Becker, Aline P.; Salavaggione, Andrea L.; Barnholtz-Sloan, Jill S.; Aldape, Kenneth; Blumenthal, Deborah T.; Brown, Paul D.; Glass, Jon; Souhami, Luis; Lee, R. Jeffrey; Brachman, David; Flickinger, John; Won, Minhee; Chakravarti, Arnab

    2017-01-01

    IMPORTANCE: There is a need for a more refined, molecularly based classification model for glioblastoma (GBM) in the temozolomide era. OBJECTIVE: To refine the existing clinically based recursive partitioning analysis (RPA) model by incorporating molecular variables. DESIGN, SETTING, AND

  10. Prognostic Classification Factors Associated With Development of Multiple Autoantibodies, Dysglycemia, and Type 1 Diabetes?A Recursive Partitioning Analysis

    OpenAIRE

    Xu, Ping; Krischer, Jeffrey P.

    2016-01-01

    OBJECTIVE To define prognostic classification factors associated with the progression from single to multiple autoantibodies, multiple autoantibodies to dysglycemia, and dysglycemia to type 1 diabetes onset in relatives of individuals with type 1 diabetes. RESEARCH DESIGN AND METHODS Three distinct cohorts of subjects from the Type 1 Diabetes TrialNet Pathway to Prevention Study were investigated separately. A recursive partitioning analysis (RPA) was used to determine the risk classes. Clini...

  11. Multicenter validation of recursive partitioning analysis classification for patients with squamous cell head and neck carcinoma treated with surgery and postoperative radiotherapy.

    NARCIS (Netherlands)

    Jonkman, A.; Kaanders, J.H.A.M.; Terhaard, C.H.J.; Hoebers, F.J.; Ende, P.L. van den; Wijers, O.B.; Verhoef, C.G.; Jong, M. de; Leemans, C.R.; Langendijk, J.A.

    2007-01-01

    PURPOSE: To validate the recursive partitioning analysis (RPA) classification system for squamous cell head and neck cancer as recently reported by the VU University Medical Center. METHODS AND MATERIALS: In eight Dutch head and neck cancer centers, data necessary to classify patients according to

  12. The ABCD of topological recursion

    DEFF Research Database (Denmark)

    Andersen, Jorgen Ellegaard; Borot, Gaëtan; Chekhov, Leonid O.

    Kontsevich and Soibelman reformulated and slightly generalised the topological recursion of math-ph/0702045, seeing it as a quantization of certain quadratic Lagrangians in T*V for some vector space V. KS topological recursion is a procedure which takes as initial data a quantum Airy structure...... the 2d TQFT partition function as a special case), non-commutative Frobenius algebras, loop spaces of Frobenius algebras and a Z2-invariant version of the latter. This Z2-invariant version in the case of a semi-simple Frobenius algebra corresponds to the topological recursion of math-ph/0702045....

  13. Predicting cannabis abuse screening test (CAST scores: a recursive partitioning analysis using survey data from Czech Republic, Italy, the Netherlands and Sweden.

    Directory of Open Access Journals (Sweden)

    Matthijs Blankers

    Full Text Available Cannabis is Europe's most commonly used illicit drug. Some users do not develop dependence or other problems, whereas others do. Many factors are associated with the occurrence of cannabis-related disorders. This makes it difficult to identify key risk factors and markers to profile at-risk cannabis users using traditional hypothesis-driven approaches. Therefore, the use of a data-mining technique called binary recursive partitioning is demonstrated in this study by creating a classification tree to profile at-risk users.59 variables on cannabis use and drug market experiences were extracted from an internet-based survey dataset collected in four European countries (Czech Republic, Italy, Netherlands and Sweden, n = 2617. These 59 potential predictors of problematic cannabis use were used to partition individual respondents into subgroups with low and high risk of having a cannabis use disorder, based on their responses on the Cannabis Abuse Screening Test. Both a generic model for the four countries combined and four country-specific models were constructed.Of the 59 variables included in the first analysis step, only three variables were required to construct a generic partitioning model to classify high risk cannabis users with 65-73% accuracy. Based on the generic model for the four countries combined, the highest risk for cannabis use disorder is seen in participants reporting a cannabis use on more than 200 days in the last 12 months. In comparison to the generic model, the country-specific models led to modest, non-significant improvements in classification accuracy, with an exception for Italy (p = 0.01.Using recursive partitioning, it is feasible to construct classification trees based on only a few variables with acceptable performance to classify cannabis users into groups with low or high risk of meeting criteria for cannabis use disorder. The number of cannabis use days in the last 12 months is the most relevant variable

  14. Local recurrence after surgery for non-small cell lung cancer: a recursive partitioning analysis of multi-institutional data.

    Science.gov (United States)

    Kelsey, Chris R; Higgins, Kristin A; Peterson, Bercedis L; Chino, Junzo P; Marks, Lawrence B; D'Amico, Thomas A; Varlotto, John M

    2013-10-01

    To define subgroups at high risk of local recurrence (LR) after surgery for non-small cell lung cancer using a recursive partitioning analysis (RPA). This Institutional Review Board-approved study included patients who underwent upfront surgery for I-IIIA non-small cell lung cancer at Duke Cancer Institute (primary set) or at other participating institutions (validation set). The 2 data sets were analyzed separately and identically. Disease recurrence at the surgical margin, ipsilateral hilum, and/or mediastinum was considered an LR. Recursive partitioning was used to build regression trees for the prediction of local recurrence-free survival (LRFS) from standard clinical and pathological factors. LRFS distributions were estimated with the Kaplan-Meier method. The 1411 patients in the primary set had a 5-year LRFS rate of 77% (95% confidence interval [CI], 0.74-0.81), and the 889 patients in the validation set had a 5-year LRFS rate of 76% (95% CI, 0.72-0.80). The RPA of the primary data set identified 3 terminal nodes based on stage and histology. These nodes and their 5-year LRFS rates were as follows: (1) stage I/adenocarcinoma, 87% (95% CI, 0.83-0.90); (2) stage I/squamous or large cell, 72% (95% CI, 0.65-0.79); and (3) stage II-IIIA, 62% (95% CI, 0.55-0.69). The validation RPA identified 3 terminal nodes based on lymphovascular invasion (LVI) and stage: (1) no LVI/stage IA, 82% (95% CI, 0.76-0.88); (2) no LVI/stage IB-IIIA, 73% (95% CI, 0.69-0.80); and (3) LVI, 58% (95% CI, 0.47-0.69). The risk of LR was similar in the primary and validation patient data sets. There was discordance between the 2 data sets regarding the clinical factors that best segregate patients into risk groups. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  15. Prognostic factors in children and adolescents with acute myeloid leukemia (excluding children with Down syndrome and acute promyelocytic leukemia): univariate and recursive partitioning analysis of patients treated on Pediatric Oncology Group (POG) Study 8821.

    Science.gov (United States)

    Chang, M; Raimondi, S C; Ravindranath, Y; Carroll, A J; Camitta, B; Gresik, M V; Steuber, C P; Weinstein, H

    2000-07-01

    The purpose of the paper was to define clinical or biological features associated with the risk for treatment failure for children with acute myeloid leukemia. Data from 560 children and adolescents with newly diagnosed acute myeloid leukemia who entered the Pediatric Oncology Group Study 8821 from June 1988 to March 1993 were analyzed by univariate and recursive partitioning methods. Children with Down syndrome or acute promyelocytic leukemia were excluded from the study. Factors examined included age, number of leukocytes, sex, FAB morphologic subtype, cytogenetic findings, and extramedullary disease at the time of diagnosis. The overall event-free survival (EFS) rate at 4 years was 32.7% (s.e. = 2.2%). Age > or =2 years, fewer than 50 x 10(9)/I leukocytes, and t(8;21) or inv(16), and normal chromosomes were associated with higher rates of EFS (P value = 0.003, 0.049, 0.0003, 0.031, respectively), whereas the M5 subtype of AML (P value = 0.0003) and chromosome abnormalities other than t(8;21) and inv(16) were associated with lower rates of EFS (P value = 0.0001). Recursive partitioning analysis defined three groups of patients with widely varied prognoses: female patients with t(8;21), inv(16), or a normal karyotype (n = 89) had the best prognosis (4-year EFS = 55.1%, s.e. = 5.7%); male patients with t(8;21), inv(16) or normal chromosomes (n = 106) had an intermediate prognosis (4-year EFS = 38.1%, s.e. = 5.3%); patients with chromosome abnormalities other than t(8;21) and inv(16) (n = 233) had the worst prognosis (4-year EFS = 27.0%, s.e. = 3.2%). One hundred and thirty-two patients (24%) could not be grouped because of missing cytogenetic data, mainly due to inadequate marrow samples. The results suggest that pediatric patients with acute myeloid leukemia can be categorized into three potential risk groups for prognosis and that differences in sex and chromosomal abnormalities are associated with differences in estimates of EFS. These results are tentative and

  16. Recursive automatic classification algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, E V; Dorofeyuk, A A

    1982-03-01

    A variational statement of the automatic classification problem is given. The dependence of the form of the optimal partition surface on the form of the classification objective functional is investigated. A recursive algorithm is proposed for maximising a functional of reasonably general form. The convergence problem is analysed in connection with the proposed algorithm. 8 references.

  17. Recursive partitioning analysis (RPA) classification predicts survival in patients with brain metastases from sarcoma.

    Science.gov (United States)

    Grossman, Rachel; Ram, Zvi

    2014-12-01

    Sarcoma rarely metastasizes to the brain, and there are no specific treatment guidelines for these tumors. The recursive partitioning analysis (RPA) classification is a well-established prognostic scale used in many malignancies. In this study we assessed the clinical characteristics of metastatic sarcoma to the brain and the validity of the RPA classification system in a subset of 21 patients who underwent surgical resection of metastatic sarcoma to the brain We retrospectively analyzed the medical, radiological, surgical, pathological, and follow-up clinical records of 21 patients who were operated for metastatic sarcoma to the brain between 1996 and 2012. Gliosarcomas, sarcomas of the head and neck with local extension into the brain, and metastatic sarcomas to the spine were excluded from this reported series. The patients' mean age was 49.6 ± 14.2 years (range, 25-75 years) at the time of diagnosis. Sixteen patients had a known history of systemic sarcoma, mostly in the extremities, and had previously received systemic chemotherapy and radiation therapy for their primary tumor. The mean maximal tumor diameter in the brain was 4.9 ± 1.7 cm (range 1.7-7.2 cm). The group's median preoperative Karnofsky Performance Scale was 80, with 14 patients presenting with Karnofsky Performance Scale of 70 or greater. The median overall survival was 7 months (range 0.2-204 months). The median survival time stratified by the Radiation Therapy Oncology Group RPA classes were 31, 7, and 2 months for RPA class I, II, and III, respectively (P = 0.0001). This analysis is the first to support the prognostic utility of the Radiation Therapy Oncology Group RPA classification for sarcoma brain metastases and may be used as a treatment guideline tool in this rare disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Understanding who benefits at each step in an internet-based diabetes self-management program: application of a recursive partitioning approach.

    Science.gov (United States)

    Glasgow, Russell E; Strycker, Lisa A; King, Diane K; Toobert, Deborah J

    2014-02-01

    Efforts to predict success in chronic disease management programs have been generally unsuccessful. To identify patient subgroups associated with success at each of 6 steps in a diabetes self-management (DSM) program. Using data from a randomized trial, recursive partitioning with signal detection analysis was used to identify subgroups associated with 6 sequential steps of program success: agreement to participate, completion of baseline, initial website engagement, 4-month behavior change, later engagement, and longer-term maintenance. The study was conducted in 5 primary care clinics within Kaiser Permanente Colorado. Different numbers of patients participated in each step, including 2076, 544, 270, 219, 127, and 89. All measures available were used to address success at each step. Intervention. Participants were randomized to receive either enhanced usual care or 1 of 2 Internet-based DSM programs: 1) self-administered, computer-assisted self-management and 2) the self-administered program with the addition of enhanced social support. Two sets of potential predictor variables and 6 dichotomous outcomes were created. Signal detection analysis differentiated successful and unsuccessful subgroups at all but the final step. Different patient subgroups were associated with success at these different steps. Demographic factors (education, ethnicity, income) were associated with initial participation but not with later steps, and the converse was true of health behavior variables. Analyses were limited to one setting, and the sample sizes for some of the steps were modest. Signal detection and recursive partitioning methods may be useful for identifying subgroups that are more or less successful at different steps of intervention and may aid in understanding variability in outcomes.

  19. Model-based clustering of DNA methylation array data: a recursive-partitioning algorithm for high-dimensional data arising as a mixture of beta distributions

    Directory of Open Access Journals (Sweden)

    Wiemels Joseph

    2008-09-01

    Full Text Available Abstract Background Epigenetics is the study of heritable changes in gene function that cannot be explained by changes in DNA sequence. One of the most commonly studied epigenetic alterations is cytosine methylation, which is a well recognized mechanism of epigenetic gene silencing and often occurs at tumor suppressor gene loci in human cancer. Arrays are now being used to study DNA methylation at a large number of loci; for example, the Illumina GoldenGate platform assesses DNA methylation at 1505 loci associated with over 800 cancer-related genes. Model-based cluster analysis is often used to identify DNA methylation subgroups in data, but it is unclear how to cluster DNA methylation data from arrays in a scalable and reliable manner. Results We propose a novel model-based recursive-partitioning algorithm to navigate clusters in a beta mixture model. We present simulations that show that the method is more reliable than competing nonparametric clustering approaches, and is at least as reliable as conventional mixture model methods. We also show that our proposed method is more computationally efficient than conventional mixture model approaches. We demonstrate our method on the normal tissue samples and show that the clusters are associated with tissue type as well as age. Conclusion Our proposed recursively-partitioned mixture model is an effective and computationally efficient method for clustering DNA methylation data.

  20. Validation of the RTOG recursive partitioning analysis (RPA) classification for brain metastases

    International Nuclear Information System (INIS)

    Gaspar, Laurie E.; Scott, Charles; Murray, Kevin; Curran, Walter

    2000-01-01

    Purpose: The Radiation Therapy Oncology Group (RTOG) previously developed three prognostic classes for brain metastases using recursive partitioning analysis (RPA) of a large database. These classes were based on Karnofsky performance status (KPS), primary tumor status, presence of extracranial system metastases, and age. An analysis of RTOG 91-04, a randomized study comparing two dose-fractionation schemes with a comparison to the established RTOG database, was considered important to validate the RPA classes. Methods and Materials: A total of 445 patients were randomized on RTOG 91-04, a Phase III study of accelerated hyperfractionation versus accelerated fractionation. No difference was observed between the two treatment arms with respect to survival. Four hundred thirty-two patients were included in this analysis. The majority of the patients were under age 65, had KPS 70-80, primary tumor controlled, and brain-only metastases. The initial RPA had three classes, but only patients in RPA Classes I and II were eligible for RTOG 91-04. Results: For RPA Class I, the median survival time was 6.2 months and 7.1 months for 91-04 and the database, respectively. The 1-year survival was 29% for 91-04 versus 32% for the database. There was no significant difference in the two survival distributions (p = 0.72). For RPA Class II, the median survival time was 3.8 months for 91-04 versus 4.2 months for the database. The 1-year survival was 12% and 16% for 91-04 and the database, respectively (p = 0.22). Conclusion: This analysis indicates that the RPA classes are valid and reliable for historical comparisons. Both the RTOG and other clinical trial organizers should currently utilize this RPA classification as a stratification factor for clinical trials

  1. Prognostic factors derived from recursive partition analysis (RPA) of radiation therapy oncology group (RTOG) brain metastases trials applied to surgically resected and irradiated brain metastatic cases

    International Nuclear Information System (INIS)

    Agboola, Olusegun; Benoit, Brien; Cross, Peter; Silva, Vasco da; Esche, Bernd; Lesiuk, Howard; Gonsalves, Carol

    1998-01-01

    Purpose: (a) To identify the prognostic factors that determine survival after surgical resection and irradiation of tumors metastatic to brain. (b) To determine if the prognostic factors used in the recursive partition analysis (RPA) of brain metastases cases from Radiation Therapy Oncology Group (RTOG) studies into three distinct survival classes is applicable to surgically resected and irradiated patients. Method: The medical records of 125 patients who had surgical resection and radiotherapy for brain metastases from 1985 to 1997 were reviewed. The patients' disease and treatment related factors were analyzed to identify factors that independently determine survival after diagnosis of brain metastasis. The patients were also grouped into three classes using the RPA-derived prognostic parameters which are: age, performance status, state of the primary disease, and presence or absence of extracranial metastases. Class 1: patients ≤ 65 years of age, Karnofsky performance status (KPS) of ≥70, with controlled primary disease and no extracranial metastases; Class 3: patients with KPS < 70. Patients who do not qualify for Class 1 or 3 are grouped as Class 2. The survival of these patients was determined from the time of diagnosis of brain metastases to the time of death. Results: The median survival of the entire group was 9.5 months. The three classes of patients as grouped had median survivals of 14.8, 9.9, and 6.0 months respectively (p = 0.0002). Age of < 65 years, KPS of ≥ 70, controlled primary disease, absence of extracranial metastases, complete surgical resection of the brain lesion(s) were found to be independent prognostic factors for survival; the total dose of radiation was not. Conclusion: Based on the results of this study, the patients and disease characteristics have significant impact on the survival of patients with brain metastases treated with a combination of surgical resection and radiotherapy. These parameters could be used in selecting

  2. Symbolic Reachability for Process Algebras with Recursive Data Types

    NARCIS (Netherlands)

    Blom, Stefan; van de Pol, Jan Cornelis; Fitzgerald, J.S.; Haxthausen, A.E.; Yenigun, H.

    2008-01-01

    In this paper, we present a symbolic reachability algorithm for process algebras with recursive data types. Like the various saturation based algorithms of Ciardo et al, the algorithm is based on partitioning of the transition relation into events whose influence is local. As new features, our

  3. A bijection between phylogenetic trees and plane oriented recursive trees

    OpenAIRE

    Prodinger, Helmut

    2017-01-01

    Phylogenetic trees are binary nonplanar trees with labelled leaves, and plane oriented recursive trees are planar trees with an increasing labelling. Both families are enumerated by double factorials. A bijection is constructed, using the respective representations a 2-partitions and trapezoidal words.

  4. Validation and predictive power of radiation therapy oncology group (RTOG) recursive partitioning analysis classes for malignant glioma patients: a report using RTOG 90-06

    International Nuclear Information System (INIS)

    Scott, Charles B.; Scarantino, Charles; Urtasun, Raul; Movsas, Benjamin; Jones, Christopher U.; Simpson, Joseph R.; Fischbach, A. Jennifer; Curran, Walter J.

    1996-01-01

    Background/Purpose: The recursive partitioning analysis (RPA) classes for malignant glioma patients were previously established by Curran et al. (JNCI 85:704-10, 1993) using data on over 1500 patients from the Radiation Therapy Oncology Group (RTOG). The current analysis was to validate the RPA classes on a new dataset (RTOG 90-06) and determine the predictive power of the RPA classes. Patients and Methods: There are six RPA classes for malignant glioma patients that comprise distinct groups of patients with significantly different survival outcome. RTOG 90-06 is a randomized phase III study of 712 patients accrued from 1990 to 1994. The minimum potential follow-up is 18 months. The treatment arms were combined for the purpose of this analysis. There were 84, 13, 105, 240, 150, and 23 patients in the six RPA classes from RTOG 90-06. Results: The median survival times (MST) and two-year survivals for the six RPA classes in RTOG 90-06 are compared to those published by Curran et al. (JNCI 1993). The RPA classes appear in descending order in the following table. The MST and 2-year survivals for the RTOG RPA classes were within 95% confidence intervals of the 90-06 estimates for classes I, III, IV, and V. The RPA classes explained 43% of the variation (squared error loss). By comparison, a model containing only histology explains only 13% of the variation. The RPA classes are statistically distinct with all comparisons exceeding 0.0001, except those involving class II. Conclusion: The validity of the model is verified by the reliability of the RPA classes to define distinct groups with respect to survival. Further evidence is given by prediction of MST and 2-year survival for all classes except class II. The RPA classes explained a good portion of the variation in the data. RPA class II did not perform well which may be an artifact of the small sample size or an indication that this class is not distinct. The validation of the RPA classes attests to their usefulness as

  5. Domain wall partition function of the eight-vertex model with a non-diagonal reflecting end

    International Nuclear Information System (INIS)

    Yang Wenli; Chen Xi; Feng Jun; Hao Kun; Shi Kangjie; Sun Chengyi; Yang Zhanying; Zhang Yaozhong

    2011-01-01

    With the help of the Drinfeld twist or factorizing F-matrix for the eight-vertex SOS model, we derive the recursion relations of the partition function for the eight-vertex model with a generic non-diagonal reflecting end and domain wall boundary condition. Solving the recursion relations, we obtain the explicit determinant expression of the partition function. Our result shows that, contrary to the eight-vertex model without a reflecting end, the partition function can be expressed as a single determinant.

  6. Development of the four group partitioning process at JAERI

    International Nuclear Information System (INIS)

    Kubota, Masumitsu; Morita, Yasuji; Yamaguchi, Isoo; Yamagishi, Isao; Fujiwara, T.; Watanabe, Masayuki; Mizoguchi, Kenichi; Tatsugae, Ryozo

    1999-01-01

    At JAERI, development of a partitioning method started about 24 years ago. From 1973 to 1984, a partitioning process was developed for separating elements in HLLW into 3 groups; TRU, Sr-Cs and others. The partitioning process consisted of three steps; solvent extraction of U and Pu with TBP, solvent extraction of Am and Cm with DIDPA, and adsorption of Sr and Cs with inorganic ion exchangers. The process was demonstrated with real HLLW. Since 1985, a four group partitioning process has been developed, in which a step for separating the Tc-PGM group was developed in addition to the three group separation. Effective methods for separating TRU, especially Np, and Tc have been developed. In this paper, the flow sheet of the four group partitioning and the results of tests with simulated and real HLLW in NUCEF hot-cell are shown. (J.P.N.)

  7. Gender, Race, and Survival: A Study in Non-Small-Cell Lung Cancer Brain Metastases Patients Utilizing the Radiation Therapy Oncology Group Recursive Partitioning Analysis Classification

    International Nuclear Information System (INIS)

    Videtic, Gregory M.M.; Reddy, Chandana A.; Chao, Samuel T.; Rice, Thomas W.; Adelstein, David J.; Barnett, Gene H.; Mekhail, Tarek M.; Vogelbaum, Michael A.; Suh, John H.

    2009-01-01

    Purpose: To explore whether gender and race influence survival in non-small-cell lung cancer (NSCLC) in patients with brain metastases, using our large single-institution brain tumor database and the Radiation Therapy Oncology Group recursive partitioning analysis (RPA) brain metastases classification. Methods and materials: A retrospective review of a single-institution brain metastasis database for the interval January 1982 to September 2004 yielded 835 NSCLC patients with brain metastases for analysis. Patient subsets based on combinations of gender, race, and RPA class were then analyzed for survival differences. Results: Median follow-up was 5.4 months (range, 0-122.9 months). There were 485 male patients (M) (58.4%) and 346 female patients (F) (41.6%). Of the 828 evaluable patients (99%), 143 (17%) were black/African American (B) and 685 (83%) were white/Caucasian (W). Median survival time (MST) from time of brain metastasis diagnosis for all patients was 5.8 months. Median survival time by gender (F vs. M) and race (W vs. B) was 6.3 months vs. 5.5 months (p = 0.013) and 6.0 months vs. 5.2 months (p = 0.08), respectively. For patients stratified by RPA class, gender, and race, MST significantly favored BFs over BMs in Class II: 11.2 months vs. 4.6 months (p = 0.021). On multivariable analysis, significant variables were gender (p = 0.041, relative risk [RR] 0.83) and RPA class (p < 0.0001, RR 0.28 for I vs. III; p < 0.0001, RR 0.51 for II vs. III) but not race. Conclusions: Gender significantly influences NSCLC brain metastasis survival. Race trended to significance in overall survival but was not significant on multivariable analysis. Multivariable analysis identified gender and RPA classification as significant variables with respect to survival.

  8. Recursive relations for a quiver gauge theory

    International Nuclear Information System (INIS)

    Park, Jaemo; Sim, Woojoo

    2006-01-01

    We study the recursive relations for a quiver gauge theory with the gauge group SU(N 1 ) x SU(N 2 ) with bifundamental fermions transforming as (N 1 , N-bar 2 ). We work out the recursive relation for the amplitudes involving a pair of quark and antiquark and gluons of each gauge group. We realize directly in the recursive relations the invariance under the order preserving permutations of the gluons of the first and the second gauge group. We check the proposed relations for MHV, 6-point and 7-point amplitudes and find the agreements with the known results and the known relations with the single gauge group amplitudes. The proposed recursive relation is much more efficient in calculating the amplitudes than using the known relations with the amplitudes of the single gauge group

  9. Subclassification of Recursive Partitioning Analysis Class II Patients With Brain Metastases Treated Radiosurgically

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Masaaki, E-mail: BCD06275@nifty.com [Katsuta Hospital Mito GammaHouse, Hitachi-naka (Japan); Department of Neurosurgery, Tokyo Women' s Medical University Medical Center East, Tokyo (Japan); Sato, Yasunori [Clinical Research Center, Chiba University Graduate School of Medicine, Chiba (Japan); Serizawa, Toru [Tokyo Gamma Unit Center, Tsukiji Neurologic Clinic, Tokyo (Japan); Kawabe, Takuya [Katsuta Hospital Mito GammaHouse, Hitachi-naka (Japan); Department of Neurosurgery, Kyoto Prefectural University of Medicine Graduate School of Medical Sciences, Kyoto (Japan); Higuchi, Yoshinori [Department of Neurosurgery, Chiba University Graduate School of Medicine, Chiba (Japan); Nagano, Osamu [Gamma Knife House, Chiba Cardiovascular Center, Ichihara (Japan); Barfod, Bierta E. [Katsuta Hospital Mito GammaHouse, Hitachi-naka (Japan); Ono, Junichi [Gamma Knife House, Chiba Cardiovascular Center, Ichihara (Japan); Kasuya, Hidetoshi [Department of Neurosurgery, Tokyo Women' s Medical University Medical Center East, Tokyo (Japan); Urakawa, Yoichi [Katsuta Hospital Mito GammaHouse, Hitachi-naka (Japan)

    2012-08-01

    Purpose: Although the recursive partitioning analysis (RPA) class is generally used for predicting survival periods of patients with brain metastases (METs), the majority of such patients are Class II and clinical factors vary quite widely within this category. This prompted us to divide RPA Class II patients into three subclasses. Methods and Materials: This was a two-institution, institutional review board-approved, retrospective cohort study using two databases: the Mito series (2,000 consecutive patients, comprising 787 women and 1,213 men; mean age, 65 years [range, 19-96 years]) and the Chiba series (1,753 patients, comprising 673 female and 1,080 male patients; mean age, 65 years [range, 7-94 years]). Both patient series underwent Gamma Knife radiosurgery alone, without whole-brain radiotherapy, for brain METs during the same 10-year period, July 1998 through June 2008. The Cox proportional hazard model with a step-wise selection procedure was used for multivariate analysis. Results: In the Mito series, four factors were identified as favoring longer survival: Karnofsky Performance Status (90% to 100% vs. 70% to 80%), tumor numbers (solitary vs. multiple), primary tumor status (controlled vs. not controlled), and non-brain METs (no vs. yes). This new index is the sum of scores (0 and 1) of these four factors: RPA Class II-a, score of 0 or 1; RPA Class II-b, score of 2; and RPA Class II-c, score of 3 or 4. Next, using the Chiba series, we tested whether our index is valid for a different patient group. This new system showed highly statistically significant differences among subclasses in both the Mito series and the Chiba series (p < 0.001 for all subclasses). In addition, this new index was confirmed to be applicable to Class II patients with four major primary tumor sites, that is, lung, breast, alimentary tract, and urogenital organs. Conclusions: Our new grading system should be considered when designing future clinical trials involving brain MET

  10. Validation and predictive power of Radiation Therapy Oncology Group (RTOG) recursive partitioning analysis classes for malignant glioma patients: A report using RTOG 90-06

    International Nuclear Information System (INIS)

    Scott, Charles B.; Scarantino, Charles; Urtasun, Raul; Movsas, Benjamin; Jones, Christopher U.; Simpson, Joseph R.; Fischbach, A. Jennifer; Curran, Walter J.

    1998-01-01

    Purpose: The recursive partitioning analysis (RPA) classes for malignant glioma patients were previously established using data on over 1500 patients entered on Radiation Therapy Oncology Group (RTOG) clinical trials. The purpose of the current analysis was to validate the RPA classes with a new dataset (RTOG 90-06), determine the predictive power of the RPA classes, and establish the usefulness of the database norms for the RPA classes. Patients and Methods: There are six RPA classes for malignant glioma patients that comprise distinct groups of patients with significantly different survival outcome. RTOG 90-06 is a randomized Phase III study of 712 patients accrued from 1990 to 1994. The minimum potential follow-up is 18 months. The treatment arms were combined for the purpose of this analysis. There were 84, 13, 105, 240, 150, and 23 patients in the RPA Classes I-VI from RTOG 90-06, respectively. Results: The median survival times (MST) and 2-year survival rates for the six RPA classes in RTOG 90-06 are compared to those previously published. The MST and 2-year survival rates for the RTOG RPA classes were within 95% confidence intervals of the 90-06 estimates for Classes I, III, IV, and V. The RPA classes explained 43% of the variation (squared error loss). By comparison, a Cox model explains 30% of the variation. The RPA classes within RTOG 90-06 are statistically distinct with all comparisons exceeding 0.0001, except those involving Class II. A survival analysis from a prior RTOG study indicated that 72.0 Gy had superior outcome to literature controls; analysis of this data by RPA classes indicates the survival results were not superior to the RTOG database norms. Conclusion: The validity of the model is verified by the reliability of the RPA classes to define distinct groups with respect to survival. Further evidence is given by prediction of MST and 2-year survival for all classes except Class II. The RPA classes explained a good portion of the variation in

  11. Recursive analysis

    CERN Document Server

    Goodstein, R L

    2010-01-01

    Recursive analysis develops natural number computations into a framework appropriate for real numbers. This text is based upon primary recursive arithmetic and presents a unique combination of classical analysis and intuitional analysis. Written by a master in the field, it is suitable for graduate students of mathematics and computer science and can be read without a detailed knowledge of recursive arithmetic.Introductory chapters on recursive convergence and recursive and relative continuity are succeeded by explorations of recursive and relative differentiability, the relative integral, and

  12. Recursive Partitioning Analysis for New Classification of Patients With Esophageal Cancer Treated by Chemoradiotherapy

    International Nuclear Information System (INIS)

    Nomura, Motoo; Shitara, Kohei; Kodaira, Takeshi; Kondoh, Chihiro; Takahari, Daisuke; Ura, Takashi; Kojima, Hiroyuki; Kamata, Minoru; Muro, Kei; Sawada, Satoshi

    2012-01-01

    Background: The 7th edition of the American Joint Committee on Cancer staging system does not include lymph node size in the guidelines for staging patients with esophageal cancer. The objectives of this study were to determine the prognostic impact of the maximum metastatic lymph node diameter (ND) on survival and to develop and validate a new staging system for patients with esophageal squamous cell cancer who were treated with definitive chemoradiotherapy (CRT). Methods: Information on 402 patients with esophageal cancer undergoing CRT at two institutions was reviewed. Univariate and multivariate analyses of data from one institution were used to assess the impact of clinical factors on survival, and recursive partitioning analysis was performed to develop the new staging classification. To assess its clinical utility, the new classification was validated using data from the second institution. Results: By multivariate analysis, gender, T, N, and ND stages were independently and significantly associated with survival (p < 0.05). The resulting new staging classification was based on the T and ND. The four new stages led to good separation of survival curves in both the developmental and validation datasets (p < 0.05). Conclusions: Our results showed that lymph node size is a strong independent prognostic factor and that the new staging system, which incorporated lymph node size, provided good prognostic power, and discriminated effectively for patients with esophageal cancer undergoing CRT.

  13. Prognostic factors in brain metastases: should patients be selected for aggressive treatment according to recursive partitioning analysis (RPA) classes?

    International Nuclear Information System (INIS)

    Nieder, Carsten; Nestle, Ursula; Motaref, Babak; Walter, Karin; Niewald, Marcus; Schnabel, Klaus

    2000-01-01

    Purpose: To determine whether or not Radiation Therapy Oncology Group (RTOG) recursive partitioning analysis (RPA) derived prognostic classes for patients with brain metastases are generally applicable and can be recommended as rational strategy for patient selection for future clinical trials. Inclusion of time to non-CNS death as additional endpoint besides death from any cause might result in further valuable information, as survival limitation due to uncontrolled extracranial disease can be explored. Methods: We performed a retrospective analysis of prognostic factors for survival and time to non-CNS death in 528 patients treated at a single institution with radiotherapy or surgery plus radiotherapy for brain metastases. For this purpose, patients were divided into groups with Karnofsky performance status (KPS) 0.05 for RPA class II versus III). However, it was 8.5 months in RPA class II patients with controlled primary tumor, which was found to be the only prognostic factor for time to non-CNS death in patients with KPS ≥70%. In patients with KPS <70%, no statistically significant prognostic factors were identified for this endpoint. Conclusions: Despite some differences, this analysis essentially confirmed the value of RPA-derived prognostic classes, as published by the RTOG, when survival was chosen as endpoint. RPA class I patients seem to be most likely to profit from aggressive treatment strategies and should be included in appropriate clinical trials. However, their number appears to be very limited. Considering time to non-CNS death, our results suggest that certain patients in RPA class II also might benefit from increased local control of brain metastases

  14. Validation of the RTOG recursive partitioning analysis (RPA) classification for small-cell lung cancer-only brain metastases

    International Nuclear Information System (INIS)

    Videtic, Gregory M.M.; Adelstein, David J.; Mekhail, Tarek M.; Rice, Thomas W.; Stevens, Glen H.J.; Lee, S.-Y.; Suh, John H.

    2007-01-01

    Purpose: Radiation Therapy Oncology Group (RTOG) developed a prognostic classification based on a recursive partitioning analysis (RPA) of patient pretreatment characteristics from three completed brain metastases randomized trials. Clinical trials for patients with brain metastases generally exclude small-cell lung cancer (SCLC) cases. We hypothesize that the RPA classes are valid in the setting of SCLC brain metastases. Methods and Materials: A retrospective review of 154 SCLC patients with brain metastases treated between April 1983 and May 2005 was performed. RPA criteria used for class assignment were Karnofsky performance status (KPS), primary tumor status (PT), presence of extracranial metastases (ED), and age. Results: Median survival was 4.9 months, with 4 patients (2.6%) alive at analysis. Median follow-up was 4.7 months (range, 0.3-40.3 months). Median age was 65 (range, 42-85 years). Median KPS was 70 (range, 40-100). Number of patients with controlled PT and no ED was 20 (13%) and with ED, 27 (18%); without controlled PT and ED, 34 (22%) and with ED, 73 (47%). RPA class distribution was: Class I: 8 (5%); Class II: 96 (62%); Class III: 51 (33%). Median survivals (in months) by RPA class were: Class I: 8.6; Class II: 4.2; Class III: 2.3 (p = 0.0023). Conclusions: Survivals for SCLC-only brain metastases replicate the results from the RTOG RPA classification. These classes are therefore valid for brain metastases from SCLC, support the inclusion of SCLC patients in future brain metastases trials, and may also serve as a basis for historical comparisons

  15. Language and Recursion

    Science.gov (United States)

    Lowenthal, Francis

    2010-11-01

    This paper examines whether the recursive structure imbedded in some exercises used in the Non Verbal Communication Device (NVCD) approach is actually the factor that enables this approach to favor language acquisition and reacquisition in the case of children with cerebral lesions. For that a definition of the principle of recursion as it is used by logicians is presented. The two opposing approaches to the problem of language development are explained. For many authors such as Chomsky [1] the faculty of language is innate. This is known as the Standard Theory; the other researchers in this field, e.g. Bates and Elman [2], claim that language is entirely constructed by the young child: they thus speak of Language Acquisition. It is also shown that in both cases, a version of the principle of recursion is relevant for human language. The NVCD approach is defined and the results obtained in the domain of language while using this approach are presented: young subjects using this approach acquire a richer language structure or re-acquire such a structure in the case of cerebral lesions. Finally it is shown that exercises used in this framework imply the manipulation of recursive structures leading to regular grammars. It is thus hypothesized that language development could be favored using recursive structures with the young child. It could also be the case that the NVCD like exercises used with children lead to the elaboration of a regular language, as defined by Chomsky [3], which could be sufficient for language development but would not require full recursion. This double claim could reconcile Chomsky's approach with psychological observations made by adherents of the Language Acquisition approach, if it is confirmed by researches combining the use of NVCDs, psychometric methods and the use of Neural Networks. This paper thus suggests that a research group oriented towards this problematic should be organized.

  16. Phase Grouping Line Extraction Algorithm Using Overlapped Partition

    Directory of Open Access Journals (Sweden)

    WANG Jingxue

    2015-07-01

    Full Text Available Aiming at solving the problem of fracture at the discontinuities area and the challenges of line fitting in each partition, an innovative line extraction algorithm is proposed based on phase grouping using overlapped partition. The proposed algorithm adopted dual partition steps, which will generate overlapped eight partitions. Between the two steps, the middle axis in the first step coincides with the border lines in the other step. Firstly, the connected edge points that share the same phase gradients are merged into the line candidates, and fitted into line segments. Then to remedy the break lines at the border areas, the break segments in the second partition steps are refitted. The proposed algorithm is robust and does not need any parameter tuning. Experiments with various datasets have confirmed that the method is not only capable of handling the linear features, but also powerful enough in handling the curve features.

  17. Recursion Theory Week

    CERN Document Server

    Müller, Gert; Sacks, Gerald

    1990-01-01

    These proceedings contain research and survey papers from many subfields of recursion theory, with emphasis on degree theory, in particular the development of frameworks for current techniques in this field. Other topics covered include computational complexity theory, generalized recursion theory, proof theoretic questions in recursion theory, and recursive mathematics.

  18. Syntactic Recursion Facilitates and Working Memory Predicts Recursive Theory of Mind

    Science.gov (United States)

    Arslan, Burcu; Hohenberger, Annette; Verbrugge, Rineke

    2017-01-01

    In this study, we focus on the possible roles of second-order syntactic recursion and working memory in terms of simple and complex span tasks in the development of second-order false belief reasoning. We tested 89 Turkish children in two age groups, one younger (4;6–6;5 years) and one older (6;7–8;10 years). Although second-order syntactic recursion is significantly correlated with the second-order false belief task, results of ordinal logistic regressions revealed that the main predictor of second-order false belief reasoning is complex working memory span. Unlike simple working memory and second-order syntactic recursion tasks, the complex working memory task required processing information serially with additional reasoning demands that require complex working memory strategies. Based on our results, we propose that children’s second-order theory of mind develops when they have efficient reasoning rules to process embedded beliefs serially, thus overcoming a possible serial processing bottleneck. PMID:28072823

  19. Syntactic Recursion Facilitates and Working Memory Predicts Recursive Theory of Mind.

    Directory of Open Access Journals (Sweden)

    Burcu Arslan

    Full Text Available In this study, we focus on the possible roles of second-order syntactic recursion and working memory in terms of simple and complex span tasks in the development of second-order false belief reasoning. We tested 89 Turkish children in two age groups, one younger (4;6-6;5 years and one older (6;7-8;10 years. Although second-order syntactic recursion is significantly correlated with the second-order false belief task, results of ordinal logistic regressions revealed that the main predictor of second-order false belief reasoning is complex working memory span. Unlike simple working memory and second-order syntactic recursion tasks, the complex working memory task required processing information serially with additional reasoning demands that require complex working memory strategies. Based on our results, we propose that children's second-order theory of mind develops when they have efficient reasoning rules to process embedded beliefs serially, thus overcoming a possible serial processing bottleneck.

  20. Further Stable methods for the calculation of partition functions

    International Nuclear Information System (INIS)

    Wilson, B G; Gilleron, F; Pain, J

    2007-01-01

    The extension to recursion over holes of the Gilleron and Pain method for calculating partition functions of a canonical ensemble of non-interacting bound electrons is presented as well as a generalization for the efficient computation of collisional line broadening

  1. Recursive partition analysis of peritoneal and systemic recurrence in patients with gastric cancer who underwent D2 gastrectomy: Implications for neoadjuvant therapy consideration.

    Science.gov (United States)

    Chang, Jee Suk; Kim, Kyung Hwan; Keum, Ki Chang; Noh, Sung Hoon; Lim, Joon Seok; Kim, Hyo Song; Rha, Sun Young; Lee, Yong Chan; Hyung, Woo Jin; Koom, Woong Sub

    2016-12-01

    To classify patients with nonmetastatic advanced gastric cancer who underwent D2-gastrectomy into prognostic groups based on peritoneal and systemic recurrence risks. Between 2004 and 2007, 1,090 patients with T3-4 or N+ gastric cancer were identified from our registry. Recurrence rates were estimated using a competing-risk analysis. Different prognostic groups were defined using recursive partitioning analysis (RPA). Median follow-up was 7 years. In the RPA-model for peritoneal recurrence risk, the initial node was split by T stage, indicating that differences between patients with T1-3 and T4 cancer were the greatest. The 5-year peritoneal recurrence rates for patients with T4 (n = 627) and T1-3 (n = 463) disease were 34.3% and 9.1%, respectively. N stage and neural invasion had an additive impact on high-risk patients. The RPA model for systemic relapse incorporated N stage alone and gave two terminal nodes: N0-2 (n = 721) and N3 (n = 369). The 5-year cumulative incidences were 7.7% and 24.5%, respectively. We proposed risk stratification models of peritoneal and systemic recurrence in patients undergoing D2-gastrectomy. This classification could be used for stratification protocols in future studies evaluating adjuvant therapies such as preoperative chemoradiotherapy. J. Surg. Oncol. 2016;114:859-864. © 2016 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Recursive grid partitioning on a cortical surface model: an optimized technique for the localization of implanted subdural electrodes.

    Science.gov (United States)

    Pieters, Thomas A; Conner, Christopher R; Tandon, Nitin

    2013-05-01

    Precise localization of subdural electrodes (SDEs) is essential for the interpretation of data from intracranial electrocorticography recordings. Blood and fluid accumulation underneath the craniotomy flap leads to a nonlinear deformation of the brain surface and of the SDE array on postoperative CT scans and adversely impacts the accurate localization of electrodes located underneath the craniotomy. Older methods that localize electrodes based on their identification on a postimplantation CT scan with coregistration to a preimplantation MR image can result in significant problems with accuracy of the electrode localization. The authors report 3 novel methods that rely on the creation of a set of 3D mesh models to depict the pial surface and a smoothed pial envelope. Two of these new methods are designed to localize electrodes, and they are compared with 6 methods currently in use to determine their relative accuracy and reliability. The first method involves manually localizing each electrode using digital photographs obtained at surgery. This is highly accurate, but requires time intensive, operator-dependent input. The second uses 4 electrodes localized manually in conjunction with an automated, recursive partitioning technique to localize the entire electrode array. The authors evaluated the accuracy of previously published methods by applying the methods to their data and comparing them against the photograph-based localization. Finally, the authors further enhanced the usability of these methods by using automatic parcellation techniques to assign anatomical labels to individual electrodes as well as by generating an inflated cortical surface model while still preserving electrode locations relative to the cortical anatomy. The recursive grid partitioning had the least error compared with older methods (672 electrodes, 6.4-mm maximum electrode error, 2.0-mm mean error, p < 10(-18)). The maximum errors derived using prior methods of localization ranged from 8

  3. Partition function zeros of the one-dimensional Potts model: the recursive method

    International Nuclear Information System (INIS)

    Ghulghazaryan, R G; Ananikian, N S

    2003-01-01

    The Yang-Lee, Fisher and Potts zeros of the one-dimensional Q-state Potts model are studied using the theory of dynamical systems. An exact recurrence relation for the partition function is derived. It is shown that zeros of the partition function may be associated with neutral fixed points of the recurrence relation. Further, a general equation for zeros of the partition function is found and a classification of the Yang-Lee, Fisher and Potts zeros is given. It is shown that the Fisher zeros in a nonzero magnetic field are located on several lines in the complex temperature plane and that the number of these lines depends on the value of the magnetic field. Analytical expressions for the densities of the Yang-Lee, Fisher and Potts zeros are derived. It is shown that densities of all types of zeros of the partition function are singular at the edge singularity points with the same critical exponent

  4. Fuzzy 2-partition entropy threshold selection based on Big Bang–Big Crunch Optimization algorithm

    Directory of Open Access Journals (Sweden)

    Baljit Singh Khehra

    2015-03-01

    Full Text Available The fuzzy 2-partition entropy approach has been widely used to select threshold value for image segmenting. This approach used two parameterized fuzzy membership functions to form a fuzzy 2-partition of the image. The optimal threshold is selected by searching an optimal combination of parameters of the membership functions such that the entropy of fuzzy 2-partition is maximized. In this paper, a new fuzzy 2-partition entropy thresholding approach based on the technology of the Big Bang–Big Crunch Optimization (BBBCO is proposed. The new proposed thresholding approach is called the BBBCO-based fuzzy 2-partition entropy thresholding algorithm. BBBCO is used to search an optimal combination of parameters of the membership functions for maximizing the entropy of fuzzy 2-partition. BBBCO is inspired by the theory of the evolution of the universe; namely the Big Bang and Big Crunch Theory. The proposed algorithm is tested on a number of standard test images. For comparison, three different algorithms included Genetic Algorithm (GA-based, Biogeography-based Optimization (BBO-based and recursive approaches are also implemented. From experimental results, it is observed that the performance of the proposed algorithm is more effective than GA-based, BBO-based and recursion-based approaches.

  5. On Recursion

    Directory of Open Access Journals (Sweden)

    Jeffrey eWatumull

    2014-01-01

    Full Text Available It is a truism that conceptual understanding of a hypothesis is required for its empirical investigation. However the concept of recursion as articulated in the context of linguistic analysis has been perennially confused. Nowhere has this been more evident than in attempts to critique and extend Hauser, Chomsky, and Fitch’s (2002 articulation. These authors put forward the hypothesis that what is uniquely human and unique to the faculty of language—the faculty of language in the narrow sense (FLN—is a recursive system that generates and maps syntactic objects to conceptual-intentional and sensory-motor systems. This thesis was based on the standard mathematical definition of recursion as understood by Gödel and Turing, and yet has commonly been interpreted in other ways, most notably and incorrectly as a thesis about the capacity for syntactic embedding. As we explain, the recursiveness of a function is defined independent of such output, whether infinite or finite, embedded or unembedded—existent or nonexistent. And to the extent that embedding is a sufficient, though not necessary, diagnostic of recursion, it has not been established that the apparent restriction on embedding in some languages is of any theoretical import. Misunderstanding of these facts has generated research that is often irrelevant to the FLN thesis as well as to other theories of language competence that focus on its generative power of expression. This essay is an attempt to bring conceptual clarity to such discussions as well as to future empirical investigations by explaining three criterial properties of recursion: computability (i.e., rules in intension rather than lists in extension; definition by induction (i.e., rules strongly generative of structure; and mathematical induction (i.e., rules for the principled—and potentially unbounded—expansion of strongly generated structure. By these necessary and sufficient criteria, the grammars of all natural

  6. Is recursion language-specific? Evidence of recursive mechanisms in the structure of intentional action.

    Science.gov (United States)

    Vicari, Giuseppe; Adenzato, Mauro

    2014-05-01

    In their 2002 seminal paper Hauser, Chomsky and Fitch hypothesize that recursion is the only human-specific and language-specific mechanism of the faculty of language. While debate focused primarily on the meaning of recursion in the hypothesis and on the human-specific and syntax-specific character of recursion, the present work focuses on the claim that recursion is language-specific. We argue that there are recursive structures in the domain of motor intentionality by way of extending John R. Searle's analysis of intentional action. We then discuss evidence from cognitive science and neuroscience supporting the claim that motor-intentional recursion is language-independent and suggest some explanatory hypotheses: (1) linguistic recursion is embodied in sensory-motor processing; (2) linguistic and motor-intentional recursions are distinct and mutually independent mechanisms. Finally, we propose some reflections about the epistemic status of HCF as presenting an empirically falsifiable hypothesis, and on the possibility of testing recursion in different cognitive domains. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. On Modified Bar recursion

    DEFF Research Database (Denmark)

    Oliva, Paulo Borges

    2002-01-01

    Modified bar recursion is a variant of Spector's bar recursion which can be used to give a realizability interpretation of the classical axiom of dependent choice. This realizability allows for the extraction of witnesses from proofs of forall-exists-formulas in classical analysis. In this talk I...... shall report on results regarding the relationship between modified and Spector's bar recursion. I shall also show that a seemingly weak form of modified bar recursion is as strong as "full" modified bar recursion in higher types....

  8. Analytic study of the Migdal-Kadanoff recursion formula

    International Nuclear Information System (INIS)

    Ito, K.R.

    1984-01-01

    After proposing lattice gauge field models in which the Migdal renormalization group recursion formulas are exact, we study the recursion formulas analytically. If D is less than 4, it is shown that the effective actions of D-dimensional U(1) lattice gauge models are uniformly driven to the high temperature region no matter how low the initial temperature is. If the initial temperature is large enough, this holds for any D and gauge group G. These are also the cases for the recursion formulas of Kadanoff type. It turns out, however, that the string tension for D=3 obtained by these methods is rather big compared with the one already obtained by Mack, Goepfert and by the present author. The reason is clarified. (orig.)

  9. Syntactic Recursion Facilitates and Working Memory Predicts Recursive Theory of Mind

    NARCIS (Netherlands)

    Arslan, Burcu; Hohenberger, Annette; Verbrugge, Rineke

    2017-01-01

    In this study, we focus on the possible roles of second-order syntactic recursion and working memory in terms of simple and complex span tasks in the development of second-order false belief reasoning. We tested 89 Turkish children in two age groups, one younger (4;6-6;5 years) and one older

  10. On the Relation between Spector's Bar Recursion and Modified Bar Recursion

    DEFF Research Database (Denmark)

    Oliva, Paulo Borges

    2002-01-01

    We introduce a variant of Spector's Bar Recursion in finite types to give a realizability interpretation of the classical axiom of dependent choice allowing for the extraction of witnesses from proofs of Sigma_1 formulas in classical analysis. We also give a bar recursive definition of the fan...... functional and study the relationship of our variant of Bar Recursion with others....

  11. 3. Procedures and Recursion

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 6. Algorithms Procedures and Recursion. R K Shyamasundar. Series Article Volume 1 ... Author Affiliations. R K Shyamasundar1. Computer Science Group, Tata Institute of Fundamental Research, Homi Bhabha Road Mumbai 400 005, India.

  12. Partitioning of unstructured meshes for load balancing

    International Nuclear Information System (INIS)

    Martin, O.C.; Otto, S.W.

    1994-01-01

    Many large-scale engineering and scientific calculations involve repeated updating of variables on an unstructured mesh. To do these types of computations on distributed memory parallel computers, it is necessary to partition the mesh among the processors so that the load balance is maximized and inter-processor communication time is minimized. This can be approximated by the problem, of partitioning a graph so as to obtain a minimum cut, a well-studied combinatorial optimization problem. Graph partitioning algorithms are discussed that give good but not necessarily optimum solutions. These algorithms include local search methods recursive spectral bisection, and more general purpose methods such as simulated annealing. It is shown that a general procedure enables to combine simulated annealing with Kernighan-Lin. The resulting algorithm is both very fast and extremely effective. (authors) 23 refs., 3 figs., 1 tab

  13. Adaptable recursive binary entropy coding technique

    Science.gov (United States)

    Kiely, Aaron B.; Klimesh, Matthew A.

    2002-07-01

    We present a novel data compression technique, called recursive interleaved entropy coding, that is based on recursive interleaving of variable-to variable length binary source codes. A compression module implementing this technique has the same functionality as arithmetic coding and can be used as the engine in various data compression algorithms. The encoder compresses a bit sequence by recursively encoding groups of bits that have similar estimated statistics, ordering the output in a way that is suited to the decoder. As a result, the decoder has low complexity. The encoding process for our technique is adaptable in that each bit to be encoded has an associated probability-of-zero estimate that may depend on previously encoded bits; this adaptability allows more effective compression. Recursive interleaved entropy coding may have advantages over arithmetic coding, including most notably the admission of a simple and fast decoder. Much variation is possible in the choice of component codes and in the interleaving structure, yielding coder designs of varying complexity and compression efficiency; coder designs that achieve arbitrarily small redundancy can be produced. We discuss coder design and performance estimation methods. We present practical encoding and decoding algorithms, as well as measured performance results.

  14. Thinking recursively

    CERN Document Server

    Roberts, Eric S

    1986-01-01

    Concentrating on the practical value of recursion, this text, the first of its kind, is essential to computer science students' education. In this text, students will learn the concept and programming applications of recursive thinking. This will ultimately prepare students for advanced topics in computer science such as compiler construction, formal language theory, and the mathematical foundations of computer science.

