WorldWideScience

Sample records for group debris flows

  1. CONCENTRATION AND VELOCITY OF DEBRIS FLOWS

    Institute of Scientific and Technical Information of China (English)

    Xiangjun FEI; Peng CUI; Yong LI

    2002-01-01

    Debris flows in nature generally fall into three groups distinct in their grain composition: water-stone flow,or sub-viscous debris flow,dominated by coarse grains; muddy flow,dominated by fine grains;and viscous debris flow composed of grains in large range. Liquid-phase velocity and sedimentary delivery resistance of sub-viscous debris flow have been discussed based on the composition characters of sub-and high-viscous debris flows. It is revealed that the presence of fine grains plays a vital role in affecting resistance and average velocity,particularly when the volume fraction of grains in the flow is relatively high,i.e. Sv > 0.45. Grain-size distribution of viscous debris flow is characterized by a bimodal curve,which explains the properties like high density and low resistance gradient of debris flows. A calculation formula is finally put forward,which has to some extent overcome locality limits and achieved a good agreement with the field observations of debris flows in Southwest China.

  2. DEBRIS FLOWS AND HYPERCONCENTRATED STREAMFLOWS.

    Science.gov (United States)

    Wieczorek, Gerald F.

    1986-01-01

    Examination of recent debris-flow and hyperconcentrated-streamflow events in the western United States reveals (1) the topographic, geologic, hydrologic, and vegetative conditions that affect initiation of debris flows and (2) the wide ranging climatic conditions that can trigger debris flows. Recognition of these physiographic and climatic conditions has aided development of preliminary methods for hazard evaluation. Recent developments in the application of electronic data gathering, transmitting, and processing systems shows potential for real-time hazard warning.

  3. CLUSTERING ANALYSIS OF DEBRIS-FLOW STREAMS

    Institute of Scientific and Technical Information of China (English)

    Yuan-Fan TSAI; Huai-Kuang TSAI; Cheng-Yan KAO

    2004-01-01

    The Chi-Chi earthquake in 1999 caused disastrous landslides, which triggered numerous debris flows and killed hundreds of people. A critical rainfall intensity line for each debris-flow stream is studied to prevent such a disaster. However, setting rainfall lines from incomplete data is difficult, so this study considered eight critical factors to group streams, such that streams within a cluster have similar rainfall lines. A genetic algorithm is applied to group 377 debris-flow streams selected from the center of an area affected by the Chi-Chi earthquake. These streams are grouped into seven clusters with different characteristics. The results reveal that the proposed method effectively groups debris-flow streams.

  4. The physics of debris flows

    Science.gov (United States)

    Iverson, R.M.

    1997-01-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate

  5. Hydroplaning and submarine debris flows

    Science.gov (United States)

    de Blasio, Fabio V.; Engvik, Lars; Harbitz, Carl B.; ElverhøI, Anders

    2004-01-01

    Examination of submarine clastic deposits along the continental margins reveals the remnants of holocenic or older debris flows with run-out distances up to hundreds of kilometers. Laboratory experiments on subaqueous debris flows, where typically one tenth of a cubic meter of material is dropped down a flume, also show high velocities and long run-out distances compared to subaerial debris flows. Moreover, they show the tendency of the head of the flow to run out ahead of the rest of the body. The experiments reveal the possible clue to the mechanism of long run-out. This mechanism, called hydroplaning, begins as the dynamic pressure at the front of the debris flow becomes of the order of the pressure exerted by the weight of the sediment. In such conditions a layer of water can intrude under the sediment with a lubrication effect and a decrease in the resistance forces between the sediment and the seabed. A physical-mathematical model of hydroplaning is presented and investigated numerically. The model is applied to both laboratory- and field-scale debris flows. Agreement with laboratory experiments makes us confident in the extrapolation of our model to natural flows and shows that long run-out distances can be naturally attained.

  6. Fractal Structure of Debris Flow

    Institute of Scientific and Technical Information of China (English)

    LI Yong; LIU Jingjing; HU Kaiheng; CHEN Xiaoqing

    2007-01-01

    One of the most remarkable characteristics of debris flow is the competence for supporting boulders on the surface of flow, which strongly suggests that there should be some structure in the fluid body. This paper analyzed the grain compositions from various samples of debris flows and then revealed the fractal structure. Specifically, the fractality holds in three domains that can be respectively identified as the slurry, matrix, and the coarse content. Furthermore, the matrix fractal, which distinguishes debris flow from other kinds of flows, involves a hierarchical structure in the sense that it might contain ever increasing grains while the total range of grain size increases. It provides a possible mechanism for the boulder suspension.

  7. Debris Flow Dam Formation in Southeast Tibet

    Institute of Scientific and Technical Information of China (English)

    CHENG Zunlan; WU Jishan; GENG Xueyong

    2005-01-01

    Glaciers with their deposits abound in the alpine areas of Southeast Tibet. Large debris flows occur frequently from these deposits and form dams that block streams. In this paper, 3 events of large debris flows reported in Peilong Valley located in Southeast Tibet, and which resulted 2 blocking dams resulted, are discussed in details, focusing on the major factors controlling dam formation. The results shows that the first surge group caused by snow and ice avalanches, ice-lake breaks, and large-scale landslides, with a high peak discharge and high velocity, and an abundance of boulders, are most likely to form blocking dams.

  8. A Probabilistic View of Debris Flow

    Institute of Scientific and Technical Information of China (English)

    LI Yong; SU Pengcheng; CUI Peng; HU Kaiheng

    2008-01-01

    Most debris flows occur in valleys of area smaller than 50 km2. While associated with a valley, debris flow is by no means a full-valley event but originates from parts of the valley, i.e., the tributary sources. We propose that debris flow develops by extending from tributaries to the mainstream. The debris flow observed in the mainstream is the confluence of the tributary flows and the process of the confluence can be considered as a combination of the tributary elements. The frequency distribution of tributaries is found subject to the Weibull form (or its generalizations). And the same distribution form applies to the discharge of debris flow. Then the process of debris flow is related to the geometric structure of the valley. Moreover, viewed from a large scale of water system, all valleys are tributaries, which have been found to assume the same distribution. With each valley corresponding to a debris flow, the distribution can be taken as the frequency distribution of debris flow and therefore provides a quantitative description of the fact that debris flow is inclined to occur at valley of small size. Furthermore, different parameters appear in different regions, suggesting the regional differentials of debris flow potential. We can use the failure rate, instead of the size per se, to describe the risk of a valley of a given area. Finally we claim that the valleys of debris flow in different regions are in the similar episode of evolution.

  9. Detecting debris flows using ground vibrations

    Science.gov (United States)

    LaHusen, Richard G.

    1998-01-01

    Debris flows are rapidly flowing mixtures of rock debris, mud, and water that originate on steep slopes. During and following volcanic eruptions, debris flows are among the most destructive and persistent hazards. Debris flows threaten lives and property not only on volcanoes but far downstream in valleys that drain volcanoes where they arrive suddenly and inundate entire valley bottoms. Debris flows can destroy vegetation and structures in their path, including bridges and buildings. Their deposits can cover roads and railways, smother crops, and fill stream channels, thereby reducing their flood-carrying capacity and navigability.

  10. Debris flow study in Malaysia

    Science.gov (United States)

    Bahrin Jaafar, Kamal

    2016-04-01

    The phenomenon of debris flow occurs in Malaysia occasionally. The topography of Peningsular Malysia is characterized by the central mountain ranges running from south to north. Several parts of hilly areas with steep slopes, combined with high saturation of soil strata that deliberately increase the pore water pressure underneath the hill slope. As a tropical country Malaysia has very high intensity rainfall which is triggered the landslide. In the study area where the debris flow are bound to occur, there are a few factors that contribute to this phenomenon such as high rainfall intensity, very steep slope which an inclination more than 35 degree and sandy clay soil type which is easily change to liquidity soil. This paper will discuss the study of rainfall, mechanism, modeling and design of mitigation measure to avoid repeated failure in future in same area.

  11. Mean Velocity Estimation of Viscous Debris Flows

    Institute of Scientific and Technical Information of China (English)

    Hongjuan Yang; Fangqiang Wei; Kaiheng Hu

    2014-01-01

    The mean velocity estimation of debris flows, especially viscous debris flows, is an impor-tant part in the debris flow dynamics research and in the design of control structures. In this study, theoretical equations for computing debris flow velocity with the one-phase flow assumption were re-viewed and used to analyze field data of viscous debris flows. Results show that the viscous debris flow is difficult to be classified as a Newtonian laminar flow, a Newtonian turbulent flow, a Bingham fluid, or a dilatant fluid in the strict sense. However, we can establish empirical formulas to compute its mean velocity following equations for Newtonian turbulent flows, because most viscous debris flows are tur-bulent. Factors that potentially influence debris flow velocity were chosen according to two-phase flow theories. Through correlation analysis and data fitting, two empirical formulas were proposed. In the first one, velocity is expressed as a function of clay content, flow depth and channel slope. In the second one, a coefficient representing the grain size nonuniformity is used instead of clay content. Both formu-las can give reasonable estimate of the mean velocity of the viscous debris flow.

  12. Debris flows: behavior and hazard assessment

    Science.gov (United States)

    Iverson, Richard M.

    2014-01-01

    Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris-flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris' solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris-flow hazard assessment.

  13. Erosion of steepland valleys by debris flows

    Science.gov (United States)

    Stock, J.D.; Dietrich, W.E.

    2006-01-01

    Episodic debris flows scour the rock beds of many steepland valleys. Along recent debris-flow runout paths in the western United States, we have observed evidence for bedrock lowering, primarily by the impact of large particles entrained in debris flows. This evidence may persist to the point at which debris-flow deposition occurs, commonly at slopes of less than ???0.03-0.10. We find that debris-flow-scoured valleys have a topographic signature that is fundamentally different from that predicted by bedrock river-incision models. Much of this difference results from the fact that local valley slope shows a tendency to decrease abruptly downstream of tributaries that contribute throughgoing debris flows. The degree of weathering of valley floor bedrock may also decrease abruptly downstream of such junctions. On the basis of these observations, we hypothesize that valley slope is adjusted to the long-term frequency of debris flows, and that valleys scoured by debris flows should not be modeled using conventional bedrock river-incision laws. We use field observations to justify one possible debris-flow incision model, whose lowering rate is proportional to the integral of solid inertial normal stresses from particle impacts along the flow and the number of upvalley debris-flow sources. The model predicts that increases in incision rate caused by increases in flow event frequency and length (as flows gain material) downvalley are balanced by rate reductions from reduced inertial normal stress at lower slopes, and stronger, less weathered bedrock. These adjustments lead to a spatially uniform lowering rate. Although the proposed expression leads to equilibrium long-profiles with the correct topographic signature, the crudeness with which the debris-flow dynamics are parameterized reveals that we are far from a validated debris-flow incision law. However, the vast extent of steepland valley networks above slopes of ???0.03-0.10 illustrates the need to understand debris-flow

  14. Assessment and prediction of debris-flow hazards

    Science.gov (United States)

    Wieczorek, Gerald F.; ,

    1993-01-01

    Study of debris-flow geomorphology and initiation mechanism has led to better understanding of debris-flow processes. This paper reviews how this understanding is used in current techniques for assessment and prediction of debris-flow hazards.

