WorldWideScience

Sample records for group equations including

  1. Exact solutions of the population balance equation including particle transport, using group analysis

    Science.gov (United States)

    Lin, Fubiao; Meleshko, Sergey V.; Flood, Adrian E.

    2018-06-01

    The population balance equation (PBE) has received an unprecedented amount of attention in recent years from both academics and industrial practitioners because of its long history, widespread use in engineering, and applicability to a wide variety of particulate and discrete-phase processes. However it is typically impossible to obtain analytical solutions, although in almost every case a numerical solution of the PBEs can be obtained. In this article, the symmetries of PBEs with homogeneous coagulation kernels involving aggregation, breakage and growth processes and particle transport in one dimension are found by direct solving the determining equations. Using the optimal system of one and two-dimensional subalgebras, all invariant solutions and reduced equations are obtained. In particular, an explicit analytical physical solution is also presented.

  2. Renormalization Group Functional Equations

    CERN Document Server

    Curtright, Thomas L

    2011-01-01

    Functional conjugation methods are used to analyze the global structure of various renormalization group trajectories. With minimal assumptions, the methods produce continuous flows from step-scaling {\\sigma} functions, and lead to exact functional relations for the local flow {\\beta} functions, whose solutions may have novel, exotic features, including multiple branches. As a result, fixed points of {\\sigma} are sometimes not true fixed points under continuous changes in scale, and zeroes of {\\beta} do not necessarily signal fixed points of the flow, but instead may only indicate turning points of the trajectories.

  3. Differential equations and finite groups

    NARCIS (Netherlands)

    Put, Marius van der; Ulmer, Felix

    2000-01-01

    The classical solution of the Riemann-Hilbert problem attaches to a given representation of the fundamental group a regular singular linear differential equation. We present a method to compute this differential equation in the case of a representation with finite image. The approach uses Galois

  4. Group foliation of finite difference equations

    Science.gov (United States)

    Thompson, Robert; Valiquette, Francis

    2018-06-01

    Using the theory of equivariant moving frames, a group foliation method for invariant finite difference equations is developed. This method is analogous to the group foliation of differential equations and uses the symmetry group of the equation to decompose the solution process into two steps, called resolving and reconstruction. Our constructions are performed algorithmically and symbolically by making use of discrete recurrence relations among joint invariants. Applications to invariant finite difference equations that approximate differential equations are given.

  5. Compositeness condition in the renormalization group equation

    International Nuclear Information System (INIS)

    Bando, Masako; Kugo, Taichiro; Maekawa, Nobuhiro; Sasakura, Naoki; Watabiki, Yoshiyuki; Suehiro, Kazuhiko

    1990-01-01

    The problems in imposing compositeness conditions as boundary conditions in renormalization group equations are discussed. It is pointed out that one has to use the renormalization group equation directly in cutoff theory. In some cases, however, it can be approximated by the renormalization group equation in continuum theory if the mass dependent renormalization scheme is adopted. (orig.)

  6. Quarkonia from charmonium and renormalization group equations

    International Nuclear Information System (INIS)

    Ditsas, P.; McDougall, N.A.; Moorhouse, R.G.

    1978-01-01

    A prediction of the upsilon and strangeonium spectra is made from the charmonium spectrum by solving the Salpeter equation using an identical potential to that used in charmonium. Effective quark masses and coupling parameters αsub(s) are functions of the inter-quark distance according to the renormalization group equations. The use of the Fermi-Breit Hamiltonian for obtaining the charmonium hyperfine splitting is criticized. (Auth.)

  7. Construction of Difference Equations Using Lie Groups

    International Nuclear Information System (INIS)

    Axford, R.A.

    1998-01-01

    The theory of prolongations of the generators of groups of point transformations to the grid point values of dependent variables and grid spacings is developed and applied to the construction of group invariant numerical algorithms. The concepts of invariant difference operators and generalized discrete sources are introduced for the discretization of systems of inhomogeneous differential equations and shown to produce exact difference equations. Invariant numerical flux functions are constructed from the general solutions of first order partial differential equations that come out of the evaluation of the Lie derivatives of conservation forms of difference schemes. It is demonstrated that invariant numerical flux functions with invariant flux or slope limiters can be determined to yield high resolution difference schemes. The introduction of an invariant flux or slope limiter can be done so as not to break the symmetry properties of a numerical flux-function

  8. Covariant Derivatives and the Renormalization Group Equation

    Science.gov (United States)

    Dolan, Brian P.

    The renormalization group equation for N-point correlation functions can be interpreted in a geometrical manner as an equation for Lie transport of amplitudes in the space of couplings. The vector field generating the diffeomorphism has components given by the β functions of the theory. It is argued that this simple picture requires modification whenever any one of the points at which the amplitude is evaluated becomes close to any other. This modification necessitates the introduction of a connection on the space of couplings and new terms appear in the renormalization group equation involving covariant derivatives of the β function and the curvature associated with the connection. It is shown how the connection is related to the operator product expansion coefficients, but there remains an arbitrariness in its definition.

  9. Solution of neutron slowing down equation including multiple inelastic scattering

    International Nuclear Information System (INIS)

    El-Wakil, S.A.; Saad, A.E.

    1977-01-01

    The present work is devoted the presentation of an analytical method for the calculation of elastically and inelastically slowed down neutrons in an infinite non absorbing homogeneous medium. On the basis of the Central limit theory (CLT) and the integral transform technique the slowing down equation including inelastic scattering in terms of the Green function of elastic scattering is solved. The Green function is decomposed according to the number of collisions. A formula for the flux at any lethargy O (u) after any number of collisions is derived. An equation for the asymptotic flux is also obtained

  10. Solution of differential equations by application of transformation groups

    Science.gov (United States)

    Driskell, C. N., Jr.; Gallaher, L. J.; Martin, R. H., Jr.

    1968-01-01

    Report applies transformation groups to the solution of systems of ordinary differential equations and partial differential equations. Lies theorem finds an integrating factor for appropriate invariance group or groups can be found and can be extended to partial differential equations.

  11. Renormalization group equations with multiple coupling constants

    International Nuclear Information System (INIS)

    Ghika, G.; Visinescu, M.

    1975-01-01

    The main purpose of this paper is to study the renormalization group equations of a renormalizable field theory with multiple coupling constants. A method for the investigation of the asymptotic stability is presented. This method is applied to a gauge theory with Yukawa and self-quartic couplings of scalar mesons in order to find the domains of asymptotic freedom. An asymptotic expansion for the solutions which tend to the origin of the coupling constants is given

  12. Exact renormalization group equations: an introductory review

    Science.gov (United States)

    Bagnuls, C.; Bervillier, C.

    2001-07-01

    We critically review the use of the exact renormalization group equations (ERGE) in the framework of the scalar theory. We lay emphasis on the existence of different versions of the ERGE and on an approximation method to solve it: the derivative expansion. The leading order of this expansion appears as an excellent textbook example to underline the nonperturbative features of the Wilson renormalization group theory. We limit ourselves to the consideration of the scalar field (this is why it is an introductory review) but the reader will find (at the end of the review) a set of references to existing studies on more complex systems.

  13. Application of a Lie group admitted by a homogeneous equation for group classification of a corresponding inhomogeneous equation

    Science.gov (United States)

    Long, Feng-Shan; Karnbanjong, Adisak; Suriyawichitseranee, Amornrat; Grigoriev, Yurii N.; Meleshko, Sergey V.

    2017-07-01

    This paper proposes an algorithm for group classification of a nonhomogeneous equation using the group analysis provided for the corresponding homogeneous equation. The approach is illustrated by a partial differential equation, an integro-differential equation, and a delay partial differential equation.

  14. Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras

    NARCIS (Netherlands)

    Put, Marius van der

    1999-01-01

    The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of differential Galois theory is discussed. There are many exercises in the text.

  15. On the renormalization group equations of quantum electrodynamics

    International Nuclear Information System (INIS)

    Hirayama, Minoru

    1980-01-01

    The renormalization group equations of quantum electrodynamics are discussed. The solution of the Gell-Mann-Low equation is presented in a convenient form. The interrelation between the Nishijima-Tomozawa equation and the Gell-Mann-Low equation is clarified. The reciprocal effective charge, so to speak, turns out to play an important role to discuss renormalization group equations. Arguments are given that the reciprocal effective charge vanishes as the renormalization momentum tends to infinity. (author)

  16. Explosive instabilities of reaction-diffusion equations including pinch effects

    International Nuclear Information System (INIS)

    Wilhelmsson, H.

    1992-01-01

    Particular solutions of reaction-diffusion equations for temperature are obtained for explosively unstable situations. As a result of the interplay between inertial, diffusion, pinch and source processes certain 'bell-shaped' distributions may grow explosively in time with preserved shape of the spatial distribution. The effect of the pinch, which requires a density inhomogeneity, is found to diminish the effect of diffusion, or inversely to support the inertial and source processes in creating the explosion. The results may be described in terms of elliptic integrals or. more simply, by means of expansions in the spatial coordinate. An application is the temperature evolution of a burning fusion plasma. (au) (18 refs.)

  17. Generalized Callan-Symanzik equations and the Renormalization Group

    International Nuclear Information System (INIS)

    MacDowell, S.W.

    1975-01-01

    A set of generalized Callan-Symanzik equations derived by Symanzik, relating Green's functions with arbitrary number of mass insertions, is shown be equivalent to the new Renormalization Group equation proposed by S. Weinberg

  18. String field equation from renormalization group

    International Nuclear Information System (INIS)

    Sakai, Kenji.

    1988-10-01

    We derive an equation of motion for an open bosonic string field which is introduced as a background field in a sigma model. By using the method of Klebanov and Susskind, we obtain the β-function for this background field and investigate its properties. (author)

  19. An integral equation arising in two group neutron transport theory

    International Nuclear Information System (INIS)

    Cassell, J S; Williams, M M R

    2003-01-01

    An integral equation describing the fuel distribution necessary to maintain a flat flux in a nuclear reactor in two group transport theory is reduced to the solution of a singular integral equation. The formalism developed enables the physical aspects of the problem to be better understood and its relationship with the corresponding diffusion theory model is highlighted. The integral equation is solved by reducing it to a non-singular Fredholm equation which is then evaluated numerically

  20. Equivalence groups of (2+1) dimensional diffusion equation

    OpenAIRE

    Özer, Saadet

    2017-01-01

    If a given set of differential equations contain somearbitrary functions, parameters, we have in fact a family of sets of equationsof the same structure. Almost all field equations of classical physichs havethis property, representing different materials with various paramaters.  Equivalence groups are defined as the groupof transformations which leave a given family of differential equationsinvariant. Therefore, equivalence group of family of differential equations isan important area within...

  1. Zeta Functions, Renormalization Group Equations, and the Effective Action

    International Nuclear Information System (INIS)

    Hochberg, D.; Perez-Mercader, J.; Molina-Paris, C.; Visser, M.

    1998-01-01

    We demonstrate how to extract all the one-loop renormalization group equations for arbitrary quantum field theories from knowledge of an appropriate Seeley-DeWitt coefficient. By formally solving the renormalization group equations to one loop, we renormalization group improve the classical action and use this to derive the leading logarithms in the one-loop effective action for arbitrary quantum field theories. copyright 1998 The American Physical Society

  2. Equations of motion for a rotor blade, including gravity, pitch action and rotor speed variations

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2007-01-01

    This paper extends Hodges-Dowell's partial differential equations of blade motion, by including the effects from gravity, pitch action and varying rotor speed. New equations describing the pitch action and rotor speeds are also derived. The physical interpretation of the individual terms...... in the equations is discussed. The partial differential equations of motion are approximated by ordinary differential equations of motion using an assumed mode method. The ordinary differential equations are used to simulate a sudden pitch change of a rotating blade. This work is a part of a project on pitch blade...

  3. On the monodromy group for the super Schwarzian differential equation

    International Nuclear Information System (INIS)

    Uehara, Shozo; Yasui, Yukinori.

    1991-03-01

    We calculate the first variation of the monodromy group associated with a super Schwarzian differential equation. The relation between the monodromy period and the Fenchel-Nielsen deformation of a super Riemann surface is presented. (author)

  4. Extension of Gibbs-Duhem equation including influences of external fields

    Science.gov (United States)

    Guangze, Han; Jianjia, Meng

    2018-03-01

    Gibbs-Duhem equation is one of the fundamental equations in thermodynamics, which describes the relation among changes in temperature, pressure and chemical potential. Thermodynamic system can be affected by external field, and this effect should be revealed by thermodynamic equations. Based on energy postulate and the first law of thermodynamics, the differential equation of internal energy is extended to include the properties of external fields. Then, with homogeneous function theorem and a redefinition of Gibbs energy, a generalized Gibbs-Duhem equation with influences of external fields is derived. As a demonstration of the application of this generalized equation, the influences of temperature and external electric field on surface tension, surface adsorption controlled by external electric field, and the derivation of a generalized chemical potential expression are discussed, which show that the extended Gibbs-Duhem equation developed in this paper is capable to capture the influences of external fields on a thermodynamic system.

  5. Automatic calculation of supersymmetric renormalization group equations and loop corrections

    Science.gov (United States)

    Staub, Florian

    2011-03-01

    SARAH is a Mathematica package for studying supersymmetric models. It calculates for a given model the masses, tadpole equations and all vertices at tree-level. This information can be used by SARAH to write model files for CalcHep/ CompHep or FeynArts/ FormCalc. In addition, the second version of SARAH can derive the renormalization group equations for the gauge couplings, parameters of the superpotential and soft-breaking parameters at one- and two-loop level. Furthermore, it calculates the one-loop self-energies and the one-loop corrections to the tadpoles. SARAH can handle all N=1 SUSY models whose gauge sector is a direct product of SU(N) and U(1) gauge groups. The particle content of the model can be an arbitrary number of chiral superfields transforming as any irreducible representation with respect to the gauge groups. To implement a new model, the user has just to define the gauge sector, the particle, the superpotential and the field rotations to mass eigenstates. Program summaryProgram title: SARAH Catalogue identifier: AEIB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 97 577 No. of bytes in distributed program, including test data, etc.: 2 009 769 Distribution format: tar.gz Programming language: Mathematica Computer: All systems that Mathematica is available for Operating system: All systems that Mathematica is available for Classification: 11.1, 11.6 Nature of problem: A supersymmetric model is usually characterized by the particle content, the gauge sector and the superpotential. It is a time consuming process to obtain all necessary information for phenomenological studies from these basic ingredients. Solution method: SARAH calculates the complete Lagrangian for a given model whose

  6. Lie symmetries and differential galois groups of linear equations

    NARCIS (Netherlands)

    Oudshoorn, W.R.; Put, M. van der

    2002-01-01

    For a linear ordinary differential equation the Lie algebra of its infinitesimal Lie symmetries is compared with its differential Galois group. For this purpose an algebraic formulation of Lie symmetries is developed. It turns out that there is no direct relation between the two above objects. In

  7. Consequences of Violated Equating Assumptions under the Equivalent Groups Design

    Science.gov (United States)

    Lyren, Per-Erik; Hambleton, Ronald K.

    2011-01-01

    The equal ability distribution assumption associated with the equivalent groups equating design was investigated in the context of a selection test for admission to higher education. The purpose was to assess the consequences for the test-takers in terms of receiving improperly high or low scores compared to their peers, and to find strong…

  8. Lectures on the theory of group properties of differential equations

    CERN Document Server

    Ovsyannikov, LV

    2013-01-01

    These lecturers provide a clear introduction to Lie group methods for determining and using symmetries of differential equations, a variety of their applications in gas dynamics and other nonlinear models as well as the author's remarkable contribution to this classical subject. It contains material that is useful for students and teachers but cannot be found in modern texts. For example, the theory of partially invariant solutions developed by Ovsyannikov provides a powerful tool for solving systems of nonlinear differential equations and investigating complicated mathematical models. Readers

  9. Linearized pseudo-Einstein equations on the Heisenberg group

    Science.gov (United States)

    Barletta, Elisabetta; Dragomir, Sorin; Jacobowitz, Howard

    2017-02-01

    We study the pseudo-Einstein equation R11bar = 0 on the Heisenberg group H1 = C × R. We consider first order perturbations θɛ =θ0 + ɛ θ and linearize the pseudo-Einstein equation about θ0 (the canonical Tanaka-Webster flat contact form on H1 thought of as a strictly pseudoconvex CR manifold). If θ =e2uθ0 the linearized pseudo-Einstein equation is Δb u - 4 | Lu|2 = 0 where Δb is the sublaplacian of (H1 ,θ0) and L bar is the Lewy operator. We solve the linearized pseudo-Einstein equation on a bounded domain Ω ⊂H1 by applying subelliptic theory i.e. existence and regularity results for weak subelliptic harmonic maps. We determine a solution u to the linearized pseudo-Einstein equation, possessing Heisenberg spherical symmetry, and such that u(x) → - ∞ as | x | → + ∞.

  10. Applications of Lie-group methods to the equations of magnetohydrodynamics

    International Nuclear Information System (INIS)

    Mandrekas, J.

    1987-01-01

    The invariance properties of various sets of magnetohydrodynamic (MHD) equations are studied using techniques from the theory of differential forms. Equations considered include the ideal MHD equations in different geometries and with different magnetic field configurations, the MHD equations in the presence of gravitational forces due to self-attraction or external fields, and the MHD equations including finite thermal conductivity and magnetic viscosity. The knowledge of the group structure of these equations is then used to introduce similarity variables to these equations. For each choice of similarity variables, the original set of partial differential equations is transformed into a set of ordinary differential equations and the most general form of the initial conditions is determined. Three cases are studied in detail and the corresponding sets of ordinary differential equations are solved numerically: the problem of a blast wave in an inhomogeneous atmosphere, the problem of a piston moving according to a power law in time, and the problem of a piston moving according to an exponential law in time

  11. On the use of the Lie group technique for differential equations with a small parameter: Approximate solutions and integrable equations

    International Nuclear Information System (INIS)

    Burde, G.I.

    2002-01-01

    A new approach to the use of the Lie group technique for partial and ordinary differential equations dependent on a small parameter is developed. In addition to determining approximate solutions to the perturbed equation, the approach allows constructing integrable equations that have solutions with (partially) prescribed features. Examples of application of the approach to partial differential equations are given

  12. First-order symmetrizable hyperbolic formulations of Einstein's equations including lapse and shift as dynamical fields

    International Nuclear Information System (INIS)

    Alvi, Kashif

    2002-01-01

    First-order hyperbolic systems are promising as a basis for numerical integration of Einstein's equations. In previous work, the lapse and shift have typically not been considered part of the hyperbolic system and have been prescribed independently. This can be expensive computationally, especially if the prescription involves solving elliptic equations. Therefore, including the lapse and shift in the hyperbolic system could be advantageous for numerical work. In this paper, two first-order symmetrizable hyperbolic systems are presented that include the lapse and shift as dynamical fields and have only physical characteristic speeds

  13. Magnetoresistance in organic semiconductors: Including pair correlations in the kinetic equations for hopping transport

    Science.gov (United States)

    Shumilin, A. V.; Kabanov, V. V.; Dediu, V. I.

    2018-03-01

    We derive kinetic equations for polaron hopping in organic materials that explicitly take into account the double occupation possibility and pair intersite correlations. The equations include simplified phenomenological spin dynamics and provide a self-consistent framework for the description of the bipolaron mechanism of the organic magnetoresistance. At low applied voltages, the equations can be reduced to those for an effective resistor network that generalizes the Miller-Abrahams network and includes the effect of spin relaxation on the system resistivity. Our theory discloses the close relationship between the organic magnetoresistance and the intersite correlations. Moreover, in the absence of correlations, as in an ordered system with zero Hubbard energy, the magnetoresistance vanishes.

  14. Quantum master equation for QED in exact renormalization group

    International Nuclear Information System (INIS)

    Igarashi, Yuji; Itoh, Katsumi; Sonoda, Hidenori

    2007-01-01

    Recently, one of us (H. S.) gave an explicit form of the Ward-Takahashi identity for the Wilson action of QED. We first rederive the identity using a functional method. The identity makes it possible to realize the gauge symmetry even in the presence of a momentum cutoff. In the cutoff dependent realization, the nilpotency of the BRS transformation is lost. Using the Batalin-Vilkovisky formalism, we extend the Wilson action by including the antifield contributions. Then, the Ward-Takahashi identity for the Wilson action is lifted to a quantum master equation, and the modified BRS transformation regains nilpotency. We also obtain a flow equation for the extended Wilson action. (author)

  15. Renormalization group equations in the stochastic quantization scheme

    International Nuclear Information System (INIS)

    Pugnetti, S.

    1987-01-01

    We show that there exists a remarkable link between the stochastic quantization and the theory of critical phenomena and dynamical statistical systems. In the stochastic quantization of a field theory, the stochastic Green functions coverge to the quantum ones when the frictious time goes to infinity. We therefore use the typical techniques of the Renormalization Group equations developed in the framework of critical phenomena to discuss some features of the convergence of the stochastic theory. We are also able, in this way, to compute some dynamical critical exponents and give new numerical valuations for them. (orig.)

  16. Lie groups, differential equations, and geometry advances and surveys

    CERN Document Server

    2017-01-01

    This book collects a series of contributions addressing the various contexts in which the theory of Lie groups is applied. A preliminary chapter serves the reader both as a basic reference source and as an ongoing thread that runs through the subsequent chapters. From representation theory and Gerstenhaber algebras to control theory, from differential equations to Finsler geometry and Lepage manifolds, the book introduces young researchers in Mathematics to a wealth of different topics, encouraging a multidisciplinary approach to research. As such, it is suitable for students in doctoral courses, and will also benefit researchers who want to expand their field of interest.

  17. Semi-groups of operators and some of their applications to partial differential equations

    International Nuclear Information System (INIS)

    Kisynski, J.

    1976-01-01

    Basic notions and theorems of the theory of one-parameter semi-groups of linear operators are given, illustrated by some examples concerned with linear partial differential operators. For brevity, some important and widely developed parts of the semi-group theory such as the general theory of holomorphic semi-groups or the theory of temporally inhomogeneous evolution equations are omitted. This omission includes also the very important application of semi-groups to investigating stochastic processes. (author)

  18. Critical Dynamics : The Expansion of the Master Equation Including a Critical Point

    NARCIS (Netherlands)

    Dekker, H.

    1980-01-01

    In this thesis it is shown how to solve the master equation for a Markov process including a critical point by means of successive approximations in terms of a small parameter. A critical point occurs if, by adjusting an externally controlled quantity, the system shows a transition from normal

  19. Development of Reference Equations of State for Refrigerant Mixtures Including Hydrocarbons

    Science.gov (United States)

    Miyamoto, Hiroyuki; Watanabe, Koichi

    In recent years, most accurate equations of state for alternative refrigerants and their mixtures can easily be used via convenient software package, e.g., REFPROP. In the present paper, we described the current state-of-the-art equations of state for refrigerant mixtures including hydrocarbons as components. Throughout our discussion, the limitation of the available experimental data and the necessity of the improvement against the arbitrary fitting of recent modeling were confirmed. The enough number of reliable experimental data, especially for properties in the higher pressures and temperatures and for derived properties, should be accumulated in the near future for the development of the physically-sound theoretical background. The present review argued about the possibility of the progress for the future thermodynamic property modeling throughout the detailed discussion regarding the several types of the equations of state as well as the recent innovative measurement technique.

  20. Parallel solutions of the two-group neutron diffusion equations

    International Nuclear Information System (INIS)

    Zee, K.S.; Turinsky, P.J.

    1987-01-01

    Recent efforts to adapt various numerical solution algorithms to parallel computer architectures have addressed the possibility of substantially reducing the running time of few-group neutron diffusion calculations. The authors have developed an efficient iterative parallel algorithm and an associated computer code for the rapid solution of the finite difference method representation of the two-group neutron diffusion equations on the CRAY X/MP-48 supercomputer having multi-CPUs and vector pipelines. For realistic simulation of light water reactor cores, the code employees a macroscopic depletion model with trace capability for selected fission product transients and critical boron. In addition to this, moderator and fuel temperature feedback models are also incorporated into the code. The validity of the physics models used in the code were benchmarked against qualified codes and proved accurate. This work is an extension of previous work in that various feedback effects are accounted for in the system; the entire code is structured to accommodate extensive vectorization; and an additional parallelism by multitasking is achieved not only for the solution of the matrix equations associated with the inner iterations but also for the other segments of the code, e.g., outer iterations

  1. Including Everyone in Research: The Burton Street Research Group

    Science.gov (United States)

    Abell, Simon; Ashmore, Jackie; Wilson, Dorothy; Beart, Suzie; Brownley, Peter; Butcher, Adam; Clarke, Zara; Combes, Helen; Francis, Errol; Hayes, Stefan; Hemmingham, Ian; Hicks, Kerry; Ibraham, Amina; Kenyon, Elinor; Lee, Darren; McClimens, Alex; Collins, Michelle; Newton, John; Wilson, Dorothy

    2007-01-01

    In our paper we talk about what it is like to be a group of people with and without learning disabilities researching together. We describe the process of starting and maintaining the research group and reflect on the obstacles that we have come across, and the rewards such research has brought us. Lastly we put forward some ideas about the role…

  2. Traveling waves and the renormalization group improvedBalitsky-Kovchegov equation

    Energy Technology Data Exchange (ETDEWEB)

    Enberg, Rikard

    2006-12-01

    I study the incorporation of renormalization group (RG)improved BFKL kernels in the Balitsky-Kovchegov (BK) equation whichdescribes parton saturation. The RG improvement takes into accountimportant parts of the next-to-leading and higher order logarithmiccorrections to the kernel. The traveling wave front method for analyzingthe BK equation is generalized to deal with RG-resummed kernels,restricting to the interesting case of fixed QCD coupling. The resultsshow that the higher order corrections suppress the rapid increase of thesaturation scale with increasing rapidity. I also perform a "diffusive"differential equation approximation, which illustrates that someimportant qualitative properties of the kernel change when including RGcorrections.

  3. Equating Multidimensional Tests under a Random Groups Design: A Comparison of Various Equating Procedures

    Science.gov (United States)

    Lee, Eunjung

    2013-01-01

    The purpose of this research was to compare the equating performance of various equating procedures for the multidimensional tests. To examine the various equating procedures, simulated data sets were used that were generated based on a multidimensional item response theory (MIRT) framework. Various equating procedures were examined, including…

  4. Group-theoretical interpretation of the Korteweg-de Vries type equations

    International Nuclear Information System (INIS)

    Berezin, F.A.; Perelomov, A.M.

    1978-01-01

    The Korteweg-de Vries equation is studied within the group-theoretical framework. Analogous equations are obtained for which the many-dimensional Schroedinger equation (with nonlocal potential) plays the same role as the one-dimensional Schroedinger equation does in the theory of the Korteweg-de Vries equation

  5. Poincare group and relativistic wave equations in 2+1 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, Dmitri M. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP (Brazil); Shelepin, A.L. [Moscow Institute of Radio Engenering, Electronics and Automation, Moscow (Russian Federation)

    1997-09-07

    Using the generalized regular representation, an explicit construction of the unitary irreducible representations of the (2+1)-Poincare group is presented. A detailed description of the angular momentum and spin in 2+1 dimensions is given. On this base the relativistic wave equations for all spins (including fractional) are constructed. (author)

  6. Functional renormalisation group equations for supersymmetric field theories

    Energy Technology Data Exchange (ETDEWEB)

    Synatschke-Czerwonka, Franziska

    2011-01-11

    This work is organised as follows: In chapter 2 the basic facts of quantum field theory are collected and the functional renormalisation group equations are derived. Chapter 3 gives a short introduction to the main concepts of supersymmetry that are used in the subsequent chapters. In chapter 4 the functional RG is employed for a study of supersymmetric quantum mechanics, a supersymmetric model which are studied intensively in the literature. A lot of results have previously been obtained with different methods and we compare these to the ones from the FRG. We investigate the N=1 Wess-Zumino model in two dimensions in chapter 5. This model shows spontaneous supersymmetry breaking and an interesting fixed-point structure. Chapter 6 deals with the three dimensional N=1 Wess-Zumino model. Here we discuss the zero temperature case as well as the behaviour at finite temperature. Moreover, this model shows spontaneous supersymmetry breaking, too. In chapter 7 the two-dimensional N=(2,2) Wess-Zumino model is investigated. For the superpotential a non-renormalisation theorem holds and thus guarantees that the model is finite. This allows for a direct comparison with results from lattice simulations. (orig.)

  7. Lie Group Classifications and Non-differentiable Solutions for Time-Fractional Burgers Equation

    International Nuclear Information System (INIS)

    Wu Guocheng

    2011-01-01

    Lie group method provides an efficient tool to solve nonlinear partial differential equations. This paper suggests Lie group method for fractional partial differential equations. A time-fractional Burgers equation is used as an example to illustrate the effectiveness of the Lie group method and some classes of exact solutions are obtained. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Investigation of the Performance of Multidimensional Equating Procedures for Common-Item Nonequivalent Groups Design

    Directory of Open Access Journals (Sweden)

    Burcu ATAR

    2017-12-01

    Full Text Available In this study, the performance of the multidimensional extentions of Stocking-Lord, mean/mean, and mean/sigma equating procedures under common-item nonequivalent groups design was investigated. The performance of those three equating procedures was examined under the combination of various conditions including sample size, ability distribution, correlation between two dimensions, and percentage of anchor items in the test. Item parameter recovery was evaluated calculating RMSE (root man squared error and BIAS values. It was found that Stocking-Lord procedure provided the smaller RMSE and BIAS values for both item discrimination and item difficulty parameter estimates across most conditions.

  9. Health Promotion Behavior of Chinese International Students in Korea Including Acculturation Factors: A Structural Equation Model.

    Science.gov (United States)

    Kim, Sun Jung; Yoo, Il Young

    2016-03-01

    The purpose of this study was to explain the health promotion behavior of Chinese international students in Korea using a structural equation model including acculturation factors. A survey using self-administered questionnaires was employed. Data were collected from 272 Chinese students who have resided in Korea for longer than 6 months. The data were analyzed using structural equation modeling. The p value of final model is .31. The fitness parameters of the final model such as goodness of fit index, adjusted goodness of fit index, normed fit index, non-normed fit index, and comparative fit index were more than .95. Root mean square of residual and root mean square error of approximation also met the criteria. Self-esteem, perceived health status, acculturative stress and acculturation level had direct effects on health promotion behavior of the participants and the model explained 30.0% of variance. The Chinese students in Korea with higher self-esteem, perceived health status, acculturation level, and lower acculturative stress reported higher health promotion behavior. The findings can be applied to develop health promotion strategies for this population. Copyright © 2016. Published by Elsevier B.V.

  10. Some Mathematical Structures Including Simplified Non-Relativistic Quantum Teleportation Equations and Special Relativity

    International Nuclear Information System (INIS)

    Woesler, Richard

    2007-01-01

    The computations of the present text with non-relativistic quantum teleportation equations and special relativity are totally speculative, physically correct computations can be done using quantum field theory, which remain to be done in future. Proposals for what might be called statistical time loop experiments with, e.g., photon polarization states are described when assuming the simplified non-relativistic quantum teleportation equations and special relativity. However, a closed time loop would usually not occur due to phase incompatibilities of the quantum states. Histories with such phase incompatibilities are called inconsistent ones in the present text, and it is assumed that only consistent histories would occur. This is called an exclusion principle for inconsistent histories, and it would yield that probabilities for certain measurement results change. Extended multiple parallel experiments are proposed to use this statistically for transmission of classical information over distances, and regarding time. Experiments might be testable in near future. However, first a deeper analysis, including quantum field theory, remains to be done in future

  11. Space-time versus world-sheet renormalization group equation in string theory

    International Nuclear Information System (INIS)

    Brustein, R.; Roland, K.

    1991-05-01

    We discuss the relation between space-time renormalization group equation for closed string field theory and world-sheet renormalization group equation for first-quantized strings. Restricting our attention to massless states we argue that there is a one-to-one correspondence between the fixed point solutions of the two renormalization group equations. In particular, we show how to extract the Fischler-Susskind mechanism from the string field theory equation in the case of the bosonic string. (orig.)

  12. Exact renormalization group equation for the Lifshitz critical point

    Science.gov (United States)

    Bervillier, C.

    2004-10-01

    An exact renormalization equation (ERGE) accounting for an anisotropic scaling is derived. The critical and tricritical Lifshitz points are then studied at leading order of the derivative expansion which is shown to involve two differential equations. The resulting estimates of the Lifshitz critical exponents compare well with the O(ε) calculations. In the case of the Lifshitz tricritical point, it is shown that a marginally relevant coupling defies the perturbative approach since it actually makes the fixed point referred to in the previous perturbative calculations O(ε) finally unstable.

  13. PyR@TE. Renormalization group equations for general gauge theories

    Science.gov (United States)

    Lyonnet, F.; Schienbein, I.; Staub, F.; Wingerter, A.

    2014-03-01

    Although the two-loop renormalization group equations for a general gauge field theory have been known for quite some time, deriving them for specific models has often been difficult in practice. This is mainly due to the fact that, albeit straightforward, the involved calculations are quite long, tedious and prone to error. The present work is an attempt to facilitate the practical use of the renormalization group equations in model building. To that end, we have developed two completely independent sets of programs written in Python and Mathematica, respectively. The Mathematica scripts will be part of an upcoming release of SARAH 4. The present article describes the collection of Python routines that we dubbed PyR@TE which is an acronym for “Python Renormalization group equations At Two-loop for Everyone”. In PyR@TE, once the user specifies the gauge group and the particle content of the model, the routines automatically generate the full two-loop renormalization group equations for all (dimensionless and dimensionful) parameters. The results can optionally be exported to LaTeX and Mathematica, or stored in a Python data structure for further processing by other programs. For ease of use, we have implemented an interactive mode for PyR@TE in form of an IPython Notebook. As a first application, we have generated with PyR@TE the renormalization group equations for several non-supersymmetric extensions of the Standard Model and found some discrepancies with the existing literature. Catalogue identifier: AERV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERV_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 924959 No. of bytes in distributed program, including test data, etc.: 495197 Distribution format: tar.gz Programming language: Python. Computer

  14. Reduced, three-dimensional, nonlinear equations for high-β plasmas including toroidal effects

    International Nuclear Information System (INIS)

    Schmalz, R.

    1980-11-01

    The resistive MHD equations for toroidal plasma configurations are reduced by expanding to the second order in epsilon, the inverse aspect ratio, allowing for high β = μsub(o)p/B 2 of order epsilon. The result is a closed system of nonlinear, three-dimensional equations where the fast magnetohydrodynamic time scale is eliminated. In particular, the equation for the toroidal velocity remains decoupled. (orig.)

  15. Symmetry groups of integro-differential equations for linear thermoviscoelastic materials with memory

    Science.gov (United States)

    Zhou, L.-Q.; Meleshko, S. V.

    2017-07-01

    The group analysis method is applied to a system of integro-differential equations corresponding to a linear thermoviscoelastic model. A recently developed approach for calculating the symmetry groups of such equations is used. The general solution of the determining equations for the system is obtained. Using subalgebras of the admitted Lie algebra, two classes of partially invariant solutions of the considered system of integro-differential equations are studied.

  16. Nonlinear Schroedinger equation with U(p,q) isotopical group

    International Nuclear Information System (INIS)

    Makhankov, V.G.; Pashaev, O.K.

    1981-01-01

    The properties of the nonlinear Schroedinger equation (NLS) with U(1,1) isogroup are considered in detail. This example illustrates the essential difference between the system and the well-known ''vector'' NLS, i.e. the large set of allowed boundary conditions on the fields that leads to a rich set of solutions of the system. Four types of boundary conditions and related soliton solutions are considered. The Bohr-Sommerfeld quantization allows to interpret them in terms of ''drops'' and ''bubbles'' as bound states of a large number of constituent bosons subject to the thermodynamical relations for gas mixtures. The U(1,1) system under the vanishing boundary conditions may be considered as continuous analog of the Hubbard model and therefore the paper is concluded by studying the inverse scattering equations for this case [ru

  17. An online interactive geometric database including exact solutions of Einstein's field equations

    International Nuclear Information System (INIS)

    Ishak, Mustapha; Lake, Kayll

    2002-01-01

    We describe a new interactive database (GRDB) of geometric objects in the general area of differential geometry. Database objects include, but are not restricted to, exact solutions of Einstein's field equations. GRDB is designed for researchers (and teachers) in applied mathematics, physics and related fields. The flexible search environment allows the database to be useful over a wide spectrum of interests, for example, from practical considerations of neutron star models in astrophysics to abstract space-time classification schemes. The database is built using a modular and object-oriented design and uses several Java technologies (e.g. Applets, Servlets, JDBC). These are platform-independent and well adapted for applications developed for the World Wide Web. GRDB is accompanied by a virtual calculator (GRTensorJ), a graphical user interface to the computer algebra system GRTensorII, used to perform online coordinate, tetrad or basis calculations. The highly interactive nature of GRDB allows systematic internal self-checking and minimization of the required internal records. This new database is now available online at http://grdb.org

  18. Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations

    Science.gov (United States)

    DeVille, R. E. Lee; Harkin, Anthony; Holzer, Matt; Josić, Krešimir; Kaper, Tasso J.

    2008-06-01

    For singular perturbation problems, the renormalization group (RG) method of Chen, Goldenfeld, and Oono [Phys. Rev. E. 49 (1994) 4502-4511] has been shown to be an effective general approach for deriving reduced or amplitude equations that govern the long time dynamics of the system. It has been applied to a variety of problems traditionally analyzed using disparate methods, including the method of multiple scales, boundary layer theory, the WKBJ method, the Poincaré-Lindstedt method, the method of averaging, and others. In this article, we show how the RG method may be used to generate normal forms for large classes of ordinary differential equations. First, we apply the RG method to systems with autonomous perturbations, and we show that the reduced or amplitude equations generated by the RG method are equivalent to the classical Poincaré-Birkhoff normal forms for these systems up to and including terms of O(ɛ2), where ɛ is the perturbation parameter. This analysis establishes our approach and generalizes to higher order. Second, we apply the RG method to systems with nonautonomous perturbations, and we show that the reduced or amplitude equations so generated constitute time-asymptotic normal forms, which are based on KBM averages. Moreover, for both classes of problems, we show that the main coordinate changes are equivalent, up to translations between the spaces in which they are defined. In this manner, our results show that the RG method offers a new approach for deriving normal forms for nonautonomous systems, and it offers advantages since one can typically more readily identify resonant terms from naive perturbation expansions than from the nonautonomous vector fields themselves. Finally, we establish how well the solution to the RG equations approximates the solution of the original equations on time scales of O(1/ɛ).

  19. A solution of the Schrodinger equation with two-body correlations included

    International Nuclear Information System (INIS)

    Fabre de la Ripelle, M.

    1984-01-01

    A procedure for introducing the two-body correlations in the solution of the Schrodinger equation is described. The N-body Schrodinger equation for nucleons subject to two-(or many)-body N-N interaction has never been solved with accuracy except for few-body systems. Indeed it is difficult to take the two-body correlations generated by the interaction into account in the wave function

  20. Quantum group and symmetry of the heat equation

    International Nuclear Information System (INIS)

    Jha, P.K.; Tripathy, K.C.

    1992-07-01

    The symmetry associated with the heat equation is re-examined using Lie's method. Under suitable choice of the arbitrary parameters in the Lie field, it is shown that the system exhibits SL(2,R) symmetry. On inspection of the q-analogue of the principal solution, we find broadening of the Gaussian-flow curve when q is varied from 1 to 0.002. The q-analogue of the general solution predicts the existence of additional degeneracy. (author). 8 refs, 1 fig

  1. Robust Scale Transformation Methods in IRT True Score Equating under Common-Item Nonequivalent Groups Design

    Science.gov (United States)

    He, Yong

    2013-01-01

    Common test items play an important role in equating multiple test forms under the common-item nonequivalent groups design. Inconsistent item parameter estimates among common items can lead to large bias in equated scores for IRT true score equating. Current methods extensively focus on detection and elimination of outlying common items, which…

  2. Evaluating Equating Accuracy and Assumptions for Groups that Differ in Performance

    Science.gov (United States)

    Powers, Sonya; Kolen, Michael J.

    2014-01-01

    Accurate equating results are essential when comparing examinee scores across exam forms. Previous research indicates that equating results may not be accurate when group differences are large. This study compared the equating results of frequency estimation, chained equipercentile, item response theory (IRT) true-score, and IRT observed-score…

  3. Group-theoretical model of developed turbulence and renormalization of the Navier-Stokes equation.

    Science.gov (United States)

    Saveliev, V L; Gorokhovski, M A

    2005-07-01

    On the basis of the Euler equation and its symmetry properties, this paper proposes a model of stationary homogeneous developed turbulence. A regularized averaging formula for the product of two fields is obtained. An equation for the averaged turbulent velocity field is derived from the Navier-Stokes equation by renormalization-group transformation.

  4. Modified two-fluid model for the two-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Sun Xiaodong; Ishii, Mamoru; Kelly, Joseph M.

    2003-01-01

    This paper presents a modified two-fluid model that is ready to be applied in the approach of the two-group interfacial area transport equation. The two-group interfacial area transport equation was developed to provide a mechanistic constitutive relation for the interfacial area concentration in the two-fluid model. In the two-group transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 while cap/slug/churn-turbulent bubbles as Group 2. Therefore, this transport equation can be employed in the flow regimes spanning from bubbly, cap bubbly, slug to churn-turbulent flows. However, the introduction of the two groups of bubbles requires two gas velocity fields. Yet it is not practical to solve two momentum equations for the gas phase alone. In the current modified two-fluid model, a simplified approach is proposed. The momentum equation for the averaged velocity of both Group-1 and Group-2 bubbles is retained. By doing so, the velocity difference between Group-1 and Group-2 bubbles needs to be determined. This may be made either based on simplified momentum equations for both Group-1 and Group-2 bubbles or by a modified drift-flux model

  5. Some New Lie Symmetry Groups of Differential-Difference Equations Obtained from a Simple Direct Method

    International Nuclear Information System (INIS)

    Zhi Hongyan

    2009-01-01

    In this paper, based on the symbolic computing system Maple, the direct method for Lie symmetry groups presented by Sen-Yue Lou [J. Phys. A: Math. Gen. 38 (2005) L129] is extended from the continuous differential equations to the differential-difference equations. With the extended method, we study the well-known differential-difference KP equation, KZ equation and (2+1)-dimensional ANNV system, and both the Lie point symmetry groups and the non-Lie symmetry groups are obtained.

  6. LIE GROUPS AND NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS: INVARIANT DISCRETIZATION VERSUS DIFFERENTIAL APPROXIMATION

    Directory of Open Access Journals (Sweden)

    Decio Levi

    2013-10-01

    Full Text Available We briefly review two different methods of applying Lie group theory in the numerical solution of ordinary differential equations. On specific examples we show how the symmetry preserving discretization provides difference schemes for which the “first differential approximation” is invariant under the same Lie group as the original ordinary differential equation.

  7. What is new in the study of differential equations by group theoretical methods

    International Nuclear Information System (INIS)

    Winternitz, P.

    1986-11-01

    Several recent developments have made the application of group theory to the solving of differential equations more powerful than it used to be. The ones discussed here are: 1. The advent of symbol manipulating computer languages that greatly simplify the construction of the symmetry group of an equation 2. Methods of finding all subgroups of a given Lie symmetry group 3. The theory of infinite dimensional Lie algebras 4. The combination of group theory and singularity analysis

  8. Solutions of the Dirac Equation with the Shifted DENG-FAN Potential Including Yukawa-Like Tensor Interaction

    Science.gov (United States)

    Yahya, W. A.; Falaye, B. J.; Oluwadare, O. J.; Oyewumi, K. J.

    2013-08-01

    By using the Nikiforov-Uvarov method, we give the approximate analytical solutions of the Dirac equation with the shifted Deng-Fan potential including the Yukawa-like tensor interaction under the spin and pseudospin symmetry conditions. After using an improved approximation scheme, we solved the resulting schr\\"{o}dinger-like equation analytically. Numerical results of the energy eigenvalues are also obtained, as expected, the tensor interaction removes degeneracies between spin and pseudospin doublets.

  9. Renormalization Group Equations of d=6 Operators in the Standard Model Effective Field Theory

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    The one-loop renormalization group equations for the Standard Model (SM) Effective Field Theory (EFT) including dimension-six operators are calculated. The complete 2499 × 2499 one-loop anomalous dimension matrix of the d=6 Lagrangian is obtained, as well as the contribution of d=6 operators to the running of the parameters of the renormalizable SM Lagrangian. The presence of higher-dimension operators has implications for the flavor problem of the SM. An approximate holomorphy of the one-loop anomalous dimension matrix is found, even though the SM EFT is not a supersymmetric theory.

  10. Coverings and the fundamental group for partial differential equations

    NARCIS (Netherlands)

    Igonin, S.

    2003-01-01

    Following I. S. Krasilshchik and A. M. Vinogradov, we regard systems of PDEs as manifolds with involutive distributions and consider their special morphisms called differential coverings, which include constructions like Lax pairs and B\\"acklund transformations in soliton theory. We show that,

  11. 76 FR 45878 - Alticor, Inc., Including Access Business Group International LLC and Amway Corporation, Buena...