  15. Determinants for swine mycoplasmal pneumonia reproduction under experimental conditions: A systematic review and recursive partitioning analysis

    Science.gov (United States)

    Garcia-Morante, Beatriz; Segalés, Joaquim; Serrano, Emmanuel

    2017-01-01

    One of the main Mycoplasma hyopneumoniae (M. hyopneumoniae) swine experimental model objectives is to reproduce mycoplasmal pneumonia (MP). Unfortunately, experimental validated protocols to maximize the chance to successfully achieve lung lesions induced by M. hyopneumoniae are not available at the moment. Thus, the objective of this work was to identify those factors that might have a major influence on the effective development of MP, measured as macroscopic lung lesions, under experimental conditions. Data from 85 studies describing M. hyopneumoniae inoculation experiments were compiled by means of a systematic review and analyzed thereafter. Several variables were considered in the analyses such as the number of pigs in the experiment, serological status against M. hyopneumoniae, source of the animals, age at inoculation, type of inoculum, strain of M. hyopneumoniae, route, dose and times of inoculation, study duration and co-infection with other swine pathogens. Descriptive statistics were used to depict M. hyopneumoniae experimental model main characteristics whereas a recursive partitioning approach, using regression trees, assessed the importance of the abovementioned experimental variables as MP triggering factors. A strong link between the time period between challenge and necropsies and lung lesion severity was observed. Results indicated that the most important factors to explain the observed lung lesion score variability were: (1) study duration, (2) M. hyopneumoniae strain, (3) age at inoculation, (4) co-infection with other swine pathogens and (5) animal source. All other studied variables were not relevant to explain the variability on M. hyopneumoniae lung lesions. The results provided in the present work may serve as a basis for debate in the search for a universally accepted M. hyopneumoniae challenge model. PMID:28742802

  16. Determinants for swine mycoplasmal pneumonia reproduction under experimental conditions: A systematic review and recursive partitioning analysis.

    Directory of Open Access Journals (Sweden)

    Beatriz Garcia-Morante

    Full Text Available One of the main Mycoplasma hyopneumoniae (M. hyopneumoniae swine experimental model objectives is to reproduce mycoplasmal pneumonia (MP. Unfortunately, experimental validated protocols to maximize the chance to successfully achieve lung lesions induced by M. hyopneumoniae are not available at the moment. Thus, the objective of this work was to identify those factors that might have a major influence on the effective development of MP, measured as macroscopic lung lesions, under experimental conditions. Data from 85 studies describing M. hyopneumoniae inoculation experiments were compiled by means of a systematic review and analyzed thereafter. Several variables were considered in the analyses such as the number of pigs in the experiment, serological status against M. hyopneumoniae, source of the animals, age at inoculation, type of inoculum, strain of M. hyopneumoniae, route, dose and times of inoculation, study duration and co-infection with other swine pathogens. Descriptive statistics were used to depict M. hyopneumoniae experimental model main characteristics whereas a recursive partitioning approach, using regression trees, assessed the importance of the abovementioned experimental variables as MP triggering factors. A strong link between the time period between challenge and necropsies and lung lesion severity was observed. Results indicated that the most important factors to explain the observed lung lesion score variability were: (1 study duration, (2 M. hyopneumoniae strain, (3 age at inoculation, (4 co-infection with other swine pathogens and (5 animal source. All other studied variables were not relevant to explain the variability on M. hyopneumoniae lung lesions. The results provided in the present work may serve as a basis for debate in the search for a universally accepted M. hyopneumoniae challenge model.

  17. Grouping in partitioning of HLW for burning and/or transmutation with nuclear reactors

    International Nuclear Information System (INIS)

    Kitamoto, Asashi; Mulyanto.

    1995-01-01

    A basic concept on partitioning and transmutation treatment by neutron reaction was developed in order to improve the waste management and the disposal scenario of high level waste (HLW). The grouping in partitioning was important factor and closely linked with the characteristics of B/T (burning and/or transmutation) treatment. The selecting and grouping concept in partitioning of HLW was proposed herein, such as Group MA1 (Np, Am, and unrecovered U and Pu), Group MA2 (Cm, Cf etc.), Group A (Tc and I), Group B (Cs and Sr) and Group R (the partitioned remain of HLW), judging from the three criteria for B/T treatment proposed in this study, which is related to (1) the value of hazard index for long-term tendency based on ALI, (2) the relative dose factor related to the mobility or retardation in ground water penetrated through geologic layer, and (3) burning and/or transmutation characteristics for recycle B/T treatment and the decay acceleration ratio by neutron reaction. Group MA1 and Group A could be burned effectively by thermal B/T reactor. Group MA2 could be burned effectively by fast B/T reactor. Transmutation of Group B by neutron reaction is difficult, therefore the development of radiation application of Group B (Cs and Sr) in industrial scale may be an interesting option in the future. Group R, i.e. the partitioned remains of HLW, and also a part of Group B should be immobilized and solidified by the glass matrix. HI ALI , the hazard index based on ALI, due to radiotoxicity of Group R can be lower than HI ALI due to standard mill tailing (smt) or uranium ore after about 300 years. (author)

  18. Structural properties of recursively partitionable graphs with connectivity 2

    DEFF Research Database (Denmark)

    Baudon, Olivier; Bensmail, Julien; Foucaud, Florent

    2017-01-01

    , namely the ones of being online arbitrarily partitionable and recursively arbitrarily partitionable (OL-AP and R-AP for short, respectively), in which the subgraphs induced by a partition of G must not only be con-nected but also ful_l additional conditions. In this paper, we point out some structural...... properties of OL-AP and R-AP graphs with connectivity 2. In particular, we show that deleting a cut pair of these graphs results in a graph with a bounded number of components, some of whom have a small number of vertices. We obtain these results by studying a simple class of 2-connected graphs called...

  19. Concept of grouping in partitioning of HLW for self-consistent fuel cycle

    International Nuclear Information System (INIS)

    Kitamoto, A.; Mulyanto

    1993-01-01

    A concept of grouping for partitioning of HLW has been developed in order to examine the possibility of a self-consistent fuel recycle. The concept of grouping of radionuclides is proposed herein, such as Group MA1 (MA below Cm), Group MA2 (Cm and higher MA), Group A ( 99 Tc and I), Group B (Cs and Sr) and Group R (the partitioned remain of HLW). Group B is difficult to be transmuted by neutron reaction, so a radiation application in an industrial scale should be developed in the future. Group A and Group MA1 can be burned by a thermal reactor, on the other hand Group MA2 should be burned by a fast reactor. P-T treatment can be optimized for the in-core and out-core system, respectively

  20. Geometric recursion

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Borot, Gaëtan; Orantin, Nicolas

    We propose a general theory whose main component are functorial assignments ∑→Ω∑ ∈ E (∑), for a large class of functors E from a certain category of bordered surfaces (∑'s) to a suitable a target category of topological vector spaces. The construction is done by summing appropriate compositions...... as Poisson structures on the moduli space of flat connections. The theory has a wider scope than that and one expects that many functorial objects in low-dimensional geometry and topology should have a GR construction. The geometric recursion has various projections to topological recursion (TR) and we...... in particular show it retrieves all previous variants and applications of TR. We also show that, for any initial data for topological recursion, one can construct initial data for GR with values in Frobenius algebra-valued continuous functions on Teichmueller space, such that the ωg,n of TR are obtained...

  1. Partial Key Grouping: Load-Balanced Partitioning of Distributed Streams

    OpenAIRE

    Nasir, Muhammad Anis Uddin; Morales, Gianmarco De Francisci; Garcia-Soriano, David; Kourtellis, Nicolas; Serafini, Marco

    2015-01-01

    We study the problem of load balancing in distributed stream processing engines, which is exacerbated in the presence of skew. We introduce PARTIAL KEY GROUPING (PKG), a new stream partitioning scheme that adapts the classical “power of two choices” to a distributed streaming setting by leveraging two novel techniques: key splitting and local load estimation. In so doing, it achieves better load balancing than key grouping while being more scalable than shuffle grouping. We test PKG on severa...

  2. Exploiting fine-grain parallelism in recursive LU factorization

    KAUST Repository

    Dongarra, Jack

    2012-01-01

    The LU factorization is an important numerical algorithm for solving system of linear equations. This paper proposes a novel approach for computing the LU factorization in parallel on multicore architectures. It improves the overall performance and also achieves the numerical quality of the standard LU factorization with partial pivoting. While the update of the trailing submatrix is computationally intensive and highly parallel, the inherently problematic portion of the LU factorization is the panel factorization due to its memory-bound characteristic and the atomicity of selecting the appropriate pivots. We remedy this in our new approach to LU factorization of (narrow and tall) panel submatrices. We use a parallel fine-grained recursive formulation of the factorization. It is based on conflict-free partitioning of the data and lock-less synchronization mechanisms. Our implementation lets the overall computation naturally flow with limited contention. Our recursive panel factorization provides the necessary performance increase for the inherently problematic portion of the LU factorization of square matrices. A large panel width results in larger Amdahl\\'s fraction as our experiments have revealed which is consistent with related efforts. The performance results of our implementation reveal superlinear speedup and far exceed what can be achieved with equivalent MKL and/or LAPACK routines. © 2012 The authors and IOS Press. All rights reserved.

  3. Adding Recursive Constructs to Bialgebraic Semantics

    DEFF Research Database (Denmark)

    Klin, Bartek

    2004-01-01

    This paper aims at fitting a general class of recursive equations into the framework of ‘well-behaved' structural operational semantics, formalized as bialgebraic semantics by Turi and Plotkin. Rather than interpreting recursive constructs by means of operational rules, separate recursive equatio...

  4. Cold and semi-hot tests of 4-group partitioning process at NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yasuji; Yamaguchi, Isoo; Fujiwara, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Mizoguchi, Kenichi [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan); Kubota, Masumitsu [Research Organization for Information Science and Technology, Tokai, Ibaraki (Japan)

    2000-06-01

    The 4-Group Partitioning Process was tested in the Partitioning Test Facility installed in a hot cell at NUCEF (Nuclear Fuel Cycle Safety Engineering Research Facility) using simulated high-level liquid waste (HLLW) or the simulated HLLW added with a small amount of real HLLW and Tc. Behavior of each element was examined in a series of the following separation steps: pretreatment for HLLW to prepare the feed solution to extraction step, extraction with diisodecylphosphoric acid for the separation of transuranium elements, precipitation by denitration and adsorption step with active carbon for the separation of Tc and platinum group metals, and adsorption with inorganic ion exchangers for the separation of Sr and Cs. It was confined that each element behaved as expected. More than 99.99% of Am were extracted with DIDPA and 99.92% of Am were back-extracted with 4 M nitric acid. In the precipitation step by denitration, ratio of Tc precipitated was 96.2%. The present tests confined the expected performance of each equipment in the Partitioning Test Facility for the separation of elements and gave useful data for the comparison of element behavior with a result of a partitioning test using real HLLW. (author)

  5. CP-Recursion in Danish

    DEFF Research Database (Denmark)

    Nyvad, Anne Mette; Christensen, Ken Ramshøj; Vikner, Sten

    2017-01-01

    Based on data from extraction, embedded V2, and complementizer stacking, this paper proposes a cP/CP-analysis of CP-recursion in Danish. Because extraction can be shown to be possible from relative clauses, wh-islands, and adverbial clauses, and given that long extraction is successive......-cyclic, an extra specifier position has to be available as an escape hatch. Consequently, such extractions require a CP-recursion analysis, as has been argued for embedded V2 and for complementizer stacking. Given that CP-recursion in embedded V2 clauses does not allow extraction, whereas other types of CP......-recursion do, we suggest that embedded V2 is fundamentally different, in that main clause V2 and embedded V2 involve a CP (“big CP”), whereas all other clausal projections above IP are instances of cP (“little cP”). The topmost “little” c° has an occurrence feature that enables extraction but bars spell...

  6. Conjugate gradient algorithms using multiple recursions

    Energy Technology Data Exchange (ETDEWEB)

    Barth, T.; Manteuffel, T.

    1996-12-31

    Much is already known about when a conjugate gradient method can be implemented with short recursions for the direction vectors. The work done in 1984 by Faber and Manteuffel gave necessary and sufficient conditions on the iteration matrix A, in order for a conjugate gradient method to be implemented with a single recursion of a certain form. However, this form does not take into account all possible recursions. This became evident when Jagels and Reichel used an algorithm of Gragg for unitary matrices to demonstrate that the class of matrices for which a practical conjugate gradient algorithm exists can be extended to include unitary and shifted unitary matrices. The implementation uses short double recursions for the direction vectors. This motivates the study of multiple recursion algorithms.

  7. Prognostic Classification Factors Associated With Development of Multiple Autoantibodies, Dysglycemia, and Type 1 Diabetes-A Recursive Partitioning Analysis.

    Science.gov (United States)

    Xu, Ping; Krischer, Jeffrey P

    2016-06-01

    To define prognostic classification factors associated with the progression from single to multiple autoantibodies, multiple autoantibodies to dysglycemia, and dysglycemia to type 1 diabetes onset in relatives of individuals with type 1 diabetes. Three distinct cohorts of subjects from the Type 1 Diabetes TrialNet Pathway to Prevention Study were investigated separately. A recursive partitioning analysis (RPA) was used to determine the risk classes. Clinical characteristics, including genotype, antibody titers, and metabolic markers were analyzed. Age and GAD65 autoantibody (GAD65Ab) titers defined three risk classes for progression from single to multiple autoantibodies. The 5-year risk was 11% for those subjects >16 years of age with low GAD65Ab titers, 29% for those ≤16 years of age with low GAD65Ab titers, and 45% for those subjects with high GAD65Ab titers regardless of age. Progression to dysglycemia was associated with islet antigen 2 Ab titers, and 2-h glucose and fasting C-peptide levels. The 5-year risk is 28%, 39%, and 51% for respective risk classes defined by the three predictors. Progression to type 1 diabetes was associated with the number of positive autoantibodies, peak C-peptide level, HbA1c level, and age. Four risk classes defined by RPA had a 5-year risk of 9%, 33%, 62%, and 80%, respectively. The use of RPA offered a new classification approach that could predict the timing of transitions from one preclinical stage to the next in the development of type 1 diabetes. Using these RPA classes, new prevention techniques can be tailored based on the individual prognostic risk characteristics at different preclinical stages. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  8. Prognostic Classification Factors Associated With Development of Multiple Autoantibodies, Dysglycemia, and Type 1 Diabetes—A Recursive Partitioning Analysis

    Science.gov (United States)

    Krischer, Jeffrey P.

    2016-01-01

    OBJECTIVE To define prognostic classification factors associated with the progression from single to multiple autoantibodies, multiple autoantibodies to dysglycemia, and dysglycemia to type 1 diabetes onset in relatives of individuals with type 1 diabetes. RESEARCH DESIGN AND METHODS Three distinct cohorts of subjects from the Type 1 Diabetes TrialNet Pathway to Prevention Study were investigated separately. A recursive partitioning analysis (RPA) was used to determine the risk classes. Clinical characteristics, including genotype, antibody titers, and metabolic markers were analyzed. RESULTS Age and GAD65 autoantibody (GAD65Ab) titers defined three risk classes for progression from single to multiple autoantibodies. The 5-year risk was 11% for those subjects >16 years of age with low GAD65Ab titers, 29% for those ≤16 years of age with low GAD65Ab titers, and 45% for those subjects with high GAD65Ab titers regardless of age. Progression to dysglycemia was associated with islet antigen 2 Ab titers, and 2-h glucose and fasting C-peptide levels. The 5-year risk is 28%, 39%, and 51% for respective risk classes defined by the three predictors. Progression to type 1 diabetes was associated with the number of positive autoantibodies, peak C-peptide level, HbA1c level, and age. Four risk classes defined by RPA had a 5-year risk of 9%, 33%, 62%, and 80%, respectively. CONCLUSIONS The use of RPA offered a new classification approach that could predict the timing of transitions from one preclinical stage to the next in the development of type 1 diabetes. Using these RPA classes, new prevention techniques can be tailored based on the individual prognostic risk characteristics at different preclinical stages. PMID:27208341

  9. Continued development of recursive thinking in adolescence : Longitudinal analyses with a revised recursive thinking test

    NARCIS (Netherlands)

    van den Bos, E.; de Rooij, M.; Sumter, S.R.; Westenberg, P.M.

    2016-01-01

    The present study adds to the emerging literature on the development of social cognition in adolescence by investigating the development of recursive thinking (i.e., thinking about thinking). Previous studies have indicated that the development of recursive thinking is not completed during

  10. Recursive definition of global cellular-automata mappings

    DEFF Research Database (Denmark)

    Feldberg, Rasmus; Knudsen, Carsten; Rasmussen, Steen

    1994-01-01

    A method for a recursive definition of global cellular-automata mappings is presented. The method is based on a graphical representation of global cellular-automata mappings. For a given cellular-automaton rule the recursive algorithm defines the change of the global cellular-automaton mapping...... as the number of lattice sites is incremented. A proof of lattice size invariance of global cellular-automata mappings is derived from an approximation to the exact recursive definition. The recursive definitions are applied to calculate the fractal dimension of the set of reachable states and of the set...

  11. How Learning Logic Programming Affects Recursion Comprehension

    Science.gov (United States)

    Haberman, Bruria

    2004-01-01

    Recursion is a central concept in computer science, yet it is difficult for beginners to comprehend. Israeli high-school students learn recursion in the framework of a special modular program in computer science (Gal-Ezer & Harel, 1999). Some of them are introduced to the concept of recursion in two different paradigms: the procedural…

  12. Recursive definition of global cellular-automata mappings

    International Nuclear Information System (INIS)

    Feldberg, R.; Knudsen, C.; Rasmussen, S.

    1994-01-01

    A method for a recursive definition of global cellular-automata mappings is presented. The method is based on a graphical representation of global cellular-automata mappings. For a given cellular-automaton rule the recursive algorithm defines the change of the global cellular-automaton mapping as the number of lattice sites is incremented. A proof of lattice size invariance of global cellular-automata mappings is derived from an approximation to the exact recursive definition. The recursive definitions are applied to calculate the fractal dimension of the set of reachable states and of the set of fixed points of cellular automata on an infinite lattice

  13. Capacity of burning and transmutation reactor and grouping in partitioning of HLW in self-consistent fuel recycle

    International Nuclear Information System (INIS)

    Kitamoto, A.; Mulyanto

    1993-01-01

    The concept of capacity of B/T reactor and grouping for partitioning of HLW has been developed in order to perform self-consistent fuel recycle. The concept of grouping of radionuclides is proposed herein, such as Group MA1 (MA below Cm), Group MA2 (Cm and higher MA), Group A ( 99 Te, 129 I, and 135 Cs), Group B ( 137 Cs and 90 Sr) and Group R (the partitioned remain of HLW). In this study P-T treatment were optimized for the in-core and out-core system, respectively. (author). 7 refs., 10 figs

  14. Recursive sequences in first-year calculus

    Science.gov (United States)

    Krainer, Thomas

    2016-02-01

    This article provides ready-to-use supplementary material on recursive sequences for a second-semester calculus class. It equips first-year calculus students with a basic methodical procedure based on which they can conduct a rigorous convergence or divergence analysis of many simple recursive sequences on their own without the need to invoke inductive arguments as is typically required in calculus textbooks. The sequences that are accessible to this kind of analysis are predominantly (eventually) monotonic, but also certain recursive sequences that alternate around their limit point as they converge can be considered.

  15. Cosymmetries and Nijenhuis recursion operators for difference equations

    International Nuclear Information System (INIS)

    Mikhailov, Alexander V; Xenitidis, Pavlos; Wang, Jing Ping

    2011-01-01

    In this paper we discuss the concept of cosymmetries and co-recursion operators for difference equations and present a co-recursion operator for the Viallet equation. We also discover a new type of factorization for the recursion operators of difference equations. This factorization enables us to give an elegant proof that the pseudo-difference operator R presented in Mikhailov et al 2011 Theor. Math. Phys. 167 421–43 is a recursion operator for the Viallet equation. Moreover, we show that the operator R is Nijenhuis and thus generates infinitely many commuting local symmetries. The recursion operator R and its factorization into Hamiltonian and symplectic operators have natural applications to Yamilov's discretization of the Krichever–Novikov equation

  16. A step-indexed Kripke model of hidden state via recursive properties on recursively defined metric spaces

    DEFF Research Database (Denmark)

    Birkedal, Lars; Schwinghammer, Jan; Støvring, Kristian

    2010-01-01

    for Chargu´eraud and Pottier’s type and capability system including frame and anti-frame rules, based on the operational semantics and step-indexed heap relations. The worlds are constructed as a recursively defined predicate on a recursively defined metric space, which provides a considerably simpler...

  17. Recursion Relations for Conformal Blocks

    CERN Document Server

    Penedones, João; Yamazaki, Masahito

    2016-09-12

    In the context of conformal field theories in general space-time dimension, we find all the possible singularities of the conformal blocks as functions of the scaling dimension $\\Delta$ of the exchanged operator. In particular, we argue, using representation theory of parabolic Verma modules, that in odd spacetime dimension the singularities are only simple poles. We discuss how to use this information to write recursion relations that determine the conformal blocks. We first recover the recursion relation introduced in 1307.6856 for conformal blocks of external scalar operators. We then generalize this recursion relation for the conformal blocks associated to the four point function of three scalar and one vector operator. Finally we specialize to the case in which the vector operator is a conserved current.

  18. A Survey on Teaching and Learning Recursive Programming

    Science.gov (United States)

    Rinderknecht, Christian

    2014-01-01

    We survey the literature about the teaching and learning of recursive programming. After a short history of the advent of recursion in programming languages and its adoption by programmers, we present curricular approaches to recursion, including a review of textbooks and some programming methodology, as well as the functional and imperative…

  19. A Step-Indexed Kripke Model of Hidden State via Recursive Properties on Recursively Defined Metric Spaces

    DEFF Research Database (Denmark)

    Schwinghammer, Jan; Birkedal, Lars; Støvring, Kristian

    2011-01-01

    ´eraud and Pottier’s type and capability system including both frame and anti-frame rules. The model is a possible worlds model based on the operational semantics and step-indexed heap relations, and the worlds are constructed as a recursively defined predicate on a recursively defined metric space. We also extend...

  20. Geometrical interpretation of the topological recursion, and integrable string theories

    CERN Document Server

    Eynard, Bertrand

    2009-01-01

    Symplectic invariants introduced in math-ph/0702045 can be computed for an arbitrary spectral curve. For some examples of spectral curves, those invariants can solve loop equations of matrix integrals, and many problems of enumerative geometry like maps, partitions, Hurwitz numbers, intersection numbers, Gromov-Witten invariants... The problem is thus to understand what they count, or in other words, given a spectral curve, construct an enumerative geometry problem. This is what we do in a semi-heuristic approach in this article. Starting from a spectral curve, i.e. an integrable system, we use its flat connection and flat coordinates, to define a family of worldsheets, whose enumeration is indeed solved by the topological recursion and symplectic invariants. In other words, for any spectral curve, we construct a corresponding string theory, whose target space is a submanifold of the Jacobian.

  1. Development of partitioning method: confirmation of behavior of technetium in 4-Group Partitioning Process by a small scale experiment

    International Nuclear Information System (INIS)

    Morita, Yasuji; Yamaguchi, Isoo; Fujiwara, Takeshi; Kubota, Masumitsu; Mizoguchi, Kenichi

    1998-08-01

    The separation behavior of Tc in the whole of 4-Group Partitioning Process was examined by a flask-scale experiment using simulated high-level liquid waste containing a macro amount of Tc, in order to confirm the reproducibility of the results obtained in previous studies on the Tc behavior at each step of the process. The 4-Group Partitioning Process consists of pre-treatment step, extraction step with diisodecylphosphoric acid (DIDPA), adsorption step with active carbon or precipitation step by denitration for the separation of Tc and platinum group metals (PGM), and adsorption step with inorganic ion exchangers. The present study deals with the behavior of Tc and other elements at all the above steps and additional step for Tc dissolution from the precipitate formed by the denitration. At the pre-treatment step, the ratio of Tc precipitated was very low (about 0.2%) at both operations of heating-denitration and colloid removal. Tc was not extracted with DIDPA and was contained quantitatively in the raffinate from the extraction step. Batch adsorption with active carbon directly from the raffinate showed that distribution coefficient of Tc was more than 100ml/g, which is high enough for the separation. It also revealed much effect of coexisting Mo on the Tc adsorption. At the precipitation step by denitration, 98.2% of Tc were precipitated. At the Tc dissolution from the precipitate with H 2 O 2 , 84.2% of Tc were selectively dissolved in a single operation. Tc was not adsorbed with inorganic ion exchangers. From these results, composition of Tc product from the partitioning process was estimated. The weight ratio of Tc in the Tc product can be increased to about 50% at least. Main contaminating elements are Cr, Ni, Sr, Ba, Mo and Pd. Process optimization to decrease their contamination should be performed in a next study. (J.P.N.)

  2. Recursion method in the k-space representation

    International Nuclear Information System (INIS)

    Anlage, S.M.; Smith, D.L.

    1986-01-01

    We show that by using a unitary transformation to k space and the special-k-point method for evaluating Brillouin-zone sums, the recursion method can be very effectively applied to translationally invariant systems. We use this approach to perform recursion calculations for realistic tight-binding Hamiltonians which describe diamond- and zinc-blende-structure semiconductors. Projected densities of states for these Hamiltonians have band gaps and internal van Hove singularities. We calculate coefficients for 63 recursion levels exactly and for about 200 recursion levels to a good approximation. Comparisons are made for materials with different magnitude band gaps (diamond, Si, α-Sn). Comparison is also made between materials with one (e.g., diamond) and two (e.g., GaAs) band gaps. The asymptotic behavior of the recursion coefficients is studied by Fourier analysis. Band gaps in the projected density of states dominate the asymptotic behavior. Perturbation analysis describes the asymptotic behavior rather well. Projected densities of states are calculated using a very simple termination scheme. These densities of states compare favorably with the results of Gilat-Raubenheimer integration

  3. Hopf algebras and topological recursion

    International Nuclear Information System (INIS)

    Esteves, João N

    2015-01-01

    We consider a model for topological recursion based on the Hopf algebra of planar binary trees defined by Loday and Ronco (1998 Adv. Math. 139 293–309 We show that extending this Hopf algebra by identifying pairs of nearest neighbor leaves, and thus producing graphs with loops, we obtain the full recursion formula discovered by Eynard and Orantin (2007 Commun. Number Theory Phys. 1 347–452). (paper)

  4. Down two steps: Are bilinguals delayed in the acquisition of recursively embedded PPs?

    Directory of Open Access Journals (Sweden)

    Ana Pérez-Leroux

    2017-08-01

    Full Text Available The present study examines whether bilingual children are delayed in the ability to produce complex DPs. We elicited production of DPs containing two PP modifiers, in two conditions designed to tease apart the acquisition of an embedding rule from the acquisition of the recursivity of an embedding rule. In the recursive condition, one modifier PP was itself modified by an additional PP. In the non-recursive condition, both PPs sequentially modified the main noun. Participants were 71 English monolingual children and 35 bilinguals between the ages of four and six. The evidence suggested an overall difference between groups, however further analysis revealed that bilinguals differed from monolinguals only insofar as the onset of PP embedding. No specific additional bilingual delay arose from the recursive condition. This suggests that recursive embedding is a resilient domain in language acquisition and supports proposals that link morphosyntactic delays in bilingual children to domains of grammar that are heavily reliant on lexical learning, which would include learning the first instance of PP embedding. --- Original in English.   --- DOI: http://dx.doi.org/10.12957/matraga.2017.28781

  5. On Recursive Modification in Child L1 French

    Directory of Open Access Journals (Sweden)

    Yves Roberge

    2018-03-01

    Full Text Available This paper investigates nominal recursive modification (RM in the L1 acquisition of French. Although recursion is considered the fundamental property of human languages, recursive self-embedding is found to be difficult for children in a variety of languages and constructions. Despite these challenges, the acquisition of RM proves to be resilient; acquirable even under severely degraded input conditions. From a minimalist perspective on the operations of narrow syntax, recursive embedding is essentially the application of a sequence of Merge operations (Chomsky 1995; Trotzke and Zwart 2014; therefore, given the universality of Merge, we do not expect to find cross-linguistic differences in how difficult recursion is. But if the challenging nature of recursion stems from factors which might differ from language to language, we expect different outcomes cross-linguistically. We compare new data from French to existing English data (Pérez-Leroux et al. 2012 in order to examine to what extent language-specific properties of RM structures determine the acquisition path. While children’s production differs significantly from their adult’s counterparts, we find no differences between French-speaking and English-speaking children. Our findings suggest that the challenging nature of recursion does not stem from the grammar itself and that what shapes the acquisition path is the interaction between universal properties of language and considerations not specific to language, namely computational efficiency.

  6. Recursive solutions for multi-group neutron kinetics diffusion equations in homogeneous three-dimensional rectangular domains with time dependent perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Claudio Z. [Universidade Federal de Pelotas, Capao do Leao (Brazil). Programa de Pos Graduacao em Modelagem Matematica; Bodmann, Bardo E.J.; Vilhena, Marco T. [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia Mecanica; Barros, Ricardo C. [Universidade do Estado do Rio de Janeiro, Nova Friburgo, RJ (Brazil). Inst. Politecnico

    2014-12-15

    In the present work we solve in analytical representation the three dimensional neutron kinetic diffusion problem in rectangular Cartesian geometry for homogeneous and bounded domains for any number of energy groups and precursor concentrations. The solution in analytical representation is constructed using a hierarchical procedure, i.e. the original problem is reduced to a problem previously solved by the authors making use of a combination of the spectral method and a recursive decomposition approach. Time dependent absorption cross sections of the thermal energy group are considered with step, ramp and Chebyshev polynomial variations. For these three cases, we present numerical results and discuss convergence properties and compare our results to those available in the literature.

  7. CFT and topological recursion

    CERN Document Server

    Kostov, Ivan

    2010-01-01

    We study the quasiclassical expansion associated with a complex curve. In a more specific context this is the 1/N expansion in U(N)-invariant matrix integrals. We compare two approaches, the CFT approach and the topological recursion, and show their equivalence. The CFT approach reformulates the problem in terms of a conformal field theory on a Riemann surface, while the topological recursion is based on a recurrence equation for the observables representing symplectic invariants on the complex curve. The two approaches lead to two different graph expansions, one of which can be obtained as a partial resummation of the other.

  8. Primitive recursive realizability and basic propositional logic

    NARCIS (Netherlands)

    Plisko, Valery

    2007-01-01

    Two notions of primitive recursive realizability for arithmetic sentences are considered. The first one is strictly primitive recursive realizability introduced by Z. Damnjanovic in 1994. We prove that intuitionistic predicate logic is not sound with this kind of realizability. Namely there

  9. Recursion to food plants by free-ranging Bornean elephant.

    Science.gov (United States)

    English, Megan; Gillespie, Graeme; Goossens, Benoit; Ismail, Sulaiman; Ancrenaz, Marc; Linklater, Wayne

    2015-01-01

    Plant recovery rates after herbivory are thought to be a key factor driving recursion by herbivores to sites and plants to optimise resource-use but have not been investigated as an explanation for recursion in large herbivores. We investigated the relationship between plant recovery and recursion by elephants (Elephas maximus borneensis) in the Lower Kinabatangan Wildlife Sanctuary, Sabah. We identified 182 recently eaten food plants, from 30 species, along 14 × 50 m transects and measured their recovery growth each month over nine months or until they were re-browsed by elephants. The monthly growth in leaf and branch or shoot length for each plant was used to calculate the time required (months) for each species to recover to its pre-eaten length. Elephant returned to all but two transects with 10 eaten plants, a further 26 plants died leaving 146 plants that could be re-eaten. Recursion occurred to 58% of all plants and 12 of the 30 species. Seventy-seven percent of the re-eaten plants were grasses. Recovery times to all plants varied from two to twenty months depending on the species. Recursion to all grasses coincided with plant recovery whereas recursion to most browsed plants occurred four to twelve months before they had recovered to their previous length. The small sample size of many browsed plants that received recursion and uneven plant species distribution across transects limits our ability to generalise for most browsed species but a prominent pattern in plant-scale recursion did emerge. Plant recovery time was a good predictor of time to recursion but varied as a function of growth form (grass, ginger, palm, liana and woody) and differences between sites. Time to plant recursion coincided with plant recovery time for the elephant's preferred food, grasses, and perhaps also gingers, but not the other browsed species. Elephants are bulk feeders so it is likely that they time their returns to bulk feed on these grass species when quantities have

  10. A Timing-Driven Partitioning System for Multiple FPGAs

    Directory of Open Access Journals (Sweden)

    Kalapi Roy

    1996-01-01

    Full Text Available Field-programmable systems with multiple FPGAs on a PCB or an MCM are being used by system designers when a single FPGA is not sufficient. We address the problem of partitioning a large technology mapped FPGA circuit onto multiple FPGA devices of a specific target technology. The physical characteristics of the multiple FPGA system (MFS pose additional constraints to the circuit partitioning algorithms: the capacity of each FPGA, the timing constraints, the number of I/Os per FPGA, and the pre-designed interconnection patterns of each FPGA and the package. Existing partitioning techniques which minimize just the cut sizes of partitions fail to satisfy the above challenges. We therefore present a timing driven N-way partitioning algorithm based on simulated annealing for technology-mapped FPGA circuits. The signal path delays are estimated during partitioning using a timing model specific to a multiple FPGA architecture. The model combines all possible delay factors in a system with multiple FPGA chips of a target technology. Furthermore, we have incorporated a new dynamic net-weighting scheme to minimize the number of pin-outs for each chip. Finally, we have developed a graph-based global router for pin assignment which can handle the pre-routed connections of our MFS structure. In order to reduce the time spent in the simulated annealing phase of the partitioner, clusters of circuit components are identified by a new linear-time bottom-up clustering algorithm. The annealing-based N-way partitioner executes four times faster using the clusters as opposed to a flat netlist with improved partitioning results. For several industrial circuits, our approach outperforms the recursive min-cut bi-partitioning algorithm by 35% in terms of nets cut. Our approach also outperforms an industrial FPGA partitioner by 73% on average in terms of unroutable nets. Using the performance optimization capabilities in our approach we have successfully partitioned the

  11. Recursion Operators for Dispersionless KP Hierarchy

    International Nuclear Information System (INIS)

    Cheng Qiusheng; He Jingsong

    2012-01-01

    Based on the corresponding theorem between dispersionless KP (dKP) hierarchy and ħ-dependent KP (ħKP) hierarchy, a general formal representation of the recursion operators for dKP hierarchy under n-reduction is given in a systematical way from the corresponding ħKP hierarchy. To illustrate this method, the recursion operators for dKP hierarchy under 2-reduction and 3-reduction are calculated in detail.

  12. Anti-Authoritarian Metrics: Recursivity as a strategy for post-capitalism

    Directory of Open Access Journals (Sweden)

    David Adam Banks

    2016-12-01

    Full Text Available This essay proposes that those seeking to build counter-power institutions and communities learn to think in terms of what I call “recursivity.” Recursivity is an anti-authoritarian metric that helps bring about a sensitivity to feedback loops at multiple levels of organization. I begin by describing how technological systems and the socio-economic order co-constitute one-another around efficiency metrics. I then go on to define recursivity as social conditions that contain within them all of the parts and practices for their maturation and expansion, and show how organizations that demonstrate recursivity, like the historical English commons, have been marginalized or destroyed all together. Finally, I show how the ownership of property is inherently antithetical to the closed loops of recursivity. All of this is bookended by a study of urban planning’s recursive beginnings.

  13. Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers

    Directory of Open Access Journals (Sweden)

    Roberto Alonso

    2016-08-01

    Full Text Available The Domain Name System (DNS is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS. The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers.

  14. Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers.

    Science.gov (United States)

    Alonso, Roberto; Monroy, Raúl; Trejo, Luis A

    2016-08-17

    The Domain Name System (DNS) is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS). The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting) and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers.

  15. Recursive Definitions of Monadic Functions

    Directory of Open Access Journals (Sweden)

    Alexander Krauss

    2010-12-01

    Full Text Available Using standard domain-theoretic fixed-points, we present an approach for defining recursive functions that are formulated in monadic style. The method works both in the simple option monad and the state-exception monad of Isabelle/HOL's imperative programming extension, which results in a convenient definition principle for imperative programs, which were previously hard to define. For such monadic functions, the recursion equation can always be derived without preconditions, even if the function is partial. The construction is easy to automate, and convenient induction principles can be derived automatically.

  16. Real-time recursive hyperspectral sample and band processing algorithm architecture and implementation

    CERN Document Server

    Chang, Chein-I

    2017-01-01

    This book explores recursive architectures in designing progressive hyperspectral imaging algorithms. In particular, it makes progressive imaging algorithms recursive by introducing the concept of Kalman filtering in algorithm design so that hyperspectral imagery can be processed not only progressively sample by sample or band by band but also recursively via recursive equations. This book can be considered a companion book of author’s books, Real-Time Progressive Hyperspectral Image Processing, published by Springer in 2016. Explores recursive structures in algorithm architecture Implements algorithmic recursive architecture in conjunction with progressive sample and band processing Derives Recursive Hyperspectral Sample Processing (RHSP) techniques according to Band-Interleaved Sample/Pixel (BIS/BIP) acquisition format Develops Recursive Hyperspectral Band Processing (RHBP) techniques according to Band SeQuential (BSQ) acquisition format for hyperspectral data.

  17. A Group Theoretic Approach to Metaheuristic Local Search for Partitioning Problems

    Science.gov (United States)

    2005-05-01

    Tabu Search. Mathematical and Computer Modeling 39: 599-616. 107 Daskin , M.S., E. Stern. 1981. A Hierarchical Objective Set Covering Model for EMS... A Group Theoretic Approach to Metaheuristic Local Search for Partitioning Problems by Gary W. Kinney Jr., B.G.S., M.S. Dissertation Presented to the...DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited The University of Texas at Austin May, 2005 20050504 002 REPORT

  18. Improved Undecidability Results for Reachability Games on Recursive Timed Automata

    Directory of Open Access Journals (Sweden)

    Shankara Narayanan Krishna

    2014-08-01

    Full Text Available We study reachability games on recursive timed automata (RTA that generalize Alur-Dill timed automata with recursive procedure invocation mechanism similar to recursive state machines. It is known that deciding the winner in reachability games on RTA is undecidable for automata with two or more clocks, while the problem is decidable for automata with only one clock. Ouaknine and Worrell recently proposed a time-bounded theory of real-time verification by claiming that restriction to bounded-time recovers decidability for several key decision problem related to real-time verification. We revisited games on recursive timed automata with time-bounded restriction in the hope of recovering decidability. However, we found that the problem still remains undecidable for recursive timed automata with three or more clocks. Using similar proof techniques we characterize a decidability frontier for a generalization of RTA to recursive stopwatch automata.

  19. Recursive tridiagonalization of infinite dimensional Hamiltonians

    International Nuclear Information System (INIS)

    Haydock, R.; Oregon Univ., Eugene, OR

    1989-01-01

    Infinite dimensional, computable, sparse Hamiltonians can be numerically tridiagonalized to finite precision using a three term recursion. Only the finite number of components whose relative magnitude is greater than the desired precision are stored at any stage in the computation. Thus the particular components stored change as the calculation progresses. This technique avoids errors due to truncation of the orbital set, and makes terminators unnecessary in the recursion method. (orig.)

  20. Recursion theory computational aspects of definability

    CERN Document Server

    Chong, Chi Tat

    2015-01-01

    This monograph presents recursion theory from a generalized and largely global point of view. A major theme is the study of the structures of degrees arising from two key notions of reducibility, the Turing degrees and the hyperdegrees, using ideas and techniques beyond those of classical recursion theory. These include structure theory, hyperarithmetic determinacy and rigidity, basis theorems, independence results on Turing degrees, as well as applications to higher randomness.

  1. Recursion to food plants by free-ranging Bornean elephant

    Directory of Open Access Journals (Sweden)

    Megan English

    2015-08-01

    Full Text Available Plant recovery rates after herbivory are thought to be a key factor driving recursion by herbivores to sites and plants to optimise resource-use but have not been investigated as an explanation for recursion in large herbivores. We investigated the relationship between plant recovery and recursion by elephants (Elephas maximus borneensis in the Lower Kinabatangan Wildlife Sanctuary, Sabah. We identified 182 recently eaten food plants, from 30 species, along 14 × 50 m transects and measured their recovery growth each month over nine months or until they were re-browsed by elephants. The monthly growth in leaf and branch or shoot length for each plant was used to calculate the time required (months for each species to recover to its pre-eaten length. Elephant returned to all but two transects with 10 eaten plants, a further 26 plants died leaving 146 plants that could be re-eaten. Recursion occurred to 58% of all plants and 12 of the 30 species. Seventy-seven percent of the re-eaten plants were grasses. Recovery times to all plants varied from two to twenty months depending on the species. Recursion to all grasses coincided with plant recovery whereas recursion to most browsed plants occurred four to twelve months before they had recovered to their previous length. The small sample size of many browsed plants that received recursion and uneven plant species distribution across transects limits our ability to generalise for most browsed species but a prominent pattern in plant-scale recursion did emerge. Plant recovery time was a good predictor of time to recursion but varied as a function of growth form (grass, ginger, palm, liana and woody and differences between sites. Time to plant recursion coincided with plant recovery time for the elephant’s preferred food, grasses, and perhaps also gingers, but not the other browsed species. Elephants are bulk feeders so it is likely that they time their returns to bulk feed on these grass species when

  2. Simple recursion relations for general field theories

    International Nuclear Information System (INIS)

    Cheung, Clifford; Shen, Chia-Hsien; Trnka, Jaroslav

    2015-01-01

    On-shell methods offer an alternative definition of quantum field theory at tree-level, replacing Feynman diagrams with recursion relations and interaction vertices with a handful of seed scattering amplitudes. In this paper we determine the simplest recursion relations needed to construct a general four-dimensional quantum field theory of massless particles. For this purpose we define a covering space of recursion relations which naturally generalizes all existing constructions, including those of BCFW and Risager. The validity of each recursion relation hinges on the large momentum behavior of an n-point scattering amplitude under an m-line momentum shift, which we determine solely from dimensional analysis, Lorentz invariance, and locality. We show that all amplitudes in a renormalizable theory are 5-line constructible. Amplitudes are 3-line constructible if an external particle carries spin or if the scalars in the theory carry equal charge under a global or gauge symmetry. Remarkably, this implies the 3-line constructibility of all gauge theories with fermions and complex scalars in arbitrary representations, all supersymmetric theories, and the standard model. Moreover, all amplitudes in non-renormalizable theories without derivative interactions are constructible; with derivative interactions, a subset of amplitudes is constructible. We illustrate our results with examples from both renormalizable and non-renormalizable theories. Our study demonstrates both the power and limitations of recursion relations as a self-contained formulation of quantum field theory.

  3. A new recursion operator for Adler's equation in the Viallet form

    International Nuclear Information System (INIS)

    Mikhailov, A.V.; Wang, J.P.

    2011-01-01

    For Adler's equation in the Viallet form and Yamilov's discretisation of the Krichever-Novikov equation we present new recursion and Hamiltonian operators. This new recursion operator and the recursion operator found in [A.V. Mikhailov, et al., Theor. Math. Phys. 167 (2011) 421, (arXiv:1004.5346)] satisfy the spectral curve associated with the equation. -- Highlights: → We present new recursion and Hamiltonian operators for the equation. → We establish the relation between this recursion operator and the known one. → The relation is given by the spectral curve associated with the equation.

  4. All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials

    Directory of Open Access Journals (Sweden)

    N. Stojanovic

    2014-09-01

    Full Text Available A simple method for approximation of all-pole recursive digital filters, directly in digital domain, is described. Transfer function of these filters, referred to as Ultraspherical filters, is controlled by order of the Ultraspherical polynomial, nu. Parameter nu, restricted to be a nonnegative real number (nu ≥ 0, controls ripple peaks in the passband of the magnitude response and enables a trade-off between the passband loss and the group delay response of the resulting filter. Chebyshev filters of the first and of the second kind, and also Legendre and Butterworth filters are shown to be special cases of these allpole recursive digital filters. Closed form equations for the computation of the filter coefficients are provided. The design technique is illustrated with examples.

  5. Recursions of Symmetry Orbits and Reduction without Reduction

    Directory of Open Access Journals (Sweden)

    Andrei A. Malykh

    2011-04-01

    Full Text Available We consider a four-dimensional PDE possessing partner symmetries mainly on the example of complex Monge-Ampère equation (CMA. We use simultaneously two pairs of symmetries related by a recursion relation, which are mutually complex conjugate for CMA. For both pairs of partner symmetries, using Lie equations, we introduce explicitly group parameters as additional variables, replacing symmetry characteristics and their complex conjugates by derivatives of the unknown with respect to group parameters. We study the resulting system of six equations in the eight-dimensional space, that includes CMA, four equations of the recursion between partner symmetries and one integrability condition of this system. We use point symmetries of this extended system for performing its symmetry reduction with respect to group parameters that facilitates solving the extended system. This procedure does not imply a reduction in the number of physical variables and hence we end up with orbits of non-invariant solutions of CMA, generated by one partner symmetry, not used in the reduction. These solutions are determined by six linear equations with constant coefficients in the five-dimensional space which are obtained by a three-dimensional Legendre transformation of the reduced extended system. We present algebraic and exponential examples of such solutions that govern Legendre-transformed Ricci-flat Kähler metrics with no Killing vectors. A similar procedure is briefly outlined for Husain equation.

  6. Updating Recursive XML Views of Relations

    DEFF Research Database (Denmark)

    Choi, Byron; Cong, Gao; Fan, Wenfei

    2009-01-01

    This paper investigates the view update problem for XML views published from relational data. We consider XML views defined in terms of mappings directed by possibly recursive DTDs compressed into DAGs and stored in relations. We provide new techniques to efficiently support XML view updates...... specified in terms of XPath expressions with recursion and complex filters. The interaction between XPath recursion and DAG compression of XML views makes the analysis of the XML view update problem rather intriguing. Furthermore, many issues are still open even for relational view updates, and need...... to be explored. In response to these, on the XML side, we revise the notion of side effects and update semantics based on the semantics of XML views, and present effecient algorithms to translate XML updates to relational view updates. On the relational side, we propose a mild condition on SPJ views, and show...

  7. Recursion complexity in cognition

    CERN Document Server

    Roeper, Thomas

    2014-01-01

    This volume focuses on recursion, highlighting its central role in modern science. It reveals a host of new theoretical arguments, philosophical perspectives, formal representations and empirical evidence from parsing, acquisition and computer models.

  8. The Method of Recursive Counting: Can one go further?

    International Nuclear Information System (INIS)

    Creutz, M.; Horvath, I.

    1993-12-01

    After a short review of the Method of Recursive Counting we introduce a general algebraic description of recursive lattice building. This provides a rigorous framework for discussion of method's limitations

  9. Video game for learning and metaphorization of recursive algorithms

    Directory of Open Access Journals (Sweden)

    Ricardo Inacio Alvares Silva

    2013-09-01

    Full Text Available The learning of recursive algorithms in computer programming is problematic, because its execution and resolution is not natural to the thinking way people are trained and used to since young. As with other topics in algorithms, we use metaphors to make parallels between the abstract and the concrete to help in understanding the operation of recursive algorithms. However, the classic metaphors employed in this area, such as calculating factorial recursively and Towers of Hanoi game, may just confuse more or be insufficient. In this work, we produced a computer game to assist students in computer courses in learning recursive algorithms. It was designed to have regular video game characteristics, with narrative and classical gameplay elements, commonly found in this kind of product. Aiding to education occurs through metaphorization, or in other words, through experiences provided by game situations that refer to recursive algorithms. To this end, we designed and imbued in the game four valid metaphors related to the theory, and other minor references to the subject.

  10. Inner and Outer Recursive Neural Networks for Chemoinformatics Applications.

    Science.gov (United States)

    Urban, Gregor; Subrahmanya, Niranjan; Baldi, Pierre

    2018-02-26

    Deep learning methods applied to problems in chemoinformatics often require the use of recursive neural networks to handle data with graphical structure and variable size. We present a useful classification of recursive neural network approaches into two classes, the inner and outer approach. The inner approach uses recursion inside the underlying graph, to essentially "crawl" the edges of the graph, while the outer approach uses recursion outside the underlying graph, to aggregate information over progressively longer distances in an orthogonal direction. We illustrate the inner and outer approaches on several examples. More importantly, we provide open-source implementations [available at www.github.com/Chemoinformatics/InnerOuterRNN and cdb.ics.uci.edu ] for both approaches in Tensorflow which can be used in combination with training data to produce efficient models for predicting the physical, chemical, and biological properties of small molecules.

  11. Recursive smoothers for hidden discrete-time Markov chains

    Directory of Open Access Journals (Sweden)

    Lakhdar Aggoun

    2005-01-01

    Full Text Available We consider a discrete-time Markov chain observed through another Markov chain. The proposed model extends models discussed by Elliott et al. (1995. We propose improved recursive formulae to update smoothed estimates of processes related to the model. These recursive estimates are used to update the parameter of the model via the expectation maximization (EM algorithm.

  12. Tracking of Multiple Moving Sources Using Recursive EM Algorithm

    Directory of Open Access Journals (Sweden)

    Böhme Johann F

    2005-01-01

    Full Text Available We deal with recursive direction-of-arrival (DOA estimation of multiple moving sources. Based on the recursive EM algorithm, we develop two recursive procedures to estimate the time-varying DOA parameter for narrowband signals. The first procedure requires no prior knowledge about the source movement. The second procedure assumes that the motion of moving sources is described by a linear polynomial model. The proposed recursion updates the polynomial coefficients when a new data arrives. The suggested approaches have two major advantages: simple implementation and easy extension to wideband signals. Numerical experiments show that both procedures provide excellent results in a slowly changing environment. When the DOA parameter changes fast or two source directions cross with each other, the procedure designed for a linear polynomial model has a better performance than the general procedure. Compared to the beamforming technique based on the same parameterization, our approach is computationally favorable and has a wider range of applications.

  13. Active control versus recursive backstepping control of a chaotic ...

    African Journals Online (AJOL)

    ... than for the recursive backstepping controllers. However, the flexibility in the choice of the control laws for recursive backstepping design gives room for further improvement in its performance and enables it to achieve the goals of stabilization and tracking. Journal of the Nigerian Association of Mathematical Physics Vol.

  14. Recognition of building group patterns in topographic maps based on graph partitioning and random forest

    Science.gov (United States)

    He, Xianjin; Zhang, Xinchang; Xin, Qinchuan

    2018-02-01

    Recognition of building group patterns (i.e., the arrangement and form exhibited by a collection of buildings at a given mapping scale) is important to the understanding and modeling of geographic space and is hence essential to a wide range of downstream applications such as map generalization. Most of the existing methods develop rigid rules based on the topographic relationships between building pairs to identify building group patterns and thus their applications are often limited. This study proposes a method to identify a variety of building group patterns that allow for map generalization. The method first identifies building group patterns from potential building clusters based on a machine-learning algorithm and further partitions the building clusters with no recognized patterns based on the graph partitioning method. The proposed method is applied to the datasets of three cities that are representative of the complex urban environment in Southern China. Assessment of the results based on the reference data suggests that the proposed method is able to recognize both regular (e.g., the collinear, curvilinear, and rectangular patterns) and irregular (e.g., the L-shaped, H-shaped, and high-density patterns) building group patterns well, given that the correctness values are consistently nearly 90% and the completeness values are all above 91% for three study areas. The proposed method shows promises in automated recognition of building group patterns that allows for map generalization.

  15. Grouped fuzzy SVM with EM-based partition of sample space for clustered microcalcification detection.

    Science.gov (United States)

    Wang, Huiya; Feng, Jun; Wang, Hongyu

    2017-07-20

    Detection of clustered microcalcification (MC) from mammograms plays essential roles in computer-aided diagnosis for early stage breast cancer. To tackle problems associated with the diversity of data structures of MC lesions and the variability of normal breast tissues, multi-pattern sample space learning is required. In this paper, a novel grouped fuzzy Support Vector Machine (SVM) algorithm with sample space partition based on Expectation-Maximization (EM) (called G-FSVM) is proposed for clustered MC detection. The diversified pattern of training data is partitioned into several groups based on EM algorithm. Then a series of fuzzy SVM are integrated for classification with each group of samples from the MC lesions and normal breast tissues. From DDSM database, a total of 1,064 suspicious regions are selected from 239 mammography, and the measurement of Accuracy, True Positive Rate (TPR), False Positive Rate (FPR) and EVL = TPR* 1-FPR are 0.82, 0.78, 0.14 and 0.72, respectively. The proposed method incorporates the merits of fuzzy SVM and multi-pattern sample space learning, decomposing the MC detection problem into serial simple two-class classification. Experimental results from synthetic data and DDSM database demonstrate that our integrated classification framework reduces the false positive rate significantly while maintaining the true positive rate.

  16. Discovery of a Recursive Principle: An Artificial Grammar Investigation of Human Learning of a Counting Recursion Language.

    Science.gov (United States)

    Cho, Pyeong Whan; Szkudlarek, Emily; Tabor, Whitney

    2016-01-01

    Learning is typically understood as a process in which the behavior of an organism is progressively shaped until it closely approximates a target form. It is easy to comprehend how a motor skill or a vocabulary can be progressively learned-in each case, one can conceptualize a series of intermediate steps which lead to the formation of a proficient behavior. With grammar, it is more difficult to think in these terms. For example, center embedding recursive structures seem to involve a complex interplay between multiple symbolic rules which have to be in place simultaneously for the system to work at all, so it is not obvious how the mechanism could gradually come into being. Here, we offer empirical evidence from a new artificial language (or "artificial grammar") learning paradigm, Locus Prediction, that, despite the conceptual conundrum, recursion acquisition occurs gradually, at least for a simple formal language. In particular, we focus on a variant of the simplest recursive language, a (n) b (n) , and find evidence that (i) participants trained on two levels of structure (essentially ab and aabb) generalize to the next higher level (aaabbb) more readily than participants trained on one level of structure (ab) combined with a filler sentence; nevertheless, they do not generalize immediately; (ii) participants trained up to three levels (ab, aabb, aaabbb) generalize more readily to four levels than participants trained on two levels generalize to three; (iii) when we present the levels in succession, starting with the lower levels and including more and more of the higher levels, participants show evidence of transitioning between the levels gradually, exhibiting intermediate patterns of behavior on which they were not trained; (iv) the intermediate patterns of behavior are associated with perturbations of an attractor in the sense of dynamical systems theory. We argue that all of these behaviors indicate a theory of mental representation in which recursive

  17. Symmetries and recursion operators of variable coefficient Korteweg-de Vries equations

    International Nuclear Information System (INIS)

    Baby, B.V.