  15. The debris-flow rheology myth

    Science.gov (United States)

    Iverson, R.M.; ,

    2003-01-01

    Models that employ a fixed rheology cannot yield accurate interpretations or predictions of debris-flow motion, because the evolving behavior of debris flows is too complex to be represented by any rheological equation that uniquely relates stress and strain rate. Field observations and experimental data indicate that debris behavior can vary from nearly rigid to highly fluid as a consequence of temporal and spatial variations in pore-fluid pressure and mixture agitation. Moreover, behavior can vary if debris composition changes as a result of grain-size segregation and gain or loss of solid and fluid constituents in transit. An alternative to fixed-rheology models is provided by a Coulomb mixture theory model, which can represent variable interactions of solid and fluid constituents in heterogeneous debris-flow surges with high-friction, coarse-grained heads and low-friction, liquefied tails. ?? 2003 Millpress.

  16. Direct Detection of Dark Matter Debris Flows

    CERN Document Server

    Kuhlen, Michael; Spergel, David N

    2012-01-01

    Tidal stripping of dark matter from subhalos falling into the Milky Way produces narrow, cold tidal streams as well as more spatially extended "debris flows" in the form of shells, sheets, and plumes. Here we focus on the debris flow in the Via Lactea II simulation, and show that this incompletely phase-mixed material exhibits distinctive high-velocity behavior. Unlike tidal streams, which may not necessarily intersect the Earth's location, debris flow is spatially uniform at 8 kpc and thus guaranteed to be present in the dark matter flux incident on direct detection experiments. At Earth-frame velocities greater than 450 km/s, debris flow comprises more than half of the dark matter at the Sun's location, and up to 80% at even higher velocities. Therefore, debris flow is most important for experiments that are particularly sensitive to the high velocity tail of the dark matter distribution, such as searches for light or inelastic dark matter or experiments with directional sensitivity. We show that debris flo...

  17. Pore Water Pressure Contribution to Debris Flow Mobility

    OpenAIRE

    Chiara Deangeli

    2009-01-01

    Problem statement: Debris flows are very to extremely rapid flows of saturated granular soils. Two main types of debris flow are generally recognized: Open slope debris flows and channelized debris flows. The former is the results of some form of slope failures, the latter can develop along preexisting stream courses by the mobilization of previously deposited debris blanket. The problem to be addressed is the influence of the mode of initiation on the subsequent mechanism of propagation. In ...

  18. Amplification of postwildfire peak flow by debris

    Science.gov (United States)

    Kean, J. W.; McGuire, L. A.; Rengers, F. K.; Smith, J. B.; Staley, D. M.

    2016-08-01

    In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.

  19. Density Estimations in Laboratory Debris Flow Experiments

    Science.gov (United States)

    Queiroz de Oliveira, Gustavo; Kulisch, Helmut; Malcherek, Andreas; Fischer, Jan-Thomas; Pudasaini, Shiva P.

    2016-04-01

    Bulk density and its variation is an important physical quantity to estimate the solid-liquid fractions in two-phase debris flows. Here we present mass and flow depth measurements for experiments performed in a large-scale laboratory set up. Once the mixture is released and it moves down the inclined channel, measurements allow us to determine the bulk density evolution throughout the debris flow. Flow depths are determined by ultrasonic pulse reflection, and the mass is measured with a total normal force sensor. The data were obtained at 50 Hz. The initial two phase material was composed of 350 kg debris with water content of 40%. A very fine pebble with mean particle diameter of 3 mm, particle density of 2760 kg/m³ and bulk density of 1400 kg/m³ in dry condition was chosen as the solid material. Measurements reveal that the debris bulk density remains high from the head to the middle of the debris body whereas it drops substantially at the tail. This indicates lower water content at the tail, compared to the head and the middle portion of the debris body. This means that the solid and fluid fractions are varying strongly in a non-linear manner along the flow path, and from the head to the tail of the debris mass. Importantly, this spatial-temporal density variation plays a crucial role in determining the impact forces associated with the dynamics of the flow. Our setup allows for investigating different two phase material compositions, including large fluid fractions, with high resolutions. The considered experimental set up may enable us to transfer the observed phenomena to natural large-scale events. Furthermore, the measurement data allows evaluating results of numerical two-phase mass flow simulations. These experiments are parts of the project avaflow.org that intends to develop a GIS-based open source computational tool to describe wide spectrum of rapid geophysical mass flows, including avalanches and real two-phase debris flows down complex natural

  20. Debris-flow mobilization from landslides

    Science.gov (United States)

    Iverson, R.M.; Reid, M.E.; LaHusen, R.G.

    1997-01-01

    Field observations, laboratory experiments, and theoretical analyses indicate that landslides mobilize to form debris flows by three processes: (a) widespread Coulomb failure within a sloping soil, rock, or sediment mass, (b) partial or complete liquefaction of the mass by high pore-fluid pressures, and (c) conversion of landslide translational energy to internal vibrational energy (i.e. granular temperature). These processes can operate independently, but in many circumstances they appear to operate simultaneously and synergistically. Early work on debris-flow mobilization described a similar interplay of processes but relied on mechanical models in which debris behavior was assumed to be fixed and governed by a Bingham or Bagnold rheology. In contrast, this review emphasizes models in which debris behavior evolves in response to changing pore pressures and granular temperatures. One-dimensional infinite-slope models provide insight by quantifying how pore pressures and granular temperatures can influence the transition from Coulomb failure to liquefaction. Analyses of multidimensional experiments reveal complications ignored in one-dimensional models and demonstrate that debris-flow mobilization may occur by at least two distinct modes in the field.

  1. Numerical modeling of the debris flows runout

    Science.gov (United States)

    Federico, Francesco; Cesali, Chiara

    2017-06-01

    Rapid debris flows are identified among the most dangerous of all landslides. Due to their destructive potential, the runout length has to be predicted to define the hazardous areas and design safeguarding measures. To this purpose, a continuum model to predict the debris flows mobility is developed. It is based on the well known depth-integrated avalanche model proposed by Savage and Hutter (S&H model) to simulate the dry granular materials flows. Conservation of mass and momentum equations, describing the evolving geometry and the depth averaged velocity distribution, are re-written taking into account the effects of the interstitial pressures and the possible variation of mass along the motion due to erosion/deposition processes. Furthermore, the mechanical behaviour of the debris flow is described by a recently developed rheological law, which allows to take into account the dissipative effects of the grain inelastic collisions and friction, simultaneously acting within a `shear layer', typically at the base of the debris flows. The governing PDEs are solved by applying the finite difference method. The analysis of a documented case is finally carried out.

  2. Debris flow hazards mitigation--Mechanics, prediction, and assessment

    Science.gov (United States)

    Chen, C.-L.; Major, J.J.

    2007-01-01

    These proceedings contain papers presented at the Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment held in Chengdu, China, September 10-13, 2007. The papers cover a wide range of topics on debris-flow science and engineering, including the factors triggering debris flows, geomorphic effects, mechanics of debris flows (e.g., rheology, fluvial mechanisms, erosion and deposition processes), numerical modeling, various debris-flow experiments, landslide-induced debris flows, assessment of debris-flow hazards and risk, field observations and measurements, monitoring and alert systems, structural and non-structural countermeasures against debris-flow hazards and case studies. The papers reflect the latest devel-opments and advances in debris-flow research. Several studies discuss the development and appli-cation of Geographic Information System (GIS) and Remote Sensing (RS) technologies in debris-flow hazard/risk assessment. Timely topics presented in a few papers also include the development of new or innovative techniques for debris-flow monitoring and alert systems, especially an infra-sound acoustic sensor for detecting debris flows. Many case studies illustrate a wide variety of debris-flow hazards and related phenomena as well as their hazardous effects on human activities and settlements.

  3. Influence of fine sediment on the fluidity of debris flows

    OpenAIRE

    HOTTA, Norifumi; Kaneko, Takahiro; Iwata, Tomoyuki; Nishimoto, Haruo

    2013-01-01

    Debris flows include a great diversity of grain sizes with inherent features such as inverse grading, particle size segregation, and liquefaction of fine sediment. The liquefaction of fine sediment affects the fluidity of debris flows, although the behavior and influence of fine sediment in debris flows have not been examined sufficiently. This study used flume tests to detect the effect of fine sediment on the fluidity of laboratory debris flows consisting of particles with various diameters...

  4. Debris flow relationships in the Central Spanish Pyrenees

    OpenAIRE

    Beguería, S.; A. Lorente; Garcia-Ruiz, J. M.

    2007-01-01

    Debris flows represent the most active geomorphic risk in mountainous areas, affecting infrastructures, human settlements and touristic resorts (Takahashi et al., 1981). For this reason, much effort has been put in assessing where debris flows occur and ranking the factors that trigger them, but also in defining two essential parameters in establishing debris flow hazards: what is the distance travelled by debris flows (especially the runout distance), and what is the volume of material carri...

  5. Identification of mechanisms for landslide type initiation of debris flows

    OpenAIRE

    Klubertanz, Georg; Laloui, Lyesse; Vulliet, Laurent

    2009-01-01

    The modelling of debris flow initiation in slopes is addressed in this paper. First, possible factors governing debris flow initiation are established. Then, a coupled hydro-mechanical model for deformable porous media with two pore fluids that is used to assess the problem of the debris flow initiation in slopes is briefly outlined. Various ways to identify failure and to approach the transition of the failed mass into a debris flow are discussed in the framework of small strain theory and e...

  6. Uncertainties in Predicting Debris Flow Hazards Following Wildfire

    NARCIS (Netherlands)

    Hyde, K.D.; Riley, Karin; Stoof, C.R.