    Science.gov (United States)

    2011-08-01

    ...,420B] Alticor, Inc., Including Access Business Group International LLC and Amway Corporation, Buena Park, CA; Alticor, Inc., Including Access Business Group International LLC and Amway Corporation...., Including Access Business Group International LLC and Amway Corporation, Including On-Site Leased Workers...

  12. FDTD Simulation of Nonlinear Ultrasonic Pulse Propagation in ESWL Using Equations Including Lagrangian

    Science.gov (United States)

    Fukuhara, Keisuke; Morita, Nagayoshi

    New FDTD algorithm is proposed for analyzing ultrasonic pulse propagation in the human body, the problem being connected with ESWL (Extracorporeal Shock Wave Lithotripsy). In this method, we do not use plane wave approximation but employ directly the original equations taking account of Lagrangian to derive new FDTD algorithms. This method is applied to an experimental setup and its numerical model that resemble actual treatment situation to compare sound pressure distributions obtained numerically with those obtained experimentally. It is shown that the present method gives clearly better results than the earlier method, in the viewpoint of numerical reappearance of strongly nonlinear waveform.

  13. Development of two-group interfacial area transport equation for confined flow-1. Modeling of bubble interactions

    International Nuclear Information System (INIS)

    Sun, Xiaodong; Kim, Seungjin; Ishii, Mamoru; Beus, Stephen G.

    2003-01-01

    This paper presents the modeling of bubble interaction mechanisms in the two-group interfacial area transport equation (IATE) for confined gas-liquid two-phase flow. The transport equation is applicable to bubbly, cap-turbulent, and churn-turbulent flow regimes. In the two-group IATE, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 and cap/slug/churn-turbulent bubbles as Group 2. Thus, two sets of equations are used to describe the generation and destruction rates of bubble number density, void fraction, and interfacial area concentration for the two groups of bubbles due to bubble expansion and compression, coalescence and disintegration, and phase change. Five major bubble interaction mechanisms are identified for the gas-liquid two-phase flow of interest, and are analytically modeled as the source/sink terms for the transport equations based on certain assumptions for the confined flow. These models include both intra-group (within a certain group) and inter-group (between two groups) bubble interactions. The comparisons of the prediction by the one-dimensional two-group IATE with experimental data are presented in the second paper of this series. (author)

  14. 75 FR 28298 - Avaya Inc., Worldwide Services Group, Global Support Services (GSS) Organization, Including On...

    Science.gov (United States)

    2010-05-20

    ...., Worldwide Services Group, Global Support Services (GSS) Organization, Including On-Site Leased Workers From..., Highlands Ranch, CO; Including Employees in Support of Avaya Inc., Worldwide Services Group, Global Support... workers of Avaya Inc., Worldwide Services Group, Global Support Services (GSS) Organization, including on...

  15. 75 FR 26794 - Alticor, Inc., Including Access Business Group International LLC and Amway Corporation, Buena...

    Science.gov (United States)

    2010-05-12

    ..., Inc., Including Access Business Group International LLC and Amway Corporation, Buena Park, CA; Alticor, Inc., Including Access Business Group International LLC, and Amway Corporation, Ada, MI; Amended... of Alticor, Inc., including Access Business Group International LLC and Amway Corporation, Buena Park...

  16. Some Diophantine equations from finite group theory: $\\Phi_m (x) = 2p^n -1$

    NARCIS (Netherlands)

    Luca, F.; Moree, P.; Weger, de B.M.M.

    2009-01-01

    We show that the equation in the title (with Fn the nth cyclotomic polynomial) has no integer solution with n = 1 in the cases (m, p) = (15, 41), (15, 5581), (10, 271). These equations arise in a recent group theoretical investigation by Z. Akhlaghi, M. Khatami and B. Khosravi.

  17. Some Diophantine equations from finite group theory: $\\Phi_m (x) = 2p^n -1$

    NARCIS (Netherlands)

    Luca, F.; Moree, P.; Weger, de B.M.M.

    2011-01-01

    We show that the equation in the title (with $\\Psi_m$ the $m$th cyclotomic polynomial) has no integer solution with $n \\geq 1$ in the cases (m,p) = (15,41), (15,5581), (10,271). These equations arise in a recent group theoretical investigation by Akhlaghi, Khosravi and Khatami.

  18. Homotopy analysis solutions of point kinetics equations with one delayed precursor group

    International Nuclear Information System (INIS)

    Zhu Qian; Luo Lei; Chen Zhiyun; Li Haofeng

    2010-01-01

    Homotopy analysis method is proposed to obtain series solutions of nonlinear differential equations. Homotopy analysis method was applied for the point kinetics equations with one delayed precursor group. Analytic solutions were obtained using homotopy analysis method, and the algorithm was analysed. The results show that the algorithm computation time and precision agree with the engineering requirements. (authors)

  19. Do group-specific equations provide the best estimates of stature?

    Science.gov (United States)

    Albanese, John; Osley, Stephanie E; Tuck, Andrew

    2016-04-01

    An estimate of stature can be used by a forensic anthropologist with the preliminary identification of an unknown individual when human skeletal remains are recovered. Fordisc is a computer application that can be used to estimate stature; like many other methods it requires the user to assign an unknown individual to a specific group defined by sex, race/ancestry, and century of birth before an equation is applied. The assumption is that a group-specific equation controls for group differences and should provide the best results most often. In this paper we assess the utility and benefits of using group-specific equations to estimate stature using Fordisc. Using the maximum length of the humerus and the maximum length of the femur from individuals with documented stature, we address the question: Do sex-, race/ancestry- and century-specific stature equations provide the best results when estimating stature? The data for our sample of 19th Century White males (n=28) were entered into Fordisc and stature was estimated using 22 different equation options for a total of 616 trials: 19th and 20th Century Black males, 19th and 20th Century Black females, 19th and 20th Century White females, 19th and 20th Century White males, 19th and 20th Century any, and 20th Century Hispanic males. The equations were assessed for utility in any one case (how many times the estimated range bracketed the documented stature) and in aggregate using 1-way ANOVA and other approaches. This group-specific equation that should have provided the best results was outperformed by several other equations for both the femur and humerus. These results suggest that group-specific equations do not provide better results for estimating stature while at the same time are more difficult to apply because an unknown must be allocated to a given group before stature can be estimated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Supernova equations of state including full nuclear ensemble with in-medium effects

    Science.gov (United States)

    Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki

    2017-01-01

    We construct new equations of state for baryons at sub-nuclear densities for the use in core-collapse supernova simulations. The abundance of various nuclei is obtained together with thermodynamic quantities. The formulation is an extension of the previous model, in which we adopted the relativistic mean field theory with the TM1 parameter set for nucleons, the quantum approach for d, t, h and α as well as the liquid drop model for the other nuclei under the nuclear statistical equilibrium. We reformulate the model of the light nuclei other than d, t, h and α based on the quasi-particle description. Furthermore, we modify the model so that the temperature dependences of surface and shell energies of heavy nuclei could be taken into account. The pasta phases for heavy nuclei and the Pauli- and self-energy shifts for d, t, h and α are taken into account in the same way as in the previous model. We find that nuclear composition is considerably affected by the modifications in this work, whereas thermodynamical quantities are not changed much. In particular, the washout of shell effect has a great impact on the mass distribution above T ∼ 1 MeV. This improvement may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores.

  1. Solution of two group neutron diffusion equation by using homotopy analysis method

    International Nuclear Information System (INIS)

    Cavdar, S.

    2010-01-01

    The Homotopy Analysis Method (HAM), proposed in 1992 by Shi Jun Liao and has been developed since then, is based on differential geometry as well as homotopy which is a fundamental concept in topology. It has proved to be useful for obtaining series solutions of many such problems involving algebraic, linear/non-linear, ordinary/partial differential equations, differential-integral equations, differential-difference equations, and coupled equations of them. Briefly, through HAM, it is possible to construct a continuous mapping of an initial guess approximation to the exact solution of the equation of concern. An auxiliary linear operator is chosen to construct such kind of a continuous mapping and an auxiliary parameter is used to ensure the convergence of series solution. We present the solutions of two-group neutron diffusion equation through HAM in this work. We also compare the results with that obtained by other well-known solution analytical and numeric methods.

  2. Solution of spatially homogeneous model Boltzmann equations by means of Lie groups of transformations

    International Nuclear Information System (INIS)

    Foroutan, A.

    1992-05-01

    The essential mathematical challenge in transport theory is based on the nonlinearity of the integro-differential equations governing classical thermodynamic systems on molecular kinetic level. It is the aim of this thesis to gain exact analytical solutions to the model Boltzmann equation suggested by Tjon and Wu. Such solutions afford a deeper insight into the dynamics of rarefied gases. Tjon and Wu have provided a stochastic model of a Boltzmann equation. Its transition probability depends only on the relative speed of the colliding particles. This assumption leads in the case of two translational degrees of freedom to an integro-differential equation of convolution type. According to this convolution structure the integro-differential equation is Laplace transformed. The result is a nonlinear partial differential equation. The investigation of the symmetries of this differential equation by means of Lie groups of transformation enables us to transform the originally nonlinear partial differential equation into ordinary differential equation into ordinary differential equations of Bernoulli type. (author)

  3. Numerical analysis for multi-group neutron-diffusion equation using Radial Point Interpolation Method (RPIM)

    International Nuclear Information System (INIS)

    Kim, Kyung-O; Jeong, Hae Sun; Jo, Daeseong

    2017-01-01

    Hermite-type collocation method) in order to solve this problem. On the basis of these results, it is expected that the mesh-free method including the RPIM can be sufficiently employed in numerical analysis for the multi-group neutron-diffusion equation and can be considered as an alternative numerical approach to overcome the drawbacks of existing nodal methods.

  4. Calculating differential Galois groups of parametrized differential equations, with applications to hypertranscendence

    OpenAIRE

    Hardouin, Charlotte; Minchenko, Andrei; Ovchinnikov, Alexey

    2015-01-01

    The main motivation of our work is to create an efficient algorithm that decides hypertranscendence of solutions of linear differential equations, via the parameterized differential and Galois theories. To achieve this, we expand the representation theory of linear differential algebraic groups and develop new algorithms that calculate unipotent radicals of parameterized differential Galois groups for differential equations whose coefficients are rational functions. P. Berman and M.F. Singer ...

  5. 75 FR 32221 - Alticor, Inc., Including Access Business Group International, LLC, and Amway Corporation...

    Science.gov (United States)

    2010-06-07

    ... Access Business Group International, LLC, and Amway Corporation, Including On-Site Leased Workers from... Business Group International, LLC and Amway Corporation. The notice was published in the Federal Register... issued as follows: All workers of Alticor, Inc., including Access Business Group International, LLC and...

  6. Unsteady free surface flow in porous media: One-dimensional model equations including vertical effects and seepage face

    Science.gov (United States)

    Di Nucci, Carmine

    2018-05-01

    This note examines the two-dimensional unsteady isothermal free surface flow of an incompressible fluid in a non-deformable, homogeneous, isotropic, and saturated porous medium (with zero recharge and neglecting capillary effects). Coupling a Boussinesq-type model for nonlinear water waves with Darcy's law, the two-dimensional flow problem is solved using one-dimensional model equations including vertical effects and seepage face. In order to take into account the seepage face development, the system equations (given by the continuity and momentum equations) are completed by an integral relation (deduced from the Cauchy theorem). After testing the model against data sets available in the literature, some numerical simulations, concerning the unsteady flow through a rectangular dam (with an impermeable horizontal bottom), are presented and discussed.

  7. 76 FR 13666 - Pitney Bowes, Inc., Mailing Solutions Management, Global Engineering Group, Including On-Site...

    Science.gov (United States)

    2011-03-14

    ...., Mailing Solutions Management, Global Engineering Group, Including On-Site Leased Workers From Guidant... workers and former workers of Pitney Bowes, Inc., Mailing Solutions Management Division, Engineering... reviewed the certification to clarify the subject worker group's identity. Additional information revealed...

  8. Viscoplastic behaviour including damage for deep argillaceous rocks: from in situ observations to constitutives equations

    International Nuclear Information System (INIS)

    Souley, Mountaka; Ghoreychi, Mehdi; Armand, Gilles

    2010-01-01

    viscoplastic model which aims to improve the viscoplastic strain prediction in the EDZ (Excavated Damaged Zone) is proposed by introducing damage variable in Lemaitre's model. The mains characteristics of the model are: (a) the short-term behaviour is based on a generalized Hoek-Brown model; (b) the long-term behaviour is based on the modified Lemaitre's model, the changes of viscoplastic strain rates due to damage (in pre peak phase) and failure (post-peak and residual phases) are taken into account by varying the creep activation energy and the strain-hardening as a function of the current damage rate. In addition, in order to prevent the overestimation of volumetric strain the associated flow rule initially assumed is revisited for the short term behaviour. The proposed model is implemented in FLAC3D C . In order to verify both constitutive equations and their implementations, several simulations of classical laboratory tests (uniaxial/triaxial, mono/multi stage creep and relaxation) are performed. As practical applications, the proposed model has been used to predict the behaviour of two galleries of the laboratory (at -490 m level): parallel and perpendicular to the major horizontal stress. Comparison between predicted results and the in situ measurements are then presented and discussed Finally the model limitations as well as possible improvements are discussed in this paper. (authors)

  9. Application of group analysis to the spatially homogeneous and isotropic Boltzmann equation with source using its Fourier image

    International Nuclear Information System (INIS)

    Grigoriev, Yurii N; Meleshko, Sergey V; Suriyawichitseranee, Amornrat

    2015-01-01

    Group analysis of the spatially homogeneous and molecular energy dependent Boltzmann equations with source term is carried out. The Fourier transform of the Boltzmann equation with respect to the molecular velocity variable is considered. The correspondent determining equation of the admitted Lie group is reduced to a partial differential equation for the admitted source. The latter equation is analyzed by an algebraic method. A complete group classification of the Fourier transform of the Boltzmann equation with respect to a source function is given. The representation of invariant solutions and corresponding reduced equations for all obtained source functions are also presented. (paper)

  10. Calculating the renormalisation group equations of a SUSY model with Susyno

    Science.gov (United States)

    Fonseca, Renato M.

    2012-10-01

    Susyno is a Mathematica package dedicated to the computation of the 2-loop renormalisation group equations of a supersymmetric model based on any gauge group (the only exception being multiple U(1) groups) and for any field content. Program summary Program title: Susyno Catalogue identifier: AEMX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 30829 No. of bytes in distributed program, including test data, etc.: 650170 Distribution format: tar.gz Programming language: Mathematica 7 or higher. Computer: All systems that Mathematica 7+ is available for (PC, Mac). Operating system: Any platform supporting Mathematica 7+ (Windows, Linux, Mac OS). Classification: 4.2, 5, 11.1. Nature of problem: Calculating the renormalisation group equations of a supersymmetric model involves using long and complicated general formulae [1, 2]. In addition, to apply them it is necessary to know the Lagrangian in its full form. Building the complete Lagrangian of models with small representations of SU(2) and SU(3) might be easy but in the general case of arbitrary representations of an arbitrary gauge group, this task can be hard, lengthy and error prone. Solution method: The Susyno package uses group theoretical functions to calculate the super-potential and the soft-SUSY-breaking Lagrangian of a supersymmetric model, and calculates the two-loop RGEs of the model using the general equations of [1, 2]. Susyno works for models based on any representation(s) of any gauge group (the only exception being multiple U(1) groups). Restrictions: As the program is based on the formalism of [1, 2], it shares its limitations. Running time can also be a significant restriction, in particular for models with many fields. Unusual features

  11. Group Classification of a General Bond-Option Pricing Equation of Mathematical Finance

    OpenAIRE

    Motsepa, Tanki; Khalique, Chaudry Masood; Molati, Motlatsi

    2014-01-01

    We carry out group classification of a general bond-option pricing equation. We show that the equation admits a three-dimensional equivalence Lie algebra. We also show that some of the values of the constants which result from group classification give us well-known models in mathematics of finance such as Black-Scholes, Vasicek, and Cox-Ingersoll-Ross. For all such values of these arbitrary constants we obtain Lie point symmetries. Symmetry reductions are then obtained and group invariant so...

  12. Group Classification of a General Bond-Option Pricing Equation of Mathematical Finance

    Directory of Open Access Journals (Sweden)

    Tanki Motsepa

    2014-01-01

    Full Text Available We carry out group classification of a general bond-option pricing equation. We show that the equation admits a three-dimensional equivalence Lie algebra. We also show that some of the values of the constants which result from group classification give us well-known models in mathematics of finance such as Black-Scholes, Vasicek, and Cox-Ingersoll-Ross. For all such values of these arbitrary constants we obtain Lie point symmetries. Symmetry reductions are then obtained and group invariant solutions are constructed for some cases.

  13. Solution of two energy-group neutron diffusion equation by triangular elements

    International Nuclear Information System (INIS)

    Correia Filho, A.

    1981-01-01

    The application of the triangular finite elements of first order in the solution of two energy-group neutron diffusion equation in steady-state conditions is aimed at. The EFTDN (triangular finite elements in neutrons diffusion) computer code in FORTRAN IV language is developed. The discrete formulation of the diffusion equation is obtained applying the Galerkin method. The power method is used to solve the eigenvalues' problem and the convergence is accelerated through the use of Chebshev polynomials. For the equation systems solution the Gauss method is applied. The results of the analysis of two test-problems are presented. (Author) [pt

  14. Renormalization-group equations of neutrino masses and flavor mixing parameters in matter

    Science.gov (United States)

    Xing, Zhi-zhong; Zhou, Shun; Zhou, Ye-Ling

    2018-05-01

    We borrow the general idea of renormalization-group equations (RGEs) to understand how neutrino masses and flavor mixing parameters evolve when neutrinos propagate in a medium, highlighting a meaningful possibility that the genuine flavor quantities in vacuum can be extrapolated from their matter-corrected counterparts to be measured in some realistic neutrino oscillation experiments. Taking the matter parameter a≡ 2√{2}{G}F{N}_eE to be an arbitrary scale-like variable with N e being the net electron number density and E being the neutrino beam energy, we derive a complete set of differential equations for the effective neutrino mixing matrix V and the effective neutrino masses {\\tilde{m}}_i (for i = 1 , 2 , 3). Given the standard parametrization of V , the RGEs for {{\\tilde{θ}}_{12}, {\\tilde{θ}}_{13}, {\\tilde{θ}}_{23}, \\tilde{δ}} in matter are formulated for the first time. We demonstrate some useful differential invariants which retain the same form from vacuum to matter, including the well-known Naumov and Toshev relations. The RGEs of the partial μ- τ asymmetries, the off-diagonal asymmetries and the sides of unitarity triangles of V are also obtained as a by-product.

  15. Lie groups and differential equations: symmetries, conservation laws and exact solutions of mathematical models in physics

    International Nuclear Information System (INIS)

    Sheftel', M.B.

    1997-01-01

    The basics of modern group analysis of different equations are presented. The group analysis produces in a natural way the variables, which are most suitable for a problem of question, and also the associated differential-geometric structures, such as pseudo Riemann geometry, connections, Hamiltonian and Lagrangian formalism

  16. Numerical solution of multi groups point kinetic equations by simulink toolbox of Matlab software

    International Nuclear Information System (INIS)

    Hadad, K.; Mohamadi, A.; Sabet, H.; Ayobian, N.; Khani, M.

    2004-01-01

    The simulink toolbox of Matlab Software was employed to solve the point kinetics equation with six group delayed neutrons. The method of Adams-Bash ford showed a good convergence in solving the system of simultaneous equations and the obtained results showed good agreements with other numerical schemes. The flexibility of the package in changing the system parameters and the user friendly interface makes this approach a reliable educational package in revealing the affects of reactivity changes on power incursions

  17. A general analytical approach to the one-group, one-dimensional transport equation

    International Nuclear Information System (INIS)

    Barichello, L.B.; Vilhena, M.T.

    1993-01-01

    The main feature of the presented approach to solve the neutron transport equation consists in the application of the Laplace transform to the discrete ordinates equations, which yields a linear system of order N to be solved (LTS N method). In this paper this system is solved analytically and the inversion is performed using the Heaviside expansion technique. The general formulation achieved by this procedure is then applied to homogeneous and heterogeneous one-group slab-geometry problems. (orig.) [de

  18. Propensity scores as a basis for equating groups: basic principles and application in clinical treatment outcome research.

    Science.gov (United States)

    West, Stephen G; Cham, Heining; Thoemmes, Felix; Renneberg, Babette; Schulze, Julian; Weiler, Matthias

    2014-10-01

    A propensity score is the probability that a participant is assigned to the treatment group based on a set of baseline covariates. Propensity scores provide an excellent basis for equating treatment groups on a large set of covariates when randomization is not possible. This article provides a nontechnical introduction to propensity scores for clinical researchers. If all important covariates are measured, then methods that equate on propensity scores can achieve balance on a large set of covariates that mimics that achieved by a randomized experiment. We present an illustration of the steps in the construction and checking of propensity scores in a study of the effectiveness of a health coach versus treatment as usual on the well-being of seriously ill individuals. We then consider alternative methods of equating groups on propensity scores and estimating treatment effects including matching, stratification, weighting, and analysis of covariance. We illustrate a sensitivity analysis that can probe for the potential effects of omitted covariates on the estimate of the causal effect. Finally, we briefly consider several practical and theoretical issues in the use of propensity scores in applied settings. Propensity score methods have advantages over alternative approaches to equating groups particularly when the treatment and control groups do not fully overlap, and there are nonlinear relationships between covariates and the outcome. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  19. A predictive group-contribution simplified PC-SAFT equation of state: Application to polymer systems

    DEFF Research Database (Denmark)

    Tihic, Amra; Kontogeorgis, Georgios; von Solms, Nicolas

    2008-01-01

    A group-contribution (GC) method is coupled with the molecular-based perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state (EoS) to predict its characteristic pure compound parameters. The estimation of group contributions for the parameters is based on a parameter...... are the molecular structure of the polymer of interest in terms of functional groups and a single binary interaction parameter for accurate mixture calculations....

  20. An accurate solution of point reactor neutron kinetics equations of multi-group of delayed neutrons

    International Nuclear Information System (INIS)

    Yamoah, S.; Akaho, E.H.K.; Nyarko, B.J.B.

    2013-01-01

    Highlights: ► Analytical solution is proposed to solve the point reactor kinetics equations (PRKE). ► The method is based on formulating a coefficient matrix of the PRKE. ► The method was applied to solve the PRKE for six groups of delayed neutrons. ► Results shows good agreement with other traditional methods in literature. ► The method is accurate and efficient for solving the point reactor kinetics equations. - Abstract: The understanding of the time-dependent behaviour of the neutron population in a nuclear reactor in response to either a planned or unplanned change in the reactor conditions is of great importance to the safe and reliable operation of the reactor. In this study, an accurate analytical solution of point reactor kinetics equations with multi-group of delayed neutrons for specified reactivity changes is proposed to calculate the change in neutron density. The method is based on formulating a coefficient matrix of the homogenous differential equations of the point reactor kinetics equations and calculating the eigenvalues and the corresponding eigenvectors of the coefficient matrix. A small time interval is chosen within which reactivity relatively stays constant. The analytical method was applied to solve the point reactor kinetics equations with six-groups delayed neutrons for a representative thermal reactor. The problems of step, ramp and temperature feedback reactivities are computed and the results compared with other traditional methods. The comparison shows that the method presented in this study is accurate and efficient for solving the point reactor kinetics equations of multi-group of delayed neutrons

  1. Molecular-state close-coupling theory including continuum states. I. Derivation of close-coupled equations

    International Nuclear Information System (INIS)

    Thorson, W.R.; Bandarage, G.

    1988-01-01

    We formulate a close-coupling theory of slow ion-atom collisions based on molecular (adiabatic) electronic states, and including the electronic continuum. The continuum is represented by packet states spanning it locally and constructed explicitly from exact continuum states. Particular attention is given to two fundamental questions: (1) Unbound electrons can escape from the local region spanned by the packet states. We derive close-coupled integral equations correctly including the escape effects; the ''propagator'' generated by these integral equations does not conserve probability within the close-coupled basis. Previous molecular-state formulations including the continuum give no account of escape effects. (2) Nonadiabatic couplings of adiabatic continuum states with the same energy are singular, reflecting the fact that an adiabatic description of continuum behavior is not valid outside a local region. We treat these singularities explicitly and show that an accurate representation of nonadiabatic couplings within the local region spanned by a set of packet states is well behaved. Hence an adiabatic basis-set description can be used to describe close coupling to the continuum in a local ''interaction region,'' provided the effects of escape are included. In principle, the formulation developed here can be extended to a large class of model problems involving many-electron systems and including models for Penning ionization and collisional detachment processes

  2. Group-theoretical aspects of the discrete sine-Gordon equation

    International Nuclear Information System (INIS)

    Orfanidis, S.J.

    1980-01-01

    The group-theoretical interpretation of the sine-Gordon equation in terms of connection forms on fiber bundles is extended to the discrete case. Solutions of the discrete sine-Gordon equation induce surfaces on a lattice in the SU(2) group space. The inverse scattering representation, expressing the parallel transport of fibers, is implemented by means of finite rotations. Discrete Baecklund transformations are realized as gauge transformations. The three-dimensional inverse scattering representation is used to derive a discrete nonlinear sigma model, and the corresponding Baecklund transformation and Pohlmeyer's R transformation are constructed

  3. An analytical solution for the two-group kinetic neutron diffusion equation in cylindrical geometry

    International Nuclear Information System (INIS)

    Fernandes, Julio Cesar L.; Vilhena, Marco Tullio; Bodmann, Bardo Ernst

    2011-01-01

    Recently the two-group Kinetic Neutron Diffusion Equation with six groups of delay neutron precursor in a rectangle was solved by the Laplace Transform Technique. In this work, we report on an analytical solution for this sort of problem but in cylindrical geometry, assuming a homogeneous and infinite height cylinder. The solution is obtained applying the Hankel Transform to the Kinetic Diffusion equation and solving the transformed problem by the same procedure used in the rectangle. We also present numerical simulations and comparisons against results available in literature. (author)

  4. Numerical solution of multi group-Two dimensional- Adjoint equation with finite element method

    International Nuclear Information System (INIS)

    Poursalehi, N.; Khalafi, H.; Shahriari, M.; Minoochehr

    2008-01-01

    Adjoint equation is used for perturbation theory in nuclear reactor design. For numerical solution of adjoint equation, usually two methods are applied. These are Finite Element and Finite Difference procedures. Usually Finite Element Procedure is chosen for solving of adjoint equation, because it is more use able in variety of geometries. In this article, Galerkin Finite Element method is discussed. This method is applied for numerical solving multi group, multi region and two dimensional (X, Y) adjoint equation. Typical reactor geometry is partitioned with triangular meshes and boundary condition for adjoint flux is considered zero. Finally, for a case of defined parameters, Finite Element Code was applied and results were compared with Citation Code

  5. On the exact solution for the multi-group kinetic neutron diffusion equation in a rectangle

    International Nuclear Information System (INIS)

    Petersen, C.Z.; Vilhena, M.T.M.B. de; Bodmann, B.E.J.

    2011-01-01

    In this work we consider the two-group bi-dimensional kinetic neutron diffusion equation. The solution procedure formalism is general with respect to the number of energy groups, neutron precursor families and regions with different chemical compositions. The fast and thermal flux and the delayed neutron precursor yields are expanded in a truncated double series in terms of eigenfunctions that, upon insertion into the kinetic equation and upon taking moments, results in a first order linear differential matrix equation with source terms. We split the matrix appearing in the transformed problem into a sum of a diagonal matrix plus the matrix containing the remaining terms and recast the transformed problem into a form that can be solved in the spirit of Adomian's recursive decomposition formalism. Convergence of the solution is guaranteed by the Cardinal Interpolation Theorem. We give numerical simulations and comparisons with available results in the literature. (author)

  6. 76 FR 4726 - Avaya Global Services, AOS Service Delivery, Worldwide Services Group, Including Workers Whose...

    Science.gov (United States)

    2011-01-26

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,411] Avaya Global Services, AOS Service Delivery, Worldwide Services Group, Including Workers Whose Unemployment Insurance (UI) Wages Are Reported Through Diamondware, Ltd and Nortel Networks, Inc., Including Workers Working at...

  7. Analysis and applications of a group contribution sPC-SAFT equation of state

    DEFF Research Database (Denmark)

    Tihic, Amra; von Solms, Nicolas; Michelsen, Michael Locht

    2009-01-01

    A group contribution (GC) method for estimating pure compound parameters for the molecular-based perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state (EoS) is proposed in a previous work [A. Tihic, G.M. Kontogeorgis, N. von Solms, M.L Michelsen, L Constantinou. Ind. En...

  8. Individual-based and group-based occupational exposure assessment: some equations to evaluate different strategies.

    NARCIS (Netherlands)

    Tielemans, E.; Kupper, L.L.; Kromhout, H.; Heederik, D.; Houba, R.

    1998-01-01

    Basically, two strategies can be considered for the analysis of hazardous pollutants in the work environment: group-based and individual-based strategies. This paper provides existing and recently derived equations for both strategies describing the influence of several factors on attenuation and on

  9. Series expansion solution of the Wegner-Houghton renormalisation group equation

    International Nuclear Information System (INIS)

    Margaritis, A.; Odor, G.; Patkos, A.

    1987-11-01

    The momentum independent projection of the Wegner-Houghton renormalisation group equation is solved with power series expansion. Convergence rate is analyzed for the n-vector model. Further evidence is presented for the first order nature of the chiral symmetry restoration at finite temperature in QCD with 3 light flavors. (author) 16 refs

  10. Weyl consistency conditions and a local renormalisation group equation for general renormalisable field theories

    International Nuclear Information System (INIS)

    Osborn, H.

    1991-01-01

    A local renormalisation group equation which realises infinitesimal Weyl rescalings of the metric and which is an extension of the usual Callan-Symanzik equation is described. In order to ensure that any local composite operators, with dimensions so that on addition to the basic lagrangian they preserve renormalisability, are well defined for arbitrarily many insertions into correlation functions the couplings are assumed to depend on χ. Local operators are then defined by functional differentiation with respect to the couplings just as the energy-momentum tensor is given by functional differentiation with respect to the metric. The local renormalisation group equation contains terms depending on derivatives of the couplings as well as the curvature tensor formed from the metric, constrained by power counting. Various consistency relations arising from the commutativity of Weyl transformations are derived, extending previous one-loop results for the trace anomaly to all orders. In two dimensions the relations give an alternative derivation of the c-theorem and similar extensions are obtained in four dimensions. The equations are applied in detail to general renormalisable σ-models in two dimensions. The Curci-Paffuti relation is derived without any commitment to a particular regularisation scheme and further equations used to construct an action for the vanishing of the β-functions are also obtained. The discussion is also extended to σ-models with a boundary, as appropriate for open strings, and relations for the additional β-functions present in such models are obtained. (orig.)

  11. Generating Lie Point Symmetry Groups of (2+1)-Dimensional Broer-Kaup Equation via a Simple Direct Method

    International Nuclear Information System (INIS)

    Ma Hongcai

    2005-01-01

    Using the (2+1)-dimensional Broer-Kaup equation as an simple example, a new direct method is developed to find symmetry groups and symmetry algebras and then exact solutions of nonlinear mathematical physical equations.

  12. Lie group classification and exact solutions of the generalized Kompaneets equations

    Directory of Open Access Journals (Sweden)

    Oleksii Patsiuk

    2015-04-01

    Full Text Available We study generalized Kompaneets equations (GKEs with one functional parameter, and using the Lie-Ovsiannikov algorithm, we carried out the group classification. It is shown that the kernel algebra of the full groups of the GKEs is the one-dimensional Lie algebra. Using the direct method, we find the equivalence group. We obtain six non-equivalent (up to transformations from the equivalence group GKEs that allow wider invariance algebras than the kernel one. We find a number of exact solutions of the non-linear GKE which has the maximal symmetry properties.

  13. Lie group classification of first-order delay ordinary differential equations

    Science.gov (United States)

    Dorodnitsyn, Vladimir A.; Kozlov, Roman; Meleshko, Sergey V.; Winternitz, Pavel

    2018-05-01

    A group classification of first-order delay ordinary differential equations (DODEs) accompanied by an equation for the delay parameter (delay relation) is presented. A subset of such systems (delay ordinary differential systems or DODSs), which consists of linear DODEs and solution-independent delay relations, have infinite-dimensional symmetry algebras—as do nonlinear ones that are linearizable by an invertible transformation of variables. Genuinely nonlinear DODSs have symmetry algebras of dimension n, . It is shown how exact analytical solutions of invariant DODSs can be obtained using symmetry reduction.

  14. Exact CTP renormalization group equation for the coarse-grained effective action

    International Nuclear Information System (INIS)

    Dalvit, D.A.; Mazzitelli, F.D.

    1996-01-01

    We consider a scalar field theory in Minkowski spacetime and define a coarse-grained closed time path (CTP) effective action by integrating quantum fluctuations of wavelengths shorter than a critical value. We derive an exact CTP renormalization group equation for the dependence of the effective action on the coarse-graining scale. We solve this equation using a derivative expansion approach. Explicit calculation is performed for the λφ 4 theory. We discuss the relevance of the CTP average action in the study of nonequilibrium aspects of phase transitions in quantum field theory. copyright 1996 The American Physical Society

  15. Nodal approximations of varying order by energy group for solving the diffusion equation

    International Nuclear Information System (INIS)

    Broda, J.T.

    1992-02-01

    The neutron flux across the nuclear reactor core is of interest to reactor designers and others. The diffusion equation, an integro-differential equation in space and energy, is commonly used to determine the flux level. However, the solution of a simplified version of this equation when automated is very time consuming. Since the flux level changes with time, in general, this calculation must be made repeatedly. Therefore solution techniques that speed the calculation while maintaining accuracy are desirable. One factor that contributes to the solution time is the spatial flux shape approximation used. It is common practice to use the same order flux shape approximation in each energy group even though this method may not be the most efficient. The one-dimensional, two-energy group diffusion equation was solved, for the node average flux and core k-effective, using two sets of spatial shape approximations for each of three reactor types. A fourth-order approximation in both energy groups forms the first set of approximations used. The second set used combines a second-order approximation with a fourth-order approximation in energy group two. Comparison of the results from the two approximation sets show that the use of a different order spatial flux shape approximation results in considerable loss in accuracy for the pressurized water reactor modeled. However, the loss in accuracy is small for the heavy water and graphite reactors modeled. The use of different order approximations in each energy group produces mixed results. Further investigation into the accuracy and computing time is required before any quantitative advantage of the use of the second-order approximation in energy group one and the fourth-order approximation in energy group two can be determined

  16. Utility rate equations of group population dynamics in biological and social systems.

    Directory of Open Access Journals (Sweden)

    Vyacheslav I Yukalov

    Full Text Available We present a novel system of equations to describe the evolution of self-organized structured societies (biological or human composed of several trait groups. The suggested approach is based on the combination of ideas employed in the theory of biological populations, system theory, and utility theory. The evolution equations are defined as utility rate equations, whose parameters are characterized by the utility of each group with respect to the society as a whole and by the mutual utilities of groups with respect to each other. We analyze in detail the cases of two groups (cooperators and defectors and of three groups (cooperators, defectors, and regulators and find that, in a self-organized society, neither defectors nor regulators can overpass the maximal fractions of about [Formula: see text] each. This is in agreement with the data for bee and ant colonies. The classification of societies by their distance from equilibrium is proposed. We apply the formalism to rank the countries according to the introduced metric quantifying their relative stability, which depends on the cost of defectors and regulators as well as their respective population fractions. We find a remarkable concordance with more standard economic ranking based, for instance, on GDP per capita.

  17. Utility Rate Equations of Group Population Dynamics in Biological and Social Systems

    Science.gov (United States)

    Yukalov, Vyacheslav I.; Yukalova, Elizaveta P.; Sornette, Didier

    2013-01-01

    We present a novel system of equations to describe the evolution of self-organized structured societies (biological or human) composed of several trait groups. The suggested approach is based on the combination of ideas employed in the theory of biological populations, system theory, and utility theory. The evolution equations are defined as utility rate equations, whose parameters are characterized by the utility of each group with respect to the society as a whole and by the mutual utilities of groups with respect to each other. We analyze in detail the cases of two groups (cooperators and defectors) and of three groups (cooperators, defectors, and regulators) and find that, in a self-organized society, neither defectors nor regulators can overpass the maximal fractions of about each. This is in agreement with the data for bee and ant colonies. The classification of societies by their distance from equilibrium is proposed. We apply the formalism to rank the countries according to the introduced metric quantifying their relative stability, which depends on the cost of defectors and regulators as well as their respective population fractions. We find a remarkable concordance with more standard economic ranking based, for instance, on GDP per capita. PMID:24386163

  18. Including pride and its group-based, relational, and contextual features in theories of contempt.

    Science.gov (United States)

    Sullivan, Gavin Brent

    2017-01-01

    Sentiment includes emotional and enduring attitudinal features of contempt, but explaining contempt as a mixture of basic emotion system affects does not adequately address the family resemblance structure of the concept. Adding forms of individual, group-based, and widely shared arrogance and contempt is necessary to capture the complex mixed feelings of proud superiority when "looking down upon" and acting harshly towards others.

  19. The quantum group, Harper equation and structure of Bloch eigenstates on a honeycomb lattice

    International Nuclear Information System (INIS)

    Eliashvili, M; Tsitsishvili, G; Japaridze, G I

    2012-01-01

    The tight-binding model of quantum particles on a honeycomb lattice is investigated in the presence of a homogeneous magnetic field. Provided the magnetic flux per unit hexagon is a rational of the elementary flux, the one-particle Hamiltonian is expressed in terms of the generators of the quantum group U q (sl 2 ). Employing the functional representation of the quantum group U q (sl 2 ), the Harper equation is rewritten as a system of two coupled functional equations in the complex plane. For the special values of quasi-momentum, the entangled system admits solutions in terms of polynomials. The system is shown to exhibit a certain symmetry allowing us to resolve the entanglement, and a basic single equation determining the eigenvalues and eigenstates (polynomials) is obtained. Equations specifying the locations of the roots of polynomials in the complex plane are found. Employing numerical analysis, the roots of polynomials corresponding to different eigenstates are solved and diagrams exhibiting the ordered structure of one-particle eigenstates are depicted. (paper)

  20. Development of two-group interfacial area transport equation for confined flow-2. Model evaluation

    International Nuclear Information System (INIS)

    Sun, Xiaodong; Kim, Seungjin; Ishii, Mamoru; Beus, Stephen G.

    2003-01-01

    The bubble interaction mechanisms have been analytically modeled in the first paper of this series to provide mechanistic constitutive relations for the two-group interfacial area transport equation (IATE), which was proposed to dynamically solve the interfacial area concentration in the two-fluid model. This paper presents the evaluation approach and results of the two-group IATE based on available experimental data obtained in confined flow, namely, 11 data sets in or near bubbly flow and 13 sets in cap-turbulent and churn-turbulent flow. The two-group IATE is evaluated in steady state, one-dimensional form. Also, since the experiments were performed under adiabatic, air-water two-phase flow conditions, the phase change effect is omitted in the evaluation. To account for the inter-group bubble transport, the void fraction transport equation for Group-2 bubbles is also used to predict the void fraction for Group-2 bubbles. Agreement between the data and the model predictions is reasonably good and the average relative difference for the total interfacial area concentration between the 24 data sets and predictions is within 7%. The model evaluation demonstrates the capability of the two-group IATE focused on the current confined flow to predict the interfacial area concentration over a wide range of flow regimes. (author)

  1. Vectorized and multitasked solution of the few-group neutron diffusion equations

    International Nuclear Information System (INIS)

    Zee, S.K.; Turinsky, P.J.; Shayer, Z.

    1989-01-01

    A numerical algorithm with parallelism was used to solve the two-group, multidimensional neutron diffusion equations on computers characterized by shared memory, vector pipeline, and multi-CPU architecture features. Specifically, solutions were obtained on the Cray X/MP-48, the IBM-3090 with vector facilities, and the FPS-164. The material-centered mesh finite difference method approximation and outer-inner iteration method were employed. Parallelism was introduced in the inner iterations using the cyclic line successive overrelaxation iterative method and solving in parallel across lines. The outer iterations were completed using the Chebyshev semi-iterative method that allows parallelism to be introduced in both space and energy groups. For the three-dimensional model, power, soluble boron, and transient fission product feedbacks were included. Concentrating on the pressurized water reactor (PWR), the thermal-hydraulic calculation of moderator density assumed single-phase flow and a closed flow channel, allowing parallelism to be introduced in the solution across the radial plane. Using a pinwise detail, quarter-core model of a typical PWR in cycle 1, for the two-dimensional model without feedback the measured million floating point operations per second (MFLOPS)/vector speedups were 83/11.7. 18/2.2, and 2.4/5.6 on the Cray, IBM, and FPS without multitasking, respectively. Lower performance was observed with a coarser mesh, i.e., shorter vector length, due to vector pipeline start-up. For an 18 x 18 x 30 (x-y-z) three-dimensional model with feedback of the same core, MFLOPS/vector speedups of --61/6.7 and an execution time of 0.8 CPU seconds on the Cray without multitasking were measured. Finally, using two CPUs and the vector pipelines of the Cray, a multitasking efficiency of 81% was noted for the three-dimensional model

  2. Method of resonating groups in the Faddeev-Hahn equation formalism for three-body nuclear problem

    CERN Document Server

    Nasirov, M Z

    2002-01-01

    The Faddeev-Hahn equation formalism for three-body nuclear problem is considered. For solution of the equations the method of resonant groups have applied. The calculations of tritium binding energy and doublet nd-scattering length have been carried out. The results obtained shows that Faddeev-Hahn equation formalism is very simple and effective. (author)

  3. A simple proof of renormalization group equation in the minimal subtraction scheme

    International Nuclear Information System (INIS)

    Chetyrkin, K.G.

    1989-04-01

    We give a simple combinatorial proof of the renormalization group equation in the minimal subtraction scheme. Being mathematically rigorous, the proof avoids both the notorious complexity of techniques using parametric representations of Feynman diagrams and heuristic arguments of usual ''proofs'' calling up bare fields living in the space-time of complex dimension. It also copes easily with the general case of Green functions of arbitrary number of composite fields. (author). 24 refs

  4. Simple renormalization group method for calculating geometrical and other equations of states

    International Nuclear Information System (INIS)

    Tsallis, C.; Schwaccheim, G.; Coniglio, A.

    1984-01-01

    A real space renormalization group procedure to calculate geometrical and thermal equations of states for the entire range of values of the external parameters is described. Its use is as simple as a Mean Field Approximation; however, it yields non trivial results and can be systematically improved. Such a procedure is illustrated by calculating, for all bond concentrations, the site mass density for the complete and the backbone percolating infinite clusters in square lattice: the results are quite satisfactory. (Author) [pt

  5. Respiration monitoring by Electrical Bioimpedance (EBI) Technique in a group of healthy males. Calibration equations

    International Nuclear Information System (INIS)

    Balleza, M; Vargas, M; Delgadillo, I; Kashina, S; Huerta, M R; Moreno, G

    2017-01-01

    Several research groups have proposed the electrical impedance tomography (EIT) in order to analyse lung ventilation. With the use of 16 electrodes, the EIT is capable to obtain a set of transversal section images of thorax. In previous works, we have obtained an alternating signal in terms of impedance corresponding to respiration from EIT images. Then, in order to transform those impedance changes into a measurable volume signal a set of calibration equations has been obtained. However, EIT technique is still expensive to attend outpatients in basics hospitals. For that reason, we propose the use of electrical bioimpedance (EBI) technique to monitor respiration behaviour. The aim of this study was to obtain a set of calibration equations to transform EBI impedance changes determined at 4 different frequencies into a measurable volume signal. In this study a group of 8 healthy males was assessed. From obtained results, a high mathematical adjustment in the group calibrations equations was evidenced. Then, the volume determinations obtained by EBI were compared with those obtained by our gold standard. Therefore, despite EBI does not provide a complete information about impedance vectors of lung compared with EIT, it is possible to monitor the respiration. (paper)

  6. Threshold and flavor effects in the renormalization group equations of the MSSM. II. Dimensionful couplings

    International Nuclear Information System (INIS)

    Box, Andrew D.; Tata, Xerxes

    2009-01-01

    We reexamine the one-loop renormalization group equations (RGEs) for the dimensionful parameters of the minimal supersymmetric standard model (MSSM) with broken supersymmetry, allowing for arbitrary flavor structure of the soft SUSY-breaking parameters. We include threshold effects by evaluating the β-functions in a sequence of (nonsupersymmetric) effective theories with heavy particles decoupled at the scale of their mass. We present the most general form for high-scale, soft SUSY-breaking parameters that obtains if we assume that the supersymmetry-breaking mechanism does not introduce new intergenerational couplings. This form, possibly amended to allow additional sources of flavor-violation, serves as a boundary condition for solving the RGEs for the dimensionful MSSM parameters. We then present illustrative examples of numerical solutions to the RGEs. We find that in a SUSY grand unified theory with the scale of SUSY scalars split from that of gauginos and higgsinos, the gaugino mass unification condition may be violated by O(10%). As another illustration, we show that in mSUGRA, the rate for the flavor-violating t-tilde 1 →cZ-tilde 1 decay obtained using the complete RGE solution is smaller than that obtained using the commonly used 'single-step' integration of the RGEs by a factor 10-25, and so may qualitatively change expectations for topologies from top-squark pair production at colliders. Together with the RGEs for dimensionless couplings presented in a companion paper, the RGEs in Appendix 2 of this paper form a complete set of one-loop MSSM RGEs that include threshold and flavor-effects necessary for two-loop accuracy.