    1987-01-01

    The infinitely many symmetries and recursion operators are constructed for two recently introduced variable coefficient Korteweg-de Vries equations, u t +αt n uu x +βt 2n+1 u xxx =0 and v t +βt 2n+1 (v 3 -6vv x )+(n+1)/t(xv x +2v)=0. The recursion operators are developed from Lax-pairs and this method is extended to nonisospectral problems. Olver's method of finding the existence of infinitely many symmetries for an evolution equation is found to be true for the nonisospectral case. It is found that the minimum number of different infinite sets of symmetries is the same as the number of independent similarity transformation groups associated with the given evolution equation. The relation between Painleve property and symmetries is also discussed in this paper. (author). 29 refs

  18. Recursive Algorithm For Linear Regression

    Science.gov (United States)

    Varanasi, S. V.

    1988-01-01

    Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.

  19. Recursion rules for scattering amplitudes in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Kim, C.; Nair, V.P.

    1997-01-01

    We present a functional derivation of recursion rules for scattering amplitudes in a non-Abelian gauge theory in a form valid to arbitrary loop order. The tree-level and one-loop recursion rules are explicitly displayed. copyright 1997 The American Physical Society

  20. Recursive representation of Wronskians in confluent supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Contreras-Astorga, Alonso; Schulze-Halberg, Axel

    2017-01-01

    A recursive form of arbitrary-order Wronskian associated with transformation functions in the confluent algorithm of supersymmetric quantum mechanics (SUSY) is constructed. With this recursive form regularity conditions for the generated potentials can be analyzed. Moreover, as byproducts we obtain new representations of solutions to Schrödinger equations that underwent a confluent SUSY-transformation. (paper)

  1. A strange recursion operator demystified

    International Nuclear Information System (INIS)

    Sergyeyev, A

    2005-01-01

    We show that a new integrable two-component system of KdV type studied by Karasu (Kalkanli) et al (2004 Acta Appl. Math. 83 85-94) is bi-Hamiltonian, and its recursion operator, which has a highly unusual structure of nonlocal terms, can be written as a ratio of two compatible Hamiltonian operators found by us. Using this we prove that the system in question possesses an infinite hierarchy of local commuting generalized symmetries and conserved quantities in involution, and the evolution systems corresponding to these symmetries are bi-Hamiltonian as well. We also show that upon introduction of suitable nonlocal variables the nonlocal terms of the recursion operator under study can be written in the usual form, with the integration operator D -1 x appearing in each term at most once. (letter to the editor)

  2. Cobham recursive set functions

    Czech Academy of Sciences Publication Activity Database

    Beckmann, A.; Buss, S.; Friedman, S.-D.; Müller, M.; Thapen, Neil

    2016-01-01

    Roč. 167, č. 3 (2016), s. 335-369 ISSN 0168-0072 R&D Projects: GA ČR GBP202/12/G061 Institutional support: RVO:67985840 Keywords : set function * polynomial time * Cobham recursion Subject RIV: BA - General Mathematics Impact factor: 0.647, year: 2016 http://www.sciencedirect.com/science/article/pii/S0168007215001293

  3. A Proof-Theoretic Account of Primitive Recursion and Primitive Iteration

    DEFF Research Database (Denmark)

    Cherabini, Luca; Danvy, Olivier

    2011-01-01

    We revisit both the usual ``going-up'' induction principle and Manna and Waldinger's ``going-down'' induction principle for primitive recursion,`a la Goedel, and primitive iteration, `a la Church. We use 'Kleene's trick' to show that primitive recursion and primitive iiteration are as expressive...

  4. A demonstration test of 4-group partitioning process with real high-level liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Y.; Yamaguchi, I.; Fujiwara, T.; Koizumi, H.; Tachimori, S. [Japan Atomic Energy Research Institute, Tokai-Mura, Ibaraki-Ken (Japan)

    2000-07-01

    The demonstration test of 4-Group Partitioning Process with concentrated real high-level liquid waste (HLLW) was carried out in the Partitioning Test Facility installed in a hot cell. More than 99.998% of Am and Cm were extracted from the HLLW with the organic solvent containing 0.5 M DIDPA - 0.1 M TBP, and more than 99.98% of Am and Cm were back-extracted with 4 M nitric acid. Np and Pu were extracted simultaneously, and more than 99.93% of Np and more than 99.98% of Pu were back-extracted with oxalic acid. In the denitration step for the separation of Tc and platinum group metals, more than 90% of Rh and more than 97% of Pd were precipitated. About half of Ru were remained in the de-nitrated solution, but the remaining Ru were quantitatively precipitated by neutralization of the de-nitrated solution to pH 6.7. In the adsorption step, both Sr and Cs were separated effectively. Decontamination factors for Cs and Sr were more than 10{sup 6} and 10{sup 4} respectively in all effluent samples. (authors)

  5. Cross-Validation of Survival Bump Hunting by Recursive Peeling Methods.

    Science.gov (United States)

    Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J Sunil

    2014-08-01

    We introduce a survival/risk bump hunting framework to build a bump hunting model with a possibly censored time-to-event type of response and to validate model estimates. First, we describe the use of adequate survival peeling criteria to build a survival/risk bump hunting model based on recursive peeling methods. Our method called "Patient Recursive Survival Peeling" is a rule-induction method that makes use of specific peeling criteria such as hazard ratio or log-rank statistics. Second, to validate our model estimates and improve survival prediction accuracy, we describe a resampling-based validation technique specifically designed for the joint task of decision rule making by recursive peeling (i.e. decision-box) and survival estimation. This alternative technique, called "combined" cross-validation is done by combining test samples over the cross-validation loops, a design allowing for bump hunting by recursive peeling in a survival setting. We provide empirical results showing the importance of cross-validation and replication.

  6. Recursive Cluster Elimination (RCE for classification and feature selection from gene expression data

    Directory of Open Access Journals (Sweden)

    Showe Louise C

    2007-05-01

    Full Text Available Abstract Background Classification studies using gene expression datasets are usually based on small numbers of samples and tens of thousands of genes. The selection of those genes that are important for distinguishing the different sample classes being compared, poses a challenging problem in high dimensional data analysis. We describe a new procedure for selecting significant genes as recursive cluster elimination (RCE rather than recursive feature elimination (RFE. We have tested this algorithm on six datasets and compared its performance with that of two related classification procedures with RFE. Results We have developed a novel method for selecting significant genes in comparative gene expression studies. This method, which we refer to as SVM-RCE, combines K-means, a clustering method, to identify correlated gene clusters, and Support Vector Machines (SVMs, a supervised machine learning classification method, to identify and score (rank those gene clusters for the purpose of classification. K-means is used initially to group genes into clusters. Recursive cluster elimination (RCE is then applied to iteratively remove those clusters of genes that contribute the least to the classification performance. SVM-RCE identifies the clusters of correlated genes that are most significantly differentially expressed between the sample classes. Utilization of gene clusters, rather than individual genes, enhances the supervised classification accuracy of the same data as compared to the accuracy when either SVM or Penalized Discriminant Analysis (PDA with recursive feature elimination (SVM-RFE and PDA-RFE are used to remove genes based on their individual discriminant weights. Conclusion SVM-RCE provides improved classification accuracy with complex microarray data sets when it is compared to the classification accuracy of the same datasets using either SVM-RFE or PDA-RFE. SVM-RCE identifies clusters of correlated genes that when considered together

  7. Grouping of HLW in partitioning for B/T (burning and/or transmutation) treatment with neutron reactors based on three criteria

    International Nuclear Information System (INIS)

    Kitamoto, Mulyanto; Kitamoto, Asashi

    1995-01-01

    A grouping concept of HLW in partitioning for B/T (burning and/or transmutation) treatment by fission reactor was developed in order to improve the disposal in waste management from the safety aspect. The selecting and grouping concept was proposed herein, such as Group MA1 (Np, Am, and unrecovered U and Pu), Group MA2 (Cm, and trace quantity of Cf, etc.), Group A (Tc and I), Group B (Cs and Sr) and Group R (the partitioned remains of HLW), judging from the three criteria for B/T treatment, based on (1) the concept of the potential risk estimated by the hazard index for long-term tendency based on ALI (2) the concept of the relative dose factor related to the adsorbed migration rate transferred through ground water, and (3) the concept of the decay acceleration factor, the burning and/or transmutation characteristics for recycle B/T treatment. (author)

  8. Efficient design of two-dimensional recursive digital filters. Final report

    International Nuclear Information System (INIS)

    Twogood, R.E.; Mitra, S.K.

    1980-01-01

    This report outlines the research progress during the period August 1978 to July 1979. This work can be divided into seven basic project areas. Project 1 deals with a comparative study of 2-D recursive and nonrecursive digital filters. The second project addresses a new design technique for 2-D half-plane recursive filters, and Projects 3 thru 5 deal with implementation issues. The sixth project presents our recent study of the applicability of array processors to 2-D digital signal processing. The final project involves our investigation into techniques for incorporating symmetry constraints on 2-D recursive filters in order to yield more efficient implementations

  9. Parallelizable approximate solvers for recursions arising in preconditioning

    Energy Technology Data Exchange (ETDEWEB)

    Shapira, Y. [Israel Inst. of Technology, Haifa (Israel)

    1996-12-31

    For the recursions used in the Modified Incomplete LU (MILU) preconditioner, namely, the incomplete decomposition, forward elimination and back substitution processes, a parallelizable approximate solver is presented. The present analysis shows that the solutions of the recursions depend only weakly on their initial conditions and may be interpreted to indicate that the inexact solution is close, in some sense, to the exact one. The method is based on a domain decomposition approach, suitable for parallel implementations with message passing architectures. It requires a fixed number of communication steps per preconditioned iteration, independently of the number of subdomains or the size of the problem. The overlapping subdomains are either cubes (suitable for mesh-connected arrays of processors) or constructed by the data-flow rule of the recursions (suitable for line-connected arrays with possibly SIMD or vector processors). Numerical examples show that, in both cases, the overhead in the number of iterations required for convergence of the preconditioned iteration is small relatively to the speed-up gained.

  10. Recursive estimation of the claim rates and sizes in an insurance model

    Directory of Open Access Journals (Sweden)

    Lakhdar Aggoun

    2004-01-01

    Full Text Available It is a common fact that for most classes of general insurance, many possible sources of heterogeneity of risk exist. Premium rates based on information from a heterogeneous portfolio might be quite inadequate. One way of reducing this danger is by grouping policies according to the different levels of the various risk factors involved. Using measure change techniques, we derive recursive filters and predictors for the claim rates and claim sizes for the different groups.

  11. Approximate Bayesian recursive estimation

    Czech Academy of Sciences Publication Activity Database

    Kárný, Miroslav

    2014-01-01

    Roč. 285, č. 1 (2014), s. 100-111 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Approximate parameter estimation * Bayesian recursive estimation * Kullback–Leibler divergence * Forgetting Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.038, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/karny-0425539.pdf

  12. Adaptable Iterative and Recursive Kalman Filter Schemes

    Science.gov (United States)

    Zanetti, Renato

    2014-01-01

    Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.

  13. Time-area efficient multiplier-free recursive filter architectures for FPGA implementation

    DEFF Research Database (Denmark)

    Shajaan, Mohammad; Sørensen, John Aasted

    1996-01-01

    Simultaneous design of multiplier-free recursive filters (IIR filters) and their hardware implementation in Xilinx field programmable gate array (XC4000) is presented. The hardware design methodology leads to high performance recursive filters with sampling frequencies in the interval 15-21 MHz (...

  14. All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials

    OpenAIRE

    N. Stojanovic; N. Stamenkovic; V. Stojanovic

    2014-01-01

    A simple method for approximation of all-pole recursive digital filters, directly in digital domain, is described. Transfer function of these filters, referred to as Ultraspherical filters, is controlled by order of the Ultraspherical polynomial, nu. Parameter nu, restricted to be a nonnegative real number (nu ≥ 0), controls ripple peaks in the passband of the magnitude response and enables a trade-off between the passband loss and the group delay response of the resulting filter. Chebyshev f...

  15. Language, Mind, Practice: Families of Recursive Thinking in Human Reasoning

    Science.gov (United States)

    Josephson, Marika

    2011-01-01

    In 2002, Chomsky, Hauser, and Fitch asserted that recursion may be the one aspect of the human language faculty that makes human language unique in the narrow sense--unique to language and unique to human beings. They also argue somewhat more quietly (as do Pinker and Jackendoff 2005) that recursion may be possible outside of language: navigation,…

  16. On Recursion Operator of the q -KP Hierarchy

    International Nuclear Information System (INIS)

    Tian Ke-Lei; Zhu Xiao-Ming; He Jing-Song

    2016-01-01

    It is the aim of the present article to give a general expression of flow equations of the q-KP hierarchy. The distinct difference between the q-KP hierarchy and the KP hierarchy is due to q-binomial and the action of q-shift operator θ, which originates from the Leibnitz rule of the quantum calculus. We further show that the n-reduction leads to a recursive scheme for these flow equations. The recursion operator for the flow equations of the q-KP hierarchy under the n-reduction is also derived. (paper)

  17. Recursive B-spline approximation using the Kalman filter

    Directory of Open Access Journals (Sweden)

    Jens Jauch

    2017-02-01

    Full Text Available This paper proposes a novel recursive B-spline approximation (RBA algorithm which approximates an unbounded number of data points with a B-spline function and achieves lower computational effort compared with previous algorithms. Conventional recursive algorithms based on the Kalman filter (KF restrict the approximation to a bounded and predefined interval. Conversely RBA includes a novel shift operation that enables to shift estimated B-spline coefficients in the state vector of a KF. This allows to adapt the interval in which the B-spline function can approximate data points during run-time.

  18. Proof Rules for Recursive Procedures

    NARCIS (Netherlands)

    Hesselink, Wim H.

    1993-01-01

    Four proof rules for recursive procedures in a Pascal-like language are presented. The main rule deals with total correctness and is based on results of Gries and Martin. The rule is easier to apply than Martin's. It is introduced as an extension of a specification format for Pascal-procedures, with

  19. Nonasymptotic form of the recursion relations of the three-dimensional Ising model

    International Nuclear Information System (INIS)

    Kozlovskii, M.P.

    1989-01-01

    Approximate recursion relations for the three-dimensional Ising model are obtained in the form of rapidly converging series. The representation of the recursion relations in the form of nonasymptotic series entails the abandonment of traditional perturbation theory based on a Gaussian measure density. The recursion relations proposed in the paper are used to calculate the critical exponent ν of the correlation length. It is shown that the difference form of the recursion relations leads, when higher non-Gaussian basis measures are used, to disappearance of a dependence of the critical exponent ν on s when s > 2 (s is the parameter of the division of the phase space into layers). The obtained results make it possible to calculate explicit expressions for the thermodynamic functions near the phase transition point

  20. Implant volume as a prognostic variable in brachytherapy decision-making for malignant gliomas stratified by the RTOG recursive partitioning analysis

    International Nuclear Information System (INIS)

    Videtic, Gregory M.M.; Gaspar, Laurie E.; Zamorano, Lucia; Stitt, Larry W.; Fontanesi, James; Levin, Kenneth J.

    2001-01-01

    Purpose: When an initial retrospective review of malignant glioma patients (MG) undergoing brachytherapy was carried out using the Radiation Therapy Oncology Group (RTOG) recursive partitioning analysis (RPA) criteria, it revealed that glioblastoma multiforme (GBM) cases benefit the most from implant. In the present study, we focused exclusively on these GBM patients stratified by RPA survival class and looked at the relationship between survival and implanted target volume, to distinguish the prognostic value of volume in general and for a given GBM class. Methods and Materials: Between 1991 and 1998, 75 MG patients were treated with surgery, external beam radiation, and stereotactic iodine-125 (I-125) implant. Of these, 53 patients (70.7%) had GBMs, with 52 (98%) having target volume (TV) data for analysis. Stratification by RPA criteria showed 12, 26, 13, and 1 patients in classes III to VI, respectively. For analysis purposes, classes V and VI were merged. There were 27 (51.9%) male and 25 (48.1%) female patients. Mean age was 57.5 years (range 14-79). Median Karnofsky performance status (KPS) was 90 (range 50-100). Median follow-up time was 11 months (range 2-79). Results: At analysis, 18 GBM patients (34.6%) were alive and 34 (65.4%) were dead. Two-year and 5-year survivals were 42% and 17.5%, respectively, with a median survival time (MST) of 16 months. Two-year survivals and MSTs for the implanted GBM patients compared to the RTOG database were as follows: 74% vs. 35% and 28 months vs. 17.9 months for class III; 32% vs. 15% and 16 months vs. 11.1 months for class IV; 29% vs. 6% and 11 months vs. 8.9 months for class V/VI. Mean implanted TV was 15.5 cc (range 0.8-78), which corresponds to a spherical implant diameter of 3.1 cm. Plotting survival as a function of 5-cc TV increments suggested a trend toward poorer survival as the implanted volume increases. The impact of incremental changes in TV on survival within a given RPA class of GBMs was compared to the

  1. The recursive solution of the Schroedinger equation

    International Nuclear Information System (INIS)

    Haydock, R.

    The transformation of an arbitrary quantum model and its subsequent analysis is proposed. The chain expresses mathematically the physical concept of local environment. The recursive transformation yields analytic chains for some systems, but it is also convenient and efficient for constructing numerical chain models enabling the solution of problems which are too big for numerical matrix methods. The chain model sugests new approach to quantum mechanical models. Because of the simple solution of chain models, the qualitative behaviour of different physical properties can be determined. Unlike many methods for solving quantum models, one has rigorous results about the convergence of approximation. Because they are defined recursively, the approsimations are suited to computation. (Ha)

  2. A recursive Monte Carlo method for estimating importance functions in deep penetration problems

    International Nuclear Information System (INIS)

    Goldstein, M.

    1980-04-01

    A pratical recursive Monte Carlo method for estimating the importance function distribution, aimed at importance sampling for the solution of deep penetration problems in three-dimensional systems, was developed. The efficiency of the recursive method was investigated for sample problems including one- and two-dimensional, monoenergetic and and multigroup problems, as well as for a practical deep-penetration problem with streaming. The results of the recursive Monte Carlo calculations agree fairly well with Ssub(n) results. It is concluded that the recursive Monte Carlo method promises to become a universal method for estimating the importance function distribution for the solution of deep-penetration problems, in all kinds of systems: for many systems the recursive method is likely to be more efficient than previously existing methods; for three-dimensional systems it is the first method that can estimate the importance function with the accuracy required for an efficient solution based on importance sampling of neutron deep-penetration problems in those systems

  3. Recursion relations for AdS/CFT correlators

    International Nuclear Information System (INIS)

    Raju, Suvrat

    2011-01-01

    We expand on the results of our recent letter [Phys. Rev. Lett. 106, 091601 (2011)], where we presented new recursion relations for correlation functions of the stress-tensor and conserved currents in conformal field theories with an AdS d+1 dual for d≥4. These recursion relations are derived by generalizing the Britto-Cachazo-Feng-Witten (BCFW) relations to amplitudes in anti-de Sitter space (AdS) that are dual to boundary correlators, and are usually computed perturbatively by Witten diagrams. Our results relate vacuum-correlation functions to integrated products of lower-point transition amplitudes, which correspond to correlators calculated between states dual to certain normalizable modes. We show that the set of ''polarization vectors'' for which amplitudes behave well under the BCFW extension is smaller than in flat-space. We describe how transition amplitudes for more general external polarizations can be constructed by combining answers obtained by different pairs of BCFW shifts. We then generalize these recursion relations to supersymmetric theories. In AdS, unlike flat-space, even maximal supersymmetry is insufficient to permit the computation of all correlators of operators in the same multiplet as a stress-tensor or conserved current. Finally, we work out some simple examples to verify our results.

  4. Recursion theory for metamathematics

    CERN Document Server

    Smullyan, Raymond M

    1993-01-01

    This work is a sequel to the author''s Godel''s Incompleteness Theorems, though it can be read independently by anyone familiar with Godel''s incompleteness theorem for Peano arithmetic. The book deals mainly with those aspects of recursion theory that have applications to the metamathematics of incompleteness, undecidability, and related topics. It is both an introduction to the theory and a presentation of new results in the field.

  5. An Integrated Approach for Non-Recursive Formulation of Connection-Coefficients of Orthogonal Functions

    Directory of Open Access Journals (Sweden)

    Monika GARG

    2012-08-01

    Full Text Available In this paper, an integrated approach is proposed for non-recursive formulation of connection coefficients of different orthogonal functions in terms of a generic orthogonal function. The application of these coefficients arises when the product of two orthogonal basis functions are to be expressed in terms of single basis functions. Two significant advantages are achieved; one, the non-recursive formulations avoid memory and stack overflows in computer implementations; two, the integrated approach provides for digital hardware once-designed can be used for different functions. Computational savings achieved with the proposed non-recursive formulation vis-à-vis recursive formulation, reported in the literature so far, have been demonstrated using MATLAB PROFILER.

  6. Group theoretic reduction of Laplacian dynamical problems on fractal lattices

    International Nuclear Information System (INIS)

    Schwalm, W.A.; Schwalm, M.K.; Giona, M.

    1997-01-01

    Discrete forms of the Schroedinger equation, the diffusion equation, the linearized Landau-Ginzburg equation, and discrete models for vibrations and spin dynamics belong to a class of Laplacian-based finite difference models. Real-space renormalization of such models on finitely ramified regular fractals is known to give exact recursion relations. It is shown that these recursions commute with Lie groups representing continuous symmetries of the discrete models. Each such symmetry reduces the order of the renormalization recursions by one, resulting in a system of recursions with one fewer variable. Group trajectories are obtained from inverse images of fixed and invariant sets of the recursions. A subset of the Laplacian finite difference models can be mapped by change of boundary conditions and time dependence to a diffusion problem with closed boundaries. In such cases conservation of mass simplifies the group flow and obtaining the groups becomes easier. To illustrate this, the renormalization recursions for Green functions on four standard examples are decoupled. The examples are (1) the linear chain, (2) an anisotropic version of Dhar close-quote s 3-simplex, similar to a model dealt with by Hood and Southern, (3) the fourfold coordinated Sierpiacute nski lattice of Rammal and of Domany et al., and (4) a form of the Vicsek lattice. Prospects for applying the group theoretic method to more general dynamical systems are discussed. copyright 1997 The American Physical Society

  7. A Revised Piecewise Linear Recursive Convolution FDTD Method for Magnetized Plasmas

    International Nuclear Information System (INIS)

    Liu Song; Zhong Shuangying; Liu Shaobin

    2005-01-01

    The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method improves accuracy over the original recursive convolution (RC) FDTD approach and current density convolution (JEC) but retains their advantages in speed and efficiency. This paper describes a revised piecewise linear recursive convolution PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time, enabling the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations of the reflection and transmission coefficients through a magnetized plasma layer. The results show that the revised PLRC-FDTD method has improved the accuracy over the original RC FDTD method and JEC FDTD method

  8. Multiple Attribute Group Decision-Making Methods Based on Trapezoidal Fuzzy Two-Dimensional Linguistic Partitioned Bonferroni Mean Aggregation Operators.

    Science.gov (United States)

    Yin, Kedong; Yang, Benshuo; Li, Xuemei

    2018-01-24

    In this paper, we investigate multiple attribute group decision making (MAGDM) problems where decision makers represent their evaluation of alternatives by trapezoidal fuzzy two-dimensional uncertain linguistic variable. To begin with, we introduce the definition, properties, expectation, operational laws of trapezoidal fuzzy two-dimensional linguistic information. Then, to improve the accuracy of decision making in some case where there are a sort of interrelationship among the attributes, we analyze partition Bonferroni mean (PBM) operator in trapezoidal fuzzy two-dimensional variable environment and develop two operators: trapezoidal fuzzy two-dimensional linguistic partitioned Bonferroni mean (TF2DLPBM) aggregation operator and trapezoidal fuzzy two-dimensional linguistic weighted partitioned Bonferroni mean (TF2DLWPBM) aggregation operator. Furthermore, we develop a novel method to solve MAGDM problems based on TF2DLWPBM aggregation operator. Finally, a practical example is presented to illustrate the effectiveness of this method and analyses the impact of different parameters on the results of decision-making.

  9. A recursion relation for coefficients of fractional parentage in the seniority scheme

    International Nuclear Information System (INIS)

    Evans, T.

    1985-01-01

    A recursion relations for coefficients as fractional parentage in the seniority scheme are discussed. Determinated dependence of recursion relations from the particle number permit to evaluate matrix elements of creation and annihilation operators for fermions or bosons. 10 refs. (author)

  10. Recursive Neural Networks in Quark/Gluon Tagging

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Vidyo contribution Based on the natural tree-like structure of jet sequential clustering, the recursive neural networks (RecNNs) embed jet clustering history recursively as in natural language processing. We explore the performance of RecNN in quark/gluon discrimination. The results show that RecNNs work better than the baseline BDT by a few percent in gluon rejection at the working point of 50\\% quark acceptance. We also experimented on some relevant aspects which might influence the performance of networks. It shows that even only particle flow identification as input feature without any extra information on momentum or angular position is already giving a fairly good result, which indicates that most of the information for q/g discrimination is already included in the tree-structure itself.

  11. Lessons in Contingent, Recursive Humility

    Science.gov (United States)

    Vagle, Mark D.

    2011-01-01

    In this article, the author argues that critical work in teacher education should begin with teacher educators turning a critical eye on their own practices. The author uses Lesko's conception of contingent, recursive growth and change to analyze a lesson he observed as part of a phenomenological study aimed at understanding more about what it is…

  12. On the asymptotic form of the recursion method basis vectors for periodic Hamiltonians

    International Nuclear Information System (INIS)

    O'Reilly, E.P.; Weaire, D.

    1984-01-01

    The authors present the first detailed study of the recursion method basis vectors for the case of a periodic Hamiltonian. In the examples chosen, the probability density scales linearly with n as n → infinity, whenever the local density of states is bounded. Whenever it is unbounded and the recursion coefficients diverge, different scaling behaviour is found. These findings are explained and a scaling relationship between the asymptotic forms of the recursion coefficients and basis vectors is proposed. (author)

  13. COMPARISON OF RECURSIVE ESTIMATION TECHNIQUES FOR POSITION TRACKING RADIOACTIVE SOURCES

    International Nuclear Information System (INIS)

    Muske, K.; Howse, J.

    2000-01-01

    This paper compares the performance of recursive state estimation techniques for tracking the physical location of a radioactive source within a room based on radiation measurements obtained from a series of detectors at fixed locations. Specifically, the extended Kalman filter, algebraic observer, and nonlinear least squares techniques are investigated. The results of this study indicate that recursive least squares estimation significantly outperforms the other techniques due to the severe model nonlinearity

  14. Recursive Subsystems in Aphasia and Alzheimer's Disease: Case Studies in Syntax and Theory of Mind

    Science.gov (United States)

    Bánréti, Zoltán; Hoffmann, Ildikó; Vincze, Veronika

    2016-01-01

    The relationship between recursive sentence embedding and theory-of-mind (ToM) inference is investigated in three persons with Broca's aphasia, two persons with Wernicke's aphasia, and six persons with mild and moderate Alzheimer's disease (AD). We asked questions of four types about photographs of various real-life situations. Type 4 questions asked participants about intentions, thoughts, or utterances of the characters in the pictures (“What may X be thinking/asking Y to do?”). The expected answers typically involved subordinate clauses introduced by conjunctions or direct quotations of the characters' utterances. Broca's aphasics did not produce answers with recursive sentence embedding. Rather, they projected themselves into the characters' mental states and gave direct answers in the first person singular, with relevant ToM content. We call such replies “situative statements.” Where the question concerned the mental state of the character but did not require an answer with sentence embedding (“What does X hate?”), aphasics gave descriptive answers rather than situative statements. Most replies given by persons with AD to Type 4 questions were grammatical instances of recursive sentence embedding. They also gave a few situative statements but the ToM content of these was irrelevant. In more than one third of their well-formed sentence embeddings, too, they conveyed irrelevant ToM contents. Persons with moderate AD were unable to pass secondary false belief tests. The results reveal double dissociation: Broca's aphasics are unable to access recursive sentence embedding but they can make appropriate ToM inferences; moderate AD persons make the wrong ToM inferences but they are able to access recursive sentence embedding. The double dissociation may be relevant for the nature of the relationship between the two recursive capacities. Broca's aphasics compensated for the lack of recursive sentence embedding by recursive ToM reasoning represented in very

  15. Compact QED tree-level amplitudes from dressed BCFW recursion relations

    International Nuclear Information System (INIS)

    Badger, Simon D.; Henn, Johannes M.

    2010-05-01

    We construct a modified on-shell BCFW recursion relation to derive compact analytic representations of tree-level amplitudes in QED. As an application, we study the amplitudes of a fermion pair coupling to an arbitrary number of photons and give compact formulae for the NMHV and N 2 MHV case. We demonstrate that the new recursion relation reduces the growth in complexity with additional photons to be exponential rather than factorial. (orig.)

  16. Compact QED tree-level amplitudes from dressed BCFW recursion relations

    Energy Technology Data Exchange (ETDEWEB)

    Badger, Simon D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Henn, Johannes M. [Humboldt Univ., Berlin (Germany). Inst. fuer Physik

    2010-05-15

    We construct a modified on-shell BCFW recursion relation to derive compact analytic representations of tree-level amplitudes in QED. As an application, we study the amplitudes of a fermion pair coupling to an arbitrary number of photons and give compact formulae for the NMHV and N{sup 2}MHV case. We demonstrate that the new recursion relation reduces the growth in complexity with additional photons to be exponential rather than factorial. (orig.)

  17. Quantum rings and recursion relations in 2D quantum gravity

    International Nuclear Information System (INIS)

    Kachru, S.

    1992-01-01

    This paper discusses tachyon condensate perturbations to the action of the two-dimensional string theory corresponding to the c + 1 matrix model. These are shown to deform the action of the ground ring on the tachyon modules, confirming a conjecture of Witten. The ground ring structure is used to derive recursion relations which relate (N + 1) and N tachyon bulk scattering amplitudes. These recursion relations allow one to compute all bulk amplitudes

  18. a Recursive Approach to Compute Normal Forms

    Science.gov (United States)

    HSU, L.; MIN, L. J.; FAVRETTO, L.

    2001-06-01

    Normal forms are instrumental in the analysis of dynamical systems described by ordinary differential equations, particularly when singularities close to a bifurcation are to be characterized. However, the computation of a normal form up to an arbitrary order is numerically hard. This paper focuses on the computer programming of some recursive formulas developed earlier to compute higher order normal forms. A computer program to reduce the system to its normal form on a center manifold is developed using the Maple symbolic language. However, it should be stressed that the program relies essentially on recursive numerical computations, while symbolic calculations are used only for minor tasks. Some strategies are proposed to save computation time. Examples are presented to illustrate the application of the program to obtain high order normalization or to handle systems with large dimension.

  19. Decision tree modeling using R.

    Science.gov (United States)

    Zhang, Zhongheng

    2016-08-01

    In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.

  20. Certified higher-order recursive path ordering

    NARCIS (Netherlands)

    Koprowski, A.; Pfenning, F.

    2006-01-01

    The paper reports on a formalization of a proof of wellfoundedness of the higher-order recursive path ordering (HORPO) in the proof checker Coq. The development is axiom-free and fully constructive. Three substantive parts that could be used also in other developments are the formalizations of the

  1. Chiodo formulas for the r-th roots and topological recursion

    OpenAIRE

    Lewanski, Danilo; Popolitov, Alexandr; Shadrin, Sergey; Zvonkine, Dimitri

    2015-01-01

    We analyze Chiodo's formulas for the Chern classes related to the r-th roots of the suitably twisted integer powers of the canonical class on the moduli space of curves. The intersection numbers of these classes with psi-classes are reproduced via the Chekhov-Eynard-Orantin topological recursion. As an application, we prove that the Johnson-Pandharipande-Tseng formula for the orbifold Hurwitz numbers is equivalent to the topological recursion for the orbifold Hurwitz numbers. In particular, t...

  2. Recursive relations for processes with n photons of noncommutative QED

    International Nuclear Information System (INIS)

    Jafari, Abolfazl

    2007-01-01

    Recursion relations are derived in the sense of Berends-Giele for the multi-photon processes of noncommutative QED. The relations concern purely photonic processes as well as the processes with two fermions involved, both for arbitrary number of photons at tree level. It is shown that despite of the dependence of noncommutative vertices on momentum, in contrast to momentum-independent color factors of QCD, the recursion relation method can be employed for multi-photon processes of noncommutative QED

  3. Recursive Trees for Practical ORAM

    Directory of Open Access Journals (Sweden)

    Moataz Tarik

    2015-06-01

    Full Text Available We present a new, general data structure that reduces the communication cost of recent tree-based ORAMs. Contrary to ORAM trees with constant height and path lengths, our new construction r-ORAM allows for trees with varying shorter path length. Accessing an element in the ORAM tree results in different communication costs depending on the location of the element. The main idea behind r-ORAM is a recursive ORAM tree structure, where nodes in the tree are roots of other trees. While this approach results in a worst-case access cost (tree height at most as any recent tree-based ORAM, we show that the average cost saving is around 35% for recent binary tree ORAMs. Besides reducing communication cost, r-ORAM also reduces storage overhead on the server by 4% to 20% depending on the ORAM’s client memory type. To prove r-ORAM’s soundness, we conduct a detailed overflow analysis. r-ORAM’s recursive approach is general in that it can be applied to all recent tree ORAMs, both constant and poly-log client memory ORAMs. Finally, we implement and benchmark r-ORAM in a practical setting to back up our theoretical claims.

  4. Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion

    Science.gov (United States)

    Alexandrov, A.; Chapuy, G.; Eynard, B.; Harnad, J.

    2017-12-01

    A fermionic representation is given for all the quantities entering in the generating function approach to weighted Hurwitz numbers and topological recursion. This includes: KP and 2D Toda {τ} -functions of hypergeometric type, which serve as generating functions for weighted single and double Hurwitz numbers; the Baker function, which is expanded in an adapted basis obtained by applying the same dressing transformation to all vacuum basis elements; the multipair correlators and the multicurrent correlators. Multiplicative recursion relations and a linear differential system are deduced for the adapted bases and their duals, and a Christoffel-Darboux type formula is derived for the pair correlator. The quantum and classical spectral curves linking this theory with the topological recursion program are derived, as well as the generalized cut-and-join equations. The results are detailed for four special cases: the simple single and double Hurwitz numbers, the weakly monotone case, corresponding to signed enumeration of coverings, the strongly monotone case, corresponding to Belyi curves and the simplest version of quantum weighted Hurwitz numbers.

  5. Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion

    Science.gov (United States)

    Alexandrov, A.; Chapuy, G.; Eynard, B.; Harnad, J.

    2018-06-01

    A fermionic representation is given for all the quantities entering in the generating function approach to weighted Hurwitz numbers and topological recursion. This includes: KP and 2 D Toda {τ} -functions of hypergeometric type, which serve as generating functions for weighted single and double Hurwitz numbers; the Baker function, which is expanded in an adapted basis obtained by applying the same dressing transformation to all vacuum basis elements; the multipair correlators and the multicurrent correlators. Multiplicative recursion relations and a linear differential system are deduced for the adapted bases and their duals, and a Christoffel-Darboux type formula is derived for the pair correlator. The quantum and classical spectral curves linking this theory with the topological recursion program are derived, as well as the generalized cut-and-join equations. The results are detailed for four special cases: the simple single and double Hurwitz numbers, the weakly monotone case, corresponding to signed enumeration of coverings, the strongly monotone case, corresponding to Belyi curves and the simplest version of quantum weighted Hurwitz numbers.

  6. Coding Partitions

    Directory of Open Access Journals (Sweden)

    Fabio Burderi

    2007-05-01

    Full Text Available Motivated by the study of decipherability conditions for codes weaker than Unique Decipherability (UD, we introduce the notion of coding partition. Such a notion generalizes that of UD code and, for codes that are not UD, allows to recover the ``unique decipherability" at the level of the classes of the partition. By tacking into account the natural order between the partitions, we define the characteristic partition of a code X as the finest coding partition of X. This leads to introduce the canonical decomposition of a code in at most one unambiguouscomponent and other (if any totally ambiguouscomponents. In the case the code is finite, we give an algorithm for computing its canonical partition. This, in particular, allows to decide whether a given partition of a finite code X is a coding partition. This last problem is then approached in the case the code is a rational set. We prove its decidability under the hypothesis that the partition contains a finite number of classes and each class is a rational set. Moreover we conjecture that the canonical partition satisfies such a hypothesis. Finally we consider also some relationships between coding partitions and varieties of codes.

  7. Recursive Subspace Identification of AUV Dynamic Model under General Noise Assumption

    Directory of Open Access Journals (Sweden)

    Zheping Yan

    2014-01-01

    Full Text Available A recursive subspace identification algorithm for autonomous underwater vehicles (AUVs is proposed in this paper. Due to the advantages at handling nonlinearities and couplings, the AUV model investigated here is for the first time constructed as a Hammerstein model with nonlinear feedback in the linear part. To better take the environment and sensor noises into consideration, the identification problem is concerned as an errors-in-variables (EIV one which means that the identification procedure is under general noise assumption. In order to make the algorithm recursively, propagator method (PM based subspace approach is extended into EIV framework to form the recursive identification method called PM-EIV algorithm. With several identification experiments carried out by the AUV simulation platform, the proposed algorithm demonstrates its effectiveness and feasibility.

  8. A recursive reduction of tensor Feynman integrals

    International Nuclear Information System (INIS)

    Diakonidis, T.; Riemann, T.; Tausk, J.B.; Fleischer, J.

    2009-07-01

    We perform a recursive reduction of one-loop n-point rank R tensor Feynman integrals [in short: (n,R)-integrals] for n≤6 with R≤n by representing (n,R)-integrals in terms of (n,R-1)- and (n-1,R-1)-integrals. We use the known representation of tensor integrals in terms of scalar integrals in higher dimension, which are then reduced by recurrence relations to integrals in generic dimension. With a systematic application of metric tensor representations in terms of chords, and by decomposing and recombining these representations, we find the recursive reduction for the tensors. The procedure represents a compact, sequential algorithm for numerical evaluations of tensor Feynman integrals appearing in next-to-leading order contributions to massless and massive three- and four-particle production at LHC and ILC, as well as at meson factories. (orig.)

  9. The Paradigm Recursion: Is It More Accessible When Introduced in Middle School?

    Science.gov (United States)

    Gunion, Katherine; Milford, Todd; Stege, Ulrike

    2009-01-01

    Recursion is a programming paradigm as well as a problem solving strategy thought to be very challenging to grasp for university students. This article outlines a pilot study, which expands the age range of students exposed to the concept of recursion in computer science through instruction in a series of interesting and engaging activities. In…

  10. Decidability and Expressiveness of Recursive Weighted Logic

    DEFF Research Database (Denmark)

    Xue, Bingtian; Larsen, Kim Guldstrand; Mardare, Radu Iulian

    2014-01-01

    Labelled weighted transition systems (LWSs) are transition systems labelled with actions and real numbers. The numbers represent the costs of the corresponding actions in terms of resources. RecursiveWeighted Logic (RWL) is a multimodal logic that expresses qualitative and quantitative properties...

  11. PAQ: Partition Analysis of Quasispecies.

    Science.gov (United States)

    Baccam, P; Thompson, R J; Fedrigo, O; Carpenter, S; Cornette, J L

    2001-01-01

    The complexities of genetic data may not be accurately described by any single analytical tool. Phylogenetic analysis is often used to study the genetic relationship among different sequences. Evolutionary models and assumptions are invoked to reconstruct trees that describe the phylogenetic relationship among sequences. Genetic databases are rapidly accumulating large amounts of sequences. Newly acquired sequences, which have not yet been characterized, may require preliminary genetic exploration in order to build models describing the evolutionary relationship among sequences. There are clustering techniques that rely less on models of evolution, and thus may provide nice exploratory tools for identifying genetic similarities. Some of the more commonly used clustering methods perform better when data can be grouped into mutually exclusive groups. Genetic data from viral quasispecies, which consist of closely related variants that differ by small changes, however, may best be partitioned by overlapping groups. We have developed an intuitive exploratory program, Partition Analysis of Quasispecies (PAQ), which utilizes a non-hierarchical technique to partition sequences that are genetically similar. PAQ was used to analyze a data set of human immunodeficiency virus type 1 (HIV-1) envelope sequences isolated from different regions of the brain and another data set consisting of the equine infectious anemia virus (EIAV) regulatory gene rev. Analysis of the HIV-1 data set by PAQ was consistent with phylogenetic analysis of the same data, and the EIAV rev variants were partitioned into two overlapping groups. PAQ provides an additional tool which can be used to glean information from genetic data and can be used in conjunction with other tools to study genetic similarities and genetic evolution of viral quasispecies.

  12. Empirical constraints on partitioning of platinum group elements between Cr-spinel and primitive terrestrial magmas

    Science.gov (United States)

    Park, Jung-Woo; Kamenetsky, Vadim; Campbell, Ian; Park, Gyuseung; Hanski, Eero; Pushkarev, Evgeny

    2017-11-01

    Recent experimental studies and in situ LA-ICP-MS analysis on natural Cr-spinel have shown that Rh and IPGEs (Ir-group platinum group elements: Ru, Ir, Os) are enriched in the lattice of Cr-spinel. However, the factors controlling the partitioning behaviour of these elements are not well constrained. In this study, we report the Rh, IPGE, and trace element contents in primitive Cr-spinel, measured by LA-ICP-MS, from nine volcanic suites covering various tectonic settings including island arc picrites, boninites, large igneous province picrites and mid-ocean ridge basalts. The aim is to understand the factors controlling the enrichment of Rh and IPGEs in Cr-spinels, to estimate empirical partition coefficients between Cr-spinel and silicate melts, and to investigate the role of Cr-spinel fractional crystallization on the PGE geochemistry of primitive magmas during the early stages of fractional crystallization. There are systematic differences in trace elements, Rh and IPGEs in Cr-spinels from arc-related magmas (Arc Group Cr-spinel), intraplate magmas (Intraplate Group Cr-spinel), and mid-ocean ridge magmas (MORB Group Cr-spinel). Arc Group Cr-spinels are systematically enriched in Sc, Co and Mn and depleted in Ni compared to the MORB Group Cr-spinels. Intraplate Group Cr-spinels are distinguished from the Arc Group Cr-spinels by their high Ni contents. Both the Arc and Intraplate Group Cr-spinels have total Rh and IPGE contents of 22-689 ppb whereas the MORB Group Cr-spinels are depleted in Rh and IPGE (total time-resolved spectra of LA-ICP-MS data for Cr-spinels mostly show constant count rates for trace element and Rh and IPGEs, suggesting homogeneous distribution of these elements in Cr-spinels. The PGE spikes observed in several Cr-spinels were interpreted to be PGE-bearing mineral inclusions and excluded from calculating the PGE contents of the Cr-spinels. On primitive mantle normalized diagrams the Arc Group Cr-spinels are characterized by a fractionated

  13. Splittings of free groups, normal forms and partitions of ends

    Indian Academy of Sciences (India)

    geodesic laminations and show that this space is compact. Many of the ... determined by the partition of ends of ˜M associated to the spheres. In §4, we recall ... As is well-known we can associate to a graph a topological space. Geometrically ...

  14. Structural Group-based Auditing of Missing Hierarchical Relationships in UMLS

    Science.gov (United States)

    Chen, Yan; Gu, Huanying(Helen); Perl, Yehoshua; Geller, James

    2009-01-01

    The Metathesaurus of the UMLS was created by integrating various source terminologies. The inter-concept relationships were either integrated into the UMLS from the source terminologies or specially generated. Due to the extensive size and inherent complexity of the Metathesaurus, the accidental omission of some hierarchical relationships was inevitable. We present a recursive procedure which allows a human expert, with the support of an algorithm, to locate missing hierarchical relationships. The procedure starts with a group of concepts with exactly the same (correct) semantic type assignments. It then partitions the concepts, based on child-of hierarchical relationships, into smaller, singly rooted, hierarchically connected subgroups. The auditor only needs to focus on the subgroups with very few concepts and their concepts with semantic type reassignments. The procedure was evaluated by comparing it with a comprehensive manual audit and it exhibits a perfect error recall. PMID:18824248

  15. On semantics and applications of guarded recursion

    DEFF Research Database (Denmark)

    Bizjak, Aleš

    2016-01-01

    denotational model and a logic for reasoning about program equivalence. In the last three chapters we study syntax and semantics of a dependent type theory with a family of later modalities indexed by the set of clocks, and clock quantifiers. In the fourth and fifth chapters we provide two model constructions......In this dissertation we study applications and semantics of guarded recursion, which is a method for ensuring that self-referential descriptions of objects define a unique object. The first two chapters are devoted to applications. We use guarded recursion, first in the form of explicit step......-indexing and then in the form of the internal language of particular sheaf topos, to construct logical relations for reasoning about contextual approximation of probabilistic and nondeterministic programs. These logical relations are sound and complete and useful for showing a range of example equivalences. In the third...

  16. Recursion Of Binary Space As A Foundation Of Repeatable Programs

    Directory of Open Access Journals (Sweden)

    Jeremy Horne

    2006-10-01

    Full Text Available Every computation, including recursion, is based on natural philosophy. Our world may be expressed in terms of a binary logical space that contains functions that act simultaneously as objects and processes (operands and operators. This paper presents an outline of the results of research about that space and suggests routes for further inquiry. Binary logical space is generated sequentially from an origin in a standard coordinate system. At least one method exists to show that each of the resulting 16 functions repeats itself by repeatedly forward-feeding outputs of a function operating over two others as new operands of the original function until the original function appears as an output, thus behaving as an apparent homeostatic automaton. As any space of any dimension is composed of one or more of these functions, so the space is recursive, as well. Semantics gives meaning to recursive structures, computer programs and fundamental constituents of our universe being two examples. Such thoughts open inquiry into larger philosophical issues as free will and determinism.

  17. Spent Nuclear Fuel Reprocessing Flowsheet. A Report by the WPFC Expert Group on Chemical Partitioning of the NEA Nuclear Science Committee

    International Nuclear Information System (INIS)

    Na, Chan; Yamagishi, Isao; Choi, Yong-Joon; Glatz, Jean-Paul; Hyland, Bronwyn; Uhlir, Jan; Baron, Pascal; Warin, Dominique; De Angelis, Giorgio; Luce, Alfredo; INOUE, Tadashi; Morita, Yasuji; Minato, Kazuo; Lee, Han Soo; Ignatiev, Victor V.; Kormilitsyn, Mikhail V.; Caravaca, Concepcion; Lewin, Robert G.; Taylor, Robin J.; Collins, Emory D.; Laidler, James J.

    2012-06-01

    Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Scientific Issues of the Fuel Cycle (WPFC) has been established to co-ordinate scientific activities regarding various existing and advanced nuclear fuel cycles, including advanced reactor systems, associated chemistry and flowsheets, development and performance of fuel and materials, and accelerators and spallation targets. The WPFC has different expert groups to cover a wide range of scientific fields in the nuclear fuel cycle. The Expert Group on Chemical Partitioning was created in 2001 to (1) perform a thorough technical assessment of separations processes in application to a broad set of partitioning and transmutation (P and T) operating scenarios and (2) identify important research, development and demonstration necessary to bring preferred technologies to a deployable stage and (3) recommend collaborative international efforts to further technological development. This report aims to collect spent nuclear fuel reprocessing flowsheet of various processes developed by member states: aqueous, pyro and fluoride volatility. Contents: 1 - Hydrometallurgy process: Standard PUREX, Extended PUREX, UREX+3, Grind/Leach; 2 - Pyrometallurgy process: pyro-process (CRIEPI - Japan), 4-group partitioning process, pyro-process (KAERI - Korea), Direct electrochemical processing of metallic fuel, PyroGreen (reduce radiotoxicity to the level of low and intermediate level waste - LILW); 3 - Fluoride volatility process: Fluoride volatility process, Uranium and protactinium removal from fuel salt compositions by fluorine bubbling, Flowsheet studies on non-aqueous reprocessing of LWR/FBR spent nuclear fuel; Appendix A: Flowsheet studies of RIAR (Russian Federation), List of contributors, Members of the expert group

  18. Theory of Mind Development in Adolescence and Early Adulthood: The Growing Complexity of Recursive Thinking Ability

    Science.gov (United States)

    Valle, Annalisa; Massaro, Davide; Castelli, Ilaria; Marchetti, Antonella

    2015-01-01

    This study explores the development of theory of mind, operationalized as recursive thinking ability, from adolescence to early adulthood (N = 110; young adolescents = 47; adolescents = 43; young adults = 20). The construct of theory of mind has been operationalized in two different ways: as the ability to recognize the correct mental state of a character, and as the ability to attribute the correct mental state in order to predict the character’s behaviour. The Imposing Memory Task, with five recursive thinking levels, and a third-order false-belief task with three recursive thinking levels (devised for this study) have been used. The relationship among working memory, executive functions, and linguistic skills are also analysed. Results show that subjects exhibit less understanding of elevated recursive thinking levels (third, fourth, and fifth) compared to the first and second levels. Working memory is correlated with total recursive thinking, whereas performance on the linguistic comprehension task is related to third level recursive thinking in both theory of mind tasks. An effect of age on third-order false-belief task performance was also found. A key finding of the present study is that the third-order false-belief task shows significant age differences in the application of recursive thinking that involves the prediction of others’ behaviour. In contrast, such an age effect is not observed in the Imposing Memory Task. These results may support the extension of the investigation of the third order false belief after childhood. PMID:27247645

  19. Recursive evaluation of interaction forces of unbounded soil in time domain

    International Nuclear Information System (INIS)

    Motosaka, M.

    1987-01-01

    Recursive formulations have hardly been used in the analysis of soil-structure interaction. A notable exception is described in Verbic 1973, which corresponds to the impulse-invariant way discussed in Section 2. Section 3 describes another possibility to derive a recursive relation based on a segment approach using z-transforms. An illustrative example is examined in Section 4, and in Section 5 the number of operations is addressed. This compact paper is based on Wolf and Motosaka 1988. (orig./HP)

  20. A foundation for real recursive function theory

    NARCIS (Netherlands)

    J.F. Costa; B. S. Loff Barreto (Bruno Serra); J. Mycka

    2009-01-01

    htmlabstractThe class of recursive functions over the reals, denoted by REC(R), was introduced by Cristopher Moore in his seminal paper written in 1995. Since then many subsequent investigations brought new results: the class REC(R) was put in relation with the class of functions generated by the

  1. Step-indexed Kripke models over recursive worlds

    DEFF Research Database (Denmark)

    Birkedal, Lars; Reus, Bernhard; Schwinghammer, Jan

    2011-01-01

    worlds that are recursively defined in a category of metric spaces. In this paper, we broaden the scope of this technique from the original domain-theoretic setting to an elementary, operational one based on step indexing. The resulting method is widely applicable and leads to simple, succinct models...

  2. Testing digital recursive filtering method for radiation measurement channel using pin diode detector

    International Nuclear Information System (INIS)

    Talpalariu, C. M.; Talpalariu, J.; Popescu, O.; Mocanasu, M.; Lita, I.; Visan, D. A.

    2016-01-01

    In this work we have studied a software filtering method implemented in a pulse counting computerized measuring channel using PIN diode radiation detector. In case our interest was focalized for low rate decay radiation measurement accuracies improvement and response time optimization. During works for digital mathematical algorithm development, we used a hardware radiation measurement channel configuration based on PIN diode BPW34 detector, preamplifier, filter and programmable counter, computer connected. We report measurement results using two digital recursive methods in statically and dynamically field evolution. Software for graphical input/output real time diagram representation was designed and implemented, facilitating performances evaluation between the response of fixed configuration software recursive filter and dynamically adaptive configuration recursive filter. (authors)

  3. Algorithmic correspondence and completeness in modal logic. V. Recursive extensions of SQEMA

    DEFF Research Database (Denmark)

    Conradie, Willem; Goranko, Valentin; Vakarelov, Dimiter

    2010-01-01

    The previously introduced algorithm SQEMA computes first-order frame equivalents for modal formulae and also proves their canonicity. Here we extend SQEMA with an additional rule based on a recursive version of Ackermann's lemma, which enables the algorithm to compute local frame equivalents...... on the class of ‘recursive formulae’. We also show that a certain version of this algorithm guarantees the canonicity of the formulae on which it succeeds....

  4. String partition functions, Hilbert schemes and affine Lie algebra representations on homology groups

    International Nuclear Information System (INIS)

    Bonora, Loriano; Bytsenko, Andrey; Elizalde, Emilio

    2012-01-01

    This review paper contains a concise introduction to highest weight representations of infinite-dimensional Lie algebras, vertex operator algebras and Hilbert schemes of points, together with their physical applications to elliptic genera of superconformal quantum mechanics and superstring models. The common link of all these concepts and of the many examples considered in this paper is to be found in a very important feature of the theory of infinite-dimensional Lie algebras: the modular properties of the characters (generating functions) of certain representations. The characters of the highest weight modules represent the holomorphic parts of the partition functions on the torus for the corresponding conformal field theories. We discuss the role of the unimodular (and modular) groups and the (Selberg-type) Ruelle spectral functions of hyperbolic geometry in the calculation of elliptic genera and associated q-series. For mathematicians, elliptic genera are commonly associated with new mathematical invariants for spaces, while for physicists elliptic genera are one-loop string partition function. (Therefore, they are applicable, for instance, to topological Casimir effect calculations.) We show that elliptic genera can be conveniently transformed into product expressions, which can then inherit the homology properties of appropriate polygraded Lie algebras. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (review)

  5. Convolution of second order linear recursive sequences II.

    Directory of Open Access Journals (Sweden)

    Szakács Tamás

    2017-12-01

    Full Text Available We continue the investigation of convolutions of second order linear recursive sequences (see the first part in [1]. In this paper, we focus on the case when the characteristic polynomials of the sequences have common root.