    2016-01-01

    Wildfire increases the probability of debris flows posing hazardous conditions where values-at-risk exist downstream of burned areas. Conditions and processes leading to postfire debris flows usually follow a general sequence defined here as the postfire debris flow hazard cascade: biophysical setti

  7. The Group Debris Flow Hazards after the Wenchuan Earthquake in Longchi, Dujiangyan, Sichuan Province%汶川地震后四川省都江堰市龙池镇群发泥石流灾害

    Institute of Scientific and Technical Information of China (English)

    余斌; 马煜; 张健楠; 吴雨夫; 张惠惠; 李丽; 褚胜名; 亓星

    2011-01-01

    Many group debris flow hazards were triggered by subsequent rainstorm in the Wenchuan Earthquake area after the main shock. Group debris flow hazards in Longchi, Dujiangyan, Sichuan Province is one of these disasters. There were 45 debris flows triggered by heavy rainfall in the catchment of Longxi River on August 13, 2010. In the all 45 debris flows, there were 34 channelized debris flows and 11 debris flows on the slope. The total volume of debris flow was 3. 34 X 10 m and plenty of sediment was deposited in the downstream of Longxi River. The rainfall which triggered the debris flows in Longxi River catchment on August 13, 2010 was 75 mm in one hour. It was the same as one hour rainfall of twenty years return period. Most debris flows were distributing in 3 km from the triggering belt of Wenchuan Earthquake, only 11.1% of total debris flows were located in 3 - 5 km from the triggering belt. The distribution of debris flows were also controlled by the rock characteristics and geomorphology. Most of debris flows are viscous debris flows, only 11.1% of total debris flows were less viscous debris flows. There were 60. 0% small scale debris flows and 11.1% large scale debris flows in total debris flows. Most catchments of debris flow were small catchment, 68.9% of total catchments was less than 1 km2, only 6. 7% of total catchments was larger than 3 km . The sediment deposited in Longxi River was controlled by the activity of debris flows, the width of channel, and the slope of channel; there was no sediment deposited in the upper stream of Longxi River, but there was plenty of sediment deposited in the downstream. The size of sediment deposited in Longxi River was partly decided by the rock characteristics of debris flow catchments, as the results the particle sizes were decreasing from upper stream to downstream of Longxi River. The debris flow hazards will be triggered again when it is heavy rainfall in Longxi River catchment. To reduce the hazards of debris flows

  8. Proportional loss functions for debris flow events

    Directory of Open Access Journals (Sweden)

    C. M. Rheinberger

    2013-08-01

    Full Text Available Quantitative risk assessments of debris flows and other hydrogeological hazards require the analyst to predict damage potentials. A common way to do so is by use of proportional loss functions. In this paper, we analyze a uniquely rich dataset of 132 buildings that were damaged in one of five large debris flow events in Switzerland. Using the double generalized linear model, we estimate proportional loss functions that may be used for various prediction purposes including hazard mapping, landscape planning, and insurance pricing. Unlike earlier analyses, we control for confounding effects of building characteristics, site specifics, and process intensities as well as for overdispersion in the data. Our results suggest that process intensity parameters are the most meaningful predictors of proportional loss sizes. Cross-validation tests suggest that the mean absolute prediction errors of our models are in the range of 11%, underpinning the accurateness of the approach.

  9. Proportional loss functions for debris flow events

    Science.gov (United States)

    Rheinberger, C. M.; Romang, H. E.; Bründl, M.

    2013-08-01

    Quantitative risk assessments of debris flows and other hydrogeological hazards require the analyst to predict damage potentials. A common way to do so is by use of proportional loss functions. In this paper, we analyze a uniquely rich dataset of 132 buildings that were damaged in one of five large debris flow events in Switzerland. Using the double generalized linear model, we estimate proportional loss functions that may be used for various prediction purposes including hazard mapping, landscape planning, and insurance pricing. Unlike earlier analyses, we control for confounding effects of building characteristics, site specifics, and process intensities as well as for overdispersion in the data. Our results suggest that process intensity parameters are the most meaningful predictors of proportional loss sizes. Cross-validation tests suggest that the mean absolute prediction errors of our models are in the range of 11%, underpinning the accurateness of the approach.

  10. Prevention of debris flow disasters on Chengdu-Kunming Railway

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Chengdu-Kunming Railway is an important transport line on southwestern China. However, this railway's safety is often threatened by debris flows. How to effectively forecast and alarm the debris flow disasters and reduce the losses is the aim to study the prevention system in this paper. The factors to cause or influence debris flow are divided into four parts——the basin environmental factors, the basin meteoric factors, the prevention work's elements and the flood-relief work's elements, and the prevention system is made up of three models——a judgment model to assess the debris flow gully's seriousness, a forecast model to predict the debris flow's occurrence and an alarm model to evaluate the debris flow's disaster. Afterwards, a concise structure chart is worked out and verified by the field data from Chengdu-Kunming Railway. This prevention system will provide beneficial reference for the debris flow's monitoring network to be executed on Chengdu-Kunming Railway.

  11. Prevention of debris flow disasters on Chengdu-Kunming Railway.

    Science.gov (United States)

    Wang, W; Xu, W L; Liu, S J

    2001-07-01

    Chengdu-Kunming Railway is an important transport line on southwestern China. However, this railway's safety is often threatened by debris flows. How to effectively forecast and alarm the debris flow disasters and reduce the losses is the aim to study the prevention system in this paper. The factors to cause or influence debris flow are divided into four parts--the basin environmental factors, the basin meteoric factors, the prevention work's elements and the flood-relief work's elements, and the prevention system is made up of three models--a judgment model to assess the debris flow gully's seriousness, a forecast model to predict the debris flow's occurrence and an alarm model to evaluate the debris flow's disaster. Afterwards, a concise structure chart is worked out and verified by the field data from Chengdu-Kunming Railway. This prevention system will provide beneficial reference for the debris flow's monitoring network to be executed on Chengdu-Kunming Railway.

  12. Self-organization criticality of debris flow rheology

    Institute of Scientific and Technical Information of China (English)

    WANG Yuyi; JAN Chyandeng; CHEN Xiaoqing; HAN Wenliang

    2003-01-01

    Based on the viewpoint of stress and strain self-organization criticality of debris flow mass, this paper probes into inter-nonlinear action between different factors in the thixotropic liquefaction system of loose clastic soil onslope to make clastic soil in slope develop naturally towards critical stress status, and slope debris flow finally occurs under trigging by rainstorm. Also according to observation and analysis of self-organization criticality of sedimentrunoff system of viscous debris flow surges in ravines and power relation between magnitude and frequency of debris flows, this paper expounds similarity of the self-organized structure of debris flow mass. The self-organized critical system is a weak chaotic system. Debris flow occurrences can be predicted accordingly by means of observation at certain time scale and analysis of self-organization criticality of magnitude, frequency and time interval of debris flows.

  13. Analysis of the Mobilization of Debris Flows

    Science.gov (United States)

    1974-10-01

    as lateral ridges pestered along the canyon walls. The debris flow mobilized in a grass-covered swale surrounded by a moderately dense growth of...water apparently rushes out of the channels much as water from a firehose and strikes the talus. The erosive power of water issuing from a firehose...normal floods. The typical mudspate-track does not, however, readily associate itself with the ravine of a permanent or powerful mountain stream, for

  14. Debris flow initiation in proglacial gullies on Mount Rainier, Washington

    Science.gov (United States)

    Legg, Nicholas T.; Meigs, Andrew J.; Grant, Gordon E.; Kennard, Paul

    2014-12-01

    Effects of climate change, retreating glaciers, and changing storm patterns on debris flow hazards concern managers in the Cascade Range (USA) and mountainous areas worldwide. During an intense rainstorm in November 2006, seven debris flows initiated from proglacial gullies of separate basins on the flanks of Mount Rainier. Gully heads at glacier termini and widespread failure of gully walls imply that overland flow was transformed into debris flow along gullies. We characterized gully change and morphology, and assessed spatial distributions of debris flows to infer the processes and conditions for debris flow initiation. Slopes at gully heads were greater than ~ 0.35 m m- 1 (19°) and exhibited a significant negative relationship with drainage area. A break in slope-drainage area trends among debris flow gullies also occurs at ~ 0.35 m m- 1, representing a possible transition to fluvial sediment transport and erosion. An interpreted hybrid model of debris flow initiation involves bed failure near gully heads followed by sediment recruitment from gully walls along gully lengths. Estimates of sediment volume loss from gully walls demonstrate the importance of sediment inputs along gullies for increasing debris flow volumes. Basin comparisons revealed significantly steeper drainage networks and higher elevations in debris flow-producing than non-debris flow-producing proglacial areas. The high slopes and elevations of debris flow-producing proglacial areas reflect positive slope-elevation trends for the Mount Rainier volcano. Glacier extent therefore controls the slope distribution in proglacial areas, and thus potential for debris flow generation. As a result, debris flow activity may increase as glacier termini retreat onto slopes inclined at angles above debris flow initiation thresholds.

  15. Hack's law of debris-flow basins

    Institute of Scientific and Technical Information of China (English)

    LI Yong; YUE Z.Q.; LEE C.F.; BEIGHLEY R.E.; CHEN Xiao-Qing; HU Kai-Heng; CUI Peng

    2009-01-01

    Hack's law was originally derived from basin statistics for varied spatial scales and regions.The exponent value of the law has been shown to vary between 0.47 and 0.70,causing uncertainty in its application.This paper focuses on the emergence of Hack's law from debris-flow basins in China.Over 5,000 debris-flow basins in different regions of China with drainage areas less than 100km2 are included in this study.Basins in the different regions are found to present similar distributions.Hack's law is derived fi'om maximum probability and conditional distributions,suggesting that the law should describe some critical state of basin evolution.Results suggest the exponent value is approximately 0.5.Further analysis indicates that Hack's law is related to other scaling laws underlying the evolution of a basin and that the exponent is not dependent on basin shape but rather on the evolutionary stage.A case study of a well known debris-flow basin further confirms Hack's law and its implications in basin evolution.