  7. On the definition of an admitted Lie group for stochastic differential equations with multi-Brownian motion

    International Nuclear Information System (INIS)

    Srihirun, B; Meleshko, S V; Schulz, E

    2006-01-01

    The definition of an admitted Lie group of transformations for stochastic differential equations has been already presented for equations with one-dimensional Brownian motion. The transformation of the dependent variables involves time as well, and it has been proven that Brownian motion is transformed to Brownian motion. In this paper, we will discuss this concept for stochastic differential equations involving multi-dimensional Brownian motion and present applications to a variety of stochastic differential equations

  8. Should an obsessive-compulsive spectrum grouping of disorders be included in DSM-V?

    Science.gov (United States)

    Phillips, Katharine A; Stein, Dan J; Rauch, Scott L; Hollander, Eric; Fallon, Brian A; Barsky, Arthur; Fineberg, Naomi; Mataix-Cols, David; Ferrão, Ygor Arzeno; Saxena, Sanjaya; Wilhelm, Sabine; Kelly, Megan M; Clark, Lee Anna; Pinto, Anthony; Bienvenu, O Joseph; Farrow, Joanne; Leckman, James

    2010-06-01

    The obsessive-compulsive (OC) spectrum has been discussed in the literature for two decades. Proponents of this concept propose that certain disorders characterized by repetitive thoughts and/or behaviors are related to obsessive-compulsive disorder (OCD), and suggest that such disorders be grouped together in the same category (i.e. grouping, or "chapter") in DSM. This article addresses this topic and presents options and preliminary recommendations to be considered for DSM-V. The article builds upon and extends prior reviews of this topic that were prepared for and discussed at a DSM-V Research Planning Conference on Obsessive-Compulsive Spectrum Disorders held in 2006. Our preliminary recommendation is that an OC-spectrum grouping of disorders be included in DSM-V. Furthermore, we preliminarily recommend that consideration be given to including this group of disorders within a larger supraordinate category of "Anxiety and Obsessive-Compulsive Spectrum Disorders." These preliminary recommendations must be evaluated in light of recommendations for, and constraints upon, the overall structure of DSM-V. (c) 2010 Wiley-Liss, Inc.

  9. A modified two-fluid model for the application of two-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Sun, X.; Ishii, M.; Kelly, J.

    2003-01-01

    This paper presents the modified two-fluid model that is ready to be applied in the approach of the two-group interfacial area transport equation. The two-group interfacial area transport equation was developed to provide a mechanistic constitutive relation for the interfacial area concentration in the two-fluid model. In the two-group transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 while cap/slug/churn-turbulent bubbles as Group 2. Therefore, this transport equation can be employed in the flow regimes spanning from bubbly, cap bubbly, slug to churn-turbulent flows. However, the introduction of the two groups of bubbles requires two gas velocity fields. Yet it is not desirable to solve two momentum equations for the gas phase alone. In the current modified two-fluid model, a simplified approach is proposed. The momentum equation for the averaged velocity of both Group-1 and Group-2 bubbles is retained. By doing so, the velocity difference between Group-1 and Group-2 bubbles needs to be determined. This may be made either based on simplified momentum equations for both Group-1 and Group-2 bubbles or by a modified drift-flux model

  10. Singular solutions of renormalization group equations and the symmetry of the lagrangian

    International Nuclear Information System (INIS)

    Kazakov, D.I.; Shirokov, D.V.

    1975-01-01

    On the basis of solution of the differential renormalization group equations the method is proposed for finding out the Lagrangians possessing some king of internal symmetry. It is shown that in the phase space of the invariant charges the symmetry corresponds to the straight-line singular solution of these equations remaining straight-line when taking into account the higher order corrections. We have studied the model of scalar fields with quartic couplings, as well as the set of models containing scalar, pseudoscalar and spinor fields with Yukawa and quartic interactions. Straight-line singular solutions in the first case correspond to isotopic symmetry only. For the second case they correspond to supersymmetry. No other symmetries have been discovered. For the model containing the gauge fields the solution corresponding to supersymmetry is obtained and it is shown that this is also the only symmetry that can be realized in the given set of fields

  11. Dynamical diffusion and renormalization group equation for the Fermi velocity in doped graphene

    International Nuclear Information System (INIS)

    Ardenghi, J.S.; Bechthold, P.; Jasen, P.; Gonzalez, E.; Juan, A.

    2014-01-01

    The aim of this work is to study the electron transport in graphene with impurities by introducing a generalization of linear response theory for linear dispersion relations and spinor wave functions. Current response and density response functions are derived and computed in the Boltzmann limit showing that in the former case a minimum conductivity appears in the no-disorder limit. In turn, from the generalization of both functions, an exact relation can be obtained that relates both. Combining this result with the relation given by the continuity equation it is possible to obtain general functional behavior of the diffusion pole. Finally, a dynamical diffusion is computed in the quasistatic limit using the definition of relaxation function. A lower cutoff must be introduced to regularize infrared divergences which allow us to obtain a full renormalization group equation for the Fermi velocity, which is solved up to order O(ℏ 2 )

  12. From condensed matter to Higgs physics. Solving functional renormalization group equations globally in field space

    Energy Technology Data Exchange (ETDEWEB)

    Borchardt, Julia

    2017-02-07

    By means of the functional renormalization group (FRG), systems can be described in a nonperturbative way. The derived flow equations are solved via pseudo-spectral methods. As they allow to resolve the full field dependence of the effective potential and provide highly accurate results, these numerical methods are very powerful but have hardly been used in the FRG context. We show their benefits using several examples. Moreover, we apply the pseudo-spectral methods to explore the phase diagram of a bosonic model with two coupled order parameters and to clarify the nature of a possible metastability of the Higgs-Yukawa potential.In the phase diagram of systems with two competing order parameters, fixed points govern multicritical behavior. Such systems are often discussed in the context of condensed matter. Considering the phase diagram of the bosonic model between two and three dimensions, we discover additional fixed points besides the well-known ones from studies in three dimensions. Interestingly, our findings suggest that in certain regions of the phase diagram, two universality classes coexist. To our knowledge, this is the first bosonic model where coexisting (multi-)criticalities are found. Also, the absence of nontrivial fixed points can have a physical meaning, such as in the electroweak sector of the standard model which suffers from the triviality problem. The electroweak transition giving rise to the Higgs mechanism is dominated by the Gaussian fixed point. Due to the low Higgs mass, perturbative calculations suggest a metastable potential. However, the existence of the lower Higgs-mass bound eventually is interrelated with the maximal ultraviolet extension of the standard model. A relaxation of the lower bound would mean that the standard model may be still valid to even higher scales. Within a simple Higgs-Yukawa model, we discuss the origin of metastabilities and mechanisms, which relax the Higgs-mass bound, including higher field operators.

  13. Redox reactions for group 5 elements, including element 105, in aqueous solutions

    International Nuclear Information System (INIS)

    Ionova, G.V.; Pershina, V.; Johnson, E.; Fricke, B.; Schaedel, M.

    1992-08-01

    Standard redox potentials Edeg(M z+x /M z+ ) in acidic solutions for group 5 elements including element 105 (Ha) and the actinide, Pa, have been estimated on the basis of the ionization potentials calculated via the multiconfiguration Dirac-Fock method. Stability of the pentavalent state was shown to increase along the group from V to Ha, while that of the tetra- and trivalent states decreases in this direction. Our estimates have shown no extra stability of the trivalent state of hahnium. Element 105 should form mixed-valence complexes by analogy with Nb due to the similar values of their potentials Edeg(M 3+ /M 2+ ). The stability of the maximum oxidation state of the elements decreases in the direction 103 > 104 > 105. (orig.)

  14. Development of Constraint Force Equation Methodology for Application to Multi-Body Dynamics Including Launch Vehicle Stage Seperation

    Science.gov (United States)

    Pamadi, Bandu N.; Toniolo, Matthew D.; Tartabini, Paul V.; Roithmayr, Carlos M.; Albertson, Cindy W.; Karlgaard, Christopher D.

    2016-01-01

    The objective of this report is to develop and implement a physics based method for analysis and simulation of multi-body dynamics including launch vehicle stage separation. The constraint force equation (CFE) methodology discussed in this report provides such a framework for modeling constraint forces and moments acting at joints when the vehicles are still connected. Several stand-alone test cases involving various types of joints were developed to validate the CFE methodology. The results were compared with ADAMS(Registered Trademark) and Autolev, two different industry standard benchmark codes for multi-body dynamic analysis and simulations. However, these two codes are not designed for aerospace flight trajectory simulations. After this validation exercise, the CFE algorithm was implemented in Program to Optimize Simulated Trajectories II (POST2) to provide a capability to simulate end-to-end trajectories of launch vehicles including stage separation. The POST2/CFE methodology was applied to the STS-1 Space Shuttle solid rocket booster (SRB) separation and Hyper-X Research Vehicle (HXRV) separation from the Pegasus booster as a further test and validation for its application to launch vehicle stage separation problems. Finally, to demonstrate end-to-end simulation capability, POST2/CFE was applied to the ascent, orbit insertion, and booster return of a reusable two-stage-to-orbit (TSTO) vehicle concept. With these validation exercises, POST2/CFE software can be used for performing conceptual level end-to-end simulations, including launch vehicle stage separation, for problems similar to those discussed in this report.

  15. Solution of the diffusion equations for several groups by the finite elements method

    International Nuclear Information System (INIS)

    Arredondo S, C.

    1975-01-01

    The code DELFIN has been implemented for the solution of the neutrons diffusion equations in two dimensions obtained by applying the approximation of several groups of energy. The code works with any number of groups and regions, and can be applied to thermal reactors as well as fast reactor. Providing it with the diffusion coefficients, the effective sections and the fission spectrum we obtain the results for the systems multiplying constant and the flows of each groups. The code was established using the method of finite elements, which is a form of resolution of the variational formulation of the equations applying the Ritz-Galerkin method with continuous polynomial functions by parts, in one case of the Lagrange type with rectangular geometry and up to the third grade. The obtained results and the comparison with the results in the literature, permit to reach the conclusion that it is convenient, to use the rectangular elements in all the cases where the geometry permits it, and demonstrate also that the finite elements method is better than the finite differences method. (author)

  16. Wilsonian Renormalization Group and the Lippmann-Schwinger Equation with a Multitude of Cutoff Parameters

    Science.gov (United States)

    Epelbaum, E.; Gegelia, J.; Meißner, Ulf-G.

    2018-03-01

    The Wilsonian renormalization group approach to the Lippmann-Schwinger equation with a multitude of cutoff parameters is introduced. A system of integro-differential equations for the cutoff-dependent potential is obtained. As an illustration, a perturbative solution of these equations with two cutoff parameters for a simple case of an S-wave low-energy potential in the form of a Taylor series in momenta is obtained. The relevance of the obtained results for the effective field theory approach to nucleon-nucleon scattering is discussed. Supported in part by BMBF under Grant No. 05P2015 - NUSTAR R&D), DFG and NSFC through Funds Provided to the Sino- German CRC 110 “Symmetries and the Emergence of Structure in QCD”, National Natural Science Foundation of China under Grant No. 11621131001, DFG Grant No. TRR110, the Georgian Shota Rustaveli National Science Foundation (grant FR/417/6-100/14) and the CAS President’s International Fellowship Initiative (PIFI) under Grant No. 2017VMA0025

  17. Asymptotic formulae for solutions of the two-group integral neutron-transport equation

    International Nuclear Information System (INIS)

    Duracz, T.

    1976-01-01

    The steady-state, two-group integral neutron-transport equation is considered for two cases. First, for plane geometry, formulae for the asymptotic flux are obtained, under assumptions of homogeneous medium with isotropic scattering, extended to infinity (whole space and half-space), with sources vanishing at infinity as 0(esup(-IXI)). Next, for spherical geometry, the Milne problem is considered and formulae for the asymptotic flux are obtained. These formulae have the form of asymptotic expansions for small and large radii of the black sphere. (orig.) [de

  18. Basic studies for the solution of the criticality equation: two groups of energy and one dimension

    International Nuclear Information System (INIS)

    Britto Aghina, L.O. de.

    1994-12-01

    This work collects six basic studies for the numerical solution of the criticality equation for thermal reactors. Use is made of the diffusion theory for two groups of energy and one dimension, applicable to bare reactors, bare equivalent, infinite bare equivalent and reflected reactors. These studies were written in Mathcad 4.0/WIN programming, a practical form for use by the researchers and operators working with the Argonaut Reactor at the Instituto de Engenharia Nuclear (IEN). (author). 11 refs, 20 figs, 8 tabs

  19. Nonperturbative renormalization group study of the stochastic Navier-Stokes equation.

    Science.gov (United States)

    Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo

    2012-07-01

    We study the renormalization group flow of the average action of the stochastic Navier-Stokes equation with power-law forcing. Using Galilean invariance, we introduce a nonperturbative approximation adapted to the zero-frequency sector of the theory in the parametric range of the Hölder exponent 4-2ε of the forcing where real-space local interactions are relevant. In any spatial dimension d, we observe the convergence of the resulting renormalization group flow to a unique fixed point which yields a kinetic energy spectrum scaling in agreement with canonical dimension analysis. Kolmogorov's -5/3 law is, thus, recovered for ε = 2 as also predicted by perturbative renormalization. At variance with the perturbative prediction, the -5/3 law emerges in the presence of a saturation in the ε dependence of the scaling dimension of the eddy diffusivity at ε = 3/2 when, according to perturbative renormalization, the velocity field becomes infrared relevant.

  20. Synthesis and characterization of polyphosphazene electrolytes including cyclic ether side groups

    Science.gov (United States)

    Fiedler, Carsten; Luerssen, Bjoern; Lucht, Brett; Janek, Juergen

    2018-04-01

    This paper presents the synthesis and detailed characterization of two polyphosphazene based polymers, including different cyclic ether side groups. The final polymers were obtained by a well-known method employing a living cationic polymerization and subsequent nucleophilic substitution. The synthesized polymers Poly [(1,3-dioxane-5-oxy) (1,3-dioxolane-4-methoxy)phosphazene] (DOPP) and Poly[bis(2-Tetrahydro-3-furanoxy)phosphazene] (THFPP) were mixed with varied amounts of lithium bis(trifluoromethane)sulfonamide (LiTFSI) and the interactions between the salt and the polymer chains were studied by Fourier transform infrared (FT-IR) and differential scanning calorimetry (DSC) measurements. Electrochemical characterization was performed by electrochemical impedance spectroscopy (EIS) and direct current polarization in the temperature range of 20-60 °C. These measurements were utilized to calculate the lithium transference number (t+), the lithium conductivity (σ) and its activation energy in order to elucidate the lithium transport behavior. Relatively high lithium transference numbers of 0.6 (DOPP) and 0.7 (THFPP) at 60 °C are found and reveal maximum lithium conductivities of 2.8·10-6 Sṡcm-1 and 9.0·10-7 Sṡcm-1 for DOPP and THFPP at 60 °C, respectively.

  1. Solution to the Diffusion equation for multi groups in X Y geometry using Linear Perturbation theory

    International Nuclear Information System (INIS)

    Mugica R, C.A.

    2004-01-01

    Diverse methods exist to solve numerically the neutron diffusion equation for several energy groups in stationary state among those that highlight those of finite elements. In this work the numerical solution of this equation is presented using Raviart-Thomas nodal methods type finite element, the RT0 and RT1, in combination with iterative techniques that allow to obtain the approached solution in a quick form. Nevertheless the above mentioned, the precision of a method is intimately bound to the dimension of the approach space by cell, 5 for the case RT0 and 12 for the RT1, and/or to the mesh refinement, that makes the order of the problem of own value to solve to grow considerably. By this way if it wants to know an acceptable approach to the value of the effective multiplication factor of the system when this it has experimented a small perturbation it was appeal to the Linear perturbation theory with which is possible to determine it starting from the neutron flow and of the effective multiplication factor of the not perturbed case. Results are presented for a reference problem in which a perturbation is introduced in an assemble that simulates changes in the control bar. (Author)

  2. 76 FR 19466 - Masco Builder Cabinet Group Including On-Site Leased Workers From Reserves Network, Reliable...

    Science.gov (United States)

    2011-04-07

    ... Builder Cabinet Group Including On-Site Leased Workers From Reserves Network, Reliable Staffing, and Third Dimension Waverly, OH; Masco Builder Cabinet Group Including On-Site Leased Workers From Reserves Network... Group including on-site leased workers from Reserves Network, Jackson, Ohio. The workers produce...

  3. On the spectral analysis of iterative solutions of the discretized one-group transport equation

    International Nuclear Information System (INIS)

    Sanchez, Richard

    2004-01-01

    We analyze the Fourier-mode technique used for the spectral analysis of iterative solutions of the one-group discretized transport equation. We introduce a direct spectral analysis for the iterative solution of finite difference approximations for finite slabs composed of identical layers, providing thus a complementary analysis that is more appropriate for reactor applications. Numerical calculations for the method of characteristics and with the diamond difference approximation show the appearance of antisymmetric modes generated by the iteration on boundary data. We have also utilized the discrete Fourier transform to compute the spectrum for a periodic slab containing N identical layers and shown that at the limit N → ∞ one obtains the familiar Fourier-mode solution

  4. Probing the desert by the two-loop renormalization-group equations

    International Nuclear Information System (INIS)

    Tanimoto, M.; Suetake, Y.; Senba, K.

    1987-01-01

    We have reexamined the study of probing the desert with fermion masses, presented by Bagger, Dimopoulos, and Masso, by using the two-loop renormalization-group equations in the framework of the SU(3) x SU(2) x U(1) model with three generations and one Higgs doublet. The blow-up energy scale of the Yukawa coupling is found to be dependent on the Higgs quartic coupling λ. If the Yukawa coupling blows up between the electroweak scale M/sub W/ and the grand unified scale M/sub X/, the Higgs potential is destabilized for small values of λ at the electroweak scale M/sub W/, and becomes strongly coupled for large values of λ at M/sub W/. It is found that the Higgs-scalar mass as well as the fermion masses are important to probe the desert

  5. Dynamical R Matrices of Elliptic Quantum Groups and Connection Matrices for the q-KZ Equations

    Directory of Open Access Journals (Sweden)

    Hitoshi Konno

    2006-12-01

    Full Text Available For any affine Lie algebra ${mathfrak g}$, we show that any finite dimensional representation of the universal dynamical $R$ matrix ${cal R}(lambda$ of the elliptic quantum group ${cal B}_{q,lambda}({mathfrak g}$ coincides with a corresponding connection matrix for the solutions of the $q$-KZ equation associated with $U_q({mathfrak g}$. This provides a general connection between ${cal B}_{q,lambda}({mathfrak g}$ and the elliptic face (IRF or SOS models. In particular, we construct vector representations of ${cal R}(lambda$ for ${mathfrak g}=A_n^{(1}$, $B_n^{(1}$, $C_n^{(1}$, $D_n^{(1}$, and show that they coincide with the face weights derived by Jimbo, Miwa and Okado. We hence confirm the conjecture by Frenkel and Reshetikhin.

  6. Hyperfunction solutions of the zero rest mass equations and representations of LIE groups

    International Nuclear Information System (INIS)

    Dunne, E.G.

    1984-01-01

    Recently, hyperfunctions have arisen in an essential way in separate results in mathematical physics and in representation theory. In the setting of the twistor program, Wells, with others, has extended the Penrose transform to hyperfunction solutions of the zero rest mass equations, showing that the fundamental isomorphisms hold for this larger space. Meanwhile, Schmid has shown the existence of a canonical globalization of a Harish-Chandra module, V, to a representation of the group. This maximal globalization may be realized as the completion of V in a locally convex vector space in the hyperfunction topology. This thesis shows that the former is a particular case of the latter where the globalization can be done by hand. This explicit globalization is then carried out for a more general case of the Radon transform on homogeneous spaces

  7. Solutions of the Noh Problem for Various Equations of State Using Lie Groups

    International Nuclear Information System (INIS)

    Axford, R.A.

    1998-01-01

    A method for developing invariant equations of state for which solutions of the Noh problem will exist is developed. The ideal gas equation of state is shown to be a special case of the general method. Explicit solutions of the Noh problem in planar, cylindrical and spherical geometry are determined for a Mie-Gruneisen and the stiff gas equation of state

  8. Production of neutronic discrete equations for a cylindrical geometry in one group energy and benchmark the results with MCNP-4B code with one group energy library

    International Nuclear Information System (INIS)

    Salehi, A. A.; Vosoughi, N.; Shahriari, M.

    2002-01-01

    In reactor core neutronic calculations, we usually choose a control volume and investigate about the input, output, production and absorption inside it. Finally, we derive neutron transport equation. This equation is not easy to solve for simple and symmetrical geometry. The objective of this paper is to introduce a new direct method for neutronic calculations. This method is based on physics of problem and with meshing of the desired geometry, writing the balance equation for each mesh intervals and with notice to the conjunction between these mesh intervals, produce the final discrete equation series without production of neutron transport differential equation and mandatory passing form differential equation bridge. This method, which is named Direct Discrete Method, was applied in static state, for a cylindrical geometry in one group energy. The validity of the results from this new method are tested with MCNP-4B code with a one group energy library. One energy group direct discrete equation produces excellent results, which can be compared with the results of MCNP-4B

  9. Solution of multi-group diffusion equation in x-y-z geometry by finite Fourier transformation

    International Nuclear Information System (INIS)

    Kobayashi, Keisuke

    1975-01-01

    The multi-group diffusion equation in three-dimensional x-y-z geometry is solved by finite Fourier transformation. Applying the Fourier transformation to a finite region with constant nuclear cross sections, the fluxes and currents at the material boundaries are obtained in terms of the Fourier series. Truncating the series after the first term, and assuming that the source term is piecewise linear within each mesh box, a set of coupled equations is obtained in the form of three-point equations for each coordinate. These equations can be easily solved by the alternative direction implicit method. Thus a practical procedure is established that could be applied to replace the currently used difference equation. This equation is used to solve the multi-group diffusion equation by means of the source iteration method; and sample calculations for thermal and fast reactors show that the present method yields accurate results with a smaller number of mesh points than the usual finite difference equations. (auth.)

  10. Record of the first meeting of the working group, London, 6-7 December 1977 (includes terms of reference)

    International Nuclear Information System (INIS)

    The items discussed include the presentation and adoption of the Group Working Paper on: terms of reference, prime objectives, topics and assessments, criteria for proliferation resistance, the organization of the Group, including the establishment of two sub-groups, schedule of work, assignment of work to be done, and the contributions to be made by international organizations

  11. 76 FR 2145 - Masco Builder Cabinet Group Including On-Site Leased Workers From Reserves Network, Jackson, OH...

    Science.gov (United States)

    2011-01-12

    ...,287B; TA-W-71,287C] Masco Builder Cabinet Group Including On-Site Leased Workers From Reserves Network, Jackson, OH; Masco Builder Cabinet Group, Waverly, OH; Masco Builder Cabinet Group, Seal Township, OH; Masco Builder Cabinet Group, Seaman, OH; Amended Certification Regarding Eligibility To Apply for Worker...

  12. GIS WORK GROUP: AN OVERVIEW (INCLUDES GIS-QA AND AUDITING GIS DATABASE SYSTEMS)

    Science.gov (United States)

    In order to promote cooperation in the implementation of GIS in regional offices, a GIS Regional Workgroup was established by the ten Regions in 1989. Since that time the GIS Work Group evolved and now consists of members from each of the ten EPA Regional Offices, the Office of A...

  13. 75 FR 71464 - Metlife Technology, Operations, and Information Technology Groups Including On-Site Leased...

    Science.gov (United States)

    2010-11-23

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-73,210; TA-W-73,210A] Metlife... negative determination regarding the eligibility of workers and former workers of MetLife, Technology... revised certification, and all workers in the group threatened with total or partial separation from...

  14. Does the interpersonal model apply across eating disorder diagnostic groups? A structural equation modeling approach.

    Science.gov (United States)

    Ivanova, Iryna V; Tasca, Giorgio A; Proulx, Geneviève; Bissada, Hany

    2015-11-01

    Interpersonal model has been validated with binge-eating disorder (BED), but it is not yet known if the model applies across a range of eating disorders (ED). The goal of this study was to investigate the validity of the interpersonal model in anorexia nervosa (restricting type; ANR and binge-eating/purge type; ANBP), bulimia nervosa (BN), BED, and eating disorder not otherwise specified (EDNOS). Data from a cross-sectional sample of 1459 treatment-seeking women diagnosed with ANR, ANBP, BN, BED and EDNOS were examined for indirect effects of interpersonal problems on ED psychopathology mediated through negative affect. Findings from structural equation modeling demonstrated the mediating role of negative affect in four of the five diagnostic groups. There were significant, medium to large (.239, .558), indirect effects in the ANR, BN, BED and EDNOS groups but not in the ANBP group. The results of the first reverse model of interpersonal problems as a mediator between negative affect and ED psychopathology were nonsignificant, suggesting the specificity of these hypothesized paths. However, in the second reverse model ED psychopathology was related to interpersonal problems indirectly through negative affect. This is the first study to find support for the interpersonal model of ED in a clinical sample of women with diverse ED diagnoses, though there may be a reciprocal relationship between ED psychopathology and relationship problems through negative affect. Negative affect partially explains the relationship between interpersonal problems and ED psychopathology in women diagnosed with ANR, BN, BED and EDNOS. Interpersonal psychotherapies for ED may be addressing the underlying interpersonal-affective difficulties, thereby reducing ED psychopathology. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Simulate-HEX - The multi-group diffusion equation in hexagonal-z geometry

    International Nuclear Information System (INIS)

    Lindahl, S. O.

    2013-01-01

    The multigroup diffusion equation is solved for the hexagonal-z geometry by dividing each hexagon into 6 triangles. In each triangle, the Fourier solution of the wave equation is approximated by 8 plane waves to describe the intra-nodal flux accurately. In the end an efficient Finite Difference like equation is obtained. The coefficients of this equation depend on the flux solution itself and they are updated once per power/void iteration. A numerical example demonstrates the high accuracy of the method. (authors)

  16. On nonlinear equations associated with Lie algebras of diffeomorphism groups of two-dimensional manifolds

    International Nuclear Information System (INIS)

    Kashaev, R.M.; Savel'ev, M.V.; Savel'eva, S.A.

    1990-01-01

    Nonlinear equations associated through a zero curvature type representation with Lie algebras S 0 Diff T 2 and of infinitesimal diffeomorphisms of (S 1 ) 2 , and also with a new infinite-dimensional Lie algebras. In particular, the general solution (in the sense of the Goursat problem) of the heavently equation which describes self-dual Einstein spaces with one rotational Killing symmetry is discussed, as well as the solutions to a generalized equation. The paper is supplied with Appendix containing the definition of the continuum graded Lie algebras and the general construction of the nonlinear equations associated with them. 11 refs

  17. Matrix-type multiple reciprocity boundary element method for solving three-dimensional two-group neutron diffusion equations

    International Nuclear Information System (INIS)

    Itagaki, Masafumi; Sahashi, Naoki.

    1997-01-01

    The multiple reciprocity boundary element method has been applied to three-dimensional two-group neutron diffusion problems. A matrix-type boundary integral equation has been derived to solve the first and the second group neutron diffusion equations simultaneously. The matrix-type fundamental solutions used here satisfy the equation which has a point source term and is adjoint to the neutron diffusion equations. A multiple reciprocity method has been employed to transform the matrix-type domain integral related to the fission source into an equivalent boundary one. The higher order fundamental solutions required for this formulation are composed of a series of two types of analytic functions. The eigenvalue itself is also calculated using only boundary integrals. Three-dimensional test calculations indicate that the present method provides stable and accurate solutions for criticality problems. (author)

  18. Modeling strategy of the source and sink terms in the two-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Ishii, Mamoru; Sun Xiaodong; Kim, Seungjin

    2003-01-01

    This paper presents the general strategy for modeling the source and sink terms in the two-group interfacial area transport equation. The two-group transport equation is applicable in bubbly, cap bubbly, slug, and churn-turbulent flow regimes to predict the change of the interfacial area concentration. This dynamic approach has an advantage of flow regime-independence over the conventional empirical correlation approach for the interfacial area concentration in the applications with the two-fluid model. In the two-group interfacial area transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 and cap/slug/churn-turbulent bubbles as Group 2. Thus, two sets of equations are used to describe the generation and destruction rates of bubble number density, void fraction, and interfacial area concentration for the two groups of bubbles due to bubble expansion and compression, coalescence and disintegration, and phase change. Based upon a detailed literature review of the research on the bubble interactions, five major bubble interaction mechanisms are identified for the gas-liquid two-phase flow of interest. A systematic integral approach, in which the significant variations of bubble volume and shape are accounted for, is suggested for the modeling of two-group bubble interactions. To obtain analytical forms for the various bubble interactions, a simplification is made for the bubble number density distribution function

  19. Renormalization group equation for interacting Thirring fields in dimensional regularization scheme

    International Nuclear Information System (INIS)

    Chowdhury, A.R.; Roy, T.; Kar, S.

    1976-01-01

    The dynamics of two interacting Thirring fields has been investigated within the dimensional regularization framework. The coupling constants are renormalized in the same way as observed in the non-perturbative approach of Ansel'm et al (Sov. Phys. - JETP 36: 608 (1959)). Functionsβsub(i)(g 1 , g 2 , g 3 ) and γsub(i)(g 1 , g 2 , g 3 ), pertaining to the stability and anomalous behaviour of the problem, are computed up to a third order in the coupling parameters. With the help of these, subsidiary non-linear differential equations of the renormalization group are studied in 2-epsilon dimension. The results show up some peculiar features of the theory: a zero of βsub(i)(g 1 , g 2 , g 3 ) corresponding to g 2 approximately α√epsilon, a characteristic of phi theory. The scale invariant limit is reached when g 2 → 0 (i.e. the two Thirring fields are decoupled) and also when g 1 = xg 2 = g 3 , where x is a root of 2x 3 + 2x 2 - 1 = 0. The branch-point zero makes the transition to the epsilon tends to 0 limit non-unique. The anomalous dimensions are obtained and seen to match that of the Dashen-Frishman model (Phys. Lett.; 46B 439 (1973)). The existence of a non-trivial scale invariant limit distinguishes the model from many simple field theories. (author)

  20. Coarse-grain parallel solution of few-group neutron diffusion equations

    International Nuclear Information System (INIS)

    Sarsour, H.N.; Turinsky, P.J.

    1991-01-01

    The authors present a parallel numerical algorithm for the solution of the finite difference representation of the few-group neutron diffusion equations. The targeted architectures are multiprocessor computers with shared memory like the Cray Y-MP and the IBM 3090/VF, where coarse granularity is important for minimizing overhead. Most of the work done in the past, which attempts to exploit concurrence, has concentrated on the inner iterations of the standard outer-inner iterative strategy. This produces very fine granularity. To coarsen granularity, the authors introduce parallelism at the nested outer-inner level. The problem's spatial domain was partitioned into contiguous subregions and assigned a processor to solve for each subregion independent of all other subregions, hence, processors; i.e., each subregion is treated as a reactor core with imposed boundary conditions. Since those boundary conditions on interior surfaces, referred to as internal boundary conditions (IBCs), are not known, a third iterative level, the recomposition iterations, is introduced to communicate results between subregions

  1. Landau quantized dynamics and spectra for group-VI dichalcogenides, including a model quantum wire

    Science.gov (United States)

    Horing, Norman J. M.

    2017-06-01

    This work is concerned with the derivation of the Green's function for Landau-quantized carriers in the Group-VI dichalcogenides. In the spatially homogeneous case, the Green's function is separated into a Peierls phase factor and a translationally invariant part which is determined in a closed form integral representation involving only elementary functions. The latter is expanded in an eigenfunction series of Laguerre polynomials. These results for the retarded Green's function are presented in both position and momentum representations, and yet another closed form representation is derived in circular coordinates in terms of the Bessel wave function of the second kind (not to be confused with the Bessel function). The case of a quantum wire is also addressed, representing the quantum wire in terms of a model one-dimensional δ (x ) -potential profile. This retarded Green's function for propagation directly along the wire is determined exactly in terms of the corresponding Green's function for the system without the δ (x ) -potential, and the Landau quantized eigenenergy dispersion relation is examined. The thermodynamic Green's function for the dichalcogenide carriers in a normal magnetic field is formulated here in terms of its spectral weight, and its solution is presented in a momentum/integral representation involving only elementary functions, which is subsequently expanded in Laguerre eigenfunctions and presented in both momentum and position representations.

  2. Landau quantized dynamics and spectra for group-VI dichalcogenides, including a model quantum wire

    Directory of Open Access Journals (Sweden)

    Norman J. M. Horing

    2017-06-01

    Full Text Available This work is concerned with the derivation of the Green’s function for Landau-quantized carriers in the Group-VI dichalcogenides. In the spatially homogeneous case, the Green’s function is separated into a Peierls phase factor and a translationally invariant part which is determined in a closed form integral representation involving only elementary functions. The latter is expanded in an eigenfunction series of Laguerre polynomials. These results for the retarded Green’s function are presented in both position and momentum representations, and yet another closed form representation is derived in circular coordinates in terms of the Bessel wave function of the second kind (not to be confused with the Bessel function. The case of a quantum wire is also addressed, representing the quantum wire in terms of a model one-dimensional δ(x-potential profile. This retarded Green’s function for propagation directly along the wire is determined exactly in terms of the corresponding Green’s function for the system without the δ(x-potential, and the Landau quantized eigenenergy dispersion relation is examined. The thermodynamic Green’s function for the dichalcogenide carriers in a normal magnetic field is formulated here in terms of its spectral weight, and its solution is presented in a momentum/integral representation involving only elementary functions, which is subsequently expanded in Laguerre eigenfunctions and presented in both momentum and position representations.

  3. 75 FR 76037 - HAVI Logistics, North America a Subsidiary of HAVI Group, LP Including On-Site Leased Workers of...

    Science.gov (United States)

    2010-12-07

    ... Logistics, North America a Subsidiary of HAVI Group, LP Including On-Site Leased Workers of Express Personnel Services and the La Salle Network, Bloomingdale, IL; Havi Logistics, North America, Lisle, IL..., applicable to workers of HAVI Logistics, North America, a subsidiary of HAVI Group, LP, including on-site...

  4. Solution of the within-group multidimensional discrete ordinates transport equations on massively parallel architectures

    Science.gov (United States)

    Zerr, Robert Joseph

    2011-12-01

    The integral transport matrix method (ITMM) has been used as the kernel of new parallel solution methods for the discrete ordinates approximation of the within-group neutron transport equation. The ITMM abandons the repetitive mesh sweeps of the traditional source iterations (SI) scheme in favor of constructing stored operators that account for the direct coupling factors among all the cells and between the cells and boundary surfaces. The main goals of this work were to develop the algorithms that construct these operators and employ them in the solution process, determine the most suitable way to parallelize the entire procedure, and evaluate the behavior and performance of the developed methods for increasing number of processes. This project compares the effectiveness of the ITMM with the SI scheme parallelized with the Koch-Baker-Alcouffe (KBA) method. The primary parallel solution method involves a decomposition of the domain into smaller spatial sub-domains, each with their own transport matrices, and coupled together via interface boundary angular fluxes. Each sub-domain has its own set of ITMM operators and represents an independent transport problem. Multiple iterative parallel solution methods have investigated, including parallel block Jacobi (PBJ), parallel red/black Gauss-Seidel (PGS), and parallel GMRES (PGMRES). The fastest observed parallel solution method, PGS, was used in a weak scaling comparison with the PARTISN code. Compared to the state-of-the-art SI-KBA with diffusion synthetic acceleration (DSA), this new method without acceleration/preconditioning is not competitive for any problem parameters considered. The best comparisons occur for problems that are difficult for SI DSA, namely highly scattering and optically thick. SI DSA execution time curves are generally steeper than the PGS ones. However, until further testing is performed it cannot be concluded that SI DSA does not outperform the ITMM with PGS even on several thousand or tens of

  5. Asymptotic behavior of solutions of diffusion-like partial differential equations invariant to a family of affine groups

    International Nuclear Information System (INIS)

    Dresner, L.

    1990-07-01

    This report deals with the asymptotic behavior of certain solutions of partial differential equations in one dependent and two independent variables (call them c, z, and t, respectively). The partial differential equations are invariant to one-parameter families of one-parameter affine groups of the form: c' = λ α c, t' = λ β t, z' = λz, where λ is the group parameter that labels the individual transformations and α and β are parameters that label groups of the family. The parameters α and β are connected by a linear relation, Mα + Nβ = L, where M, N, and L are numbers determined by the structure of the partial differential equation. It is shown that when L/M and N/M are L/M t -N/M for large z or small t. Some practical applications of this result are discussed. 8 refs

  6. Numeric algorithms for parallel processors computer architectures with applications to the few-groups neutron diffusion equations

    International Nuclear Information System (INIS)

    Zee, S.K.

    1987-01-01

    A numeric algorithm and an associated computer code were developed for the rapid solution of the finite-difference method representation of the few-group neutron-diffusion equations on parallel computers. Applications of the numeric algorithm on both SIMD (vector pipeline) and MIMD/SIMD (multi-CUP/vector pipeline) architectures were explored. The algorithm was successfully implemented in the two-group, 3-D neutron diffusion computer code named DIFPAR3D (DIFfusion PARallel 3-Dimension). Numerical-solution techniques used in the code include the Chebyshev polynomial acceleration technique in conjunction with the power method of outer iteration. For inner iterations, a parallel form of red-black (cyclic) line SOR with automated determination of group dependent relaxation factors and iteration numbers required to achieve specified inner iteration error tolerance is incorporated. The code employs a macroscopic depletion model with trace capability for selected fission products' transients and critical boron. In addition to this, moderator and fuel temperature feedback models are also incorporated into the DIFPAR3D code, for realistic simulation of power reactor cores. The physics models used were proven acceptable in separate benchmarking studies

  7. Group theoretical and Hamiltonian structures of integrable evolution equations in 1x1 and 2x1 dimensions

    International Nuclear Information System (INIS)

    Konopel'chenko, B.G.

    1983-01-01

    New results in investigation of the group-theoretical and hamiltonian structure of the integrable evolution equations in 1+1 and 2+1 dimensions are briefly reviewed. Main general results, such as the form of integrable equations, Baecklund transfomations, symmetry groups, are turned out to have the same form for different spectral problems. The used generalized AKNS-method (the Ablowitz Kaup, Newell and Segur method) permits to prove that all nonlinear evolution equations considered are hamiltonians. The general condition of effective application of the ACNS mehtod to the concrete spectral problem is the possibility to calculate a recursion operator explicitly. The embedded representation is shown to be a fundamental object connected with different aspects of the inverse scattering problem

  8. Expansion of the relativistic Fokker-Planck equation including non-linear terms and a non-Maxwellian background

    International Nuclear Information System (INIS)

    Shkarofsky, I.P.

    1997-01-01

    The relativistic Fokker-Planck collision term in Braams and Karney [Phys. Fluids B 1, 1355 (1989)] is expanded using Cartesian tensors (equivalent to associated Legendre spherical harmonics) retaining all non-linear terms and an arbitrary zeroth order distribution background. Expressions are given for collision terms between all harmonics and the background distribution in terms of the j and y functions in Braams and Karney. The results reduce to Braams and Karney for the first order harmonic term with a Maxwellian background and to those given by Shkarofsky [Can. J. Phys. 41, 1753 (1963)] in the non-relativistic limit. Expressions for the energy and momentum transfer associated with relativistic Coulomb collisions are given. The fast two dimensional Fokker-Planck solver in Shoucri and Shkarofsky [Comput. Phys. Commun. 82, 287 (1994)] has been extended to include the second order harmonic term. copyright 1997 American Institute of Physics

  9. 75 FR 38127 - Visteon Systems, LLC North Penn Plant Electronics Products Group Including On-Site Leased Workers...

    Science.gov (United States)

    2010-07-01

    ..., North Penn Plant, Electronics Products Group to be covered by this certification. The intent of the... North Penn Plant Electronics Products Group Including On-Site Leased Workers From Ryder Integrated... Certification Regarding Eligibility To Apply for Worker Adjustment Assistance and Alternative Trade Adjustment...

  10. 77 FR 36529 - Apple Group LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...

    Science.gov (United States)

    2012-06-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-4657-001] Apple Group LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Apple Group LLC...

  11. 75 FR 61747 - Discount Energy Group, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2010-10-06

    ... proceeding of Discount Energy Group, LLC's application for market-based rate authority, with an accompanying... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-2803-000] Discount Energy Group, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket...

  12. The Theory of Equations and the Birth of Modern Group Theory

    Indian Academy of Sciences (India)

    In school, we learn how to solve quadratic equations ao + alx + a2x2 = O. ... mathematician or how sophisticated the method, one can- not get a 'formula' in the .... nite set of n elements, SeX) is usually denoted by Sn and is called the symmetric ...

  13. On symmetry groups of a 2D nonlinear diffusion equation with source

    Indian Academy of Sciences (India)

    offers a powerful tool for simplifying the form of partial differential equations ... to its involutive form, then apply the classical method to the reduced PDE but with an ..... The author is grateful for the financial support offered by the Romanian ...

  14. Two-Dimensional Space-Time Dependent Multi-group Diffusion Equation with SLOR Method

    International Nuclear Information System (INIS)

    Yulianti, Y.; Su'ud, Z.; Waris, A.; Khotimah, S. N.

    2010-01-01

    The research of two-dimensional space-time diffusion equations with SLOR (Successive-Line Over Relaxation) has been done. SLOR method is chosen because this method is one of iterative methods that does not required to defined whole element matrix. The research is divided in two cases, homogeneous case and heterogeneous case. Homogeneous case has been inserted by step reactivity. Heterogeneous case has been inserted by step reactivity and ramp reactivity. In general, the results of simulations are agreement, even in some points there are differences.

  15. On the optimal systems of subalgebras for the equations of hydrodynamic stability analysis of smooth shear flows and their group-invariant solutions

    Science.gov (United States)

    Hau, Jan-Niklas; Oberlack, Martin; Chagelishvili, George

    2017-04-01

    We present a unifying solution framework for the linearized compressible equations for two-dimensional linearly sheared unbounded flows using the Lie symmetry analysis. The full set of symmetries that are admitted by the underlying system of equations is employed to systematically derive the one- and two-dimensional optimal systems of subalgebras, whose connected group reductions lead to three distinct invariant ansatz functions for the governing sets of partial differential equations (PDEs). The purpose of this analysis is threefold and explicitly we show that (i) there are three invariant solutions that stem from the optimal system. These include a general ansatz function with two free parameters, as well as the ansatz functions of the Kelvin mode and the modal approach. Specifically, the first approach unifies these well-known ansatz functions. By considering two limiting cases of the free parameters and related algebraic transformations, the general ansatz function is reduced to either of them. This fact also proves the existence of a link between the Kelvin mode and modal ansatz functions, as these appear to be the limiting cases of the general one. (ii) The Lie algebra associated with the Lie group admitted by the PDEs governing the compressible dynamics is a subalgebra associated with the group admitted by the equations governing the incompressible dynamics, which allows an additional (scaling) symmetry. Hence, any consequences drawn from the compressible case equally hold for the incompressible counterpart. (iii) In any of the systems of ordinary differential equations, derived by the three ansatz functions in the compressible case, the linearized potential vorticity is a conserved quantity that allows us to analyze vortex and wave mode perturbations separately.

  16. 76 FR 35025 - Nokia, Inc.; a Subsidiary of Nokia Group; Including On-Site Leased Workers From ATC Logistics and...

    Science.gov (United States)

    2011-06-15

    ... of Nokia Group; Including On-Site Leased Workers From ATC Logistics and Electronics and Adecco Fort... workers from ATC Logistics and Electronics, Fort Worth, Texas. The workers supplied planning and materials... ATC Logistics and Electronics, and Adecco, Fort Worth, Texas, who became totally or partially...

  17. 77 FR 47624 - Tall Bear Group, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Science.gov (United States)

    2012-08-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-2374-000] Tall Bear Group, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of Tall Bear...

  18. The Poincar group in a demisemidirect product with a non-associative algebra with representations that Include particles and quarks

    International Nuclear Information System (INIS)

    Schroeck, Franklin E.