  6. A statistical mechanical approach to restricted integer partition functions

    Science.gov (United States)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-05-01

    The main aim of this paper is twofold: (1) suggesting a statistical mechanical approach to the calculation of the generating function of restricted integer partition functions which count the number of partitions—a way of writing an integer as a sum of other integers under certain restrictions. In this approach, the generating function of restricted integer partition functions is constructed from the canonical partition functions of various quantum gases. (2) Introducing a new type of restricted integer partition functions corresponding to general statistics which is a generalization of Gentile statistics in statistical mechanics; many kinds of restricted integer partition functions are special cases of this restricted integer partition function. Moreover, with statistical mechanics as a bridge, we reveal a mathematical fact: the generating function of restricted integer partition function is just the symmetric function which is a class of functions being invariant under the action of permutation groups. Using this approach, we provide some expressions of restricted integer partition functions as examples.

  7. Exploiting fine-grain parallelism in recursive LU factorization

    KAUST Repository

    Dongarra, Jack; Faverge, Mathieu; Ltaief, Hatem; Luszczek, Piotr R.

    2012-01-01

    is the panel factorization due to its memory-bound characteristic and the atomicity of selecting the appropriate pivots. We remedy this in our new approach to LU factorization of (narrow and tall) panel submatrices. We use a parallel fine-grained recursive

  8. Recursive utility in a Markov environment with stochastic growth.

    Science.gov (United States)

    Hansen, Lars Peter; Scheinkman, José A

    2012-07-24

    Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron-Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility.

  9. A new design for SLAM front-end based on recursive SOM

    Science.gov (United States)

    Yang, Xuesi; Xia, Shengping

    2015-12-01

    Aiming at the graph optimization-based monocular SLAM, a novel design for the front-end in single camera SLAM is proposed, based on the recursive SOM. Pixel intensities are directly used to achieve image registration and motion estimation, which can save time compared with the current appearance-based frameworks, usually including feature extraction and matching. Once a key-frame is identified, a recursive SOM is used to actualize loop-closure detecting, resulting a more precise location. The experiment on a public dataset validates our method on a computer with a quicker and effective result.

  10. One loop integration with hypergeometric series by using recursion relations

    International Nuclear Information System (INIS)

    Watanabe, Norihisa; Kaneko, Toshiaki

    2014-01-01

    General one-loop integrals with arbitrary mass and kinematical parameters in d-dimensional space-time are studied. By using Bernstein theorem, a recursion relation is obtained which connects (n + 1)-point to n-point functions. In solving this recursion relation, we have shown that one-loop integrals are expressed by a newly defined hypergeometric function, which is a special case of Aomoto-Gelfand hypergeometric functions. We have also obtained coefficients of power series expansion around 4-dimensional space-time for two-, three- and four-point functions. The numerical results are compared with ''LoopTools'' for the case of two- and three-point functions as examples

  11. Recursive inverse kinematics for robot arms via Kalman filtering and Bryson-Frazier smoothing

    Science.gov (United States)

    Rodriguez, G.; Scheid, R. E., Jr.

    1987-01-01

    This paper applies linear filtering and smoothing theory to solve recursively the inverse kinematics problem for serial multilink manipulators. This problem is to find a set of joint angles that achieve a prescribed tip position and/or orientation. A widely applicable numerical search solution is presented. The approach finds the minimum of a generalized distance between the desired and the actual manipulator tip position and/or orientation. Both a first-order steepest-descent gradient search and a second-order Newton-Raphson search are developed. The optimal relaxation factor required for the steepest descent method is computed recursively using an outward/inward procedure similar to those used typically for recursive inverse dynamics calculations. The second-order search requires evaluation of a gradient and an approximate Hessian. A Gauss-Markov approach is used to approximate the Hessian matrix in terms of products of first-order derivatives. This matrix is inverted recursively using a two-stage process of inward Kalman filtering followed by outward smoothing. This two-stage process is analogous to that recently developed by the author to solve by means of spatial filtering and smoothing the forward dynamics problem for serial manipulators.

  12. Predicate Transformers for Recursive Procedures with Local Variables

    NARCIS (Netherlands)

    Hesselink, Wim H.

    1999-01-01

    The weakest precondition semantics of recursive procedures with local variables are developed for an imperative language with demonic and angelic operators for unbounded nondeterminate choice. This does not require stacking of local variables. The formalism serves as a foundation for a proof rule

  13. Recursive regularization step for high-order lattice Boltzmann methods

    Science.gov (United States)

    Coreixas, Christophe; Wissocq, Gauthier; Puigt, Guillaume; Boussuge, Jean-François; Sagaut, Pierre

    2017-09-01

    A lattice Boltzmann method (LBM) with enhanced stability and accuracy is presented for various Hermite tensor-based lattice structures. The collision operator relies on a regularization step, which is here improved through a recursive computation of nonequilibrium Hermite polynomial coefficients. In addition to the reduced computational cost of this procedure with respect to the standard one, the recursive step allows to considerably enhance the stability and accuracy of the numerical scheme by properly filtering out second- (and higher-) order nonhydrodynamic contributions in under-resolved conditions. This is first shown in the isothermal case where the simulation of the doubly periodic shear layer is performed with a Reynolds number ranging from 104 to 106, and where a thorough analysis of the case at Re=3 ×104 is conducted. In the latter, results obtained using both regularization steps are compared against the Bhatnagar-Gross-Krook LBM for standard (D2Q9) and high-order (D2V17 and D2V37) lattice structures, confirming the tremendous increase of stability range of the proposed approach. Further comparisons on thermal and fully compressible flows, using the general extension of this procedure, are then conducted through the numerical simulation of Sod shock tubes with the D2V37 lattice. They confirm the stability increase induced by the recursive approach as compared with the standard one.

  14. Unique Path Partitions

    DEFF Research Database (Denmark)

    Bessenrodt, Christine; Olsson, Jørn Børling; Sellers, James A.

    2013-01-01

    We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions.......We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions....

  15. Design and Implementation of Recursive Model Predictive Control for Permanent Magnet Synchronous Motor Drives

    Directory of Open Access Journals (Sweden)

    Xuan Wu

    2015-01-01

    Full Text Available In order to control the permanent-magnet synchronous motor system (PMSM with different disturbances and nonlinearity, an improved current control algorithm for the PMSM systems using recursive model predictive control (RMPC is developed in this paper. As the conventional MPC has to be computed online, its iterative computational procedure needs long computing time. To enhance computational speed, a recursive method based on recursive Levenberg-Marquardt algorithm (RLMA and iterative learning control (ILC is introduced to solve the learning issue in MPC. RMPC is able to significantly decrease the computation cost of traditional MPC in the PMSM system. The effectiveness of the proposed algorithm has been verified by simulation and experimental results.

  16. Recursive approach for non-Markovian time-convolutionless master equations

    Science.gov (United States)

    Gasbarri, G.; Ferialdi, L.

    2018-02-01

    We consider a general open system dynamics and we provide a recursive method to derive the associated non-Markovian master equation in a perturbative series. The approach relies on a momenta expansion of the open system evolution. Unlike previous perturbative approaches of this kind, the method presented in this paper provides a recursive definition of each perturbative term. Furthermore, we give an intuitive diagrammatic description of each term of the series, which provides a useful analytical tool to build them and to derive their structure in terms of commutators and anticommutators. We eventually apply our formalism to the evolution of the observables of the reduced system, by showing how the method can be applied to the adjoint master equation, and by developing a diagrammatic description of the associated series.

  17. Recursive Bayesian recurrent neural networks for time-series modeling.

    Science.gov (United States)

    Mirikitani, Derrick T; Nikolaev, Nikolay

    2010-02-01

    This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg-Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.

  18. Estimation of Mechanical Signals in Induction Motors using the Recursive Prediction Error Method

    DEFF Research Database (Denmark)

    Børsting, H.; Knudsen, Morten; Rasmussen, Henrik

    1993-01-01

    Sensor feedback of mechanical quantities for control applications in induction motors is troublesome and relative expensive. In this paper a recursive prediction error (RPE) method has successfully been used to estimate the angular rotor speed ........Sensor feedback of mechanical quantities for control applications in induction motors is troublesome and relative expensive. In this paper a recursive prediction error (RPE) method has successfully been used to estimate the angular rotor speed .....

  19. ETHICS AND KNOWLEDGE OF RECURSIVITY IN PSYCHOLOGISTS TRAINING

    Directory of Open Access Journals (Sweden)

    Ramón Sanz Ferramola

    2008-07-01

    Full Text Available This work deals with the characterization of psychology as a science and profession. Thisfeature is part of the Argentine academic tradition which goes from the origins of psychology as an undergraduate program by the end of the 1950s to the present day. In relation to this topic, four issues are analysed: a the knowledges of psychology showing the necessity of two epistemic dimensions closely related, namely the discursivity and recursivity, or knowledge and metaknowledge, b the role of psychology as a profession within the praxis, rather than in the poiesis, according to the Greek distinction between the implications of these two modalities of the “doing”, c the concurrence and difference of ethics and deontology, their roles, bounds and potentialities within the psychological field in general, and that of scientific-professional morality in particular, and d the definition and characterization of ethics and epistemology as knowledge of recursivity in psychologists’ training.

  20. Multiphonon theory: generalized Wick's theorem and recursion formulas

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Piepenbring, R.

    1982-04-01

    Overlaps and matrix elements of one and two-body operators are calculated in a space spanned by multiphonons of different types taking properly the Pauli principle into account. Two methods are developped: a generalized Wick's theorem dealing with new contractions and recursion formulas well suited for numerical applications

  1. Parameter Estimation of a Closed Loop Coupled Tank Time Varying System using Recursive Methods

    International Nuclear Information System (INIS)

    Basir, Siti Nora; Yussof, Hanafiah; Shamsuddin, Syamimi; Selamat, Hazlina; Zahari, Nur Ismarrubie

    2013-01-01

    This project investigates the direct identification of closed loop plant using discrete-time approach. The uses of Recursive Least Squares (RLS), Recursive Instrumental Variable (RIV) and Recursive Instrumental Variable with Centre-Of-Triangle (RIV + COT) in the parameter estimation of closed loop time varying system have been considered. The algorithms were applied in a coupled tank system that employs covariance resetting technique where the time of parameter changes occur is unknown. The performances of all the parameter estimation methods, RLS, RIV and RIV + COT were compared. The estimation of the system whose output was corrupted with white and coloured noises were investigated. Covariance resetting technique successfully executed when the parameters change. RIV + COT gives better estimates than RLS and RIV in terms of convergence and maximum overshoot

  2. Parametric output-only identification of time-varying structures using a kernel recursive extended least squares TARMA approach

    Science.gov (United States)

    Ma, Zhi-Sai; Liu, Li; Zhou, Si-Da; Yu, Lei; Naets, Frank; Heylen, Ward; Desmet, Wim

    2018-01-01

    The problem of parametric output-only identification of time-varying structures in a recursive manner is considered. A kernelized time-dependent autoregressive moving average (TARMA) model is proposed by expanding the time-varying model parameters onto the basis set of kernel functions in a reproducing kernel Hilbert space. An exponentially weighted kernel recursive extended least squares TARMA identification scheme is proposed, and a sliding-window technique is subsequently applied to fix the computational complexity for each consecutive update, allowing the method to operate online in time-varying environments. The proposed sliding-window exponentially weighted kernel recursive extended least squares TARMA method is employed for the identification of a laboratory time-varying structure consisting of a simply supported beam and a moving mass sliding on it. The proposed method is comparatively assessed against an existing recursive pseudo-linear regression TARMA method via Monte Carlo experiments and shown to be capable of accurately tracking the time-varying dynamics. Furthermore, the comparisons demonstrate the superior achievable accuracy, lower computational complexity and enhanced online identification capability of the proposed kernel recursive extended least squares TARMA approach.

  3. Kinetic partitioning mechanism of HDV ribozyme folding

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing, E-mail: wbzhang@whu.edu.cn [Department of Physics, Wuhan University, Wuhan, Hubei 430072 (China)

    2014-01-14

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  4. Recursive-operator method in vibration problems for rod systems

    Science.gov (United States)

    Rozhkova, E. V.

    2009-12-01

    Using linear differential equations with constant coefficients describing one-dimensional dynamical processes as an example, we show that the solutions of these equations and systems are related to the solution of the corresponding numerical recursion relations and one does not have to compute the roots of the corresponding characteristic equations. The arbitrary functions occurring in the general solution of the homogeneous equations are determined by the initial and boundary conditions or are chosen from various classes of analytic functions. The solutions of the inhomogeneous equations are constructed in the form of integro-differential series acting on the right-hand side of the equation, and the coefficients of the series are determined from the same recursion relations. The convergence of formal solutions as series of a more general recursive-operator construction was proved in [1]. In the special case where the solutions of the equation can be represented in separated variables, the power series can be effectively summed, i.e., expressed in terms of elementary functions, and coincide with the known solutions. In this case, to determine the natural vibration frequencies, one obtains algebraic rather than transcendental equations, which permits exactly determining the imaginary and complex roots of these equations without using the graphic method [2, pp. 448-449]. The correctness of the obtained formulas (differentiation formulas, explicit expressions for the series coefficients, etc.) can be verified directly by appropriate substitutions; therefore, we do not prove them here.

  5. Partitional clustering algorithms

    CERN Document Server

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  6. Topological recursion for Gaussian means and cohomological field theories

    Science.gov (United States)

    Andersen, J. E.; Chekhov, L. O.; Norbury, P.; Penner, R. C.

    2015-12-01

    We introduce explicit relations between genus-filtrated s-loop means of the Gaussian matrix model and terms of the genus expansion of the Kontsevich-Penner matrix model (KPMM), which is the generating function for volumes of discretized (open) moduli spaces M g,s disc (discrete volumes). Using these relations, we express Gaussian means in all orders of the genus expansion as polynomials in special times weighted by ancestor invariants of an underlying cohomological field theory. We translate the topological recursion of the Gaussian model into recurrence relations for the coefficients of this expansion, which allows proving that they are integers and positive. We find the coefficients in the first subleading order for M g,1 for all g in three ways: using the refined Harer-Zagier recursion, using the Givental-type decomposition of the KPMM, and counting diagrams explicitly.

  7. Model-based dispersive wave processing: A recursive Bayesian solution

    International Nuclear Information System (INIS)

    Candy, J.V.; Chambers, D.H.

    1999-01-01

    Wave propagation through dispersive media represents a significant problem in many acoustic applications, especially in ocean acoustics, seismology, and nondestructive evaluation. In this paper we propose a propagation model that can easily represent many classes of dispersive waves and proceed to develop the model-based solution to the wave processing problem. It is shown that the underlying wave system is nonlinear and time-variable requiring a recursive processor. Thus the general solution to the model-based dispersive wave enhancement problem is developed using a Bayesian maximum a posteriori (MAP) approach and shown to lead to the recursive, nonlinear extended Kalman filter (EKF) processor. The problem of internal wave estimation is cast within this framework. The specific processor is developed and applied to data synthesized by a sophisticated simulator demonstrating the feasibility of this approach. copyright 1999 Acoustical Society of America.

  8. The Benefits of Adaptive Partitioning for Parallel AMR Applications

    Energy Technology Data Exchange (ETDEWEB)

    Steensland, Johan [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Advanced Software Research and Development

    2008-07-01

    Parallel adaptive mesh refinement methods potentially lead to realistic modeling of complex three-dimensional physical phenomena. However, the dynamics inherent in these methods present significant challenges in data partitioning and load balancing. Significant human resources, including time, effort, experience, and knowledge, are required for determining the optimal partitioning technique for each new simulation. In reality, scientists resort to using the on-board partitioner of the computational framework, or to using the partitioning industry standard, ParMetis. Adaptive partitioning refers to repeatedly selecting, configuring and invoking the optimal partitioning technique at run-time, based on the current state of the computer and application. In theory, adaptive partitioning automatically delivers superior performance and eliminates the need for repeatedly spending valuable human resources for determining the optimal static partitioning technique. In practice, however, enabling frameworks are non-existent due to the inherent significant inter-disciplinary research challenges. This paper presents a study of a simple implementation of adaptive partitioning and discusses implied potential benefits from the perspective of common groups of users within computational science. The study is based on a large set of data derived from experiments including six real-life, multi-time-step adaptive applications from various scientific domains, five complementing and fundamentally different partitioning techniques, a large set of parameters corresponding to a wide spectrum of computing environments, and a flexible cost function that considers the relative impact of multiple partitioning metrics and diverse partitioning objectives. The results show that even a simple implementation of adaptive partitioning can automatically generate results statistically equivalent to the best static partitioning. Thus, it is possible to effectively eliminate the problem of determining the

  9. Partitioning and transmutation. Current developments - 2007. A report from the Swedish reference group on P-T-research

    International Nuclear Information System (INIS)

    Ahlstroem, Per-Eric; Blomgren, Jan; Eriksson, Marcus; Seltborg, Per; Wallenius, Jan; Westlen, Daniel

    2007-06-01

    This report is written on behalf of the Swedish reference group for research on partitioning and transmutation. The reference group has been assembled by SKB and its members represent the teams that are active in this field at Swedish universities. The present report summarises the progress in the field through the years 2004-2006. A prerequisite for transmutation by irradiation with neutrons is that the nuclides to be transmuted are separated (partitioned) from the other nuclides in the spent fuel. In particular the remaining uranium must be taken away unless you want to produce more plutonium and other transuranium elements. Separation of the various elements can at least in principle be achieved by mechanical and chemical processes. Currently there exist some large scale facilities for separation of uranium and plutonium from the spent fuel-reprocessing plants. These can, however, not separate the minor actinides - neptunium, americium and curium - from the high level waste that goes to a repository. Plutonium constitutes about 90% of the transuranium elements in fuel from light water reactors. The objective of current research on partitioning is to find and develop processes suitable for separation of the heavier actinides (and possibly some long-lived fission products) on an industrial scale. The objective of current research on transmutation is to define, investigate and develop facilities that may be suitable for transmutation of the aforementioned long-lived radionuclides. The research on partitioning has made important progress in recent years. In some cases one has succeeded to separate americium and curium. Many challenges remain however. Within hydrochemistry one has achieved sufficiently good distribution and separation factors. The focus turns now towards development of an operating process. The search for ligands that give sufficiently good extraction and separation will continue but with less intensity. The emphasis will rather be on improving

  10. Partitioning and transmutation. Current developments - 2007. A report from the Swedish reference group on P-T-research

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstroem, Per-Eric (ed.) [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Blomgren, Jan [Uppsala Univ. (Sweden). Dept. of Neutron Research; Ekberg, Christian; Englund, Sofie; Fermvik, Anna; Liljenzin, Jan-Olov; Retegan, Teodora; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden); Eriksson, Marcus; Seltborg, Per; Wallenius, Jan; Westlen, Daniel [Royal Inst. of Technology, Stockholm (Sweden)

    2007-06-15

    This report is written on behalf of the Swedish reference group for research on partitioning and transmutation. The reference group has been assembled by SKB and its members represent the teams that are active in this field at Swedish universities. The present report summarises the progress in the field through the years 2004-2006. A prerequisite for transmutation by irradiation with neutrons is that the nuclides to be transmuted are separated (partitioned) from the other nuclides in the spent fuel. In particular the remaining uranium must be taken away unless you want to produce more plutonium and other transuranium elements. Separation of the various elements can at least in principle be achieved by mechanical and chemical processes. Currently there exist some large scale facilities for separation of uranium and plutonium from the spent fuel-reprocessing plants. These can, however, not separate the minor actinides - neptunium, americium and curium - from the high level waste that goes to a repository. Plutonium constitutes about 90% of the transuranium elements in fuel from light water reactors. The objective of current research on partitioning is to find and develop processes suitable for separation of the heavier actinides (and possibly some long-lived fission products) on an industrial scale. The objective of current research on transmutation is to define, investigate and develop facilities that may be suitable for transmutation of the aforementioned long-lived radionuclides. The research on partitioning has made important progress in recent years. In some cases one has succeeded to separate americium and curium. Many challenges remain however. Within hydrochemistry one has achieved sufficiently good distribution and separation factors. The focus turns now towards development of an operating process. The search for ligands that give sufficiently good extraction and separation will continue but with less intensity. The emphasis will rather be on improving

  11. Consumption-Portfolio Optimization with Recursive Utility in Incomplete Markets

    DEFF Research Database (Denmark)

    Kraft, Holger; Seifried, Frank Thomas; Steffensen, Mogens

    2013-01-01

    In an incomplete market, we study the optimal consumption-portfolio decision of an investor with recursive preferences of Epstein–Zin type. Applying a classical dynamic programming approach, we formulate the associated Hamilton–Jacobi–Bellman equation and provide a suitable verification theorem...

  12. A recursive Formulation of the Inversion of symmetric positive defite matrices in packed storage data format

    DEFF Research Database (Denmark)

    Andersen, Bjarne Stig; Gunnels, John A.; Gustavson, Fred

    2002-01-01

    A new Recursive Packed Inverse Calculation Algorithm for symmetric positive definite matrices has been developed. The new Recursive Inverse Calculation algorithm uses minimal storage, \\$n(n+1)/2\\$, and has nearly the same performance as the LAPACK full storage algorithm using \\$n\\^2\\$ memory words...

  13. Non-abelian Z-theory: Berends-Giele recursion for the α{sup ′}-expansion of disk integrals

    Energy Technology Data Exchange (ETDEWEB)

    Mafra, Carlos R. [STAG Research Centre and Mathematical Sciences, University of Southampton,Southampton (United Kingdom); Institute for Advanced Study, School of Natural Sciences,Einstein Drive, Princeton, NJ 08540 (United States); Schlotterer, Oliver [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, 14476 Potsdam (Germany)

    2017-01-09

    We present a recursive method to calculate the α{sup ′}-expansion of disk integrals arising in tree-level scattering of open strings which resembles the approach of Berends and Giele to gluon amplitudes. Following an earlier interpretation of disk integrals as doubly partial amplitudes of an effective theory of scalars dubbed as Z-theory, we pinpoint the equation of motion of Z-theory from the Berends-Giele recursion for its tree amplitudes. A computer implementation of this method including explicit results for the recursion up to order α{sup ′7} is made available on the website repo.or.cz/BGap.git.

  14. Recursivity: A Working Paper on Rhetoric and "Mnesis"

    Science.gov (United States)

    Stormer, Nathan

    2013-01-01

    This essay proposes the genealogical study of remembering and forgetting as recursive rhetorical capacities that enable discourse to place itself in an ever-changing present. "Mnesis" is a meta-concept for the arrangements of remembering and forgetting that enable rhetoric to function. Most of the essay defines the materiality of "mnesis", first…

  15. Differential constraints for bounded recursive identification with multivariate splines

    NARCIS (Netherlands)

    De Visser, C.C.; Chu, Q.P.; Mulder, J.A.

    2011-01-01

    The ability to perform online model identification for nonlinear systems with unknown dynamics is essential to any adaptive model-based control system. In this paper, a new differential equality constrained recursive least squares estimator for multivariate simplex splines is presented that is able

  16. Isotope decay equations solved by means of a recursive method

    International Nuclear Information System (INIS)

    Grant, Carlos

    2009-01-01

    The isotope decay equations have been solved using forward finite differences taking small time steps, among other methods. This is the case of the cell code WIMS, where it is assumed that concentrations of all fissionable isotopes remain constant during the integration interval among other simplifications. Even when the problem could be solved running through a logical tree, all algorithms used for resolution of these equations used an iterative programming formulation. That happened because nearly all computer languages used up to a recent past by the scientific programmers did not support recursion, such as the case of the old versions of FORTRAN or BASIC. Nowadays also an integral form of the depletion equations is used in Monte Carlo simulation. In this paper we propose another programming solution using a recursive algorithm, running through all descendants of each isotope and adding their contributions to all isotopes in each generation. The only assumption made for this solution is that fluxes remain constant during the whole time step. Recursive process is interrupted when a stable isotope was attained or the calculated contributions are smaller than a given precision. These algorithms can be solved by means an exact analytic method that can have some problems when circular loops appear for isotopes with alpha decay, and a more general polynomial method. Both methods are shown. (author)

  17. A Grounded Theory of Western-Trained Asian Group Leaders Leading Groups in Asia

    Science.gov (United States)

    Taephant, Nattasuda; Rubel, Deborah; Champe, Julia

    2015-01-01

    This grounded theory research explored the experiences of Western-trained Asian group leaders leading groups in Asia. A total of 6 participants from Japan, Taiwan, and Thailand were interviewed 3 times over 9 months. The recursive process of data collection and analysis yielded substantive theory describing the participants' process of reconciling…

  18. BPSK Receiver Based on Recursive Adaptive Filter with Remodulation

    Directory of Open Access Journals (Sweden)

    N. Milosevic

    2011-12-01

    Full Text Available This paper proposes a new binary phase shift keying (BPSK signal receiver intended for reception under conditions of significant carrier frequency offsets. The recursive adaptive filter with least mean squares (LMS adaptation is used. The proposed receiver has a constant, defining the balance between the recursive and the nonrecursive part of the filter, whose proper choice allows a simple construction of the receiver. The correct choice of this parameter could result in unitary length of the filter. The proposed receiver has performance very close to the performance of the BPSK receiver with perfect frequency synchronization, in a wide range of frequency offsets (plus/minus quarter of the signal bandwidth. The results obtained by the software simulation are confirmed by the experimental results measured on the receiver realized with the universal software radio peripheral (USRP, with the baseband signal processing at personal computer (PC.

  19. Covariance Partition Priors: A Bayesian Approach to Simultaneous Covariance Estimation for Longitudinal Data.

    Science.gov (United States)

    Gaskins, J T; Daniels, M J

    2016-01-02

    The estimation of the covariance matrix is a key concern in the analysis of longitudinal data. When data consists of multiple groups, it is often assumed the covariance matrices are either equal across groups or are completely distinct. We seek methodology to allow borrowing of strength across potentially similar groups to improve estimation. To that end, we introduce a covariance partition prior which proposes a partition of the groups at each measurement time. Groups in the same set of the partition share dependence parameters for the distribution of the current measurement given the preceding ones, and the sequence of partitions is modeled as a Markov chain to encourage similar structure at nearby measurement times. This approach additionally encourages a lower-dimensional structure of the covariance matrices by shrinking the parameters of the Cholesky decomposition toward zero. We demonstrate the performance of our model through two simulation studies and the analysis of data from a depression study. This article includes Supplementary Material available online.

  20. Theory of Mind, linguistic recursion and autism spectrum disorder

    DEFF Research Database (Denmark)

    Polyanskaya, Irina; Blackburn, Patrick Rowan; Braüner, Torben

    2017-01-01

    In this paper we give the motivation for and discuss the design of an experiment investigating whether the acquisition of linguistic recur-sion helps children with Autism Spectrum Disorder (ASD) develop second-order false belief skills. We first present the relevant psycho-logical concepts (in...

  1. Algebraic computability and enumeration models recursion theory and descriptive complexity

    CERN Document Server

    Nourani, Cyrus F

    2016-01-01

    This book, Algebraic Computability and Enumeration Models: Recursion Theory and Descriptive Complexity, presents new techniques with functorial models to address important areas on pure mathematics and computability theory from the algebraic viewpoint. The reader is first introduced to categories and functorial models, with Kleene algebra examples for languages. Functorial models for Peano arithmetic are described toward important computational complexity areas on a Hilbert program, leading to computability with initial models. Infinite language categories are also introduced to explain descriptive complexity with recursive computability with admissible sets and urelements. Algebraic and categorical realizability is staged on several levels, addressing new computability questions with omitting types realizably. Further applications to computing with ultrafilters on sets and Turing degree computability are examined. Functorial models computability is presented with algebraic trees realizing intuitionistic type...

  2. Recursive prediction error methods for online estimation in nonlinear state-space models

    Directory of Open Access Journals (Sweden)

    Dag Ljungquist

    1994-04-01

    Full Text Available Several recursive algorithms for online, combined state and parameter estimation in nonlinear state-space models are discussed in this paper. Well-known algorithms such as the extended Kalman filter and alternative formulations of the recursive prediction error method are included, as well as a new method based on a line-search strategy. A comparison of the algorithms illustrates that they are very similar although the differences can be important for the online tracking capabilities and robustness. Simulation experiments on a simple nonlinear process show that the performance under certain conditions can be improved by including a line-search strategy.

  3. Evaluation of the Kubo formula for the conductivity using the recursion method

    International Nuclear Information System (INIS)

    Yeyati, A.L.; Weissmann, M.; Anda, E.

    1988-09-01

    We propose a numerical algorithm based on the recursion method to calculate the conductivity of a disordered system described by a tight-binding Hamiltonian. It has the advantage that the density of states and the conductivity can be obtained in a single recursion calculation. The method is applied to simple one and two-dimensional incommensurate systems in order to check the validity of the assumptions made and the numerical efficiency. The calculated conductivity shows a clear drop when the Fermi energy crosses a mobility edge. Potential applications of this work to other systems are discussed. (author). 13 refs, 9 figs

  4. Recursive estimation techniques for detection of small objects in infrared image data

    Science.gov (United States)

    Zeidler, J. R.; Soni, T.; Ku, W. H.

    1992-04-01

    This paper describes a recursive detection scheme for point targets in infrared (IR) images. Estimation of the background noise is done using a weighted autocorrelation matrix update method and the detection statistic is calculated using a recursive technique. A weighting factor allows the algorithm to have finite memory and deal with nonstationary noise characteristics. The detection statistic is created by using a matched filter for colored noise, using the estimated noise autocorrelation matrix. The relationship between the weighting factor, the nonstationarity of the noise and the probability of detection is described. Some results on one- and two-dimensional infrared images are presented.

  5. Generalized Path Analysis and Generalized Simultaneous Equations Model for Recursive Systems with Responses of Mixed Types

    Science.gov (United States)

    Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang

    2006-01-01

    This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…

  6. Analysis of litter size and average litter weight in pigs using a recursive model

    DEFF Research Database (Denmark)

    Varona, Luis; Sorensen, Daniel; Thompson, Robin

    2007-01-01

    An analysis of litter size and average piglet weight at birth in Landrace and Yorkshire using a standard two-trait mixed model (SMM) and a recursive mixed model (RMM) is presented. The RMM establishes a one-way link from litter size to average piglet weight. It is shown that there is a one......-to-one correspondence between the parameters of SMM and RMM and that they generate equivalent likelihoods. As parameterized in this work, the RMM tests for the presence of a recursive relationship between additive genetic values, permanent environmental effects, and specific environmental effects of litter size......, on average piglet weight. The equivalent standard mixed model tests whether or not the covariance matrices of the random effects have a diagonal structure. In Landrace, posterior predictive model checking supports a model without any form of recursion or, alternatively, a SMM with diagonal covariance...

  7. Explicit flow equations and recursion operator of the ncKP hierarchy

    International Nuclear Information System (INIS)

    He, Jingsong; Wang, Lihong; Tu, Junyi; Li, Xiaodong

    2011-01-01

    The explicit expression of the flow equations of the noncommutative Kadomtsev–Petviashvili (ncKP) hierarchy is derived. Compared with the flow equations of the KP hierarchy, our result shows that the additional terms in the flow equations of the ncKP hierarchy indeed consist of commutators of dynamical coordinates {u i }. The recursion operator for the flow equations under n-reduction is presented. Further, under 2-reduction, we calculate a nonlocal recursion operator Φ(2) of the noncommutative Korteweg–de Vries(ncKdV) hierarchy, which generates a hierarchy of local, higher-order flows. Thus we solve the open problem proposed by Olver and Sokolov (1998 Commun. Math. Phys. 193 245–68)

  8. Berends-Giele recursions and the BCJ duality in superspace and components

    Energy Technology Data Exchange (ETDEWEB)

    Mafra, Carlos R. [Institute for Advanced Study, School of Natural Sciences,Einstein Drive, Princeton, NJ 08540 (United States); DAMTP, University of Cambridge,Wilberforce Road, Cambridge, CB3 0WA (United Kingdom); Schlotterer, Oliver [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Muehlenberg, 14476 Potsdam (Germany)

    2016-03-15

    The recursive method of Berends and Giele to compute tree-level gluon amplitudes is revisited using the framework of ten-dimensional super Yang-Mills. First, we prove that the pure spinor formula to compute SYM tree amplitudes derived in 2010 reduces to the standard Berends-Giele formula from the 80s when restricted to gluon amplitudes and additionally determine the fermionic completion. Second, using BRST cohomology manipulations in superspace, alternative representations of the component amplitudes are explored and the Bern-Carrasco-Johansson relations among partial tree amplitudes are derived in a novel way. Finally, it is shown how the supersymmetric components of manifestly local BCJ-satisfying tree-level numerators can be computed in a recursive fashion.

  9. Berends-Giele recursions and the BCJ duality in superspace and components

    International Nuclear Information System (INIS)

    Mafra, Carlos R.; Schlotterer, Oliver

    2016-01-01

    The recursive method of Berends and Giele to compute tree-level gluon amplitudes is revisited using the framework of ten-dimensional super Yang-Mills. First, we prove that the pure spinor formula to compute SYM tree amplitudes derived in 2010 reduces to the standard Berends-Giele formula from the 80s when restricted to gluon amplitudes and additionally determine the fermionic completion. Second, using BRST cohomology manipulations in superspace, alternative representations of the component amplitudes are explored and the Bern-Carrasco-Johansson relations among partial tree amplitudes are derived in a novel way. Finally, it is shown how the supersymmetric components of manifestly local BCJ-satisfying tree-level numerators can be computed in a recursive fashion.

  10. Efficient Integrity Checking for Databases with Recursive Views

    DEFF Research Database (Denmark)

    Martinenghi, Davide; Christiansen, Henning

    2005-01-01

    Efficient and incremental maintenance of integrity constraints involving recursive views is a difficult issue that has received some attention in the past years, but for which no widely accepted solution exists yet. In this paper a technique is proposed for compiling such integrity constraints in...... approaches have not achieved comparable optimization with the same level of generality....

  11. Recursive Ultrasound Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Gammelmark, Kim; Jensen, Jørgen Arendt

    1999-01-01

    This paper presents a new imaging method, applicable for both 2D and 3D imaging. It is based on Synthetic Transmit Aperture Focusing, but unlike previous approaches a new frame is created after every pulse emission. The elements from a linear transducer array emit pulses one after another. The same...... transducer element is used after N-xmt emissions. For each emission the signals from the individual elements are beam-formed in parallel for all directions in the image. A new frame is created by adding the new RF lines to the RF lines from the previous frame. The RF data recorded at the previous emission...... with the same element are subtracted. This yields a new image after each pulse emission and can give a frame rate of e.g. 5000 images/sec. The paper gives a derivation of the recursive imaging technique and compares simulations for fast B-mode imaging with measurements. A low value of N-xmt is necessary...

  12. Recursive ultrasound imaging

    DEFF Research Database (Denmark)

    2000-01-01

    A method and an apparatus for recursive ultrasound imaging is presented. The method uses a Synthetic Transmit Aperture, but unlike previous approaches a new frame is created at every pulse emission. In receive, parallel beam forming is implemented. The beam formed RF data is added to the previously...... created RF lines. To keep the level of the signal, the RF data obtained previously, when emitting with the same element is subtracted from the RF lines. Up to 5000 frames/sec can be achieved for a tissue depth of 15 cm with a speed of sound of c = 1540 m/s. The high frame rate makes continuous imaging...... data possible, which can significantly enhance flow imaging. A point spread function 2° wide at -6 dB and grating lobes of $m(F) -50 dB is obtained with a 64 elements phased array with a central frequency ƒ¿0? = 3 MHz using a sparse transmit aperture using only 10 elements (N¿xmt? = 10) during pulse...

  13. The Free Energy in the Derrida-Retaux Recursive Model

    Science.gov (United States)

    Hu, Yueyun; Shi, Zhan

    2018-05-01

    We are interested in a simple max-type recursive model studied by Derrida and Retaux (J Stat Phys 156:268-290, 2014) in the context of a physics problem, and find a wide range for the exponent in the free energy in the nearly supercritical regime.

  14. A metric model of lambda calculus with guarded recursion

    DEFF Research Database (Denmark)

    Birkedal, Lars; Schwinghammer, Jan; Støvring, Kristian

    2010-01-01

    We give a model for Nakano’s typed lambda calculus with guarded recursive definitions in a category of metric spaces. By proving a computational adequacy result that relates the interpretation with the operational semantics, we show that the model can be used to reason about contextual equivalence....

  15. Functional Dual Adaptive Control with Recursive Gaussian Process Model

    International Nuclear Information System (INIS)

    Prüher, Jakub; Král, Ladislav

    2015-01-01

    The paper deals with dual adaptive control problem, where the functional uncertainties in the system description are modelled by a non-parametric Gaussian process regression model. Current approaches to adaptive control based on Gaussian process models are severely limited in their practical applicability, because the model is re-adjusted using all the currently available data, which keeps growing with every time step. We propose the use of recursive Gaussian process regression algorithm for significant reduction in computational requirements, thus bringing the Gaussian process-based adaptive controllers closer to their practical applicability. In this work, we design a bi-criterial dual controller based on recursive Gaussian process model for discrete-time stochastic dynamic systems given in an affine-in-control form. Using Monte Carlo simulations, we show that the proposed controller achieves comparable performance with the full Gaussian process-based controller in terms of control quality while keeping the computational demands bounded. (paper)

  16. Study of recursive model for pole-zero cancellation circuit

    International Nuclear Information System (INIS)

    Zhou Jianbin; Zhou Wei; Hong Xu; Hu Yunchuan; Wan Xinfeng; Du Xin; Wang Renbo

    2014-01-01

    The output of charge sensitive amplifier (CSA) is a negative exponential signal with long decay time which will result in undershoot after C-R differentiator. Pole-zero cancellation (PZC) circuit is often applied to eliminate undershoot in many radiation detectors. However, it is difficult to use a zero created by PZC circuit to cancel a pole in CSA output signal accurately because of the influences of electronic components inherent error and environmental factors. A novel recursive model for PZC circuit is presented based on Kirchhoff's Current Law (KCL) in this paper. The model is established by numerical differentiation algorithm between the input and the output signal. Some simulation experiments for a negative exponential signal are carried out using Visual Basic for Application (VBA) program and a real x-ray signal is also tested. Simulated results show that the recursive model can reduce the time constant of input signal and eliminate undershoot. (authors)

  17. Relationship between Maximum Principle and Dynamic Programming for Stochastic Recursive Optimal Control Problems and Applications

    Directory of Open Access Journals (Sweden)

    Jingtao Shi

    2013-01-01

    Full Text Available This paper is concerned with the relationship between maximum principle and dynamic programming for stochastic recursive optimal control problems. Under certain differentiability conditions, relations among the adjoint processes, the generalized Hamiltonian function, and the value function are given. A linear quadratic recursive utility portfolio optimization problem in the financial engineering is discussed as an explicitly illustrated example of the main result.

  18. Tracking of nuclear reactor parameters via recursive non linear estimation

    International Nuclear Information System (INIS)

    Pages Fita, J.; Alengrin, G.; Aguilar Martin, J.; Zwingelstein, M.

    1975-01-01

    The usefulness of nonlinear estimation in the supervision of nuclear reactors, as well for reactivity determination as for on-line modelisation in order to detect eventual and unwanted changes in working operation is illustrated. It is dealt with the reactivity estimation using an a priori dynamical model under the hypothesis of one group of delayed neutrons (measurements were done with an ionisation chamber). The determination of the reactivity using such measurements appears as a nonlinear estimation procedure derived from a particular form of nonlinear filter. Observed inputs being demand of power and inside temperature, and output being the reactivity balance, a recursive algorithm is derived for the estimation of the parameters that define the actual behavior of the reactor. Example of treatment of real data is given [fr

  19. Recursive deconvolution of combinatorial chemical libraries.

    OpenAIRE

    Erb, E; Janda, K D; Brenner, S

    1994-01-01

    A recursive strategy that solves for the active members of a chemical library is presented. A pentapeptide library with an alphabet of Gly, Leu, Phe, and Tyr (1024 members) was constructed on a solid support by the method of split synthesis. One member of this library (NH2-Tyr-Gly-Gly-Phe-Leu) is a native binder to a beta-endorphin antibody. A variation of the split synthesis approach is used to build the combinatorial library. In four vials, a member of the library's alphabet is coupled to a...

  20. Recursive Estimation for Dynamical Systems with Different Delay Rates Sensor Network and Autocorrelated Process Noises

    Directory of Open Access Journals (Sweden)

    Jianxin Feng

    2014-01-01

    Full Text Available The recursive estimation problem is studied for a class of uncertain dynamical systems with different delay rates sensor network and autocorrelated process noises. The process noises are assumed to be autocorrelated across time and the autocorrelation property is described by the covariances between different time instants. The system model under consideration is subject to multiplicative noises or stochastic uncertainties. The sensor delay phenomenon occurs in a random way and each sensor in the sensor network has an individual delay rate which is characterized by a binary switching sequence obeying a conditional probability distribution. By using the orthogonal projection theorem and an innovation analysis approach, the desired recursive robust estimators including recursive robust filter, predictor, and smoother are obtained. Simulation results are provided to demonstrate the effectiveness of the proposed approaches.

  1. EEG and MEG source localization using recursively applied (RAP) MUSIC

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J.C. [Los Alamos National Lab., NM (United States); Leahy, R.M. [University of Southern California, Los Angeles, CA (United States). Signal and Image Processing Inst.

    1996-12-31

    The multiple signal characterization (MUSIC) algorithm locates multiple asynchronous dipolar sources from electroencephalography (EEG) and magnetoencephalography (MEG) data. A signal subspace is estimated from the data, then the algorithm scans a single dipole model through a three-dimensional head volume and computes projections onto this subspace. To locate the sources, the user must search the head volume for local peaks in the projection metric. Here we describe a novel extension of this approach which we refer to as RAP (Recursively APplied) MUSIC. This new procedure automatically extracts the locations of the sources through a recursive use of subspace projections, which uses the metric of principal correlations as a multidimensional form of correlation analysis between the model subspace and the data subspace. The dipolar orientations, a form of `diverse polarization,` are easily extracted using the associated principal vectors.

  2. A layer model of ethanol partitioning into lipid membranes.

    Science.gov (United States)

    Nizza, David T; Gawrisch, Klaus

    2009-06-01

    The effect of membrane composition on ethanol partitioning into lipid bilayers was assessed by headspace gas chromatography. A series of model membranes with different compositions have been investigated. Membranes were exposed to a physiological ethanol concentration of 20 mmol/l. The concentration of membranes was 20 wt% which roughly corresponds to values found in tissue. Partitioning depended on the chemical nature of polar groups at the lipid/water interface. Compared to phosphatidylcholine, lipids with headgroups containing phosphatidylglycerol, phosphatidylserine, and sphingomyelin showed enhanced partitioning while headgroups containing phosphatidylethanolamine resulted in a lower partition coefficient. The molar partition coefficient was independent of a membrane's hydrophobic volume. This observation is in agreement with our previously published NMR results which showed that ethanol resides almost exclusively within the membrane/water interface. At an ethanol concentration of 20 mmol/l in water, ethanol concentrations at the lipid/water interface are in the range from 30-15 mmol/l, corresponding to one ethanol molecule per 100-200 lipids.

  3. QCD amplitudes with 2 initial spacelike legs via generalised BCFW recursion

    Energy Technology Data Exchange (ETDEWEB)

    Kutak, Krzysztof; Hameren, Andreas van; Serino, Mirko [The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342, Cracow (Poland)

    2017-02-02

    We complete the generalisation of the BCFW recursion relation to the off-shell case, allowing for the computation of tree level scattering amplitudes for full High Energy Factorisation (HEF), i.e. with both incoming partons having a non-vanishing transverse momentum. We provide explicit results for color-ordered amplitudes with two off-shell legs in massless QCD up to 4 point, continuing the program begun in two previous papers. For the 4-fermion amplitudes, which are not BCFW-recursible, we perform a diagrammatic computation, so as to offer a complete set of expressions. We explicitly show and discuss some plots of the squared 2→2 matrix elements as functions of the differences in rapidity and azimuthal angle of the final state particles.

  4. Exact partition functions for deformed N=2 theories with N_f=4 flavours

    International Nuclear Information System (INIS)

    Beccaria, Matteo; Fachechi, Alberto; Macorini, Guido; Martina, Luigi

    2016-01-01

    We consider the Ω-deformed N=2SU(2) gauge theory in four dimensions with N_f=4 massive fundamental hypermultiplets. The low energy effective action depends on the deformation parameters ε_1,ε_2, the scalar field expectation value a, and the hypermultiplet masses m=(m_1,m_2,m_3,m_4). Motivated by recent findings in the N=2"∗ theory, we explore the theories that are characterized by special fixed ratios ε_2/ε_1 and m/ε_1 and propose a simple condition on the structure of the multi-instanton contributions to the prepotential determining the effective action. This condition determines a finite set Π_N of special points such that the prepotential has N poles at fixed positions independent on the instanton number. In analogy with what happens in the N=2"∗ gauge theory, the full prepotential of the Π_N theories may be given in closed form as an explicit function of a and the modular parameter q appearing in special combinations of Eisenstein series and Jacobi theta functions with well defined modular properties. The resulting finite pole partition functions are related by AGT correspondence to special 4-point spherical conformal blocks of the Virasoro algebra. We examine in full details special cases where the closed expression of the block is known and confirms our Ansatz. We systematically study the special features of Zamolodchikov’s recursion for the Π_N conformal blocks. As a result, we provide a novel effective recursion relation that can be exactly solved and allows to prove the conjectured closed expressions analytically in the case of the Π_1 and Π_2 conformal blocks.

  5. Recursive form of general limited memory variable metric methods

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Vlček, Jan

    2013-01-01

    Roč. 49, č. 2 (2013), s. 224-235 ISSN 0023-5954 Institutional support: RVO:67985807 Keywords : unconstrained optimization * large scale optimization * limited memory methods * variable metric updates * recursive matrix formulation * algorithms Subject RIV: BA - General Mathematics Impact factor: 0.563, year: 2013 http://dml.cz/handle/10338.dmlcz/143365

  6. Active control versus recursive backstepping control of a chaotic ...

    African Journals Online (AJOL)

    In this paper active controllers and recursive backstepping controllers are designed for a third order chaotic system. The performances of these controllers in the control of the dynamics of the chaotic system are investigated numerically and are found to be effective. Comparison of their transient performances show that the ...

  7. A recursive algorithm for trees and forests

    OpenAIRE

    Guo, Song; Guo, Victor J. W.

    2017-01-01

    Trees or rooted trees have been generously studied in the literature. A forest is a set of trees or rooted trees. Here we give recurrence relations between the number of some kind of rooted forest with $k$ roots and that with $k+1$ roots on $\\{1,2,\\ldots,n\\}$. Classical formulas for counting various trees such as rooted trees, bipartite trees, tripartite trees, plane trees, $k$-ary plane trees, $k$-edge colored trees follow immediately from our recursive relations.

  8. Some recursive formulas for Selberg-type integrals

    Energy Technology Data Exchange (ETDEWEB)

    Iguri, Sergio [Instituto de AstronomIa y Fisica del Espacio (CONICET-UBA). C. C. 67, Suc. 28, 1428 Buenos Aires (Argentina); Mansour, Toufik, E-mail: siguri@iafe.uba.a, E-mail: toufik@math.haifa.ac.i [Department of Mathematics, University of Haifa, Haifa 31905 (Israel)

    2010-02-12

    A set of recursive relations satisfied by Selberg-type integrals involving monomial symmetric polynomials are derived, generalizing previous results in Aomoto (1987) SIAM J. Math. Anal. 18 545-49 and Iguri (2009) Lett. Math. Phys. 89 141-58. These formulas provide a well-defined algorithm for computing Selberg-Schur integrals whenever the Kostka numbers relating Schur functions and the corresponding monomial polynomials are explicitly known. We illustrate the usefulness of our results discussing some interesting examples.

  9. Recursive solution for dynamic response of one-dimensional structures with time-dependent boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Abadi, Mohammad Tahaye [Aerospace Research Institute, Tehran (Iran, Islamic Republic of)

    2015-10-15

    A recursive solution method is derived for the transient response of one-dimensional structures subjected to the general form of time dependent boundary conditions. Unlike previous solution methods that assumed the separation of variables, the present method involves formulating and solving the dynamic problems using the summation of two single-argument functions satisfying the motion equation. Based on boundary and initial conditions, a recursive procedure is derived to determine the single-argument functions. Such a procedure is applied to the general form of boundary conditions, and an analytical solution is derived by solving the recursive equation. The present solution method is implemented for base excitation problems, and the results are compared with those of the previous analytical solution and the Finite element (FE) analysis. The FE results converge to the present analytical solution, although considerable error is found in predicting a solution method on the basis of the separation of variables. The present analytical solution predicts the transient response for wave propagation problems in broadband excitation frequencies.

  10. Recursive solution for dynamic response of one-dimensional structures with time-dependent boundary conditions

    International Nuclear Information System (INIS)

    Abadi, Mohammad Tahaye

    2015-01-01

    A recursive solution method is derived for the transient response of one-dimensional structures subjected to the general form of time dependent boundary conditions. Unlike previous solution methods that assumed the separation of variables, the present method involves formulating and solving the dynamic problems using the summation of two single-argument functions satisfying the motion equation. Based on boundary and initial conditions, a recursive procedure is derived to determine the single-argument functions. Such a procedure is applied to the general form of boundary conditions, and an analytical solution is derived by solving the recursive equation. The present solution method is implemented for base excitation problems, and the results are compared with those of the previous analytical solution and the Finite element (FE) analysis. The FE results converge to the present analytical solution, although considerable error is found in predicting a solution method on the basis of the separation of variables. The present analytical solution predicts the transient response for wave propagation problems in broadband excitation frequencies.

  11. Output-Only Modal Parameter Recursive Estimation of Time-Varying Structures via a Kernel Ridge Regression FS-TARMA Approach

    Directory of Open Access Journals (Sweden)

    Zhi-Sai Ma

    2017-01-01

    Full Text Available Modal parameter estimation plays an important role in vibration-based damage detection and is worth more attention and investigation, as changes in modal parameters are usually being used as damage indicators. This paper focuses on the problem of output-only modal parameter recursive estimation of time-varying structures based upon parameterized representations of the time-dependent autoregressive moving average (TARMA. A kernel ridge regression functional series TARMA (FS-TARMA recursive identification scheme is proposed and subsequently employed for the modal parameter estimation of a numerical three-degree-of-freedom time-varying structural system and a laboratory time-varying structure consisting of a simply supported beam and a moving mass sliding on it. The proposed method is comparatively assessed against an existing recursive pseudolinear regression FS-TARMA approach via Monte Carlo experiments and shown to be capable of accurately tracking the time-varying dynamics in a recursive manner.

  12. Recursive representation of the torus 1-point conformal block

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew; Suchanek, Paulina

    2010-01-01

    The recursive relation for the 1-point conformal block on a torus is derived and used to prove the identities between conformal blocks recently conjectured by Poghossian in [1]. As an illustration of the efficiency of the recurrence method the modular invariance of the 1-point Liouville correlation function is numerically analyzed.

  13. Recursive subspace identification for in flight modal analysis of airplanes

    OpenAIRE

    De Cock , Katrien; Mercère , Guillaume; De Moor , Bart

    2006-01-01

    International audience; In this paper recursive subspace identification algorithms are applied to track the modal parameters of airplanes on-line during test flights. The ability to track changes in the damping ratios and the influence of the forgetting factor are studied through simulations.

  14. A new algorithm for recursive estimation of ARMA parameters in reactor noise analysis

    International Nuclear Information System (INIS)

    Tran Dinh Tri

    1992-01-01

    In this paper a new recursive algorithm for estimating the parameters of the Autoregressive Moving Average (ARMA) model from measured data is presented. The Yule-Walker equations for the case of the ARMA model are derived from the ARMA equation with innovations. The recursive algorithm is based on choosing an appropriate form of the operator functions and suitable representation of the (n + 1)-th order operator functions according to those with lower order. Two cases, when the order of the AR part is equal to that of the MA part, and the general case, were considered. (Author)

  15. A self-applicable online partial evaluator for recursive flowchart languages

    DEFF Research Database (Denmark)

    Glück, Robert

    2012-01-01

    This paper describes a self-applicable online partial evaluator for a ¿owchart language with recursive calls. Self-application of the partial evaluator yields generating extensions that are as ef¿cient as those reported in the literature for of¿ine partial evaluation. This result is remarkable...... because it has been assumed that online partial evaluation techniques unavoidably lead to inef¿cient and overgeneralized generating extensions. The purpose of this paper is not to determine which kind of partial evaluation is better, but to show how the problem can be solved by recursive polyvariant...... specialization. The design of the self-applicable online partial evaluator is based on a number of known techniques, but by combining them in a new way this result can be produced. The partial evaluator, its techniques, and its implementation are presented in full. Self-application according to all three...

  16. Effect of Strain, Region, and Tissue Composition on Glucose Partitioning in Meniscus Fibrocartilage.

    Science.gov (United States)

    Kleinhans, Kelsey L; Jackson, Alicia R

    2017-03-01

    A nearly avascular tissue, the knee meniscus relies on diffusive transport for nutritional supply to cells. Nutrient transport depends on solute partitioning in the tissue, which governs the amount of nutrients that can enter a tissue. The purpose of the present study was to investigate the effects of mechanical strain, tissue region, and tissue composition on the partition coefficient of glucose in meniscus fibrocartilage. A simple partitioning experiment was employed to measure glucose partitioning in porcine meniscus tissues from two regions (horn and central), from both meniscal components (medial and lateral), and at three levels of compression (0%, 10%, and 20%). Partition coefficient values were correlated to strain level, water volume fraction, and glycosaminoglycan (GAG) content of tissue specimens. Partition coefficient values ranged from 0.47 to 0.91 (n = 48). Results show that glucose partition coefficient is significantly (p < 0.001) affected by compression, decreasing with increasing strain. Furthermore, we did not find a statistically significant effect of tissue when comparing medial versus lateral (p = 0.181) or when comparing central and horn regions (p = 0.837). There were significant positive correlations between tissue water volume fraction and glucose partitioning for all groups. However, the correlation between GAG content and partitioning was only significant in the lateral horn group. Determining how glucose partitioning is affected by tissue composition and loading is necessary for understanding nutrient availability and related tissue health and/or degeneration. Therefore, this study is important for better understanding the transport and nutrition-related mechanisms of meniscal degeneration.