  16. Triggering Mechanism and characteristic of Debris Flow in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Norhidayu Kasim

    2016-04-01

    Full Text Available Forensic investigations have been carried out at eight (8 selected debris flow locations in Peninsular Malaysia in order to determine the mechanism and characteristic of debris flow. Comprehensive studies on the available records of past debris flow have been carried out in order to describe the fundamental characteristics of debris flow events. Site investigation and laboratory tests of particular debris flow sites were carried out to evaluate the causes of the debris flow triggering factors such as topographical, geotechnical and geological characteristics. Rainfall records are collected from the nearest meteorological station in order to analyse the reasonable correlation of rainfall with the occurrence of debris flow. Geological study shows that debris flow is prone to occur at granitic areas. The gradient of the initiation areas are above 20 and the debris tends to deposit in the areas with gradient between 2 to 15. Laboratory tests show that the soil type at the debris flow areas consists predominantly of silty sand classified as SM according to the Unified Soil Classification System. The relation between rainfall patterns and the possible occurrences of debris flow indicated that the trigger thresholds are found to be generally high in most cases

  17. Dynamics of unusual debris flows on Martian sand dunes

    OpenAIRE

    Bourke, Mary

    2004-01-01

    PUBLISHED Gullies that dissect sand dunes in Russell impact crater often display debris flow-like deposits in their distal reaches. The possible range of both the rheological properties and the flow rates are estimated using a numerical simulation code of a Bingham plastic flow to help explain the formation of these features. Our simulated results are best explained by a rapid debris flow. For example, a debris flow with the viscosity of 10 2 Pa s and the yiel...

  18. Debris-flow generation from recently burned watersheds

    Science.gov (United States)

    Cannon, S.H.

    2001-01-01

    Evaluation of the erosional response of 95 recently burned drainage basins in Colorado, New Mexico and southern California to storm rainfall provides information on the conditions that result in fire-related debris flows. Debris flows were produced from only 37 of 95 (~40 percent) basins examined; the remaining basins produced either sediment-laden streamflow or no discernable response. Debris flows were thus not the prevalent response of the burned basins. The debris flows that did occur were most frequently the initial response to significant rainfall events. Although some hillslopes continued to erode and supply material to channels in response to subsequent rainfall events, debris flows were produced from only one burned basin following the initial erosive event. Within individual basins, debris flows initiated through both runoff and infiltration-triggered processes. The fact that not all burned basins produced debris flows suggests that specific geologic and geomorphic conditions may control the generation of fire-related debris flows. The factors that best distinguish between debris-flow producing drainages and those that produced sediment-laden streamflow are drainage-basin morphology and lithology, and the presence or absence of water-repellent soils. Basins underlain by sedimentary rocks were most likely to produce debris flows that contain large material, and sand- and gravel-dominated flows were generated primarily from terrain underlain by decomposed granite. Basin-area and relief thresholds define the morphologic conditions under which both types of debris flows occur. Debris flows containing large material are more likely to be produced from basins without water-repellent soils than from basins with water repellency. The occurrence of sand-and gravel-dominated debris flows depends on the presence of water-repellent soils.

  19. Modelling debris flows down general channels

    Directory of Open Access Journals (Sweden)

    S. P. Pudasaini

    2005-01-01

    Full Text Available This paper is an extension of the single-phase cohesionless dry granular avalanche model over curved and twisted channels proposed by Pudasaini and Hutter (2003. It is a generalisation of the Savage and Hutter (1989, 1991 equations based on simple channel topography to a two-phase fluid-solid mixture of debris material. Important terms emerging from the correct treatment of the kinematic and dynamic boundary condition, and the variable basal topography are systematically taken into account. For vanishing fluid contribution and torsion-free channel topography our new model equations exactly degenerate to the previous Savage-Hutter model equations while such a degeneration was not possible by the Iverson and Denlinger (2001 model, which, in fact, also aimed to extend the Savage and Hutter model. The model equations of this paper have been rigorously derived; they include the effects of the curvature and torsion of the topography, generally for arbitrarily curved and twisted channels of variable channel width. The equations are put into a standard conservative form of partial differential equations. From these one can easily infer the importance and influence of the pore-fluid-pressure distribution in debris flow dynamics. The solid-phase is modelled by applying a Coulomb dry friction law whereas the fluid phase is assumed to be an incompressible Newtonian fluid. Input parameters of the equations are the internal and bed friction angles of the solid particles, the viscosity and volume fraction of the fluid, the total mixture density and the pore pressure distribution of the fluid at the bed. Given the bed topography and initial geometry and the initial velocity profile of the debris mixture, the model equations are able to describe the dynamics of the depth profile and bed parallel depth-averaged velocity distribution from the initial position to the final deposit. A shock capturing, total variation diminishing numerical scheme is implemented to

  20. Debris flow hazard mapping, Hobart, Tasmania, Australia

    Science.gov (United States)

    Mazengarb, Colin; Rigby, Ted; Stevenson, Michael

    2015-04-01

    Our mapping on the many dolerite capped mountains in Tasmania indicates that debris flows are a significant geomorphic process operating there. Hobart, the largest city in the State, lies at the foot of one of these mountains and our work is focussed on identifying areas that are susceptible to these events and estimating hazard in the valley systems where residential developments have been established. Geomorphic mapping with the benefit of recent LiDAR and GIS enabled stereo-imagery has allowed us to add to and refine a landslide inventory in our study area. In addition, a dominant geomorphic model has been recognised involving headward gully retreat in colluvial materials associated with rainstorms explains why many past events have occurred and where they may occur in future. In this paper we will review the landslide inventory including a large event (~200 000m3) in 1872 that affected a lightly populated area but since heavily urbanised. From this inventory we have attempted volume-mobility relationships, magnitude-frequency curves and likelihood estimates. The estimation of volume has been challenging to determine given that the area of depletion for each debris flow feature is typically difficult to distinguish from the total affected area. However, where LiDAR data exists, this uncertainty is substantially reduced and we develop width-length relationships (area of depletion) and area-volume relationships to estimate volume for the whole dataset exceeding 300 features. The volume-mobility relationship determined is comparable to international studies and in the absence of reliable eye-witness accounts, suggests that most of the features can be explained as single event debris flows, without requiring more complex mechanisms (such as those that form temporary debris dams that subsequently fail) as proposed by others previously. Likelihood estimates have also been challenging to derive given that almost all of the events have not been witnessed, some are

  1. Mapping debris-flow hazard in Honolulu using a DEM

    Science.gov (United States)

    Ellen, Stephen D.; Mark, Robert K.; ,

    1993-01-01

    A method for mapping hazard posed by debris flows has been developed and applied to an area near Honolulu, Hawaii. The method uses studies of past debris flows to characterize sites of initiation, volume at initiation, and volume-change behavior during flow. Digital simulations of debris flows based on these characteristics are then routed through a digital elevation model (DEM) to estimate degree of hazard over the area.

  2. Bentonite debris flows in northern alaska.

    Science.gov (United States)

    Anderson, D M; Reynolds, R C; Brown, J

    1969-04-11

    Seasonal freezing and thawing and the extreme cold of the arctic lead to the development of a variety of characteristic geomorphic features. A new one, bentonite debris flow channels, has been identified near Umiat, Alaska. These flows form when bentonite-rich Cretaceous Shales are exposed to Surface water on slopes of 5 to 30 degrees. The characteristic landform developed is a U-shaped channel 1 to 2 meters deep and from 8 to 10 meters in width. The channel shows a fluted floor and walls and is commonly flanked by a levee. The flow material is appa rently derived from the entire surface of the head portions of associated gullies. When this surface layer hydrates during snowmelt and runoff or during prolonged rain, the bentonite imbibes water and swells to a point at which its viscosity is lowered sufficiently to initiate creep or viscous flow.

  3. Debris-flow susceptibility of watersheds recently burned by wildfire

    Science.gov (United States)

    Cannon, S.H.

    2004-01-01

    Evaluation of the erosional response of 95 recently burned watersheds in Colorado, New Mexico, and southern California to storm rainfall established the factors that best differentiate between debris-flow producing basins and those that produced other flow responses. These factors are drainage-basin morphology and lithology, and the presence or absence of water-repellent soils. Basins underlain by sedimentary rocks were most likely to produce debris flows that contain large material, and sand- and gravel-dominated debris flows were generated primarily from terrain underlain by decomposed granite. Basin-area and relief thresholds define the morphologic conditions under which both types of debris flows occurred. Debris flows containing large material were more likely to be produced from basins without water-repellent soils than from basins with water repellency. The occurrence of sand and gravel-dominated debris flows depended on the presence of water repellent soils. Copyright 2004 ASCE.

  4. Debris Flow Hazard Assessment Based on Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    YUAN Lifeng; ZHANG Youshui

    2006-01-01

    Seven factors, including the maximum volume of once flow , occurrence frequency of debris flow , watershed area , main channel length , watershed relative height difference , valley incision density and the length ratio of sediment supplement are chosen as evaluation factors of debris flow hazard degree. Using support vector machine (SVM) theory, we selected 259 basic data of 37 debris flow channels in Yunnan Province as learning samples in this study. We create a debris flow hazard assessment model based on SVM. The model was validated though instance applications and showed encouraging results.

  5. Calculation of the debris flow concentration based on clay content

    Institute of Scientific and Technical Information of China (English)

    CHEN Ningsheng; CUI Peng; LIU Zhonggang; WEI Fangqiang

    2003-01-01

    The debris flow clay content has very tremendous influence on its concentration (γC). It is reported that the concentration can be calculated by applying the relative polynomial based on the clay content. Here one polynomial model and one logarithm model to calculate the concentration based on the clay content for both the ordinary debris flow and viscous debris flow are obtained. The result derives from the statistics and analysis of the relationship between the debris flow concentrations and clay content in 45 debris flow sites located in the southwest of China. The models can be applied for the concentration calculation to those debris flows that are impossible to observe. The models are available to calculate the debris flow concentration, the principles of which are in the clay content affecting on the debris flow formation, movement and suspending particle diameter. The mechanism of the relationship of the clay content and concentration is clear and reliable. The debris flow is usually of micro-viscous when the clay content is low (<3%), by analyzing the developing tendency on the basics of the relationship between the clay content and debris flow concentration. Indeed, the less the clay content, the less the concentration for most debris flows. The debris flow tends to become the water rock flow or the hyperconcentrated flow with the clay content decrease. Through statistics it is apt to transform the soil into the viscous debris flow when the clay content of ranges is in 3%-18%. Its concentration increases with the increasing of the clay content when the clay content is between 5% and 10%. But the value decreases with the increasing of the clay content when the clay content is between 10% and 18%. It is apt to transform the soil into the mudflow, when the clay content exceeds 18%. The concentration of the mudflow usually decreases with the increase of the clay content, and this developing tendency reverses to that of the micro-viscous debris flow. There is

  6. Classification of debris flow phenomena in the Faroe Islands

    DEFF Research Database (Denmark)

    Dahl, Mads-Peter Jakob; E. Mortensen, Lis; Jensen, Niels H.