    2008-01-01

    The quarks have always been a puzzle, as have the particles' mass and mass/spin relations as they seemed to have no coordinates in configuration space and/or momentum space. The solution to this seems to lie in the marriage of ordinary Poincare group representations with a non-associative algebra made through a demisemidirect product. Then, the work of G. Dixon applies; so, we may obtain all the relations between masses, mass and spin, and the attribution of position and momentum to quarks--this in spite of the old restriction that the Poincare group cannot be extended to a larger group by any means (including the (semi)direct product) to get even the mass relations. Finally, we will briefly discuss a possible connection between the phase space representations of the Poincare group and the phase space representations of the object we will obtain. This will take us into Leibniz (co)homology.

  19. Renormalization group equation and scaling solutions for f(R) gravity in exponential parametrization

    International Nuclear Information System (INIS)

    Ohta, Nobuyoshi; Percacci, Roberto; Vacca, Gian Paolo

    2016-01-01

    We employ the exponential parametrization of the metric and a ''physical'' gauge fixing procedure to write a functional flow equation for the gravitational effective average action in an f(R) truncation. The background metric is a four-sphere and the coarse-graining procedure contains three free parameters. We look for scaling solutions, i.e. non-Gaussian fixed points for the function f. For a discrete set of values of the parameters, we find simple global solutions of quadratic polynomial form. For other values, global solutions can be found numerically. Such solutions can be extended in certain regions of parameter space and have two relevant directions. We discuss the merits and the shortcomings of this procedure. (orig.)

  20. Methods for Equating Mental Tests.

    Science.gov (United States)

    1984-11-01

    1983) compared conventional and IRT methods for equating the Test of English as a Foreign Language ( TOEFL ) after chaining. Three conventional and...three IRT equating methods were examined in this study; two sections of TOEFL were each (separately) equated. The IRT methods included the following: (a...group. A separate base form was established for each of the six equating methods. Instead of equating the base-form TOEFL to itself, the last (eighth

  1. NESTLE: Few-group neutron diffusion equation solver utilizing the nodal expansion method for eigenvalue, adjoint, fixed-source steady-state and transient problems

    International Nuclear Information System (INIS)

    Turinsky, P.J.; Al-Chalabi, R.M.K.; Engrand, P.; Sarsour, H.N.; Faure, F.X.; Guo, W.

    1994-06-01

    NESTLE is a FORTRAN77 code that solves the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). NESTLE can solve the eigenvalue (criticality); eigenvalue adjoint; external fixed-source steady-state; or external fixed-source. or eigenvalue initiated transient problems. The code name NESTLE originates from the multi-problem solution capability, abbreviating Nodal Eigenvalue, Steady-state, Transient, Le core Evaluator. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two or four energy groups can be utilized, with all energy groups being thermal groups (i.e. upscatter exits) if desired. Core geometries modelled include Cartesian and Hexagonal. Three, two and one dimensional models can be utilized with various symmetries. The non-linear iterative strategy associated with the NEM method is employed. An advantage of the non-linear iterative strategy is that NSTLE can be utilized to solve either the nodal or Finite Difference Method representation of the few-group neutron diffusion equation

  2. Evaluating the Effects of Differences in Group Abilities on the Tucker and the Levine Observed-Score Methods for Common-Item Nonequivalent Groups Equating. ACT Research Report Series 2010-1

    Science.gov (United States)

    Chen, Hanwei; Cui, Zhongmin; Zhu, Rongchun; Gao, Xiaohong

    2010-01-01

    The most critical feature of a common-item nonequivalent groups equating design is that the average score difference between the new and old groups can be accurately decomposed into a group ability difference and a form difficulty difference. Two widely used observed-score linear equating methods, the Tucker and the Levine observed-score methods,…

  3. Application of a modified collocation method to the one dimensional, one group neutron transport equation

    International Nuclear Information System (INIS)

    Maschek, W.

    1976-07-01

    A modified collocation method is used for solving the one group criticality problem for a uniform multiplying slab. The critical parameters and the angular fluxes for a number of slabs are displayed and compared with previously published values. (orig.) [de

  4. Group-theoretical deduction of a dyadic Tamm-Dancoff equation by using a matrix-valued generator coordinate

    International Nuclear Information System (INIS)

    Nishiyama, Seiya; Morita, Hiroyuki; Ohnishi, Hiromasa

    2004-01-01

    The traditional Tamm-Dancoff (TD) method is one of the standard procedures for solving the Schroedinger equation of fermion many-body systems. However, it meets a serious difficulty when an instability occurs in the symmetry-adapted ground state of the independent particle approximation (IPA) and when the stable IPA ground state becomes of broken symmetry. If one uses the stable but broken symmetry IPA ground state as the starting approximation, TD wave functions also become of broken symmetry. On the contrary, if we start from a symmetry-adapted but unstable wave function, the convergence of the TD expansion becomes bad. Thus, the requirements of symmetry and rapid convergence are not in general compatible in the conventional TD expansion of the systems with strong collective correlations. Along the same line as Fukutome's, we give a group-theoretical deduction of a U(n) dyadic TD equation by using a matrix-valued generator coordinate

  5. Finite difference solution of the time dependent neutron group diffusion equations

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Henry, A.F.

    1975-08-01

    In this thesis two unrelated topics of reactor physics are examined: the prompt jump approximation and alternating direction checkerboard methods. In the prompt jump approximation it is assumed that the prompt and delayed neutrons in a nuclear reactor may be described mathematically as being instantaneously in equilibrium with each other. This approximation is applied to the spatially dependent neutron diffusion theory reactor kinetics model. Alternating direction checkerboard methods are a family of finite difference alternating direction methods which may be used to solve the multigroup, multidimension, time-dependent neutron diffusion equations. The reactor mesh grid is not swept line by line or point by point as in implicit or explicit alternating direction methods; instead, the reactor mesh grid may be thought of as a checkerboard in which all the ''red squares'' and '' black squares'' are treated successively. Two members of this family of methods, the ADC and NSADC methods, are at least as good as other alternating direction methods. It has been found that the accuracy of implicit and explicit alternating direction methods can be greatly improved by the application of an exponential transformation. This transformation is incompatible with checkerboard methods. Therefore, a new formulation of the exponential transformation has been developed which is compatible with checkerboard methods and at least as good as the former transformation for other alternating direction methods

  6. Strategies for improving memory: a randomized trial of memory groups for older people, including those with mild cognitive impairment.

    Science.gov (United States)

    Kinsella, Glynda J; Ames, David; Storey, Elsdon; Ong, Ben; Pike, Kerryn E; Saling, Michael M; Clare, Linda; Mullaly, Elizabeth; Rand, Elizabeth

    2016-01-01

    Governments are promoting the importance of maintaining cognitive health into older age to minimize risk of cognitive decline and dementia. Older people with amnestic mild cognitive impairment (aMCI) are particularly vulnerable to memory challenges in daily activities and are seeking ways to maintain independent living. To evaluate the effectiveness of memory groups for improving memory strategies and memory ability of older people, especially those with aMCI. 113 healthy older adults (HOA) and 106 adults with aMCI were randomized to a six-week memory group or a waitlist control condition. Outcome was evaluated through knowledge and use of memory strategies, memory ability (self-report and neuropsychological tests), and wellbeing. Assessments included a six-month follow-up. Using intention to treat analyses, there were intervention effects for HOA and aMCI groups in strategy knowledge (HOA: η2= 0.20; aMCI: η2= 0.06), strategy use (HOA: η2= 0.18; aMCI: η2= 0.08), and wellbeing (HOA: η2= 0.11; aMCI: η2= 0.05). There were also intervention effects in the HOA group, but not the aMCI group, in self-reported memory ability (η2= 0.06) and prospective memory tests (η2= 0.02). By six-month follow-up, gains were found on most HOA outcomes. In the aMCI group gains were found in strategy use, and by this stage, gains in prospective memory were also found. Memory groups can engage older people in techniques for maintaining cognitive health and improve memory performance, but more modest benefits are seen for older adults with aMCI.

  7. Numerical simulations of air–water cap-bubbly flows using two-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Wang, Xia; Sun, Xiaodong

    2014-01-01

    Highlights: • Two-group interfacial area transport equation was implemented into a three-field two-fluid model in Fluent. • Numerical model was developed for cap-bubbly flows in a narrow rectangular flow channel. • Numerical simulations were performed for cap-bubbly flows with uniform void inlets and with central peaked void inlets. • Code simulations showed a significant improve over the conventional two-fluid model. - Abstract: Knowledge of cap-bubbly flows is of great interest due to its role in understanding of the flow regime transition from bubbly to slug or churn-turbulent flows. One of the key characteristics of such flows is the existence of bubbles in different sizes and shapes associated with their distinctive dynamic natures. This important feature is, however, generally not well captured by many available two-phase flow modeling approaches. In this study, a modified two-fluid model, namely a three-field, two-fluid model, is proposed. In this model, bubbles are categorized into two groups, i.e., spherical/distorted bubbles as Group-1 while cap/churn-turbulent bubbles as Group-2. A two-group interfacial area transport equation (IATE) is implemented to describe dynamic changes of interfacial structure in each bubble group, resulting from intra- and inter-group interactions and phase changes due to evaporation and condensation. Attention is also paid to appropriate constitutive relations of the interfacial transfers due to mechanical and thermal non-equilibrium between the different fields. The proposed three-field, two-fluid model is used to predict the phase distributions of adiabatic air–water flows in a confined rectangular duct. Good agreement between the simulation results from the proposed model and relevant experimental data indicates that the proposed model is promising as an improved computational tool for two-phase cap-bubbly flow simulations in rectangular flow ducts

  8. Two-energy group solution of the diffusion equation by the multidimensional nodal polynomial expansion method

    International Nuclear Information System (INIS)

    Ribeiro, R.D.M.; Vellozo, S.O.; Botelho, D.A.

    1983-01-01

    The EPON computer code based in a Nodal Polynomial Expansion Method, wrote in Fortran IV, for steady-state, square geometry, one-dimensional or two-dimensional geometry and for one or two-energy group is presented. The neutron and power flux distributions for nuclear power plants were calculated, comparing with codes that use similar or different methodologies. The availability, economy and speed of the methodology is demonstrated. (E.G.) [pt

  9. Solution of the neutron diffusion equation at two groups of energy by method of triangular finite elements

    International Nuclear Information System (INIS)

    Correia Filho, A.

    1981-04-01

    The Neutron Diffusion Equation at two groups of energy is solved with the use of the Finite - Element Method with first order triangular elements. The program EFTDN (Triangular Finite Elements on Neutron Diffusion) was developed using the language FORTRAN IV. The discrete formulation of the Diffusion Equation is obtained with the application of the Galerkin's Method. In order to solve the eigenvalue - problem, the Method of the Power is applied and, with the purpose of the convergence of the results, Chebshev's polynomial expressions are applied. On the solution of the systems of equations Gauss' Method is applied, divided in two different parts: triangularization of the matrix of coeficients and retrosubstitution taking in account the sparsity of the system. Several test - problems are solved, among then two P.W.R. type reactors, the ZION-1 with 1300 MWe and the 2D-IAEA - Benchmark. Comparision of results with standard solutions show the validity of application of the EFM and precision of the results. (Author) [pt

  10. Numerical investigation of renormalization group equations in a model of vector field advected by anisotropic stochastic environment

    International Nuclear Information System (INIS)

    Busa, J.; Ajryan, Eh.A.; Jurcisinova, E.; Jurcisin, M.; Remecky, R.

    2009-01-01

    Using the field-theoretic renormalization group, the influence of strong uniaxial small-scale anisotropy on the stability of inertial-range scaling regimes in a model of passive transverse vector field advected by an incompressible turbulent flow is investigated. The velocity field is taken to have a Gaussian statistics with zero mean and defined noise with finite time correlations. It is shown that the inertial-range scaling regimes are given by the existence of infrared stable fixed points of the corresponding renormalization group equations with some angle integrals. The analysis of integrals is given. The problem is solved numerically and the borderline spatial dimension d e (1,3] below which the stability of the scaling regime is not present is found as a function of anisotropy parameters

  11. Renormalization group equations and the Lifshitz point in noncommutative Landau-Ginsburg theory

    International Nuclear Information System (INIS)

    Chen, G.-H.; Wu, Y.-S.

    2002-01-01

    A one-loop renormalization group (RG) analysis is performed for noncommutative Landau-Ginsburg theory in an arbitrary dimension. We adopt a modern version of the Wilsonian RG approach, in which a shell integration in momentum space bypasses the potential IR singularities due to UV-IR mixing. The momentum-dependent trigonometric factors in interaction vertices, characteristic of noncommutative geometry, are marginal under RG transformations, and their marginality is preserved at one loop. A negative Θ-dependent anomalous dimension is discovered as a novel effect of the UV-IR mixing. We also found a noncommutative Wilson-Fisher (NCWF) fixed point in less than four dimensions. At large noncommutativity, a momentum space instability is induced by quantum fluctuations, and a consequential first-order phase transition is identified together with a Lifshitz point in the phase diagram. In the vicinity of the Lifshitz point, we introduce two critical exponents ν m and β k , whose values are determined to be 1/4 and 1/2, respectively, at mean-field level

  12. Development of nonperturbative nonlinear optics models including effects of high order nonlinearities and of free electron plasma: Maxwell–Schrödinger equations coupled with evolution equations for polarization effects, and the SFA-like nonlinear optics model

    International Nuclear Information System (INIS)

    Lorin, E; Bandrauk, A D; Lytova, M; Memarian, A

    2015-01-01

    This paper is dedicated to the exploration of non-conventional nonlinear optics models for intense and short electromagnetic fields propagating in a gas. When an intense field interacts with a gas, usual nonlinear optics models, such as cubic nonlinear Maxwell, wave and Schrödinger equations, derived by perturbation theory may become inaccurate or even irrelevant. As a consequence, and to include in particular the effect of free electrons generated by laser–molecule interaction, several heuristic models, such as UPPE, HOKE models, etc, coupled with Drude-like models [1, 2], were derived. The goal of this paper is to present alternative approaches based on non-heuristic principles. This work is in particular motivated by the on-going debate in the filamentation community, about the effect of high order nonlinearities versus plasma effects due to free electrons, in pulse defocusing occurring in laser filaments [3–9]. The motivation of our work goes beyond filamentation modeling, and is more generally related to the interaction of any external intense and (short) pulse with a gas. In this paper, two different strategies are developed. The first one is based on the derivation of an evolution equation on the polarization, in order to determine the response of the medium (polarization) subject to a short and intense electromagnetic field. Then, we derive a combined semi-heuristic model, based on Lewenstein’s strong field approximation model and the usual perturbative modeling in nonlinear optics. The proposed model allows for inclusion of high order nonlinearities as well as free electron plasma effects. (paper)

  13. A quantum mechanical alternative to the Arrhenius equation in the interpretation of proton spin-lattice relaxation data for the methyl groups in solids.

    Science.gov (United States)

    Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir

    2015-11-21

    The theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum effects are at stake, the relaxation behaviour of the nuclear spins in methyl groups is controlled by thermally activated classical jumps of the methyl group between its three orientations. The temperature effects on the relaxation rates can be modelled by Arrhenius behaviour of the correlation time of the jump process. The entire variety of relaxation effects in protonated methyl groups have recently been given a consistent quantum mechanical explanation not invoking the jump model regardless of the temperature range. It exploits the damped quantum rotation (DQR) theory originally developed to describe NMR line shape effects for hindered methyl groups. In the DQR model, the incoherent dynamics of the methyl group include two quantum rate (i.e., coherence-damping) processes. For proton relaxation only one of these processes is relevant. In this paper, temperature-dependent proton spin-lattice relaxation data for the methyl groups in polycrystalline methyltriphenyl silane and methyltriphenyl germanium, both deuterated in aromatic positions, are reported and interpreted in terms of the DQR model. A comparison with the conventional approach exploiting the phenomenological Arrhenius equation is made. The present observations provide further indications that incoherent motions of molecular moieties in the condensed phase can retain quantum character over much broader temperature range than is commonly thought.

  14. Quantum mechanical alternative to Arrhenius equation in the interpretation of proton spin-lattice relaxation data for the methyl groups in solids

    KAUST Repository

    Bernatowicz, Piotr

    2015-10-01

    Theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum effects are at stake, the relaxation behaviour of the nuclear spins in methyl groups is controlled by thermally activated classical jumps of the methyl group between its three orientations. The temperature effects on the relaxation rates can be modelled by Arrhenius behaviour of the correlation time of the jump process. The entire variety of relaxation effects in protonated methyl groups has recently been given a consistently quantum mechanical explanation not invoking the jump model regardless of the temperature range. It exploits the damped quantum rotation (DQR) theory originally developed to describe NMR line shape effects for hindered methyl groups. In the DQR model, the incoherent dynamics of the methyl group include two quantum rate, i.e., coherence-damping processes. For proton relaxation only one of these processes is relevant. In this paper, temperature-dependent proton spin-lattice relaxation data for the methyl groups in polycrystalline methyltriphenyl silane and methyltriphenyl germanium, both deuterated in aromatic positions, are reported and interpreted in terms of the DQR model. A comparison with the conventional approach exploiting the phenomenological Arrhenius equation is made. The present observations provide further indications that incoherent motions of molecular moieties in condensed phase can retain quantum character over much broad temperature range than is commonly thought.

  15. Development and validation of bubble breakup and coalescence constitutive models for the one-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Pellacani, Filippo

    2012-01-01

    A local mechanistic model for bubble coalescence and breakup for the one-group interfacial area transport equation has been developed, in agreement and within the limits of the current understanding, based on an exhaustive survey of the theory and of the state of the art models for bubble dynamics simulation. The new model has been tested using the commercial 3D CFD code ANSYS CFX. Upward adiabatic turbulent air-water bubbly flow has been simulated and the results have been compared with the data obtained in the experimental facility PUMA. The range of the experimental data available spans between 0.5 to 2 m/s liquid velocity and 5 to 15 % volume fraction. For the implementation of the models, both the monodispersed and the interfacial area transport equation approaches have been used. The first one to perform a detailed analysis of the forces and models to reproduce the dynamic of the dispersed phase adequately and to be used in the next phases of the work. Also two different bubble induced turbulence models have been tested to consider the effect of the presence of the gas phase on the turbulence of the liquid phase. The interfacial area transport equation has been successfully implemented into the CFD code and the state of the art breakup and coalescence models have been used for simulation. The limitations of the actual theory have been shown and a new bubble interactions model has been developed. The simulations showed that a considerable improvement is achieved if compared to the state of the art closure models. Limits in the implementation derive from the actual understanding and formulation of the bubbly dynamics. A strong dependency on the interfacial non-drag force models and coefficients have been shown. More experimental and theory work needs to be done in this field to increase the prediction capability of the simulation tools regarding the distribution of the phases along the pipe radius.

  16. A parallel algorithm for solving the multidimensional within-group discrete ordinates equations with spatial domain decomposition - 104

    International Nuclear Information System (INIS)

    Zerr, R.J.; Azmy, Y.Y.

    2010-01-01

    A spatial domain decomposition with a parallel block Jacobi solution algorithm has been developed based on the integral transport matrix formulation of the discrete ordinates approximation for solving the within-group transport equation. The new methodology abandons the typical source iteration scheme and solves directly for the fully converged scalar flux. Four matrix operators are constructed based upon the integral form of the discrete ordinates equations. A single differential mesh sweep is performed to construct these operators. The method is parallelized by decomposing the problem domain into several smaller sub-domains, each treated as an independent problem. The scalar flux of each sub-domain is solved exactly given incoming angular flux boundary conditions. Sub-domain boundary conditions are updated iteratively, and convergence is achieved when the scalar flux error in all cells meets a pre-specified convergence criterion. The method has been implemented in a computer code that was then employed for strong scaling studies of the algorithm's parallel performance via a fixed-size problem in tests ranging from one domain up to one cell per sub-domain. Results indicate that the best parallel performance compared to source iterations occurs for optically thick, highly scattering problems, the variety that is most difficult for the traditional SI scheme to solve. Moreover, the minimum execution time occurs when each sub-domain contains a total of four cells. (authors)

  17. Loop-driven graphical unitary group approach to the electron correlation problem, including configuration interaction energy gradients

    International Nuclear Information System (INIS)

    Brooks, B.R.

    1979-09-01

    The Graphical Unitary Group Approach (GUGA) was cast into an extraordinarily powerful form by restructuring the Hamiltonian in terms of loop types. This restructuring allows the adoption of the loop-driven formulation which illuminates vast numbers of previously unappreciated relationships between otherwise distinct Hamiltonian matrix elements. The theoretical/methodological contributions made here include the development of the loop-driven formula generation algorithm, a solution of the upper walk problem used to develop a loop breakdown algorithm, the restriction of configuration space employed to the multireference interacting space, and the restructuring of the Hamiltonian in terms of loop types. Several other developments are presented and discussed. Among these developments are the use of new segment coefficients, improvements in the loop-driven algorithm, implicit generation of loops wholly within the external space adapted within the framework of the loop-driven methodology, and comparisons of the diagonalization tape method to the direct method. It is also shown how it is possible to implement the GUGA method without the time-consuming full (m 5 ) four-index transformation. A particularly promising new direction presented here involves the use of the GUGA methodology to obtain one-electron and two-electron density matrices. Once these are known, analytical gradients (first derivatives) of the CI potential energy are easily obtained. Several test calculations are examined in detail to illustrate the unique features of the method. Also included is a calculation on the asymmetric 2 1 A' state of SO 2 with 23,613 configurations to demonstrate methods for the diagonalization of very large matrices on a minicomputer. 6 figures, 6 tables

  18. 76 FR 13667 - Chrysler Group LLC; Formerly Known as Chrysler LLC; Kenosha Engine Plant; Including On-Site...

    Science.gov (United States)

    2011-03-14

    ..., Prodriver Leasing Systems, Inc., Teksystems, Inc., Arcadis and the PIC Group, Kenosha, WI; Amended.... The workers at the subject firm were engaged in employment related to the production of V-6 automobile... Leasing Systems, Inc., Teksystems, Inc., Arcadis, and The PIC Group, Kenosha, Wisconsin, who became...

  19. A new equation of state for core-collapse supernovae based on realistic nuclear forces and including a full nuclear ensemble

    International Nuclear Information System (INIS)

    Furusawa, S; Togashi, H; Nagakura, H; Sumiyoshi, K; Yamada, S; Suzuki, H; Takano, M

    2017-01-01

    We have constructed a nuclear equation of state (EOS) that includes a full nuclear ensemble for use in core-collapse supernova simulations. It is based on the EOS for uniform nuclear matter that two of the authors derived recently, applying a variational method to realistic two- and three-body nuclear forces. We have extended the liquid drop model of heavy nuclei, utilizing the mass formula that accounts for the dependences of bulk, surface, Coulomb and shell energies on density and/or temperature. As for light nuclei, we employ a quantum-theoretical mass evaluation, which incorporates the Pauli- and self-energy shifts. In addition to realistic nuclear forces, the inclusion of in-medium effects on the full ensemble of nuclei makes the new EOS one of the most realistic EOSs, which covers a wide range of density, temperature and proton fraction that supernova simulations normally encounter. We make comparisons with the FYSS EOS, which is based on the same formulation for the nuclear ensemble but adopts the relativistic mean field theory with the TM1 parameter set for uniform nuclear matter. The new EOS is softer than the FYSS EOS around and above nuclear saturation densities. We find that neutron-rich nuclei with small mass numbers are more abundant in the new EOS than in the FYSS EOS because of the larger saturation densities and smaller symmetry energy of nuclei in the former. We apply the two EOSs to 1D supernova simulations and find that the new EOS gives lower electron fractions and higher temperatures in the collapse phase owing to the smaller symmetry energy. As a result, the inner core has smaller masses for the new EOS. It is more compact, on the other hand, due to the softness of the new EOS and bounces at higher densities. It turns out that the shock wave generated by core bounce is a bit stronger initially in the simulation with the new EOS. The ensuing outward propagations of the shock wave in the outer core are very similar in the two simulations, which

  20. Construction and analysis of a functional renormalization-group equation for gravitation in the Einstein-Cartan approach

    International Nuclear Information System (INIS)

    Daum, Jan-Eric

    2011-01-01

    Whereas the Standard Model of elementary particle physics represents a consistent, renormalizable quantum field theory of three of the four known interactions, the quantization of gravity still remains an unsolved problem. However, in recent years evidence for the asymptotic safety of gravity was provided. That means that also for gravity a quantum field theory can be constructed that is renormalizable in a generalized way which does not explicitly refer to perturbation theory. In addition, this approach, that is based on the Wilsonian renormalization group, predicts the correct microscopic action of the theory. In the classical framework, metric gravity is equivalent to the Einstein-Cartan theory on the level of the vacuum field equations. The latter uses the tetrad e and the spin connection ω as fundamental variables. However, this theory possesses more degrees of freedom, a larger gauge group, and its associated action is of first order. All these features make a treatment analogue to metric gravity much more difficult. In this thesis a three-dimensional truncation of the form of a generalized Hilbert-Palatini action is analyzed. Besides the running of Newton's constant G k and the cosmological constant Λ k , it also captures the renormalization of the Immirzi parameter γ k . In spite of the mentioned difficulties, the spectrum of the free Hilbert-Palatini propagator can be computed analytically. On its basis, a proper time-like flow equation is constructed. Furthermore, appropriate gauge conditions are chosen and analyzed in detail. This demands a covariantization of the gauge transformations. The resulting flow is analyzed for different regularization schemes and gauge parameters. The results provide convincing evidence for asymptotic safety within the (e,ω) approach as well and therefore for the possible existence of a mathematically consistent and predictive fundamental quantum theory of gravity. In particular, one finds a pair of non-Gaussian fixed

  1. Uncertainty analysis of an interfacial area reconstruction algorithm and its application to two group interfacial area transport equation validation

    International Nuclear Information System (INIS)

    Dave, A.J.; Manera, A.; Beyer, M.; Lucas, D.; Prasser, H.-M.

    2016-01-01

    Wire mesh sensors (WMS) are state of the art devices that allow high resolution (in space and time) measurement of 2D void fraction distribution over a wide range of two-phase flow regimes, from bubbly to annular. Data using WMS have been recorded at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Lucas et al., 2010; Beyer et al., 2008; Prasser et al., 2003) for a wide combination of superficial gas and liquid velocities, providing an excellent database for advances in two-phase flow modeling. In two-phase flow, the interfacial area plays an integral role in coupling the mass, momentum and energy transport equations of the liquid and gas phase. While current models used in best-estimate thermal-hydraulic codes (e.g. RELAP5, TRACE, TRACG, etc.) are still based on algebraic correlations for the estimation of the interfacial area in different flow regimes, interfacial area transport equations (IATE) have been proposed to predict the dynamic propagation in space and time of interfacial area (Ishii and Hibiki, 2010). IATE models are still under development and the HZDR WMS experimental data provide an excellent basis for the validation and further advance of these models. The current paper is focused on the uncertainty analysis of algorithms used to reconstruct interfacial area densities from the void-fraction voxel data measured using WMS and their application towards validation efforts of two-group IATE models. In previous research efforts, a surface triangularization algorithm has been developed in order to estimate the surface area of individual bubbles recorded with the WMS, and estimate the interfacial area in the given flow condition. In the present paper, synthetically generated bubbles are used to assess the algorithm’s accuracy. As the interfacial area of the synthetic bubbles are defined by user inputs, the error introduced by the algorithm can be quantitatively obtained. The accuracy of interfacial area measurements is characterized for different bubbles

  2. Uncertainty analysis of an interfacial area reconstruction algorithm and its application to two group interfacial area transport equation validation

    Energy Technology Data Exchange (ETDEWEB)

    Dave, A.J., E-mail: akshayjd@umich.edu [Department of Nuclear Engineering and Rad. Sciences, University of Michigan, Ann Arbor, MI 48105 (United States); Manera, A. [Department of Nuclear Engineering and Rad. Sciences, University of Michigan, Ann Arbor, MI 48105 (United States); Beyer, M.; Lucas, D. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, 01314 Dresden (Germany); Prasser, H.-M. [Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich (Switzerland)

    2016-12-15

    Wire mesh sensors (WMS) are state of the art devices that allow high resolution (in space and time) measurement of 2D void fraction distribution over a wide range of two-phase flow regimes, from bubbly to annular. Data using WMS have been recorded at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Lucas et al., 2010; Beyer et al., 2008; Prasser et al., 2003) for a wide combination of superficial gas and liquid velocities, providing an excellent database for advances in two-phase flow modeling. In two-phase flow, the interfacial area plays an integral role in coupling the mass, momentum and energy transport equations of the liquid and gas phase. While current models used in best-estimate thermal-hydraulic codes (e.g. RELAP5, TRACE, TRACG, etc.) are still based on algebraic correlations for the estimation of the interfacial area in different flow regimes, interfacial area transport equations (IATE) have been proposed to predict the dynamic propagation in space and time of interfacial area (Ishii and Hibiki, 2010). IATE models are still under development and the HZDR WMS experimental data provide an excellent basis for the validation and further advance of these models. The current paper is focused on the uncertainty analysis of algorithms used to reconstruct interfacial area densities from the void-fraction voxel data measured using WMS and their application towards validation efforts of two-group IATE models. In previous research efforts, a surface triangularization algorithm has been developed in order to estimate the surface area of individual bubbles recorded with the WMS, and estimate the interfacial area in the given flow condition. In the present paper, synthetically generated bubbles are used to assess the algorithm’s accuracy. As the interfacial area of the synthetic bubbles are defined by user inputs, the error introduced by the algorithm can be quantitatively obtained. The accuracy of interfacial area measurements is characterized for different bubbles

  3. Material equations for rock salt under mechanical and thermal load including treatment of boundary value problems by the finite element method

    International Nuclear Information System (INIS)

    Olschewski, J.; Stein, E.; Wagner, W.; Wetjen, D.

    1981-01-01

    This paper is a first step in the development of thermodynamically consistent material equations for inelastic materials, such as polycrystalline rock salt. In this context it is of particular importance to reduce the number and the structure of the internal variables, in order to allow for a fit with available experimental data. As an example this is demonstrated in detail in the case of the so-called dislocation model. As physical non-linearities and in addition also geometrical non-linearities lead to an inhomogeneous deformation - and stress state even in the case of simple samples, boundary value problems have to be studied, in order to test the material equations. For this purpose the finite element method has been used. (orig./HP) [de

  4. 76 FR 16450 - Management Resources Group, Inc., Including Workers in the States of Georgia and New York...

    Science.gov (United States)

    2011-03-23

    ...) there has been a shift by the workers' firm to a foreign country in the production of articles or supply...) there has been an acquisition from a foreign country by the workers' firm of articles/services that are.... Further, the Department determined that workers in the Inventory Services Group, which performs activities...

  5. A study of fish and shellfish consumers near Sellafield: assessment of the critical groups including consideration of children

    International Nuclear Information System (INIS)

    Leonard, D.R.P.; Hunt, G.J.

    1985-01-01

    A survey of people's consumption rates in 1981 and 1982, of fish and shellfish caught near the British Nuclear Fuels plc (BNFL) Sellafield site is described. Particular emphasis has been given to mollusc eaters and consumption rates of children because of the potentially higher radiation doses they may receive. Appropriate critical groups have been selected for dose assessment purposes using principles recommended by the International Commission on Radiological Protection (ICRP). Methods for consideration of children in critical groups are suggested and a comparison of these methods using the present data shows similar results. Combination of seafood consumption pathways is also considered, and it is shown that a simple additive approach is not excessively conservative. (author)

  6. 76 FR 79221 - Android Industries Belvidere, LLC, Including On-Site Leased Workers From QPS Employment Group...

    Science.gov (United States)

    2011-12-21

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-73,072] Android Industries..., 2010, applicable to workers of Android Industries Belvidere, LLC, including on-site leased workers from... Belvidere, Illinois location of Android Industries Belvidere, LLC. The Department has determined that these...

  7. Implementation of a one-group interfacial area transport equation in a CFD code for the simulation of upward adiabatic bubbly flow

    International Nuclear Information System (INIS)

    Pellacani, F.; Macian, R.; Chiva, S.; Pena, C.

    2011-01-01

    In this paper upward, isothermal and turbulent bubbly flow in tubes is numerically modeled by using ANSYS CFX 12.1 with the aim of creating a basis for the reliable simulation of the flow along a vertical channel in a nuclear reactor as long term goal. Two approaches based on the mono-dispersed model and on the one-group Interfacial Area Transport Equation (IATE) model are used in order to maintain the computational effort as low as possible. This work represents the necessary step to implement a two-group interfacial area transport equation that will be able to dynamically represent the changes in interfacial structure in the transition region from bubbly to slug flow. The drag coefficient is calculated using the Grace model and the interfacial non-drag forces are also included. The Antal model is used for the calculation of the wall lubrication force coefficient. The lift force coefficient is obtained from the Tomiyama model. The turbulent dispersion force is taken into account and is modeled using the FAD (Favre averaged drag) approach, while the turbulence transfer is simulated with the Sato's model. The liquid velocity is in the range between 0.5 and 2 m/s and the average void fraction varies between 5 and 15%.The source and sink terms for break-up and coalescence needed for the calculation of the implemented Interfacial Area Density are those proposed by Yao and Morel. The model has been checked using experimental results by Mendez. Radial profile distributions of void fraction, interfacial area density and bubble mean diameter are shown at the axial position equivalent to z/D=56. The results obtained by the simulations have a good agreement with the experimental data but show also the need of a better study of the coalescence and breakup phenomena to develop more accurate interaction models. (author)

  8. Multi trace element analysis of dry biological materials by neutron activation analysis including a chemical group separation

    International Nuclear Information System (INIS)

    Weers, C.A.

    1980-07-01

    Multi-element analysis of dry biological material by neutron activation analysis has to include radiochemical separation. The evaporation process is described in terms of the half-volume. The pretreatment of the samples and the development of the destruction-evaporation apparatus are described. The successive adsorption steps with active charcoal, Al 2 O 3 and coprecipitation with Fe(OH) 3 are described. Results obtained for standard reference materials are summarized. (G.T.H.)

  9. Multi trace element analysis of dry biological materials by neutron activation analysis including a chemical group separation

    International Nuclear Information System (INIS)

    Weers, C.A.

    1980-01-01

    The principles of activation analysis and the practical aspects of neutron activation analysis are outlined. The limits which are set to accuracy and precision are defined. The description of the evaporation process is summarised in terms of the half-volume. This quantity is then used to define the resolving power. The formulation is checked by radiotracer experiments. Dried animal blood is used as the testing material. The pretreatment of the samples and (the development of) the destruction-evaporation apparatus is described. Four successive devices were built and tested. The development of the successive adsorption steps with active charcoal, Al 2 O 3 and coprecipitation with Fe(OH) 3 is presented. Seven groups of about 25 elements in total can be determined this way. The results obtained for standard reference materials are summarized and compared with literature data. (Auth.)

  10. Group-Level EEG-Processing Pipeline for Flexible Single Trial-Based Analyses Including Linear Mixed Models.

    Science.gov (United States)

    Frömer, Romy; Maier, Martin; Abdel Rahman, Rasha

    2018-01-01

    Here we present an application of an EEG processing pipeline customizing EEGLAB and FieldTrip functions, specifically optimized to flexibly analyze EEG data based on single trial information. The key component of our approach is to create a comprehensive 3-D EEG data structure including all trials and all participants maintaining the original order of recording. This allows straightforward access to subsets of the data based on any information available in a behavioral data structure matched with the EEG data (experimental conditions, but also performance indicators, such accuracy or RTs of single trials). In the present study we exploit this structure to compute linear mixed models (LMMs, using lmer in R) including random intercepts and slopes for items. This information can easily be read out from the matched behavioral data, whereas it might not be accessible in traditional ERP approaches without substantial effort. We further provide easily adaptable scripts for performing cluster-based permutation tests (as implemented in FieldTrip), as a more robust alternative to traditional omnibus ANOVAs. Our approach is particularly advantageous for data with parametric within-subject covariates (e.g., performance) and/or multiple complex stimuli (such as words, faces or objects) that vary in features affecting cognitive processes and ERPs (such as word frequency, salience or familiarity), which are sometimes hard to control experimentally or might themselves constitute variables of interest. The present dataset was recorded from 40 participants who performed a visual search task on previously unfamiliar objects, presented either visually intact or blurred. MATLAB as well as R scripts are provided that can be adapted to different datasets.

  11. pH-dependent release of trace elements including platinum group elements (PGEs) from gasoline and diesel catalysts

    Science.gov (United States)

    Sucha, Veronika; Mihaljevic, Martin; Ettler, Vojtech; Strnad, Ladislav

    2014-05-01

    The release of trace metals and platinum group elements (PGEs) from automobile exhaust catalysts represents a remarkable source of higly dispersed environmental contamination. Especially, PGEs have shown increasing research interest due to their possible bioaccessibility. In our research, we focused on leaching behaviour of trace metals from gasoline and diesel automobile catalysts. While catalysts for gasoline engines contain a mixture of Pt-Pd-Rh or Pd-Rh, catalysts for diesel engines are composed only of Pt. We used dust from two crushed gasoline and two crushed diesel catalysts (new and aged). The dust of gasoline catalysts contains significant concentrations of Pt (700 mg.kg-1), Pd (11 000 mg.kg-1) and Rh (700 mg.kg-1). And the dust of diesel catalysts are composed of Pt (3 900 mg.kg-1) and they contains negligible amounts of Pd dan Rh (leaching of trace metals from dust we used pH-stat leaching test according to the European standard CEN/TS 14997. The concentrations of cations: PGEs (Pt, Pd a Rh), K, Na, Ca, Mg, Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, La and Ce were determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS), and anions: F-, Cl-, SO42- and NO3- by high-performance liquid chromatography. Although the dusts from catalysts were relatively stable to acid/base influence, the leaching of trace metals from catalysts showed a dependence on pH. Generally, the highest concentrations were released under acidic conditions. The leaching of PGEs was higher for Pt in diesel catalysts and for Pd and Rh in gasoline catalysts. The highest concentrations of Zn and Pb were observed in old catalysts. The rare earth metals were released more from gasoline catalysts. Catalysts particles represent health risk especially with respect to their PGEs contents.

  12. Fast mode decision algorithm in MPEG-2 to H.264/AVC transcoding including group of picture structure conversion

    Science.gov (United States)

    Lee, Kangjun; Jeon, Gwanggil; Jeong, Jechang

    2009-05-01

    The H.264/AVC baseline profile is used in many applications, including digital multimedia broadcasting, Internet protocol television, and storage devices, while the MPEG-2 main profile is widely used in applications, such as high-definition television and digital versatile disks. The MPEG-2 main profile supports B pictures for bidirectional motion prediction. Therefore, transcoding the MPEG-2 main profile to the H.264/AVC baseline is necessary for universal multimedia access. In the cascaded pixel domain transcoder architecture, the calculation of the rate distortion cost as part of the mode decision process in the H.264/AVC encoder requires extremely complex computations. To reduce the complexity inherent in the implementation of a real-time transcoder, we propose a fast mode decision algorithm based on complexity information from the reference region that is used for motion compensation. In this study, an adaptive mode decision process was used based on the modes assigned to the reference regions. Simulation results indicated that a significant reduction in complexity was achieved without significant degradation of video quality.

  13. Integral equations

    CERN Document Server

    Moiseiwitsch, B L

    2005-01-01

    Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco

  14. Renormalization group in the theory of fully developed turbulence. Problem of the infrared relevant corrections to the Navier-Stokes equation

    International Nuclear Information System (INIS)

    Antonov, N.V.; Borisenok, S.V.; Girina, V.I.

    1996-01-01

    Within the framework of the renormalization group approach to the theory of fully developed turbulence we consider the problem of possible IR relevant corrections to the Navier-Stokes equation. We formulate an exact criterion of the actual IR relevance of the corrections. In accordance with this criterion we verify the IR relevance for certain classes of composite operators. 17 refs., 2 tabs

  15. CTD: a computer program to solve the three dimensional multi-group diffusion equation in X, Y, Z, and triangular Z geometries

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, J K

    1973-05-01

    CTD is a computer program written in Fortran 4 to solve the multi-group diffusion theory equations in X, Y, Z and triangular Z geometries. A power print- out neutron balance and breeding gain are also produced. 4 references. (auth)

  16. A Comparison of Four Linear Equating Methods for the Common-Item Nonequivalent Groups Design Using Simulation Methods. ACT Research Report Series, 2013 (2)

    Science.gov (United States)

    Topczewski, Anna; Cui, Zhongmin; Woodruff, David; Chen, Hanwei; Fang, Yu

    2013-01-01

    This paper investigates four methods of linear equating under the common item nonequivalent groups design. Three of the methods are well known: Tucker, Angoff-Levine, and Congeneric-Levine. A fourth method is presented as a variant of the Congeneric-Levine method. Using simulation data generated from the three-parameter logistic IRT model we…

  17. The K-Z Equation and the Quantum-Group Difference Equation in Quantum Self-dual Yang-Mills Theory

    OpenAIRE

    Chau, Ling-Lie; Yamanaka, Itaru

    1995-01-01

    From the time-independent current $\\tcj(\\bar y,\\bar k)$ in the quantum self-dual Yang-Mills (SDYM) theory, we construct new group-valued quantum fields $\\tilde U(\\bar y,\\bar k)$ and $\\bar U^{-1}(\\bar y,\\bar k)$ which satisfy a set of exchange algebras such that fields of $\\tcj(\\bar y,\\bar k)\\sim\\tilde U(\\bar y,\\bar k)~\\partial\\bar y~\\tilde U^{-1}(\\bar y,\\bar k)$ satisfy the original time-independent current algebras. For the correlation functions of the products of the $\\tilde U(\\bar y,\\bar k...

  18. Structural Equation Modeling (SEM) for Satisfaction and Dissatisfaction Ratings; Multiple Group Invariance Analysis across Scales with Different Response Format

    Science.gov (United States)

    Mazaheri, Mehrdad; Theuns, Peter

    2009-01-01

    The current study evaluates three hypothesized models on subjective well-being, comprising life domain ratings (LDR), overall satisfaction with life (OSWL), and overall dissatisfaction with life (ODWL), using structural equation modeling (SEM). A sample of 1,310 volunteering students, randomly assigned to six conditions, rated their overall life…

  19. Solution of the two dimensional diffusion and transport equations in a rectangular lattice with an elliptical fuel element using Fourier transform methods: One and two group cases

    International Nuclear Information System (INIS)

    Williams, M.M.R.; Hall, S.K.; Eaton, M.D.

    2014-01-01

    Highlights: • A rectangular reactor cell with an elliptical fuel element. • Solution of transport and diffusion equations by Fourier expansion. • Numerical examples showing convergence. • Two group cell problems. - Abstract: A method for solving the diffusion and transport equations in a rectangular lattice cell with an elliptical fuel element has been developed using a Fourier expansion of the neutron flux. The method is applied to a one group model with a source in the moderator. The cell flux is obtained and also the associated disadvantage factor. In addition to the one speed case, we also consider the two group equations in the cell which now become an eigenvalue problem for the lattice multiplication factor. The method of solution relies upon an efficient procedure to solve a large set of simultaneous linear equations and for this we use the IMSL library routines. Our method is compared with the results from a finite element code. The main drawback of the problem arises from the very large number of terms required in the Fourier series which taxes the storage and speed of the computer. Nevertheless, useful solutions are obtained in geometries that would normally require the use of finite element or analogous methods, for this reason the Fourier method is useful for comparison with that type of numerical approach. Extension of the method to more intricate fuel shapes, such as stars and cruciforms as well as superpositions of these, is possible

  20. On an analytical evaluation of the flux and dominant eigenvalue problem for the steady state multi-group multi-layer neutron diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Ceolin, Celina; Schramm, Marcelo; Bodmann, Bardo Ernst Josef; Vilhena, Marco Tullio Mena Barreto de [Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Bogado Leite, Sergio de Queiroz [Comissao Nacional de Energia Nuclear, Rio de Janeiro (Brazil)

    2014-11-15

    In this work the authors solved the steady state neutron diffusion equation for a multi-layer slab assuming the multi-group energy model. The method to solve the equation system is based on an expansion in Taylor Series resulting in an analytical expression. The results obtained can be used as initial condition for neutron space kinetics problems. The neutron scalar flux was expanded in a power series, and the coefficients were found by using the ordinary differential equation and the boundary and interface conditions. The effective multiplication factor k was evaluated using the power method. We divided the domain into several slabs to guarantee the convergence with a low truncation order. We present the formalism together with some numerical simulations.

  1. Application of the graphical unitary group approach to the energy second derivative for CI wave functions via the coupled perturbed CI equations

    International Nuclear Information System (INIS)

    Fox, D.J.