  17. Denotational semantics of recursive types in synthetic guarded domain theory

    DEFF Research Database (Denmark)

    Møgelberg, Rasmus Ejlers; Paviotti, Marco

    2016-01-01

    typed lambda calculus with fixed points). This model was intensional in that it could distinguish between computations computing the same result using a different number of fixed point unfoldings. In this work we show how also programming languages with recursive types can be given denotational...

  18. Pedestrian Path Prediction with Recursive Bayesian Filters: A Comparative Study

    NARCIS (Netherlands)

    Schneider, N.; Gavrila, D.M.

    2013-01-01

    In the context of intelligent vehicles, we perform a comparative study on recursive Bayesian filters for pedestrian path prediction at short time horizons (< 2s). We consider Extended Kalman Filters (EKF) based on single dynamical models and Interacting Multiple Models (IMM) combining several such

  19. Hierarchical Recursive Organization and the Free Energy Principle: From Biological Self-Organization to the Psychoanalytic Mind

    Directory of Open Access Journals (Sweden)

    Patrick Connolly

    2017-09-01

    Full Text Available The present paper argues that a systems theory epistemology (and particularly the notion of hierarchical recursive organization provides the critical theoretical context within which the significance of Friston's (2010a Free Energy Principle (FEP for both evolution and psychoanalysis is best understood. Within this perspective, the FEP occupies a particular level of the hierarchical organization of the organism, which is the level of biological self-organization. This form of biological self-organization is in turn understood as foundational and pervasive to the higher levels of organization of the human organism that are of interest to both neuroscience as well as psychoanalysis. Consequently, central psychoanalytic claims should be restated, in order to be located in their proper place within a hierarchical recursive organization of the (situated organism. In light of the FEP the realization of the psychoanalytic mind by the brain should be seen in terms of the evolution of different levels of systematic organization where the concepts of psychoanalysis describe a level of hierarchical recursive organization superordinate to that of biological self-organization and the FEP. The implication of this formulation is that while “psychoanalytic” mental processes are fundamentally subject to the FEP, they nonetheless also add their own principles of process over and above that of the FEP. A model found in Grobbelaar (1989 offers a recursive bottom-up description of the self-organization of the psychoanalytic ego as dependent on the organization of language (and affect, which is itself founded upon the tendency toward autopoiesis (self-making within the organism, which is in turn described as formally similar to the FEP. Meaningful consilience between Grobbelaar's model and the hierarchical recursive description available in Friston's (2010a theory is described. The paper concludes that the valuable contribution of the FEP to psychoanalysis

  20. Item-focussed Trees for the Identification of Items in Differential Item Functioning.

    Science.gov (United States)

    Tutz, Gerhard; Berger, Moritz

    2016-09-01

    A novel method for the identification of differential item functioning (DIF) by means of recursive partitioning techniques is proposed. We assume an extension of the Rasch model that allows for DIF being induced by an arbitrary number of covariates for each item. Recursive partitioning on the item level results in one tree for each item and leads to simultaneous selection of items and variables that induce DIF. For each item, it is possible to detect groups of subjects with different item difficulties, defined by combinations of characteristics that are not pre-specified. The way a DIF item is determined by covariates is visualized in a small tree and therefore easily accessible. An algorithm is proposed that is based on permutation tests. Various simulation studies, including the comparison with traditional approaches to identify items with DIF, show the applicability and the competitive performance of the method. Two applications illustrate the usefulness and the advantages of the new method.

  1. Partition thermodynamics of ionic surfactants between phosphatidylcholine vesicle and water phases

    Science.gov (United States)

    Chu, Shin-Chi; Hung, Chia-Hui; Wang, Shun-Cheng; Tsao, Heng-Kwong

    2003-08-01

    The partition of ionic surfactants (sodium alkyl sulfate and alkyl trimethyl ammonium bromide) between phosphatidylcholine vesicles and aqueous phase is investigated by simple conductometry under different temperatures. The experimental results can be well represented by the proposed regular solution theory and the thermodynamic parameters satisfy the thermodynamic consistency. The deviation from ideal partition is manifested through the effective interaction energy between lipid and surfactant wb, which is O(kT) large. It is found that wb rises as the alkyl chain is decreased for a specified head group. This is attributed to significant mismatch of chain lengths between surfactant and lipid molecules. The partition coefficient K declines with increasing temperature. The energy barrier from bilayer to aqueous phase, Δμ/kT∝ln K, is in the range of 16-26 kJ/mol. As the alkyl chain length is decreased for a given head group, Δμ is lowered by 1.3-1.5 kJ/mol per methylene group. Two independent analyses are employed to confirm this result. Using the thermodynamic parameters determined from experiments, the internal energy, entropy, and free energy of the partition process can be derived. Partition is essentially driven by the internal energy gain. The solubilizing ability, which is represented by the maximum surfactant-lipid ratio in the bilayer, Reb also decreases in accord with the K parameter. It is because the change in temperature influences the surfactant incorporation into the bilayer more than the formation of micelles.

  2. Recursive and non-linear logistic regression: moving on from the original EuroSCORE and EuroSCORE II methodologies.

    Science.gov (United States)

    Poullis, Michael

    2014-11-01

    EuroSCORE II, despite improving on the original EuroSCORE system, has not solved all the calibration and predictability issues. Recursive, non-linear and mixed recursive and non-linear regression analysis were assessed with regard to sensitivity, specificity and predictability of the original EuroSCORE and EuroSCORE II systems. The original logistic EuroSCORE, EuroSCORE II and recursive, non-linear and mixed recursive and non-linear regression analyses of these risk models were assessed via receiver operator characteristic curves (ROC) and Hosmer-Lemeshow statistic analysis with regard to the accuracy of predicting in-hospital mortality. Analysis was performed for isolated coronary artery bypass grafts (CABGs) (n = 2913), aortic valve replacement (AVR) (n = 814), mitral valve surgery (n = 340), combined AVR and CABG (n = 517), aortic (n = 350), miscellaneous cases (n = 642), and combinations of the above cases (n = 5576). The original EuroSCORE had an ROC below 0.7 for isolated AVR and combined AVR and CABG. None of the methods described increased the ROC above 0.7. The EuroSCORE II risk model had an ROC below 0.7 for isolated AVR only. Recursive regression, non-linear regression, and mixed recursive and non-linear regression all increased the ROC above 0.7 for isolated AVR. The original EuroSCORE had a Hosmer-Lemeshow statistic that was above 0.05 for all patients and the subgroups analysed. All of the techniques markedly increased the Hosmer-Lemeshow statistic. The EuroSCORE II risk model had a Hosmer-Lemeshow statistic that was significant for all patients (P linear regression failed to improve on the original Hosmer-Lemeshow statistic. The mixed recursive and non-linear regression using the EuroSCORE II risk model was the only model that produced an ROC of 0.7 or above for all patients and procedures and had a Hosmer-Lemeshow statistic that was highly non-significant. The original EuroSCORE and the EuroSCORE II risk models do not have adequate ROC and Hosmer

  3. Recursive construction of (J,L (J,L QC LDPC codes with girth 6

    Directory of Open Access Journals (Sweden)

    Mohammad Gholami

    2016-06-01

    Full Text Available ‎In this paper‎, ‎a recursive algorithm is presented to generate some exponent matrices which correspond to Tanner graphs with girth at least 6‎. ‎For a J×L J×L exponent matrix E E‎, ‎the lower bound Q(E Q(E is obtained explicitly such that (J,L (J,L QC LDPC codes with girth at least 6 exist for any circulant permutation matrix (CPM size m≥Q(E m≥Q(E‎. ‎The results show that the exponent matrices constructed with our recursive algorithm have smaller lower-bound than the ones proposed recently with girth 6‎

  4. The Lehmer Matrix and Its Recursive Analogue

    Science.gov (United States)

    2010-01-01

    LU factorization of matrix A by considering det A = det U = ∏n i=1 2i−1 i2 . The nth Catalan number is given in terms of binomial coefficients by Cn...for failing to comply with a collection of information if it does not display a currently valid OMB control number . 1. REPORT DATE 2010 2. REPORT...TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE The Lehmer matrix and its recursive analogue 5a. CONTRACT NUMBER 5b

  5. Derivation of Mayer Series from Canonical Ensemble

    International Nuclear Information System (INIS)

    Wang Xian-Zhi

    2016-01-01

    Mayer derived the Mayer series from both the canonical ensemble and the grand canonical ensemble by use of the cluster expansion method. In 2002, we conjectured a recursion formula of the canonical partition function of a fluid (X.Z. Wang, Phys. Rev. E 66 (2002) 056102). In this paper we give a proof for this formula by developing an appropriate expansion of the integrand of the canonical partition function. We further derive the Mayer series solely from the canonical ensemble by use of this recursion formula. (paper)

  6. Derivation of Mayer Series from Canonical Ensemble

    Science.gov (United States)

    Wang, Xian-Zhi

    2016-02-01

    Mayer derived the Mayer series from both the canonical ensemble and the grand canonical ensemble by use of the cluster expansion method. In 2002, we conjectured a recursion formula of the canonical partition function of a fluid (X.Z. Wang, Phys. Rev. E 66 (2002) 056102). In this paper we give a proof for this formula by developing an appropriate expansion of the integrand of the canonical partition function. We further derive the Mayer series solely from the canonical ensemble by use of this recursion formula.

  7. Recursive parameter estimation for Hammerstein-Wiener systems using modified EKF algorithm.

    Science.gov (United States)

    Yu, Feng; Mao, Zhizhong; Yuan, Ping; He, Dakuo; Jia, Mingxing

    2017-09-01

    This paper focuses on the recursive parameter estimation for the single input single output Hammerstein-Wiener system model, and the study is then extended to a rarely mentioned multiple input single output Hammerstein-Wiener system. Inspired by the extended Kalman filter algorithm, two basic recursive algorithms are derived from the first and the second order Taylor approximation. Based on the form of the first order approximation algorithm, a modified algorithm with larger parameter convergence domain is proposed to cope with the problem of small parameter convergence domain of the first order one and the application limit of the second order one. The validity of the modification on the expansion of convergence domain is shown from the convergence analysis and is demonstrated with two simulation cases. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Modular invariant partition functions for toroidally compactified bosonic string

    International Nuclear Information System (INIS)

    Ardalan, F.; Arfaei, H.

    1988-06-01

    We systematically find all the modular invariant partition functions for the toroidally compactified closed bosonic string defined on a subset of a simply laced simple Lie algebra lattice, or equivalently for the closed bosonic string moving on a group manifold with the WZW coefficient k=1. We examine the relation between modular invariance of partition function and the possibility of describing it by an even Lorentzian self dual lattice in our context. (author). 23 refs

  9. Surface Modifications of Support Partitions for Stabilizing Biomimetic Membrane Arrays

    DEFF Research Database (Denmark)

    Perry, Mark; Hansen, Jesper Schmidt; Jensen, Karin Bagger Stibius

    2011-01-01

    with a high signal-to-noise (s/n) ratio. We demonstratesd this by reconstituting gA and α-hemolysin (α-HL) into BLM arrays. The improvement in membrane array lifetime and s/n ratio demonstrates that surface plasma polymerization of the supporting partition can be used to increase the stability of biomimetic......Black lipid membrane (BLM) formation across apertures in an ethylene tetra-fluoroethylene (ETFE) partition separating two aqueous compartments is an established technique for the creation of biomimetic membranes. Recently multi-aperture BLM arrays have attracted interest and in order to increase...... BLM array stability we studied the effect of covalently modifying the partition substrate using surface plasma polymerization with hydrophobic n-hexene, 1-decene and hexamethyldisiloxane (HMDSO) as modification groups. Average lifetimes across singlesided HMDSO modified partitions or using 1-decene...

  10. A Decidable Recursive Logic for Weighted Transition Systems

    DEFF Research Database (Denmark)

    Xue, Bingtian; Larsen, Kim Guldstrand; Mardare, Radu Iulian

    2014-01-01

    In this paper we develop and study the Recursive Weighted Logic (RWL), a multi-modal logic that expresses qualitative and quantitative properties of labelled weighted transition systems (LWSs). LWSs are transition systems labelled with actions and real-valued quantities representing the costs of ...... extends previous results that we have demonstrated for a similar but much more restrictive logic that can only use one variable for each type of resource to encode logical properties....

  11. Using metrics for proof rules for recursively defined delay-insensitive specifications

    NARCIS (Netherlands)

    Mallon, WC; Udding, JT

    1997-01-01

    An advantage of algebraic specifications of delay insensitive asynchronous processes over most other formalisms is that it allows the recursive definition of processes, and correctness proofs of an implementation through fixpoint induction. On the other hand, proofs by fixpoint induction are

  12. Safety-Critical Partitioned Software Architecture: A Partitioned Software Architecture for Robotic

    Science.gov (United States)

    Horvath, Greg; Chung, Seung H.; Cilloniz-Bicchi, Ferner

    2011-01-01

    The flight software on virtually every mission currently managed by JPL has several major flaws that make it vulnerable to potentially fatal software defects. Many of these problems can be addressed by recently developed partitioned operating systems (OS). JPL has avoided adopting a partitioned operating system on its flight missions, primarily because doing so would require significant changes in flight software design, and the risks associated with changes of that magnitude cannot be accepted by an active flight project. The choice of a partitioned OS can have a dramatic effect on the overall system and software architecture, allowing for realization of benefits far beyond the concerns typically associated with the choice of OS. Specifically, we believe that a partitioned operating system, when coupled with an appropriate architecture, can provide a strong infrastructure for developing systems for which reusability, modifiability, testability, and reliability are essential qualities. By adopting a partitioned OS, projects can gain benefits throughout the entire development lifecycle, from requirements and design, all the way to implementation, testing, and operations.

  13. Chiodo formulas for the r-th roots and topological recursion

    NARCIS (Netherlands)

    Lewanski, D.; Popolitov, A.; Shadrin, S.; Zvonkine, D.

    We analyze Chiodo’s formulas for the Chern classes related to the r-th roots of the suitably twisted integer powers of the canonical class on the moduli space of curves. The intersection numbers of these classes with ψ-classes are reproduced via the Chekhov–Eynard–Orantin topological recursion. As

  14. Phylogenetic systematics and biogeography of hummingbirds: Bayesian and maximum likelihood analyses of partitioned data and selection of an appropriate partitioning strategy.

    Science.gov (United States)

    McGuire, Jimmy A; Witt, Christopher C; Altshuler, Douglas L; Remsen, J V

    2007-10-01

    Hummingbirds are an important model system in avian biology, but to date the group has been the subject of remarkably few phylogenetic investigations. Here we present partitioned Bayesian and maximum likelihood phylogenetic analyses for 151 of approximately 330 species of hummingbirds and 12 outgroup taxa based on two protein-coding mitochondrial genes (ND2 and ND4), flanking tRNAs, and two nuclear introns (AK1 and BFib). We analyzed these data under several partitioning strategies ranging between unpartitioned and a maximum of nine partitions. In order to select a statistically justified partitioning strategy following partitioned Bayesian analysis, we considered four alternative criteria including Bayes factors, modified versions of the Akaike information criterion for small sample sizes (AIC(c)), Bayesian information criterion (BIC), and a decision-theoretic methodology (DT). Following partitioned maximum likelihood analyses, we selected a best-fitting strategy using hierarchical likelihood ratio tests (hLRTS), the conventional AICc, BIC, and DT, concluding that the most stringent criterion, the performance-based DT, was the most appropriate methodology for selecting amongst partitioning strategies. In the context of our well-resolved and well-supported phylogenetic estimate, we consider the historical biogeography of hummingbirds using ancestral state reconstructions of (1) primary geographic region of occurrence (i.e., South America, Central America, North America, Greater Antilles, Lesser Antilles), (2) Andean or non-Andean geographic distribution, and (3) minimum elevational occurrence. These analyses indicate that the basal hummingbird assemblages originated in the lowlands of South America, that most of the principle clades of hummingbirds (all but Mountain Gems and possibly Bees) originated on this continent, and that there have been many (at least 30) independent invasions of other primary landmasses, especially Central America.

  15. Interacting via the Heap in the Presence of Recursion

    Directory of Open Access Journals (Sweden)

    Jurriaan Rot

    2012-12-01

    Full Text Available Almost all modern imperative programming languages include operations for dynamically manipulating the heap, for example by allocating and deallocating objects, and by updating reference fields. In the presence of recursive procedures and local variables the interactions of a program with the heap can become rather complex, as an unbounded number of objects can be allocated either on the call stack using local variables, or, anonymously, on the heap using reference fields. As such a static analysis is, in general, undecidable. In this paper we study the verification of recursive programs with unbounded allocation of objects, in a simple imperative language for heap manipulation. We present an improved semantics for this language, using an abstraction that is precise. For any program with a bounded visible heap, meaning that the number of objects reachable from variables at any point of execution is bounded, this abstraction is a finitary representation of its behaviour, even though an unbounded number of objects can appear in the state. As a consequence, for such programs model checking is decidable. Finally we introduce a specification language for temporal properties of the heap, and discuss model checking these properties against heap-manipulating programs.

  16. Features and Recursive Structure

    Directory of Open Access Journals (Sweden)

    Kuniya Nasukawa

    2015-01-01

    Full Text Available Based on the cross-linguistic tendency that weak vowels are realized with a central quality such as ə, ɨ, or ɯ, this paper attempts to account for this choice by proposing that the nucleus itself is one of the three monovalent vowel elements |A|, |I| and |U| which function as the building blocks of melodic structure. I claim that individual languages make a parametric choice to determine which of the three elements functions as the head of a nuclear expression. In addition, I show that elements can be freely concatenated to create melodic compounds. The resulting phonetic value of an element compound is determined by the specific elements it contains and by the head-dependency relations between those elements. This concatenation-based recursive mechanism of melodic structure can also be extended to levels above the segment, thus ultimately eliminating the need for syllabic constituents. This approach reinterprets the notion of minimalism in phonology by opposing the string-based flat structure.

  17. Polymers as reference partitioning phase: polymer calibration for an analytically operational approach to quantify multimedia phase partitioning

    DEFF Research Database (Denmark)

    Gilbert, Dorothea; Witt, Gesine; Smedes, Foppe

    2016-01-01

    Polymers are increasingly applied for the enrichment of hydrophobic organic chemicals (HOCs) from various types of samples and media in many analytical partitioning-based measuring techniques. We propose using polymers as a reference partitioning phase and introduce polymer-polymer partitioning......-air) and multimedia partition coefficients (lipid-water, air-water) were calculated by applying the new concept of a polymer as reference partitioning phase and by using polymer-polymer partition coefficients as conversion factors. The present study encourages the use of polymer-polymer partition coefficients...

  18. Attitude determination and calibration using a recursive maximum likelihood-based adaptive Kalman filter

    Science.gov (United States)

    Kelly, D. A.; Fermelia, A.; Lee, G. K. F.

    1990-01-01

    An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.

  19. A recursive field-normalized bibliometric performance indicator: an application to the field of library and information science.

    Science.gov (United States)

    Waltman, Ludo; Yan, Erjia; van Eck, Nees Jan

    2011-10-01

    Two commonly used ideas in the development of citation-based research performance indicators are the idea of normalizing citation counts based on a field classification scheme and the idea of recursive citation weighing (like in PageRank-inspired indicators). We combine these two ideas in a single indicator, referred to as the recursive mean normalized citation score indicator, and we study the validity of this indicator. Our empirical analysis shows that the proposed indicator is highly sensitive to the field classification scheme that is used. The indicator also has a strong tendency to reinforce biases caused by the classification scheme. Based on these observations, we advise against the use of indicators in which the idea of normalization based on a field classification scheme and the idea of recursive citation weighing are combined.

  20. Uncertain Henry's law constants compromise equilibrium partitioning calculations of atmospheric oxidation products

    Directory of Open Access Journals (Sweden)

    C. Wang

    2017-06-01

    Full Text Available Gas–particle partitioning governs the distribution, removal, and transport of organic compounds in the atmosphere and the formation of secondary organic aerosol (SOA. The large variety of atmospheric species and their wide range of properties make predicting this partitioning equilibrium challenging. Here we expand on earlier work and predict gas–organic and gas–aqueous phase partitioning coefficients for 3414 atmospherically relevant molecules using COSMOtherm, SPARC Performs Automated Reasoning in Chemistry (SPARC, and poly-parameter linear free-energy relationships. The Master Chemical Mechanism generated the structures by oxidizing primary emitted volatile organic compounds. Predictions for gas–organic phase partitioning coefficients (KWIOM/G by different methods are on average within 1 order of magnitude of each other, irrespective of the numbers of functional groups, except for predictions by COSMOtherm and SPARC for compounds with more than three functional groups, which have a slightly higher discrepancy. Discrepancies between predictions of gas–aqueous partitioning (KW/G are much larger and increase with the number of functional groups in the molecule. In particular, COSMOtherm often predicts much lower KW/G for highly functionalized compounds than the other methods. While the quantum-chemistry-based COSMOtherm accounts for the influence of intra-molecular interactions on conformation, highly functionalized molecules likely fall outside of the applicability domain of the other techniques, which at least in part rely on empirical data for calibration. Further analysis suggests that atmospheric phase distribution calculations are sensitive to the partitioning coefficient estimation method, in particular to the estimated value of KW/G. The large uncertainty in KW/G predictions for highly functionalized organic compounds needs to be resolved to improve the quantitative treatment of SOA formation.

  1. Classification and Recursion Operators of Dark Burgers' Equation

    Science.gov (United States)

    Chen, Mei-Dan; Li, Biao

    2018-01-01

    With the help of symbolic computation, two types of complete scalar classification for dark Burgers' equations are derived by requiring the existence of higher order differential polynomial symmetries. There are some free parameters for every class of dark Burgers' systems; so some special equations including symmetry equation and dual symmetry equation are obtained by selecting the free parameter. Furthermore, two kinds of recursion operators for these dark Burgers' equations are constructed by two direct assumption methods.

  2. Polyacrylate–water partitioning of biocidal compounds: Enhancing the understanding of biocide partitioning between render and water

    DEFF Research Database (Denmark)

    Bollmann, Ulla E.; Ou, Yi; Mayer, Philipp

    2014-01-01

    -N-octylisothiazolinone). The correlation of the polyacrylate-water partition constants with the octanol-water partition constants is significant, but the polyacrylate-water partition constants were predominantly below octanol-water partition constants (Kow). The comparison with render-water distribution constants showed that estimating...

  3. Human Rights and Peace Audit on Partition in South Asia - Phase II ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    3 févr. 2009 ... Human Rights and Peace Audit on Partition in South Asia - Phase II. In South Asia, people's social, political and cultural aspirations often get articulated as movements for territorially defined political change. Very often, these movements find resolution in partition or in an ethnic group/nationality getting ...

  4. Exact partition functions for deformed N=2 theories with N{sub f}=4 flavours

    Energy Technology Data Exchange (ETDEWEB)

    Beccaria, Matteo; Fachechi, Alberto; Macorini, Guido; Martina, Luigi [Dipartimento di Matematica e Fisica Ennio De Giorgi, Università del Salento,Via Arnesano, 73100 Lecce (Italy); INFN, Via Arnesano, 73100 Lecce (Italy)

    2016-12-07

    We consider the Ω-deformed N=2SU(2) gauge theory in four dimensions with N{sub f}=4 massive fundamental hypermultiplets. The low energy effective action depends on the deformation parameters ε{sub 1},ε{sub 2}, the scalar field expectation value a, and the hypermultiplet masses m=(m{sub 1},m{sub 2},m{sub 3},m{sub 4}). Motivated by recent findings in the N=2{sup ∗} theory, we explore the theories that are characterized by special fixed ratios ε{sub 2}/ε{sub 1} and m/ε{sub 1} and propose a simple condition on the structure of the multi-instanton contributions to the prepotential determining the effective action. This condition determines a finite set Π{sub N} of special points such that the prepotential has N poles at fixed positions independent on the instanton number. In analogy with what happens in the N=2{sup ∗} gauge theory, the full prepotential of the Π{sub N} theories may be given in closed form as an explicit function of a and the modular parameter q appearing in special combinations of Eisenstein series and Jacobi theta functions with well defined modular properties. The resulting finite pole partition functions are related by AGT correspondence to special 4-point spherical conformal blocks of the Virasoro algebra. We examine in full details special cases where the closed expression of the block is known and confirms our Ansatz. We systematically study the special features of Zamolodchikov’s recursion for the Π{sub N} conformal blocks. As a result, we provide a novel effective recursion relation that can be exactly solved and allows to prove the conjectured closed expressions analytically in the case of the Π{sub 1} and Π{sub 2} conformal blocks.

  5. A RECURSIVE ALGORITHM SUITABLE FOR REAL-TIME MEASUREMENT

    Directory of Open Access Journals (Sweden)

    Giovanni Bucci

    1995-12-01

    Full Text Available This paper deals with a recursive algorithm suitable for realtime measurement applications, based on an indirect technique, useful in those applications where the required quantities cannot be measured in a straightforward way. To cope with time constraints a parallel formulation of it, suitable to be implemented on multiprocessor systems, is presented. The adopted concurrent implementation is based on factorization techniques. Some experimental results related to the application of the system for carrying out measurements on synchronous motors are included.

  6. WKB solutions of difference equations and reconstruction by the topological recursion

    Science.gov (United States)

    Marchal, Olivier

    2018-01-01

    The purpose of this article is to analyze the connection between Eynard-Orantin topological recursion and formal WKB solutions of a \\hbar -difference equation: \\Psi(x+\\hbar)=≤ft(e\\hbar\\fracd{dx}\\right) \\Psi(x)=L(x;\\hbar)\\Psi(x) with L(x;\\hbar)\\in GL_2( ({C}(x))[\\hbar]) . In particular, we extend the notion of determinantal formulas and topological type property proposed for formal WKB solutions of \\hbar -differential systems to this setting. We apply our results to a specific \\hbar -difference system associated to the quantum curve of the Gromov-Witten invariants of {P}1 for which we are able to prove that the correlation functions are reconstructed from the Eynard-Orantin differentials computed from the topological recursion applied to the spectral curve y=\\cosh-1\\frac{x}{2} . Finally, identifying the large x expansion of the correlation functions, proves a recent conjecture made by Dubrovin and Yang regarding a new generating series for Gromov-Witten invariants of {P}1 .

  7. The complex formation-partition and partition-association models of solvent extraction of ions

    International Nuclear Information System (INIS)

    Siekierski, S.

    1976-01-01

    Two models of the extraction process have been proposed. In the first model it is assumed that the partitioning neutral species is at first formed in the aqueous phase and then transferred into the organic phase. The second model is based on the assumption that equivalent amounts of cations are at first transferred from the aqueous into the organic phase and then associated to form a neutral molecule. The role of the solubility parameter in extraction and the relation between the solubility of liquid organic substances in water and the partition of complexes have been discussed. The extraction of simple complexes and complexes with organic ligands has been discussed using the first model. Partition coefficients have been calculated theoretically and compared with experimental values in some very simple cases. The extraction of ion pairs has been discussed using the partition-association model and the concept of single-ion partition coefficients. (author)

  8. COMPUTING VERTICES OF INTEGER PARTITION POLYTOPES

    Directory of Open Access Journals (Sweden)

    A. S. Vroublevski

    2015-01-01

    Full Text Available The paper describes a method of generating vertices of the polytopes of integer partitions that was used by the authors to calculate all vertices and support vertices of the partition polytopes for all n ≤ 105 and all knapsack partitions of n ≤ 165. The method avoids generating all partitions of n. The vertices are determined with the help of sufficient and necessary conditions; in the hard cases, the well-known program Polymake is used. Some computational aspects are exposed in more detail. These are the algorithm for checking the criterion that characterizes partitions that are convex combinations of two other partitions; the way of using two combinatorial operations that transform the known vertices to the new ones; and employing the Polymake to recognize a limited number (for small n of partitions that need three or more other partitions for being convexly expressed. We discuss the computational results on the numbers of vertices and support vertices of the partition polytopes and some appealing problems these results give rise to.

  9. Joint Analysis of Binomial and Continuous Traits with a Recursive Model

    DEFF Research Database (Denmark)

    Varona, Louis; Sorensen, Daniel

    2014-01-01

    This work presents a model for the joint analysis of a binomial and a Gaussian trait using a recursive parametrization that leads to a computationally efficient implementation. The model is illustrated in an analysis of mortality and litter size in two breeds of Danish pigs, Landrace and Yorkshir...

  10. Recursion relations for the overlap of a Morse continuum state with a Lanczos basis state

    International Nuclear Information System (INIS)

    Lutrus, C.K.; Suck Salk, S.H.

    1988-01-01

    In the resonant reactive scattering theory of Mundel, Berman, and Domcke [Phys. Rev. A 32, 181 (1985)], the overlap of a Morse continuum state and a Lanczos basis state appears in the expression of transition amplitude. In their study, recursion relations for Green's functions in the Lanczos basis were used for computational efficiency. In this paper we derive new recursion relations specifically for the evaluation of overlap between the Morse continuum wave and Lanczos basis state that appears in the transition amplitude of resonant scattering. They are found to be simple to use with great accuracy

  11. On an analytical representation of the solution of the one-dimensional transport equation for a multi-group model in planar geometry

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Julio C.L.; Vilhena, Marco T.; Bodmann, Bardo E.J., E-mail: julio.lombaldo@ufrgs.br, E-mail: mtmbvilhena@gmail.com, E-mail: bardo.bodmann@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Matematica Pura e Aplicada; Dulla, Sandra; Ravetto, Piero, E-mail: sandra.dulla@polito.it, E-mail: piero.ravetto@polito.it [Dipartimento di Energia, Politecnico di Torino, Piemonte (Italy)

    2015-07-01

    In this work we generalize the solution of the one-dimensional neutron transport equation to a multi- group approach in planar geometry. The basic idea of this work consists in consider the hierarchical construction of a solution for a generic number G of energy groups, starting from a mono-energetic solution. The hierarchical method follows the reasoning of the decomposition method. More specifically, the additional terms from adding energy groups is incorporated into the recursive scheme as source terms. This procedure leads to an analytical representation for the solution with G energy groups. The recursion depth is related to the accuracy of the solution, that may be evaluated after each recursion step. The authors present a heuristic analysis of stability for the results. Numerical simulations for a specific example with four energy groups and a localized pulsed source. (author)

  12. Recursive estimation of the parts production process quality indicator

    Directory of Open Access Journals (Sweden)

    Filipovich Oleg

    2017-01-01

    Full Text Available Consideration is given to a mathematical representation for manufacturing of batch parts on a metal-cutting machine tool. Linear dimensions of machined parts are assumed to be the major quality indicator, deviation from these dimensions is determined by size setting of machine tool and ensemble of random factors. It is allowed to have absolutely precise pre-setting of machine tool, effects from setup level offsetting due to deformation in process equipment on the specified indicator are disregarded. Consideration is given to factors which affect the tool wear, with two definitions of tool wear being provided. Reasons for development of random error in processing, dependence of measurement results on error as well as distribution laws and some parameters of random values are provided. To evaluate deviation of size setting value in each cycle, it is proposed to apply a recursive algorithm in description of investigated dynamic discrete process in the space state. Kalman filter equations are used in description of process model by means of first-order difference equations. The algorithm of recursive estimation is implemented in the mathematical software Maple. Simulation results which prove effectiveness of algorithm application to investigate the given dynamic system are provided. Variants of algorithm application and opportunities of further research are proposed.

  13. CP-recursion and the derivation of verb second in Germanic main and embedded clauses

    DEFF Research Database (Denmark)

    Vikner, Sten

    2017-01-01

    , this is normally not the case for all types of embedded clauses, as e. g. embedded questions (almost) never allow V2 (Julien 2007, Vikner 2001, though see McCloskey 2006 and Biberauer 2015). As in Nyvad et al. (2016), I will explore a particular derivation of (embedded) V2, in terms of a cP/CP-distinction, which...... may be seen as a version of the CP-recursion analysis (deHaan & Weerman 1986, Vikner 1995 and many others). The idea is that because embedded V2 clauses do not allow extraction, whereas other types of CP-recursion clauses do (Christensen et al. 2013a; Christensen et al. 2013b; Christensen & Nyvad 2014...

  14. On the analytical evaluation of the partition function for unit hypercubes in four dimensions

    International Nuclear Information System (INIS)

    Hari Dass, N.D.

    1984-10-01

    The group integrations required for the analytic evaluation of the partition function for unit hypercubes in four dimensions are carried out. Modifications of the graphical rules for SU 2 group integrations cited in the literature are developed for this purpose. A complete classification of all surfaces that can be embedded in the unit hypercube is given and their individual contribution to the partition function worked out. Applications are discussed briefly. (orig.)

  15. Phylogenetic relationships in Asarum: Effect of data partitioning and a revised classification.

    Science.gov (United States)

    Sinn, Brandon T; Kelly, Lawrence M; Freudenstein, John V

    2015-05-01

    Generic boundaries and infrageneric relationships among the charismatic temperate magnoliid Asarum sensu lato (Aristolochiaceae) have long been uncertain. Previous molecular phylogenetic analyses used either plastid or nuclear loci alone and varied greatly in their taxonomic implications for the genus. We analyzed additional molecular markers from the nuclear and plastid genomes, reevaluated the possibility of a derived loss of autonomous self-pollination, and investigated the topological effects of matrix-partitioning-scheme choice. We sequenced seven plastid regions and the nuclear ITS1-ITS2 region of 58 individuals representing all previously recognized Asarum s.l. segregate genera and the monotypic genus Saruma. Matrices were partitioned using common a priori partitioning schemes and PartitionFinder. Topologies that were recovered using a priori partitioning of matrices differed from those recovered using a PartitionFinder-selected scheme, and by analysis method. We recovered six monophyletic groups that we circumscribed into three subgenera and six sections. Putative fungal mimic characters served as synapomorphies only for subgenus Heterotropa. Subgenus Geotaenium, a new subgenus, was recovered as sister to the remainder of Asarum by ML analyses of highly partitioned datasets. Section Longistylis, also newly named, is sister to section Hexastylis. Our analyses do not unambiguously support a single origin for all fungal-mimicry characters. Topologies recovered through the analysis of PartitionFinder-optimized matrices can differ drastically from those inferred from a priori partitioned matrices, and by analytical method. We recommend that investigators evaluate the topological effects of matrix partitioning using multiple methods of phylogenetic reconstruction. © 2015 Botanical Society of America, Inc.

  16. Analysis and application of two recursive parametric estimation algorithms for an asynchronous machine

    International Nuclear Information System (INIS)

    Damek, Nawel; Kamoun, Samira

    2011-01-01

    In this communication, two recursive parametric estimation algorithms are analyzed and applied to an squirrelcage asynchronous machine located at the research ''Unit of Automatic Control'' (UCA) at ENIS. The first algorithm which, use the transfer matrix mathematical model, is based on the gradient principle. The second algorithm, which use the state-space mathematical model, is based on the minimization of the estimation error. These algorithms are applied as a key technique to estimate asynchronous machine with unknown, but constant or timevarying parameters. Stator voltage and current are used as measured data. The proposed recursive parametric estimation algorithms are validated on the experimental data of an asynchronous machine under normal operating condition as full load. The results show that these algorithms can estimate effectively the machine parameters with reliability.

  17. A new Bayesian recursive technique for parameter estimation

    Science.gov (United States)

    Kaheil, Yasir H.; Gill, M. Kashif; McKee, Mac; Bastidas, Luis

    2006-08-01

    The performance of any model depends on how well its associated parameters are estimated. In the current application, a localized Bayesian recursive estimation (LOBARE) approach is devised for parameter estimation. The LOBARE methodology is an extension of the Bayesian recursive estimation (BARE) method. It is applied in this paper on two different types of models: an artificial intelligence (AI) model in the form of a support vector machine (SVM) application for forecasting soil moisture and a conceptual rainfall-runoff (CRR) model represented by the Sacramento soil moisture accounting (SAC-SMA) model. Support vector machines, based on statistical learning theory (SLT), represent the modeling task as a quadratic optimization problem and have already been used in various applications in hydrology. They require estimation of three parameters. SAC-SMA is a very well known model that estimates runoff. It has a 13-dimensional parameter space. In the LOBARE approach presented here, Bayesian inference is used in an iterative fashion to estimate the parameter space that will most likely enclose a best parameter set. This is done by narrowing the sampling space through updating the "parent" bounds based on their fitness. These bounds are actually the parameter sets that were selected by BARE runs on subspaces of the initial parameter space. The new approach results in faster convergence toward the optimal parameter set using minimum training/calibration data and fewer sets of parameter values. The efficacy of the localized methodology is also compared with the previously used BARE algorithm.

  18. Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study

    International Nuclear Information System (INIS)

    Zhai, Qingqing; Yang, Jun; Zhao, Yu

    2014-01-01

    Variance-based sensitivity analysis has been widely studied and asserted itself among practitioners. Monte Carlo simulation methods are well developed in the calculation of variance-based sensitivity indices but they do not make full use of each model run. Recently, several works mentioned a scatter-plot partitioning method to estimate the variance-based sensitivity indices from given data, where a single bunch of samples is sufficient to estimate all the sensitivity indices. This paper focuses on the space-partition method in the estimation of variance-based sensitivity indices, and its convergence and other performances are investigated. Since the method heavily depends on the partition scheme, the influence of the partition scheme is discussed and the optimal partition scheme is proposed based on the minimized estimator's variance. A decomposition and integration procedure is proposed to improve the estimation quality for higher order sensitivity indices. The proposed space-partition method is compared with the more traditional method and test cases show that it outperforms the traditional one

  19. Layer-splitting technique for testing the recursive scheme for multilayer shields gamma ray buildup factors

    International Nuclear Information System (INIS)

    Alkhatib, Sari F.; Park, Chang Je; Jeong, Hae Yong; Lee, Yongdeok

    2016-01-01

    Highlights: • A simple formalism is suggested for the recursive approach and then it is used to produce buildup factors for certain multilayer shields. • The newly layer-splitting technique is implemented on the studied cases for testing the suggested formalism performance. • The buildup factors are generated using cubic polynomial fitting functions that are produced based on previous well-acknowledge data. - Abstract: This study illustrates the implementation of the newly suggested layer-splitting testing technique. This technique is introduced in order to be implemented in examining suggested formalisms for the recursive scheme (or iterative scheme). The recursive scheme is a concept used in treating and producing the gamma ray buildup factors in the case of multilayer shields. The layer-splitting technique simply enforces the scheme to treat a single layer of one material as two separated layers with similar characteristics. Thus it subjects the scheme to an abnormal definition of the multilayer shield that will test its performance in treating the successive layers. Thus, it will act as a method of verification for the approximations and assumptions taken in consideration. A simple formalism was suggested for the recursive scheme then the splitting technique was implemented on it. The results of implementing both the suggested formalism and the splitting technique are then illustrated and discussed. Throughout this study, cubic polynomial fitting functions were used to generate the data of buildup factors for the basic single-media that constitute the multilayer shields understudy. This study is limited to the cases of multiple shields consisting of repeated consecutive thin layers of lead–water and iron–water shields for 1 MeV gamma rays. The produced results of the buildup factor values through the implementation of the suggested formalism showed good consistency with the Monte Carlo simulation results of Lin and Jiang work. In the implementation of

  20. The prediction of blood-tissue partitions, water-skin partitions and skin permeation for agrochemicals.

    Science.gov (United States)

    Abraham, Michael H; Gola, Joelle M R; Ibrahim, Adam; Acree, William E; Liu, Xiangli

    2014-07-01

    There is considerable interest in the blood-tissue distribution of agrochemicals, and a number of researchers have developed experimental methods for in vitro distribution. These methods involve the determination of saline-blood and saline-tissue partitions; not only are they indirect, but they do not yield the required in vivo distribution. The authors set out equations for gas-tissue and blood-tissue distribution, for partition from water into skin and for permeation from water through human skin. Together with Abraham descriptors for the agrochemicals, these equations can be used to predict values for all of these processes. The present predictions compare favourably with experimental in vivo blood-tissue distribution where available. The predictions require no more than simple arithmetic. The present method represents a much easier and much more economic way of estimating blood-tissue partitions than the method that uses saline-blood and saline-tissue partitions. It has the added advantages of yielding the required in vivo partitions and being easily extended to the prediction of partition of agrochemicals from water into skin and permeation from water through skin. © 2013 Society of Chemical Industry.

  1. Recursive analytical solution describing artificial satellite motion perturbed by an arbitrary number of zonal terms

    Science.gov (United States)

    Mueller, A. C.

    1977-01-01

    An analytical first order solution has been developed which describes the motion of an artificial satellite perturbed by an arbitrary number of zonal harmonics of the geopotential. A set of recursive relations for the solution, which was deduced from recursive relations of the geopotential, was derived. The method of solution is based on Von-Zeipel's technique applied to a canonical set of two-body elements in the extended phase space which incorporates the true anomaly as a canonical element. The elements are of Poincare type, that is, they are regular for vanishing eccentricities and inclinations. Numerical results show that this solution is accurate to within a few meters after 500 revolutions.

  2. Reproductive Interference and Niche Partitioning in Aphidophagous Insects

    Directory of Open Access Journals (Sweden)

    Suzuki Noriyuki

    2016-01-01

    Full Text Available The range and quality of prey species differ greatly among closely related species of predators. However, the factors responsible for this diversified niche utilization are unclear. This is because the predation and resource competition do not always prevent species coexistence. In this paper, we present evidence in support of reproductive interference as a driver of niche partitioning, focusing on aphidophagous insect. Firstly, we present closely related generalist and specialist species pairs in aphidophagous lacewings to compare the reproductive interference hypothesis with two other hypotheses that have been proposed to explain niche partitioning in lacewings and sympatric speciation through host race formation and sexual selection. Secondly, we present a case study that shows how reproductive interference can drive niche partitioning in sibling ladybird species. Thirdly, we show that many ladybird genera include species inhabiting the same region but having different food and habitat preferences, raising the possibility that reproductive interference might occur in these groups. Finally, we show that intraguild predation cannot always explain the niche partitioning in aphidophagous insects including hoverflies and parasitoids. On the basis of the evidence presented, we urge that future studies investigating predator communities should take account of the role of reproductive interference.

  3. Dissecting CFT Correlators and String Amplitudes. Conformal Blocks and On-Shell Recursion for General Tensor Fields

    International Nuclear Information System (INIS)

    Hansen, Tobias

    2015-07-01

    This thesis covers two main topics: the tensorial structure of quantum field theory correlators in general spacetime dimensions and a method for computing string theory scattering amplitudes directly in target space. In the first part tensor structures in generic bosonic CFT correlators and scattering amplitudes are studied. To this end arbitrary irreducible tensor representations of SO(d) (traceless mixed-symmetry tensors) are encoded in group invariant polynomials, by contracting with sets of commuting and anticommuting polarization vectors which implement the index symmetries of the tensors. The tensor structures appearing in CFT d correlators can then be inferred by studying these polynomials in a d + 2 dimensional embedding space. It is shown with an example how these correlators can be used to compute general conformal blocks describing the exchange of mixed-symmetry tensors in four-point functions, which are crucial for advancing the conformal bootstrap program to correlators of operators with spin. Bosonic string theory lends itself as an ideal example for applying the same methods to scattering amplitudes, due to its particle spectrum of arbitrary mixed-symmetry tensors. This allows in principle the definition of on-shell recursion relations for string theory amplitudes. A further chapter introduces a different target space definition of string scattering amplitudes. As in the case of on-shell recursion relations, the amplitudes are expressed in terms of their residues via BCFW shifts. The new idea here is that the residues are determined by use of the monodromy relations for open string theory, avoiding the infinite sums over the spectrum arising in on-shell recursion relations. Several checks of the method are presented, including a derivation of the Koba-Nielsen amplitude in the bosonic string. It is argued that this method provides a target space definition of the complete S-matrix of string theory at tree-level in a at background in terms of a small

  4. Stability of recursive out-of-sequence measurement filters: an open problem

    Science.gov (United States)

    Chen, Lingji; Moshtagh, Nima; Mehra, Raman K.

    2011-06-01

    In many applications where communication delays are present, measurements with earlier time stamps can arrive out-of-sequence, i.e., after state estimates have been obtained for the current time instant. To incorporate such an Out-Of-Sequence Measurement (OOSM), many algorithms have been proposed in the literature to obtain or approximate the optimal estimate that would have been obtained if the OOSM had arrived in-sequence. When OOSM occurs repeatedly, approximate estimations as a result of incorporating one OOSM have to serve as the basis for incorporating yet another OOSM. The question of whether the "approximation of approximation" is well behaved, i.e., whether approximation errors accumulate in a recursive setting, has not been adequately addressed in the literature. This paper draws attention to the stability question of recursive OOSM processing filters, formulates the problem in a specific setting, and presents some simulation results that suggest that such filters are indeed well-behaved. Our hope is that more research will be conducted in the future to rigorously establish stability properties of these filters.

  5. Poly(ethylene glycol or Poly(ethylene oxide?: Magnitude of end-group Contribution to the Partitioning of Ethylene Oxide Oligomers and Polymers between Water and Organic Phases

    Directory of Open Access Journals (Sweden)

    Spitzer Marcos

    2002-01-01

    Full Text Available PEO partitioning from water to CH2Cl2 and CHCl3 increases with its molar mass, leveling off at ca. 3 000 g mol-1. Such a behaviour is related to PEO end-group contributions, suggesting a polyglycol to polyether transition at ca. 3 000 g mol-1.

  6. Partitioning in P-T concept

    International Nuclear Information System (INIS)

    Zhang Peilu; Qi Zhanshun; Zhu Zhixuan

    2000-01-01

    Comparison of dry- and water-method for partitioning fission products and minor actinides from the spent fuels, and description of advance of dry-method were done. Partitioning process, some typical concept and some results of dry-method were described. The problems fond in dry-method up to now were pointed out. The partitioning study program was suggested

  7. Real-time recursive motion segmentation of video data on a programmable device

    NARCIS (Netherlands)

    Wittebrood, R.B; Haan, de G.

    2001-01-01

    We previously reported on a recursive algorithm enabling real-time object-based motion estimation (OME) of standard definition video on a digital signal processor (DSP). The algorithm approximates the motion of the objects in the image with parametric motion models and creates a segmentation mask by

  8. STATE ESTIMATION IN ALCOHOLIC CONTINUOUS FERMENTATION OF ZYMOMONAS MOBILIS USING RECURSIVE BAYESIAN FILTERING: A SIMULATION APPROACH

    Directory of Open Access Journals (Sweden)

    Olga Lucia Quintero

    2008-05-01

    Full Text Available This work presents a state estimator for a continuous bioprocess. To this aim, the Non Linear Filtering theory based on the recursive application of Bayes rule and Monte Carlo techniques is used. Recursive Bayesian Filters Sampling Importance Resampling (SIR is employed, including different kinds of resampling. Generally, bio-processes have strong non-linear and non-Gaussian characteristics, and this tool becomes attractive. The estimator behavior and performance are illustrated with the continuous process of alcoholic fermentation of Zymomonas mobilis. Not too many applications with this tool have been reported in the biotechnological area.

  9. Predicting solute partitioning in lipid bilayers: Free energies and partition coefficients from molecular dynamics simulations and COSMOmic

    Science.gov (United States)

    Jakobtorweihen, S.; Zuniga, A. Chaides; Ingram, T.; Gerlach, T.; Keil, F. J.; Smirnova, I.

    2014-07-01

    Quantitative predictions of biomembrane/water partition coefficients are important, as they are a key property in pharmaceutical applications and toxicological studies. Molecular dynamics (MD) simulations are used to calculate free energy profiles for different solutes in lipid bilayers. How to calculate partition coefficients from these profiles is discussed in detail and different definitions of partition coefficients are compared. Importantly, it is shown that the calculated coefficients are in quantitative agreement with experimental results. Furthermore, we compare free energy profiles from MD simulations to profiles obtained by the recent method COSMOmic, which is an extension of the conductor-like screening model for realistic solvation to micelles and biomembranes. The free energy profiles from these molecular methods are in good agreement. Additionally, solute orientations calculated with MD and COSMOmic are compared and again a good agreement is found. Four different solutes are investigated in detail: 4-ethylphenol, propanol, 5-phenylvaleric acid, and dibenz[a,h]anthracene, whereby the latter belongs to the class of polycyclic aromatic hydrocarbons. The convergence of the free energy profiles from biased MD simulations is discussed and the results are shown to be comparable to equilibrium MD simulations. For 5-phenylvaleric acid the influence of the carboxyl group dihedral angle on free energy profiles is analyzed with MD simulations.

  10. Predicting solute partitioning in lipid bilayers: Free energies and partition coefficients from molecular dynamics simulations and COSMOmic

    International Nuclear Information System (INIS)

    Jakobtorweihen, S.; Ingram, T.; Gerlach, T.; Smirnova, I.; Zuniga, A. Chaides; Keil, F. J.

    2014-01-01

    Quantitative predictions of biomembrane/water partition coefficients are important, as they are a key property in pharmaceutical applications and toxicological studies. Molecular dynamics (MD) simulations are used to calculate free energy profiles for different solutes in lipid bilayers. How to calculate partition coefficients from these profiles is discussed in detail and different definitions of partition coefficients are compared. Importantly, it is shown that the calculated coefficients are in quantitative agreement with experimental results. Furthermore, we compare free energy profiles from MD simulations to profiles obtained by the recent method COSMOmic, which is an extension of the conductor-like screening model for realistic solvation to micelles and biomembranes. The free energy profiles from these molecular methods are in good agreement. Additionally, solute orientations calculated with MD and COSMOmic are compared and again a good agreement is found. Four different solutes are investigated in detail: 4-ethylphenol, propanol, 5-phenylvaleric acid, and dibenz[a,h]anthracene, whereby the latter belongs to the class of polycyclic aromatic hydrocarbons. The convergence of the free energy profiles from biased MD simulations is discussed and the results are shown to be comparable to equilibrium MD simulations. For 5-phenylvaleric acid the influence of the carboxyl group dihedral angle on free energy profiles is analyzed with MD simulations

  11. Analysis of polyethoxylated surfactants in microemulsion-oil-water systems III. Fractionation and partitioning of polyethoxylated alcohol surfactants

    International Nuclear Information System (INIS)

    Marquez, N.; Bravo, B.; Ysambertt, F.; Chavez, G.; Subero, N.; Salager, J.L.

    2002-01-01

    Oligomer distribution of polyethoxylated alcohol and polyethoxylated nonylphenol surfactants is studied by normal and reverse-phase high performance liquid chromatography (HPLC). A RP8 column is able to efficiently separate these surfactants according to their alkyl chain (lipophilic) group, while silica and amino columns separate them according to their polyether chain length (hydrophilic group). Polyethoxylated alcohol and polyethoxylated nonylphenol oligomers selectively partition between the microemulsion-oil-water phases of a Winsor III system. Partitioning of these oligomers was analyzed by HPLC with RI detection. The logarithm of the partition coefficient between the water and oil linearly increases with the number of ethylene oxide groups per molecule of oligomer. For a same ethoxylation degree, the partition coefficient of a polyethoxylated tridecanol is found to be higher than the one of the corresponding nonylphenol specie. On the other hand, a polyethoxylated nonylphenol exhibits a higher solubilization than the matching polyethoxylated alcohol

  12. The recursive combination filter approach of pre-processing for the estimation of standard deviation of RR series.

    Science.gov (United States)

    Mishra, Alok; Swati, D

    2015-09-01

    Variation in the interval between the R-R peaks of the electrocardiogram represents the modulation of the cardiac oscillations by the autonomic nervous system. This variation is contaminated by anomalous signals called ectopic beats, artefacts or noise which mask the true behaviour of heart rate variability. In this paper, we have proposed a combination filter of recursive impulse rejection filter and recursive 20% filter, with recursive application and preference of replacement over removal of abnormal beats to improve the pre-processing of the inter-beat intervals. We have tested this novel recursive combinational method with median method replacement to estimate the standard deviation of normal to normal (SDNN) beat intervals of congestive heart failure (CHF) and normal sinus rhythm subjects. This work discusses the improvement in pre-processing over single use of impulse rejection filter and removal of abnormal beats for heart rate variability for the estimation of SDNN and Poncaré plot descriptors (SD1, SD2, and SD1/SD2) in detail. We have found the 22 ms value of SDNN and 36 ms value of SD2 descriptor of Poincaré plot as clinical indicators in discriminating the normal cases from CHF cases. The pre-processing is also useful in calculation of Lyapunov exponent which is a nonlinear index as Lyapunov exponents calculated after proposed pre-processing modified in a way that it start following the notion of less complex behaviour of diseased states.

  13. Bounded queries in recursion theory

    CERN Document Server

    Gasarch, William I

    1999-01-01

    One of the major concerns of theoretical computer science is the classifi­ cation of problems in terms of how hard they are. The natural measure of difficulty of a function is the amount of time needed to compute it (as a function of the length of the input). Other resources, such as space, have also been considered. In recursion theory, by contrast, a function is considered to be easy to compute if there exists some algorithm that computes it. We wish to classify functions that are hard, i.e., not computable, in a quantitative way. We cannot use time or space, since the functions are not even computable. We cannot use Turing degree, since this notion is not quantitative. Hence we need a new notion of complexity-much like time or spac~that is quantitative and yet in some way captures the level of difficulty (such as the Turing degree) of a function.

  14. Hurwitz numbers, moduli of curves, topological recursion, Givental's theory and their relations

    NARCIS (Netherlands)

    Spitz, L.

    2014-01-01

    The study of curves is an important area of research in algebraic geometry and mathematical physics. In my thesis I study so-called moduli spaces of curves; these are spaces that parametrize all curves with some specified properties. In particular, I study maps from curves to other spaces, recursive

  15. Partitioning and Transmutation - Physics, Technology and Politics

    International Nuclear Information System (INIS)

    Gudowski, W.