    2012-01-01

    Landslides and debris flow phenomena in particular constitute a threat to human activities in the Faroe Islands. As a contribution to ongoing landslide risk management research, this paper proposes a classification scheme for debris flow phenomena in the Faroe Islands. The scheme, produced through...... with international landslide classification systems, significantly increases the knowledge of debris flow phenomena and promotes a consistent terminology of these within the Faroe Islands....

  7. Debris flow, debris avalanche and flood hazards at and downstream from Mount Rainier, Washington

    Science.gov (United States)

    Scott, Kevin M.; Vallance, J.W.

    1995-01-01

    Mount Rainier volcano has produced many large debris flows and debris avalanches during the last 10,000 years. These flows have periodically traveled more than 100 kilometers from the volcano to inundate parts of the now-populated Puget Sound Lowland. Meteorological floods also have caused damage, but future effects will be partly mitigated by reservoirs. Mount Rainier presents the most severe flow risks of any volcano in the United States. Volcanic debris flows (lahars) are of two types: (1) cohesive, relatively high clay flows originating as debris avalanches, and (2) noncohesive flows with less clay that begin most commonly as meltwater surges. Three case histories represent important subpopulations of flows with known magnitudes and frequencies. The risks of each subpopulation may be considered for general planning and design. A regional map illustrates the extent of inundation by the case-history flows, the largest of which originated as debris avalanches and moved from Mount Rainier to Puget Sound. The paleohydrologic record of these past flows indicates the potential for inundation by future flows from the volcano. A map of the volcano and its immediate vicinity shows examples of smaller debris avalanches and debris flows in the 20th century.

  8. Effects of basal debris on glacier flow.

    Science.gov (United States)

    Iverson, Neal R; Cohen, Denis; Hooyer, Thomas S; Fischer, Urs H; Jackson, Miriam; Moore, Peter L; Lappegard, Gaute; Kohler, Jack

    2003-07-04

    Glacier movement is resisted partially by debris, either within glaciers or under glaciers in water-saturated layers. In experiments beneath a thick, sliding glacier, ice containing 2 to 11% debris exerted shear traction of 60 to 200 kilopascals on a smooth rock bed, comparable to the total shear traction beneath glaciers and contrary to the usual assumption that debris-bed friction is negligible. Imposed pore-water pressure that was 60 to 100% of the normal stress in a subglacial debris layer reduced shear traction on the debris sufficiently to halt its deformation and cause slip of ice over the debris. Slip resistance was thus less than debris shearing resistance.

  9. Magnitude and frequency data for historic debris flows in Grand Canyon National Park and vicinity, Arizona

    Science.gov (United States)

    Melis, T.S.; Webb, R.H.; Griffiths, P.G.; Wise, T.J.

    1995-01-01

    Debris flows occur in 529 tributaries of the Colorado River in Grand Canyon between Lees Ferry and Diamond Creek, Arizona (river miles 0 to 225). An episodic type of flash flood, debris flows transport poorly-sorted sediment ranging in size from clay to boulders into the Colorado River. Debris flows create and maintain debris fans and the hundreds of associated riffles and rapids that control the geomorphic framework of the Colorado River downstream from Glen Canyon Dam. Between 1984 and 1994, debris flows created 4 new rapids and enlarged 17 existing rapids and riffles. Debris flows in Grand Canyon are initiated by slope failures that occur during intense rainfall. Three of these mechanisms of slope failure are documented. Failures in weathered bedrock, particularly in the Hermit Shale and Supai Group, have initiated many historic debris flows in Grand Canyon. A second mechanism, termed the fire-hose effect, occurs when runoff pours over cliffs onto unconsolidated colluvial wedges, triggering a failure. A third initiation mechanism occurs when intense precipitation causes failures in colluvium overlying bedrock. Multiple source areas and extreme topographic relief in Grand Canyon commonly result in combinations of these three initiation mechanisms. Interpretation of 1,107 historical photographs spanning 120 years, supplemented with aerial photography made between 1935 and 1994, yielded information on the frequency of debris flows in 168 of the 529 tributaries (32 percent) of the Colorado River in Grand Canyon. Of the 168 tributaries, 96 contain evidence of debris flows that have occurred since 1872, whereas 72 tributaries have not had a debris flow during the last century. The oldest debris flow we have documented in Grand Canyon occurred 5,400 years ago in an unnamed tributary at river mile 63.3-R. Our results indicate that the frequency of debris flows ranges from one every 10 to 15 years in certain eastern tributaries, to less than one per century in other

  10. Sources of debris flow material in burned areas

    Science.gov (United States)

    Santi, P.M.; deWolfe, V.G.; Higgins, J.D.; Cannon, S.H.; Gartner, J.E.

    2008-01-01

    The vulnerability of recently burned areas to debris flows has been well established. Likewise, it has been shown that many, if not most, post-fire debris flows are initiated by runoff and erosion and grow in size through erosion and scour by the moving debris flow, as opposed to landslide-initiated flows with little growth. To better understand the development and character of these flows, a study has been completed encompassing 46 debris flows in California, Utah, and Colorado, in nine different recently burned areas. For each debris flow, progressive debris production was measured at intervals along the length of the channel, and from these measurements graphs were developed showing cumulative volume of debris as a function of channel length. All 46 debris flows showed significant bulking by scour and erosion, with average yield rates for each channel ranging from 0.3 to 9.9??m3 of debris produced for every meter of channel length, with an overall average value of 2.5??m3/m. Significant increases in yield rate partway down the channel were identified in 87% of the channels, with an average of a three-fold increase in yield rate. Yield rates for short reaches of channels (up to several hundred meters) ranged as high as 22.3??m3/m. Debris was contributed from side channels into the main channels for 54% of the flows, with an average of 23% of the total debris coming from those side channels. Rill erosion was identified for 30% of the flows, with rills contributing between 0.1 and 10.5% of the total debris, with an average of 3%. Debris was deposited as levees in 87% of the flows, with most of the deposition occurring in the lower part of the basin. A median value of 10% of the total debris flow was deposited as levees for these cases, with a range from near zero to nearly 100%. These results show that channel erosion and scour are the dominant sources of debris in burned areas, with yield rates increasing significantly partway down the channel. Side channels are

  11. Pore Water Pressure Contribution to Debris Flow Mobility

    Directory of Open Access Journals (Sweden)

    Chiara Deangeli

    2009-01-01

    Full Text Available Problem statement: Debris flows are very to extremely rapid flows of saturated granular soils. Two main types of debris flow are generally recognized: Open slope debris flows and channelized debris flows. The former is the results of some form of slope failures, the latter can develop along preexisting stream courses by the mobilization of previously deposited debris blanket. The problem to be addressed is the influence of the mode of initiation on the subsequent mechanism of propagation. In particular the role of pore water pressure on debris flow mobility in both types was debated. Approach: Laboratory flume experiments were set up in order to analyze the behavior of debris flows generated by model sand slope failures. Failures were induced in sand slopes by raising the water level by seepage from a drain located at the top end of the flume, and by rainfall supplied by a set of pierced plastic pipes placed above the flume. Video recordings of the tests were performed to analyze debris flow characteristics. Results: In all the tests the sand water mixture flows were unsteady and non uniform and sand deposition along the channel bed was a relevant phenomenon. The flows were characterized by a behavioral stratification of the sand water mixture along the flow depth. Back analyzed pore water pressure were just in excess to the hydrostatic condition. The reliability of the experimental results was checked by comparison with other flume experiment data. Conclusion: Debris flow behavior was influenced by the mode of initiation, the inclination of the channel and grain size of the soils. These factors affected the attained velocities and the pore water pressure values. The mobility of debris flows was not always enhanced by high excess pore water pressure values.

  12. Acoustic module of the Acquabona (Italy debris flow monitoring system

    Directory of Open Access Journals (Sweden)

    A. Galgaro

    2005-01-01

    Full Text Available Monitoring of debris flows aimed to the assessment of their physical parameters is very important both for theoretical and practical purposes. Peak discharge and total volume of debris flows are crucial for designing effective countermeasures in many populated mountain areas where losses of lives and property damage could be avoided. This study quantifies the relationship between flow depth, acoustic amplitude of debris flow induced ground vibrations and front velocity in the experimental catchment of Acquabona, Eastern Dolomites, Italy. The analysis of data brought about the results described in the following. Debris flow depth and amplitude of the flow-induced ground vibrations show a good positive correlation. Estimation of both mean front velocity and peak discharge can be simply obtained monitoring the ground vibrations, through geophones installed close to the flow channel; the total volume of debris flow can be so directly estimated from the integral of the ground vibrations using a regression line. The application of acoustic technique to debris flow monitoring seems to be of the outmost relevance in risk reduction policies and in the correct management of the territory. Moreover this estimation is possible in other catchments producing debris flows of similar characteristics by means of their acoustic characterisation through quick and simple field tests (Standard Penetration Tests and seismic refraction surveys.

  13. Enhancing debris flow modeling parameters integrating Bayesian networks

    Science.gov (United States)

    Graf, C.; Stoffel, M.; Grêt-Regamey, A.