    1983-10-01

    Analytic derivatives of the potential energy for Self-Consistent-Field (SCF) wave functions have been developed in recent years and found to be useful tools. The first derivative for configuration interaction (CI) wave functions is also available. This work details the extension of analytic methods to energy second derivatives for CI wave functions. The principal extension required for second derivatives is evaluation of the first order change in the CI wave function with respect to a nuclear perturbation. The shape driven graphical unitary group approach (SDGUGA) direct CI program was adapted to evaluate this term via the coupled-perturbed CI equations. Several iterative schemes are compared for use in solving these equations. The pilot program makes no use of molecular symmetry but the timing results show that utilization of molecular symmetry is desirable. The principles for defining and solving a set of symmetry adapted equations are discussed. Evaluation of the second derivative also requires the solution of the second order coupled-perturbed Hartree-Fock equations to obtain the correction to the molecular orbitals due to the nuclear perturbation. This process takes a consistently higher percentage of the computation time than for the first order equations alone and a strategy for its reduction is discussed

  2. Solutions of the Yang-Baxter equation: Descendants of the six-vertex model from the Drinfeld doubles of dihedral group algebras

    International Nuclear Information System (INIS)

    Finch, P.E.; Dancer, K.A.; Isaac, P.S.; Links, J.

    2011-01-01

    The representation theory of the Drinfeld doubles of dihedral groups is used to solve the Yang-Baxter equation. Use of the two-dimensional representations recovers the six-vertex model solution. Solutions in arbitrary dimensions, which are viewed as descendants of the six-vertex model case, are then obtained using tensor product graph methods which were originally formulated for quantum algebras. Connections with the Fateev-Zamolodchikov model are discussed.

  3. Partial Differential Equations

    CERN Document Server

    1988-01-01

    The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.

  4. On an analytical representation of the solution of the one-dimensional transport equation for a multi-group model in planar geometry

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Julio C.L.; Vilhena, Marco T.; Bodmann, Bardo E.J., E-mail: julio.lombaldo@ufrgs.br, E-mail: mtmbvilhena@gmail.com, E-mail: bardo.bodmann@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Matematica Pura e Aplicada; Dulla, Sandra; Ravetto, Piero, E-mail: sandra.dulla@polito.it, E-mail: piero.ravetto@polito.it [Dipartimento di Energia, Politecnico di Torino, Piemonte (Italy)

    2015-07-01

    In this work we generalize the solution of the one-dimensional neutron transport equation to a multi- group approach in planar geometry. The basic idea of this work consists in consider the hierarchical construction of a solution for a generic number G of energy groups, starting from a mono-energetic solution. The hierarchical method follows the reasoning of the decomposition method. More specifically, the additional terms from adding energy groups is incorporated into the recursive scheme as source terms. This procedure leads to an analytical representation for the solution with G energy groups. The recursion depth is related to the accuracy of the solution, that may be evaluated after each recursion step. The authors present a heuristic analysis of stability for the results. Numerical simulations for a specific example with four energy groups and a localized pulsed source. (author)

  5. Calculation of thermodynamic properties of sodium and potassium vapors on the base of semiempirical state equation. Group integrals and virial coefficients

    International Nuclear Information System (INIS)

    Reva, T.D.; Semenov, A.M.

    1984-01-01

    Statistically significant estimations of the second, third and fourth group integrals of sodium and potassium vapors were obtained in the framework of the initial atom method on the basis of semiempirical equation of state derived by the authors. Possibility is duscussed of estimating dimer, trimer and tetramer concentrations from these data with account of unideality of vapors. High rate of convergence of density and pressure group expansion is demonstrated. Virial coefficients were calculated. It is shown that virial expansions of thermodynamic functions diverge at elevated densities of the gases under study. The estimations of senior virial coefficients of sodium and potassium vapors available in literature were proved to be faulty

  6. Differential equations

    CERN Document Server

    Barbu, Viorel

    2016-01-01

    This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.

  7. Residents’ Support Intentions and Behaviors Regarding Urban Trees Programs: A Structural Equation Modeling-Multi Group Analysis

    Directory of Open Access Journals (Sweden)

    Zheng Zhao

    2018-01-01

    Full Text Available Urban trees are more about people than trees. Urban trees programs need public support and engagement, from the intentions to support to implement actions in supporting the programs. Built upon the theory of planned behavior and Structural Equation Modeling (SEM, this study uses Beijing as a case study to investigate how subjective norm (cognition of urban trees, attitude (benefits residents’ believe urban trees can provide, and perceived behavioral control (the believed ability of what residents can do affect intention and its transformation into implemented of supporting action. A total of 800 residents were interviewed in 2016 and asked about their opinion of neighborhood trees, park trees, and historical trees, and analyzed, respectively. The results show that subjective norm has a significant positive effect on intentions pertaining to historical and neighborhood trees. Attitudes influence intentions, but its overall influence is much lower than that of the subjective norm, indicating that residents are more likely to be influenced by external factors. The perceived behavioral control has the strongest effect among the three, suggesting the importance of public participation in strengthening intention. The transformation from intention to behavior seems relatively small, especially regarding neighborhood trees, suggesting that perceptions and participation need to be strengthened.

  8. A taxonomic revision of the Cymindis (Pinacodera limbata species group (Coleoptera, Carabidae, Lebiini, including description of a new species from Florida, U.S.A.

    Directory of Open Access Journals (Sweden)

    Wesley Hunting

    2013-01-01

    Full Text Available The Cymindis (Pinacodera limbata species group (Coleoptera, Carabidae, Lebiini is a precinctive New World taxon with ranges extended from portions of temperate southeastern Canada and the U.S.A. through the montane regions of Mexico, south to the Isthmus of Tehuantepec. The group is distinguishable from all other members of the subgenus Pinacodera by males possessing a distinctive sclerite (endophallic plate at the apex of the endophallus. In the past, a lack of material and misunderstandings of range of variation within species have contributed to confusion about how many species there really are.This revision of the limbata species group includes a classification, a key to groups within the subgenus Pinacodera and species within the limbata group, descriptions of species, re-rankings and new synonymies. In total 10 taxa are treated, with 6 new synonyms proposed, 1 new combination introduced and 1 new species described: Cymindis (Pinacodera rufostigma (type locality: Archbold Biological Station, Highlands County, Florida, U.S.A.. Each taxon is characterized in terms of structural features of adults, habitat, geographical distribution, and chorological affinities. Available ecological information and treatments of variation are included.

  9. Nurse specialty subcultures and patient outcomes in acute care hospitals: A multiple-group structural equation modeling.

    Science.gov (United States)

    Mallidou, Anastasia A; Cummings, Greta G; Estabrooks, Carole A; Giovannetti, Phyllis B

    2011-01-01

    Hospital organizational culture is widely held to matter to the delivery of services, their effectiveness, and system performance in general. However, little empirical evidence exists to support that culture affects provider and patient outcomes; even less evidence exists to support how this occurs. To explore causal relationships and mechanisms between nursing specialty subcultures and selected patient outcomes (i.e., quality of care, adverse patient events). Martin's differentiation perspective of culture (nested subcultures within organizations) was used as a theoretical framework to develop and test a model. Hospital nurse subcultures were identified as being reflected in formal practices (i.e., satisfactory salary, continuing education, quality assurance program, preceptorship), informal practices (i.e., autonomy, control over practice, nurse-physician relationships), and content themes (i.e., emotional exhaustion). A series of structural equation models were assessed using LISREL on a large nurse survey database representing four specialties (i.e., medical, surgical, intensive care, emergency) in acute care hospitals in Alberta, Canada. Nursing specialty subcultures differentially influenced patient outcomes. Specifically, quality of care (a) was affected by nurses' control over practice, (b) was better in intensive care than in medical specialty, and (c) was related to lower adverse patient events; nurses in intensive care and emergency specialties reported fewer adverse events than did their counterparts in medical specialties. Understanding the meaning of subcultures in clinical settings would influence nurses and administrators efforts to implement clinical change and affect outcomes. More research is needed on nested subcultures within healthcare organizations for better understanding differentiated subspecialty effects on complexity of care and outcomes in hospitals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Mixed Spin-1/2 and Spin-5/2 Model by Renormalization Group Theory: Recursion Equations and Thermodynamic Study

    Science.gov (United States)

    Antari, A. El; Zahir, H.; Hasnaoui, A.; Hachem, N.; Alrajhi, A.; Madani, M.; Bouziani, M. El

    2018-04-01

    Using the renormalization group approximation, specifically the Migdal-Kadanoff technique, we investigate the Blume-Capel model with mixed spins S = 1/2 and S = 5/2 on d-dimensional hypercubic lattice. The flow in the parameter space of the Hamiltonian and the thermodynamic functions are determined. The phase diagram of this model is plotted in the (anisotropy, temperature) plane for both cases d = 2 and d = 3 in which the system exhibits the first and second order phase transitions and critical end-points. The associated fixed points are drawn up in a table, and by linearizing the transformation at the vicinity of these points, we determine the critical exponents for d = 2 and d = 3. We have also presented a variation of the free energy derivative at the vicinity of the first and second order transitions. Finally, this work is completed by a discussion and comparison with other approximation.

  11. Determination of the energy requirements in mechanically ventilated critically ill elderly patients in different BMI groups using the Harris–Benedict equation

    Directory of Open Access Journals (Sweden)

    Pi-Hui Hsu

    2018-04-01

    Full Text Available Background: Due to studies on calorie requirement in mechanically ventilated critically ill elderly patients are few, and indirect calorimetry (IC is not available in every intensive care unit (ICU. The aim of this study was to compare IC and Harris–Benedict (HB predictive equation in different BMI groups. Methods: A total of 177 mechanically ventilated critically ill elderly patients (≧65 years old underwent IC for measured resting energy expenditure (MREE. Estimated calorie requirement was calculated by the HB equation, using actual body weight (ABW and ideal body weight (IBW separately. Patients were divided into four BMI groups. One-way ANOVA and Pearson's correlation coefficient were used for statistical analyses. Results: The mean MREE was 1443.6 ± 318.2 kcal/day, HB(ABW was 1110.9 ± 177.0 kcal/day and HB(IBW was 1101.5 ± 113.1 kcal/day. The stress factor (SFA = MREE ÷ HB(ABW was 1.43 ± 0.26 for the underweight, 1.30 ± 0.27 for the normal weight, 1.20 ± 0.19 for the overweight, and 1.20 ± 0.31 for the obese. The SFI (SFI = MREE ÷ HB(IBW was 1.24 ± 0.24 for the underweight, 1.31 ± 0.26 for the normal weight, 1.36 ± 0.21 for the overweight, and 1.52 ± 0.39 for the obese. MREE had significant correlation both with REE(ABW = HB(ABW × SFA (r = 0.46; P < 0.0001 and REE(IBW = HB(IBW × SFI (r = 0.43; P < 0.0001. Conclusion: IC is the best accurate method for assessing calorie requirement of mechanically ventilated critically ill elderly patients. When IC is not available, using the predictive HB equation is an alternative choice. Calorie requirement can be predicted by HB(ABW × 1.20–1.43 for critically ill elderly patients according to different BMI groups, or using HB(IBW × 1.24–1.52 for patients with edema, ascites or no available body weight data. Keywords: Body Mass Index, Elderly critical care, Harris–Benedict equation, Indirect calorimetry

  12. Functional equations with causal operators

    CERN Document Server

    Corduneanu, C

    2003-01-01

    Functional equations encompass most of the equations used in applied science and engineering: ordinary differential equations, integral equations of the Volterra type, equations with delayed argument, and integro-differential equations of the Volterra type. The basic theory of functional equations includes functional differential equations with causal operators. Functional Equations with Causal Operators explains the connection between equations with causal operators and the classical types of functional equations encountered by mathematicians and engineers. It details the fundamentals of linear equations and stability theory and provides several applications and examples.

  13. Novel Method To Identify Source-Associated Phylogenetic Clustering Shows that Listeria monocytogenes Includes Niche-Adapted Clonal Groups with Distinct Ecological Preferences

    DEFF Research Database (Denmark)

    Nightingale, K. K.; Lyles, K.; Ayodele, M.

    2006-01-01

    population are identified (TreeStats test). Analysis of sequence data for 120 L. monocytogenes isolates revealed evidence of clustering between isolates from the same source, based on the phylogenies inferred from actA and inlA (P = 0.02 and P = 0.07, respectively; SourceCluster test). Overall, the Tree...... are biologically valid. Overall, our data show that (i) the SourceCluster and TreeStats tests can identify biologically meaningful source-associated phylogenetic clusters and (ii) L. monocytogenes includes clonal groups that have adapted to infect specific host species or colonize nonhost environments......., including humans, animals, and food. If the null hypothesis that the genetic distances for isolates within and between source populations are identical can be rejected (SourceCluster test), then particular clades in the phylogenetic tree with significant overrepresentation of sequences from a given source...

  14. batman Interacts with polycomb and trithorax group genes and encodes a BTB/POZ protein that is included in a complex containing GAGA factor.

    Science.gov (United States)

    Faucheux, M; Roignant, J-Y; Netter, S; Charollais, J; Antoniewski, C; Théodore, L

    2003-02-01

    Polycomb and trithorax group genes maintain the appropriate repressed or activated state of homeotic gene expression throughout Drosophila melanogaster development. We have previously identified the batman gene as a Polycomb group candidate since its function is necessary for the repression of Sex combs reduced. However, our present genetic analysis indicates functions of batman in both activation and repression of homeotic genes. The 127-amino-acid Batman protein is almost reduced to a BTB/POZ domain, an evolutionary conserved protein-protein interaction domain found in a large protein family. We show that this domain is involved in the interaction between Batman and the DNA binding GAGA factor encoded by the Trithorax-like gene. The GAGA factor and Batman codistribute on polytene chromosomes, coimmunoprecipitate from nuclear embryonic and larval extracts, and interact in the yeast two-hybrid assay. Batman, together with the GAGA factor, binds to MHS-70, a 70-bp fragment of the bithoraxoid Polycomb response element. This binding, like that of the GAGA factor, requires the presence of d(GA)n sequences. Together, our results suggest that batman belongs to a subset of the Polycomb/trithorax group of genes that includes Trithorax-like, whose products are involved in both activation and repression of homeotic genes.

  15. Modification of the quantum-mechanical equations for the system of charged Dirac particles by including additional tensor terms of the Pauli type. Pt. 1. [Amplified Bethe-Salpeter, radiative corrections, fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Janyszek, H [Uniwersytet Mikolaja Kopernika, Torun (Poland). Instytut Fizyki

    1974-01-01

    A new modified quasirelativistic equation (different from that of Breit) for N charged Dirac particles in the external stationary electromagnetic field is proposed. This equation is an amplified quantum-mechanical Bethe-Salpeter equation obtained by adding (in a semi-phenomenological manner) terms which take into account radiative corrections. The application of this approximate equations is limited to third order terms in the fine structure constant ..cap alpha...

  16. Solitons, Lie Group Analysis and Conservation Laws of a (3+1)-Dimensional Modified Zakharov-Kuznetsov Equation in a Multicomponent Magnetised Plasma

    Science.gov (United States)

    Du, Xia-Xia; Tian, Bo; Chai, Jun; Sun, Yan; Yuan, Yu-Qiang

    2017-11-01

    In this paper, we investigate a (3+1)-dimensional modified Zakharov-Kuznetsov equation, which describes the nonlinear plasma-acoustic waves in a multicomponent magnetised plasma. With the aid of the Hirota method and symbolic computation, bilinear forms and one-, two- and three-soliton solutions are derived. The characteristics and interaction of the solitons are discussed graphically. We present the effects on the soliton's amplitude by the nonlinear coefficients which are related to the ratio of the positive-ion mass to negative-ion mass, number densities, initial densities of the lower- and higher-temperature electrons and ratio of the lower temperature to the higher temperature for electrons, as well as by the dispersion coefficient, which is related to the ratio of the positive-ion mass to the negative-ion mass and number densities. Moreover, using the Lie symmetry group theory, we derive the Lie point symmetry generators and the corresponding symmetry reductions, through which certain analytic solutions are obtained via the power series expansion method and the (G'/G) expansion method. We demonstrate that such an equation is strictly self-adjoint, and the conservation laws associated with the Lie point symmetry generators are derived.

  17. Handbook of integral equations

    CERN Document Server

    Polyanin, Andrei D

    2008-01-01

    This handbook contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. This second edition includes new chapters on mixed multidimensional equations and methods of integral equations for ODEs and PDEs, along with over 400 new equations with exact solutions. With many examples added for illustrative purposes, it presents new material on Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions.

  18. BFKL equation for the adjoint representation of the gauge group in the next-to-leading approximation at N=4 SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Fadin, V.S. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Budker Nuclear Physics Institute, Novosibirsk (Russian Federation); Novosibirskij Gosudarstvennyj Univ., Novosibirsk (Russian Federation); Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); St. Petersburg State Univ., Gatchina (Russian Federation)

    2011-12-15

    We calculate the eigenvalues of the next-to-leading kernel for the BFKL equation in the adjoint representation of the gauge group SU(N{sub c}) in the N=4 supersymmetric Yang-Mills model. These eigenvalues are used to obtain the high energy behavior of the remainder function for the 6-point scattering amplitude with the maximal helicity violation in the kinematical regions containing the Mandelstam cut contribution. The leading and next-to-leading singularities of the corresponding collinear anomalous dimension are calculated in all orders of perturbation theory. We compare our result with the known collinear limit and with the recently suggested ansatz for the remainder function in three loops and obtain the full agreement providing that the numerical parameters in this anzatz are chosen in an appropriate way.

  19. Molecular defects of the growth hormone receptor gene, including a new mutation, in Laron syndrome patients in Israel: relationship between defects and ethnic groups.

    Science.gov (United States)

    Shevah, Orit; Rubinstein, Menachem; Laron, Zvi

    2004-10-01

    Laron Syndrome, first described in Israel, is a form of dwarfism similar to isolated growth hormone deficiency caused by molecular defects in the GH receptor gene. To characterize the molecular defects of the GH-R in Laron syndrome patients followed in our clinic. Of the 63 patients in the cohort, we investigated 31 patients and 32 relatives belonging to several ethnic origins. Molecular analysis of the GH-R gene was performed using the single strand conformation polymorphism and DNA sequencing techniques. Eleven molecular defects including a novel mutation were found. Twenty-two patients carried mutations in the extracellular domain, one in the transmembrane domain, and 3 siblings with typical Laron syndrome presented a normal GH-R. Of interest are, on one hand, different mutations within the same ethnic groups: W-15X and 5, 6 exon deletion in Jewish-Iraqis, and E180 splice and 5, 6 exon deletion in Jewish-Moroccans; and on the other hand, identical findings in patients from distinct regions: the 785-1 G to T mutation in an Israeli-Druze and a Peruvian patient. A polymorphism in exon 6, Gly168Gly, was found in 15 probands. One typical Laron patient from Greece was heterozygous for R43X in exon 4 and heterozygous for Gly168Gly. In addition, a novel mutation in exon 5: substitution of T to G replacing tyrosine 86 for aspartic acid (Y86D) is described. This study demonstrates: a) an increased focal incidence of Laron syndrome in different ethnic groups from our area with a high incidence of consanguinity; and b) a relationship between molecular defects of the GH-R, ethnic group and geographic area.

  20. Revision of Dadagulella gen. nov., the “Gulella radius group" (Gastropoda: Streptaxidae of the eastern Afrotropics, including six new species and three new subspecies

    Directory of Open Access Journals (Sweden)

    Ben Rowson

    2013-02-01

    Full Text Available The genus Dadagulella gen. nov. is described to include 16 species of small, dentate, ovate-acuminate Afrotropical snails. An identification key is provided and biogeography, anatomy and systematics are discussed. The type species is the Kenyan D. radius (Preston, 1910 comb. nov., whose name has informally been used for part of the group in the past. Substantial intraspecific variation occurs in three species: D. radius itself, D. browni (van Bruggen, 1969 comb. nov. and D. minuscula (Morelet, 1877 comb. nov. (= Ennea fischeriana Morelet, 1881 (non Gulella minuscula Emberton & Pearce, 2000 . We recognise subspecies within each of these: D.radius radius (Preston, 1910 comb. nov., D. r. calva (Connolly, 1922 comb. et stat. nov., D. browni browni (van Bruggen, 1969 comb. nov., D. b. mafiensis subsp. nov., D. b. semulikiensis subsp. nov., D. minuscula minuscula (Morelet, 1877 comb. nov., D. m. mahorana subsp. nov. Six new Tanzanian species are described: D. cresswelli sp. nov., D. delta sp. nov., D. ecclesiola sp. nov., D. frontierarum sp. nov., D. minareta sp. nov., and D. pembensis sp. nov. The genus includes seven other previously described species: D. cuspidata (Verdcourt, 1962 comb. nov.; D. rondoensis (Verdcourt, 1994 comb. nov.; D. conoidea (Verdcourt, 1996 comb. nov.; D. selene (van Bruggen & Van Goethem, 1999 comb. nov.; D. meredithae (van Bruggen, 2000 comb. nov.; D. nictitans (Rowson & Lange, 2007 comb. nov.; and D. delgada (Muratov, 2010 comb. nov.

  1. Developments in functional equations and related topics

    CERN Document Server

    Ciepliński, Krzysztof; Rassias, Themistocles

    2017-01-01

    This book presents current research on Ulam stability for functional equations and inequalities. Contributions from renowned scientists emphasize fundamental and new results, methods and techniques. Detailed examples are given to theories to further understanding at the graduate level for students in mathematics, physics, and engineering. Key topics covered in this book include: Quasi means Approximate isometries Functional equations in hypergroups Stability of functional equations Fischer-Muszély equation Haar meager sets and Haar null sets Dynamical systems Functional equations in probability theory Stochastic convex ordering Dhombres functional equation Nonstandard analysis and Ulam stability This book is dedicated in memory of Staniłsaw Marcin Ulam, who posed the fundamental problem concerning approximate homomorphisms of groups in 1940; which has provided the stimulus for studies in the stability of functional equations and inequalities.

  2. The relationships of multiple factors to menopausal symptoms in different racial/ethnic groups of midlife women: the structural equation modeling.

    Science.gov (United States)

    Im, Eun-Ok; Chang, Sun Ju; Chee, Eunice; Chee, Wonshik

    2018-04-09

    The purpose of the present study was to examine the relationships of multiple factors to menopausal symptoms in different racial/ethnic groups of midlife women. This secondary analysis was conducted with the data from 980 midlife women that were collected from 2005 to 2013 using the Midlife Women's Symptom Index. Structural equation modeling was used to analyze the data. The model had the highest fit indices for Non-Hispanic (NH) White midlife women, and prominent racial/ethnic differences were observed in the relationships of multiple factors to menopausal symptoms. In all racial/ethnic groups (except in Hispanic women), perceived health status was significantly associated positively with menopausal symptoms (β = -0.149 for NH African American; β = -0.207 for NH Asians; β = -0.162 for NH Whites). Body mass index was significantly positively associated with menopausal symptoms only in NH Asians (β = 0.118) and Hispanics (β = 0.210). The racial/ethnic differences in the relationships of multiple factors to menopausal symptoms could have resulted from the different cultural contexts in which women undergo during their menopausal transitions. Further cultural studies on the associations of racial/ethnic-specific factors with menopausal symptoms would help in understanding possible causes for racial/ethnic differences in the factors significantly associated with menopausal symptoms.

  3. The Racial, Cultural and Social Makeup of Hispanics as a potential Profile Risk for Intensifying the Need for Including this Ethnic Group in Clinical Trials.

    Science.gov (United States)

    López-Candales, Angel; Aponte Rodríguez, Jaime; Harris, David

    2015-01-01

    Hypertension not only is the most frequently listed cause of death worldwide; but also a well-recognized major risk factor for cardiovascular disease and stroke. Based on the latest published statistics published by the American Heart Association, hypertension is very prevalent and found in one of every 3 US adults. Furthermore, data from NHANES 2007 to 2010 claims that almost 6% of US adults have undiagnosed hypertension. Despite this staggering statistic, previous US guidelines for the prevention, detection, and treatment of hypertension (The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure 7 [JNC 7]), released in 2003, stated that; "unfortunately, sufficient numbers of Mexican Americans and other Hispanic Americans... have not been included in most of the major clinical trials to allow reaching strong conclusions about their responses to individual antihypertensive therapies." However, the recently published JNC 8 offers no comment regarding recommendations or guideline treatment suggestions on Hispanics. The purpose of this article not only is to raise awareness of the lack of epidemiological data and treatment options regarding high blood pressure in the US Hispanic population; but also to make a case of the racial, cultural and social makeup of this ethnic group that places them at risk of cardiovascular complications related to hypertension.

  4. Lie group analysis, numerical and non-traveling wave solutions for the (2+1)-dimensional diffusion—advection equation with variable coefficients

    International Nuclear Information System (INIS)

    Kumar, Vikas; Gupta, R. K.; Jiwari, Ram

    2014-01-01

    In this paper, the variable-coefficient diffusion—advection (DA) equation, which arises in modeling various physical phenomena, is studied by the Lie symmetry approach. The similarity reductions are derived by determining the complete sets of point symmetries of this equation, and then exact and numerical solutions are reported for the reduced second-order nonlinear ordinary differential equations. Further, an extended (G'/G)-expansion method is applied to the DA equation to construct some new non-traveling wave solutions

  5. Benefits of Group Living Include Increased Feeding Efficiency and Lower Mass Loss during Desiccation in the Social and Inbreeding Spider Stegodyphus dumicola

    Science.gov (United States)

    Vanthournout, Bram; Greve, Michelle; Bruun, Anne; Bechsgaard, Jesper; Overgaard, Johannes; Bilde, Trine

    2016-01-01

    Group living carries a price: it inherently entails increased competition for resources and reproduction, and may also be associated with mating among relatives, which carries costs of inbreeding. Nonetheless, group living and sociality is found in many animals, and understanding the direct and indirect benefits of cooperation that override the inherent costs remains a challenge in evolutionary ecology. Individuals in groups may benefit from more efficient management of energy or water reserves, for example in the form of reduced water or heat loss from groups of animals huddling, or through reduced energy demands afforded by shared participation in tasks. We investigated the putative benefits of group living in the permanently social spider Stegodyphus dumicola by comparing the effect of group size on standard metabolic rate, lipid/protein content as a body condition measure, feeding efficiency, per capita web investment, and weight/water loss and survival during desiccation. Because energetic expenditure is temperature sensitive, some assays were performed under varying temperature conditions. We found that feeding efficiency increased with group size, and the rate of weight loss was higher in solitary individuals than in animals in groups of various sizes during desiccation. Interestingly, this was not translated into differences in survival or in standard metabolic rate. We did not detect any group size effects for other parameters, and group size effects did not co-vary with experimental temperature in a predictive manner. Both feeding efficiency and mass loss during desiccation are relevant ecological factors as the former results in lowered predator exposure time, and the latter benefits social spiders which occupy arid, hot environments. PMID:26869936

  6. Benefits of group living include increased feeding efficiency and lower mass loss during desiccation in the social and inbreeding spider Stegodyphus dumicola.

    Directory of Open Access Journals (Sweden)

    Bram eVanthournout

    2016-02-01

    Full Text Available Group living carries a price: it inherently entails increased competition for resources and reproduction, and may also be associated with mating among relatives, which carries costs of inbreeding. Nonetheless, group living and sociality is found in many animals, and understanding the direct and indirect benefits of cooperation that override the inherent costs remains a challenge in evolutionary ecology. Individuals in groups may benefit from more efficient management of energy or water reserves, for example in the form of reduced water or heat loss from groups of animals huddling, or through reduced energy demands afforded by shared participation in tasks. We investigated the putative benefits of group living in the permanently social spider Stegodyphus dumicola by comparing the effect of group size on standard metabolic rate, lipid/protein content as a body condition measure, feeding efficiency, per capita web investment and weight/water loss and survival during desiccation. Because energetic expenditure is temperature sensitive, some assays were performed under varying temperature conditions. We found that feeding efficiency increased with group size, and the rate of weight loss was higher in solitary individuals than in animals in groups of various sizes during desiccation. Interestingly, this was not translated into differences in survival or in standard metabolic rate. We did not detect any group size effects for other parameters, and group size effects did not co-vary with experimental temperature in a predictive manner. Both feeding efficiency and mass loss during desiccation are relevant ecological factors as the former results in lowered predator exposure time, and the latter benefits social spiders which occupy arid, hot environments.

  7. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2014-01-01

    A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or

  8. Psychometric evaluation of the Overexcitability Questionnaire-Two applying Bayesian Structural Equation Modeling (BSEM and multiple-group BSEM-based alignment with approximate measurement invariance

    Directory of Open Access Journals (Sweden)

    Niki eDe Bondt

    2015-12-01

    Full Text Available The Overexcitability Questionnaire-Two (OEQ-II measures the degree and nature of overexcitability, which assists in determining the developmental potential of an individual according to Dabrowski’s Theory of Positive Disintegration. Previous validation studies using frequentist confirmatory factor analysis, which postulates exact parameter constraints, led to model rejection and a long series of model modifications. Bayesian structural equation modeling (BSEM allows the application of zero-mean, small-variance priors for cross-loadings, residual covariances, and differences in measurement parameters across groups, better reflecting substantive theory and leading to better model fit and less overestimation of factor correlations. Our BSEM analysis with a sample of 516 students in higher education yields positive results regarding the factorial validity of the OEQ-II. Likewise, applying BSEM-based alignment with approximate measurement invariance, the absence of non-invariant factor loadings and intercepts across gender is supportive of the psychometric quality of the OEQ-II. Compared to males, females scored significantly higher on emotional and sensual overexcitability, and significantly lower on psychomotor overexcitability.

  9. Structure of Symmetry Groups via Cartan's Method: Survey of Four Approaches

    Directory of Open Access Journals (Sweden)

    Oleg I. Morozov

    2005-10-01

    Full Text Available In this review article we discuss four recent methods for computing Maurer-Cartan structure equations of symmetry groups of differential equations. Examples include solution of the contact equivalence problem for linear hyperbolic equations and finding a contact transformation between the generalized Hunter-Saxton equation and the Euler-Poisson equation.

  10. Lie groups and algebraic groups

    Indian Academy of Sciences (India)

    We give an exposition of certain topics in Lie groups and algebraic groups. This is not a complete ... of a polynomial equation is equivalent to the solva- bility of the equation ..... to a subgroup of the group of roots of unity in k (in particular, it is a ...

  11. Introduction to partial differential equations

    CERN Document Server

    Greenspan, Donald

    2000-01-01

    Designed for use in a one-semester course by seniors and beginning graduate students, this rigorous presentation explores practical methods of solving differential equations, plus the unifying theory underlying the mathematical superstructure. Topics include basic concepts, Fourier series, second-order partial differential equations, wave equation, potential equation, heat equation, approximate solution of partial differential equations, and more. Exercises appear at the ends of most chapters. 1961 edition.

  12. The conundrum of Hodgkin lymphoma nodes: to be or not to be included in the involved node radiation fields. The EORTC-GELA lymphoma group guidelines

    DEFF Research Database (Denmark)

    Girinsky, Theodore; Specht, Lena; Ghalibafian, Mithra

    2008-01-01

    PURPOSE: To develop easily applicable guidelines for the determination of initially involved lymph nodes to be included in the radiation fields. PATIENTS AND METHODS: Patients with supra-diaphragmatic Hodgkin lymphoma. All the imaging procedures were carried out with patients in the treatment pos...

  13. Differential occurrence of chromosome inversion polymorphisms among Muller's elements in three species of the tripunctata group of Drosophila, including a species with fast chromosomal evolution.

    Science.gov (United States)

    Brianti, Mitsue T; Ananina, Galina; Klaczko, Louis B

    2013-01-01

    Detailed chromosome maps with reliable homologies among chromosomes of different species are the first step to study the evolution of the genetic architecture in any set of species. Here, we present detailed photo maps of the polytene chromosomes of three closely related species of the tripunctata group (subgenus Drosophila): Drosophila mediopunctata, D. roehrae, and D. unipunctata. We identified Muller's elements in each species, using FISH, establishing reliable chromosome homologies among species and D. melanogaster. The simultaneous analysis of chromosome inversions revealed a distribution pattern for the inversion polymorphisms among Muller's elements in the three species. Element E is the most polymorphic, with many inversions in each species. Element C follows; while the least polymorphic elements are B and D. While interesting, it remains to be determined how general this pattern is among species of the tripunctata group. Despite previous studies showing that D. mediopunctata and D. unipunctata are phylogenetically closer to each other than to D. roehrae, D. unipunctata shows rare karyotypic changes. It has two chromosome fusions: an additional heterochromatic chromosome pair and a pericentric inversion in the X chromosome. This especial conformation suggests a fast chromosomal evolution that deserves further study.

  14. Highly active antiretroviral therapy including protease inhibitors does not confer a unique CD4 cell benefit. The AVANTI and INCAS Study Groups.

    Science.gov (United States)

    2000-07-07

    To determine if triple combination therapy, particularly including HIV protease inhibitors (PI), confers an unique immunological benefit that is independent of reductions of plasma viral load (pVL). The correlation between changes from baseline in CD4 cell count and pVL was examined at all time points up to 52 weeks in three randomized clinical trials (AVANTI-2, AVANTI-3 and INCAS) that compared dual nucleoside therapy with triple combination therapy. Individual pVL and CD4 cell counts changes from baseline were entered into multivariate linear regression models for patients receiving double therapy and for those receiving triple therapy including a PI and/or a non-nucleoside reverse transcriptase inhibitor (NNRTI), and the null hypothesis was tested. After 52 weeks of therapy, the relationship between changes from baseline CD4 cell count and pVL was independent of whether patients were assigned double or triple therapy (P = 0.23 and 0.69 for intercept and slope, respectively), or whether patients were assigned triple therapy including a PI or triple therapy including an NNRTI (P = 0.92 and 0.95, respectively). Less than 5% of patients ever had 'discordant' increases in both CD4 cell count and pVL compared with baseline, and this proportion was unrelated to the class of therapy used. 'Discordant' decreases from baseline in both parameters were observed in up to 35% of individuals. The correlation between pVL and CD4 cell count changes from baseline improved over time on therapy, regardless of the therapeutic regimen involved. The data provide no evidence for a CD4 cell count benefit of highly active antiretroviral therapy (HAART) unique to triple therapy or PI-containing regimens.

  15. Prevalence and sequence variations of the genes encoding the five antigens included in the novel 5CVMB vaccine covering group B meningococcal disease.

    Science.gov (United States)

    Jacobsson, Susanne; Hedberg, Sara Thulin; Mölling, Paula; Unemo, Magnus; Comanducci, Maurizio; Rappuoli, Rino; Olcén, Per

    2009-03-04

    During the recent years, projects are in progress for designing broad-range non-capsular-based meningococcal vaccines, covering also serogroup B isolates. We have examined three genes encoding antigens (NadA, GNA1030 and GNA2091) included in a novel vaccine, i.e. the 5 Component Vaccine against Meningococcus B (5CVMB), in terms of gene prevalence and sequence variations. These data were combined with the results from a similar study, examining the two additional antigens included in the 5CVMB (fHbp and GNA2132). nadA and fHbp v. 1 were present in 38% (n=36), respectively 71% (n=67) of the isolates, whereas gna2132, gna1030 and gna2091 were present in all the Neisseria meningitidis isolates tested (n=95). The level of amino acid conservation was relatively high in GNA1030 (93%), GNA2091 (92%), and within the main variants of NadA and fHbp. GNA2132 (54% of the amino acids conserved) appeared to be the most diversified antigen. Consequently, the theoretical coverage of the 5CVMB antigens and the feasibility to use these in a broad-range meningococcal vaccine is appealing.

  16. Mixed-Format Test Score Equating: Effect of Item-Type Multidimensionality, Length and Composition of Common-Item Set, and Group Ability Difference

    Science.gov (United States)

    Wang, Wei

    2013-01-01

    Mixed-format tests containing both multiple-choice (MC) items and constructed-response (CR) items are now widely used in many testing programs. Mixed-format tests often are considered to be superior to tests containing only MC items although the use of multiple item formats leads to measurement challenges in the context of equating conducted under…

  17. The conundrum of hodgkin lymphoma nodes: To be or not to be included in the involved node radiation fields. The EORTC-GELA lymphoma group guidelines

    International Nuclear Information System (INIS)

    Girinsky, Theodore; Specht, Lena; Ghalibafian, Mithra; Edeline, Veronique; Bonniaud, Guillaume; Maazen, Richard van der; Aleman, Berthe; Paumier, Amaury; Meijnders, Paul; Lievens, Yolande; Noordijk, Evert; Poortmans, Philip

    2008-01-01

    Purpose: To develop easily applicable guidelines for the determination of initially involved lymph nodes to be included in the radiation fields. Patients and methods: Patients with supra-diaphragmatic Hodgkin lymphoma. All the imaging procedures were carried out with patients in the treatment position. The prechemotherapy PET/CT was coregistered with the postchemotherapy CT simulation for planning purposes. Initially involved lymph nodes were determined on fused prechemotherapy CT and FDG-PET imaging data. The initial assessment was verified with the postchemotherapy CT scan. Results: The classic guidelines for determining the involvement of lymph nodes were not easily applicable and did not seem to reflect the exact extent of Hodgkin lymphoma. Three simple steps were used to pinpoint involved lymph nodes. First, FDG-PET scans were meticulously analysed to detect lymph nodes that were overlooked on CT imaging. Second, any morphological and/or functional asymmetry was sought on CT and FDG-PET scans. Third, a decrease in size or the disappearance of initially visible lymph nodes on the prechemotherapy CT scan as compared to the postchemotherapy CT scan was considered as surrogate proof of initial involvement. Conclusions: All the radiological procedures should be performed on patients in the treatment position for proper coregistration. It is highly advisable that all CT and/or CT/PET scans be performed with IV contrast. Using the above-mentioned three simple guidelines, initially involved lymph nodes can be detected with very satisfactory accuracy. It is also emphasized that the classic guidelines (2, 3, 4) can always be used when deemed necessary

  18. A new evolution equation

    International Nuclear Information System (INIS)

    Laenen, E.

    1995-01-01

    We propose a new evolution equation for the gluon density relevant for the region of small x B . It generalizes the GLR equation and allows deeper penetration in dense parton systems than the GLR equation does. This generalization consists of taking shadowing effects more comprehensively into account by including multigluon correlations, and allowing for an arbitrary initial gluon distribution in a hadron. We solve the new equation for fixed α s . We find that the effects of multigluon correlations on the deep-inelastic structure function are small. (orig.)

  19. Partial differential equations

    CERN Document Server

    Evans, Lawrence C

    2010-01-01

    This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...

  20. Degenerate nonlinear diffusion equations

    CERN Document Server

    Favini, Angelo

    2012-01-01

    The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...

  1. SIMULTANEOUS DIFFERENTIAL EQUATION COMPUTER

    Science.gov (United States)

    Collier, D.M.; Meeks, L.A.; Palmer, J.P.

    1960-05-10

    A description is given for an electronic simulator for a system of simultaneous differential equations, including nonlinear equations. As a specific example, a homogeneous nuclear reactor system including a reactor fluid, heat exchanger, and a steam boiler may be simulated, with the nonlinearity resulting from a consideration of temperature effects taken into account. The simulator includes three operational amplifiers, a multiplier, appropriate potential sources, and interconnecting R-C networks.

  2. Elements of partial differential equations

    CERN Document Server

    Sneddon, Ian Naismith

    1957-01-01

    Geared toward students of applied rather than pure mathematics, this volume introduces elements of partial differential equations. Its focus is primarily upon finding solutions to particular equations rather than general theory.Topics include ordinary differential equations in more than two variables, partial differential equations of the first and second orders, Laplace's equation, the wave equation, and the diffusion equation. A helpful Appendix offers information on systems of surfaces, and solutions to the odd-numbered problems appear at the end of the book. Readers pursuing independent st

  3. Evaluating Equating Results: Percent Relative Error for Chained Kernel Equating

    Science.gov (United States)

    Jiang, Yanlin; von Davier, Alina A.; Chen, Haiwen

    2012-01-01

    This article presents a method for evaluating equating results. Within the kernel equating framework, the percent relative error (PRE) for chained equipercentile equating was computed under the nonequivalent groups with anchor test (NEAT) design. The method was applied to two data sets to obtain the PRE, which can be used to measure equating…

  4. Differential equations

    CERN Document Server

    Tricomi, FG

    2013-01-01

    Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff

  5. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2004-01-01

    This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of t...

  6. SCOTCH: a program for solution of the one-dimensional, two-group, space-time neutron diffusion equations with temperature feedback of multi-channel fluid dynamics for HTGR cores

    International Nuclear Information System (INIS)

    Ezaki, Masahiro; Mitake, Susumu; Ozawa, Tamotsu

    1979-06-01

    The SCOTCH program solves the one-dimensional (R or Z), two-group reactor kinetics equations with multi-channel temperature transients and fluid dynamics. Sub-program SCOTCH-RX simulates the space-time neutron diffusion in radial direction, and sub-program SCOTCH-AX simulates the same in axial direction. The program has about 8,000 steps of FORTRAN statement and requires about 102 kilo-words of computer memory. (author)

  7. Problems in differential equations

    CERN Document Server

    Brenner, J L

    2013-01-01

    More than 900 problems and answers explore applications of differential equations to vibrations, electrical engineering, mechanics, and physics. Problem types include both routine and nonroutine, and stars indicate advanced problems. 1963 edition.

  8. Applied partial differential equations

    CERN Document Server

    DuChateau, Paul

    2012-01-01

    Book focuses mainly on boundary-value and initial-boundary-value problems on spatially bounded and on unbounded domains; integral transforms; uniqueness and continuous dependence on data, first-order equations, and more. Numerous exercises included.

  9. Nonlinear diffusion equations

    CERN Document Server

    Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning

    2001-01-01

    Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which

  10. equateIRT: An R Package for IRT Test Equating

    Directory of Open Access Journals (Sweden)

    Michela Battauz

    2015-12-01

    Full Text Available The R package equateIRT implements item response theory (IRT methods for equating different forms composed of dichotomous items. In particular, the IRT models included are the three-parameter logistic model, the two-parameter logistic model, the one-parameter logistic model and the Rasch model. Forms can be equated when they present common items (direct equating or when they can be linked through a chain of forms that present common items in pairs (indirect or chain equating. When two forms can be equated through different paths, a single conversion can be obtained by averaging the equating coefficients. The package calculates direct and chain equating coefficients. The averaging of direct and chain coefficients that link the same two forms is performed through the bisector method. Furthermore, the package provides analytic standard errors of direct, chain and average equating coefficients.

  11. Quantum mechanical alternative to Arrhenius equation in the interpretation of proton spin-lattice relaxation data for the methyl groups in solids

    KAUST Repository

    Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir

    2015-01-01

    Theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum

  12. Iterative Splitting Methods for Differential Equations

    CERN Document Server

    Geiser, Juergen

    2011-01-01

    Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential

  13. equate: An R Package for Observed-Score Linking and Equating

    Directory of Open Access Journals (Sweden)

    Anthony D. Albano

    2016-10-01

    Full Text Available The R package equate contains functions for observed-score linking and equating under single-group, equivalent-groups, and nonequivalent-groups with anchor test(s designs. This paper introduces these designs and provides an overview of observed-score equating with details about each of the supported methods. Examples demonstrate the basic functionality of the equate package.

  14. Invite, include, and involve: racial groups, ethnic groups, and leisure

    Science.gov (United States)

    Deborah J. Chavez

    2000-01-01

    All people recreate. Most of us read book and/or magazines, take walks, watch television, tend gardens. Some people enjoy high-risk activities, such as bungee jumping, others prefer to participate in karate at the local boys' club or bingo at the local senior center, while others prefer family-oriented leisure adivities such-as miniature golf. Whatever the leisure...

  15. Hyperbolic partial differential equations

    CERN Document Server

    Witten, Matthew

    1986-01-01

    Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic M

  16. Bernoulli's Equation

    Indian Academy of Sciences (India)

    regarding nature of forces hold equally for liquids, even though the ... particle. Figure A. A fluid particle is a very small imaginary blob of fluid, here shown sche- matically in .... picture gives important information about the flow field. ... Bernoulli's equation is derived assuming ideal flow, .... weight acting in the flow direction S is.

  17. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  18. Nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.

  19. Nonlinear differential equations

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics

  20. A Fast Solution of the Lindley Equations for the M-Group Regression Problem. Technical Report 78-3, October 1977 through May 1978.

    Science.gov (United States)

    Molenaar, Ivo W.

    The technical problems involved in obtaining Bayesian model estimates for the regression parameters in m similar groups are studied. The available computer programs, BPREP (BASIC), and BAYREG, both written in FORTRAN, require an amount of computer processing that does not encourage regular use. These programs are analyzed so that the performance…

  1. Recursive solutions for multi-group neutron kinetics diffusion equations in homogeneous three-dimensional rectangular domains with time dependent perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Claudio Z. [Universidade Federal de Pelotas, Capao do Leao (Brazil). Programa de Pos Graduacao em Modelagem Matematica; Bodmann, Bardo E.J.; Vilhena, Marco T. [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia Mecanica; Barros, Ricardo C. [Universidade do Estado do Rio de Janeiro, Nova Friburgo, RJ (Brazil). Inst. Politecnico

    2014-12-15

    In the present work we solve in analytical representation the three dimensional neutron kinetic diffusion problem in rectangular Cartesian geometry for homogeneous and bounded domains for any number of energy groups and precursor concentrations. The solution in analytical representation is constructed using a hierarchical procedure, i.e. the original problem is reduced to a problem previously solved by the authors making use of a combination of the spectral method and a recursive decomposition approach. Time dependent absorption cross sections of the thermal energy group are considered with step, ramp and Chebyshev polynomial variations. For these three cases, we present numerical results and discuss convergence properties and compare our results to those available in the literature.