    2002-01-01

    Nuclear reactions can be effectively used to destroy radio toxic isotopes through transmutation processes transforming those isotopes into less radio toxic or stable ones Spent nuclear fuel, a mixture of many isotopes with some of them being highly radio toxic for many hundred thousands of years, may be effectively transmuted through nuclear reactions with neutrons. In a dedicated, well designed transmutation system one can, in principle, reduce the radiotoxicity of the spent nuclear fuel to a level, which will require isolation from the biosphere for the period of time for which engineered barriers can be constructed and licensed (not more than 1-2 thousands of years). En effective transmutation process can not be achieved without a suitable partitioning. Only partitioning of the spent nuclear fuel into predetermined groups of elements makes possible an effective use of neutrons to transmute long-lived radioactive isotopes into short-lived or stable one. However, most of the chemical separation/partitioning processes are element- not isotope-specific, therefore the transmutation of the elements with an existing isotope composition is a typical alternative for transmutation processes. Isotope-specific separation is possible but still very expensive and technologically not matured

  16. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    International Nuclear Information System (INIS)

    Liekhus, K.; Grandy, J.; Chambers, A.

    1997-03-01

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools

  17. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Liekhus, K.; Grandy, J.; Chambers, A. [and others

    1997-03-01

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.

  18. Niche partitioning of marine group I Crenarchaeota in the euphotic and upper mesopelagic zones of the East China Sea.

    Science.gov (United States)

    Hu, Anyi; Jiao, Nianzhi; Zhang, Rui; Yang, Zao

    2011-11-01

    Marine group I Crenarchaeota (MGI) represents a ubiquitous and numerically predominant microbial population in marine environments. An understanding of the spatial dynamics of MGI and its controlling mechanisms is essential for an understanding of the role of MGI in energy and element cycling in the ocean. In the present study, we investigated the diversity and abundance of MGI in the East China Sea (ECS) by analysis of crenarchaeal 16S rRNA gene, the ammonia monooxygenase gene amoA, and the biotin carboxylase gene accA. Quantitative PCR analyses revealed that these genes were higher in abundance in the mesopelagic than in the euphotic zone. In addition, the crenarchaeal amoA gene was positively correlated with the copy number of the MGI 16S rRNA gene, suggesting that most of the MGI in the ECS are nitrifiers. Furthermore, the ratios of crenarchaeal accA to amoA or to MGI 16S rRNA genes increased from the euphotic to the mesopelagic zone, suggesting that the role of MGI in carbon cycling may change from the epipelagic to the mesopelagic zones. Denaturing gradient gel electrophoretic profiling of the 16S rRNA genes revealed depth partitioning in MGI community structures. Clone libraries of the crenarchaeal amoA and accA genes showed both "shallow" and "deep" groups, and their relative abundances varied in the water column. Ecotype simulation analysis revealed that MGI in the upper ocean could diverge into special ecotypes associated with depth to adapt to the light gradient across the water column. Overall, our results showed niche partitioning of the MGI population and suggested a shift in their ecological functions between the euphotic and mesopelagic zones of the ECS.

  19. The Euler–Riemann gases, and partition identities

    International Nuclear Information System (INIS)

    Chair, Noureddine

    2013-01-01

    The Euler theorem in partition theory and its generalization are derived from a non-interacting quantum field theory in which each bosonic mode with a given frequency is equivalent to a sum of bosonic mode whose frequency is twice (s-times) as much, and a fermionic (parafermionic) mode with the same frequency. Explicit formulas for the graded parafermionic partition functions are obtained, and the inverse of the graded partition function (IGPPF), turns out to be bosonic (fermionic) partition function depending on the parity of the order s of the parafermions. It is also shown that these partition functions are generating functions of partitions of integers with restrictions, the Euler generating function is identified with the inverse of the graded parafermionic partition function of order 2. As a result we obtain new sequences of partitions of integers with given restrictions. If the parity of the order s is even, then mixing a system of parafermions with a system whose partition function is (IGPPF), results in a system of fermions and bosons. On the other hand, if the parity of s is odd, then, the system we obtain is still a mixture of fermions and bosons but the corresponding Fock space of states is truncated. It turns out that these partition functions are given in terms of the Jacobi theta function θ 4 , and generate sequences in partition theory. Our partition functions coincide with the overpartitions of Corteel and Lovejoy, and jagged partitions in conformal field theory. Also, the partition functions obtained are related to the Ramond characters of the superconformal minimal models, and in the counting of the Moore–Read edge spectra that appear in the fractional quantum Hall effect. The different partition functions for the Riemann gas that are the counter parts of the Euler gas are obtained by a simple change of variables. In particular the counter part of the Jacobi theta function is (ζ(2t))/(ζ(t) 2 ) . Finally, we propose two formulas which brings

  20. Hawk: A Runtime System for Partitioned Objects

    NARCIS (Netherlands)

    Ben Hassen, S.; Bal, H.E.; Tanenbaum, A.S.

    1997-01-01

    Hawk is a language-independent runtime system for writing data-parallel programs using partitioned objects. A partitioned object is a multidimensional array of elements that can be partitioned and distributed by the programmer. The Hawk runtime system uses the user-defined partitioning of objects

  1. Chain of matrices, loop equations and topological recursion

    CERN Document Server

    Orantin, Nicolas

    2009-01-01

    Random matrices are used in fields as different as the study of multi-orthogonal polynomials or the enumeration of discrete surfaces. Both of them are based on the study of a matrix integral. However, this term can be confusing since the definition of a matrix integral in these two applications is not the same. These two definitions, perturbative and non-perturbative, are discussed in this chapter as well as their relation. The so-called loop equations satisfied by integrals over random matrices coupled in chain is discussed as well as their recursive solution in the perturbative case when the matrices are Hermitean.

  2. Nonlinear Disturbance Attenuation Controller for Turbo-Generators in Power Systems via Recursive Design

    NARCIS (Netherlands)

    Cao, M.; Shen, T.L.; Song, Y.H.; Mei, S.W.

    2002-01-01

    The paper proposes a nonlinear robust controller for steam governor control in power systems. Based on dissipation theory, an innovative recursive design method is presented to construct the storage function of single machine infinite bus (SMIB) and multi-machine power systems. Furthermore, the

  3. [On the partition of acupuncture academic schools].

    Science.gov (United States)

    Yang, Pengyan; Luo, Xi; Xia, Youbing

    2016-05-01

    Nowadays extensive attention has been paid on the research of acupuncture academic schools, however, a widely accepted method of partition of acupuncture academic schools is still in need. In this paper, the methods of partition of acupuncture academic schools in the history have been arranged, and three typical methods of"partition of five schools" "partition of eighteen schools" and "two-stage based partition" are summarized. After adeep analysis on the disadvantages and advantages of these three methods, a new method of partition of acupuncture academic schools that is called "three-stage based partition" is proposed. In this method, after the overall acupuncture academic schools are divided into an ancient stage, a modern stage and a contemporary stage, each schoolis divided into its sub-school category. It is believed that this method of partition can remedy the weaknesses ofcurrent methods, but also explore a new model of inheritance and development under a different aspect through thedifferentiation and interaction of acupuncture academic schools at three stages.

  4. Analysis of load balance in hybrid partitioning | Talib | Botswana ...

    African Journals Online (AJOL)

    In information retrieval systems, there are three types of index partitioning schemes - term partitioning, document partitioning, and hybrid partitioning. The hybrid-partitioning scheme combines both term and document partitioning schemes. Term partitioning provides high concurrency, which means that queries can be ...

  5. Parameter Estimation of Permanent Magnet Synchronous Motor Using Orthogonal Projection and Recursive Least Squares Combinatorial Algorithm

    Directory of Open Access Journals (Sweden)

    Iman Yousefi

    2015-01-01

    Full Text Available This paper presents parameter estimation of Permanent Magnet Synchronous Motor (PMSM using a combinatorial algorithm. Nonlinear fourth-order space state model of PMSM is selected. This model is rewritten to the linear regression form without linearization. Noise is imposed to the system in order to provide a real condition, and then combinatorial Orthogonal Projection Algorithm and Recursive Least Squares (OPA&RLS method is applied in the linear regression form to the system. Results of this method are compared to the Orthogonal Projection Algorithm (OPA and Recursive Least Squares (RLS methods to validate the feasibility of the proposed method. Simulation results validate the efficacy of the proposed algorithm.

  6. Partitioning and Transmutation: IAEA Activities

    International Nuclear Information System (INIS)

    Basak, U.; Monti, S.; )

    2015-01-01

    Full text of publication follows: The importance of partitioning and transmutation (P and T) processes for sustaining nuclear energy growth in the world has been realised in several countries across the world. P and T processes aim at separation and recycling of actinides including minor actinides (MAs) from the spent fuel or high-level liquid waste. The objective of these processes include reuse of separated fissile materials from spent nuclear fuels to obtain energy, enhance resource utilisation, reduce the disposal of toxic radio-nuclides and improve long-term performance of geological repositories. R and D programmes have been launched in many of the Member States to develop advanced partitioning process based on either aqueous or pyro to recover MAs along with other actinides as well as automated and remote techniques for manufacturing fuels containing MAs for the purpose of transmuting them either in fast reactors or accelerator driven hybrids. A number of Member States have been also developing such transmutation systems with the aim to construct and operate demo plants and prototypes in the next decade. The International Atomic Energy Agency has a high priority for the activities on partitioning and transmutation and regularly organises conferences, workshops, seminars and technical meetings in the areas of P and T as a part of information exchange and knowledge sharing at the international level. In the recent past, the Agency organised two technical meetings on advanced partitioning processes and actinide recycle technologies with the objective of providing a common platform for the scientists and engineers working in the areas of separation of actinides along with MAs from spent nuclear fuels and manufacturing of advanced fuels containing MAs in order to bridge the technological gap between them. In 2010, the Agency concluded a Coordinated Research Project (CRP) related to Assessment of Partitioning Processes. The Agency also conducted a first CRP on

  7. Recursive inter-generational utility in global climate risk modeling

    Energy Technology Data Exchange (ETDEWEB)

    Minh, Ha-Duong [Centre International de Recherche sur l' Environnement et le Developpement (CIRED-CNRS), 75 - Paris (France); Treich, N. [Institut National de Recherches Agronomiques (INRA-LEERNA), 31 - Toulouse (France)

    2003-07-01

    This paper distinguishes relative risk aversion and resistance to inter-temporal substitution in climate risk modeling. Stochastic recursive preferences are introduced in a stylized numeric climate-economy model using preliminary IPCC 1998 scenarios. It shows that higher risk aversion increases the optimal carbon tax. Higher resistance to inter-temporal substitution alone has the same effect as increasing the discount rate, provided that the risk is not too large. We discuss implications of these findings for the debate upon discounting and sustainability under uncertainty. (author)

  8. Effect of sanhuangwuji powder, anti-rheumatic drugs, and ginger-partitioned acupoint stimulation on the treatment of rheumatoid arthritis with peptic ulcer: a randomized controlled study.

    Science.gov (United States)

    Liu, Defang; Guo, Mingyang; Hu, Yonghe; Liu, Taihua; Yan, Jiao; Luo, Yong; Yun, Mingdong; Yang, Min; Zhang, Jun; Guo, Linglin

    2015-06-01

    To observe the efficacy and safety of oral sanhuangwuji powder, anti-rheumatic drugs (ARDs), and ginger-partitioned acupoint stimulation at zusanli (ST 36) on the treatment of rheumatoid arthritis (RA) complicated by peptic ulcer. This prospective randomized controlled study included 180 eligible inpatients and outpatients randomly assigned to an ARD treatment (n.= 60), ginger-partitioned stimulation (n = 60), or combination treatment (n = 60). Patients assigned to the ARD group were given oral celecoxib, methotrexate, and esomeprazole. Patients assigned to the ginger-partitioned stimulation group were given ginger-partitioned acupoint stimulation at zusanli (ST 36) in addition to the ARDs. Patients in the combination treatment group were given oral sanhuangwuji powder, ginger-partitioned acupoint stimulation at susanli (ST 36), and ARDs. All patients were followed up for 2 months to evaluate clinical effects and safety. The study was registered in the World Health Organization database at the General Hospital of Chengdu Military Area Command Chinese People's Liberation Army (ChiCTR-TCC12002824). The combination treatment group had significantly greater improvements in RA symptoms, laboratory outcomes, and gastrointestinal symptom scores, compared with the other groups (P ginger-partitioned stimulation group (χ2= 6.171, P ginger-partitioned acupoint stimulation at zusanli (ST 36), oral sanhuangwuji powder, and ARDs had a better clinical effect for RA with complicated peptic ulcer, compared with ARD treatmentalone or in combination with ginger-partitioned acupoint stimulation.

  9. Algebraic Optimization of Recursive Database Queries

    DEFF Research Database (Denmark)

    Hansen, Michael Reichhardt

    1988-01-01

    Queries are expressed by relational algebra expressions including a fixpoint operation. A condition is presented under which a natural join commutes with a fixpoint operation. This condition is a simple check of attribute sets of sub-expressions of the query. The work may be considered a generali......Queries are expressed by relational algebra expressions including a fixpoint operation. A condition is presented under which a natural join commutes with a fixpoint operation. This condition is a simple check of attribute sets of sub-expressions of the query. The work may be considered...... a generalization of Aho and Ullman, (1979). The result is interpreted in function free logic database terms as a transformation of the recursively defined predicate involving: (a) elimination of an argument, and (b) propagation of selections (instantiations) to the extensionally defined predicates. A collection...

  10. The Monge-Ampère equation: Hamiltonian and symplectic structures, recursions, and hierarchies

    NARCIS (Netherlands)

    Kersten, P.H.M.; Krasil'shchik, I.; Verbovetsky, A.V.

    2004-01-01

    Using methods of geometry and cohomology developed recently, we study the Monge-Ampère equation, arising as the first nontrivial equation in the associativity equations, or WDVV equations. We describe Hamiltonian and symplectic structures as well as recursion operators for this equation in its

  11. Efficient O(N) recursive computation of the operational space inertial matrix

    International Nuclear Information System (INIS)

    Lilly, K.W.; Orin, D.E.

    1993-01-01

    The operational space inertia matrix Λ reflects the dynamic properties of a robot manipulator to its tip. In the control domain, it may be used to decouple force and/or motion control about the manipulator workspace axes. The matrix Λ also plays an important role in the development of efficient algorithms for the dynamic simulation of closed-chain robotic mechanisms, including simple closed-chain mechanisms such as multiple manipulator systems and walking machines. The traditional approach used to compute Λ has a computational complexity of O(N 3 ) for an N degree-of-freedom manipulator. This paper presents the development of a recursive algorithm for computing the operational space inertia matrix (OSIM) that reduces the computational complexity to O(N). This algorithm, the inertia propagation method, is based on a single recursion that begins at the base of the manipulator and progresses out to the last link. Also applicable to redundant systems and mechanisms with multiple-degree-of-freedom joints, the inertia propagation method is the most efficient method known for computing Λ for N ≥ 6. The numerical accuracy of the algorithm is discussed for a PUMA 560 robot with a fixed base

  12. Partitioning taxonomic diversity of aquatic insect assemblages and functional feeding groups in Neotropical Savanna headwater streams

    Science.gov (United States)

    Biological diversity can be divided into: alpha (α, local), beta (β, difference in assemblage composition among locals), and gamma (γ, total diversity). We assessed the partitioning of taxonomic diversity of Ephemeroptera, Plecoptera and Trichoptera (EPT) and of functional feedin...

  13. Partitioning of fissile and radio-toxic materials from spent nuclear fuel

    International Nuclear Information System (INIS)

    Bychkov, A.V.; Skiba, O.V.; Kormilitsyn, M.V.

    2007-01-01

    Full text of publication follows. The term ''partitioning'' means separation of one group of radwaste components from another. Such technological approaches are mainly applied to extraction of long-lived fission products (Tc, I) and minor actinides (Np, Am, Cm) from the waste arising from spent nuclear fuel reprocessing. Transmutation of the extracted minor actinides should be performed in a reactor or some accelerated systems. The combination of these technologies, partitioning and transmutation (P and T), will reduce the radiotoxicity of radwaste. In recent decades, partitioning has been directly linked to spent fuel reprocessing. Therefore, the basic investigations have been focused on the partitioning of liquid wastes arising from the PUREX process. These subjects have been the most developed ones, but the processes of fine aqueous separation generates an extra amount of liquid waste. This fact has an effect on the nuclear fuel cycle economy. Therefore, some other advanced compact methods have also been studied. These are dry methods involving molten chlorides and fluorides, the methods based on a supercritical movable phase, etc. The report provides a brief review of information on the basic partitioning process flow-sheets developed in France, Japan, Russia and other countries. Recent approaches to partitioning have been mostly directed towards radio-toxic hazard reduction and ecology. In the future, partitioning should be closely bound up with reprocessing and other spent nuclear fuel management processes. Reprocessing/partitioning should also be aimed at solving the problems of safety (non-proliferation) and economy in a closed fuel cycle. It is necessary to change a future ''technological philosophy'' of reprocessing and partitioning. The basic spent fuel components (U, Pu, Th) are to be extracted only for recycling in a closed nuclear fuel cycle. If these elements are regarded as a waste, additional expenses are required for transmutation. If we consider

  14. Partitioning sparse rectangular matrices for parallel processing

    Energy Technology Data Exchange (ETDEWEB)

    Kolda, T.G.

    1998-05-01

    The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.

  15. A brief history of partitions of numbers, partition functions and their modern applications

    Science.gov (United States)

    Debnath, Lokenath

    2016-04-01

    'Number rules the universe.' The Pythagoras 'If you wish to forsee the future of mathematics our course is to study the history and present conditions of the science.' Henri Poincaré 'The primary source (Urqell) of all mathematics are integers.' Hermann Minkowski This paper is written to commemorate the centennial anniversary of the Mathematical Association of America. It deals with a short history of different kinds of natural numbers including triangular, square, pentagonal, hexagonal and k-gonal numbers, and their simple properties and their geometrical representations. Included are Euclid's and Pythagorean's main contributions to elementary number theory with the main contents of the Euclid Elements of the 13-volume masterpiece of mathematical work. This is followed by Euler's new discovery of the additive number theory based on partitions of numbers. Special attention is given to many examples, Euler's theorems on partitions of numbers with geometrical representations of Ferrers' graphs, Young's diagrams, Lagrange's four-square theorem and the celebrated Waring problem. Included are Euler's generating functions for the partitions of numbers, Euler's pentagonal number theorem, Gauss' triangular and square number theorems and the Jacobi triple product identity. Applications of the theory of partitions of numbers to different statistics such as the Bose- Einstein, Fermi- Dirac, Gentile, and Maxwell- Boltzmann statistics are briefly discussed. Special attention is given to pedagogical information through historical approach to number theory so that students and teachers at the school, college and university levels can become familiar with the basic concepts of partitions of numbers, partition functions and their modern applications, and can pursue advanced study and research in analytical and computational number theory.

  16. Recursive estimation of high-order Markov chains: Approximation by finite mixtures

    Czech Academy of Sciences Publication Activity Database

    Kárný, Miroslav

    2016-01-01

    Roč. 326, č. 1 (2016), s. 188-201 ISSN 0020-0255 R&D Projects : GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Markov chain * Approximate parameter estimation * Bayesian recursive estimation * Adaptive systems * Kullback–Leibler divergence * Forgetting Subject RIV: BC - Control Systems Theory Impact factor: 4.832, year: 2016 http://library.utia.cas.cz/separaty/2015/AS/karny-0447119.pdf

  17. Separating the Classes of Recursively Enumerable Languages Based on Machine Size

    Czech Academy of Sciences Publication Activity Database

    van Leeuwen, J.; Wiedermann, Jiří

    2015-01-01

    Roč. 26, č. 6 (2015), s. 677-695 ISSN 0129-0541 R&D Projects: GA ČR GAP202/10/1333 Grant - others:GA ČR(CZ) GA15-04960S Institutional support: RVO:67985807 Keywords : recursively enumerable languages * RE hierarchy * finite languages * machine size * descriptional complexity * Turing machines with advice Subject RIV: IN - Informatics, Computer Science Impact factor: 0.467, year: 2015

  18. Deformation of the three-term recursion relation and generation of new orthogonal polynomials

    International Nuclear Information System (INIS)

    Alhaidari, A D

    2002-01-01

    We find solutions for a linear deformation of the three-term recursion relation. The orthogonal polynomials of the first and second kind associated with the deformed relation are obtained. The new density (weight) function is written in terms of the original one and the deformation parameters

  19. Optimally eating a stochastic cake. A recursive utility approach

    International Nuclear Information System (INIS)

    Epaulard, Anne; Pommeret, Aude

    2003-01-01

    In this short paper, uncertainties on resource stock and on technical progress are introduced into an intertemporal equilibrium model of optimal extraction of a non-renewable resource. The representative consumer maximizes a recursive utility function which disentangles between intertemporal elasticity of substitution and risk aversion. A closed-form solution is derived for both the optimal extraction and price paths. The value of the intertemporal elasticity of substitution relative to unity is then crucial in understanding extraction. Moreover, this model leads to a non-renewable resource price following a geometric Brownian motion

  20. Locating one pairwise interaction: Three recursive constructions

    Directory of Open Access Journals (Sweden)

    Charles J. Colbourn

    2016-09-01

    Full Text Available In a complex component-based system, choices (levels for components (factors may interact tocause faults in the system behaviour. When faults may be caused by interactions among few factorsat specific levels, covering arrays provide a combinatorial test suite for discovering the presence offaults. While well studied, covering arrays do not enable one to determine the specific levels of factorscausing the faults; locating arrays ensure that the results from test suite execution suffice to determinethe precise levels and factors causing faults, when the number of such causes is small. Constructionsfor locating arrays are at present limited to heuristic computational methods and quite specific directconstructions. In this paper three recursive constructions are developed for locating arrays to locateone pairwise interaction causing a fault.

  1. A Recursive Formula for the Evaluation of Earth Return Impedance on Buried Cables

    Directory of Open Access Journals (Sweden)

    Reynaldo Iracheta

    2015-09-01

    Full Text Available This paper presents an alternative solution based on infinite series for the accurate and efficient evaluation of cable earth return impedances. This method uses Wedepohl and Wilcox’s transformation to decompose Pollaczek’s integral in a set of Bessel functions and a definite integral. The main feature of Bessel functions is that they are easy to compute in modern mathematical software tools such as Matlab. The main contributions of this paper are the approximation of the definite integral by an infinite series, since it does not have analytical solution; and its numerical solution by means of a recursive formula. The accuracy and efficiency of this recursive formula is compared against the numerical integration method for a broad range of frequencies and cable  configurations. Finally, the proposed method is used as a subroutine for cable parameter calculation in the inverse Numerical Laplace Transform (NLT to obtain accurate transient responses in the time domain.

  2. A novel intrusion detection method based on OCSVM and K-means recursive clustering

    Directory of Open Access Journals (Sweden)

    Leandros A. Maglaras

    2015-01-01

    Full Text Available In this paper we present an intrusion detection module capable of detecting malicious network traffic in a SCADA (Supervisory Control and Data Acquisition system, based on the combination of One-Class Support Vector Machine (OCSVM with RBF kernel and recursive k-means clustering. Important parameters of OCSVM, such as Gaussian width o and parameter v affect the performance of the classifier. Tuning of these parameters is of great importance in order to avoid false positives and over fitting. The combination of OCSVM with recursive k- means clustering leads the proposed intrusion detection module to distinguish real alarms from possible attacks regardless of the values of parameters o and v, making it ideal for real-time intrusion detection mechanisms for SCADA systems. Extensive simulations have been conducted with datasets extracted from small and medium sized HTB SCADA testbeds, in order to compare the accuracy, false alarm rate and execution time against the base line OCSVM method.

  3. New Linear Partitioning Models Based on Experimental Water: Supercritical CO2 Partitioning Data of Selected Organic Compounds.

    Science.gov (United States)

    Burant, Aniela; Thompson, Christopher; Lowry, Gregory V; Karamalidis, Athanasios K

    2016-05-17

    Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch-reactor system with dual spectroscopic detectors: a near-infrared spectrometer for measuring the organic analyte in the CO2 phase and a UV detector for quantifying the analyte in the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly parameter linear free-energy relationship and to develop five new linear free-energy relationships for predicting water-sc-CO2 partitioning coefficients. A total of four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than does the model built for the entire data set.

  4. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. [Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of {alpha}-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for {beta}-amylase. (author)

  5. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. (Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering)

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of [alpha]-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for [beta]-amylase. (author)

  6. New recursive-least-squares algorithms for nonlinear active control of sound and vibration using neural networks.

    Science.gov (United States)

    Bouchard, M

    2001-01-01

    In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.

  7. Development of partitioning method : cold experiment with partitioning test facility in NUCEF (I)

    International Nuclear Information System (INIS)

    Yamaguchi, Isoo; Morita, Yasuji; Kondo, Yasuo

    1996-03-01

    A test facility in which about 1.85 x 10 14 Bq of high-level liquid waste can be treated has been completed in 1994 at Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) for research and development of Partitioning Method. The outline of the partitioning test facility and support equipments for it which were design terms, constructions, arrangements, functions and inspections were given in JAERI-Tech 94-030. The present report describes the results of the water transfer test and partitioning tests, which are methods of precipitation by denitration, oxalate precipitation, solvent extraction, and adsorption with inorganic ion exchanger, using nitric acid to master operation method of the test facility. As often as issues related to equipments occurred during the tests, they were improved. As to issues related to processes such as being stopped up of columns, their measures of solution were found by testing in laboratories. They were reflected in operation of the Partitioning Test Facility. Their particulars and improving points were described in this report. (author)

  8. Recursive wind speed forecasting based on Hammerstein Auto-Regressive model

    International Nuclear Information System (INIS)

    Ait Maatallah, Othman; Achuthan, Ajit; Janoyan, Kerop; Marzocca, Pier

    2015-01-01

    Highlights: • Developed a new recursive WSF model for 1–24 h horizon based on Hammerstein model. • Nonlinear HAR model successfully captured chaotic dynamics of wind speed time series. • Recursive WSF intrinsic error accumulation corrected by applying rotation. • Model verified for real wind speed data from two sites with different characteristics. • HAR model outperformed both ARIMA and ANN models in terms of accuracy of prediction. - Abstract: A new Wind Speed Forecasting (WSF) model, suitable for a short term 1–24 h forecast horizon, is developed by adapting Hammerstein model to an Autoregressive approach. The model is applied to real data collected for a period of three years (2004–2006) from two different sites. The performance of HAR model is evaluated by comparing its prediction with the classical Autoregressive Integrated Moving Average (ARIMA) model and a multi-layer perceptron Artificial Neural Network (ANN). Results show that the HAR model outperforms both the ARIMA model and ANN model in terms of root mean square error (RMSE), mean absolute error (MAE), and Mean Absolute Percentage Error (MAPE). When compared to the conventional models, the new HAR model can better capture various wind speed characteristics, including asymmetric (non-gaussian) wind speed distribution, non-stationary time series profile, and the chaotic dynamics. The new model is beneficial for various applications in the renewable energy area, particularly for power scheduling

  9. Purification of biomaterials by phase partitioning

    Science.gov (United States)

    Harris, J. M.

    1984-01-01

    A technique which is particularly suited to microgravity environments and which is potentially more powerful than electrophoresis is phase partitioning. Phase partitioning is purification by partitioning between the two immiscible aqueous layers formed by solution of the polymers poly(ethylene glycol) and dextran in water. This technique proved to be very useful for separations in one-g but is limited for cells because the cells are more dense than the phase solutions thus tend to sediment to the bottom of the container before reaching equilibrium with the preferred phase. There are three phases to work in this area: synthesis of new polymers for affinity phase partitioning; development of automated apparatus for ground-based separations; and design of apparatus for performing simple phase partitioning space experiments, including examination of mechanisms for separating phases in the absence of gravity.

  10. Betweenness-based algorithm for a partition scale-free graph

    International Nuclear Information System (INIS)

    Zhang Bai-Da; Wu Jun-Jie; Zhou Jing; Tang Yu-Hua

    2011-01-01

    Many real-world networks are found to be scale-free. However, graph partition technology, as a technology capable of parallel computing, performs poorly when scale-free graphs are provided. The reason for this is that traditional partitioning algorithms are designed for random networks and regular networks, rather than for scale-free networks. Multilevel graph-partitioning algorithms are currently considered to be the state of the art and are used extensively. In this paper, we analyse the reasons why traditional multilevel graph-partitioning algorithms perform poorly and present a new multilevel graph-partitioning paradigm, top down partitioning, which derives its name from the comparison with the traditional bottom—up partitioning. A new multilevel partitioning algorithm, named betweenness-based partitioning algorithm, is also presented as an implementation of top—down partitioning paradigm. An experimental evaluation of seven different real-world scale-free networks shows that the betweenness-based partitioning algorithm significantly outperforms the existing state-of-the-art approaches. (interdisciplinary physics and related areas of science and technology)

  11. Recursive nearest neighbor search in a sparse and multiscale domain for comparing audio signals

    DEFF Research Database (Denmark)

    Sturm, Bob L.; Daudet, Laurent

    2011-01-01

    We investigate recursive nearest neighbor search in a sparse domain at the scale of audio signals. Essentially, to approximate the cosine distance between the signals we make pairwise comparisons between the elements of localized sparse models built from large and redundant multiscale dictionaries...

  12. Plane partition vesicles

    International Nuclear Information System (INIS)

    Rensburg, E J Janse van; Ma, J

    2006-01-01

    We examine partitions and their natural three-dimensional generalizations, plane partitions, as models of vesicles undergoing an inflation-deflation transition. The phase diagrams of these models include a critical point corresponding to an inflation-deflation transition, and exhibits multicritical scaling in the vicinity of a multicritical point located elsewhere on the critical curve. We determine the locations of the multicritical points by analysing the generating functions using analytic and numerical means. In addition, we determine the numerical values of the multicritical scaling exponents associated with the multicritical scaling regimes in these models

  13. The importance of applying an appropriate data partitioning

    CERN Document Server

    Dimitrov, Gancho; The ATLAS collaboration

    2015-01-01

    In this presentation are described specific technical solutions put in place in various database applications of the ATLAS experiment at LHC where we make use of several partitioning techniques available in Oracle 11g. With the broadly used range partitioning and its option of automatic interval partitioning we add our own logic in PLSQL procedures and scheduler jobs to sustain data sliding windows in order to enforce various data retention policies. We also make use of the new Oracle 11g reference partitioning in the ATLAS Nightly Build System to achieve uniform data segmentation. However the most challenging was to segment the data of the new ATLAS Distributed Data Management system, which resulted in tens of thousands list type partitions and sub-partitions. Partition and sub-partition management, index strategy, statistics gathering and queries execution plan stability are important factors when choosing an appropriate physical model for the application data management. The so-far accumulated knowledge wi...

  14. Failure patterns by prognostic group as determined by recursive partitioning analysis (RPA) of 1547 on four radiation therapy oncology group studies in operable non-small cell lung cancer (NSCLC)

    International Nuclear Information System (INIS)

    Komaki, Ritsuko; Scott, Charles B.; Byhardt, Roger W.; Emami, Bahman; Asbell, Sucha O.; Russell, Anthony H.; Roach, Mack; Urtasun, Raul C.; Gaspar, Laurie E.

    1997-01-01

    Purpose: To identify groups of patients who might benefit from more aggressive systemic or local treatment based on failure patterns when unresectable NSCLC was treated by radiation therapy alone. Methods: 1547 patients from 4 RTOG trials treated by RT alone were analyzed for the patterns of first failure by PRA class which was defined by prognostic factors, e.g., stage, KPS, weight loss, pleural effusion, age. All patients were AJCC stage II, IIIA or IIIB with KPS of at least 50 and n previous radiotherapy or chemotherapy for their NSCLC. Progressions in the primary (within irradiated fields), thorax (outside irradiated area), brain and distant metastasis other than brain were compared (two-sided) for each failure category by RPA. Results: The RPA classes are four distinct subgroups that had significantly different median survivals of 12.6, 8.3, 6.2 and 3.3 months for classes I, II, III and IV respectively (all groups p=0.0002). Pair comparison showed that RPA I vs IV p<0.0001, I vs III p=0.006, II vs IV p<0.0001, and III vs IV p=0.06. Conclusions: These results suggest the burden of disease and physiologic compromise in class IV patients are sufficient to cause death before specific sites of failure can be discerned. Site specific treatment strategies (intensive local therapy, combination chemotherapy, prophylactic cranial irradiation) may lead to improved outcome in class I and II, but are unlikely to alter outcome in class III and IV

  15. Female married illiteracy as the most important continual determinant of total fertility rate among districts of Empowered Action Group States of India: Evidence from Annual Health Survey 2011-12.

    Science.gov (United States)

    Kumar, Rajesh; Dogra, Vishal; Rani, Khushbu; Sahu, Kanti

    2017-01-01

    District level determinants of total fertility rate in Empowered Action Group states of India can help in ongoing population stabilization programs in India. Present study intends to assess the role of district level determinants in predicting total fertility rate among districts of the Empowered Action Group states of India. Data from Annual Health Survey (2011-12) was analysed using STATA and R software packages. Multiple linear regression models were built and evaluated using Akaike Information Criterion. For further understanding, recursive partitioning was used to prepare a regression tree. Female married illiteracy positively associated with total fertility rate and explained more than half (53%) of variance. Under multiple linear regression model, married illiteracy, infant mortality rate, Ante natal care registration, household size, median age of live birth and sex ratio explained 70% of total variance in total fertility rate. In regression tree, female married illiteracy was the root node and splits at 42% determined TFR illiteracy with splits at 23% to determine TFR illiteracy is one of the most important determinants explaining total fertility rate among the districts of an Empowered Action Group states. Focus on female literacy is required to stabilize the population growth in long run.

  16. A model of guarded recursion with clock synchronisation

    DEFF Research Database (Denmark)

    Bizjak, Aleš; Møgelberg, Rasmus Ejlers

    2015-01-01

    productivity to be captured in types. The calculus uses clocks representing time streams and clock quantifiers which allow limited and controlled elimination of modalities. The calculus has since been extended to dependent types by Møgelberg. Both works give denotational semantics but no rewrite semantics....... In previous versions of this calculus, different clocks represented separate time streams and clock synchronisation was prohibited. In this paper we show that allowing clock synchronisation is safe by constructing a new model of guarded recursion and clocks. This result will greatly simplify the type theory...... by removing freshness restrictions from typing rules, and is a necessary step towards defining rewrite semantics, and ultimately implementing the calculus....

  17. Nonparametric bootstrap procedures for predictive inference based on recursive estimation schemes

    OpenAIRE

    Corradi, Valentina; Swanson, Norman R.

    2005-01-01

    Our objectives in this paper are twofold. First, we introduce block bootstrap techniques that are (first order) valid in recursive estimation frameworks. Thereafter, we present two examples where predictive accuracy tests are made operational using our new bootstrap procedures. In one application, we outline a consistent test for out-of-sample nonlinear Granger causality, and in the other we outline a test for selecting amongst multiple alternative forecasting models, all of which are possibl...

  18. Projection-based Bayesian recursive estimation of ARX model with uniform innovations

    Czech Academy of Sciences Publication Activity Database

    Kárný, Miroslav; Pavelková, Lenka

    2007-01-01

    Roč. 56, 9/10 (2007), s. 646-655 ISSN 0167-6911 R&D Projects: GA AV ČR 1ET100750401; GA MŠk 2C06001; GA MDS 1F43A/003/120 Institutional research plan: CEZ:AV0Z10750506 Keywords : ARX model * Bayesian recursive estimation * Uniform distribution Subject RIV: BC - Control Systems Theory Impact factor: 1.634, year: 2007 http://dx.doi.org/10.1016/j.sysconle.2007.03.005

  19. Present status of partitioning developments

    International Nuclear Information System (INIS)

    Nakamura, Haruto; Kubota, Masumitsu; Tachimori, Shoichi

    1978-09-01

    Evolution and development of the concept of partitioning of high-level liquid wastes (HLLW) in nuclear fuel reprocessing are reviewed historically from the early phase of separating useful radioisotopes from HLLW to the recent phase of eliminating hazardous nuclides such as transuranium elements for safe waste disposal. Since the criteria in determining the nuclides for elimination and the respective decontamination factors are important in the strategy of partitioning, current views on the criteria are summarized. As elimination of the transuranium is most significant in the partitioning, various methods available of separating them from fission products are evaluated. (auth.)

  20. Classification algorithms using adaptive partitioning

    KAUST Repository

    Binev, Peter; Cohen, Albert; Dahmen, Wolfgang; DeVore, Ronald

    2014-01-01

    © 2014 Institute of Mathematical Statistics. Algorithms for binary classification based on adaptive tree partitioning are formulated and analyzed for both their risk performance and their friendliness to numerical implementation. The algorithms can be viewed as generating a set approximation to the Bayes set and thus fall into the general category of set estimators. In contrast with the most studied tree-based algorithms, which utilize piecewise constant approximation on the generated partition [IEEE Trans. Inform. Theory 52 (2006) 1335.1353; Mach. Learn. 66 (2007) 209.242], we consider decorated trees, which allow us to derive higher order methods. Convergence rates for these methods are derived in terms the parameter - of margin conditions and a rate s of best approximation of the Bayes set by decorated adaptive partitions. They can also be expressed in terms of the Besov smoothness β of the regression function that governs its approximability by piecewise polynomials on adaptive partition. The execution of the algorithms does not require knowledge of the smoothness or margin conditions. Besov smoothness conditions are weaker than the commonly used Holder conditions, which govern approximation by nonadaptive partitions, and therefore for a given regression function can result in a higher rate of convergence. This in turn mitigates the compatibility conflict between smoothness and margin parameters.

  1. Classification algorithms using adaptive partitioning

    KAUST Repository

    Binev, Peter

    2014-12-01

    © 2014 Institute of Mathematical Statistics. Algorithms for binary classification based on adaptive tree partitioning are formulated and analyzed for both their risk performance and their friendliness to numerical implementation. The algorithms can be viewed as generating a set approximation to the Bayes set and thus fall into the general category of set estimators. In contrast with the most studied tree-based algorithms, which utilize piecewise constant approximation on the generated partition [IEEE Trans. Inform. Theory 52 (2006) 1335.1353; Mach. Learn. 66 (2007) 209.242], we consider decorated trees, which allow us to derive higher order methods. Convergence rates for these methods are derived in terms the parameter - of margin conditions and a rate s of best approximation of the Bayes set by decorated adaptive partitions. They can also be expressed in terms of the Besov smoothness β of the regression function that governs its approximability by piecewise polynomials on adaptive partition. The execution of the algorithms does not require knowledge of the smoothness or margin conditions. Besov smoothness conditions are weaker than the commonly used Holder conditions, which govern approximation by nonadaptive partitions, and therefore for a given regression function can result in a higher rate of convergence. This in turn mitigates the compatibility conflict between smoothness and margin parameters.

  2. Nonlinear dynamics for charges particle beams with a curved axis in the matrix - recursive model

    Energy Technology Data Exchange (ETDEWEB)

    Dymnikov, A D [University of St Petersburg, (Russian Federation). Institute of Computational Mathematics and Control Process

    1994-12-31

    In this paper a new matrix and recursive approach has been outlined for treating nonlinear optics of charged particle beams. This approach is a new analytical and computational tool for designers of optimal beam control systems. 9 refs.

  3. Recursive least squares method of regression coefficients estimation as a special case of Kalman filter

    Science.gov (United States)

    Borodachev, S. M.

    2016-06-01

    The simple derivation of recursive least squares (RLS) method equations is given as special case of Kalman filter estimation of a constant system state under changing observation conditions. A numerical example illustrates application of RLS to multicollinearity problem.

  4. Nonlinear dynamics for charges particle beams with a curved axis in the matrix - recursive model

    Energy Technology Data Exchange (ETDEWEB)

    Dymnikov, A.D. [University of St Petersburg, (Russian Federation). Institute of Computational Mathematics and Control Process

    1993-12-31

    In this paper a new matrix and recursive approach has been outlined for treating nonlinear optics of charged particle beams. This approach is a new analytical and computational tool for designers of optimal beam control systems. 9 refs.

  5. Nonlinear dynamics for charges particle beams with a curved axis in the matrix - recursive model

    International Nuclear Information System (INIS)

    Dymnikov, A.D.

    1993-01-01

    In this paper a new matrix and recursive approach has been outlined for treating nonlinear optics of charged particle beams. This approach is a new analytical and computational tool for designers of optimal beam control systems. 9 refs

  6. 1-loop partition function in AdS{sub 3}/CFT{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,5 Yiheyuan Rd, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter,5 Yiheyuan Rd, Beijing 100871 (China); Center for High Energy Physics, Peking University,5 Yiheyuan Rd, Beijing 100871 (China); Wu, Jie-qiang [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,5 Yiheyuan Rd, Beijing 100871 (China)

    2015-12-16

    The 1-loop partition function of the handlebody solutions in the AdS{sub 3} gravity have been derived some years ago using the heat kernel techniques and the method of images. In the semiclassical limit, such partition function should correspond to the order O(c{sup 0}) part in the partition function of dual conformal field theory(CFT) on the boundary Riemann surface. The higher genus partition function could be computed by the multi-point functions in the Riemann sphere via sewing prescription. In the large central charge limit, the CFT is effectively free in the sense that to the leading order of c the multi-point function is further simplified to be a summation over the products of two-point functions of single-particle states. Correspondingly in the bulk, the graviton is freely propagating without interaction. Furthermore the product of the two-point functions may define the links, each of which is in one-to-one correspondence with the conjugacy class of the Schottky group of the Riemann surface. Moreover, the value of a link is determined by the multiplier of the element in the conjugacy class. This allows us to reproduce exactly the gravitational 1-loop partition function. The proof can be generalized to the higher spin gravity and its dual CFT.

  7. Wakefield Band Partitioning in LINAC Structures

    International Nuclear Information System (INIS)

    Jones, Roger M

    2003-01-01

    In the NLC project multiple bunches of electrons and positrons will be accelerated initially to a centre of mass of 500 GeV and later to 1 TeV or more. In the process of accelerating 192 bunches within a pulse train, wakefields are excited which kick the trailing bunches off axis and can cause luminosity dilution and BBU (Beam Break Up). Several structures to damp the wakefield have been designed and tested at SLAC and KEK and these have been found to successfully damp the wakefield [1]. However, these 2π/3 structures suffered from electrical breakdown and this has prompted us to explore lower group velocity structures operating at higher fundamental mode phase advances. The wakefield partitioning amongst the bands has been found to change markedly with increased phase advance. Here we report on general trends in the kick factor and associated wakefield band partitioning in dipole bands as a function of phase advance of the synchronous mode in linacs. These results are applicable to both TW (travelling wave) and SW (standing wave) structures

  8. Soft sensor modelling by time difference, recursive partial least squares and adaptive model updating

    International Nuclear Information System (INIS)

    Fu, Y; Xu, O; Yang, W; Zhou, L; Wang, J

    2017-01-01

    To investigate time-variant and nonlinear characteristics in industrial processes, a soft sensor modelling method based on time difference, moving-window recursive partial least square (PLS) and adaptive model updating is proposed. In this method, time difference values of input and output variables are used as training samples to construct the model, which can reduce the effects of the nonlinear characteristic on modelling accuracy and retain the advantages of recursive PLS algorithm. To solve the high updating frequency of the model, a confidence value is introduced, which can be updated adaptively according to the results of the model performance assessment. Once the confidence value is updated, the model can be updated. The proposed method has been used to predict the 4-carboxy-benz-aldehyde (CBA) content in the purified terephthalic acid (PTA) oxidation reaction process. The results show that the proposed soft sensor modelling method can reduce computation effectively, improve prediction accuracy by making use of process information and reflect the process characteristics accurately. (paper)

  9. Numerical solution of recirculating flow by a simple finite element recursion relation

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D W; Cooper, R E

    1980-01-01

    A time-split finite element recursion relation, based on linear basis functions, is used to solve the two-dimensional equations of motion. Recirculating flow in a rectangular cavity and free convective flow in an enclosed container are analyzed. The relation has the advantage of finite element accuracy and finite difference speed and simplicity. Incorporating dissipation parameters in the functionals decreases numerical dispersion and improves phase lag.

  10. Detecting groups of similar components in complex networks

    International Nuclear Information System (INIS)

    Wang Jiao; Lai, C-H

    2008-01-01

    We study how to detect groups in a complex network each of which consists of component nodes sharing a similar connection pattern. Based on the mixture models and the exploratory analysis set up by Newman and Leicht (2007 Proc. Natl. Acad. Sci. USA 104 9564), we develop an algorithm that is applicable to a network with any degree distribution. The partition of a network suggested by this algorithm also applies to its complementary network. In general, groups of similar components are not necessarily identical with the communities in a community network; thus partitioning a network into groups of similar components provides additional information of the network structure. The proposed algorithm can also be used for community detection when the groups and the communities overlap. By introducing a tunable parameter that controls the involved effects of the heterogeneity, we can also investigate conveniently how the group structure can be coupled with the heterogeneity characteristics. In particular, an interesting example shows a group partition can evolve into a community partition in some situations when the involved heterogeneity effects are tuned. The extension of this algorithm to weighted networks is discussed as well.

  11. On а Recursive-Parallel Algorithm for Solving the Knapsack Problem

    Directory of Open Access Journals (Sweden)

    Vladimir V. Vasilchikov

    2018-01-01

    Full Text Available In this paper, we offer an efficient parallel algorithm for solving the NP-complete Knapsack Problem in its basic, so-called 0-1 variant. To find its exact solution, algorithms belonging to the category ”branch and bound methods” have long been used. To speed up the solving with varying degrees of efficiency, various options for parallelizing computations are also used. We propose here an algorithm for solving the problem, based on the paradigm of recursive-parallel computations. We consider it suited well for problems of this kind, when it is difficult to immediately break up the computations into a sufficient number of subtasks that are comparable in complexity, since they appear dynamically at run time. We used the RPM ParLib library, developed by the author, as the main tool to program the algorithm. This library allows us to develop effective applications for parallel computing on a local network in the .NET Framework. Such applications have the ability to generate parallel branches of computation directly during program execution and dynamically redistribute work between computing modules. Any language with support for the .NET Framework can be used as a programming language in conjunction with this library. For our experiments, we developed some C# applications using this library. The main purpose of these experiments was to study the acceleration achieved by recursive-parallel computing. A detailed description of the algorithm and its testing, as well as the results obtained, are also given in the paper.

  12. Influence of the structure of bile acids on their partition coefficient in dibutyl ether and chloroform

    Directory of Open Access Journals (Sweden)

    Sebenji Ana S.

    2015-01-01

    Full Text Available Bile acids are well known natural surfactants able to modify the per­meability of biological membranes. The logarithm of partition coefficient between, tradi­tionally used, n-octanol and water is a measure of lipophilicity as a predictor of solute membrane partitioning. The aim of this work was to determine partition coefficients of bile acids in a mixture of water and chloroform and dibutyl ether at different pH values and with addition of different concentrations of sodium ions, and to examine the influence of the structure of bile acid nucleus on measured partition coefficients. Partition coefficients of three bile acid salts were determined using shake-flask method and the concentration of bile acids was determined after twelve hours of shaking at the room temperature in aqueous and organic layer using reversed phase HPLC with DAD detector on 210 nm. For all three analysed bile acid salts values of logP are lower in dibutyl ether than in chloroform. At certain pH values, curves representing the dependence of partition coeffi­cient on pH value intersect, and these are the pH values for which partition coefficients are the same for both solvents. Increasing the solution ionic strength, this intersection is shifted toward lower pH values. It is found that, for both organic solvents, after the addition of hy­droxyl group in the steroid nucleus (i.e. if the bile acid is less hydrophobic the value of logP falls, especially if more hydroxyl groups are present. With chloroform as a solvent, system quickly comes to excess with electrolyte ions than with dibutyl ether. [Projekat Ministarstva nauke Republike Srbije, br. 172021

  13. TOPICAL REVIEW: Nonlinear aspects of the renormalization group flows of Dyson's hierarchical model

    Science.gov (United States)

    Meurice, Y.

    2007-06-01

    We review recent results concerning the renormalization group (RG) transformation of Dyson's hierarchical model (HM). This model can be seen as an approximation of a scalar field theory on a lattice. We introduce the HM and show that its large group of symmetry simplifies drastically the blockspinning procedure. Several equivalent forms of the recursion formula are presented with unified notations. Rigourous and numerical results concerning the recursion formula are summarized. It is pointed out that the recursion formula of the HM is inequivalent to both Wilson's approximate recursion formula and Polchinski's equation in the local potential approximation (despite the very small difference with the exponents of the latter). We draw a comparison between the RG of the HM and functional RG equations in the local potential approximation. The construction of the linear and nonlinear scaling variables is discussed in an operational way. We describe the calculation of non-universal critical amplitudes in terms of the scaling variables of two fixed points. This question appears as a problem of interpolation between these fixed points. Universal amplitude ratios are calculated. We discuss the large-N limit and the complex singularities of the critical potential calculable in this limit. The interpolation between the HM and more conventional lattice models is presented as a symmetry breaking problem. We briefly introduce models with an approximate supersymmetry. One important goal of this review is to present a configuration space counterpart, suitable for lattice formulations, of functional RG equations formulated in momentum space (often called exact RG equations and abbreviated ERGE).

  14. Many-body formalism for fermions: The partition function

    Science.gov (United States)

    Watson, D. K.

    2017-09-01

    The partition function, a fundamental tenet in statistical thermodynamics, contains in principle all thermodynamic information about a system. It encapsulates both microscopic information through the quantum energy levels and statistical information from the partitioning of the particles among the available energy levels. For identical particles, this statistical accounting is complicated by the symmetry requirements of the allowed quantum states. In particular, for Fermi systems, the enforcement of the Pauli principle is typically a numerically demanding task, responsible for much of the cost of the calculations. The interplay of these three elements—the structure of the many-body spectrum, the statistical partitioning of the N particles among the available levels, and the enforcement of the Pauli principle—drives the behavior of mesoscopic and macroscopic Fermi systems. In this paper, we develop an approach for the determination of the partition function, a numerically difficult task, for systems of strongly interacting identical fermions and apply it to a model system of harmonically confined, harmonically interacting fermions. This approach uses a recently introduced many-body method that is an extension of the symmetry-invariant perturbation method (SPT) originally developed for bosons. It uses group theory and graphical techniques to avoid the heavy computational demands of conventional many-body methods which typically scale exponentially with the number of particles. The SPT application of the Pauli principle is trivial to implement since it is done "on paper" by imposing restrictions on the normal-mode quantum numbers at first order in the perturbation. The method is applied through first order and represents an extension of the SPT method to excited states. Our method of determining the partition function and various thermodynamic quantities is accurate and efficient and has the potential to yield interesting insight into the role played by the Pauli

  15. Gentile statistics and restricted partitions

    Indian Academy of Sciences (India)

    The partition function of Gentile statistics also has the property that it nicely interpolates between the ... We now construct the partition function for such a system which also incorporates the property of interpolation ... As in [4], we however keep s arbitrary even though for s > 2 there are no quadratic. Hamiltonian systems.

  16. The importance of having an appropriate data segmentation (partitioning)

    CERN Document Server

    Dimitrov, Gancho; The ATLAS collaboration

    2014-01-01

    In this presentation will be shown real life examples from database applications in the ATLAS experiment @ LHC where we make use of many Oracle partitioning techniques available in Oracle 11g. With the broadly used range partitioning and its option of automatic interval partitioning we add our own logic in PLSQL for sustaining data sliding windows in order to enforce various data retention policies. We also make use of the reference partitioning in some use cases, however the most challenging was to segment the data of a large bookkeeping system which resulted in tens of thousands list partitions and list sub-partitions. Partition and sub-partition management, index strategy, statistics gathering and queries execution plan stability are important factors when choosing an appropriate for the use case data management model. The gained experience with all of those will be shared with the audience.

  17. Generating Milton Babbitt's all-partition arrays

    OpenAIRE

    Bemman, Brian; Meredith, David

    2016-01-01

    In most of Milton Babbitt's (1916–2011) works written since the early 1960s, both the pitch and rhythmic content is organized according to a highly constrained structure known as the all-partition array. The all-partition array provides a framework that ensures that as many different forms of a tone row as possible (generated by any combination of transposition, inversion or reversal) are expressed 'horizontally' and that each integer partition of 12 whose cardinality is no greater than the n...

  18. Lift of dilogarithm to partition identities

    International Nuclear Information System (INIS)

    Terhoeven, M.

    1992-11-01

    For the whole set of dilogarithm identities found recently using the thermodynamic Bethe-Ansatz for the ADET series of purely elastic scattering theories we give partition identities which involve characters of those conformal field theories which correspond to the UV-limits of the scattering theories. These partition identities in turn allow to derive the dilogarithm identities using modular invariance and a saddle point approximation. We conjecture on possible generalizations of this correspondance, namely, a lift from dilogarithm to partition identities. (orig.)

  19. Recursive Neural Networks Based on PSO for Image Parsing

    Directory of Open Access Journals (Sweden)

    Guo-Rong Cai

    2013-01-01

    Full Text Available This paper presents an image parsing algorithm which is based on Particle Swarm Optimization (PSO and Recursive Neural Networks (RNNs. State-of-the-art method such as traditional RNN-based parsing strategy uses L-BFGS over the complete data for learning the parameters. However, this could cause problems due to the nondifferentiable objective function. In order to solve this problem, the PSO algorithm has been employed to tune the weights of RNN for minimizing the objective. Experimental results obtained on the Stanford background dataset show that our PSO-based training algorithm outperforms traditional RNN, Pixel CRF, region-based energy, simultaneous MRF, and superpixel MRF.