    2009-04-01

    Applied debris-flow modeling requires suitably constraint input parameter sets. Depending on the used model, there is a series of parameters to define before running the model. Normally, the data base describing the event, the initiation conditions, the flow behavior, the deposition process and mainly the potential range of possible debris flow events in a certain torrent is limited. There are only some scarce places in the world, where we fortunately can find valuable data sets describing event history of debris flow channels delivering information on spatial and temporal distribution of former flow paths and deposition zones. Tree-ring records in combination with detailed geomorphic mapping for instance provide such data sets over a long time span. Considering the significant loss potential associated with debris-flow disasters, it is crucial that decisions made in regard to hazard mitigation are based on a consistent assessment of the risks. This in turn necessitates a proper assessment of the uncertainties involved in the modeling of the debris-flow frequencies and intensities, the possible run out extent, as well as the estimations of the damage potential. In this study, we link a Bayesian network to a Geographic Information System in order to assess debris-flow risk. We identify the major sources of uncertainty and show the potential of Bayesian inference techniques to improve the debris-flow model. We model the flow paths and deposition zones of a highly active debris-flow channel in the Swiss Alps using the numerical 2-D model RAMMS. Because uncertainties in run-out areas cause large changes in risk estimations, we use the data of flow path and deposition zone information of reconstructed debris-flow events derived from dendrogeomorphological analysis covering more than 400 years to update the input parameters of the RAMMS model. The probabilistic model, which consistently incorporates this available information, can serve as a basis for spatial risk

  14. NOAA-USGS Debris-Flow Warning System - Final Report

    Science.gov (United States)

    ,

    2005-01-01

    Landslides and debris flows cause loss of life and millions of dollars in property damage annually in the United States (National Research Council, 2004). In an effort to reduce loss of life by debris flows, the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) and the U.S. Geological Survey (USGS) operated an experimental debris-flow prediction and warning system in the San Francisco Bay area from 1986 to 1995 that relied on forecasts and measurements of precipitation linked to empirical precipitation thresholds to predict the onset of rainfall-triggered debris flows. Since 1995, there have been substantial improvements in quantifying precipitation estimates and forecasts, development of better models for delineating landslide hazards, and advancements in geographic information technology that allow stronger spatial and temporal linkage between precipitation forecasts and hazard models. Unfortunately, there have also been several debris flows that have caused loss of life and property across the United States. Establishment of debris-flow warning systems in areas where linkages between rainfall amounts and debris-flow occurrence have been identified can help mitigate the hazards posed by these types of landslides. Development of a national warning system can help support the NOAA-USGS goal of issuing timely Warnings of potential debris flows to the affected populace and civil authorities on a broader scale. This document presents the findings and recommendations of a joint NOAA-USGS Task Force that assessed the current state-of-the-art in precipitation forecasting and debris-flow hazard-assessment techniques. This report includes an assessment of the science and resources needed to establish a demonstration debris-flow warning project in recently burned areas of southern California and the necessary scientific advancements and resources associated with expanding such a warning system to unburned areas and, possibly, to a

  15. Systems and Sensors for Debris-flow Monitoring and Warning.

    Science.gov (United States)

    Arattano, Massimo; Marchi, Lorenzo

    2008-04-04

    Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows), their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall) and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche pendulums, photocells

  16. Systems and Sensors for Debris-flow Monitoring and Warning

    Directory of Open Access Journals (Sweden)

    Lorenzo Marchi

    2008-04-01

    Full Text Available Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows, their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche

  17. Simulation of long-term debris flow sediment transport based on a slope stability and a debris flow routing model

    Science.gov (United States)

    Müller, T.; Hoffmann, T.

    2012-04-01

    Debris flows play a crucial role in the coupling of hillslope-sediment sources and channels in mountain environments. In most landscape evolution models (LEMs), the sediment transport by debris flows is (if at all) often represented by simple empirical rules. This generally results from the mismatch of the coarse resolution of the LEMs and the small scale impacts of debris flow processes. To extend the accuracy and predictive power of LEMs, either a higher resolution of LEMs in combination with process-based debris flow models or a better parametrisation of subpixel scale debris flow processes is necessary. Furthermore, the simulation of sediment transport by debris flows is complicated by their episodic nature and unknown factors controlling the frequency and magnitude of events. Here, we present first results using a slope stability model (SINMAP) and an event-based debris flow routing model (SCIDDICA-S4c) to simulate the effects of debris flows in LEMs. The model was implemented in the XULU modelling platform developed by the Department of Computer Science at the University of Bonn. The combination of the slope stability model and the event-based routing and mass balance model enables us to simulate the triggering and routing of debris flow material through the iteration of single events over several thousand years. Although a detailed calibration and validation remains to be done, the resulting debris flow-affected areas in a test elevation model correspond well with data gained from a geomorphological mapping of the corresponding area, justifying our approach. The increased computation speed allows to run high resolution LEM in convenient short time at relatively low cost. This should encourage the development of more detailed LEMs, in which process-based models should be incorporated.

  18. GULLY-SPECIFIC DEBRIS FLOW HAZARD ASSESSMENT IN CHINA

    Institute of Scientific and Technical Information of China (English)

    LIU Xi-lin

    2003-01-01

    Techniques of gully-specific debris flow hazard assessment developed in four periods since the end of the1980s have been discussed in the present paper. The improvement for the empirical assessment method is the sectional-ized function transformation for the factor value, rather than the classified logical transformation. The theoretical equationof the gully-specific debris flow hazard is expressed as the definite integral of an exponential function and its numericalsolution is expressed by the Poisson Limit Equation. Current methods for assessment of debris flow hazard in China arestill valid and practical. The further work should be put on the study of the reliability (or unc ertainty) of the techniques.For the future, we should give a high priority to the relationship between debris flow magnitude and its frequency of occur-rence, make more developments of prediction model on debris flow magnitude, so as to finally reach the goal of assessingthe hazard of debris flow by theoretical model, and realize both actuality assessment and prediction appraisal of debris flow.

  19. On a possible mechanism of Alpine debris flows

    Directory of Open Access Journals (Sweden)

    A. E. SCHEIDEGGER

    1974-06-01

    Full Text Available The phenomenology and previous mechanical theories of Alpine debris flows are reviewed. A new model for the mechanics of such debris flows is proposed which is based on the notion of dispersive pressure occurring in shear flows introduced by Bagnold. It is shown that the values of the dynamical variables required by this model are of the order of magnitude of those observed in nature.

  20. Volcanic debris flows in developing countries - The extreme need for public education and awareness of debris-flow hazards

    Science.gov (United States)

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; ,

    2003-01-01

    In many developing countries, volcanic debris flows pose a significant societal risk owing to the distribution of dense populations that commonly live on or near a volcano. At many volcanoes, modest volume (up to 500,000 m 3) debris flows are relatively common (multiple times per century) and typically flow at least 5 km along established drainages. Owing to typical debris-flow velocities there is little time for authorities to provide effective warning of the occurrence of a debris flow to populations within 10 km of a source area. Therefore, people living, working, or recreating along channels that drain volcanoes must learn to recognize potentially hazardous conditions, be aware of the extent of debris-flow hazard zones, and be prepared to evacuate to safer ground when hazardous conditions develop rather than await official warnings or intervention. Debris-flow-modeling and hazard-assessment studies must be augmented with public education programs that emphasize recognizing conditions favorable for triggering landslides and debris flows if effective hazard mitigation is to succeed. ?? 2003 Millpress,.

  1. A Support System to Tie Apron Strings to Debris Flow

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Scientists from the Chengdubased CAS Institute of Mountain Hazards and Environment (IMHE) recently worked out a decision-making support system for disaster mitigation on debris fans in mountainous regions.As a domestic vanguard, the system plays a key role in the fight against debris flow and helping to reduce casualties.

  2. Anthropogenic effect on avalanche and debris flow activity

    Directory of Open Access Journals (Sweden)

    S. A. Sokratov

    2013-01-01

    Full Text Available The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoidable changes of the natural environment as the result of a construction and of use of the constructed infrastructure to be account for in corresponding planning of the protection measures.

  3. Development of the Assessment Items of Debris Flow Using the Delphi Method

    Science.gov (United States)

    Byun, Yosep; Seong, Joohyun; Kim, Mingi; Park, Kyunghan; Yoon, Hyungkoo

    2016-04-01

    In recent years in Korea, Typhoon and the localized extreme rainfall caused by the abnormal climate has increased. Accordingly, debris flow is becoming one of the most dangerous natural disaster. This study aimed to develop the assessment items which can be used for conducting damage investigation of debris flow. Delphi method was applied to classify the realms of assessment items. As a result, 29 assessment items which can be classified into 6 groups were determined.

  4. Debris flow hazards and risks on Cheekye Fan, British Columbia

    Science.gov (United States)

    Jakob, M.

    2009-04-01

    Natural hazard and risk assessments hinge fundamentally on a detailed understanding of the relationship between frequency and magnitude of the hazardous process under investigation. When information is sought from the deep past (i.e. several thousand years), continuous event records do not exist and the researcher has to rely on proxy data to develop the F-M model. Such work is often prohibitively expensive and few well researched examples for mass movement are available worldwide. Cheekye fan is a desirable location for land development and has a depth and breadth of previous research unprecedented on any debris flow fan in Canada. We pursued two principal strains of research to formulate a reliable frequency-magnitude relationship. The first focuses on stratigraphic analyses combined with radiometric dating and dendrochronology to reconstruct a comprehensive picture of Holocene debris flow activity. The second approach examines hydrological limitations of rock avalanche evolution into debris flows through either entrainment of saturated sediments or by failure of a landslide-generated dam and upstream impoundment. We thus hypothesize that debris flows from Cheekye River can be separated into two quasi homogenous populations: those that are typically triggered by relatively small debris avalanches, slumps or rock falls or simply by progressive bulking of in-stream erodible sediments; and those that are thought to result from transformation of rock avalanches. Our work suggests that debris flows exceeding some 3 million cubic metres in volume are unlikely to reach Cheekye fan due to limited water available to fully fluidize a rock avalanche. This analysis has also demonstrated that in order to arrive at reasonable estimates for the frequency and magnitude of debris flows on a complex alluvial fan, significant multidisciplinary efforts are required. As a second step in the analysis, we model the design debris flow using a two-dimensional debris flow runout model

  5. Forecasting Inundation from Debris Flows That Grow By Entraining Sediment

    Science.gov (United States)

    Reid, M. E.; Coe, J. A.; Brien, D. L.

    2014-12-01

    Destructive debris flows often grow, and extend their runouts, by entraining sediment as they travel. However, incorporating varied entrainment processes into physics-based flow routing models is challenging. As an alternative, we developed a relatively simple, automated method for forecasting the inundation hazards posed by debris flows that entrain sediment and coalesce from multiple flows. Within a drainage network, we amalgamate the effects of many possible debris flows with each flow volume proportional to an entrainment rate scaled by the upslope contributing area, and then use these volumes in the USGS GIS-based inundation model LAHARZ. Our approach only requires estimates of two parameters: spatial entrainment rate & maximum entrainment area or maximum volume. Our procedure readily integrates various sediment sources and it can portray different inundation hazard levels on a GIS-based map by varying our two parameters. We applied this approach to part of the Coast Range, southern Oregon, USA. Using aerial photography, we mapped debris flows triggered by a large 1996 rain event on a LiDAR-derived topographic base, and identified initiation locations, travel paths, and areas of channel erosion and deposition. Many catchments experienced multiple debris flows that coalesced downstream and about 95% of the debris flows entrained sediment as they traveled. Flows typically stopped entraining sediment before the upslope contributing area reached ~500,000 m2. We used pre- and post-debris-flow stereo photos to estimate spatial entrainment rates in four clear-cut catchments having both channel erosion and coalescence of flows; these rates varied from 0.12 to 0.2 m3/m2. GIS-based inundation maps, using our automated methods, are quite similar to the mapped flow paths and deposits. Given appropriate parameters, our approach could be applied to a variety of steep, channelized environments where entrainment is important, such as alpine and post-wildfire slopes.