  2. Basic studies for the solution of the criticality equation: two groups of energy and one dimension; Estudos basicos para a solucao da equacao da criticalidade - dois grupos de energia e uma dimensao - uso da linguagem Mathcad

    Energy Technology Data Exchange (ETDEWEB)

    Britto Aghina, L.O. de

    1994-12-01

    This work collects six basic studies for the numerical solution of the criticality equation for thermal reactors. Use is made of the diffusion theory for two groups of energy and one dimension, applicable to bare reactors, bare equivalent, infinite bare equivalent and reflected reactors. These studies were written in Mathcad 4.0/WIN programming, a practical form for use by the researchers and operators working with the Argonaut Reactor at the Instituto de Engenharia Nuclear (IEN). (author). 11 refs, 20 figs, 8 tabs.

  3. Iterative solutions of finite difference diffusion equations

    International Nuclear Information System (INIS)

    Menon, S.V.G.; Khandekar, D.C.; Trasi, M.S.

    1981-01-01

    The heterogeneous arrangement of materials and the three-dimensional character of the reactor physics problems encountered in the design and operation of nuclear reactors makes it necessary to use numerical methods for solution of the neutron diffusion equations which are based on the linear Boltzmann equation. The commonly used numerical method for this purpose is the finite difference method. It converts the diffusion equations to a system of algebraic equations. In practice, the size of this resulting algebraic system is so large that the iterative methods have to be used. Most frequently used iterative methods are discussed. They include : (1) basic iterative methods for one-group problems, (2) iterative methods for eigenvalue problems, and (3) iterative methods which use variable acceleration parameters. Application of Chebyshev theorem to iterative methods is discussed. The extension of the above iterative methods to multigroup neutron diffusion equations is also considered. These methods are applicable to elliptic boundary value problems in reactor design studies in particular, and to elliptic partial differential equations in general. Solution of sample problems is included to illustrate their applications. The subject matter is presented in as simple a manner as possible. However, a working knowledge of matrix theory is presupposed. (M.G.B.)

  4. Transformation properties of the integrable evolution equations

    International Nuclear Information System (INIS)

    Konopelchenko, B.G.

    1981-01-01

    Group-theoretical properties of partial differential equations integrable by the inverse scattering transform method are discussed. It is shown that nonlinear transformations typical to integrable equations (symmetry groups, Baecklund-transformations) and these equations themselves are contained in a certain universal nonlinear transformation group. (orig.)

  5. Gender and Acceptance of E-Learning: A Multi-Group Analysis Based on a Structural Equation Model among College Students in Chile and Spain.

    Science.gov (United States)

    Ramírez-Correa, Patricio E; Arenas-Gaitán, Jorge; Rondán-Cataluña, F Javier

    2015-01-01

    The scope of this study was to evaluate whether the adoption of e-learning in two universities, and in particular, the relationship between the perception of external control and perceived ease of use, is different because of gender differences. The study was carried out with participating students in two different universities, one in Chile and one in Spain. The Technology Acceptance Model was used as a theoretical framework for the study. A multi-group analysis method in partial least squares was employed to relate differences between groups. The four main conclusions of the study are: (1) a version of the Technology Acceptance Model has been successfully used to explain the process of adoption of e-learning at an undergraduate level of study; (2) the finding of a strong and significant relationship between perception of external control and perception of ease of use of the e-learning platform; (3) a significant relationship between perceived enjoyment and perceived ease of use and between results demonstrability and perceived usefulness is found; (4) the study indicates a few statistically significant differences between males and females when adopting an e-learning platform, according to the tested model.

  6. Gender and Acceptance of E-Learning: A Multi-Group Analysis Based on a Structural Equation Model among College Students in Chile and Spain

    Science.gov (United States)

    2015-01-01

    The scope of this study was to evaluate whether the adoption of e-learning in two universities, and in particular, the relationship between the perception of external control and perceived ease of use, is different because of gender differences. The study was carried out with participating students in two different universities, one in Chile and one in Spain. The Technology Acceptance Model was used as a theoretical framework for the study. A multi-group analysis method in partial least squares was employed to relate differences between groups. The four main conclusions of the study are: (1) a version of the Technology Acceptance Model has been successfully used to explain the process of adoption of e-learning at an undergraduate level of study; (2) the finding of a strong and significant relationship between perception of external control and perception of ease of use of the e-learning platform; (3) a significant relationship between perceived enjoyment and perceived ease of use and between results demonstrability and perceived usefulness is found; (4) the study indicates a few statistically significant differences between males and females when adopting an e-learning platform, according to the tested model. PMID:26465895

  7. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2015-01-01

    This text presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs.  Emphasis is placed on motivation, concepts, methods, and interpretation, rather than on formal theory. The concise treatment of the subject is maintained in this third edition covering all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. In this third edition, text remains intimately tied to applications in heat transfer, wave motion, biological systems, and a variety other topics in pure and applied science. The text offers flexibility to instructors who, for example, may wish to insert topics from biology or numerical methods at any time in the course. The exposition is presented in a friendly, easy-to-read, style, with mathematical ideas motivated from physical problems. Many exercises and worked e...

  8. Painleve test and discrete Boltzmann equations

    International Nuclear Information System (INIS)

    Euler, N.; Steeb, W.H.

    1989-01-01

    The Painleve test for various discrete Boltzmann equations is performed. The connection with integrability is discussed. Furthermore the Lie symmetry vector fields are derived and group-theoretical reduction of the discrete Boltzmann equations to ordinary differentiable equations is performed. Lie Backlund transformations are gained by performing the Painleve analysis for the ordinary differential equations. 16 refs

  9. Quantum linear Boltzmann equation

    International Nuclear Information System (INIS)

    Vacchini, Bassano; Hornberger, Klaus

    2009-01-01

    We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.

  10. Differential Equations Compatible with KZ Equations

    International Nuclear Information System (INIS)

    Felder, G.; Markov, Y.; Tarasov, V.; Varchenko, A.

    2000-01-01

    We define a system of 'dynamical' differential equations compatible with the KZ differential equations. The KZ differential equations are associated to a complex simple Lie algebra g. These are equations on a function of n complex variables z i taking values in the tensor product of n finite dimensional g-modules. The KZ equations depend on the 'dual' variable in the Cartan subalgebra of g. The dynamical differential equations are differential equations with respect to the dual variable. We prove that the standard hypergeometric solutions of the KZ equations also satisfy the dynamical equations. As an application we give a new determinant formula for the coordinates of a basis of hypergeometric solutions

  11. New and old symmetries of the Maxwell and Dirac equations

    International Nuclear Information System (INIS)

    Fushchich, V.I.; Nikitin, A.G.

    1983-01-01

    The symmetry properties of Maxwell's equations for the electromagnetic field and also of the Dirac and Kemmer-Duffin-Petiau equations are analyzed. In the framework of a ''non-Lie'' approach it is shown that, besides the well-known invariance with respect to the conformal group and the Heaviside-Larmor-Rainich transformations, Maxwell's equations have an additional symmetry with respect to the group U(2)xU(2) and with respect to the 23-dimensional Lie algebra A 23 . The transformations of the additional symmetry are given by nonlocal (integro-differential) operators. The symmetry of the Dirac equation in the class of differential and integro-differential transformations is investigated. It is shown that this equation is invariant with respect to an 18-parameter group, which includes the Poincare group as a subgroup. A 28-parameter invariance group of the Kemmer-Duffin-Petiau equation is found. Finite transformations of the conformal group for a massless field with arbitrary spin are obtained. The explicit form of conformal transformations for the electromagnetic field and also for the Dirac and Weyl fields is given

  12. Lie symmetries in differential equations

    International Nuclear Information System (INIS)

    Pleitez, V.

    1979-01-01

    A study of ordinary and Partial Differential equations using the symmetries of Lie groups is made. Following such a study, an application to the Helmholtz, Line-Gordon, Korleweg-de Vries, Burguer, Benjamin-Bona-Mahony and wave equations is carried out [pt

  13. Solution to the Diffusion equation for multi groups in X Y geometry using Linear Perturbation theory; Solucion a la Ecuacion de Difusion para multigrupos en geometria XY utilizando teoria de perturbacion lineal

    Energy Technology Data Exchange (ETDEWEB)

    Mugica R, C.A. [IPN, ESFM, Depto. de Ingenieria Nuclear, 07738 Mexico D.F. (Mexico)

    2004-07-01

    Diverse methods exist to solve numerically the neutron diffusion equation for several energy groups in stationary state among those that highlight those of finite elements. In this work the numerical solution of this equation is presented using Raviart-Thomas nodal methods type finite element, the RT0 and RT1, in combination with iterative techniques that allow to obtain the approached solution in a quick form. Nevertheless the above mentioned, the precision of a method is intimately bound to the dimension of the approach space by cell, 5 for the case RT0 and 12 for the RT1, and/or to the mesh refinement, that makes the order of the problem of own value to solve to grow considerably. By this way if it wants to know an acceptable approach to the value of the effective multiplication factor of the system when this it has experimented a small perturbation it was appeal to the Linear perturbation theory with which is possible to determine it starting from the neutron flow and of the effective multiplication factor of the not perturbed case. Results are presented for a reference problem in which a perturbation is introduced in an assemble that simulates changes in the control bar. (Author)

  14. Dynamical equations for the optical potential

    International Nuclear Information System (INIS)

    Kowalski, K.L.

    1981-01-01

    Dynamical equations for the optical potential are obtained starting from a wide class of N-particle equations. This is done with arbitrary multiparticle interactions to allow adaptation to few-body models of nuclear reactions and including all effects of nucleon identity. Earlier forms of the optical potential equations are obtained as special cases. Particular emphasis is placed upon obtaining dynamical equations for the optical potential from the equations of Kouri, Levin, and Tobocman including all effects of particle identity

  15. Partial differential equations

    CERN Document Server

    Agranovich, M S

    2002-01-01

    Mark Vishik's Partial Differential Equations seminar held at Moscow State University was one of the world's leading seminars in PDEs for over 40 years. This book celebrates Vishik's eightieth birthday. It comprises new results and survey papers written by many renowned specialists who actively participated over the years in Vishik's seminars. Contributions include original developments and methods in PDEs and related fields, such as mathematical physics, tomography, and symplectic geometry. Papers discuss linear and nonlinear equations, particularly linear elliptic problems in angles and gener

  16. Nonlinear wave equations

    CERN Document Server

    Li, Tatsien

    2017-01-01

    This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.

  17. Intralesional immunotherapy with tuberculin purified protein derivative (PPD) in recalcitrant wart: A randomized, placebo-controlled, double-blind clinical trial including an extra group of candidates for cryotherapy.

    Science.gov (United States)

    Amirnia, Mehdi; Khodaeiani, Effat; Fouladi, Daniel F; Masoudnia, Sima

    2016-01-01

    Due to paucity of randomized clinical trials, intralesional immunotherapy has not been yet accepted as a standard therapeutic method. To examine the efficacy and safety of intralesional immunotherapy with tuberculin purified protein derivative (PPD) for treating recalcitrant wart. In this randomized, placebo-controlled, double-blind clinical trial, a total of 69 patients with recalcitrant warts received either intralesional PPD antigen (n = 35) or intralesional saline (n = 34) for six times at 2-week intervals. A third group of candidates for cryotherapy (n = 33) was also included. The decrease in lesion size (good: complete response, intermediate: 50-99% improvement, poor: PPD patients; 0%, 14.7% and 85.3% of the placebo patients and 18.2%, 33.3% and 48.5% of the cryotherapy patients, respectively (PPD versus placebo: p PPD versus cryotherapy: p PPD group. The recurrence rate was 8.6%, 5.9% and 24.2% in the PPD, placebo and cryotherapy groups, respectively (p > 0.05). Intralesional immunotherapy with PPD antigen is highly effective and safe for treating recalcitrant warts. IRCT201407089844N3 in the Iranian Registry of Clinical Trials (IRCT).

  18. The AGL equation from the dipole picture

    International Nuclear Information System (INIS)

    Gay Ducati, M.B.; Goncalves, V.P.

    1999-01-01

    The AGL equation includes all multiple pomeron exchanges in the double logarithmic approximation (DLA) limit, leading to a unitarized gluon distribution in the small x regime. This equation was originally obtained using the Glauber-Mueller approach. We demonstrate in this paper that the AGL equation and, consequently, the GLR equation, can also be obtained from the dipole picture in the double logarithmic limit, using an evolution equation, recently proposed, which includes all multiple pomeron exchanges in the leading logarithmic approximation. Our conclusion is that the AGL equation is a good candidate for a unitarized evolution equation at small x in the DLA limit

  19. Stochastic porous media equations

    CERN Document Server

    Barbu, Viorel; Röckner, Michael

    2016-01-01

    Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.

  20. Introduction to ordinary differential equations

    CERN Document Server

    Rabenstein, Albert L

    1966-01-01

    Introduction to Ordinary Differential Equations is a 12-chapter text that describes useful elementary methods of finding solutions using ordinary differential equations. This book starts with an introduction to the properties and complex variable of linear differential equations. Considerable chapters covered topics that are of particular interest in applications, including Laplace transforms, eigenvalue problems, special functions, Fourier series, and boundary-value problems of mathematical physics. Other chapters are devoted to some topics that are not directly concerned with finding solutio

  1. Neoclassical transport including collisional nonlinearity.

    Science.gov (United States)

    Candy, J; Belli, E A

    2011-06-10

    In the standard δf theory of neoclassical transport, the zeroth-order (Maxwellian) solution is obtained analytically via the solution of a nonlinear equation. The first-order correction δf is subsequently computed as the solution of a linear, inhomogeneous equation that includes the linearized Fokker-Planck collision operator. This equation admits analytic solutions only in extreme asymptotic limits (banana, plateau, Pfirsch-Schlüter), and so must be solved numerically for realistic plasma parameters. Recently, numerical codes have appeared which attempt to compute the total distribution f more accurately than in the standard ordering by retaining some nonlinear terms related to finite-orbit width, while simultaneously reusing some form of the linearized collision operator. In this work we show that higher-order corrections to the distribution function may be unphysical if collisional nonlinearities are ignored.

  2. Construction of Chained True Score Equipercentile Equatings under the Kernel Equating (KE) Framework and Their Relationship to Levine True Score Equating. Research Report. ETS RR-09-24

    Science.gov (United States)

    Chen, Haiwen; Holland, Paul

    2009-01-01

    In this paper, we develop a new chained equipercentile equating procedure for the nonequivalent groups with anchor test (NEAT) design under the assumptions of the classical test theory model. This new equating is named chained true score equipercentile equating. We also apply the kernel equating framework to this equating design, resulting in a…

  3. Extended rate equations

    International Nuclear Information System (INIS)

    Shore, B.W.

    1981-01-01

    The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence

  4. On Degenerate Partial Differential Equations

    OpenAIRE

    Chen, Gui-Qiang G.

    2010-01-01

    Some of recent developments, including recent results, ideas, techniques, and approaches, in the study of degenerate partial differential equations are surveyed and analyzed. Several examples of nonlinear degenerate, even mixed, partial differential equations, are presented, which arise naturally in some longstanding, fundamental problems in fluid mechanics and differential geometry. The solution to these fundamental problems greatly requires a deep understanding of nonlinear degenerate parti...

  5. Differential equations a concise course

    CERN Document Server

    Bear, H S

    2011-01-01

    Concise introduction for undergraduates includes, among other topics, a survey of first order equations, discussions of complex-valued solutions, linear differential operators, inverse operators and variation of parameters method, the Laplace transform, Picard's existence theorem, and an exploration of various interpretations of systems of equations. Numerous clearly stated theorems and proofs, examples, and problems followed by solutions.

  6. Generalized Fermat equations: A miscellany

    NARCIS (Netherlands)

    Bennett, M.A.; Chen, I.; Dahmen, S.R.; Yazdani, S.

    2015-01-01

    This paper is devoted to the generalized Fermat equation xp + yq = zr, where p, q and r are integers, and x, y and z are nonzero coprime integers. We begin by surveying the exponent triples (p, q, r), including a number of infinite families, for which the equation has been solved to date, detailing

  7. Introduction to partial differential equations

    CERN Document Server

    Borthwick, David

    2016-01-01

    This modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation, function spaces, and Fourier series, drawing on tools from analysis only as they arise.Within each section the author creates a narrative that answers the five questions: (1) What is the scientific problem we are trying to understand? (2) How do we model that with PDE? (3) What techniques can we use to analyze the PDE? (4) How do those techniques apply to this equation? (5) What information or insight did we obtain by developing and analyzing the PDE? The text stresses the interplay between modeling and mathematical analysis, providing a thorough source of problems and an inspiration for the development of methods.

  8. Analytic solutions of hydrodynamics equations

    International Nuclear Information System (INIS)

    Coggeshall, S.V.

    1991-01-01

    Many similarity solutions have been found for the equations of one-dimensional (1-D) hydrodynamics. These special combinations of variables allow the partial differential equations to be reduced to ordinary differential equations, which must then be solved to determine the physical solutions. Usually, these reduced ordinary differential equations are solved numerically. In some cases it is possible to solve these reduced equations analytically to obtain explicit solutions. In this work a collection of analytic solutions of the 1-D hydrodynamics equations is presented. These can be used for a variety of purposes, including (i) numerical benchmark problems, (ii) as a basis for analytic models, and (iii) to provide insight into more complicated solutions

  9. Differential equations methods and applications

    CERN Document Server

    Said-Houari, Belkacem

    2015-01-01

    This book presents a variety of techniques for solving ordinary differential equations analytically and features a wealth of examples. Focusing on the modeling of real-world phenomena, it begins with a basic introduction to differential equations, followed by linear and nonlinear first order equations and a detailed treatment of the second order linear equations. After presenting solution methods for the Laplace transform and power series, it lastly presents systems of equations and offers an introduction to the stability theory. To help readers practice the theory covered, two types of exercises are provided: those that illustrate the general theory, and others designed to expand on the text material. Detailed solutions to all the exercises are included. The book is excellently suited for use as a textbook for an undergraduate class (of all disciplines) in ordinary differential equations. .

  10. Integral equations and their applications

    CERN Document Server

    Rahman, M

    2007-01-01

    For many years, the subject of functional equations has held a prominent place in the attention of mathematicians. In more recent years this attention has been directed to a particular kind of functional equation, an integral equation, wherein the unknown function occurs under the integral sign. The study of this kind of equation is sometimes referred to as the inversion of a definite integral. While scientists and engineers can already choose from a number of books on integral equations, this new book encompasses recent developments including some preliminary backgrounds of formulations of integral equations governing the physical situation of the problems. It also contains elegant analytical and numerical methods, and an important topic of the variational principles. Primarily intended for senior undergraduate students and first year postgraduate students of engineering and science courses, students of mathematical and physical sciences will also find many sections of direct relevance. The book contains eig...

  11. On new and old symmetries of Maxwell and Dirac equations

    International Nuclear Information System (INIS)

    Fushchich, V.I.; Nikitin, A.G.

    1983-01-01

    Symmetry properties of the Maxwell equation for the electromagnetic field are analysed as well as of the Dirac and Kemmer-Duffin-Petiau one. In the frame of the non-geometrical approach it is demonstrated, that besides to the well-known invariance under the conformal group and Heaviside-Larmor-Rainich transformation, Maxwell equation possess the additional symmetry under the group U(2)xU(2) and under the 23-dimensional Lie algebra A 23 . The additional symmetry transformations are realized by the non-local (integro-differential) operators. The symmetry of the Dirac. equation under the differential and integro-differential transformations is investio.ated. It is shown that this equation is invariant under the 18-parametrical group, which includes the Poincare group as a subgroup. The 28-parametrical invariance group of the Kemmer-Duffin-Petiau equation is found. The finite conformal group transformations for a massless field of any spin are obtained. The explicit form of the conformal transformations for the electromagnetic field as well as for the Dirac and Weyl fields is given

  12. New Equating Methods and Their Relationships with Levine Observed Score Linear Equating under the Kernel Equating Framework

    Science.gov (United States)

    Chen, Haiwen; Holland, Paul

    2010-01-01

    In this paper, we develop a new curvilinear equating for the nonequivalent groups with anchor test (NEAT) design under the assumption of the classical test theory model, that we name curvilinear Levine observed score equating. In fact, by applying both the kernel equating framework and the mean preserving linear transformation of…

  13. Construction and analysis of a functional renormalization-group equation for gravitation in the Einstein-Cartan approach; Konstruktion und Analyse einer funktionalen Renormierungsgruppengleichung fuer Gravitation im Einstein-Cartan-Zugang

    Energy Technology Data Exchange (ETDEWEB)

    Daum, Jan-Eric

    2011-03-11

    Whereas the Standard Model of elementary particle physics represents a consistent, renormalizable quantum field theory of three of the four known interactions, the quantization of gravity still remains an unsolved problem. However, in recent years evidence for the asymptotic safety of gravity was provided. That means that also for gravity a quantum field theory can be constructed that is renormalizable in a generalized way which does not explicitly refer to perturbation theory. In addition, this approach, that is based on the Wilsonian renormalization group, predicts the correct microscopic action of the theory. In the classical framework, metric gravity is equivalent to the Einstein-Cartan theory on the level of the vacuum field equations. The latter uses the tetrad e and the spin connection {omega} as fundamental variables. However, this theory possesses more degrees of freedom, a larger gauge group, and its associated action is of first order. All these features make a treatment analogue to metric gravity much more difficult. In this thesis a three-dimensional truncation of the form of a generalized Hilbert-Palatini action is analyzed. Besides the running of Newton's constant G{sub k} and the cosmological constant {lambda}{sub k}, it also captures the renormalization of the Immirzi parameter {gamma}{sub k}. In spite of the mentioned difficulties, the spectrum of the free Hilbert-Palatini propagator can be computed analytically. On its basis, a proper time-like flow equation is constructed. Furthermore, appropriate gauge conditions are chosen and analyzed in detail. This demands a covariantization of the gauge transformations. The resulting flow is analyzed for different regularization schemes and gauge parameters. The results provide convincing evidence for asymptotic safety within the (e,{omega}) approach as well and therefore for the possible existence of a mathematically consistent and predictive fundamental quantum theory of gravity. In particular, one

  14. RAPP, a systematic e-assessment of postoperative recovery in patients undergoing day surgery: study protocol for a mixed-methods study design including a multicentre, two-group, parallel, single-blind randomised controlled trial and qualitative interview studies.

    Science.gov (United States)

    Nilsson, U; Jaensson, M; Dahlberg, K; Odencrants, S; Grönlund, Å; Hagberg, L; Eriksson, M

    2016-01-13

    Day surgery is a well-established practice in many European countries, but only limited information is available regarding postoperative recovery at home though there is a current lack of a standard procedure regarding postoperative follow-up. Furthermore, there is also a need for improvement of modern technology in assessing patient-related outcomes such as mobile applications. This article describes the Recovery Assessment by Phone Points (RAPP) study protocol, a mixed-methods study to evaluate if a systematic e-assessment follow-up in patients undergoing day surgery is cost-effective and improves postoperative recovery, health and quality of life. This study has a mixed-methods study design that includes a multicentre, two-group, parallel, single-blind randomised controlled trial and qualitative interview studies. 1000 patients >17 years of age who are undergoing day surgery will be randomly assigned to either e-assessed postoperative recovery follow-up daily in 14 days measured via smartphone app including the Swedish web-version of Quality of Recovery (SwQoR) or to standard care (ie, no follow-up). The primary aim is cost-effectiveness. Secondary aims are (A) to explore whether a systematic e-assessment follow-up after day surgery has a positive effect on postoperative recovery, health-related quality of life (QoL) and overall health; (B) to determine whether differences in postoperative recovery have an association with patient characteristic, type of surgery and anaesthesia; (C) to determine whether differences in health literacy have a substantial and distinct effect on postoperative recovery, health and QoL; and (D) to describe day surgery patient and staff experiences with a systematic e-assessment follow-up after day surgery.The primary aim will be measured at 2 weeks postoperatively and secondary outcomes (A-C) at 1 and 2 weeks and (D) at 1 and 4 months. NCT02492191; Pre-results. Published by the BMJ Publishing Group Limited. For permission to use

  15. Electroweak evolution equations

    International Nuclear Information System (INIS)

    Ciafaloni, Paolo; Comelli, Denis

    2005-01-01

    Enlarging a previous analysis, where only fermions and transverse gauge bosons were taken into account, we write down infrared-collinear evolution equations for the Standard Model of electroweak interactions computing the full set of splitting functions. Due to the presence of double logs which are characteristic of electroweak interactions (Bloch-Nordsieck violation), new infrared singular splitting functions have to be introduced. We also include corrections related to the third generation Yukawa couplings

  16. Differential equations with Mathematica

    CERN Document Server

    Abell, Martha L

    2004-01-01

    The Third Edition of the Differential Equations with Mathematica integrates new applications from a variety of fields,especially biology, physics, and engineering. The new handbook is also completely compatible with recent versions of Mathematica and is a perfect introduction for Mathematica beginners.* Focuses on the most often used features of Mathematica for the beginning Mathematica user* New applications from a variety of fields, including engineering, biology, and physics* All applications were completed using recent versions of Mathematica

  17. Gauge invariance and equations of motion for closed string modes

    Directory of Open Access Journals (Sweden)

    B. Sathiapalan

    2014-12-01

    Full Text Available We continue earlier discussions on loop variables and the exact renormalization group on the string world sheet for closed and open string backgrounds. The world sheet action with a UV regulator is written in a generally background covariant way by introducing a background metric. It is shown that the renormalization group gives background covariant equations of motion – this is the gauge invariance of the graviton. Interaction is written in terms of gauge invariant and generally covariant field strength tensors. The basic idea is to work in Riemann normal coordinates and covariantize the final equation. It turns out that the equations for massive modes are gauge invariant only if the space–time curvature of the (arbitrary background is zero. The exact RG equations give quadratic equations of motion for all the modes including the physical graviton. The level (2,2¯ massive field equations are used to illustrate the techniques. At this level there are mixed symmetry tensors. Gauge invariant interacting equations can be written down. In flat space an action can also be written for the free theory.

  18. Skew differential fields, differential and difference equations

    NARCIS (Netherlands)

    van der Put, M

    2004-01-01

    The central question is: Let a differential or difference equation over a field K be isomorphic to all its Galois twists w.r.t. the group Gal(K/k). Does the equation descend to k? For a number of categories of equations an answer is given.

  19. Differential equations a dynamical systems approach ordinary differential equations

    CERN Document Server

    Hubbard, John H

    1991-01-01

    This is a corrected third printing of the first part of the text Differential Equations: A Dynamical Systems Approach written by John Hubbard and Beverly West. The authors' main emphasis in this book is on ordinary differential equations. The book is most appropriate for upper level undergraduate and graduate students in the fields of mathematics, engineering, and applied mathematics, as well as the life sciences, physics and economics. Traditional courses on differential equations focus on techniques leading to solutions. Yet most differential equations do not admit solutions which can be written in elementary terms. The authors have taken the view that a differential equations defines functions; the object of the theory is to understand the behavior of these functions. The tools the authors use include qualitative and numerical methods besides the traditional analytic methods. The companion software, MacMath, is designed to bring these notions to life.

  20. Galois theory of difference equations

    CERN Document Server

    Put, Marius

    1997-01-01

    This book lays the algebraic foundations of a Galois theory of linear difference equations and shows its relationship to the analytic problem of finding meromorphic functions asymptotic to formal solutions of difference equations. Classically, this latter question was attacked by Birkhoff and Tritzinsky and the present work corrects and greatly generalizes their contributions. In addition results are presented concerning the inverse problem in Galois theory, effective computation of Galois groups, algebraic properties of sequences, phenomena in positive characteristics, and q-difference equations. The book is aimed at advanced graduate researchers and researchers.

  1. Equating error in observed-score equating

    NARCIS (Netherlands)

    van der Linden, Willem J.

    2006-01-01

    Traditionally, error in equating observed scores on two versions of a test is defined as the difference between the transformations that equate the quantiles of their distributions in the sample and population of test takers. But it is argued that if the goal of equating is to adjust the scores of

  2. Numerical solution of the point reactor kinetics equations with fuel burn-up and temperature feedback

    International Nuclear Information System (INIS)

    Tashakor, S.; Jahanfarnia, G.; Hashemi-Tilehnoee, M.

    2010-01-01

    Point reactor kinetics equations are solved numerically using one group of delayed neutrons and with fuel burn-up and temperature feedback included. To calculate the fraction of one-group delayed neutrons, a group of differential equations are solved by an implicit time method. Using point reactor kinetics equations, changes in mean neutrons density, temperature, and reactivity are calculated in different times during the reactor operation. The variation of reactivity, temperature, and maximum power with time are compared with the predictions by other methods.

  3. Dynamic modeling of interfacial structures via interfacial area transport equation

    International Nuclear Information System (INIS)

    Seungjin, Kim; Mamoru, Ishii

    2005-01-01

    The interfacial area transport equation dynamically models the two-phase flow regime transitions and predicts continuous change of the interfacial area concentration along the flow field. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport phenomena of various sizes of bubbles, the two-group interfacial area transport equations have been developed. The group 1 equation describes the transport of small-dispersed bubbles that are either distorted or spherical in shapes, and the group 2 equation describes the transport of large cap, slug or churn-turbulent bubbles. The source and sink terms in the right-hand-side of the transport equations have been established by mechanistically modeling the creation and destruction of bubbles due to major bubble interaction mechanisms. In the present paper, the interfacial area transport equations currently available are reviewed to address the feasibility and reliability of the model along with extensive experimental results. These include the data from adiabatic upward air-water two-phase flow in round tubes of various sizes, from a rectangular duct, and from adiabatic co-current downward air-water two-phase flow in round pipes of two sizes. (authors)

  4. Symbolic Detection of Permutation and Parity Symmetries of Evolution Equations

    KAUST Repository

    Alghamdi, Moataz

    2017-06-18

    We introduce a symbolic computational approach to detecting all permutation and parity symmetries in any general evolution equation, and to generating associated invariant polynomials, from given monomials, under the action of these symmetries. Traditionally, discrete point symmetries of differential equations are systemically found by solving complicated nonlinear systems of partial differential equations; in the presence of Lie symmetries, the process can be simplified further. Here, we show how to find parity- and permutation-type discrete symmetries purely based on algebraic calculations. Furthermore, we show that such symmetries always form groups, thereby allowing for the generation of new group-invariant conserved quantities from known conserved quantities. This work also contains an implementation of the said results in Mathematica. In addition, it includes, as a motivation for this work, an investigation of the connection between variational symmetries, described by local Lie groups, and conserved quantities in Hamiltonian systems.

  5. Exact solutions to sine-Gordon-type equations

    International Nuclear Information System (INIS)

    Liu Shikuo; Fu Zuntao; Liu Shida

    2006-01-01

    In this Letter, sine-Gordon-type equations, including single sine-Gordon equation, double sine-Gordon equation and triple sine-Gordon equation, are systematically solved by Jacobi elliptic function expansion method. It is shown that different transformations for these three sine-Gordon-type equations play different roles in obtaining exact solutions, some transformations may not work for a specific sine-Gordon equation, while work for other sine-Gordon equations

  6. Symmetry breaking and uniqueness for the incompressible Navier-Stokes equations

    International Nuclear Information System (INIS)

    Dascaliuc, Radu; Thomann, Enrique; Waymire, Edward C.; Michalowski, Nicholas

    2015-01-01

    The present article establishes connections between the structure of the deterministic Navier-Stokes equations and the structure of (similarity) equations that govern self-similar solutions as expected values of certain naturally associated stochastic cascades. A principle result is that explosion criteria for the stochastic cascades involved in the probabilistic representations of solutions to the respective equations coincide. While the uniqueness problem itself remains unresolved, these connections provide interesting problems and possible methods for investigating symmetry breaking and the uniqueness problem for Navier-Stokes equations. In particular, new branching Markov chains, including a dilogarithmic branching random walk on the multiplicative group (0, ∞), naturally arise as a result of this investigation

  7. Symmetry breaking and uniqueness for the incompressible Navier-Stokes equations.

    Science.gov (United States)

    Dascaliuc, Radu; Michalowski, Nicholas; Thomann, Enrique; Waymire, Edward C

    2015-07-01

    The present article establishes connections between the structure of the deterministic Navier-Stokes equations and the structure of (similarity) equations that govern self-similar solutions as expected values of certain naturally associated stochastic cascades. A principle result is that explosion criteria for the stochastic cascades involved in the probabilistic representations of solutions to the respective equations coincide. While the uniqueness problem itself remains unresolved, these connections provide interesting problems and possible methods for investigating symmetry breaking and the uniqueness problem for Navier-Stokes equations. In particular, new branching Markov chains, including a dilogarithmic branching random walk on the multiplicative group (0, ∞), naturally arise as a result of this investigation.

  8. International Workshop on Elliptic and Parabolic Equations

    CERN Document Server

    Schrohe, Elmar; Seiler, Jörg; Walker, Christoph

    2015-01-01

    This volume covers the latest research on elliptic and parabolic equations and originates from the international Workshop on Elliptic and Parabolic Equations, held September 10-12, 2013 at the Leibniz Universität Hannover. It represents a collection of refereed research papers and survey articles written by eminent scientist on advances in different fields of elliptic and parabolic partial differential equations, including singular Riemannian manifolds, spectral analysis on manifolds, nonlinear dispersive equations, Brownian motion and kernel estimates, Euler equations, porous medium type equations, pseudodifferential calculus, free boundary problems, and bifurcation analysis.

  9. Fundamental equations for two-phase flow. Part 1: general conservation equations. Part 2: complement and remarks

    International Nuclear Information System (INIS)

    Delhaye, J.M.

    1968-12-01

    This report deals with the general equations of mass conservation, of momentum conservation, and energy conservation in the case of a two-phase flow. These equations are presented in several forms starting from integral equations which are assumed initially a priori. 1. Equations with local instantaneous variables, and interfacial conditions; 2. Equations with mean instantaneous variables in a cross-section, and practical applications: these equations include an important experimental value which is the ratio of the cross-section of passage of one phase to the total cross-section of a flow-tube. 3. Equations with a local statistical mean, and equations averaged over a period of time: A more advanced attempt to relate theory and experiment consists in taking the statistical averages of local equations. Equations are then obtained involving variables which are averaged over a period of time with the help of an ergodic assumption. 4. Combination of statistical averages and averages over a cross-section: in this study are considered the local variables averaged statistically, then averaged over the cross-section, and also the variables averaged over the section and then averaged statistically. 5. General equations concerning emulsions: In this case a phase exists in a locally very finely divided form. This peculiarity makes it possible to define a volume concentration, and to draw up equations which have numerous applications. - Certain points arising in the first part of this report concerning general mass conservation equations for two-phase flow have been completed and clarified. The terms corresponding to the interfacial tension have been introduced into the general equations. The interfacial conditions have thus been generalized. A supplementary step has still to be carried out: it has, in effect, been impossible to take the interfacial tension into account in the case of emulsions. It was then appeared interesting to compare this large group of fundamental

  10. The Dirac equation

    International Nuclear Information System (INIS)

    Thaller, B.

    1992-01-01

    This monograph treats most of the usual material to be found in texts on the Dirac equation such as the basic formalism of quantum mechanics, representations of Dirac matrices, covariant realization of the Dirac equation, interpretation of negative energies, Foldy-Wouthuysen transformation, Klein's paradox, spherically symmetric interactions and a treatment of the relativistic hydrogen atom, etc., and also provides excellent additional treatments of a variety of other relevant topics. The monograph contains an extensive treatment of the Lorentz and Poincare groups and their representations. The author discusses in depth Lie algebaic and projective representations, covering groups, and Mackey's theory and Wigner's realization of induced representations. A careful classification of external fields with respect to their behavior under Poincare transformations is supplemented by a basic account of self-adjointness and spectral properties of Dirac operators. A state-of-the-art treatment of relativistic scattering theory based on a time-dependent approach originally due to Enss is presented. An excellent introduction to quantum electrodynamics in external fields is provided. Various appendices containing further details, notes on each chapter commenting on the history involved and referring to original research papers and further developments in the literature, and a bibliography covering all relevant monographs and over 500 articles on the subject, complete this text. This book should satisfy the needs of a wide audience, ranging from graduate students in theoretical physics and mathematics to researchers interested in mathematical physics

  11. Quantum-statistical kinetic equations

    International Nuclear Information System (INIS)

    Loss, D.; Schoeller, H.

    1989-01-01

    Considering a homogeneous normal quantum fluid consisting of identical interacting fermions or bosons, the authors derive an exact quantum-statistical generalized kinetic equation with a collision operator given as explicit cluster series where exchange effects are included through renormalized Liouville operators. This new result is obtained by applying a recently developed superoperator formalism (Liouville operators, cluster expansions, symmetrized projectors, P q -rule, etc.) to nonequilibrium systems described by a density operator ρ(t) which obeys the von Neumann equation. By means of this formalism a factorization theorem is proven (being essential for obtaining closed equations), and partial resummations (leading to renormalized quantities) are performed. As an illustrative application, the quantum-statistical versions (including exchange effects due to Fermi-Dirac or Bose-Einstein statistics) of the homogeneous Boltzmann (binary collisions) and Choh-Uhlenbeck (triple collisions) equations are derived

  12. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific O pinion Flavouring Group Evaluation 23, Revision 4 (FGE.23Rev4): Aliphatic, alicyclic and aromatic ethers including anisole derivatives from chemical groups 15, 16, 22, 26 and 30

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 21 flavouring substances in the Flavouring Group Evaluation 23, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. This revision i...... also been considered. Specifications including complete purity criteria and identity for the materials of commerce have been provided for all 21 candidate substances. © European Food Safety Authority, 2013......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 21 flavouring substances in the Flavouring Group Evaluation 23, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. This revision...

  13. Quantized Lax equations and their solutions

    CERN Document Server

    Jurco, B

    1997-01-01

    Integrable systems on quantum groups are investigated. The Heisenberg equations possessing the Lax form are solved in terms of the solution to the factorization problem on the corresponding quantum group.

  14. A Comparison between Linear IRT Observed-Score Equating and Levine Observed-Score Equating under the Generalized Kernel Equating Framework

    Science.gov (United States)

    Chen, Haiwen

    2012-01-01

    In this article, linear item response theory (IRT) observed-score equating is compared under a generalized kernel equating framework with Levine observed-score equating for nonequivalent groups with anchor test design. Interestingly, these two equating methods are closely related despite being based on different methodologies. Specifically, when…

  15. Chemical Equation Balancing.

    Science.gov (United States)

    Blakley, G. R.

    1982-01-01

    Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)

  16. On a complex differential Riccati equation

    International Nuclear Information System (INIS)

    Khmelnytskaya, Kira V; Kravchenko, Vladislav V

    2008-01-01

    We consider a nonlinear partial differential equation for complex-valued functions which is related to the two-dimensional stationary Schroedinger equation and enjoys many properties similar to those of the ordinary differential Riccati equation such as the famous Euler theorems, the Picard theorem and others. Besides these generalizations of the classical 'one-dimensional' results, we discuss new features of the considered equation including an analogue of the Cauchy integral theorem

  17. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 23, Revision 3 (FGE.23Rev3): Aliphatic, alicyclic and aromatic ethers including anisole derivatives from chemical groups 15, 16, 22, 26 and 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 20 flavouring substances in the Flavouring Group Evaluation 23, Revision 3, using the Procedure in Commission Regulation (EC) No 1565/2000. None...... of the MSDI approach. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered. Specifications including complete purity criteria and identity for the materials of commerce have been provided for all 20 candidate substances....

  18. Ordinary differential equations

    CERN Document Server

    Cox, William

    1995-01-01

    Building on introductory calculus courses, this text provides a sound foundation in the underlying principles of ordinary differential equations. Important concepts, including uniqueness and existence theorems, are worked through in detail and the student is encouraged to develop much of the routine material themselves, thus helping to ensure a solid understanding of the fundamentals required.The wide use of exercises, problems and self-assessment questions helps to promote a deeper understanding of the material and it is developed in such a way that it lays the groundwork for further

  19. Exact Solutions to Nonlinear Schroedinger Equation and Higher-Order Nonlinear Schroedinger Equation

    International Nuclear Information System (INIS)

    Ren Ji; Ruan Hangyu

    2008-01-01

    We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Schroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new dependent variable, the NLSE and HONLSE can be changed into one equation. Using the generalized Lie group reduction method (GLGRM), the abundant solutions of NLSE and HONLSE are obtained

  20. Neoclassical MHD equations for tokamaks

    International Nuclear Information System (INIS)

    Callen, J.D.; Shaing, K.C.

    1986-03-01

    The moment equation approach to neoclassical-type processes is used to derive the flows, currents and resistive MHD-like equations for studying equilibria and instabilities in axisymmetric tokamak plasmas operating in the banana-plateau collisionality regime (ν* approx. 1). The resultant ''neoclassical MHD'' equations differ from the usual reduced equations of resistive MHD primarily by the addition of the important viscous relaxation effects within a magnetic flux surface. The primary effects of the parallel (poloidal) viscous relaxation are: (1) Rapid (approx. ν/sub i/) damping of the poloidal ion flow so the residual flow is only toroidal; (2) addition of the bootstrap current contribution to Ohm's laws; and (3) an enhanced (by B 2 /B/sub theta/ 2 ) polarization drift type term and consequent enhancement of the perpendicular dielectric constant due to parallel flow inertia, which causes the equations to depend only on the poloidal magnetic field B/sub theta/. Gyroviscosity (or diamagnetic vfiscosity) effects are included to properly treat the diamagnetic flow effects. The nonlinear form of the neoclassical MHD equations is derived and shown to satisfy an energy conservation equation with dissipation arising from Joule and poloidal viscous heating, and transport due to classical and neoclassical diffusion

  1. A Photon Free Method to Solve Radiation Transport Equations

    International Nuclear Information System (INIS)

    Chang, B

    2006-01-01

    The multi-group discrete-ordinate equations of radiation transfer is solved for the first time by Newton's method. It is a photon free method because the photon variables are eliminated from the radiation equations to yield a N group XN direction smaller but equivalent system of equations. The smaller set of equations can be solved more efficiently than the original set of equations. Newton's method is more stable than the Semi-implicit Linear method currently used by conventional radiation codes

  2. Introduction to the functional renormalization group

    International Nuclear Information System (INIS)

    Kopietz, Peter; Bartosch, Lorenz; Schuetz, Florian

    2010-01-01

    This book, based on a graduate course given by the authors, is a pedagogic and self-contained introduction to the renormalization group with special emphasis on the functional renormalization group. The functional renormalization group is a modern formulation of the Wilsonian renormalization group in terms of formally exact functional differential equations for generating functionals. In Part I the reader is introduced to the basic concepts of the renormalization group idea, requiring only basic knowledge of equilibrium statistical mechanics. More advanced methods, such as diagrammatic perturbation theory, are introduced step by step. Part II then gives a self-contained introduction to the functional renormalization group. After a careful definition of various types of generating functionals, the renormalization group flow equations for these functionals are derived. This procedure is shown to encompass the traditional method of the mode elimination steps of the Wilsonian renormalization group procedure. Then, approximate solutions of these flow equations using expansions in powers of irreducible vertices or in powers of derivatives are given. Finally, in Part III the exact hierarchy of functional renormalization group flow equations for the irreducible vertices is used to study various aspects of non-relativistic fermions, including the so-called BCS-BEC crossover, thereby making the link to contemporary research topics. (orig.)

  3. Functional analysis in the study of differential and integral equations

    International Nuclear Information System (INIS)

    Sell, G.R.

    1976-01-01

    This paper illustrates the use of functional analysis in the study of differential equations. Our particular starting point, the theory of flows or dynamical systems, originated with the work of H. Poincare, who is the founder of the qualitative theory of ordinary differential equations. In the qualitative theory one tries to describe the behaviour of a solution, or a collection of solutions, without ''solving'' the differential equation. As a starting point one assumes the existence, and sometimes the uniqueness, of solutions and then one tries to describe the asymptotic behaviour, as time t→+infinity, of these solutions. We compare the notion of a flow with that of a C 0 -group of bounded linear operators on a Banach space. We shall show how the concept C 0 -group, or more generally a C 0 -semigroup, can be used to study the behaviour of solutions of certain differential and integral equations. Our main objective is to show how the concept of a C 0 -group and especially the notion of weak-compactness can be used to prove the existence of an invariant measure for a flow on a compact Hausdorff space. Applications to the theory of ordinary differential equations are included. (author)

  4. Introduction to differential equations

    CERN Document Server

    Taylor, Michael E

    2011-01-01

    The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponen

  5. Nonlinear evolution equations

    CERN Document Server

    Uraltseva, N N

    1995-01-01

    This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p

  6. Wave equations for pulse propagation

    International Nuclear Information System (INIS)

    Shore, B.W.