  20. Assessment of Partitioning Processes for Transmutation of Actinides

    International Nuclear Information System (INIS)

    2010-04-01

    To obtain public acceptance of future nuclear fuel cycle technology, new and innovative concepts must overcome the present concerns with respect to both environmental compliance and proliferation of fissile materials. Both these concerns can be addressed through the multiple recycling of all transuranic elements (TRUs) in fast neutron reactor. This is only possible through a process known as partitioning and transmutation scheme (P and T) as this scheme is expected to reduce the long term radio-toxicity as well as the radiogenic heat production of the nuclear waste. Proliferation resistance of separated plutonium could further be enhanced by mixing with self-generated minor actinides. In addition, P and T scheme is expected to extend the nuclear fuel resources on earth about 100 times because of the recycle and reuse of fissile actinides. Several Member States are actively pursuing the research in the field of P and T and consequently several IAEA publications have addressed this topic. The present coordinated research project (CRP) focuses on the potentials in minimizing the residual TRU inventories of the discharged nuclear waste and in enhancing the proliferation resistance of the future civil nuclear fuel cycle. Partitioning approaches can be grouped into aqueous- (hydrometallurgical) and pyroprocesses. Several aqueous processes based on sequential separation of actinides from spent nuclear fuel have been developed and tested at pilot plant scale. In view of the proliferation resistance of the intermediate and final products of a P and T scheme, a group separation of all actinides together is preferable. The present CRP has gathered experts from different organisations and institutes actively involved in developing P and T scheme as mentioned in the list of contributors and also taken into consideration the studies underway in France and the UK. The scientific objectives of the CRP are: To minimize the environmental impact of actinides in the waste stream; To

  1. Data Partitioning Technique for Improved Video Prioritization

    Directory of Open Access Journals (Sweden)

    Ismail Amin Ali

    2017-07-01

    Full Text Available A compressed video bitstream can be partitioned according to the coding priority of the data, allowing prioritized wireless communication or selective dropping in a congested channel. Known as data partitioning in the H.264/Advanced Video Coding (AVC codec, this paper introduces a further sub-partition of one of the H.264/AVC codec’s three data-partitions. Results show a 5 dB improvement in Peak Signal-to-Noise Ratio (PSNR through this innovation. In particular, the data partition containing intra-coded residuals is sub-divided into data from: those macroblocks (MBs naturally intra-coded, and those MBs forcibly inserted for non-periodic intra-refresh. Interactive user-to-user video streaming can benefit, as then HTTP adaptive streaming is inappropriate and the High Efficiency Video Coding (HEVC codec is too energy demanding.

  2. EXTENSION OF FORMULAS FOR PARTITION FUNCTIONS

    African Journals Online (AJOL)

    Ladan et al.

    2Department of Mathematics, Ahmadu Bello University, Zaria. ... 2 + 1 + 1. = 1 + 1 + 1 + 1. Partition function ( ). Andrew and Erikson (2004) stated that the ..... Andrews, G.E., 1984, The Theory of Partitions, Cambridge ... Pure Appl. Math.

  3. The partition dimension of cycle books graph

    Science.gov (United States)

    Santoso, Jaya; Darmaji

    2018-03-01

    Let G be a nontrivial and connected graph with vertex set V(G), edge set E(G) and S ⊆ V(G) with v ∈ V(G), the distance between v and S is d(v,S) = min{d(v,x)|x ∈ S}. For an ordered partition ∏ = {S 1, S 2, S 3,…, Sk } of V(G), the representation of v with respect to ∏ is defined by r(v|∏) = (d(v, S 1), d(v, S 2),…, d(v, Sk )). The partition ∏ is called a resolving partition of G if all representations of vertices are distinct. The partition dimension pd(G) is the smallest integer k such that G has a resolving partition set with k members. In this research, we will determine the partition dimension of Cycle Books {B}{Cr,m}. Cycle books graph {B}{Cr,m} is a graph consisting of m copies cycle Cr with the common path P 2. It is shown that the partition dimension of cycle books graph, pd({B}{C3,m}) is 3 for m = 2, 3, and m for m ≥ 4. pd({B}{C4,m}) is 3 + 2k for m = 3k + 2, 4 + 2(k ‑ 1) for m = 3k + 1, and 3 + 2(k ‑ 1) for m = 3k. pd({B}{C5,m}) is m + 1.

  4. Reliability evaluation of non-reparable three-state systems using Markov model and its comparison with the UGF and the recursive methods

    International Nuclear Information System (INIS)

    Pourkarim Guilani, Pedram; Sharifi, Mani; Niaki, S.T.A.; Zaretalab, Arash

    2014-01-01

    In multi-state systems (MSS) reliability problems, it is assumed that the components of each subsystem have different performance rates with certain probabilities. This leads into extensive computational efforts involved in using the commonly employed universal generation function (UGF) and the recursive algorithm to obtain reliability of systems consisting of a large number of components. This research deals with evaluating non-repairable three-state systems reliability and proposes a novel method based on a Markov process for which an appropriate state definition is provided. It is shown that solving the derived differential equations significantly reduces the computational time compared to the UGF and the recursive algorithm. - Highlights: • Reliability evaluation of a non-repairable three-state systems is aimed. • A novel method based on a Markov process is proposed. • An appropriate state definition is provided. • Computational time is significantly less compared to the ones in the UGF and the recursive methods

  5. Quantum Dilogarithms and Partition q-Series

    Science.gov (United States)

    Kato, Akishi; Terashima, Yuji

    2015-08-01

    In our previous work (Kato and Terashima, Commun Math Phys. arXiv:1403.6569, 2014), we introduced the partition q-series for mutation loop γ—a loop in exchange quiver. In this paper, we show that for a certain class of mutation sequences, called reddening sequences, the graded version of partition q-series essentially coincides with the ordered product of quantum dilogarithm associated with each mutation; the partition q-series provides a state-sum description of combinatorial Donaldson-Thomas invariants introduced by Keller.

  6. Speed control of induction motor using fuzzy recursive least squares technique

    OpenAIRE

    Santiago Sánchez; Eduardo Giraldo

    2008-01-01

    A simple adaptive controller design is presented in this paper, the control system uses the adaptive fuzzy logic, sliding modes and is trained with the recursive least squares technique. The problem of parameter variation is solved with the adaptive controller; the use of an internal PI regulator produces that the speed control of the induction motor be achieved by the stator currents instead the input voltage. The rotor-flux oriented coordinated system model is used to develop and test the c...

  7. Spatially Partitioned Embedded Runge--Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2013-10-30

    We study spatially partitioned embedded Runge--Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in nonembedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to nonphysical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted nonoscillatory spatial discretizations. Numerical experiments are provided to support the theory.

  8. Spatially Partitioned Embedded Runge--Kutta Methods

    KAUST Repository

    Ketcheson, David I.; MacDonald, Colin B.; Ruuth, Steven J.

    2013-01-01

    We study spatially partitioned embedded Runge--Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in nonembedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to nonphysical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted nonoscillatory spatial discretizations. Numerical experiments are provided to support the theory.

  9. Do we represent intentional action as recursively embedded? The answer must be empirical. A comment on Vicari and Adenzato (2014).

    Science.gov (United States)

    Martins, Mauricio D; Fitch, W Tecumseh

    2015-12-15

    The relationship between linguistic syntax and action planning is of considerable interest in cognitive science because many researchers suggest that "motor syntax" shares certain key traits with language. In a recent manuscript in this journal, Vicari and Adenzato (henceforth VA) critiqued Hauser, Chomsky and Fitch's 2002 (henceforth HCF's) hypothesis that recursion is language-specific, and that its usage in other domains is parasitic on language resources. VA's main argument is that HCF's hypothesis is falsified by the fact that recursion typifies the structure of intentional action, and recursion in the domain of action is independent of language. Here, we argue that VA's argument is incomplete, and that their formalism can be contrasted with alternative frameworks that are equally consistent with existing data. Therefore their conclusions are premature without further empirical testing and support. In particular, to accept VA's argument it would be necessary to demonstrate both that humans in fact represent self-embedding in the structure of intentional action, and that language is not used to construct these representations. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The understanding of the students about the nature of light in recursive curriculum

    Directory of Open Access Journals (Sweden)

    Geide Rosa Coelho

    2010-01-01

    Full Text Available We report an inquiry on the development of students' understanding about the nature of light. The study happened in a learning environment with a recursive and spiral Physics syllabus. We investigated the change in students' understanding about the nature of light during their 3rd year in High School, and the level of understanding about this subject achieved by students at the end of this year. To assess the students' understanding, we developed an open questionnaire form and a set of hierarchical categories, consisting of five different models about the nature of light. The questionnaire was used to access the students´ understanding at the beginning and at the end of the third level of the recursive curriculum. The results showed that students have a high level of prior knowledge, and also that the Physics learning they experienced had enhanced their understanding, despite the effects are not verified in all the Physics classes. By the end of the third year, most of the students explain the nature of light using or a corpuscular electromagnetic model or a dual electromagnetic model, but some students use these models with inconsistencies in their explanations.

  11. Local Stability Conditions for Two Types of Monetary Models with Recursive Utility

    OpenAIRE

    Miyazaki, Kenji; Utsunomiya, Hitoshi

    2009-01-01

    This paper explores local stability conditions for money-in-utility-function (MIUF) and transaction-costs (TC) models with recursive utility.A monetary variant of the Brock-Gale condition provides a theoretical justification of the comparative statics analysis. One of sufficient conditions for local stability is increasing marginal impatience (IMI) in consumption and money. However, this does not deny the possibility of decreasing marginal impatience (DMI). The local stability with DMI is mor...

  12. A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems.

    Science.gov (United States)

    Kazemi, Mahdi; Arefi, Mohammad Mehdi

    2017-03-01

    In this paper, an online identification algorithm is presented for nonlinear systems in the presence of output colored noise. The proposed method is based on extended recursive least squares (ERLS) algorithm, where the identified system is in polynomial Wiener form. To this end, an unknown intermediate signal is estimated by using an inner iterative algorithm. The iterative recursive algorithm adaptively modifies the vector of parameters of the presented Wiener model when the system parameters vary. In addition, to increase the robustness of the proposed method against variations, a robust RLS algorithm is applied to the model. Simulation results are provided to show the effectiveness of the proposed approach. Results confirm that the proposed method has fast convergence rate with robust characteristics, which increases the efficiency of the proposed model and identification approach. For instance, the FIT criterion will be achieved 92% in CSTR process where about 400 data is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Improving the Network Scale-Up Estimator: Incorporating Means of Sums, Recursive Back Estimation, and Sampling Weights.

    Directory of Open Access Journals (Sweden)

    Patrick Habecker

    Full Text Available Researchers interested in studying populations that are difficult to reach through traditional survey methods can now draw on a range of methods to access these populations. Yet many of these methods are more expensive and difficult to implement than studies using conventional sampling frames and trusted sampling methods. The network scale-up method (NSUM provides a middle ground for researchers who wish to estimate the size of a hidden population, but lack the resources to conduct a more specialized hidden population study. Through this method it is possible to generate population estimates for a wide variety of groups that are perhaps unwilling to self-identify as such (for example, users of illegal drugs or other stigmatized populations via traditional survey tools such as telephone or mail surveys--by asking a representative sample to estimate the number of people they know who are members of such a "hidden" subpopulation. The original estimator is formulated to minimize the weight a single scaling variable can exert upon the estimates. We argue that this introduces hidden and difficult to predict biases, and instead propose a series of methodological advances on the traditional scale-up estimation procedure, including a new estimator. Additionally, we formalize the incorporation of sample weights into the network scale-up estimation process, and propose a recursive process of back estimation "trimming" to identify and remove poorly performing predictors from the estimation process. To demonstrate these suggestions we use data from a network scale-up mail survey conducted in Nebraska during 2014. We find that using the new estimator and recursive trimming process provides more accurate estimates, especially when used in conjunction with sampling weights.

  14. Recursive Utility and the Superneutrality of Money on the Transition Path

    OpenAIRE

    Miyazaki, Kenji

    2010-01-01

    this paper investigates whether a change in the growth rate of the money supply enhances the rate of capital accumulation in a cash-in-advance monetary model with recursive utility. Although money is superneutral in the steady state, the effect of the growth rate of money on the speed of capital accumulation depends not only on the curvature of the felicity but also on the slope and curvature of the discount rate function. We find that when the discount rate decreases with consumption and the...

  15. Speed control of induction motor using fuzzy recursive least squares technique

    Directory of Open Access Journals (Sweden)

    Santiago Sánchez

    2008-12-01

    Full Text Available A simple adaptive controller design is presented in this paper, the control system uses the adaptive fuzzy logic, sliding modes and is trained with the recursive least squares technique. The problem of parameter variation is solved with the adaptive controller; the use of an internal PI regulator produces that the speed control of the induction motor be achieved by the stator currents instead the input voltage. The rotor-flux oriented coordinated system model is used to develop and test the control system.

  16. Dynamics of vacuum-sealed, double-leaf partitions

    Science.gov (United States)

    Kavanaugh, Joshua Stephen

    The goal of this research is to investigate the feasibility and potential effectiveness of using vacuum-sealed, double-leaf partitions for applications in noise control. Substantial work has been done previously on double-leaf partitions where the acoustics of the inner chamber and mechanical vibrations of structural supports are passively and actively controlled. The work presented here is unique in that the proposed system aims to eliminate the need for active acoustic control of transmitted acoustic energy by removing all the air between the two panels of the double partition. Therefore, the only remaining energy paths would be along the boundary and at the points where there are intermediate structural supports connecting the two panels. The eventual goal of the research is to develop a high-loss double-leaf partition that simplifies active control by removing the need for control of the air cavity and channeling all the energy into discrete structural paths. The work presented here is a first step towards the goal of designing a high-loss, actively-controlled double-leaf partition with an air-evacuated inner chamber. One experiment is conducted to investigate the effects of various levels of vacuum on the response of a double-leaf partition whose panels are mechanically coupled only at the boundary. Another experiment is conducted which investigates the effect of changing the stiffness of an intermediate support coupling the two panels of a double-leaf partition in which a vacuum has been applied to the inner cavity. The available equipment was able to maintain a 99% vacuum between the panels. Both experiments are accompanied by analytical models used to investigate the importance of various dynamic parameters. Results show that the vacuum-sealed system shows some potential for increased transmission loss, primarily by the changing the natural frequencies of the double-leaf partition.

  17. Accounting Fundamentals and Variations of Stock Price: Methodological Refinement with Recursive Simultaneous Model

    OpenAIRE

    Sumiyana, Sumiyana; Baridwan, Zaki

    2013-01-01

    This study investigates association between accounting fundamentals and variations of stock prices using recursive simultaneous equation model. The accounting fundamentalsconsist of earnings yield, book value, profitability, growth opportunities and discount rate. The prior single relationships model has been investigated by Chen and Zhang (2007),Sumiyana (2011) and Sumiyana et al. (2010). They assume that all accounting fundamentals associate direct-linearly to the stock returns. This study ...

  18. One loop partition function of six dimensional conformal gravity using heat kernel on AdS

    Energy Technology Data Exchange (ETDEWEB)

    Lovreković, Iva [Institute for Theoretical Physics, Technische Universität Wien,Wiedner Hauptstrasse 8-10/136, A-1040 Vienna (Austria)

    2016-10-13

    We compute the heat kernel for the Laplacians of symmetric transverse traceless fields of arbitrary spin on the AdS background in even number of dimensions using the group theoretic approach introduced in http://dx.doi.org/10.1007/JHEP11(2011)010 and apply it on the partition function of six dimensional conformal gravity. The obtained partition function consists of the Einstein gravity, conformal ghost and two modes that contain mass.

  19. Partitions in languages and parallel computations

    Energy Technology Data Exchange (ETDEWEB)

    Burgin, M S; Burgina, E S

    1982-05-01

    Partitions of entries (linguistic structures) are studied that are intended for parallel data processing. The representations of formal languages with the aid of such structures is examined, and the relationships are considered between partitions of entries and abstract families of languages and automata. 18 references.

  20. Scheduling Driven Partitioning of Heterogeneous Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    1998-01-01

    In this paper we present an algorithm for system level hardware/software partitioning of heterogeneous embedded systems. The system is represented as an abstract graph which captures both data-flow and the flow of control. Given an architecture consisting of several processors, ASICs and shared...... busses, our partitioning algorithm finds the partitioning with the smallest hardware cost and is able to predict and guarantee the performance of the system in terms of worst case delay....

  1. Partition functions for supersymmetric black holes

    NARCIS (Netherlands)

    Manschot, J.

    2008-01-01

    This thesis presents a number of results on partition functions for four-dimensional supersymmetric black holes. These partition functions are important tools to explain the entropy of black holes from a microscopic point of view. Such a microscopic explanation was desired after the association of a

  2. Aspects of system modelling in Hardware/Software partitioning

    DEFF Research Database (Denmark)

    Knudsen, Peter Voigt; Madsen, Jan

    1996-01-01

    This paper addresses fundamental aspects of system modelling and partitioning algorithms in the area of Hardware/Software Codesign. Three basic system models for partitioning are presented and the consequences of partitioning according to each of these are analyzed. The analysis shows...... the importance of making a clear distinction between the model used for partitioning and the model used for evaluation It also illustrates the importance of having a realistic hardware model such that hardware sharing can be taken into account. Finally, the importance of integrating scheduling and allocation...

  3. Recursive stochastic effects in valley hybrid inflation

    Science.gov (United States)

    Levasseur, Laurence Perreault; Vennin, Vincent; Brandenberger, Robert

    2013-10-01

    Hybrid inflation is a two-field model where inflation ends because of a tachyonic instability, the duration of which is determined by stochastic effects and has important observational implications. Making use of the recursive approach to the stochastic formalism presented in [L. P. Levasseur, preceding article, Phys. Rev. D 88, 083537 (2013)], these effects are consistently computed. Through an analysis of backreaction, this method is shown to converge in the valley but points toward an (expected) instability in the waterfall. It is further shown that the quasistationarity of the auxiliary field distribution breaks down in the case of a short-lived waterfall. We find that the typical dispersion of the waterfall field at the critical point is then diminished, thus increasing the duration of the waterfall phase and jeopardizing the possibility of a short transition. Finally, we find that stochastic effects worsen the blue tilt of the curvature perturbations by an O(1) factor when compared with the usual slow-roll contribution.

  4. Rational quantum integrable systems of DN type with polarized spin reversal operators

    Directory of Open Access Journals (Sweden)

    B. Basu-Mallick

    2015-09-01

    Full Text Available We study the spin Calogero model of DN type with polarized spin reversal operators, as well as its associated spin chain of Haldane–Shastry type, both in the antiferromagnetic and ferromagnetic cases. We compute the spectrum and the partition function of the former model in closed form, from which we derive an exact formula for the chain's partition function in terms of products of partition functions of Polychronakos–Frahm spin chains of type A. Using a recursion relation for the latter partition functions that we derive in the paper, we are able to numerically evaluate the partition function, and thus the spectrum, of the DN-type spin chain for relatively high values of the number of spins N. We analyze several global properties of the chain's spectrum, such as the asymptotic level density, the distribution of consecutive spacings of the unfolded spectrum, and the average degeneracy. In particular, our results suggest that this chain is invariant under a suitable Yangian group, and that its spectrum coincides with that of a Yangian-invariant vertex model with linear energy function and dispersion relation.

  5. Generating Milton Babbitt's all-partition arrays

    DEFF Research Database (Denmark)

    Bemman, Brian; Meredith, David

    2016-01-01

    In most of Milton Babbitt's (1916–2011) works written since the early 1960s, both the pitch and rhythmic content is organized according to a highly constrained structure known as the all-partition array. The all-partition array provides a framework that ensures that as many different forms...

  6. The boundary length and point spectrum enumeration of partial chord diagrams using cut and join recursion

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Fuji, Hiroyuki; Penner, Robert C.

    relation, which combined with an initial condition determines these numbers uniquely. This recursion relation is equivalent to a second order, non-linear, algebraic partial differential equation for the generating function of the numbers of partial chord diagrams filtered by the boundary length and point...

  7. ACCOUNTING FUNDAMENTALS AND VARIATIONS OF STOCK PRICE: METHODOLOGICAL REFINEMENT WITH RECURSIVE SIMULTANEOUS MODEL

    OpenAIRE

    Sumiyana, Sumiyana; Baridwan, Zaki

    2015-01-01

    This study investigates association between accounting fundamentals and variations of stock prices using recursive simultaneous equation model. The accounting fundamentalsconsist of earnings yield, book value, profitability, growth opportunities and discount rate. The prior single relationships model has been investigated by Chen and Zhang (2007),Sumiyana (2011) and Sumiyana et al. (2010). They assume that all accounting fundamentals associate direct-linearly to the stock returns. This study ...

  8. Decision tree approach for classification of remotely sensed satellite

    Indian Academy of Sciences (India)

    DTC) algorithm for classification of remotely sensed satellite data (Landsat TM) using open source support. The decision tree is constructed by recursively partitioning the spectral distribution of the training dataset using WEKA, open source ...

  9. The calculation of deep levels in semiconductors by using a recursion method for super-cells

    International Nuclear Information System (INIS)

    Wong Yongliang.

    1987-01-01

    The paper presents the theory of deep levels in semiconductors, the super-cell approach to the theory of deep level impurities, the calculation of band structure by using the tight-binding method and the recursion method used to study the defects in the presence of lattice relaxation and extended defect complexes. 47 refs

  10. Matrix string partition function

    CERN Document Server

    Kostov, Ivan K; Kostov, Ivan K.; Vanhove, Pierre

    1998-01-01

    We evaluate quasiclassically the Ramond partition function of Euclidean D=10 U(N) super Yang-Mills theory reduced to a two-dimensional torus. The result can be interpreted in terms of free strings wrapping the space-time torus, as expected from the point of view of Matrix string theory. We demonstrate that, when extrapolated to the ultraviolet limit (small area of the torus), the quasiclassical expressions reproduce exactly the recently obtained expression for the partition of the completely reduced SYM theory, including the overall numerical factor. This is an evidence that our quasiclassical calculation might be exact.

  11. Surgical Resection Followed by Whole Brain Radiotherapy Versus Whole Brain Radiotherapy Alone for Single Brain Metastasis

    International Nuclear Information System (INIS)

    Rades, Dirk; Kieckebusch, Susanne; Haatanen, Tiina; Lohynska, Radka; Dunst, Juergen; Schild, Steven E.

    2008-01-01

    Purpose: To compare the outcome of surgical resection followed by whole brain radiotherapy (WBRT) with WBRT alone in patients treated for single brain metastasis. Methods and Materials: The data from 195 patients with single brain metastases were retrospectively evaluated. Of the 195 patients, 99 underwent resection of the metastasis followed by WBRT and 96 underwent WBRT alone. Seven additional potential prognostic factors were investigated: age, gender, Eastern Cooperative Oncology Group performance score, tumor type, interval between initial tumor diagnosis and WBRT, extracranial metastases, and recursive partitioning analysis class. Both treatment groups were well balanced for these factors. Results: On multivariate analysis, improved survival was associated with resection (relative risk [RR], 1.20; 95% confidence interval [CI], 1.11-1.31; p < 0.001), lower recursive partitioning analysis class (RR, 1.58; 95% CI, 1.22-2.06; p < 0.001), age ≤61 years (RR, 1.79; 95% CI, 1.23-2.61; p = 0.002), Eastern Cooperative Oncology Group performance score of 0-1 (RR, 2.47; 95% CI, 1.70-3.59; p < 0.001), and the absence of extracranial metastases (RR, 1.99; 95% CI, 1.41-2.79; p < 0.001). Improved local control was associated with resection (RR, 1.25; 95% CI, 1.11-1.41; p < 0.001) and age ≤61 years (RR, 1.77; 95% CI, 1.09-2.88; p = 0.020). Improved brain control distant from the original site was associated with lower recursive partitioning analysis class (RR, 1.65; 95% CI, 1.03-2.69; p < 0.035), age ≤61 years (RR, 1.81; 95% CI, 1.12-2.96; p = 0.016), and the absence of extracranial metastases (RR, 2.42; 95% CI, 1.52-3.88; p < 0.001). Improved control within the entire brain was associated with surgery (RR, 1.24; 95% CI, 1.12-1.38; p < 0.001) and age ≤61 years (RR, 1.83; 95% CI, 1.21-2.77; p = 0.004). Conclusion: In patients with a single brain metastasis, the addition of resection to WBRT improved survival, local control at the original metastatic site, and control

  12. Stochastic Recursive Algorithms for Optimization Simultaneous Perturbation Methods

    CERN Document Server

    Bhatnagar, S; Prashanth, L A

    2013-01-01

    Stochastic Recursive Algorithms for Optimization presents algorithms for constrained and unconstrained optimization and for reinforcement learning. Efficient perturbation approaches form a thread unifying all the algorithms considered. Simultaneous perturbation stochastic approximation and smooth fractional estimators for gradient- and Hessian-based methods are presented. These algorithms: • are easily implemented; • do not require an explicit system model; and • work with real or simulated data. Chapters on their application in service systems, vehicular traffic control and communications networks illustrate this point. The book is self-contained with necessary mathematical results placed in an appendix. The text provides easy-to-use, off-the-shelf algorithms that are given detailed mathematical treatment so the material presented will be of significant interest to practitioners, academic researchers and graduate students alike. The breadth of applications makes the book appropriate for reader from sim...

  13. Recursive model for the fragmentation of polarized quarks

    Science.gov (United States)

    Kerbizi, A.; Artru, X.; Belghobsi, Z.; Bradamante, F.; Martin, A.

    2018-04-01

    We present a model for Monte Carlo simulation of the fragmentation of a polarized quark. The model is based on string dynamics and the 3P0 mechanism of quark pair creation at string breaking. The fragmentation is treated as a recursive process, where the splitting function of the subprocess q →h +q' depends on the spin density matrix of the quark q . The 3P0 mechanism is parametrized by a complex mass parameter μ , the imaginary part of which is responsible for single spin asymmetries. The model has been implemented in a Monte Carlo program to simulate jets made of pseudoscalar mesons. Results for single hadron and hadron pair transverse-spin asymmetries are found to be in agreement with experimental data from SIDIS and e+e- annihilation. The model predictions on the jet-handedness are also discussed.

  14. An Association-Oriented Partitioning Approach for Streaming Graph Query

    Directory of Open Access Journals (Sweden)

    Yun Hao

    2017-01-01

    Full Text Available The volumes of real-world graphs like knowledge graph are increasing rapidly, which makes streaming graph processing a hot research area. Processing graphs in streaming setting poses significant challenges from different perspectives, among which graph partitioning method plays a key role. Regarding graph query, a well-designed partitioning method is essential for achieving better performance. Existing offline graph partitioning methods often require full knowledge of the graph, which is not possible during streaming graph processing. In order to handle this problem, we propose an association-oriented streaming graph partitioning method named Assc. This approach first computes the rank values of vertices with a hybrid approximate PageRank algorithm. After splitting these vertices with an adapted variant affinity propagation algorithm, the process order on vertices in the sliding window can be determined. Finally, according to the level of these vertices and their association, the partition where the vertices should be distributed is decided. We compare its performance with a set of streaming graph partition methods and METIS, a widely adopted offline approach. The results show that our solution can partition graphs with hundreds of millions of vertices in streaming setting on a large collection of graph datasets and our approach outperforms other graph partitioning methods.

  15. Female married illiteracy as the most important continual determinant of total fertility rate among districts of Empowered Action Group States of India: Evidence from Annual Health Survey 2011–12

    Science.gov (United States)

    Kumar, Rajesh; Dogra, Vishal; Rani, Khushbu; Sahu, Kanti

    2017-01-01

    Background: District level determinants of total fertility rate in Empowered Action Group states of India can help in ongoing population stabilization programs in India. Objective: Present study intends to assess the role of district level determinants in predicting total fertility rate among districts of the Empowered Action Group states of India. Material and Methods: Data from Annual Health Survey (2011-12) was analysed using STATA and R software packages. Multiple linear regression models were built and evaluated using Akaike Information Criterion. For further understanding, recursive partitioning was used to prepare a regression tree. Results: Female married illiteracy positively associated with total fertility rate and explained more than half (53%) of variance. Under multiple linear regression model, married illiteracy, infant mortality rate, Ante natal care registration, household size, median age of live birth and sex ratio explained 70% of total variance in total fertility rate. In regression tree, female married illiteracy was the root node and splits at 42% determined TFR illiteracy with splits at 23% to determine TFR illiteracy is one of the most important determinants explaining total fertility rate among the districts of an Empowered Action Group states. Focus on female literacy is required to stabilize the population growth in long run. PMID:29416999

  16. Race and acute abdominal pain in a pediatric emergency department.

    Science.gov (United States)

    Caperell, Kerry; Pitetti, Raymond; Cross, Keith P

    2013-06-01

    To investigate the demographic and clinical factors of children who present to the pediatric emergency department (ED) with abdominal pain and their outcomes. A review of the electronic medical record of patients 1 to 18 years old, who presented to the Children's Hospital of Pittsburgh ED with a complaint of abdominal pain over the course of 2 years, was conducted. Demographic and clinical characteristics, as well as visit outcomes, were reviewed. Subjects were grouped by age, race, and gender. Results of evaluation, treatment, and clinical outcomes were compared between groups by using multivariate analysis and recursive partitioning. There were 9424 patient visits during the study period that met inclusion and exclusion criteria. Female gender comprised 61% of African American children compared with 52% of white children. Insurance was characterized as private for 75% of white and 37% of African American children. A diagnosis of appendicitis was present in 1.9% of African American children and 5.1% of white children. Older children were more likely to be admitted and have an operation associated with their ED visit. Appendicitis was uncommon in younger children. Constipation was commonly diagnosed. Multivariate analysis by diagnosis as well as recursive partitioning analysis did not reflect any racial differences in evaluation, treatment, or outcome. Constipation is the most common diagnosis in children presenting with abdominal pain. Our data demonstrate that no racial differences exist in the evaluation, treatment, and disposition of children with abdominal pain.

  17. Normalized Minimum Error Entropy Algorithm with Recursive Power Estimation

    Directory of Open Access Journals (Sweden)

    Namyong Kim

    2016-06-01

    Full Text Available The minimum error entropy (MEE algorithm is known to be superior in signal processing applications under impulsive noise. In this paper, based on the analysis of behavior of the optimum weight and the properties of robustness against impulsive noise, a normalized version of the MEE algorithm is proposed. The step size of the MEE algorithm is normalized with the power of input entropy that is estimated recursively for reducing its computational complexity. The proposed algorithm yields lower minimum MSE (mean squared error and faster convergence speed simultaneously than the original MEE algorithm does in the equalization simulation. On the condition of the same convergence speed, its performance enhancement in steady state MSE is above 3 dB.

  18. Ecological partitioning and diversity in tropical planktonic foraminifera

    Directory of Open Access Journals (Sweden)

    Seears Heidi A

    2012-04-01

    Full Text Available Abstract Background Ecological processes are increasingly being viewed as an important mode of diversification in the marine environment, where the high dispersal potential of pelagic organisms, and a lack of absolute barriers to gene flow may limit the occurrence of allopatric speciation through vicariance. Here we focus on the potential role of ecological partitioning in the diversification of a widely distributed group of marine protists, the planktonic foraminifera. Sampling was conducted in the tropical Arabian Sea, during the southwest (summer monsoon, when pronounced environmental conditions result in a strong disparity in temperature, salinity and productivity between distinct northern and southern water masses. Results We uncovered extensive genetic diversity within the Arabian Sea planktonic foraminifera, identifying 13 morphospecies, represented by 20 distinct SSU rRNA genetic types. Several morphospecies/genetic types displayed non-random biogeographical distributions, partitioning between the northern and southern water masses, giving a strong indication of independent ecological adaptations. Conclusions We propose sea-surface primary productivity as the main factor driving the geographical segregation of Arabian Sea planktonic foraminifera, during the SW monsoon, with variations in symbiotic associations possibly playing a role in the specific ecological adaptations observed. Our findings suggest that ecological partitioning could be contributing to the high levels of 'cryptic' genetic diversity observed within the planktonic foraminifera, and support the view that ecological processes may play a key role in the diversification of marine pelagic organisms.

  19. Partitioning and transmutation. Current developments - 2010. A report from the Swedish reference group for PT-research

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, Jan (ed.) (Swedish Centre for Nuclear Technology, SKC, Stockholm (Sweden)); Karlsson, Fred (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Pomp, Stephan (Uppsala Univ., Uppsala, Dept. of Physics and Astronomy, Div. of Applied Nuclear Physics (Sweden)); Aneheim, Emma; Ekberg, Christian; Fermvik, Anna; Skarnemark, Gunnar (Nuclear Chemistry, Dept. of Chemical and Biological Engineering, Chalmers Univ. of Technology, Goeteborg (Sweden)); Wallenius, Janne; Zakova, Jitka (Reactor Physics Div., Physics Dept., Royal Inst. of Technology, Stockholm (Sweden)); Grenthe, Ingemar; Szabo, Zoltan (School of Chemical Science and Engineering, Royal Inst. of Technology, Stockholm (Sweden))

    2010-01-15

    The research and development on methods for partitioning and transmutation (P and T) of long-lived radionuclides in spent nuclear fuel has attracted considerable interest during the last decade. The main objective of P and T is to eliminate or at least substantially reduce the amount of such long-lived radionuclides that has to go to a deep geological repository for final disposal. The objective of current research on partitioning is to find and develop processes suitable for separation of the heavier actinides (and possibly some long-lived fission products) on an industrial scale. The objective of current research on transmutation is to define, investigate and develop facilities that may be suitable for transmutation of the long-lived radionuclides. The research on partitioning has made important progress in recent years. In some cases one has succeeded to separate americium and curium. Many challenges remain however. Within hydrochemistry one has achieved sufficiently good distribution and separation factors. The focus turns now towards development of an operating process. The search for ligands that give sufficiently good extraction and separation will continue but with less intensity. The emphasis will rather be on improving stability against hydrolysis and radiolysis. This may be achieved either by additives to the solvent or by selection of a proper solvent. The development of processes and equipment must be intensified. Pyrochemical research is looking into methods for recovery of uranium and for separating fission products with large neutron cross sections. The objective is to avoid separation of plutonium from other transuranium elements and thus simplify the proliferation issue. The future work is focused on improved selectivity and on technical development. Design of processes and equipment is difficult due to the aggressive properties of the melts and the relatively high temperatures required. The fabrication of fuel for transmutation and the

  20. Partitioning and transmutation. Current developments - 2010. A report from the Swedish reference group for PT-research

    International Nuclear Information System (INIS)

    Blomgren, Jan; Karlsson, Fred; Pomp, Stephan; Aneheim, Emma; Ekberg, Christian; Fermvik, Anna; Skarnemark, Gunnar; Wallenius, Janne; Zakova, Jitka; Grenthe, Ingemar; Szabo, Zoltan

    2010-01-01

    The research and development on methods for partitioning and transmutation (P and T) of long-lived radionuclides in spent nuclear fuel has attracted considerable interest during the last decade. The main objective of P and T is to eliminate or at least substantially reduce the amount of such long-lived radionuclides that has to go to a deep geological repository for final disposal. The objective of current research on partitioning is to find and develop processes suitable for separation of the heavier actinides (and possibly some long-lived fission products) on an industrial scale. The objective of current research on transmutation is to define, investigate and develop facilities that may be suitable for transmutation of the long-lived radionuclides. The research on partitioning has made important progress in recent years. In some cases one has succeeded to separate americium and curium. Many challenges remain however. Within hydrochemistry one has achieved sufficiently good distribution and separation factors. The focus turns now towards development of an operating process. The search for ligands that give sufficiently good extraction and separation will continue but with less intensity. The emphasis will rather be on improving stability against hydrolysis and radiolysis. This may be achieved either by additives to the solvent or by selection of a proper solvent. The development of processes and equipment must be intensified. Pyrochemical research is looking into methods for recovery of uranium and for separating fission products with large neutron cross sections. The objective is to avoid separation of plutonium from other transuranium elements and thus simplify the proliferation issue. The future work is focused on improved selectivity and on technical development. Design of processes and equipment is difficult due to the aggressive properties of the melts and the relatively high temperatures required. The fabrication of fuel for transmutation and the

  1. Prediction of Partition Coefficients of Organic Compounds for SPME/PDMS

    Directory of Open Access Journals (Sweden)

    Liao Hsuan-Yu

    2016-01-01

    Full Text Available The partition coefficients of 51 organic compounds between SPME/PDMS and gas were compiled from the literature sources in this study. The effect of physicochemical properties and descriptors on the partitioning process of partition coefficients was explicated by the correlation analysis. The PDMS-gas partition coefficients were well correlated to the molecular weight of organic compounds (r = 0.832, p < 0.05. An empirical model, consisting of the molecular weight and the polarizability, was developed to appropriately predict the partition coefficients of organic compounds. The empirical model for estimating the PDMS-gas partition coefficient will contribute to the practical applications of the SPME technique.

  2. Finding Risk Groups by Optimizing Artificial Neural Networks on the Area under the Survival Curve Using Genetic Algorithms.

    Science.gov (United States)

    Kalderstam, Jonas; Edén, Patrik; Ohlsson, Mattias

    2015-01-01

    We investigate a new method to place patients into risk groups in censored survival data. Properties such as median survival time, and end survival rate, are implicitly improved by optimizing the area under the survival curve. Artificial neural networks (ANN) are trained to either maximize or minimize this area using a genetic algorithm, and combined into an ensemble to predict one of low, intermediate, or high risk groups. Estimated patient risk can influence treatment choices, and is important for study stratification. A common approach is to sort the patients according to a prognostic index and then group them along the quartile limits. The Cox proportional hazards model (Cox) is one example of this approach. Another method of doing risk grouping is recursive partitioning (Rpart), which constructs a decision tree where each branch point maximizes the statistical separation between the groups. ANN, Cox, and Rpart are compared on five publicly available data sets with varying properties. Cross-validation, as well as separate test sets, are used to validate the models. Results on the test sets show comparable performance, except for the smallest data set where Rpart's predicted risk groups turn out to be inverted, an example of crossing survival curves. Cross-validation shows that all three models exhibit crossing of some survival curves on this small data set but that the ANN model manages the best separation of groups in terms of median survival time before such crossings. The conclusion is that optimizing the area under the survival curve is a viable approach to identify risk groups. Training ANNs to optimize this area combines two key strengths from both prognostic indices and Rpart. First, a desired minimum group size can be specified, as for a prognostic index. Second, the ability to utilize non-linear effects among the covariates, which Rpart is also able to do.

  3. Working Memory: A Cognitive Limit to Non-Human Primate Recursive Thinking Prior to Hominid Evolution

    Directory of Open Access Journals (Sweden)

    Dwight W. Read

    2008-10-01

    Full Text Available In this paper I explore the possibility that recursion is not part of the cognitive repertoire of non-human primates such as chimpanzees due to limited working memory capacity. Multiple lines of data, from nut cracking to the velocity and duration of cognitive development, imply that chimpanzees have a short-term memory size that limits working memory to dealing with two, or at most three, concepts at a time. If so, as a species they lack the cognitive capacity for recursive thinking to be integrated into systems of social organization and communication. If this limited working memory capacity is projected back to a common ancestor for Pan and Homo, it follows that early hominid ancestors would have had limited working memory capacity. Hence we should find evidence for expansion of working memory capacity during hominid evolution reflected in changes in the products of conceptually framed activities such as stone tool production. Data on the artifacts made by our hominid ancestors support this expansion hypothesis for hominid working memory, thereby leading to qualitative differences between Pan and Homo.

  4. Variable length adjacent partitioning for PTS based PAPR reduction of OFDM signal

    International Nuclear Information System (INIS)

    Ibraheem, Zeyid T.; Rahman, Md. Mijanur; Yaakob, S. N.; Razalli, Mohammad Shahrazel; Kadhim, Rasim A.

    2015-01-01

    Peak-to-Average power ratio (PAPR) is a major drawback in OFDM communication. It leads the power amplifier into nonlinear region operation resulting into loss of data integrity. As such, there is a strong motivation to find techniques to reduce PAPR. Partial Transmit Sequence (PTS) is an attractive scheme for this purpose. Judicious partitioning the OFDM data frame into disjoint subsets is a pivotal component of any PTS scheme. Out of the existing partitioning techniques, adjacent partitioning is characterized by an attractive trade-off between cost and performance. With an aim of determining effects of length variability of adjacent partitions, we performed an investigation into the performances of a variable length adjacent partitioning (VL-AP) and fixed length adjacent partitioning in comparison with other partitioning schemes such as pseudorandom partitioning. Simulation results with different modulation and partitioning scenarios showed that fixed length adjacent partition had better performance compared to variable length adjacent partitioning. As expected, simulation results showed a slightly better performance of pseudorandom partitioning technique compared to fixed and variable adjacent partitioning schemes. However, as the pseudorandom technique incurs high computational complexities, adjacent partitioning schemes were still seen as favorable candidates for PAPR reduction

  5. Variable length adjacent partitioning for PTS based PAPR reduction of OFDM signal

    Energy Technology Data Exchange (ETDEWEB)

    Ibraheem, Zeyid T.; Rahman, Md. Mijanur; Yaakob, S. N.; Razalli, Mohammad Shahrazel; Kadhim, Rasim A. [School of Computer and Communication Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis (Malaysia)

    2015-05-15

    Peak-to-Average power ratio (PAPR) is a major drawback in OFDM communication. It leads the power amplifier into nonlinear region operation resulting into loss of data integrity. As such, there is a strong motivation to find techniques to reduce PAPR. Partial Transmit Sequence (PTS) is an attractive scheme for this purpose. Judicious partitioning the OFDM data frame into disjoint subsets is a pivotal component of any PTS scheme. Out of the existing partitioning techniques, adjacent partitioning is characterized by an attractive trade-off between cost and performance. With an aim of determining effects of length variability of adjacent partitions, we performed an investigation into the performances of a variable length adjacent partitioning (VL-AP) and fixed length adjacent partitioning in comparison with other partitioning schemes such as pseudorandom partitioning. Simulation results with different modulation and partitioning scenarios showed that fixed length adjacent partition had better performance compared to variable length adjacent partitioning. As expected, simulation results showed a slightly better performance of pseudorandom partitioning technique compared to fixed and variable adjacent partitioning schemes. However, as the pseudorandom technique incurs high computational complexities, adjacent partitioning schemes were still seen as favorable candidates for PAPR reduction.

  6. Bayesian clustering of DNA sequences using Markov chains and a stochastic partition model.

    Science.gov (United States)

    Jääskinen, Väinö; Parkkinen, Ville; Cheng, Lu; Corander, Jukka

    2014-02-01

    In many biological applications it is necessary to cluster DNA sequences into groups that represent underlying organismal units, such as named species or genera. In metagenomics this grouping needs typically to be achieved on the basis of relatively short sequences which contain different types of errors, making the use of a statistical modeling approach desirable. Here we introduce a novel method for this purpose by developing a stochastic partition model that clusters Markov chains of a given order. The model is based on a Dirichlet process prior and we use conjugate priors for the Markov chain parameters which enables an analytical expression for comparing the marginal likelihoods of any two partitions. To find a good candidate for the posterior mode in the partition space, we use a hybrid computational approach which combines the EM-algorithm with a greedy search. This is demonstrated to be faster and yield highly accurate results compared to earlier suggested clustering methods for the metagenomics application. Our model is fairly generic and could also be used for clustering of other types of sequence data for which Markov chains provide a reasonable way to compress information, as illustrated by experiments on shotgun sequence type data from an Escherichia coli strain.

  7. Efficient method for computing the electronic transport properties of a multiterminal system

    Science.gov (United States)

    Lima, Leandro R. F.; Dusko, Amintor; Lewenkopf, Caio

    2018-04-01

    We present a multiprobe recursive Green's function method to compute the transport properties of mesoscopic systems using the Landauer-Büttiker approach. By introducing an adaptive partition scheme, we map the multiprobe problem into the standard two-probe recursive Green's function method. We apply the method to compute the longitudinal and Hall resistances of a disordered graphene sample, a system of current interest. We show that the performance and accuracy of our method compares very well with other state-of-the-art schemes.

  8. Analytical model for macromolecular partitioning during yeast cell division

    International Nuclear Information System (INIS)

    Kinkhabwala, Ali; Khmelinskii, Anton; Knop, Michael

    2014-01-01

    Asymmetric cell division, whereby a parent cell generates two sibling cells with unequal content and thereby distinct fates, is central to cell differentiation, organism development and ageing. Unequal partitioning of the macromolecular content of the parent cell — which includes proteins, DNA, RNA, large proteinaceous assemblies and organelles — can be achieved by both passive (e.g. diffusion, localized retention sites) and active (e.g. motor-driven transport) processes operating in the presence of external polarity cues, internal asymmetries, spontaneous symmetry breaking, or stochastic effects. However, the quantitative contribution of different processes to the partitioning of macromolecular content is difficult to evaluate. Here we developed an analytical model that allows rapid quantitative assessment of partitioning as a function of various parameters in the budding yeast Saccharomyces cerevisiae. This model exposes quantitative degeneracies among the physical parameters that govern macromolecular partitioning, and reveals regions of the solution space where diffusion is sufficient to drive asymmetric partitioning and regions where asymmetric partitioning can only be achieved through additional processes such as motor-driven transport. Application of the model to different macromolecular assemblies suggests that partitioning of protein aggregates and episomes, but not prions, is diffusion-limited in yeast, consistent with previous reports. In contrast to computationally intensive stochastic simulations of particular scenarios, our analytical model provides an efficient and comprehensive overview of partitioning as a function of global and macromolecule-specific parameters. Identification of quantitative degeneracies among these parameters highlights the importance of their careful measurement for a given macromolecular species in order to understand the dominant processes responsible for its observed partitioning

  9. Exact Calculation of the Thermodynamics of Biomacromolecules on Cubic Recursive Lattice.

    Science.gov (United States)

    Huang, Ran

    The thermodynamics of biomacromolecules featured as foldable polymer with inner-linkage of hydrogen bonds, e. g. protein, RNA and DNA, play an impressive role in either physical, biological, and polymer sciences. By treating the foldable chains to be the two-tolerate self-avoiding trails (2T polymer), abstract lattice modeling of these complex polymer systems to approach their thermodynamics and subsequent bio-functional properties have been developed for decades. Among these works, the calculations modeled on Bethe and Husimi lattice have shown the excellence of being exactly solvable. Our project extended this effort into the 3D situation, i.e. the cubic recursive lattice. The preliminary exploration basically confirmed others' previous findings on the planar structure, that we have three phases in the grand-canonical phase diagram, with a 1st order transition between non-polymerized and polymer phases, and a 2nd order transition between two distinguishable polymer phases. However the hydrogen bond energy J, stacking energy ɛ, and chain rigidity energy H play more vigorous effects on the thermal behaviors, and this is hypothesized to be due to the larger number of possible configurations provided by the complicated 3D model. By the so far progress, the calculation of biomacromolecules may be applied onto more complex recursive lattices, such as the inhomogeneous lattice to describe the cross-dimensional situations, and beside the thermal properties of the 2T polymers, we may infer some interesting insights of the mysterious folding problem itself. National Natural Science Foundation of China.

  10. One-particle many-body Green's function theory: Algebraic recursive definitions, linked-diagram theorem, irreducible-diagram theorem, and general-order algorithms.

    Science.gov (United States)

    Hirata, So; Doran, Alexander E; Knowles, Peter J; Ortiz, J V

    2017-07-28

    A thorough analytical and numerical characterization of the whole perturbation series of one-particle many-body Green's function (MBGF) theory is presented in a pedagogical manner. Three distinct but equivalent algebraic (first-quantized) recursive definitions of the perturbation series of the Green's function are derived, which can be combined with the well-known recursion for the self-energy. Six general-order algorithms of MBGF are developed, each implementing one of the three recursions, the ΔMPn method (where n is the perturbation order) [S. Hirata et al., J. Chem. Theory Comput. 11, 1595 (2015)], the automatic generation and interpretation of diagrams, or the numerical differentiation of the exact Green's function with a perturbation-scaled Hamiltonian. They all display the identical, nondivergent perturbation series except ΔMPn, which agrees with MBGF in the diagonal and frequency-independent approximations at 1≤n≤3 but converges at the full-configuration-interaction (FCI) limit at n=∞ (unless it diverges). Numerical data of the perturbation series are presented for Koopmans and non-Koopmans states to quantify the rate of convergence towards the FCI limit and the impact of the diagonal, frequency-independent, or ΔMPn approximation. The diagrammatic linkedness and thus size-consistency of the one-particle Green's function and self-energy are demonstrated at any perturbation order on the basis of the algebraic recursions in an entirely time-independent (frequency-domain) framework. The trimming of external lines in a one-particle Green's function to expose a self-energy diagram and the removal of reducible diagrams are also justified mathematically using the factorization theorem of Frantz and Mills. Equivalence of ΔMPn and MBGF in the diagonal and frequency-independent approximations at 1≤n≤3 is algebraically proven, also ascribing the differences at n = 4 to the so-called semi-reducible and linked-disconnected diagrams.

  11. Partition wall structure in spent fuel storage pool and construction method for the partition wall

    International Nuclear Information System (INIS)

    Izawa, Masaaki

    1998-01-01

    A partitioning wall for forming cask pits as radiation shielding regions by partitioning inside of a spent fuel storage pool is prepared by covering both surface of a concrete body by shielding metal plates. The metal plate comprises opposed plate units integrated by welding while sandwiching a metal frame as a reinforcing material for the concrete body, the lower end of the units is connected to a floor of a pool by fastening members, and concrete is set while using the metal plate of the units as a frame to form the concrete body. The shielding metal plate has a double walled structure formed by welding a lining plate disposed on the outer surface of the partition wall and a shield plate disposed to the inner side. Then the term for construction can be shortened, and the capacity for storing spent fuels can be increased. (N.H.)

  12. Real time damage detection using recursive principal components and time varying auto-regressive modeling

    Science.gov (United States)

    Krishnan, M.; Bhowmik, B.; Hazra, B.; Pakrashi, V.

    2018-02-01

    In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures using Recursive Principal Component Analysis (RPCA) in conjunction with Time Varying Auto-Regressive Modeling (TVAR) is proposed. In this method, the acceleration data is used to obtain recursive proper orthogonal components online using rank-one perturbation method, followed by TVAR modeling of the first transformed response, to detect the change in the dynamic behavior of the vibrating system from its pristine state to contiguous linear/non-linear-states that indicate damage. Most of the works available in the literature deal with algorithms that require windowing of the gathered data owing to their data-driven nature which renders them ineffective for online implementation. Algorithms focussed on mathematically consistent recursive techniques in a rigorous theoretical framework of structural damage detection is missing, which motivates the development of the present framework that is amenable for online implementation which could be utilized along with suite experimental and numerical investigations. The RPCA algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using the rank-one perturbation method. TVAR modeling on the principal component explaining maximum variance is utilized and the damage is identified by tracking the TVAR coefficients. This eliminates the need for offline post processing and facilitates online damage detection especially when applied to streaming data without requiring any baseline data. Numerical simulations performed on a 5-dof nonlinear system under white noise excitation and El Centro (also known as 1940 Imperial Valley earthquake) excitation, for different damage scenarios, demonstrate the robustness of the proposed algorithm. The method is further validated on results obtained from case studies involving

  13. Utility Independent Privacy Preserving Data Mining - Horizontally Partitioned Data

    Directory of Open Access Journals (Sweden)

    E Poovammal

    2010-06-01

    Full Text Available Micro data is a valuable source of information for research. However, publishing data about individuals for research purposes, without revealing sensitive information, is an important problem. The main objective of privacy preserving data mining algorithms is to obtain accurate results/rules by analyzing the maximum possible amount of data without unintended information disclosure. Data sets for analysis may be in a centralized server or in a distributed environment. In a distributed environment, the data may be horizontally or vertically partitioned. We have developed a simple technique by which horizontally partitioned data can be used for any type of mining task without information loss. The partitioned sensitive data at 'm' different sites are transformed using a mapping table or graded grouping technique, depending on the data type. This transformed data set is given to a third party for analysis. This may not be a trusted party, but it is still allowed to perform mining operations on the data set and to release the results to all the 'm' parties. The results are interpreted among the 'm' parties involved in the data sharing. The experiments conducted on real data sets prove that our proposed simple transformation procedure preserves one hundred percent of the performance of any data mining algorithm as compared to the original data set while preserving privacy.

  14. A novel noncommutative KdV-type equation, its recursion operator, and solitons

    Science.gov (United States)

    Carillo, Sandra; Lo Schiavo, Mauro; Porten, Egmont; Schiebold, Cornelia

    2018-04-01

    A noncommutative KdV-type equation is introduced extending the Bäcklund chart in Carillo et al. [Symmetry Integrability Geom.: Methods Appl. 12, 087 (2016)]. This equation, called meta-mKdV here, is linked by Cole-Hopf transformations to the two noncommutative versions of the mKdV equations listed in Olver and Sokolov [Commun. Math. Phys. 193, 245 (1998), Theorem 3.6]. For this meta-mKdV, and its mirror counterpart, recursion operators, hierarchies, and an explicit solution class are derived.

  15. Topological recursion for chord diagrams, RNA complexes, and cells in moduli spaces

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Chekhov, Leonid O.; Penner, Robert

    2013-01-01

    and free energies are convergent for small t and all s as a perturbation of the Gaussian potential, which arises for st=0. This perturbation is computed using the formalism of the topological recursion. The corresponding enumeration of chord diagrams gives at once the number of RNA complexes of a given...... topology as well as the number of cells in Riemann's moduli spaces for bordered surfaces. The free energies are computed here in principle for all genera and explicitly for genera less than four....

  16. Loop equations and topological recursion for the arbitrary-$\\beta$ two-matrix model

    CERN Document Server

    Bergère, Michel; Marchal, Olivier; Prats-Ferrer, Aleix

    2012-01-01

    We write the loop equations for the $\\beta$ two-matrix model, and we propose a topological recursion algorithm to solve them, order by order in a small parameter. We find that to leading order, the spectral curve is a "quantum" spectral curve, i.e. it is given by a differential operator (instead of an algebraic equation for the hermitian case). Here, we study the case where that quantum spectral curve is completely degenerate, it satisfies a Bethe ansatz, and the spectral curve is the Baxter TQ relation.

  17. Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields

    International Nuclear Information System (INIS)

    Pagliero, Daniela; Laraoui, Abdelghani; Henshaw, Jacob D.; Meriles, Carlos A.