  6. Grain Composition and Erosive Equilibrium of Debris Flows

    Institute of Scientific and Technical Information of China (English)

    LI Yong; LIU Jingjing; CHEN Xiaoqing; WEI Fangqiang

    2007-01-01

    Debris flows consist of grains of various sizes ranging from 10-6 m ~ 1 m. Field observations in the Jiangjia Gully (JJG) and other sites throughout China indicate that the grain size distribution of sediment in debris flows can be characterized by an exponential function fit to the cumulative distribution.The exponent value for the function varies by location and may be useful in distinguishing between debris flows from different valleys. For example, minimum values and ranges of the exponent are associated with the high frequency of debris flows in the JJG. Furthermore, the distribution presents piecewise fractality (i.e. scaling laws hold in various ranges of the grain size) and we propose that the fractal structure determines the matrix and that the fractal dimension plays a crucial role in material exchange between a debris flow and the substrate it flows over. Finally, the empirical data support an exponential relation between grain composition and non-dimensional shear stress for the critical state of the channel. Overall we propose a naterial-determinism approach to studying debris flows which contrasts with the enviro-determinism that has dominated much recent work in this field.

  7. EXPERIMENTAL STUDY ON EQUILIBRIUM CONCENTRATION OF DEBRIS FLOWS

    Institute of Scientific and Technical Information of China (English)

    Bin YU

    2001-01-01

    The paper presents experimental study of debris flows. The equilibrium concentration of solid particle in the flow is a function of the energy slope, density of solid particle and kinetic friction angle of particles. The kinetic friction angle is a function of internal friction angle, the concentration of solid particles and the maximum possible concentration. To determine the function between the kinetic friction angle and internal friction angle is the aim of this research. Flume experiments of equilibrium concentration about particles in water and slurry were conducted. The large density slurry made the coarse particles be able to move in small slope. The function between the kinetic friction angle and internal friction angle was found from these experiments. The coarse particles and fine particles are well mixed. D50 demarcation line was suggested in this paper to demarcate the coarse particle and fine particle of debris flows. The equilibrium concentration of debris flows was calculated by using Ds0 demarcation for the debris flows in field. The equilibrium concentration of debris flows calculated by the function between the kinetic friction angle and internal friction angle was close to the equilibrium concentration data of debris flows in field.

  8. Recent advances in modeling landslides and debris flows

    CERN Document Server

    2015-01-01

    Landslides and debris flows belong to the most dangerous natural hazards in many parts of the world. Despite intensive research, these events continue to result in human suffering, property losses, and environmental degradation every year. Better understanding of the mechanisms and processes of landslides and debris flows will help make reliable predictions, develop mitigation strategies and reduce vulnerability of infrastructure. This book presents contributions to the workshop on Recent Developments in the Analysis, Monitoring and Forecast of Landslides and Debris Flow, in Vienna, Austria, September 9, 2013. The contributions cover a broad spectrum of topics from material behavior, physical modelling over numerical simulation to applications and case studies. The workshop is a joint event of three research projects funded by the European Commission within the 7th Framework Program: MUMOLADE (Multiscale modelling of landslides and debris flows, www.mumolade.com), REVENUES (Numerical Analysis of Slopes with V...

  9. Assessment of debris flow hazards using a Bayesian Network

    Science.gov (United States)

    Liang, Wan-jie; Zhuang, Da-fang; Jiang, Dong; Pan, Jian-jun; Ren, Hong-yan

    2012-10-01

    Comprehensive assessment of debris flow hazard risk is challenging due to the complexity and uncertainties of various related factors. A reasonable and reliable assessment should be based on sufficient data and realistic approaches. This study presents a novel approach for assessing debris flow hazard risk using BN (Bayesian Network) and domain knowledge. Based on the records of debris flow hazards and geomorphological/environmental data for the Chinese mainland, approaches based on BN, SVM (Support Vector Machine) and ANN (Artificial Neural Network) were compared. BN provided the highest values of hazard detection probability, precision, and AUC (area under the receiver operating characteristic curve). The BN model is useful for mapping and assessing debris flow hazard risk on a national scale.

  10. Predicting sediment delivery from debris flows after wildfire

    Science.gov (United States)

    Nyman, Petter; Smith, Hugh G.; Sherwin, Christopher B.; Langhans, Christoph; Lane, Patrick N. J.; Sheridan, Gary J.

    2015-12-01

    Debris flows are an important erosion process in wildfire-prone landscapes. Predicting their frequency and magnitude can therefore be critical for quantifying risk to infrastructure, people and water resources. However, the factors contributing to the frequency and magnitude of events remain poorly understood, particularly in regions outside western USA. Against this background, the objectives of this study were to i) quantify sediment yields from post-fire debris flows in southeast Australian highlands and ii) model the effects of landscape attributes on debris flow susceptibility. Sediment yields from post-fire debris flows (113-294 t ha- 1) are 2-3 orders of magnitude higher than annual background erosion rates from undisturbed forests. Debris flow volumes ranged from 539 to 33,040 m3 with hillslope contributions of 18-62%. The distribution of erosion and deposition above the fan were related to a stream power index, which could be used to model changes in yield along the drainage network. Debris flow susceptibility was quantified with a logistic regression and an inventory of 315 debris flow fans deposited in the first year after two large wildfires (total burned area = 2919 km2). The differenced normalised burn ratio (dNBR or burn severity), local slope, radiative index of dryness (AI) and rainfall intensity (from rainfall radar) were significant predictors in a susceptibility model, which produced excellent results in terms identifying channels that were eroded by debris flows (Area Under Curve, AUC = 0.91). Burn severity was the strongest predictor in the model (AUC = 0.87 when dNBR is used as single predictor) suggesting that fire regimes are an important control on sediment delivery from these forests. The analysis showed a positive effect of AI on debris flow probability in landscapes where differences in moisture regimes due to climate are associated with large variation in soil hydraulic properties. Overall, the results from this study based in the

  11. Scaling and design of landslide and debris-flow experiments

    Science.gov (United States)

    Iverson, Richard M.

    2015-01-01

    Scaling plays a crucial role in designing experiments aimed at understanding the behavior of landslides, debris flows, and other geomorphic phenomena involving grain-fluid mixtures. Scaling can be addressed by using dimensional analysis or – more rigorously – by normalizing differential equations that describe the evolving dynamics of the system. Both of these approaches show that, relative to full-scale natural events, miniaturized landslides and debris flows exhibit disproportionately large effects of viscous shear resistance and cohesion as well as disproportionately small effects of excess pore-fluid pressure that is generated by debris dilation or contraction. This behavioral divergence grows in proportion to H3, where H is the thickness of a moving mass. Therefore, to maximize geomorphological relevance, experiments with wet landslides and debris flows must be conducted at the largest feasible scales. Another important consideration is that, unlike stream flows, landslides and debris flows accelerate from statically balanced initial states. Thus, no characteristic macroscopic velocity exists to guide experiment scaling and design. On the other hand, macroscopic gravity-driven motion of landslides and debris flows evolves over a characteristic time scale (L/g)1/2, where g is the magnitude of gravitational acceleration and L is the characteristic length of the moving mass. Grain-scale stress generation within the mass occurs on a shorter time scale, H/(gL)1/2, which is inversely proportional to the depth-averaged material shear rate. A separation of these two time scales exists if the criterion H/L landslide and debris-flow behavior but cannot be used to study macroscopic landslide or debris-flow dynamics.

  12. Vulnerability Assessment of Rainfall-Induced Debris Flow

    Science.gov (United States)

    Lu, G. Y.; Wong, D. W.; Chiu, L. S.

    2006-05-01

    Debris flow is a common hazard triggered by large amount of rainfall over mountainous areas. A debris flow event results from a complex interaction between rainfall and topographical properties of watersheds. Heavy rainfall facilitates this process by increasing pore water pressure, seepage force and reducing effective stress of soils (normal stress carried by soil particles at the points of contact). Since debris flow events are closely related to topography and rainfall, the goal of this research is to assess debris flow vulnerability related to these two factors. Objectives of this research are to: (1) examine new spatial interpolation techniques to estimate high spatial rainfall data relevant to debris flows. (2) develop topographical factors using Geography Information System (GIS) and remote sensing (RS) approaches and (3) combine the estimated rainfall and topographical factors to assess the vulnerability of debris flow. We examined three spatial interpolation techniques: adaptive inversed distance weight (AIDW), simple kriging and spatial disaggregation using wind induced-topographic effect that incorporates gauge measurements, satellite remote sensing data (TRMM). The topographical factors are derived from high resolution digital elevation model (DEM), and adopt fuzzy-based topographical models proposed by Tseng (2004). Estimated rainfall and topographical factors are processed by self-organizing maps (SOM) to provide vulnerability assessment. To demonstrate our technique, rainfall data collected by 39 rain gauges in the central part of Taiwan during the passage of Typhoon Tori-Ji around July 29, 2001 were used. Results indicate that the proposed spatial interpolation methods outperform existing methods (i.e. kriging, inverse distance weight, and co-kriging methods). The vulnerability assessment of 187 debris flows watersheds in the study area will be presented. Keyword: Debris flow, spatial interpolation, adaptive inverse distance weight, TRMM, self

  13. A real two-phase submarine debris flow and tsunami

    Energy Technology Data Exchange (ETDEWEB)

    Pudasaini, Shiva P.; Miller, Stephen A. [Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn Nussallee 8, D-53115, Bonn (Germany)

    2012-09-26

    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  14. Debris flow characteristics and relationships in the Central Spanish Pyrenees

    Directory of Open Access Journals (Sweden)

    A. Lorente

    2003-01-01

    Full Text Available Unconfined debris flows (i.e. not in incised channels are one of the most active geomorphic processes in mountainous areas. Since they can threaten settlements and infrastructure, statistical and physically based procedures have been developed to assess the potential for landslide erosion. In this study, information on debris flow characteristics was obtained in the field to define the debris flow runout distance and to establish relationships between debris flow parameters. Such relationships are needed for building models which allow us to improve the spatial prediction of debris flow hazards. In general, unconfined debris flows triggered in the Flysch Sector of the Central Spanish Pyrenees are of the same order of magnitude as others reported in the literature. The deposition of sediment started at 17.8°, and the runout distance represented 60% of the difference in height between the head of the landslide and the point at which deposition started. The runout distance was relatively well correlated with the volume of sediment.