    1987-01-01

    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation

  7. A Comparison of Kernel Equating and Traditional Equipercentile Equating Methods and the Parametric Bootstrap Methods for Estimating Standard Errors in Equipercentile Equating

    Science.gov (United States)

    Choi, Sae Il

    2009-01-01

    This study used simulation (a) to compare the kernel equating method to traditional equipercentile equating methods under the equivalent-groups (EG) design and the nonequivalent-groups with anchor test (NEAT) design and (b) to apply the parametric bootstrap method for estimating standard errors of equating. A two-parameter logistic item response…

  8. A 3.0-kb deletion including an erythroid cell-specific regulatory element in intron 1 of the ABO blood group gene in an individual with the Bm phenotype.

    Science.gov (United States)

    Sano, R; Kuboya, E; Nakajima, T; Takahashi, Y; Takahashi, K; Kubo, R; Kominato, Y; Takeshita, H; Yamao, H; Kishida, T; Isa, K; Ogasawara, K; Uchikawa, M

    2015-04-01

    We developed a sequence-specific primer PCR (SSP-PCR) for detection of a 5.8-kb deletion (B(m) 5.8) involving an erythroid cell-specific regulatory element in intron 1 of the ABO blood group gene. Using this SSP-PCR, we performed genetic analysis of 382 individuals with Bm or ABm. The 5.8-kb deletion was found in 380 individuals, and disruption of the GATA motif in the regulatory element was found in one individual. Furthermore, a novel 3.0-kb deletion involving the element (B(m) 3.0) was demonstrated in the remaining individual. Comparisons of single-nucleotide polymorphisms and microsatellites in intron 1 between B(m) 5.8 and B(m) 3.0 suggested that these deletions occurred independently. © 2014 International Society of Blood Transfusion.

  9. Application of the Akinfiev-Diamond equation of state to neutral hydroxides of metalloids (B(OH)3, Si(OH)4, As(OH)3) at infinite dilution in water over a wide range of the state parameters, including steam conditions

    Science.gov (United States)

    Akinfiev, Nikolay N.; Plyasunov, Andrey V.

    2014-02-01

    The Akinfiev and Diamond (2003) equation of state (EoS) for aqueous nonelectrolytes was employed to describe hydroxides of metalloids (B(OH)3, Si(OH)4, As(OH)3) over a wide temperature and pressure ranges, including steam conditions. The EoS is based on the accurate knowledge of solvent (H2O) properties and requires only three empirical parameters to be fitted to experimental data, and these are independent of temperature and pressure. For nonvolatile components thermodynamic properties of species in the ideal gas state were evaluated using quantum chemical computations. The proposed approach has been tested to predict the whole set of thermodynamic properties of solutes (the chemical potential, entropy, molar volume, and molar heat capacity) over a wide range of temperatures (273-1200 K) and pressures (0.1-1000 MPa), including the near-critical region and both low and high density regions of the solvent. Thus it can be used for modeling various geochemical processes over a whole range of solvent densities, including processes in boiling fluids and a vapor phase as well. solubility data in a low density aqueous fluid (ρ1∗ 1 mol kg-1) where polymerization effects may take place (Newton and Manning, 2003); the rest of data, containing the majority of quartz solubility points at 293-1273 K, 0.1-1000 MPa. Only the 3rd part of experimental quartz solubility data has been used in the fitting procedure. Thermodynamic properties of Si(OH)4 in the ideal gas state were recently determined by the analysis of the relevant experimental data in Plyasunov (2011b). The temperature dependence of heat capacity of the molecule was adopted from comprehensive study of Rutz and Bockhorn (2005)where DFT calculations at different levels of theory including CBS-QBS and G3MP2 methods, as well as corrections for hindered rotations and scaling for vibration frequencies were employed. The adopted Cpo (T = 300-1500 K) values for gaseous Si(OH)4 were approximated by a function and used in the

  10. Numerical methods for differential equations and applications

    International Nuclear Information System (INIS)

    Ixaru, L.G.

    1984-01-01

    This book is addressed to persons who, without being professionals in applied mathematics, are often faced with the problem of numerically solving differential equations. In each of the first three chapters a definite class of methods is discussed for the solution of the initial value problem for ordinary differential equations: multistep methods; one-step methods; and piecewise perturbation methods. The fourth chapter is mainly focussed on the boundary value problems for linear second-order equations, with a section devoted to the Schroedinger equation. In the fifth chapter the eigenvalue problem for the radial Schroedinger equation is solved in several ways, with computer programs included. (Auth.)

  11. Theory including future not excluded

    DEFF Research Database (Denmark)

    Nagao, K.; Nielsen, H.B.

    2013-01-01

    We study a complex action theory (CAT) whose path runs over not only past but also future. We show that, if we regard a matrix element defined in terms of the future state at time T and the past state at time TA as an expectation value in the CAT, then we are allowed to have the Heisenberg equation......, Ehrenfest's theorem, and the conserved probability current density. In addition,we showthat the expectation value at the present time t of a future-included theory for large T - t and large t - T corresponds to that of a future-not-included theory with a proper inner product for large t - T. Hence, the CAT...

  12. Benney's long wave equations

    International Nuclear Information System (INIS)

    Lebedev, D.R.

    1979-01-01

    Benney's equations of motion of incompressible nonviscous fluid with free surface in the approximation of long waves are analyzed. The connection between the Lie algebra of Hamilton plane vector fields and the Benney's momentum equations is shown

  13. Dynamic modeling of interfacial structures via interfacial area transport equation

    International Nuclear Information System (INIS)

    Seungjin, Kim; Mamoru, Ishii

    2004-01-01

    Full text of publication follows:In the current thermal-hydraulic system analysis codes using the two-fluid model, the empirical correlations that are based on the two-phase flow regimes and regime transition criteria are being employed as closure relations for the interfacial transfer terms. Due to its inherent shortcomings, however, such static correlations are inaccurate and present serious problems in the numerical analysis. In view of this, a new dynamic approach employing the interfacial area transport equation has been studied. The interfacial area transport equation dynamically models the two-phase flow regime transitions and predicts continuous change of the interfacial area concentration along the flow field. Hence, when employed in the thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Therefore, the interfacial area transport equation can make a leapfrog improvement in the current capability of the two-fluid model from both scientific and practical point of view. Accounting for the substantial differences in the transport phenomena of various sizes of bubbles, the two-group interfacial area transport equations have been developed. The group 1 equation describes the transport of small-dispersed bubbles that are either distorted or spherical in shapes, and the group 2 equation describes the transport of large cap, slug or churn-turbulent bubbles. The source and sink terms in the right hand-side of the transport equations have been established by mechanistically modeling the creation and destruction of bubbles due to major bubble interaction mechanisms. The coalescence mechanisms include the random collision driven by turbulence, and the entrainment of trailing bubbles in the wake region of the preceding bubble. The disintegration mechanisms include the break-up by turbulence impact, shearing-off at the rim of large cap bubbles and the break-up of large cap

  14. INVARIANTS OF GENERALIZED RAPOPORT-LEAS EQUATIONS

    Directory of Open Access Journals (Sweden)

    Elena N. Kushner

    2018-01-01

    Full Text Available For the generalized Rapoport-Leas equations, algebra of differential invariants is constructed with respect to point transformations, that is, transformations of independent and dependent variables. The finding of a general transformation of this type reduces to solving an extremely complicated functional equation. Therefore, following the approach of Sophus Lie, we restrict ourselves to the search for infinitesimal transformations which are generated by translations along the trajectories of vector fields. The problem of finding these vector fields reduces to the redefined system decision of linear differential equations with respect to their coefficients. The Rapoport-Leas equations arise in the study of nonlinear filtration processes in porous media, as well as in other areas of natural science: for example, these equations describe various physical phenomena: two-phase filtration in a porous medium, filtration of a polytropic gas, and propagation of heat at nuclear explosion. They are vital topic for research: in recent works of Bibikov, Lychagin, and others, the analysis of the symmetries of the generalized Rapoport-Leas equations has been carried out; finite-dimensional dynamics and conditions of attractors existence have been found. Since the generalized RapoportLeas equations are nonlinear partial differential equations of the second order with two independent variables; the methods of the geometric theory of differential equations are used to study them in this paper. According to this theory differential equations generate subvarieties in the space of jets. This makes it possible to use the apparatus of modern differential geometry to study differential equations. We introduce the concept of admissible transformations, that is, replacements of variables that do not derive equations outside the class of the Rapoport-Leas equations. Such transformations form a Lie group. For this Lie group there are differential invariants that separate

  15. Partial differential equations an introduction

    CERN Document Server

    Colton, David

    2004-01-01

    Intended for a college senior or first-year graduate-level course in partial differential equations, this text offers students in mathematics, engineering, and the applied sciences a solid foundation for advanced studies in mathematics. Classical topics presented in a modern context include coverage of integral equations and basic scattering theory. This complete and accessible treatment includes a variety of examples of inverse problems arising from improperly posed applications. Exercises at the ends of chapters, many with answers, offer a clear progression in developing an understanding of

  16. A Note of Extended Proca Equations and Superconductivity

    Directory of Open Access Journals (Sweden)

    Christianto V.

    2009-01-01

    Full Text Available It has been known for quite long time that the electrodynamics of Maxwell equations can be extended and generalized further into Proca equations. The implications of in- troducing Proca equations include an alternative description of superconductivity, via extending London equations. In the light of another paper suggesting that Maxwell equations can be written using quaternion numbers, then we discuss a plausible exten- sion of Proca equation using biquaternion number. Further implications and experi- ments are recommended.

  17. Fractional Schroedinger equation

    International Nuclear Information System (INIS)

    Laskin, Nick

    2002-01-01

    Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations

  18. Ordinary differential equations

    CERN Document Server

    Greenberg, Michael D

    2014-01-01

    Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps

  19. Stationary axisymmetric Einstein--Maxwell field equations

    International Nuclear Information System (INIS)

    Catenacci, R.; Diaz Alonso, J.

    1976-01-01

    We show the existence of a formal identity between Einstein's and Ernst's stationary axisymmetric gravitational field equations and the Einstein--Maxwell and the Ernst equations for the electrostatic and magnetostatic axisymmetric cases. Our equations are invariant under very simple internal symmetry groups, and one of them appears to be new. We also obtain a method for associating two stationary axisymmetric vacuum solutions with every electrostatic known

  20. Averaged RMHD equations

    International Nuclear Information System (INIS)

    Ichiguchi, Katsuji

    1998-01-01

    A new reduced set of resistive MHD equations is derived by averaging the full MHD equations on specified flux coordinates, which is consistent with 3D equilibria. It is confirmed that the total energy is conserved and the linearized equations for ideal modes are self-adjoint. (author)

  1. Fundamental equations for two-phase flow. Part 1: general conservation equations. Part 2: complement and remarks; Equations fondamentales des ecoulements diphasiques. Premiere partie: equations generales de conservation. Deuxieme partie: complements et remarques

    Energy Technology Data Exchange (ETDEWEB)

    Delhaye, J M [Commissariat a l' Energie Atomique, 38 - Grenoble (France). Centre d' Etudes Nucleaires

    1968-12-01

    This report deals with the general equations of mass conservation, of momentum conservation, and energy conservation in the case of a two-phase flow. These equations are presented in several forms starting from integral equations which are assumed initially a priori. 1. Equations with local instantaneous variables, and interfacial conditions; 2. Equations with mean instantaneous variables in a cross-section, and practical applications: these equations include an important experimental value which is the ratio of the cross-section of passage of one phase to the total cross-section of a flow-tube. 3. Equations with a local statistical mean, and equations averaged over a period of time: A more advanced attempt to relate theory and experiment consists in taking the statistical averages of local equations. Equations are then obtained involving variables which are averaged over a period of time with the help of an ergodic assumption. 4. Combination of statistical averages and averages over a cross-section: in this study are considered the local variables averaged statistically, then averaged over the cross-section, and also the variables averaged over the section and then averaged statistically. 5. General equations concerning emulsions: In this case a phase exists in a locally very finely divided form. This peculiarity makes it possible to define a volume concentration, and to draw up equations which have numerous applications. - Certain points arising in the first part of this report concerning general mass conservation equations for two-phase flow have been completed and clarified. The terms corresponding to the interfacial tension have been introduced into the general equations. The interfacial conditions have thus been generalized. A supplementary step has still to be carried out: it has, in effect, been impossible to take the interfacial tension into account in the case of emulsions. It was then appeared interesting to compare this large group of fundamental

  2. Fundamental equations for two-phase flow. Part 1: general conservation equations. Part 2: complement and remarks; Equations fondamentales des ecoulements diphasiques. Premiere partie: equations generales de conservation. Deuxieme partie: complements et remarques

    Energy Technology Data Exchange (ETDEWEB)

    Delhaye, J.M. [Commissariat a l' Energie Atomique, 38 - Grenoble (France). Centre d' Etudes Nucleaires

    1968-12-01

    This report deals with the general equations of mass conservation, of momentum conservation, and energy conservation in the case of a two-phase flow. These equations are presented in several forms starting from integral equations which are assumed initially a priori. 1. Equations with local instantaneous variables, and interfacial conditions; 2. Equations with mean instantaneous variables in a cross-section, and practical applications: these equations include an important experimental value which is the ratio of the cross-section of passage of one phase to the total cross-section of a flow-tube. 3. Equations with a local statistical mean, and equations averaged over a period of time: A more advanced attempt to relate theory and experiment consists in taking the statistical averages of local equations. Equations are then obtained involving variables which are averaged over a period of time with the help of an ergodic assumption. 4. Combination of statistical averages and averages over a cross-section: in this study are considered the local variables averaged statistically, then averaged over the cross-section, and also the variables averaged over the section and then averaged statistically. 5. General equations concerning emulsions: In this case a phase exists in a locally very finely divided form. This peculiarity makes it possible to define a volume concentration, and to draw up equations which have numerous applications. - Certain points arising in the first part of this report concerning general mass conservation equations for two-phase flow have been completed and clarified. The terms corresponding to the interfacial tension have been introduced into the general equations. The interfacial conditions have thus been generalized. A supplementary step has still to be carried out: it has, in effect, been impossible to take the interfacial tension into account in the case of emulsions. It was then appeared interesting to compare this large group of fundamental

  3. Deformation of the exterior algebra and the GLq (r, included in) algebra

    International Nuclear Information System (INIS)

    El Hassouni, A.; Hassouni, Y.; Zakkari, M.

    1993-06-01

    The deformation of the associative algebra of exterior forms is performed. This operation leads to a Y.B. equation. Its relation with the braid group B n-1 is analyzed. The correspondence of this deformation with the GL q (r, included in) algebra is developed. (author). 9 refs

  4. Singular stochastic differential equations

    CERN Document Server

    Cherny, Alexander S

    2005-01-01

    The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.

  5. PREFACE: Symmetries and Integrability of Difference Equations

    Science.gov (United States)

    Doliwa, Adam; Korhonen, Risto; Lafortune, Stéphane

    2007-10-01

    The notion of integrability was first introduced in the 19th century in the context of classical mechanics with the definition of Liouville integrability for Hamiltonian flows. Since then, several notions of integrability have been introduced for partial and ordinary differential equations. Closely related to integrability theory is the symmetry analysis of nonlinear evolution equations. Symmetry analysis takes advantage of the Lie group structure of a given equation to study its properties. Together, integrability theory and symmetry analysis provide the main method by which nonlinear evolution equations can be solved explicitly. Difference equations (DE), like differential equations, are important in numerous fields of science and have a wide variety of applications in such areas as mathematical physics, computer visualization, numerical analysis, mathematical biology, economics, combinatorics, and quantum field theory. It is thus crucial to develop tools to study and solve DEs. While the theory of symmetry and integrability for differential equations is now largely well-established, this is not yet the case for discrete equations. Although over recent years there has been significant progress in the development of a complete analytic theory of difference equations, further tools are still needed to fully understand, for instance, the symmetries, asymptotics and the singularity structure of difference equations. The series of SIDE meetings on Symmetries and Integrability of Difference Equations started in 1994. Its goal is to provide a platform for an international and interdisciplinary communication for researchers working in areas associated with integrable discrete systems, such as classical and quantum physics, computer science and numerical analysis, mathematical biology and economics, discrete geometry and combinatorics, theory of special functions, etc. The previous SIDE meetings took place in Estérel near Montréal, Canada (1994), at the University of

  6. A Local Net Volume Equation for Iowa

    Science.gov (United States)

    Jerold T. Hahn

    1976-01-01

    As a part of the 1974 Forest Survey of Iowa, the Station''s Forst Resources Evaluatioin Research Staff developed a merchantable tree volume equation and tables of coefficients for Iowa. They were developed for both board-foot (International ?-inch rule) and cubic foot volumes, for several species and species groups of growing-stock trees. The equation and...

  7. Local p-Adic Differential Equations

    NARCIS (Netherlands)

    Put, Marius van der; Taelman, Lenny

    2006-01-01

    This paper studies divergence in solutions of p-adic linear local differential equations. Such divergence is related to the notion of p-adic Liouville numbers. Also, the influence of the divergence on the differential Galois groups of such differential equations is explored. A complete result is

  8. International Conference on Differential and Difference Equations with Applications

    CERN Document Server

    Došlá, Zuzana; Došlý, Ondrej; Kloeden, Peter

    2016-01-01

    Aimed at the community of mathematicians working on ordinary and partial differential equations, difference equations, and functional equations, this book contains selected papers based on the presentations at the International Conference on Differential and Difference Equations and Applications (ICDDEA) 2015, dedicated to the memory of Professor Georg Sell. Contributions include new trends in the field of differential and difference equations, applications of differential and difference equations, as well as high-level survey results. The main aim of this recurring conference series is to promote, encourage, cooperate, and bring together researchers in the fields of differential and difference equations. All areas of differential and difference equations are represented, with special emphasis on applications.

  9. Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, Kim Ø; Salerno, M.

    2006-01-01

    -Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated.......A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowitz...

  10. A generalized advection dispersion equation

    Indian Academy of Sciences (India)

    This paper examines a possible effect of uncertainties, variability or heterogeneity of any dynamic system when being included in its evolution rule; the notion is illustrated with the advection dispersion equation, which describes the groundwater pollution model. An uncertain derivative is defined; some properties of.

  11. New exact solutions of the Tzitzéica-type equations in non-linear optics using the expa function method

    Science.gov (United States)

    Hosseini, K.; Ayati, Z.; Ansari, R.

    2018-04-01

    One specific class of non-linear evolution equations, known as the Tzitzéica-type equations, has received great attention from a group of researchers involved in non-linear science. In this article, new exact solutions of the Tzitzéica-type equations arising in non-linear optics, including the Tzitzéica, Dodd-Bullough-Mikhailov and Tzitzéica-Dodd-Bullough equations, are obtained using the expa function method. The integration technique actually suggests a useful and reliable method to extract new exact solutions of a wide range of non-linear evolution equations.

  12. The Multigroup Neutron Diffusion Equations/1 Space Dimension

    Energy Technology Data Exchange (ETDEWEB)

    Linde, Sven

    1960-06-15

    A description is given of a program for the Ferranti Mercury computer which solves the one-dimensional multigroup diffusion equations in plane, cylindrical or spherical geometry, and also approximates automatically a two-dimensional solution by separating the space variables. In section A the method of calculation is outlined and the preparation of data for two group problems is described. The spatial separation of two-dimensional equations is considered in section B. Section C covers the multigroup equations. These parts are self contained and include all information required for the use of the program. Details of the numerical methods are given in section D. Three sample problems are solved in section E. Punching and operating instructions are given in an appendix.

  13. The Multigroup Neutron Diffusion Equations/1 Space Dimension

    International Nuclear Information System (INIS)

    Linde, Sven

    1960-06-01

    A description is given of a program for the Ferranti Mercury computer which solves the one-dimensional multigroup diffusion equations in plane, cylindrical or spherical geometry, and also approximates automatically a two-dimensional solution by separating the space variables. In section A the method of calculation is outlined and the preparation of data for two group problems is described. The spatial separation of two-dimensional equations is considered in section B. Section C covers the multigroup equations. These parts are self contained and include all information required for the use of the program. Details of the numerical methods are given in section D. Three sample problems are solved in section E. Punching and operating instructions are given in an appendix

  14. On separable Pauli equations

    International Nuclear Information System (INIS)

    Zhalij, Alexander

    2002-01-01

    We classify (1+3)-dimensional Pauli equations for a spin-(1/2) particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the 11 classes of vector-potentials of the electro-magnetic field A(t,x(vector sign))=(A 0 (t,x(vector sign)), A(vector sign)(t,x(vector sign))) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is its equivalence to the system of two uncoupled Schroedinger equations. In addition, the magnetic field has to be independent of spatial variables. We prove that coordinate systems and the vector-potentials of the electro-magnetic field providing the separability of the corresponding Pauli equations coincide with those for the Schroedinger equations. Furthermore, an efficient algorithm for constructing all coordinate systems providing the separability of Pauli equation with a fixed vector-potential of the electro-magnetic field is developed. Finally, we describe all vector-potentials A(t,x(vector sign)) that (a) provide the separability of Pauli equation, (b) satisfy vacuum Maxwell equations without currents, and (c) describe non-zero magnetic field

  15. Symmetry and exact solutions of nonlinear spinor equations

    International Nuclear Information System (INIS)

    Fushchich, W.I.; Zhdanov, R.Z.

    1989-01-01

    This review is devoted to the application of algebraic-theoretical methods to the problem of constructing exact solutions of the many-dimensional nonlinear systems of partial differential equations for spinor, vector and scalar fields widely used in quantum field theory. Large classes of nonlinear spinor equations invariant under the Poincare group P(1, 3), Weyl group (i.e. Poincare group supplemented by a group of scale transformations), and the conformal group C(1, 3) are described. Ansaetze invariant under the Poincare and the Weyl groups are constructed. Using these we reduce the Poincare-invariant nonlinear Dirac equations to systems of ordinary differential equations and construct large families of exact solutions of the nonlinear Dirac-Heisenberg equation depending on arbitrary parameters and functions. In a similar way we have obtained new families of exact solutions of the nonlinear Maxwell-Dirac and Klein-Gordon-Dirac equations. The obtained solutions can be used for quantization of nonlinear equations. (orig.)

  16. A connection between the Einstein and Yang-Mills equations

    International Nuclear Information System (INIS)

    Mason, L.J.; Newman, E.T.

    1989-01-01

    It is our purpose here to show an unusual relationship between the Einstein equations and the Yang-Mills equations. We give a correspondence between solutions of the self-dual Einstein vacuum equations and the self-dual Yang-Mills equations with a special choice of gauge group. The extension of the argument to the full Yang-Mills equations yields Einstein's unified equations. We try to incorporate the full Einstein vacuum equations, but the approach is incomplete. We first consider Yang-Mills theory for an arbitrary Lie-algebra with the condition that the connection 1-form and curvature are constant on Minkowski space. This leads to a set of algebraic equations on the connection components. We then specialize the Lie-algebra to be the (infinite dimensional) Lie algebra of a group of diffeomorphisms of some manifold. The algebraic equations then become differential equations for four vector fields on the manifold on which the diffeomorphisms act. In the self-dual case, if we choose the connection components from the Lie-algebra of the volume preserving 4-dimensional diffeomorphism group, the resulting equations are the same as those obtained by Ashtekar, Jacobsen and Smolin, in their remarkable simplification of the self-dual Einstein vacuum equations. (An alternative derivation of the same equations begins with the self-dual Yang-Mills connection now depending only on the time, then choosing the Lie-algebra as that of the volume preserving 3-dimensional diffeomorphisms). When the reduced full Yang-Mills equations are used in the same context, we get Einstein's equations for his unified theory based on absolute parallelism. To incorporate the full Einstein vacuum equations we use as the Lie group the semi-direct product of the diffeomorphism group of a 4-dimensional manifold with the group of frame rotations of an SO(1, 3) bundle over the 4-manifold. This last approach, however, yields equations more general than the vacuum equations. (orig.)

  17. Applied analysis and differential equations

    CERN Document Server

    Cârj, Ovidiu

    2007-01-01

    This volume contains refereed research articles written by experts in the field of applied analysis, differential equations and related topics. Well-known leading mathematicians worldwide and prominent young scientists cover a diverse range of topics, including the most exciting recent developments. A broad range of topics of recent interest are treated: existence, uniqueness, viability, asymptotic stability, viscosity solutions, controllability and numerical analysis for ODE, PDE and stochastic equations. The scope of the book is wide, ranging from pure mathematics to various applied fields such as classical mechanics, biomedicine, and population dynamics.

  18. Radar equations for modern radar

    CERN Document Server

    Barton, David K

    2012-01-01

    Based on the classic Radar Range-Performance Analysis from 1980, this practical volume extends that work to ensure applicability of radar equations to the design and analysis of modern radars. This unique book helps you identify what information on the radar and its environment is needed to predict detection range. Moreover, it provides equations and data to improve the accuracy of range calculations. You find detailed information on propagation effects, methods of range calculation in environments that include clutter, jamming and thermal noise, as well as loss factors that reduce radar perfo

  19. Hand-held indirect calorimeter offers advantages compared with prediction equations, in a group of overweight women, to determine resting energy expenditures and estimated total energy expenditures during research screening.

    Science.gov (United States)

    Spears, Karen E; Kim, Hyunsook; Behall, Kay M; Conway, Joan M

    2009-05-01

    To compare standardized prediction equations to a hand-held indirect calorimeter in estimating resting energy and total energy requirements in overweight women. Resting energy expenditure (REE) was measured by hand-held indirect calorimeter and calculated by prediction equations Harris-Benedict, Mifflin-St Jeor, World Health Organization/Food and Agriculture Organization/United Nations University (WHO), and Dietary Reference Intakes (DRI). Physical activity level, assessed by questionnaire, was used to estimate total energy expenditure (TEE). Subjects (n=39) were female nonsmokers older than 25 years of age with body mass index more than 25. Repeated measures analysis of variance, Bland-Altman plot, and fitted regression line of difference. A difference within +/-10% of two methods indicated agreement. Significant proportional bias was present between hand-held indirect calorimeter and prediction equations for REE and TEE (Pvalues and underestimated at higher values. Mean differences (+/-standard error) for REE and TEE between hand-held indirect calorimeter and Harris-Benedict were -5.98+/-46.7 kcal/day (P=0.90) and 21.40+/-75.7 kcal/day (P=0.78); between hand-held indirect calorimeter and Mifflin-St Jeor were 69.93+/-46.7 kcal/day (P=0.14) and 116.44+/-75.9 kcal/day (P=0.13); between hand-held indirect calorimeter and WHO were -22.03+/-48.4 kcal/day (P=0.65) and -15.8+/-77.9 kcal/day (P=0.84); and between hand-held indirect calorimeter and DRI were 39.65+/-47.4 kcal/day (P=0.41) and 56.36+/-85.5 kcal/day (P=0.51). Less than 50% of predictive equation values were within +/-10% of hand-held indirect calorimeter values, indicating poor agreement. A significant discrepancy between predicted and measured energy expenditure was observed. Further evaluation of hand-held indirect calorimeter research screening is needed.

  20. Growth of meromorphic solutions of delay differential equations

    OpenAIRE

    Halburd, Rod; Korhonen, Risto

    2016-01-01

    Necessary conditions are obtained for certain types of rational delay differential equations to admit a non-rational meromorphic solution of hyper-order less than one. The equations obtained include delay Painlev\\'e equations and equations solved by elliptic functions.

  1. SU(4) proprerties of the Dirac equation

    International Nuclear Information System (INIS)

    Linhares, C.A.; Mignaco, J.A.

    1985-09-01

    The Dirac equation in four dimensions has an intimate connection with the representations of the group SU(4). This connection is shown in detail and subsequent properties are displayed in the continuum as well as in the lattice description [pt

  2. New symmetries for the Dirac equation

    International Nuclear Information System (INIS)

    Linhares, C.A.; Mignaco, J.A.

    1990-01-01

    The Dirac equation in four dimension is studied describing fermions, both as 4 x 4 matrices and differential forms. It is discussed in both formalisms its properties under transformations of the group SU(4). (A.C.A.S.) [pt

  3. Quantum Gross-Pitaevskii Equation

    Directory of Open Access Journals (Sweden)

    Jutho Haegeman, Damian Draxler, Vid Stojevic, J. Ignacio Cirac, Tobias J. Osborne, Frank Verstraete

    2017-07-01

    Full Text Available We introduce a non-commutative generalization of the Gross-Pitaevskii equation for one-dimensional quantum gasses and quantum liquids. This generalization is obtained by applying the time-dependent variational principle to the variational manifold of continuous matrix product states. This allows for a full quantum description of many body system ---including entanglement and correlations--- and thus extends significantly beyond the usual mean-field description of the Gross-Pitaevskii equation, which is known to fail for (quasi one-dimensional systems. By linearizing around a stationary solution, we furthermore derive an associated generalization of the Bogoliubov -- de Gennes equations. This framework is applied to compute the steady state response amplitude to a periodic perturbation of the potential.

  4. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  5. Differential equations for dummies

    CERN Document Server

    Holzner, Steven

    2008-01-01

    The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.

  6. Computer models for kinetic equations of magnetically confined plasmas

    International Nuclear Information System (INIS)

    Killeen, J.; Kerbel, G.D.; McCoy, M.G.; Mirin, A.A.; Horowitz, E.J.; Shumaker, D.E.

    1987-01-01

    This paper presents four working computer models developed by the computational physics group of the National Magnetic Fusion Energy Computer Center. All of the models employ a kinetic description of plasma species. Three of the models are collisional, i.e., they include the solution of the Fokker-Planck equation in velocity space. The fourth model is collisionless and treats the plasma ions by a fully three-dimensional particle-in-cell method

  7. Chiral equations and fiber bundles

    International Nuclear Information System (INIS)

    Mateos, T.; Becerril, R.

    1992-01-01

    Using the hypothesis g = g (lambda i ), the chiral equations (rhog, z g -1 ), z -bar + (rhog, z -barg -1 ), z = 0 are reduced to a Killing equation of a p-dimensional space V p , being lambda i lambda i (z, z-bar) 'geodesic' parameters of V p . Supposing that g belongs to a Lie group G, one writes the corresponding Lie algebra elements (F) in terms of the Killing vectors of V p and the generators of the subalgebra of F of dimension d = dimension of the Killing space. The elements of the subalgebras belong to equivalence classes which in the respective group form a principal fiber bundle. This is used to integrate the matrix g in terms of the complex variables z and z-bar ( Author)

  8. Drift-Diffusion Equation

    Directory of Open Access Journals (Sweden)

    K. Banoo

    1998-01-01

    equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.

  9. Solving Ordinary Differential Equations

    Science.gov (United States)

    Krogh, F. T.

    1987-01-01

    Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

  10. Reactimeter dispersion equation

    OpenAIRE

    A.G. Yuferov

    2016-01-01

    The aim of this work is to derive and analyze a reactimeter metrological model in the form of the dispersion equation which connects reactimeter input/output signal dispersions with superimposed random noise at the inlet. It is proposed to standardize the reactimeter equation form, presenting the main reactimeter computing unit by a convolution equation. Hence, the reactimeter metrological characteristics are completely determined by this unit hardware function which represents a transient re...

  11. Differential equations I essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Differential Equations I covers first- and second-order equations, series solutions, higher-order linear equations, and the Laplace transform.

  12. Parabolized stability equations

    Science.gov (United States)

    Herbert, Thorwald

    1994-01-01

    The parabolized stability equations (PSE) are a new approach to analyze the streamwise evolution of single or interacting Fourier modes in weakly nonparallel flows such as boundary layers. The concept rests on the decomposition of every mode into a slowly varying amplitude function and a wave function with slowly varying wave number. The neglect of the small second derivatives of the slowly varying functions with respect to the streamwise variable leads to an initial boundary-value problem that can be solved by numerical marching procedures. The PSE approach is valid in convectively unstable flows. The equations for a single mode are closely related to those of the traditional eigenvalue problems for linear stability analysis. However, the PSE approach does not exploit the homogeneity of the problem and, therefore, can be utilized to analyze forced modes and the nonlinear growth and interaction of an initial disturbance field. In contrast to the traditional patching of local solutions, the PSE provide the spatial evolution of modes with proper account for their history. The PSE approach allows studies of secondary instabilities without the constraints of the Floquet analysis and reproduces the established experimental, theoretical, and computational benchmark results on transition up to the breakdown stage. The method matches or exceeds the demonstrated capabilities of current spatial Navier-Stokes solvers at a small fraction of their computational cost. Recent applications include studies on localized or distributed receptivity and prediction of transition in model environments for realistic engineering problems. This report describes the basis, intricacies, and some applications of the PSE methodology.

  13. Group X

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Susannah

    2007-08-16

    This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

  14. Motion of curves and solutions of two multi-component mKdV equations

    International Nuclear Information System (INIS)

    Yao Ruoxia; Qu Changzheng; Li Zhibin

    2005-01-01

    Two classes of multi-component mKdV equations have been shown to be integrable. One class called the multi-component geometric mKdV equation is exactly the system for curvatures of curves when the motion of the curves is governed by the mKdV flow. In this paper, exact solutions including solitary wave solutions of the two- and three-component mKdV equations are obtained, the symmetry reductions of the two-component geometric mKdV equation to ODE systems corresponding to it's Lie point symmetry groups are also given. Curves and their behavior corresponding to solitary wave solutions of the two-component geometric mKdV equation are presented

  15. Permutation groups

    CERN Document Server

    Passman, Donald S

    2012-01-01

    This volume by a prominent authority on permutation groups consists of lecture notes that provide a self-contained account of distinct classification theorems. A ready source of frequently quoted but usually inaccessible theorems, it is ideally suited for professional group theorists as well as students with a solid background in modern algebra.The three-part treatment begins with an introductory chapter and advances to an economical development of the tools of basic group theory, including group extensions, transfer theorems, and group representations and characters. The final chapter feature

  16. Structural Equation and Mei Conserved Quantity of Mei Symmetry for Appell Equations in Holonomic Systems with Unilateral Constraints

    International Nuclear Information System (INIS)

    Jia Liqun; Cui Jinchao; Zhang Yaoyu; Luo Shaokai

    2009-01-01

    Structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints are investigated. Appell equations and differential equations of motion for holonomic mechanic systems with unilateral constraints are established. The definition and the criterion of Mei symmetry for Appell equations in holonomic systems with unilateral constraints under the infinitesimal transformations of groups are also given. The expressions of the structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results. (general)

  17. Graph theory and the Virasoro master equation

    International Nuclear Information System (INIS)

    Obers, N.A.J.

    1991-01-01

    A brief history of affine Lie algebra, the Virasoro algebra and its culmination in the Virasoro master equation is given. By studying ansaetze of the master equation, the author obtains exact solutions and gains insight in the structure of large slices of affine-Virasoro space. He finds an isomorphism between the constructions in the ansatz SO(n) diag , which is a set of unitary, generically irrational affine-Virasoro constructions on SO(n), and the unlabeled graphs of order n. On the one hand, the conformal constructions, are classified by the graphs, while, conversely, a group-theoretic and conformal field-theoretic identification is obtained for every graph of graph theory. He also defines a class of magic Lie group bases in which the Virasoro master equation admits a simple metric ansatz {g metric }, whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g metric is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n) diag in the Cartesian basis of SO(n), and the ansatz SU(n) metric in the Pauli-like basis of SU(n). Finally, he defines the 'sine-area graphs' of SU(n), which label the conformal field theories of SU(n) metric , and he notes that, in similar fashion, each magic basis of g defines a generalized graph theory on g which labels the conformal field theories of g metric

  18. New seismograph includes filters

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-02

    The new Nimbus ES-1210 multichannel signal enhancement seismograph from EG and G geometrics has recently been redesigned to include multimode signal fillers on each amplifier. The ES-1210F is a shallow exploration seismograph for near subsurface exploration such as in depth-to-bedrock, geological hazard location, mineral exploration, and landslide investigations.

  19. Group theory

    CERN Document Server

    Scott, W R

    2010-01-01

    Here is a clear, well-organized coverage of the most standard theorems, including isomorphism theorems, transformations and subgroups, direct sums, abelian groups, and more. This undergraduate-level text features more than 500 exercises.

  20. Symmetries and Invariants of the Time-dependent Oscillator Equation and the Envelope Equation

    CERN Document Server

    Qin, Hong

    2005-01-01

    Single-particle dynamics in a time-dependent focusing field is examined. The existence of the Courant-Snyder invariant* is fundamentally the result of the corresponding symmetry admitted by the oscillator equation with time-dependent frequency.** A careful analysis of the admitted symmetries reveals a deeper connection between the nonlinear envelope equation and the oscillator equation. A general theorem regarding the symmetries and invariants of the envelope equation, which includes the existence of the Courant-Snyder invariant as a special case, is demonstrated. The symmetries of the envelope equation enable a fast algorithm for finding matched solutions without using the conventional iterative shooting method.

  1. Statistical Methods for Stochastic Differential Equations

    CERN Document Server

    Kessler, Mathieu; Sorensen, Michael

    2012-01-01

    The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to the topic at hand and builds gradually towards discussing recent research. The book covers Wiener-driven equations as well as stochastic differential equations with jumps, including continuous-time ARMA processes and COGARCH processes. It presents a sp

  2. Kinetic Boltzmann, Vlasov and Related Equations

    CERN Document Server

    Sinitsyn, Alexander; Vedenyapin, Victor

    2011-01-01

    Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in

  3. Equational type logic

    NARCIS (Netherlands)

    Manca, V.; Salibra, A.; Scollo, Giuseppe

    1990-01-01

    Equational type logic is an extension of (conditional) equational logic, that enables one to deal in a single, unified framework with diverse phenomena such as partiality, type polymorphism and dependent types. In this logic, terms may denote types as well as elements, and atomic formulae are either

  4. Alternative equations of gravitation

    International Nuclear Information System (INIS)

    Pinto Neto, N.

    1983-01-01

    It is shown, trough a new formalism, that the quantum fluctuation effects of the gravitational field in Einstein's equations are analogs to the effects of a continuum medium in Maxwell's Electrodynamics. Following, a real example of the applications of these equations is studied. Qunatum fluctuations effects as perturbation sources in Minkowski and Friedmann Universes are examined. (L.C.) [pt

  5. Reduced Braginskii equations

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, M. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Horton, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1993-11-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite {beta} that we solve the perpendicular component of Ohm`s law to conserve the physical energy while ensuring the relation {del} {center_dot} j = 0.

  6. Reduced Braginskii equations

    International Nuclear Information System (INIS)

    Yagi, M.; Horton, W.

    1993-11-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that we solve the perpendicular component of Ohm's law to conserve the physical energy while ensuring the relation ∇ · j = 0

  7. Reduced Braginskii equations

    International Nuclear Information System (INIS)

    Yagi, M.; Horton, W.

    1994-01-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that the perpendicular component of Ohm's law be solved to ensure ∇·j=0 for energy conservation

  8. Model Compaction Equation

    African Journals Online (AJOL)

    The currently proposed model compaction equation was derived from data sourced from the. Niger Delta and it relates porosity to depth for sandstones under hydrostatic pressure condition. The equation is useful in predicting porosity and compaction trend in hydrostatic sands of the. Niger Delta. GEOLOGICAL SETTING OF ...

  9. The Wouthuysen equation

    NARCIS (Netherlands)

    M. Hazewinkel (Michiel)

    1995-01-01

    textabstractDedication: I dedicate this paper to Prof. P.C. Baayen, at the occasion of his retirement on 20 December 1994. The beautiful equation which forms the subject matter of this paper was invented by Wouthuysen after he retired. The four complex variable Wouthuysen equation arises from an

  10. The generalized Fermat equation

    NARCIS (Netherlands)

    Beukers, F.

    2006-01-01

    This article will be devoted to generalisations of Fermat’s equation xn + yn = zn. Very soon after the Wiles and Taylor proof of Fermat’s Last Theorem, it was wondered what would happen if the exponents in the three term equation would be chosen differently. Or if coefficients other than 1 would

  11. Transport equation and shock waves

    International Nuclear Information System (INIS)

    Besnard, D.

    1981-04-01

    A multi-group method is derived from a one dimensional transport equation for the slowing down and spatial transport of energetic positive ions in a plasma. This method is used to calculate the behaviour of energetic charged particles in non homogeneous and non stationary plasma, and the effect of energy deposition of the particles on the heating of the plasma. In that purpose, an equation for the density of fast ions is obtained from the Fokker-Planck equation, and a closure condition for the second moment of this equation is deduced from phenomenological considerations. This method leads to a numerical method, simple and very efficient, which doesn't require much computer storage. Two types of numerical results are obtained. First, results on the slowing down of 3.5 MeV alpha particles in a 50 keV plasma plublished by Corman and al and Moses are compared with the results obtained with both our method and a Monte Carlo type method. Good agreement was obtained, even for energy deposition on the ions of the plasma. Secondly, we have calculated propagation of alpha particles heating a cold plasma. These results are in very good agreement with those given by an accurate Monte Carlo method, for both the thermal velocity, and the energy deposition in the plasma

  12. Analytic device including nanostructures

    KAUST Repository

    Di Fabrizio, Enzo M.; Fratalocchi, Andrea; Totero Gongora, Juan Sebastian; Coluccio, Maria Laura; Candeloro, Patrizio; Cuda, Gianni

    2015-01-01

    A device for detecting an analyte in a sample comprising: an array including a plurality of pixels, each pixel including a nanochain comprising: a first nanostructure, a second nanostructure, and a third nanostructure, wherein size of the first nanostructure is larger than that of the second nanostructure, and size of the second nanostructure is larger than that of the third nanostructure, and wherein the first nanostructure, the second nanostructure, and the third nanostructure are positioned on a substrate such that when the nanochain is excited by an energy, an optical field between the second nanostructure and the third nanostructure is stronger than an optical field between the first nanostructure and the second nanostructure, wherein the array is configured to receive a sample; and a detector arranged to collect spectral data from a plurality of pixels of the array.

  13. Saskatchewan resources. [including uranium

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The production of chemicals and minerals for the chemical industry in Saskatchewan are featured, with some discussion of resource taxation. The commodities mentioned include potash, fatty amines, uranium, heavy oil, sodium sulfate, chlorine, sodium hydroxide, sodium chlorate and bentonite. Following the successful outcome of the Cluff Lake inquiry, the uranium industry is booming. Some developments and production figures for Gulf Minerals, Amok, Cenex and Eldorado are mentioned.

  14. Solving Differential Equations Using Modified Picard Iteration

    Science.gov (United States)

    Robin, W. A.

    2010-01-01

    Many classes of differential equations are shown to be open to solution through a method involving a combination of a direct integration approach with suitably modified Picard iterative procedures. The classes of differential equations considered include typical initial value, boundary value and eigenvalue problems arising in physics and…

  15. Equations of macrotransport in reactor fuel assemblies

    International Nuclear Information System (INIS)

    Sorokin, A.P.; Zhukov, A.V.; Kornienko, Yu.N.; Ushakov, P.A.

    1986-01-01

    The rigorous statement of equations of macrotransport is obtained. These equations are bases for channel-by-channel methods of thermohydraulic calculations of reactor fuel assemblies within the scope of the model of discontinuous multiphase coolant flow (including chemical reactions); they also describe a wide range of problems on thermo-physical reactor fuel assembly justification. It has been carried out by smoothing equations of mass, momentum and enthalpy transfer in cross section of each phase of the elementary fuel assembly subchannel. The equation for cross section flows is obtaind by smoothing the equation of momentum transfer on the interphase. Interaction of phases on the channel boundary is described using the Stanton number. The conclusion is performed using the generalized equation of substance transfer. The statement of channel-by-channel method without the scope of homogeneous flow model is given

  16. An Implementation of Interfacial Transport Equation into the CUPID code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ik Kyu; Cho, Heong Kyu; Yoon, Han Young; Jeong, Jae Jun

    2009-11-15

    A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components for a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted a three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAS, semi-implicit ICE, SIMPLE. The governing equations for a 2-phase flow are composed of mass, momentum, and energy conservation equations for each phase. These equation sets are closed by the interfacial transfer rate of mass, momentum, and energy. The interfacial transfer of mass, momentum, and energy occurs through the interfacial area, and this area plays an important role in the transfer rate. The flow regime based correlations are used for calculating the interracial area in the traditional style 2-phase flow model. This is dependent upon the flow regime and is limited to the fully developed 2-phase flow region. Its application to the multi-dimensional 2-phase flow has some limitation because it adopts the measured results of 2-phase flow in the 1-dimensional tube. The interfacial area concentration transport equation had been suggested in order to calculate the interfacial area without the interfacial area correlations. The source terms to close the interfacial area transport equation should be further developed for a wide ranger usage of it. In this study, the one group interfacial area concentration transport equation has been implemented into the CUPID code. This interfacial area concentration transport equation can be used instead of the interfacial area concentration correlations for the bubbly flow region.