    2014-01-01

    We introduce an alternate route to dynamically polarize the nuclear spin host of nitrogen-vacancy (NV) centers in diamond. Our approach articulates optical, microwave, and radio-frequency pulses to recursively transfer spin polarization from the NV electronic spin. Using two complementary variants of the same underlying principle, we demonstrate nitrogen nuclear spin initialization approaching 80% at room temperature both in ensemble and single NV centers. Unlike existing schemes, our approach does not rely on level anti-crossings and is thus applicable at arbitrary magnetic fields. This versatility should prove useful in applications ranging from nanoscale metrology to sensitivity-enhanced NMR

  18. Parallel Implementation of Riccati Recursion for Solving Linear-Quadratic Control Problems

    DEFF Research Database (Denmark)

    Frison, Gianluca; Jørgensen, John Bagterp

    2013-01-01

    In both Active-Set (AS) and Interior-Point (IP) algorithms for Model Predictive Control (MPC), sub-problems in the form of linear-quadratic (LQ) control problems need to be solved at each iteration. The solution of these sub-problems is usually the main computational effort. In this paper...... an alternative version of the Riccati recursion solver for LQ control problems is presented. The performance of both the classical and the alternative version is analyzed from a theoretical as well as a numerical point of view, and the alternative version is found to be approximately 50% faster than...

  19. Spatial partitions systematize visual search and enhance target memory.

    Science.gov (United States)

    Solman, Grayden J F; Kingstone, Alan

    2017-02-01

    Humans are remarkably capable of finding desired objects in the world, despite the scale and complexity of naturalistic environments. Broadly, this ability is supported by an interplay between exploratory search and guidance from episodic memory for previously observed target locations. Here we examined how the environment itself may influence this interplay. In particular, we examined how partitions in the environment-like buildings, rooms, and furniture-can impact memory during repeated search. We report that the presence of partitions in a display, independent of item configuration, reliably improves episodic memory for item locations. Repeated search through partitioned displays was faster overall and was characterized by more rapid ballistic orienting in later repetitions. Explicit recall was also both faster and more accurate when displays were partitioned. Finally, we found that search paths were more regular and systematic when displays were partitioned. Given the ubiquity of partitions in real-world environments, these results provide important insights into the mechanisms of naturalistic search and its relation to memory.

  20. Experiments and Recommendations for Partitioning Systems of Equations

    Directory of Open Access Journals (Sweden)

    Mafteiu-Scai Liviu Octavian

    2014-06-01

    Full Text Available Partitioning the systems of equations is a very important process when solving it on a parallel computer. This paper presents some criteria which leads to more efficient parallelization, that must be taken into consideration. New criteria added to preconditioning process by reducing average bandwidth are pro- posed in this paper. These new criteria lead to a combination between preconditioning and partitioning of systems equations, so no need two distinct algorithms/processes. In our proposed methods - where the preconditioning is done by reducing the average bandwidth- two directions were followed in terms of partitioning: for a given preconditioned system determining the best partitioning (or one as close and the second consist in achieving an adequate preconditioning, depending on a given/desired partitioning. A mixed method it is also proposed. Experimental results, conclusions and recommendations, obtained after parallel implementation of conjugate gradient on IBM BlueGene /P supercomputer- based on a synchronous model of parallelization- are also presented in this paper.

  1. Topological string partition functions as polynomials

    International Nuclear Information System (INIS)

    Yamaguchi, Satoshi; Yau Shingtung

    2004-01-01

    We investigate the structure of the higher genus topological string amplitudes on the quintic hypersurface. It is shown that the partition functions of the higher genus than one can be expressed as polynomials of five generators. We also compute the explicit polynomial forms of the partition functions for genus 2, 3, and 4. Moreover, some coefficients are written down for all genus. (author)

  2. Partitioning of selected antioxidants in mayonnaise

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Schwarz, K.; Stockmann, H.

    1999-01-01

    This study examined partitioning of alpha-, beta-, and gamma- tocopherol and six polar antioxidants (Trolox, ferulic acid, caffeic acid, propyl gallate, gallic acid, and catechin) in mayonnaise. Partitioning of antioxidants between different phases was determined after separation of mayonnaise...... acid and catechin) to 83% (Trolox). Accordingly, proportions of 6% (Trolox) to 80% (gallic acid and catechin) were found in the aqueous phase. Similar trends were observed after dialysis. After ultracentrifugation, large proportions of polar antioxidants were found in the "emulsion phase...... by either (a) centrifugation + ultracentrifugation or (b) centrifugation + dialysis. Antioxidants partitioned in accordance with their chemical structure and polarity: Tocopherols were concentrated in the oil phase (93-96%), while the proportion of polar antioxidants in the oil phase ranged from 0% (gallic...

  3. Partitioning of resveratrol between pentane and DMSO

    DEFF Research Database (Denmark)

    Shen, Chen; Stein, Paul C.; Klösgen-Buchkremer, Beate Maria

    2015-01-01

    Partitioning of trans-3,5,4′-trihydroxy-stilbene (resveratrol) between n-pentane and DMSO was investigated as a contribution to understand the interaction between resveratrol and biomembranes. In order to determine the partition coefficient P* of resveratrol between pentane and DMSO, resveratrol ...

  4. Boron neutron capture therapy combined with fractionated photon irradiation for glioblastoma: A recursive partitioning analysis of BNCT patients

    International Nuclear Information System (INIS)

    Nakai, K.; Yamamoto, T.; Aiyama, H.; Takada, T.; Yoshida, F.; Kageji, T.; Kumada, H.; Isobe, T.; Endo, K.; Matsuda, M.; Tsurubuchi, T.; Shibata, Y.; Takano, S.; Mizumoto, M.; Tsuboi, K.; Matsumura, A.

    2011-01-01

    Eight patients to received Boron Neutron Capture Therapy (BNCT) were selected from 33 newly diagnosed glioblastoma patients (NCT(+) group). Serial 42 glioblastoma patients (NCT(−) group) were treated without BNCT. The median OS of the NCT(+) group and NCT (−) group were 24.4 months and 14.9 months. In the high risk patients (RPA class V), the median OS of the NCT(+) group tended to be better than that of NCT(−) group. 50% of BNCT patients were RPA class V. - Highlights: ► We treated 8 patients with boron neutron capture therapy (NCT) for glioblastoma. ► We compare the overall survival between NCT including series and without NCT series. ► The median overall survival of the NCT including series was 24.4 months. ► In the high risk patients, the median OS of NCT including series tended to be better.

  5. Achieving numerical accuracy and high performance using recursive tile LU factorization with partial pivoting

    KAUST Repository

    Dongarra, Jack

    2013-09-18

    The LU factorization is an important numerical algorithm for solving systems of linear equations in science and engineering and is a characteristic of many dense linear algebra computations. For example, it has become the de facto numerical algorithm implemented within the LINPACK benchmark to rank the most powerful supercomputers in the world, collected by the TOP500 website. Multicore processors continue to present challenges to the development of fast and robust numerical software due to the increasing levels of hardware parallelism and widening gap between core and memory speeds. In this context, the difficulty in developing new algorithms for the scientific community resides in the combination of two goals: achieving high performance while maintaining the accuracy of the numerical algorithm. This paper proposes a new approach for computing the LU factorization in parallel on multicore architectures, which not only improves the overall performance but also sustains the numerical quality of the standard LU factorization algorithm with partial pivoting. While the update of the trailing submatrix is computationally intensive and highly parallel, the inherently problematic portion of the LU factorization is the panel factorization due to its memory-bound characteristic as well as the atomicity of selecting the appropriate pivots. Our approach uses a parallel fine-grained recursive formulation of the panel factorization step and implements the update of the trailing submatrix with the tile algorithm. Based on conflict-free partitioning of the data and lockless synchronization mechanisms, our implementation lets the overall computation flow naturally without contention. The dynamic runtime system called QUARK is then able to schedule tasks with heterogeneous granularities and to transparently introduce algorithmic lookahead. The performance results of our implementation are competitive compared to the currently available software packages and libraries. For example

  6. Achieving numerical accuracy and high performance using recursive tile LU factorization with partial pivoting

    KAUST Repository

    Dongarra, Jack; Faverge, Mathieu; Ltaief, Hatem; Luszczek, Piotr R.

    2013-01-01

    The LU factorization is an important numerical algorithm for solving systems of linear equations in science and engineering and is a characteristic of many dense linear algebra computations. For example, it has become the de facto numerical algorithm implemented within the LINPACK benchmark to rank the most powerful supercomputers in the world, collected by the TOP500 website. Multicore processors continue to present challenges to the development of fast and robust numerical software due to the increasing levels of hardware parallelism and widening gap between core and memory speeds. In this context, the difficulty in developing new algorithms for the scientific community resides in the combination of two goals: achieving high performance while maintaining the accuracy of the numerical algorithm. This paper proposes a new approach for computing the LU factorization in parallel on multicore architectures, which not only improves the overall performance but also sustains the numerical quality of the standard LU factorization algorithm with partial pivoting. While the update of the trailing submatrix is computationally intensive and highly parallel, the inherently problematic portion of the LU factorization is the panel factorization due to its memory-bound characteristic as well as the atomicity of selecting the appropriate pivots. Our approach uses a parallel fine-grained recursive formulation of the panel factorization step and implements the update of the trailing submatrix with the tile algorithm. Based on conflict-free partitioning of the data and lockless synchronization mechanisms, our implementation lets the overall computation flow naturally without contention. The dynamic runtime system called QUARK is then able to schedule tasks with heterogeneous granularities and to transparently introduce algorithmic lookahead. The performance results of our implementation are competitive compared to the currently available software packages and libraries. For example

  7. Temperature effects on radiation use and biomass partitioning in diverse tropical maize cultivars

    International Nuclear Information System (INIS)

    Lafitte, H.R.; Edmeades, G.O.

    1997-01-01

    Temperature can influence crop yields through effects on radiation interception, radiation use, yield component elaboration and/or carbohydrate partitioning. In an attempt to identify causes of yield variation, this study examined these processes in a diverse group of maize cultivars (Zea mays L.). The cultivars were adapted to zones characterized by different temperatures, and were grown in six environments whose mean temperature during the growing season ranged from 13°C to 28°C.Adaptation groups differed greatly in grain and total biomass production across environments, and large differences were observed in harvest index, supporting the hypothesis that temperature has important effects of dry matter partitioning to grain. All yield components were affected. The number of ears per plant, grains per ear and mass per kernel of highland-adapted cultivars declined dramatically when average site temperature exceeded about 17°C, while those of lowland-adapted cultivars were adversely affected by low temperatures. Carbon exchange rates differed among individual cultivars in all environments where that trait was measured, but significant differences were observed among adaptation groups only in the warmest environment, where rates for the highland cultivars were about 15% less than for the others. No consistent differences were observed among adaptation groups for variable chlorophyll fluorescence. Adaptation groups differed significantly in the proportion of incident radiation intercepted by the crop near flowering in three of four environments. This was due to both reduced leaf number and reduced area of individual leaves, but those differences were not proportional to the differences in grain yield among groups. Because indicators of potential assimilate flux to the ear near flowering used in this study (i.e. radiation interception and utilization) could not be consistently related to differences in harvest index among adaptation groups, direct effects of

  8. Fat polygonal partitions with applications to visualization and embeddings

    Directory of Open Access Journals (Sweden)

    Mark de Berg

    2013-12-01

    Full Text Available Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high.We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes.We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in ℝd. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space:  we give a polylog(Δ-approximation algorithm for embedding n-point ultrametrics into ℝd with minimum distortion, where Δ denotes the spread of the metric. The previously best-known approximation ratio for this problem was polynomial in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.

  9. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    Science.gov (United States)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  10. Block recursive LU preconditioners for the thermally coupled incompressible inductionless MHD problem

    Science.gov (United States)

    Badia, Santiago; Martín, Alberto F.; Planas, Ramon

    2014-10-01

    The thermally coupled incompressible inductionless magnetohydrodynamics (MHD) problem models the flow of an electrically charged fluid under the influence of an external electromagnetic field with thermal coupling. This system of partial differential equations is strongly coupled and highly nonlinear for real cases of interest. Therefore, fully implicit time integration schemes are very desirable in order to capture the different physical scales of the problem at hand. However, solving the multiphysics linear systems of equations resulting from such algorithms is a very challenging task which requires efficient and scalable preconditioners. In this work, a new family of recursive block LU preconditioners is designed and tested for solving the thermally coupled inductionless MHD equations. These preconditioners are obtained after splitting the fully coupled matrix into one-physics problems for every variable (velocity, pressure, current density, electric potential and temperature) that can be optimally solved, e.g., using preconditioned domain decomposition algorithms. The main idea is to arrange the original matrix into an (arbitrary) 2 × 2 block matrix, and consider an LU preconditioner obtained by approximating the corresponding Schur complement. For every one of the diagonal blocks in the LU preconditioner, if it involves more than one type of unknowns, we proceed the same way in a recursive fashion. This approach is stated in an abstract way, and can be straightforwardly applied to other multiphysics problems. Further, we precisely explain a flexible and general software design for the code implementation of this type of preconditioners.

  11. Implicit Learning of Recursive Context-Free Grammars

    Science.gov (United States)

    Rohrmeier, Martin; Fu, Qiufang; Dienes, Zoltan

    2012-01-01

    Context-free grammars are fundamental for the description of linguistic syntax. However, most artificial grammar learning experiments have explored learning of simpler finite-state grammars, while studies exploring context-free grammars have not assessed awareness and implicitness. This paper explores the implicit learning of context-free grammars employing features of hierarchical organization, recursive embedding and long-distance dependencies. The grammars also featured the distinction between left- and right-branching structures, as well as between centre- and tail-embedding, both distinctions found in natural languages. People acquired unconscious knowledge of relations between grammatical classes even for dependencies over long distances, in ways that went beyond learning simpler relations (e.g. n-grams) between individual words. The structural distinctions drawn from linguistics also proved important as performance was greater for tail-embedding than centre-embedding structures. The results suggest the plausibility of implicit learning of complex context-free structures, which model some features of natural languages. They support the relevance of artificial grammar learning for probing mechanisms of language learning and challenge existing theories and computational models of implicit learning. PMID:23094021

  12. Implicit learning of recursive context-free grammars.

    Science.gov (United States)

    Rohrmeier, Martin; Fu, Qiufang; Dienes, Zoltan

    2012-01-01

    Context-free grammars are fundamental for the description of linguistic syntax. However, most artificial grammar learning experiments have explored learning of simpler finite-state grammars, while studies exploring context-free grammars have not assessed awareness and implicitness. This paper explores the implicit learning of context-free grammars employing features of hierarchical organization, recursive embedding and long-distance dependencies. The grammars also featured the distinction between left- and right-branching structures, as well as between centre- and tail-embedding, both distinctions found in natural languages. People acquired unconscious knowledge of relations between grammatical classes even for dependencies over long distances, in ways that went beyond learning simpler relations (e.g. n-grams) between individual words. The structural distinctions drawn from linguistics also proved important as performance was greater for tail-embedding than centre-embedding structures. The results suggest the plausibility of implicit learning of complex context-free structures, which model some features of natural languages. They support the relevance of artificial grammar learning for probing mechanisms of language learning and challenge existing theories and computational models of implicit learning.

  13. Implicit learning of recursive context-free grammars.

    Directory of Open Access Journals (Sweden)

    Martin Rohrmeier

    Full Text Available Context-free grammars are fundamental for the description of linguistic syntax. However, most artificial grammar learning experiments have explored learning of simpler finite-state grammars, while studies exploring context-free grammars have not assessed awareness and implicitness. This paper explores the implicit learning of context-free grammars employing features of hierarchical organization, recursive embedding and long-distance dependencies. The grammars also featured the distinction between left- and right-branching structures, as well as between centre- and tail-embedding, both distinctions found in natural languages. People acquired unconscious knowledge of relations between grammatical classes even for dependencies over long distances, in ways that went beyond learning simpler relations (e.g. n-grams between individual words. The structural distinctions drawn from linguistics also proved important as performance was greater for tail-embedding than centre-embedding structures. The results suggest the plausibility of implicit learning of complex context-free structures, which model some features of natural languages. They support the relevance of artificial grammar learning for probing mechanisms of language learning and challenge existing theories and computational models of implicit learning.

  14. Clinical evaluation of the partition model for estimating radiation doses from yttrium-90 microspheres in the treatment of hepatic cancer

    International Nuclear Information System (INIS)

    Ho, S.; Lau, W.Y.; Leung, T.W.T.; Chan, M.; Johnson, P.J.; Li, A.K.C.

    1997-01-01

    Radiation doses to the tumour and non-tumorous liver compartments from yttrium-90 microspheres in the treatment of hepatic cancer, as estimated by a partition model, have been verified by correlation with the actual doses measured with a beta probe at open surgery. The validity of the doses to the lungs, the tumour and non-tumours liver compartment as estimated by the partition model was further evaluated in clinical settings. On the basis of the observation that one of three patients who received more than 30 Gy from a single treatment and one of two patients who received more than 50 Gy from multiple treatments developed radiation pneumonitis, it was deduced that an estimated lung dose 30 Gy as estimated by the partition model and were predicted to develop radiation pneumonitis, did so despite the use of partial hepatic embolization to reduce the degree of lung shunting. Furthermore, a higher radiological response rate and prolonged survival were found in the group of patients who received higher tumour doses, as estimated by the partition model, than in the group with lower estimated tumour doses. Thus the radiation doses estimated by the partition model can be used to predict (a) complication rate, (b) response rate and (c) duration of survival in the same manner as the actual radiation doses measured with a beta probe at open surgery. The partition model has made selective internal radiation therapy using 90 Y microspheres safe and repeatable without laparotomy. (orig.)

  15. A new term in the recursive expansion of the inverse Baker-Campbell-Hausdorff formula

    International Nuclear Information System (INIS)

    Riccardi, A.

    1984-01-01

    A recursive algorithm is derived, allowing the expansion in lambda of z=exp(x+lambda y) for noncommuting x and y, written as ordered product of exponentials. Such an expansion is the inverse of the usual Baker-Campbell-Hausdorff formula. The explicit form of the terms, up to third order in lambda is also given. The same method provides the explicit expansion to any order for the matrix elements of z

  16. Event-triggered sensor data transmission policy for receding horizon recursive state estimation

    Directory of Open Access Journals (Sweden)

    Yunji Li

    2017-06-01

    Full Text Available We consider a sensor data transmission policy for receding horizon recursive state estimation in a networked linear system. A good tradeoff between estimation error and communication rate could be achieved according to a transmission strategy, which decides the transfer time of the data packet. Here we give this transmission policy through proving the upper bound of system performance. Moreover, the lower bound of system performance is further analyzed in detail. A numerical example is given to verify the potential and effectiveness of the theoretical results.

  17. Gluon and quark jets in a recursive model motivated by quantum chromodynamics

    International Nuclear Information System (INIS)

    Sukhatme, U.P.

    1979-01-01

    We compute observable quantities like the multiplicity and momentum distributions of hadrons in gluon and quark jets in the framework of a recursive cascade model, which is strongly motivated by the fundamental interactions of QCD. Fragmentation occurs via 3 types of breakups: quark → meson + quark, gluon → meson + gluon, gluon → quark + antiquark. In our model gluon jets are softer than quark jets. The ratio of gluon jet to quark jet multiplicity is found to be 2 asymptotically, but much less at lower energies. Some phenomenological consequences for γ decay are discussed. (orig.)

  18. Proving the AGT relation for N f = 0, 1, 2 antifundamentals

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew; Suchanek, Paulina

    2010-06-01

    Using recursive relations satisfied by Nekrasov partition functions and by irregular conformal blocks we prove the AGT correspondence in the case of mathcal{N} = 2 superconformal SU(2) quiver gauge theories with N f = 0, 1, 2 antifundamental hypermultiplets.

  19. Support agnostic Bayesian matching pursuit for block sparse signals

    KAUST Repository

    Masood, Mudassir; Al-Naffouri, Tareq Y.

    2013-01-01

    priori knowledge of block partition and utilizes a greedy approach and order-recursive updates of its metrics to find the most dominant sparse supports to determine the approximate minimum mean square error (MMSE) estimate of the block-sparse signal

  20. Choosing the best partition of the output from a large-scale simulation

    Energy Technology Data Exchange (ETDEWEB)

    Challacombe, Chelsea Jordan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Casleton, Emily Michele [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-26

    Data partitioning becomes necessary when a large-scale simulation produces more data than can be feasibly stored. The goal is to partition the data, typically so that every element belongs to one and only one partition, and store summary information about the partition, either a representative value plus an estimate of the error or a distribution. Once the partitions are determined and the summary information stored, the raw data is discarded. This process can be performed in-situ; meaning while the simulation is running. When creating the partitions there are many decisions that researchers must make. For instance, how to determine once an adequate number of partitions have been created, how are the partitions created with respect to dividing the data, or how many variables should be considered simultaneously. In addition, decisions must be made for how to summarize the information within each partition. Because of the combinatorial number of possible ways to partition and summarize the data, a method of comparing the different possibilities will help guide researchers into choosing a good partitioning and summarization scheme for their application.

  1. Why partition nuclear waste

    International Nuclear Information System (INIS)

    Cohen, J.J.

    1976-01-01

    A cursory review of literature dealing with various separatory processes involved in the handling of high-level liquid nuclear waste discloses that, for the most part, discussion centers on separation procedures and methodology for handling the resulting fractions, particularly the actinide wastes. There appears to be relatively little discussion on the incentives or motivations for performing these separations in the first place. Discussion is often limited to the assumption that we must separate out ''long-term'' from our ''short-term'' management problems. This paper deals with that assumption and devotes primary attention to the question of ''why partition waste'' rather than the question of ''how to partition waste'' or ''what to do with the segregated waste.''

  2. Combinatorics and complexity of partition functions

    CERN Document Server

    Barvinok, Alexander

    2016-01-01

    Partition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnians and their higher-dimensional versions, graph and hypergraph matching polynomials, the independence polynomial of a graph and partition functions enumerating 0-1 and integer points in polyhedra, which allows one to make algorithmic advances in otherwise intractable problems. The book unifies various, often quite recent, results scattered in the literature, concentrating on the three main approaches: scaling, interpolation and correlation decay. The prerequisites include moderate amounts of real and complex analysis and linear algebra, making the book accessible to advanced math and physics undergraduates. .

  3. A novel partitioning method for block-structured adaptive meshes

    Science.gov (United States)

    Fu, Lin; Litvinov, Sergej; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-07-01

    We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.

  4. A novel partitioning method for block-structured adaptive meshes

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lin, E-mail: lin.fu@tum.de; Litvinov, Sergej, E-mail: sergej.litvinov@aer.mw.tum.de; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A., E-mail: nikolaus.adams@tum.de

    2017-07-15

    We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.

  5. The influence of hydrogen bonding on partition coefficients

    Science.gov (United States)

    Borges, Nádia Melo; Kenny, Peter W.; Montanari, Carlos A.; Prokopczyk, Igor M.; Ribeiro, Jean F. R.; Rocha, Josmar R.; Sartori, Geraldo Rodrigues

    2017-02-01

    This Perspective explores how consideration of hydrogen bonding can be used to both predict and better understand partition coefficients. It is shown how polarity of both compounds and substructures can be estimated from measured alkane/water partition coefficients. When polarity is defined in this manner, hydrogen bond donors are typically less polar than hydrogen bond acceptors. Analysis of alkane/water partition coefficients in conjunction with molecular electrostatic potential calculations suggests that aromatic chloro substituents may be less lipophilic than is generally believed and that some of the effect of chloro-substitution stems from making the aromatic π-cloud less available to hydrogen bond donors. Relationships between polarity and calculated hydrogen bond basicity are derived for aromatic nitrogen and carbonyl oxygen. Aligned hydrogen bond acceptors appear to present special challenges for prediction of alkane/water partition coefficients and this may reflect `frustration' of solvation resulting from overlapping hydration spheres. It is also shown how calculated hydrogen bond basicity can be used to model the effect of aromatic aza-substitution on octanol/water partition coefficients.

  6. Compactified webs and domain wall partition functions

    Energy Technology Data Exchange (ETDEWEB)

    Shabbir, Khurram [Government College University, Department of Mathematics, Lahore (Pakistan)

    2017-04-15

    In this paper we use the topological vertex formalism to calculate a generalization of the ''domain wall'' partition function of M-strings. This generalization allows calculation of partition function of certain compactified webs using a simple gluing algorithm similar to M-strings case. (orig.)

  7. Voltage equalization of an ultracapacitor module by cell grouping using number partitioning algorithm

    Science.gov (United States)

    Oyarbide, E.; Bernal, C.; Molina, P.; Jiménez, L. A.; Gálvez, R.; Martínez, A.

    2016-01-01

    Ultracapacitors are low voltage devices and therefore, for practical applications, they need to be used in modules of series-connected cells. Because of the inherent manufacturing tolerance of the capacitance parameter of each cell, and as the maximum voltage value cannot be exceeded, the module requires inter-cell voltage equalization. If the intended application suffers repeated fast charging/discharging cycles, active equalization circuits must be rated to full power, and thus the module becomes expensive. Previous work shows that a series connection of several sets of paralleled ultracapacitors minimizes the dispersion of equivalent capacitance values, and also the voltage differences between capacitors. Thus the overall life expectancy is improved. This paper proposes a method to distribute ultracapacitors with a number partitioning-based strategy to reduce the dispersion between equivalent submodule capacitances. Thereafter, the total amount of stored energy and/or the life expectancy of the device can be considerably improved.

  8. Structural analysis of the ParR/parC plasmid partition complex

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Ringgaard, Simon; Mercogliano, Christopher P

    2007-01-01

    Accurate DNA partition at cell division is vital to all living organisms. In bacteria, this process can involve partition loci, which are found on both chromosomes and plasmids. The initial step in Escherichia coli plasmid R1 partition involves the formation of a partition complex between the DNA...

  9. Interfacial thermodynamics and electrochemistry of protein partitioning in two-phase systems

    NARCIS (Netherlands)

    Fraaije, J.G.E.M.

    1987-01-01

    The subject of this thesis is protein partition between an aqueous salt solution and a surface or an apolair liquid and the concomitant co-partition of small ions. The extent of co-partitioning determines the charge regulation in the protein partitioning process.

    Chapters 2 and 3

  10. Partitioning of organochlorine pesticides from water to polyethylene passive samplers

    International Nuclear Information System (INIS)

    Hale, Sarah E.; Martin, Timothy J.; Goss, Kai-Uwe; Arp, Hans Peter H.; Werner, David

    2010-01-01

    The mass transfer rates and equilibrium partitioning behaviour of 14 diverse organochlorine pesticides (OCP) between water and polyethylene (PE) passive samplers, cut from custom made PE sheets and commercial polyethylene plastic bags, were quantified. Overall mass transfer coefficients, k O , estimated PE membrane diffusion coefficients, D PE , and PE-water partitioning coefficients, K PE-water, are reported. In addition, the partitioning of three polycyclic aromatic hydrocarbons (PAHs) from water to PE is quantified and compared with literature values. K PE-water values agreed mostly within a factor of two for both passive samplers and also with literature values for the reference PAHs. As PE is expected to exhibit similar sorption behaviour to long-chain alkanes, PE-water partitioning coefficients were compared to hexadecane-water partitioning coefficients estimated with the SPARC online calculator, COSMOtherm and a polyparameter linear free energy relationship based on the Abraham approach. The best correlation for all compounds tested was with COSMOtherm estimated hexadecane-water partitioning coefficients. - The partitioning of organochlorine pesticides between single phase polyethylene passive samplers and water is quantified.

  11. Image defog algorithm based on open close filter and gradient domain recursive bilateral filter

    Science.gov (United States)

    Liu, Daqian; Liu, Wanjun; Zhao, Qingguo; Fei, Bowen

    2017-11-01

    To solve the problems of fuzzy details, color distortion, low brightness of the image obtained by the dark channel prior defog algorithm, an image defog algorithm based on open close filter and gradient domain recursive bilateral filter, referred to as OCRBF, was put forward. The algorithm named OCRBF firstly makes use of weighted quad tree to obtain more accurate the global atmospheric value, then exploits multiple-structure element morphological open and close filter towards the minimum channel map to obtain a rough scattering map by dark channel prior, makes use of variogram to correct the transmittance map,and uses gradient domain recursive bilateral filter for the smooth operation, finally gets recovery images by image degradation model, and makes contrast adjustment to get bright, clear and no fog image. A large number of experimental results show that the proposed defog method in this paper can be good to remove the fog , recover color and definition of the fog image containing close range image, image perspective, the image including the bright areas very well, compared with other image defog algorithms,obtain more clear and natural fog free images with details of higher visibility, what's more, the relationship between the time complexity of SIDA algorithm and the number of image pixels is a linear correlation.

  12. Time and Space Partitioning the EagleEye Reference Misson

    Science.gov (United States)

    Bos, Victor; Mendham, Peter; Kauppinen, Panu; Holsti, Niklas; Crespo, Alfons; Masmano, Miguel; de la Puente, Juan A.; Zamorano, Juan

    2013-08-01

    We discuss experiences gained by porting a Software Validation Facility (SVF) and a satellite Central Software (CSW) to a platform with support for Time and Space Partitioning (TSP). The SVF and CSW are part of the EagleEye Reference mission of the European Space Agency (ESA). As a reference mission, EagleEye is a perfect candidate to evaluate practical aspects of developing satellite CSW for and on TSP platforms. The specific TSP platform we used consists of a simulated LEON3 CPU controlled by the XtratuM separation micro-kernel. On top of this, we run five separate partitions. Each partition runs its own real-time operating system or Ada run-time kernel, which in turn are running the application software of the CSW. We describe issues related to partitioning; inter-partition communication; scheduling; I/O; and fault-detection, isolation, and recovery (FDIR).

  13. Prediction of Partition Coefficients of Organic Compounds for SPME/PDMS

    OpenAIRE

    Liao Hsuan-Yu; Huang Miao-Ling; Lu Yu-Ting; Chao Keh-Ping

    2016-01-01

    The partition coefficients of 51 organic compounds between SPME/PDMS and gas were compiled from the literature sources in this study. The effect of physicochemical properties and descriptors on the partitioning process of partition coefficients was explicated by the correlation analysis. The PDMS-gas partition coefficients were well correlated to the molecular weight of organic compounds (r = 0.832, p < 0.05). An empirical model, consisting of the molecular weight and the polarizability, was ...

  14. Recursive Monte Carlo method for deep-penetration problems

    International Nuclear Information System (INIS)

    Goldstein, M.; Greenspan, E.

    1980-01-01

    The Recursive Monte Carlo (RMC) method developed for estimating importance function distributions in deep-penetration problems is described. Unique features of the method, including the ability to infer the importance function distribution pertaining to many detectors from, essentially, a single M.C. run and the ability to use the history tape created for a representative region to calculate the importance function in identical regions, are illustrated. The RMC method is applied to the solution of two realistic deep-penetration problems - a concrete shield problem and a Tokamak major penetration problem. It is found that the RMC method can provide the importance function distributions, required for importance sampling, with accuracy that is suitable for an efficient solution of the deep-penetration problems considered. The use of the RMC method improved, by one to three orders of magnitude, the solution efficiency of the two deep-penetration problems considered: a concrete shield problem and a Tokamak major penetration problem. 8 figures, 4 tables

  15. Accuracy of the all patient refined diagnosis related groups classification system in congenital heart surgery.

    Science.gov (United States)

    Parnell, Aimee S; Shults, Justine; Gaynor, J William; Leonard, Mary B; Dai, Dingwei; Feudtner, Chris

    2014-02-01

    Administrative data are increasingly used to evaluate clinical outcomes and quality of care in pediatric congenital heart surgery (CHS) programs. Several published analyses of large pediatric administrative data sets have relied on the All Patient Refined Diagnosis Related Groups (APR-DRG, version 24) diagnostic classification system. The accuracy of this classification system for patients undergoing CHS is unclear. We performed a retrospective cohort study of all 14,098 patients 0 to 5 years of age undergoing any of six selected congenital heart operations, ranging in complexity from isolated closure of a ventricular septal defect to single-ventricle palliation, at 40 tertiary-care pediatric centers in the Pediatric Health Information Systems database between 2007 and 2010. Assigned APR-DRGs (cardiac versus noncardiac) were compared using χ2 or Fisher's exact tests between those patients admitted during the first day of life versus later and between those receiving extracorporeal membrane oxygenation support versus those not. Recursive partitioning was used to assess the greatest determinants of APR-DRG type in the model. Every patient admitted on day 1 of life was assigned to a noncardiac APR-DRG (pDRG (pDRG experienced a significantly increased mortality (pDRG coding has systematic misclassifications, which may result in inaccurate reporting of CHS case volumes and mortality. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Categorical Semantics for Functional Reactive Programming with Temporal Recursion and Corecursion

    Directory of Open Access Journals (Sweden)

    Wolfgang Jeltsch

    2014-06-01

    Full Text Available Functional reactive programming (FRP makes it possible to express temporal aspects of computations in a declarative way. Recently we developed two kinds of categorical models of FRP: abstract process categories (APCs and concrete process categories (CPCs. Furthermore we showed that APCs generalize CPCs. In this paper, we extend APCs with additional structure. This structure models recursion and corecursion operators that are related to time. We show that the resulting categorical models generalize those CPCs that impose an additional constraint on time scales. This constraint boils down to ruling out ω-supertasks, which are closely related to Zeno's paradox of Achilles and the tortoise.

  17. Conformal symmetry in two-dimensional space: recursion representation of conformal block

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.

    1988-01-01

    The four-point conformal block plays an important part in the analysis of the conformally invariant operator algebra in two-dimensional space. The behavior of the conformal block is calculated in the present paper in the limit in which the dimension Δ of the intermediate operator tends to infinity. This makes it possible to construct a recursion relation for this function that connects the conformal block at arbitrary Δ to the blocks corresponding to the dimensions of the zero vectors in the degenerate representations of the Virasoro algebra. The relation is convenient for calculating the expansion of the conformal block in powers of the uniformizing parameters q = i π tau

  18. Construction of Scaling Partitions of Unity

    Directory of Open Access Journals (Sweden)

    Ole Christensen

    2017-11-01

    Full Text Available Partitions of unity in ℝd formed by (matrix scales of a fixed function appear in many parts of harmonic analysis, e.g., wavelet analysis and the analysis of Triebel-Lizorkin spaces. We give a simple characterization of the functions and matrices yielding such a partition of unity. For expanding matrices, the characterization leads to easy ways of constructing appropriate functions with attractive properties like high regularity and small support. We also discuss a class of integral transforms that map functions having the partition of unity property to functions with the same property. The one-dimensional version of the transform allows a direct definition of a class of nonuniform splines with properties that are parallel to those of the classical B-splines. The results are illustrated with the construction of dual pairs of wavelet frames.

  19. Inferring relationships between clinical mastitis, productivity and fertility: a recursive model application including genetics, farm associated herd management, and cow-specific antibiotic treatments.

    Science.gov (United States)

    Rehbein, Pia; Brügemann, Kerstin; Yin, Tong; V Borstel, U König; Wu, Xiao-Lin; König, Sven

    2013-10-01

    A dataset of test-day records, fertility traits, and one health trait including 1275 Brown Swiss cows kept in 46 small-scale organic farms was used to infer relationships among these traits based on recursive Gaussian-threshold models. Test-day records included milk yield (MY), protein percentage (PROT-%), fat percentage (FAT-%), somatic cell score (SCS), the ratio of FAT-% to PROT-% (FPR), lactose percentage (LAC-%), and milk urea nitrogen (MUN). Female fertility traits were defined as the interval from calving to first insemination (CTFS) and success of a first insemination (SFI), and the health trait was clinical mastitis (CM). First, a tri-trait model was used which postulated the recursive effect of a test-day observation in the early period of lactation on liability to CM (LCM), and further the recursive effect of LCM on the following test-day observation. For CM and female fertility traits, a bi-trait recursive Gaussian-threshold model was employed to estimate the effects from CM to CTFS and from CM on SFI. The recursive effects from CTFS and SFI onto CM were not relevant, because CM was recorded prior to the measurements for CTFS and SFI. Results show that the posterior heritability for LCM was 0.05, and for all other traits, heritability estimates were in reasonable ranges, each with a small posterior SD. Lowest heritability estimates were obtained for female reproduction traits, i.e. h(2)=0.02 for SFI, and h(2)≈0 for CTFS. Posterior estimates of genetic correlations between LCM and production traits (MY and MUN), and between LCM and somatic cell score (SCS), were large and positive (0.56-0.68). Results confirm the genetic antagonism between MY and LCM, and the suitability of SCS as an indicator trait for CM. Structural equation coefficients describe the impact of one trait on a second trait on the phenotypic pathway. Higher values for FAT-% and FPR were associated with a higher LCM. The rate of change in FAT-% and in FPR in the ongoing lactation with

  20. Probabilistic Decision Based Block Partitioning for Future Video Coding

    KAUST Repository

    Wang, Zhao

    2017-11-29

    In the latest Joint Video Exploration Team development, the quadtree plus binary tree (QTBT) block partitioning structure has been proposed for future video coding. Compared to the traditional quadtree structure of High Efficiency Video Coding (HEVC) standard, QTBT provides more flexible patterns for splitting the blocks, which results in dramatically increased combinations of block partitions and high computational complexity. In view of this, a confidence interval based early termination (CIET) scheme is proposed for QTBT to identify the unnecessary partition modes in the sense of rate-distortion (RD) optimization. In particular, a RD model is established to predict the RD cost of each partition pattern without the full encoding process. Subsequently, the mode decision problem is casted into a probabilistic framework to select the final partition based on the confidence interval decision strategy. Experimental results show that the proposed CIET algorithm can speed up QTBT block partitioning structure by reducing 54.7% encoding time with only 1.12% increase in terms of bit rate. Moreover, the proposed scheme performs consistently well for the high resolution sequences, of which the video coding efficiency is crucial in real applications.

  1. Recursive N-way partial least squares for brain-computer interface.

    Directory of Open Access Journals (Sweden)

    Andrey Eliseyev

    Full Text Available In the article tensor-input/tensor-output blockwise Recursive N-way Partial Least Squares (RNPLS regression is considered. It combines the multi-way tensors decomposition with a consecutive calculation scheme and allows blockwise treatment of tensor data arrays with huge dimensions, as well as the adaptive modeling of time-dependent processes with tensor variables. In the article the numerical study of the algorithm is undertaken. The RNPLS algorithm demonstrates fast and stable convergence of regression coefficients. Applied to Brain Computer Interface system calibration, the algorithm provides an efficient adjustment of the decoding model. Combining the online adaptation with easy interpretation of results, the method can be effectively applied in a variety of multi-modal neural activity flow modeling tasks.

  2. Toward An Ontology of Mutual Recursion: Models, Mind and Media

    Directory of Open Access Journals (Sweden)

    Mat Wall-Smith

    2008-01-01

    Full Text Available In Parables for the Virtual Massumi describes 'The Autonomy of Affect' in our ecology of thought (Massumi 2002 : 35. The object of Stiegler's Technics and Time is 'technics apprehended as the horizon of all possibility to come and all possibility of a future' (Stiegler 1998 : ix. The ecological dynamic described by the recursion between this 'affective autonomy' and a 'technical horizon of possibility' describes a metamodel of the relation between body and world, between perception and expression. I argue that this metamodel allows for the technical architectures that enshrine media processes and models as both the manifestation and modulation of the 'industry' or vitality of mind. I argue that these technical architectures are crucial to the creation and maintenance of dynamic ecologies of living.

  3. Chaos synchronization basing on symbolic dynamics with nongenerating partition.

    Science.gov (United States)

    Wang, Xingyuan; Wang, Mogei; Liu, Zhenzhen

    2009-06-01

    Using symbolic dynamics and information theory, we study the information transmission needed for synchronizing unidirectionally coupled oscillators. It is found that when sustaining chaos synchronization with nongenerating partition, the synchronization error will be larger than a critical value, although the required coupled channel capacity can be smaller than the case of using a generating partition. Then we show that no matter whether a generating or nongenerating partition is in use, a high-quality detector can guarantee the lead of the response oscillator, while the lag responding can make up the low precision of the detector. A practicable synchronization scheme basing on a nongenerating partition is also proposed in this paper.

  4. The Partition of Multi-Resolution LOD Based on Qtm

    Science.gov (United States)

    Hou, M.-L.; Xing, H.-Q.; Zhao, X.-S.; Chen, J.

    2011-08-01

    The partition hierarch of Quaternary Triangular Mesh (QTM) determine the accuracy of spatial analysis and application based on QTM. In order to resolve the problem that the partition hierarch of QTM is limited by the level of the computer hardware, the new method that Multi- Resolution LOD (Level of Details) based on QTM will be discussed in this paper. This method can make the resolution of the cells varying with the viewpoint position by partitioning the cells of QTM, selecting the particular area according to the viewpoint; dealing with the cracks caused by different subdivisions, it satisfies the request of unlimited partition in part.

  5. THE PARTITION OF MULTI-RESOLUTION LOD BASED ON QTM

    Directory of Open Access Journals (Sweden)

    M.-L. Hou

    2012-08-01

    Full Text Available The partition hierarch of Quaternary Triangular Mesh (QTM determine the accuracy of spatial analysis and application based on QTM. In order to resolve the problem that the partition hierarch of QTM is limited by the level of the computer hardware, the new method that Multi- Resolution LOD (Level of Details based on QTM will be discussed in this paper. This method can make the resolution of the cells varying with the viewpoint position by partitioning the cells of QTM, selecting the particular area according to the viewpoint; dealing with the cracks caused by different subdivisions, it satisfies the request of unlimited partition in part.

  6. LHCb: Optimising query execution time in LHCb Bookkeeping System using partition pruning and partition wise joins

    CERN Multimedia

    Mathe, Z

    2013-01-01

    The LHCb experiment produces a huge amount of data which has associated metadata such as run number, data taking condition (detector status when the data was taken), simulation condition, etc. The data are stored in files, replicated on the Computing Grid around the world. The LHCb Bookkeeping System provides methods for retrieving datasets based on their metadata. The metadata is stored in a hybrid database model, which is a mixture of Relational and Hierarchical database models and is based on the Oracle Relational Database Management System (RDBMS). The database access has to be reliable and fast. In order to achieve a high timing performance, the tables are partitioned and the queries are executed in parallel. When we store large amounts of data the partition pruning is essential for database performance, because it reduces the amount of data retrieved from the disk and optimises the resource utilisation. This research presented here is focusing on the extended composite partitioning strategy such as rang...

  7. Bayesian latent feature modeling for modeling bipartite networks with overlapping groups

    DEFF Research Database (Denmark)

    Jørgensen, Philip H.; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2016-01-01

    Bi-partite networks are commonly modelled using latent class or latent feature models. Whereas the existing latent class models admit marginalization of parameters specifying the strength of interaction between groups, existing latent feature models do not admit analytical marginalization...... by the notion of community structure such that the edge density within groups is higher than between groups. Our model further assumes that entities can have different propensities of generating links in one of the modes. The proposed framework is contrasted on both synthetic and real bi-partite networks...... feature representations in bipartite networks provides a new framework for accounting for structure in bi-partite networks using binary latent feature representations providing interpretable representations that well characterize structure as quantified by link prediction....

  8. Development of long-lived radionuclides partitioning technology - Experimental/theoretical study of phase equilibria for multicomponent multiphase systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Soo; Lee, Se Il; Sim, Yeon Sik; Park, Sung Bin; Yang, Sung Oh; Park, Ji Yong [Korea University, Seoul (Korea, Republic of)

    1995-08-01

    In various partitioning processes, rare earth elements and actinide elements are separated from other elements in the first stage. They are then separated into rare earth groups and actinde groups. The first stage is accomplished by solvent extraction using DEHPA, by precipitation using oxalic= acid, or by cation exchange. The second stage is carried out by selective back-extraction or by selective elution using DTPA. In these processes the equilibria is governed by the concentrations of nitric acid, of solvents, and of precipitants among others. In this study various distribution coefficients in partitioning processes were experimentally determined. And thermodynamic models were proposed to calculate distribution coefficients with experimentally determined equilibrium constants. 32 refs., 11 tabs., 23 figs. (author)

  9. Open software tools for eddy covariance flux partitioning

    Science.gov (United States)

    Agro-ecosystem management and assessment will benefit greatly from the development of reliable techniques for partitioning evapotranspiration (ET) into evaporation (E) and transpiration (T). Among other activities, flux partitioning can aid in evaluating consumptive vs. non-consumptive agricultural...

  10. Partitioning a macroscopic system into independent subsystems

    Science.gov (United States)

    Delle Site, Luigi; Ciccotti, Giovanni; Hartmann, Carsten

    2017-08-01

    We discuss the problem of partitioning a macroscopic system into a collection of independent subsystems. The partitioning of a system into replica-like subsystems is nowadays a subject of major interest in several fields of theoretical and applied physics. The thermodynamic approach currently favoured by practitioners is based on a phenomenological definition of an interface energy associated with the partition, due to a lack of easily computable expressions for a microscopic (i.e. particle-based) interface energy. In this article, we outline a general approach to derive sharp and computable bounds for the interface free energy in terms of microscopic statistical quantities. We discuss potential applications in nanothermodynamics and outline possible future directions.

  11. Systemic treatment after whole-brain radiotherapy may improve survival in RPA class II/III breast cancer patients with brain metastasis.

    Science.gov (United States)

    Zhang, Qian; Chen, Jian; Yu, Xiaoli; Ma, Jinli; Cai, Gang; Yang, Zhaozhi; Cao, Lu; Chen, Xingxing; Guo, Xiaomao; Chen, Jiayi

    2013-09-01

    Whole brain radiotherapy (WBRT) is the most widely used treatment for brain metastasis (BM), especially for patients with multiple intracranial lesions. The purpose of this study was to examine the efficacy of systemic treatments following WBRT in breast cancer patients with BM who had different clinical characteristics, based on the classification of the Radiation Therapy Oncology Group recursive partitioning analysis (RPA) and the breast cancer-specific Graded Prognostic Assessment (Breast-GPA). One hundred and one breast cancer patients with BM treated between 2006 and 2010 were analyzed. The median interval between breast cancer diagnosis and identification of BM in the triple-negative patients was shorter than in the luminal A subtype (26 vs. 36 months, respectively; P = 0.021). Univariate analysis indicated that age at BM diagnosis, Karnofsky performance status/recursive partitioning analysis (KPS/RPA) classes, number of BMs, primary tumor control, extracranial metastases and systemic treatment following WBRT were significant prognostic factors for overall survival (OS) (P RPA classes and systemic treatments following WBRT remained the significant prognostic factors for OS. For RPA class I, the median survival with and without systemic treatments following WBRT was 25 and 22 months, respectively (P = 0.819), while for RPA class II/III systemic treatments significantly improved OS from 7 and 2 months to 11 and 5 months, respectively (P RPA class II/III patients.

  12. Recursion Formulae for Obtaining Surfaces with Constant Mean Curvature in R2,1

    International Nuclear Information System (INIS)

    Tian Yongbo; Nan Zhijie; Tian Chou

    2007-01-01

    Though the Baecklund transformation on time-like surfaces with constant mean curvature surfaces in R 2,1 has been obtained, it is not easy to obtain corresponding surfaces because the procedure of solving the related integrable system cannot be avoided when the Baecklund transformation is used. For sake of this, in this article, some special work is done to reform the Baecklund transformation to a recursion formula, by which we can construct time-like surfaces with constant mean curvature form known ones just by quadrature procedure.

  13. Partitioning of high level liquid waste: experiences in plant level adoption

    International Nuclear Information System (INIS)

    Manohar, Smitha; Kaushik, C.P.

    2016-01-01

    High Level Radioactive Wastes are presently vitrified in borosilicate matrices in all our back end facilities in our country. This is in accordance with internationally endorsed methodology for the safe management of high level radioactive wastes. Recent advancements in the field of partitioning technology in our group, has presented us with an opportunity to have a fresh perspective on management of high level liquid radioactive wastes streams, that emanate from reprocessing operations. This paper will highlight our experiences with respect to both partitioning studies and vitrification practices, with a focus on waste volume reduction for final disposal. Incorporation of this technique has led to the implementation of the concept of recovering wealth from waste, a marked decrease on the load of disposal in deep geological repositories and serve as a step towards the vision of transmutation of long lived radionuclides

  14. Off-diagonal series expansion for quantum partition functions

    Science.gov (United States)

    Hen, Itay

    2018-05-01

    We derive an integral-free thermodynamic perturbation series expansion for quantum partition functions which enables an analytical term-by-term calculation of the series. The expansion is carried out around the partition function of the classical component of the Hamiltonian with the expansion parameter being the strength of the off-diagonal, or quantum, portion. To demonstrate the usefulness of the technique we analytically compute to third order the partition functions of the 1D Ising model with longitudinal and transverse fields, and the quantum 1D Heisenberg model.

  15. Use of genomic recursions and algorithm for proven and young animals for single-step genomic BLUP analyses--a simulation study.

    Science.gov (United States)

    Fragomeni, B O; Lourenco, D A L; Tsuruta, S; Masuda, Y; Aguilar, I; Misztal, I

    2015-10-01

    The purpose of this study was to examine accuracy of genomic selection via single-step genomic BLUP (ssGBLUP) when the direct inverse of the genomic relationship matrix (G) is replaced by an approximation of G(-1) based on recursions for young genotyped animals conditioned on a subset of proven animals, termed algorithm for proven and young animals (APY). With the efficient implementation, this algorithm has a cubic cost with proven animals and linear with young animals. Ten duplicate data sets mimicking a dairy cattle population were simulated. In a first scenario, genomic information for 20k genotyped bulls, divided in 7k proven and 13k young bulls, was generated for each replicate. In a second scenario, 5k genotyped cows with phenotypes were included in the analysis as young animals. Accuracies (average for the 10 replicates) in regular EBV were 0.72 and 0.34 for proven and young animals, respectively. When genomic information was included, they increased to 0.75 and 0.50. No differences between genomic EBV (GEBV) obtained with the regular G(-1) and the approximated G(-1) via the recursive method were observed. In the second scenario, accuracies in GEBV (0.76, 0.51 and 0.59 for proven bulls, young males and young females, respectively) were also higher than those in EBV (0.72, 0.35 and 0.49). Again, no differences between GEBV with regular G(-1) and with recursions were observed. With the recursive algorithm, the number of iterations to achieve convergence was reduced from 227 to 206 in the first scenario and from 232 to 209 in the second scenario. Cows can be treated as young animals in APY without reducing the accuracy. The proposed algorithm can be implemented to reduce computing costs and to overcome current limitations on the number of genotyped animals in the ssGBLUP method. © 2015 Blackwell Verlag GmbH.

  16. Co-Clustering by Bipartite Spectral Graph Partitioning for Out-of-Tutor Prediction

    Science.gov (United States)

    Trivedi, Shubhendu; Pardos, Zachary A.; Sarkozy, Gabor N.; Heffernan, Neil T.

    2012-01-01

    Learning a more distributed representation of the input feature space is a powerful method to boost the performance of a given predictor. Often this is accomplished by partitioning the data into homogeneous groups by clustering so that separate models could be trained on each cluster. Intuitively each such predictor is a better representative of…

  17. Painlevé equations, topological type property and reconstruction by the topological recursion

    Science.gov (United States)

    Iwaki, K.; Marchal, O.; Saenz, A.

    2018-01-01

    In this article we prove that Lax pairs associated with ħ-dependent six Painlevé equations satisfy the topological type property proposed by Bergère, Borot and Eynard for any generic choice of the monodromy parameters. Consequently we show that one can reconstruct the formal ħ-expansion of the isomonodromic τ-function and of the determinantal formulas by applying the so-called topological recursion to the spectral curve attached to the Lax pair in all six Painlevé cases. Finally we illustrate the former results with the explicit computations of the first orders of the six τ-functions.

  18. Gauge amplitude identities by on-shell recursion relation in S-matrix program

    International Nuclear Information System (INIS)

    Feng Bo; Huang Rijun; Jia Yin

    2011-01-01

    Using only the Britto-Cachazo-Feng-Witten (BCFW) on-shell recursion relation we prove color-order reversed relation, U(1)-decoupling relation, Kleiss-Kuijf (KK) relation and Bern-Carrasco-Johansson (BCJ) relation for color-ordered gauge amplitude in the framework of S-matrix program without relying on Lagrangian description. Our derivation is the first pure field theory proof of the new discovered BCJ identity, which substantially reduces the color-ordered basis from (n-2)! to (n-3)!. Our proof gives also its physical interpretation as the mysterious bonus relation with 1/(z 2 ) behavior under suitable on-shell deformation for no adjacent pair.

  19. Analytical recursive method to ascertain multisite entanglement in doped quantum spin ladders

    Science.gov (United States)

    Roy, Sudipto Singha; Dhar, Himadri Shekhar; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal

    2017-08-01

    We formulate an analytical recursive method to generate the wave function of doped short-range resonating valence bond (RVB) states as a tool to efficiently estimate multisite entanglement as well as other physical quantities in doped quantum spin ladders. We prove that doped RVB ladder states are always genuine multipartite entangled. Importantly, our results show that within specific doping concentration and model parameter regimes, the doped RVB state essentially characterizes the trends of genuine multiparty entanglement in the exact ground states of the Hubbard model with large on-site interactions, in the limit that yields the t -J Hamiltonian.

  20. Modeling water and hydrogen networks with partitioning regeneration units

    Directory of Open Access Journals (Sweden)

    W.M. Shehata

    2015-03-01

    Full Text Available Strict environment regulations in chemical and refinery industries lead to minimize resource consumption by designing utility networks within industrial process plants. The present study proposed a superstructure based optimization model for the synthesis of water and hydrogen networks with partitioning regenerators without mixing the regenerated sources. This method determines the number of partitioning regenerators needed for the regeneration of the sources. The number of the regenerators is based on the number of sources required to be treated for recovery. Each source is regenerated in an individual partitioning regenerator. Multiple regeneration systems can be employed to achieve minimum flowrate and costs. The formulation is linear in the regenerator balance equations. The optimized model is applied for two systems, partitioning regeneration systems of the fixed outlet impurity concentration and partitioning regeneration systems of the fixed impurity load removal ratio (RR for water and hydrogen networks. Several case studies from the literature are solved to illustrate the ease and applicability of the proposed method.