  17. An Implementation of Interfacial Transport Equation into the CUPID code

    International Nuclear Information System (INIS)

    Park, Ik Kyu; Cho, Heong Kyu; Yoon, Han Young; Jeong, Jae Jun

    2009-11-01

    A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components for a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted a three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAS, semi-implicit ICE, SIMPLE. The governing equations for a 2-phase flow are composed of mass, momentum, and energy conservation equations for each phase. These equation sets are closed by the interfacial transfer rate of mass, momentum, and energy. The interfacial transfer of mass, momentum, and energy occurs through the interfacial area, and this area plays an important role in the transfer rate. The flow regime based correlations are used for calculating the interracial area in the traditional style 2-phase flow model. This is dependent upon the flow regime and is limited to the fully developed 2-phase flow region. Its application to the multi-dimensional 2-phase flow has some limitation because it adopts the measured results of 2-phase flow in the 1-dimensional tube. The interfacial area concentration transport equation had been suggested in order to calculate the interfacial area without the interfacial area correlations. The source terms to close the interfacial area transport equation should be further developed for a wide ranger usage of it. In this study, the one group interfacial area concentration transport equation has been implemented into the CUPID code. This interfacial area concentration transport equation can be used instead of the interfacial area concentration correlations for the bubbly flow region

  18. Classification and Recursion Operators of Dark Burgers' Equation

    Science.gov (United States)

    Chen, Mei-Dan; Li, Biao

    2018-01-01

    With the help of symbolic computation, two types of complete scalar classification for dark Burgers' equations are derived by requiring the existence of higher order differential polynomial symmetries. There are some free parameters for every class of dark Burgers' systems; so some special equations including symmetry equation and dual symmetry equation are obtained by selecting the free parameter. Furthermore, two kinds of recursion operators for these dark Burgers' equations are constructed by two direct assumption methods.

  19. An introduction to the theory of the Boltzmann equation

    CERN Document Server

    Harris, Stewart

    2011-01-01

    Boltzmann's equation (or Boltzmann-like equations) appears extensively in such disparate fields as laser scattering, solid-state physics, nuclear transport, and beyond the conventional boundaries of physics and engineering, in the fields of cellular proliferation and automobile traffic flow. This introductory graduate-level course for students of physics and engineering offers detailed presentations of the basic modern theory of Boltzmann's equation, including representative applications using both Boltzmann's equation and the model Boltzmann equations developed within the text. It emphasizes

  20. Being Included and Excluded

    DEFF Research Database (Denmark)

    Korzenevica, Marina

    2016-01-01

    Following the civil war of 1996–2006, there was a dramatic increase in the labor mobility of young men and the inclusion of young women in formal education, which led to the transformation of the political landscape of rural Nepal. Mobility and schooling represent a level of prestige that rural...... politics. It analyzes how formal education and mobility either challenge or reinforce traditional gendered norms which dictate a lowly position for young married women in the household and their absence from community politics. The article concludes that women are simultaneously excluded and included from...... community politics. On the one hand, their mobility and decision-making powers decrease with the increase in the labor mobility of men and their newly gained education is politically devalued when compared to the informal education that men gain through mobility, but on the other hand, schooling strengthens...

  1. Symmetry reduction for nonlinear wave equations in Riemannian and pseudo-Riemannian spaces

    International Nuclear Information System (INIS)

    Grundland, A.M.; Harnad, J.; Winternitz, P.

    1984-01-01

    The authors show how group theory can be systematically employed to reduce nonlinear partial differential equations in n independent variables to partial differential equations in fewer variables and in particular, to ordinary differential equations. (Auth.)

  2. Differential equations problem solver

    CERN Document Server

    Arterburn, David R

    2012-01-01

    REA's Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Differential Equations Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Differential Equations problems. The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook companions. They're perfect for undergraduate and graduate studies.The Differential Equations Problem Solver is the perfect resource for any class, any exam, and

  3. Supersymmetric quasipotential equations

    International Nuclear Information System (INIS)

    Zaikov, R.P.

    1981-01-01

    A supersymmetric extension of the Logunov-Tavkhelidze quasipotential approach is suggested. The supersymmetric Bethe- Salpeter equation is an initial equation. The transition from the four-time to the two-time Green function is made in the super- center-of-mass system. The two-time Green function has no inverse function in the whole spinor space. The resolvent operator if found using the Majorana character of the spinor wave function. The supersymmetric quasipotential equation is written. The consideration is carried out in the framework of the theory of chiral scalar superfields [ru

  4. Local instant conservation equations

    International Nuclear Information System (INIS)

    Delaje, Dzh.

    1984-01-01

    Local instant conservation equations for two-phase flow are derived. Derivation of the equation starts from the recording of integral laws of conservation for a fixed reference volume, containing both phases. Transformation of the laws, using the Leibniz rule and Gauss theory permits to obtain the sum of two integrals as to the volume and integral as to the surface. Integrals as to the volume result in local instant differential equations, in particular derivatives for each phase, and integrals as to the surface reflect local instant conditions of a jump on interface surface

  5. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2011-01-01

    A rigorous, yet accessible, introduction to partial differential equations-updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addres

  6. Ordinary differential equations

    CERN Document Server

    Miller, Richard K

    1982-01-01

    Ordinary Differential Equations is an outgrowth of courses taught for a number of years at Iowa State University in the mathematics and the electrical engineering departments. It is intended as a text for a first graduate course in differential equations for students in mathematics, engineering, and the sciences. Although differential equations is an old, traditional, and well-established subject, the diverse backgrounds and interests of the students in a typical modern-day course cause problems in the selection and method of presentation of material. In order to compensate for this diversity,

  7. Uncertain differential equations

    CERN Document Server

    Yao, Kai

    2016-01-01

    This book introduces readers to the basic concepts of and latest findings in the area of differential equations with uncertain factors. It covers the analytic method and numerical method for solving uncertain differential equations, as well as their applications in the field of finance. Furthermore, the book provides a number of new potential research directions for uncertain differential equation. It will be of interest to researchers, engineers and students in the fields of mathematics, information science, operations research, industrial engineering, computer science, artificial intelligence, automation, economics, and management science.

  8. A new sine-Gordon equation expansion algorithm to investigate some special nonlinear differential equations

    International Nuclear Information System (INIS)

    Yan Zhenya

    2005-01-01

    A new transformation method is developed using the general sine-Gordon travelling wave reduction equation and a generalized transformation. With the aid of symbolic computation, this method can be used to seek more types of solutions of nonlinear differential equations, which include not only the known solutions derived by some known methods but new solutions. Here we choose the double sine-Gordon equation, the Magma equation and the generalized Pochhammer-Chree (PC) equation to illustrate the method. As a result, many types of new doubly periodic solutions are obtained. Moreover when using the method to these special nonlinear differential equations, some transformations are firstly needed. The method can be also extended to other nonlinear differential equations

  9. A generalized simplest equation method and its application to the Boussinesq-Burgers equation.

    Science.gov (United States)

    Sudao, Bilige; Wang, Xiaomin

    2015-01-01

    In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method.

  10. Combinatorics of Generalized Bethe Equations

    Science.gov (United States)

    Kozlowski, Karol K.; Sklyanin, Evgeny K.

    2013-10-01

    A generalization of the Bethe ansatz equations is studied, where a scalar two-particle S-matrix has several zeroes and poles in the complex plane, as opposed to the ordinary single pole/zero case. For the repulsive case (no complex roots), the main result is the enumeration of all distinct solutions to the Bethe equations in terms of the Fuss-Catalan numbers. Two new combinatorial interpretations of the Fuss-Catalan and related numbers are obtained. On the one hand, they count regular orbits of the permutation group in certain factor modules over {{Z}^M}, and on the other hand, they count integer points in certain M-dimensional polytopes.

  11. Quantum adiabatic Markovian master equations

    International Nuclear Information System (INIS)

    Albash, Tameem; Zanardi, Paolo; Boixo, Sergio; Lidar, Daniel A

    2012-01-01

    We develop from first principles Markovian master equations suited for studying the time evolution of a system evolving adiabatically while coupled weakly to a thermal bath. We derive two sets of equations in the adiabatic limit, one using the rotating wave (secular) approximation that results in a master equation in Lindblad form, the other without the rotating wave approximation but not in Lindblad form. The two equations make markedly different predictions depending on whether or not the Lamb shift is included. Our analysis keeps track of the various time and energy scales associated with the various approximations we make, and thus allows for a systematic inclusion of higher order corrections, in particular beyond the adiabatic limit. We use our formalism to study the evolution of an Ising spin chain in a transverse field and coupled to a thermal bosonic bath, for which we identify four distinct evolution phases. While we do not expect this to be a generic feature, in one of these phases dissipation acts to increase the fidelity of the system state relative to the adiabatic ground state. (paper)

  12. Asymptotic problems for stochastic partial differential equations

    Science.gov (United States)

    Salins, Michael

    Stochastic partial differential equations (SPDEs) can be used to model systems in a wide variety of fields including physics, chemistry, and engineering. The main SPDEs of interest in this dissertation are the semilinear stochastic wave equations which model the movement of a material with constant mass density that is exposed to both determinstic and random forcing. Cerrai and Freidlin have shown that on fixed time intervals, as the mass density of the material approaches zero, the solutions of the stochastic wave equation converge uniformly to the solutions of a stochastic heat equation, in probability. This is called the Smoluchowski-Kramers approximation. In Chapter 2, we investigate some of the multi-scale behaviors that these wave equations exhibit. In particular, we show that the Freidlin-Wentzell exit place and exit time asymptotics for the stochastic wave equation in the small noise regime can be approximated by the exit place and exit time asymptotics for the stochastic heat equation. We prove that the exit time and exit place asymptotics are characterized by quantities called quasipotentials and we prove that the quasipotentials converge. We then investigate the special case where the equation has a gradient structure and show that we can explicitly solve for the quasipotentials, and that the quasipotentials for the heat equation and wave equation are equal. In Chapter 3, we study the Smoluchowski-Kramers approximation in the case where the material is electrically charged and exposed to a magnetic field. Interestingly, if the system is frictionless, then the Smoluchowski-Kramers approximation does not hold. We prove that the Smoluchowski-Kramers approximation is valid for systems exposed to both a magnetic field and friction. Notably, we prove that the solutions to the second-order equations converge to the solutions of the first-order equation in an Lp sense. This strengthens previous results where convergence was proved in probability.

  13. On Dust Charging Equation

    OpenAIRE

    Tsintsadze, Nodar L.; Tsintsadze, Levan N.

    2008-01-01

    A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.

  14. Equations For Rotary Transformers

    Science.gov (United States)

    Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.

    1988-01-01

    Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.

  15. Modern nonlinear equations

    CERN Document Server

    Saaty, Thomas L

    1981-01-01

    Covers major types of classical equations: operator, functional, difference, integro-differential, and more. Suitable for graduate students as well as scientists, technologists, and mathematicians. "A welcome contribution." - Math Reviews. 1964 edition.

  16. Group Work Publication-1991.

    Science.gov (United States)

    Zimpfer, David G.

    1992-01-01

    Lists 21 new publications in group work, of which 9 are reviewed. Those discussed include publications on group counseling and psychotherapy, structured groups, support groups, psychodrama, and social group work. (Author/NB)

  17. An introduction to differential equations and their applications

    CERN Document Server

    Farlow, Stanley J

    2006-01-01

    This introductory text explores 1st- and 2nd-order differential equations, series solutions, the Laplace transform, difference equations, much more. Numerous figures, problems with solutions, notes. 1994 edition. Includes 268 figures and 23 tables.

  18. Advances in differential equations and applications

    CERN Document Server

    Martínez, Vicente

    2014-01-01

    The book contains a selection of contributions given at the 23rd Congress on Differential Equations and Applications (CEDYA) / 13th Congress of Applied Mathematics (CMA) that took place at Castellon, Spain, in 2013. CEDYA is renowned as the congress of the Spanish Society of Applied Mathematics (SEMA) and constitutes the main forum and meeting point for applied mathematicians in Spain. The papers included in this book have been selected after a thorough refereeing process and provide a good summary of the recent activity developed by different groups working mainly in Spain on applications of mathematics to several fields of science and technology. The purpose is to provide a useful reference of academic and industrial researchers working in the area of numerical analysis and its applications.

  19. EFSA Panel on food contact materials, enzymes, flavourings and processing aids (CEF); Scientific Opinion on Flavouring Group Evaluation 23, Revision 2 (FGE.23Rev2): Aliphatic, alicyclic and aromatic ethers including anisole derivatives from chemical groups 15, 16, 22, 26 and 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The European Food Safety Authority (EFSA) asked the Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (the Panel) to provide scientific advice to the Commission on the implications for human health of chemically defined flavouring substances used in or on foodstuffs...... in the Member States. In particular, the Panel was requested to evaluate 19 flavouring substances in the Flavouring Group Evaluation 23, Revision 2 (FGE.23Rev2), using the Procedure as referred to in the Commission Regulation (EC) No 1565/2000. These 19 flavouring substances belong to chemical groups 15, 16, 22......-no: 03.022] Industry has informed that it occurs as a mixture of E- & Z-isomers, however, the composition of the mixture has to be specified. Two of the flavouring substances are classified into structural class I, seven are classified into structural class II and 10 are classified into structural class...

  20. Structural Equations and Causation

    OpenAIRE

    Hall, Ned

    2007-01-01

    Structural equations have become increasingly popular in recent years as tools for understanding causation. But standard structural equations approaches to causation face deep problems. The most philosophically interesting of these consists in their failure to incorporate a distinction between default states of an object or system, and deviations therefrom. Exploring this problem, and how to fix it, helps to illuminate the central role this distinction plays in our causal thinking.

  1. Selected papers on analysis and differential equations

    CERN Document Server

    Nomizu, Katsumi

    2003-01-01

    This volume contains translations of papers that originally appeared in the Japanese journal, Sugaku. The papers range over a variety of topics, including nonlinear partial differential equations, C^*-algebras, and Schrödinger operators.

  2. A simple chaotic delay differential equation

    International Nuclear Information System (INIS)

    Sprott, J.C.

    2007-01-01

    The simplest chaotic delay differential equation with a sinusoidal nonlinearity is described, including the route to chaos, Lyapunov exponent spectrum, and chaotic diffusion. It is prototypical of many other high-dimensional chaotic systems

  3. Hilbert space methods in partial differential equations

    CERN Document Server

    Showalter, Ralph E

    1994-01-01

    This graduate-level text opens with an elementary presentation of Hilbert space theory sufficient for understanding the rest of the book. Additional topics include boundary value problems, evolution equations, optimization, and approximation.1979 edition.

  4. Equations of radiation hydrodynamics

    International Nuclear Information System (INIS)

    Mihalas, D.

    1982-01-01

    The purpose of this paper is to give an overview of the role of radiation in the transport of energy and momentum in a combined matter-radiation fluid. The transport equation for a moving radiating fluid is presented in both a fully Eulerian and a fully Lagrangian formulation, along with conservation equations describing the dynamics of the fluid. Special attention is paid to the problem of deriving equations that are mutually consistent in each frame, and between frames, to 0(v/c). A detailed analysis is made to show that in situations of broad interest, terms that are formally of 0(v/c) actually dominate the solution, demonstrating that it is esential (1) to pay scrupulous attention to the question of the frame dependence in formulating the equations; and (2) to solve the equations to 0(v/c) in quite general circumstances. These points are illustrated in the context of the nonequilibrium radiation diffusion limit, and a sketch of how the Lagrangian equations are to be solved will be presented

  5. Covariant field equations in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Vanhecke, Bram [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium); Ghent University, Faculty of Physics, Gent (Belgium); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)

    2017-12-15

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Covariant field equations in supergravity

    International Nuclear Information System (INIS)

    Vanhecke, Bram; Proeyen, Antoine van

    2017-01-01

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Differential Equation over Banach Algebra

    OpenAIRE

    Kleyn, Aleks

    2018-01-01

    In the book, I considered differential equations of order $1$ over Banach $D$-algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. In noncommutative Banach algebra, initial value problem for linear homogeneous equation has infinitely many solutions.

  8. Nonlinear Electrostatic Wave Equations for Magnetized Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans

    1984-01-01

    The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....

  9. Non-Abelian plasmons and their kinetics equation

    International Nuclear Information System (INIS)

    Zheng Xiaoping; Li Jiarong

    1998-01-01

    After the fluctuated modes in QGP are treated as plasmons, the kinetics equation for the plasmons in linear approximation is established starting from Yang-Mills fields equation. The kinetics equation can be considered as the balance equation for the number of plasmons, which indicates the balance of the number variation (growth or damping) in space and time because of their motion with velocities that equal to the wave's group velocity and the emission or absorption of plasmons by plasma particles

  10. Group invariance in engineering boundary value problems

    CERN Document Server

    Seshadri, R

    1985-01-01

    REFEREN CES . 156 9 Transforma.tion of a Boundary Value Problem to an Initial Value Problem . 157 9.0 Introduction . 157 9.1 Blasius Equation in Boundary Layer Flow . 157 9.2 Longitudinal Impact of Nonlinear Viscoplastic Rods . 163 9.3 Summary . 168 REFERENCES . . . . . . . . . . . . . . . . . . 168 . 10 From Nonlinear to Linear Differential Equa.tions Using Transformation Groups. . . . . . . . . . . . . . 169 . 10.1 From Nonlinear to Linear Differential Equations . 170 10.2 Application to Ordinary Differential Equations -Bernoulli's Equation . . . . . . . . . . . 173 10.3 Application to Partial Differential Equations -A Nonlinear Chemical Exchange Process . 178 10.4 Limitations of the Inspectional Group Method . 187 10.5 Summary . 188 REFERENCES . . . . 188 11 Miscellaneous Topics . 190 11.1 Reduction of Differential Equations to Algebraic Equations 190 11.2 Reduction of Order of an Ordinary Differential Equation . 191 11.3 Transformat.ion From Ordinary to Partial Differential Equations-Search for First Inte...

  11. Undergraduate Students' Perceptions of Collaborative Learning in a Differential Equations Mathematics Course

    Science.gov (United States)

    Hajra, Sayonita Ghosh; Das, Ujjaini

    2015-01-01

    This paper uses collaborative learning strategies to examine students' perceptions in a differential equations mathematics course. Students' perceptions were analyzed using three collaborative learning strategies including collaborative activity, group-quiz and online discussion. The study results show that students identified both strengths and…

  12. Gender, Space, and the Location Changes of Jobs and People : A Spatial Simultaneous Equations Analysis

    NARCIS (Netherlands)

    Hoogstra, Gerke J.

    This article summarizes a spatial econometric analysis of local population and employment growth in the Netherlands, with specific reference to impacts of gender and space. The simultaneous equations model used distinguishes between population- and gender-specific employment groups, and includes

  13. Wave equations in higher dimensions

    CERN Document Server

    Dong, Shi-Hai

    2011-01-01

    Higher dimensional theories have attracted much attention because they make it possible to reduce much of physics in a concise, elegant fashion that unifies the two great theories of the 20th century: Quantum Theory and Relativity. This book provides an elementary description of quantum wave equations in higher dimensions at an advanced level so as to put all current mathematical and physical concepts and techniques at the reader’s disposal. A comprehensive description of quantum wave equations in higher dimensions and their broad range of applications in quantum mechanics is provided, which complements the traditional coverage found in the existing quantum mechanics textbooks and gives scientists a fresh outlook on quantum systems in all branches of physics. In Parts I and II the basic properties of the SO(n) group are reviewed and basic theories and techniques related to wave equations in higher dimensions are introduced. Parts III and IV cover important quantum systems in the framework of non-relativisti...

  14. MAGNETOHYDRODYNAMIC EQUATIONS (MHD GENERATION CODE

    Directory of Open Access Journals (Sweden)

    Francisco Frutos Alfaro

    2017-04-01

    Full Text Available A program to generate codes in Fortran and C of the full magnetohydrodynamic equations is shown. The program uses the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the magnetohydrodynamic equations to obtain a code that can be used as a seed for a magnetohydrodynamic code for numerical applications. As an example, we present part of the output of our programs for Cartesian coordinates and how to do the discretization.

  15. Introduction to differential equations with dynamical systems

    CERN Document Server

    Campbell, Stephen L

    2011-01-01

    Many textbooks on differential equations are written to be interesting to the teacher rather than the student. Introduction to Differential Equations with Dynamical Systems is directed toward students. This concise and up-to-date textbook addresses the challenges that undergraduate mathematics, engineering, and science students experience during a first course on differential equations. And, while covering all the standard parts of the subject, the book emphasizes linear constant coefficient equations and applications, including the topics essential to engineering students. Stephen Campbell and Richard Haberman--using carefully worded derivations, elementary explanations, and examples, exercises, and figures rather than theorems and proofs--have written a book that makes learning and teaching differential equations easier and more relevant. The book also presents elementary dynamical systems in a unique and flexible way that is suitable for all courses, regardless of length.

  16. Advanced functional evolution equations and inclusions

    CERN Document Server

    Benchohra, Mouffak

    2015-01-01

    This book presents up-to-date results on abstract evolution equations and differential inclusions in infinite dimensional spaces. It covers equations with time delay and with impulses, and complements the existing literature in functional differential equations and inclusions. The exposition is devoted to both local and global mild solutions for some classes of functional differential evolution equations and inclusions, and other densely and non-densely defined functional differential equations and inclusions in separable Banach spaces or in Fréchet spaces. The tools used include classical fixed points theorems and the measure-of non-compactness, and each chapter concludes with a section devoted to notes and bibliographical remarks. This monograph is particularly useful for researchers and graduate students studying pure and applied mathematics, engineering, biology and all other applied sciences.

  17. Controllability and stabilization of parabolic equations

    CERN Document Server

    Barbu, Viorel

    2018-01-01

    This monograph presents controllability and stabilization methods in control theory that solve parabolic boundary value problems. Starting from foundational questions on Carleman inequalities for linear parabolic equations, the author addresses the controllability of parabolic equations on a variety of domains and the spectral decomposition technique for representing them. This method is, in fact, designed for use in a wider class of parabolic systems that include the heat and diffusion equations. Later chapters develop another process that employs stabilizing feedback controllers with a finite number of unstable modes, with special attention given to its use in the boundary stabilization of Navier–Stokes equations for the motion of viscous fluid. In turn, these applied methods are used to explore related topics like the exact controllability of stochastic parabolic equations with linear multiplicative noise. Intended for graduate students and researchers working on control problems involving nonlinear diff...

  18. Transport equation solving methods

    International Nuclear Information System (INIS)

    Granjean, P.M.

    1984-06-01

    This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr

  19. Jet-calculus approach including coherence effects

    International Nuclear Information System (INIS)

    Jones, L.M.; Migneron, R.; Narayanan, K.S.S.

    1987-01-01

    We show how integrodifferential equations typical of jet calculus can be combined with an averaging procedure to obtain jet-calculus-based results including the Mueller interference graphs. Results in longitudinal-momentum fraction x for physical quantities are higher at intermediate x and lower at large x than with the conventional ''incoherent'' jet calculus. These results resemble those of Marchesini and Webber, who used a Monte Carlo approach based on the same dynamics

  20. Constitutive equations for two-phase flows

    International Nuclear Information System (INIS)

    Boure, J.A.

    1974-12-01

    The mathematical model of a system of fluids consists of several kinds of equations complemented by boundary and initial conditions. The first kind equations result from the application to the system, of the fundamental conservation laws (mass, momentum, energy). The second kind equations characterize the fluid itself, i.e. its intrinsic properties and in particular its mechanical and thermodynamical behavior. They are the mathematical model of the particular fluid under consideration, the laws they expressed are so called the constitutive equations of the fluid. In practice the constitutive equations cannot be fully stated without reference to the conservation laws. Two classes of model have been distinguished: mixture model and two-fluid models. In mixture models, the mixture is considered as a single fluid. Besides the usual friction factor and heat transfer correlations, a single constitutive law is necessary. In diffusion models, the mixture equation of state is replaced by the phasic equations of state and by three consitutive laws, for phase change mass transfer, drift velocity and thermal non-equilibrium respectively. In the two-fluid models, the two phases are considered separately; two phasic equations of state, two friction factor correlations, two heat transfer correlations and four constitutive laws are included [fr

  1. Quadratic Diophantine equations

    CERN Document Server

    Andreescu, Titu

    2015-01-01

    This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems, and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory. The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis.

  2. Boussinesq evolution equations

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Schaffer, H.; Madsen, Per A.

    2004-01-01

    This paper deals with the possibility of using methods and ideas from time domain Boussinesq formulations in the corresponding frequency domain formulations. We term such frequency domain models "evolution equations". First, we demonstrate that the numerical efficiency of the deterministic...... Boussinesq evolution equations of Madsen and Sorensen [Madsen, P.A., Sorensen, O.R., 1993. Bound waves and triad interactions in shallow water. Ocean Eng. 20 359-388] can be improved by using Fast Fourier Transforms to evaluate the nonlinear terms. For a practical example of irregular waves propagating over...... a submerged bar, it is demonstrated that evolution equations utilising FFT can be solved around 100 times faster than the corresponding time domain model. Use of FFT provides an efficient bridge between the frequency domain and the time domain. We utilise this by adapting the surface roller model for wave...

  3. Abelian groups

    CERN Document Server

    Fuchs, László

    2015-01-01

    Written by one of the subject’s foremost experts, this book focuses on the central developments and modern methods of the advanced theory of abelian groups, while remaining accessible, as an introduction and reference, to the non-specialist. It provides a coherent source for results scattered throughout the research literature with lots of new proofs. The presentation highlights major trends that have radically changed the modern character of the subject, in particular, the use of homological methods in the structure theory of various classes of abelian groups, and the use of advanced set-theoretical methods in the study of undecidability problems. The treatment of the latter trend includes Shelah’s seminal work on the undecidability in ZFC of Whitehead’s Problem; while the treatment of the former trend includes an extensive (but non-exhaustive) study of p-groups, torsion-free groups, mixed groups, and important classes of groups arising from ring theory. To prepare the reader to tackle these topics, th...

  4. Relations between nonlinear Riccati equations and other equations in fundamental physics

    International Nuclear Information System (INIS)

    Schuch, Dieter

    2014-01-01

    Many phenomena in the observable macroscopic world obey nonlinear evolution equations while the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. Linearizing nonlinear dynamics would destroy the fundamental property of this theory, however, it can be shown that quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown that the information about the dynamics of quantum systems with analytical solutions can not only be obtainable from the time-dependent Schrödinger equation but equally-well from a complex Riccati equation. Comparison with supersymmetric quantum mechanics shows that even additional information can be obtained from the nonlinear formulation. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation for any potential. Extension of the Riccati formulation to include irreversible dissipative effects is straightforward. Via (real and complex) Riccati equations, other fields of physics can also be treated within the same formalism, e.g., statistical thermodynamics, nonlinear dynamical systems like those obeying a logistic equation as well as wave equations in classical optics, Bose- Einstein condensates and cosmological models. Finally, the link to abstract ''quantizations'' such as the Pythagorean triples and Riccati equations connected with trigonometric and hyperbolic functions will be shown

  5. Development of calculation method for one-dimensional kinetic analysis in fission reactors, including feedback effects

    International Nuclear Information System (INIS)

    Paixao, S.B.; Marzo, M.A.S.; Alvim, A.C.M.

    1986-01-01

    The calculation method used in WIGLE code is studied. Because of the non availability of such a praiseworthy solution, expounding the method minutely has been tried. This developed method has been applied for the solution of the one-dimensional, two-group, diffusion equations in slab, axial analysis, including non-boiling heat transfer, accountig for feedback. A steady-state program (CITER-1D), written in FORTRAN 4, has been implemented, providing excellent results, ratifying the developed work quality. (Author) [pt

  6. State-dependent neutral delay equations from population dynamics.

    Science.gov (United States)

    Barbarossa, M V; Hadeler, K P; Kuttler, C

    2014-10-01

    A novel class of state-dependent delay equations is derived from the balance laws of age-structured population dynamics, assuming that birth rates and death rates, as functions of age, are piece-wise constant and that the length of the juvenile phase depends on the total adult population size. The resulting class of equations includes also neutral delay equations. All these equations are very different from the standard delay equations with state-dependent delay since the balance laws require non-linear correction factors. These equations can be written as systems for two variables consisting of an ordinary differential equation (ODE) and a generalized shift, a form suitable for numerical calculations. It is shown that the neutral equation (and the corresponding ODE--shift system) is a limiting case of a system of two standard delay equations.

  7. Lectures on nonlinear evolution equations initial value problems

    CERN Document Server

    Racke, Reinhard

    2015-01-01

    This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behavior of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial-boundary value p...

  8. Theory of super LIE groups

    International Nuclear Information System (INIS)

    Prakash, M.

    1985-01-01

    The theory of supergravity has attracted increasing attention in the recent years as a unified theory of elementary particle interactions. The superspace formulation of the theory is highly suggestive of an underlying geometrical structure of superspace. It also incorporates the beautifully geometrical general theory of relativity. It leads us to believe that a better understanding of its geometry would result in a better understanding of the theory itself, and furthermore, that the geometry of superspace would also have physical consequences. As a first step towards that goal, we develop here a theory of super Lie groups. These are groups that have the same relation to a super Lie algebra as Lie groups have to a Lie algebra. More precisely, a super Lie group is a super-manifold and a group such that the group operations are super-analytic. The super Lie algebra of a super Lie group is related to the local properties of the group near the identity. This work develops the algebraic and super-analytical tools necessary for our theory, including proofs of a set of existence and uniqueness theorems for a class of super-differential equations

  9. Equations of mathematical physics

    CERN Document Server

    Tikhonov, A N

    2011-01-01

    Mathematical physics plays an important role in the study of many physical processes - hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced-undergraduate or graduate-level text considers only those problems leading to partial differential equations. The authors - two well-known Russian mathematicians - have focused on typical physical processes and the principal types of equations deailing with them. Special attention is paid throughout to mathematical formulation, ri

  10. Iteration of adjoint equations

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1994-01-01

    Adjoint functions are the basis of variational methods and now widely used for perturbation theory and its extension to higher order theory as used, for example, in modelling fuel burnup and optimization. In such models, the adjoint equation is to be solved in a critical system with an adjoint source distribution that is not zero but has special properties related to ratios of interest in critical systems. Consequently the methods of solving equations by iteration and accumulation are reviewed to show how conventional methods may be utilized in these circumstances with adequate accuracy. (author). 3 refs., 6 figs., 3 tabs

  11. Systematic Equation Formulation

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2007-01-01

    A tutorial giving a very simple introduction to the set-up of the equations used as a model for an electrical/electronic circuit. The aim is to find a method which is as simple and general as possible with respect to implementation in a computer program. The “Modified Nodal Approach”, MNA, and th......, and the “Controlled Source Approach”, CSA, for systematic equation formulation are investigated. It is suggested that the kernel of the P Spice program based on MNA is reprogrammed....

  12. Generalized estimating equations

    CERN Document Server

    Hardin, James W

    2002-01-01

    Although powerful and flexible, the method of generalized linear models (GLM) is limited in its ability to accurately deal with longitudinal and clustered data. Developed specifically to accommodate these data types, the method of Generalized Estimating Equations (GEE) extends the GLM algorithm to accommodate the correlated data encountered in health research, social science, biology, and other related fields.Generalized Estimating Equations provides the first complete treatment of GEE methodology in all of its variations. After introducing the subject and reviewing GLM, the authors examine th

  13. Inverse Schroedinger equation and the exact wave function

    International Nuclear Information System (INIS)

    Nakatsuji, Hiroshi

    2002-01-01

    Using the inverse of the Hamiltonian, we introduce the inverse Schroedinger equation (ISE) that is equivalent to the ordinary Schroedinger equation (SE). The ISE has the variational principle and the H-square group of equations as the SE has. When we use a positive Hamiltonian, shifting the energy origin, the inverse energy becomes monotonic and we further have the inverse Ritz variational principle and cross-H-square equations. The concepts of the SE and the ISE are combined to generalize the theory for calculating the exact wave function that is a common eigenfunction of the SE and ISE. The Krylov sequence is extended to include the inverse Hamiltonian, and the complete Krylov sequence is introduced. The iterative configuration interaction (ICI) theory is generalized to cover both the SE and ISE concepts and four different computational methods of calculating the exact wave function are presented in both analytical and matrix representations. The exact wave-function theory based on the inverse Hamiltonian can be applied to systems that have singularities in the Hamiltonian. The generalized ICI theory is applied to the hydrogen atom, giving the exact solution without any singularity problem

  14. A generalized fractional sub-equation method for fractional differential equations with variable coefficients

    International Nuclear Information System (INIS)

    Tang, Bo; He, Yinnian; Wei, Leilei; Zhang, Xindong

    2012-01-01

    In this Letter, a generalized fractional sub-equation method is proposed for solving fractional differential equations with variable coefficients. Being concise and straightforward, this method is applied to the space–time fractional Gardner equation with variable coefficients. As a result, many exact solutions are obtained including hyperbolic function solutions, trigonometric function solutions and rational solutions. It is shown that the considered method provides a very effective, convenient and powerful mathematical tool for solving many other fractional differential equations in mathematical physics. -- Highlights: ► Study of fractional differential equations with variable coefficients plays a role in applied physical sciences. ► It is shown that the proposed algorithm is effective for solving fractional differential equations with variable coefficients. ► The obtained solutions may give insight into many considerable physical processes.

  15. Analysis of wave equation in electromagnetic field by Proca equation

    International Nuclear Information System (INIS)

    Pamungkas, Oky Rio; Soeparmi; Cari

    2017-01-01

    This research is aimed to analyze wave equation for the electric and magnetic field, vector and scalar potential, and continuity equation using Proca equation. Then, also analyze comparison of the solution on Maxwell and Proca equation for scalar potential and electric field, both as a function of distance and constant wave number. (paper)

  16. Comparison of Kernel Equating and Item Response Theory Equating Methods

    Science.gov (United States)

    Meng, Yu

    2012-01-01

    The kernel method of test equating is a unified approach to test equating with some advantages over traditional equating methods. Therefore, it is important to evaluate in a comprehensive way the usefulness and appropriateness of the Kernel equating (KE) method, as well as its advantages and disadvantages compared with several popular item…

  17. Test equating methods and practices

    CERN Document Server

    Kolen, Michael J

    1995-01-01

    In recent years, many researchers in the psychology and statistical communities have paid increasing attention to test equating as issues of using multiple test forms have arisen and in response to criticisms of traditional testing techniques This book provides a practically oriented introduction to test equating which both discusses the most frequently used equating methodologies and covers many of the practical issues involved The main themes are - the purpose of equating - distinguishing between equating and related methodologies - the importance of test equating to test development and quality control - the differences between equating properties, equating designs, and equating methods - equating error, and the underlying statistical assumptions for equating The authors are acknowledged experts in the field, and the book is based on numerous courses and seminars they have presented As a result, educators, psychometricians, professionals in measurement, statisticians, and students coming to the subject for...

  18. Multipermutation Solutions of the Yang-Baxter Equation

    International Nuclear Information System (INIS)

    Gateva-Ivanova, Tatiana; Cameron, Peter

    2009-12-01

    Set-theoretic solutions of the Yang-Baxter equation form a meeting-ground of mathematical physics, algebra and combinatorics. Such a solution consists of a set X and a function r : X x X → X x X which satisfies the braid relation. We examine solutions here mainly from the point of view of finite permutation groups: a solution gives rise to a map from X to the symmetric group Sym(X) on X satisfying certain conditions. Our results include many new constructions based on strong twisted union and wreath product, with an investigation of retracts and the multipermutation level and the solvable length of the groups defined by the solutions; and new results about decompositions and factorisations of the groups defined by invariant subsets of the solution. (author)

  19. Partial differential equations methods, applications and theories

    CERN Document Server

    Hattori, Harumi

    2013-01-01

    This volume is an introductory level textbook for partial differential equations (PDE's) and suitable for a one-semester undergraduate level or two-semester graduate level course in PDE's or applied mathematics. Chapters One to Five are organized according to the equations and the basic PDE's are introduced in an easy to understand manner. They include the first-order equations and the three fundamental second-order equations, i.e. the heat, wave and Laplace equations. Through these equations we learn the types of problems, how we pose the problems, and the methods of solutions such as the separation of variables and the method of characteristics. The modeling aspects are explained as well. The methods introduced in earlier chapters are developed further in Chapters Six to Twelve. They include the Fourier series, the Fourier and the Laplace transforms, and the Green's functions. The equations in higher dimensions are also discussed in detail. This volume is application-oriented and rich in examples. Going thr...

  20. The Camassa-Holm equation as an incompressible Euler equation: A geometric point of view

    Science.gov (United States)

    Gallouët, Thomas; Vialard, François-Xavier

    2018-04-01

    The group of diffeomorphisms of a compact manifold endowed with the L2 metric acting on the space of probability densities gives a unifying framework for the incompressible Euler equation and the theory of optimal mass transport. Recently, several authors have extended optimal transport to the space of positive Radon measures where the Wasserstein-Fisher-Rao distance is a natural extension of the classical L2-Wasserstein distance. In this paper, we show a similar relation between this unbalanced optimal transport problem and the Hdiv right-invariant metric on the group of diffeomorphisms, which corresponds to the Camassa-Holm (CH) equation in one dimension. Geometrically, we present an isometric embedding of the group of diffeomorphisms endowed with this right-invariant metric in the automorphisms group of the fiber bundle of half densities endowed with an L2 type of cone metric. This leads to a new formulation of the (generalized) CH equation as a geodesic equation on an isotropy subgroup of this automorphisms group; On S1, solutions to the standard CH thus give radially 1-homogeneous solutions of the incompressible Euler equation on R2 which preserves a radial density that has a singularity at 0. An other application consists in proving that smooth solutions of the Euler-Arnold equation for the Hdiv right-invariant metric are length minimizing geodesics for sufficiently short times.

  1. Handbook of differential equations stationary partial differential equations

    CERN Document Server

    Chipot, Michel

    2006-01-01

    This handbook is volume III in a series devoted to stationary partial differential quations. Similarly as volumes I and II, it is a collection of self contained state-of-the-art surveys written by well known experts in the field. The topics covered by this handbook include singular and higher order equations, problems near critically, problems with anisotropic nonlinearities, dam problem, T-convergence and Schauder-type estimates. These surveys will be useful for both beginners and experts and speed up the progress of corresponding (rapidly developing and fascinating) areas of mathematics. Ke

  2. Nonlinear partial differential equations of second order

    CERN Document Server

    Dong, Guangchang

    1991-01-01

    This book addresses a class of equations central to many areas of mathematics and its applications. Although there is no routine way of solving nonlinear partial differential equations, effective approaches that apply to a wide variety of problems are available. This book addresses a general approach that consists of the following: Choose an appropriate function space, define a family of mappings, prove this family has a fixed point, and study various properties of the solution. The author emphasizes the derivation of various estimates, including a priori estimates. By focusing on a particular approach that has proven useful in solving a broad range of equations, this book makes a useful contribution to the literature.

  3. The 'generalized Balescu-Lenard' transport equations

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1990-01-01

    The transport equations arising from the 'generalized Balescu-Lenard' collision operator are obtained and some of their properties examined. The equations contain neoclassical and turbulent transport as two special cases having the same structure. The resultant theory offers a possible explanation for a number of results not well understood, including the anomalous pinch, observed ratios of Q/ΓT on TFTR, and numerical reproduction of ASDEX profiles by a model for turbulent transport invoked without derivation, but by analogy with neoclassical theory. The general equations are specialized to consideration of a number of particular transport mechanisms of interest. (author). Letter-to-the-editor. 10 refs

  4. The gBL transport equations

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1989-05-01

    The transport equations arising from the ''generalized Balescu- Lenard'' (gBL) collision operator are obtained, and some of their properties examined. The equations contain neoclassical and turbulent transport as two special cases, having the same structure. The resultant theory offers potential explanation for a number of results not well understood, including the anomalous pinch, observed ratios of Q/ΓT on TFTR, and numerical reproduction of ASDEX profiles by a model for turbulent transport invoked without derivation, but by analogy to neoclassical theory. The general equations are specialized to consideration of a number of particular transport mechanisms of interest. 10 refs

  5. Continuity relations and quantum wave equations

    International Nuclear Information System (INIS)

    Goedecke, G.H.; Davis, B.T.

    2010-01-01

    We investigate the mathematical synthesis of the Schroedinger, Klein-Gordon, Pauli-Schroedinger, and Dirac equations starting from probability continuity relations. We utilize methods similar to those employed by R. E. Collins (Lett. Nuovo Cimento, 18 (1977) 581) in his construction of the Schroedinger equation from the position probability continuity relation for a single particle. Our new results include the mathematical construction of the Pauli-Schroedinger and Dirac equations from the position probability continuity relations for a particle that can transition between two states or among four states, respectively.

  6. Special function solutions of the free particle Dirac equation

    International Nuclear Information System (INIS)

    Strange, P

    2012-01-01

    The Dirac equation is one of the fundamental equations in physics. Here we present and discuss two novel solutions of the free particle Dirac equation. These solutions have an exact analytical form in terms of Airy or Mathieu functions and exhibit unexpected properties including an enhanced Doppler effect, accelerating wavefronts and solutions with a degree of localization. (paper)

  7. Is Yang-Mills equation a totally integrable system. Lecture III

    International Nuclear Information System (INIS)

    Chau Wang, L.L.

    1981-01-01

    Topics covered include: loop-space formulation of gauge theory - loop-space chiral equation; two dimensional chiral equation - conservation laws, linear system and integrability; and parallel development for the loop-space chiral equation - subtlety

  8. Calculation of similarity solutions of partial differential equations

    International Nuclear Information System (INIS)

    Dresner, L.

    1980-08-01

    When a partial differential equation in two independent variables is invariant to a group G of stretching transformations, it has similarity solutions that can be found by solving an ordinary differential equation. Under broad conditions, this ordinary differential equation is also invariant to another stretching group G', related to G. The invariance of the ordinary differential equation to G' can be used to simplify its solution, particularly if it is of second order. Then a method of Lie's can be used to reduce it to a first-order equation, the study of which is greatly facilitated by analysis of its direction field. The method developed here is applied to three examples: Blasius's equation for boundary layer flow over a flat plate and two nonlinear diffusion equations, cc/sub t/ = c/sub zz/ and c/sub t/ = (cc/sub z/)/sub z/

  9. Moving interfaces and quasilinear parabolic evolution equations

    CERN Document Server

    Prüss, Jan

    2016-01-01

    In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis. The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations of fluid flows and phase transitions...

  10. Advances in iterative methods for nonlinear equations

    CERN Document Server

    Busquier, Sonia

    2016-01-01

    This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations...

  11. Diffusive limits for linear transport equations

    International Nuclear Information System (INIS)

    Pomraning, G.C.

    1992-01-01

    The authors show that the Hibert and Chapman-Enskog asymptotic treatments that reduce the nonlinear Boltzmann equation to the Euler and Navier-Stokes fluid equations have analogs in linear transport theory. In this linear setting, these fluid limits are described by diffusion equations, involving familiar and less familiar diffusion coefficients. Because of the linearity extant, one can carry out explicitly the initial and boundary layer analyses required to obtain asymptotically consistent initial and boundary conditions for the diffusion equations. In particular, the effects of boundary curvature and boundary condition variation along the surface can be included in the boundary layer analysis. A brief review of heuristic (nonasymptotic) diffusion description derivations is also included in our discussion

  12. On the Raychaudhuri equation

    Indian Academy of Sciences (India)

    The Raychaudhuri equation is central to the understanding of gravitational attraction in ... of K Gödel on the ideas of shear and vorticity in cosmology (he defines the shear. (eq. (8) in [1]) .... which follows from the definition of the scale factor l.

  13. Generalized reduced magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Kruger, S.E.

    1999-01-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics

  14. Calculus & ordinary differential equations

    CERN Document Server

    Pearson, David

    1995-01-01

    Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.

  15. The Freudenstein Equation

    Indian Academy of Sciences (India)

    research, teaching and practice related to the analysis and design ... its variants, are present in a large number of ma- chines used in daily ... with advanced electronics, sensors, control systems and computing ... ted perfectly well with the rapidly developing comput- .... velopment of the Freudenstein equation using Figure 3.

  16. Differential Equation of Equilibrium

    African Journals Online (AJOL)

    user

    ABSTRACT. Analysis of underground circular cylindrical shell is carried out in this work. The forth order differential equation of equilibrium, comparable to that of beam on elastic foundation, was derived from static principles on the assumptions of P. L Pasternak. Laplace transformation was used to solve the governing ...

  17. Equational binary decision diagrams

    NARCIS (Netherlands)

    J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and

  18. Dunkl Hyperbolic Equations

    Directory of Open Access Journals (Sweden)

    Hatem Mejjaoli

    2008-12-01

    Full Text Available We introduce and study the Dunkl symmetric systems. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite speed of it. Next the semi-linear Dunkl-wave equations are also studied.

  19. Structural Equation Model Trees

    Science.gov (United States)

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  20. ANTHROPOMETRIC PREDICTIVE EQUATIONS FOR ...

    African Journals Online (AJOL)

    Keywords: Anthropometry, Predictive Equations, Percentage Body Fat, Nigerian Women, Bioelectric Impedance ... such as Asians and Indians (Pranav et al., 2009), ... size (n) of at least 3o is adjudged as sufficient for the ..... of people, gender and age (Vogel eta/., 1984). .... Fish Sold at Ile-Ife Main Market, South West Nigeria.