  15. SIMULATION AND PREDICTION OF DEBRIS FLOW USING ARTIFICIAL NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    WANG Xie-kang; HUANG Er; CUI Peng

    2003-01-01

    Debris flow is one of the most destructive phenomena of natural hazards. Recently, major natural haz-ard, claiming human lives and assets, is due to debris flow in the world. Several practical methods for forecasting de-bris flow have been proposed, however, the accuracy of these methods is not high enough for practical use because of the stochastic and non-linear characteristics of debris flow. Artificial neural network has proven to be feasible and use-ful in developing models for nonlinear systems. On the other hand, predicting the future behavior based on a time se-ries of collected historical data is also an important tool in many scientific applications. In this study we present a three-layer feed-forward neural network model to forecast surge of debris flow according to the time series data collect-ed in the Jiangjia Ravine, situated in north part of Yunnan Province of China. The simulation and prediction of debris flow using the proposed approach shows this model is feasible, however, further studies are needed.

  16. High-density turbidity currents: Are they sandy debris flows?

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, G. [Mobil Exploration and Producing Technical Center, Dallas, TX (United States)

    1996-01-01

    Conventionally, turbidity currents are considered as fluidal flows in which sediment is supported by fluid turbulence, whereas debris flows are plastic flows in which sediment is supported by matrix strength, dispersive pressure, and buoyant lift. The concept of high-density turbidity current refers to high-concentration, commonly non-turbulent, flows of fluids in which sediment is supported mainly by matrix strength, dispersive pressure, and buoyant lift. The conventional wisdom that traction carpets with entrained turbulent clouds on top represent high-density turbidity currents is a misnomer because traction carpets are neither fluidal nor turbulent. Debris flows may also have entrained turbulent clouds on top. The traction carpet/debris flow and the overriding turbulent clouds are two separate entities in terms of flow rheology and sediment-support mechanism. In experimental and theoretical studies, which has linked massive sands and floating clasts to high-density turbidity currents, the term high-density turbidity current has actually been used for laminar flows. In alleviating this conceptual problem, sandy debris flow is suggested as a substitute for high-density turbidity current. Sandy debris flows represent a continuous spectrum of processes between cohesive and cohesionless debris flows. Commonly they are rheologically plastic. They may occur with or without entrained turbulent clouds on top. Their sediment-support mechanisms include matrix strength, dispersive pressure, and buoyant lift. They are characterized by laminar flow conditions, a moderate to high grain concentration, and a low to moderate mud content. Although flows evolve and transform during the course of transport in density-stratified flows, the preserved features in a deposit are useful to decipher only the final stages of deposition. At present, there are no established criteria to decipher transport mechanism from the depositional record.

  17. Integrated Debris Flow Disaster Mitigation -A Comprehensive Method for Debris Flow Disaster Mitigation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Integrated disaster mitigation needs interpreting torrent catchment areas as complex landscape systems. The history of valley-evolution shows the influence of climate and vegetation on the valley-evolution. The energy-concept (energy dissipation concept including the idea of the energy-line) is used for a simple explanation of debris flow. Examples of heavy debris flow disasters in controlled torrents in the Alps and Pyrenees give hints, which expanding the time scale can show that side-effects restrict or counteract the mitigation measures. A pallet of different mitigation measures to avoid or to reduce some of the side-effects is shown. The comprehensive method of disaster mitigation also includes the effect of vegetation. The pallet includes: avoiding hazards (hazard mapping, warning and alarming), appropriate land use and avoiding disaster-enhancing measures in the landscape and technical measures, which take into account their side-effects. The energy line is used as simple design theory. The Jiu-Jitsu Principle is explained too. With this comprehensive method a more sustainable reduction of disasters seems possible.

  18. Dynamics of Unusual Debris Flows on Martian Sand Dunes

    Science.gov (United States)

    Miyamoto, Hideaki; Dohm, James M.; Baker, Victor R.; Beyer, Ross A.; Bourke, Mary

    2004-01-01

    Gullies that dissect sand dunes in Russell impact crater often display debris flow-like deposits in their distal reaches. The possible range of both the rheological properties and the flow rates are estimated using a numerical simulation code of a Bingham plastic flow to help explain the formation of these features. Our simulated results are best explained by a rapid debris flow. For example, a debris flow with the viscosity of 10(exp 2) Pa s and the yield strength of 10(exp 2) Pa can form the observed deposits with a flow rate of 0.5 cu m/s sustained over several minutes and total discharged water volume on the order of hundreds of cubic meters, which may be produced by melting a surface layer of interstitial ice within the dune deposits to several centimeters depth.

  19. [Relations of landslide and debris flow hazards to environmental factors].

    Science.gov (United States)

    Zhang, Guo-ping; Xu, Jing; Bi, Bao-gui

    2009-03-01

    To clarify the relations of landslide and debris flow hazards to environmental factors is of significance to the prediction and evaluation of landslide and debris flow hazards. Base on the latitudinal and longitudinal information of 18431 landslide and debris flow hazards in China, and the 1 km x 1 km grid data of elevation, elevation difference, slope, slope aspect, vegetation type, and vegetation coverage, this paper analyzed the relations of landslide and debris flow hazards in this country to above-mentioned environmental factors by the analysis method of frequency ratio. The results showed that the landslide and debris flow hazards in China more occurred in lower elevation areas of the first and second transitional zones. When the elevation difference within a 1 km x 1 km grid cell was about 300 m and the slope was around 30 degree, there was the greatest possibility of the occurrence of landslide and debris hazards. Mountain forest land and slope cropland were the two land types the hazards most easily occurred. The occurrence frequency of the hazards was the highest when the vegetation coverage was about 80%-90%.

  20. Space Group Debris Imaging Based on Sparse Sample

    Directory of Open Access Journals (Sweden)

    Zhu Jiang

    2016-02-01

    Full Text Available Space group debris imaging is difficult with sparse data in low Pulse Repetition Frequency (PRF spaceborne radar. To solve this problem in the narrow band system, we propose a method for space group debris imaging based on sparse samples. Due to the diversity of mass, density, and other factors, space group debris typically rotates at a high speed in different ways. We can obtain angular velocity through the autocorrelation function based on the diversity in the angular velocity. The scattering field usually presents strong sparsity, so we can utilize the corresponding measurement matrix to extract the data of different debris and then combine it using the sparse method to reconstruct the image. Furthermore, we can solve the Doppler ambiguity with the measurement matrix in low PRF systems and suppress some energy of other debris. Theoretical analysis confirms the validity of this methodology. Our simulation results demonstrate that the proposed method can achieve high-resolution Inverse Synthetic Aperture Radar (ISAR images of space group debris in low PRF systems.

  1. Debris-flow observations in the Zermatt Valley

    Science.gov (United States)

    Graf, Christoph

    2015-04-01

    In the Alps, a multitude of unstable slopes is located at altitudes of ~2700 m asl, where sediment transfers typically happen outside the range of humans or their infrastructure. The situation is slightly different in the Zermatt Valley, a high-elevation, north-south oriented glacial valley in the Swiss Alps, where the detachment of melting permafrost results in rock falls on steep slopes and debris flows in high-gradient gullies through which till is transferred directly to the inhabited valley floor at elevations between 1100 (N) and 1600 m asl (S). As a result of the excellent database on past disasters in the valley, recent developments and measurements in the local rock glacier bodies and current torrential events, I show data from some debris-flow torrents to document impacts of past, ongoing and possible future changes of debris flows originating from periglacial environments. Debris flows are typically initiated by the abrupt input of considerable quantities of water. The water-saturated masses of fragmented rock and soil slump down mountainsides into gullies which in turn mobilize stored sediment in the channels. In addition to triggering by extreme rainstorms, debris flows have also been reported to be released by rapid snowmelt, rain-on-snow storms, or the sudden emptying of glacier water bodies or through the rupture of landslide dams. More frequently, debris flows occur as a result of high-intensity, convective rainstorms of short duration or low-intensity advective precipitation events over several days. Displacement rates and instability of rock glaciers have increased further recently to show movement rates without historical precedents. At Grabengufer (Dorfbach) e.g., increasing air and ice temperatures have favoured the development of annual displacement rates from just a few decimetres in the past decades to 80 m in 2010. Similar behaviour was observed in catchments nearby. As a consequence of the enhanced movement of these permafrost bodies and

  2. EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes

    OpenAIRE

    Chen, H. X.; Zhang, L. M.

    2015-01-01

    Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA (Erosion–Deposition Debris flow Analysis), is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during ...

  3. A mechanical model for phase-separation in debris flow

    CERN Document Server

    Pudasaini, Shiva P

    2016-01-01

    Understanding the physics of phase-separation between solid and fluid phases as a mixture mass moves down slope is a long-standing challenge. Here, we propose an extension of the two phase mass flow model (Pudasaini, 2012) by including a new mechanism, called separation-flux, that leads to strong phase-separation in avalanche and debris flows while balancing the enhanced solid flux with the reduced fluid flux. The separation flux mechanism is capable of describing the dynamically evolving phase-separation and levee formation in a multi-phase, geometrically three-dimensional debris flow. These are often observed phenomena in natural debris flows and industrial processes that involve the transportation of particulate solid-fluid mixture material. The novel separation-flux model includes several dominant physical and mechanical aspects such as pressure gradients, volume fractions of solid and fluid phases and their gradients, shear-rates, flow depth, material friction, viscosity, material densities, topographic ...

  4. Emerging insights into the dynamics of submarine debris flows

    Science.gov (United States)

    Elverhøi, A.; Issler, D.; de Blasio, F. V.; Ilstad, T.; Harbitz, C. B.; Gauer, P.

    2005-08-01

    Recent experimental and theoretical work on the dynamics of submarine debris flows is summarized. Hydroplaning was first discovered in laboratory flows and later shown to likely occur in natural debris flows as well. It is a prime mechanism for explaining the extremely long runout distances observed in some natural debris flows even of over-consolidated clay materials. Moreover, the accelerations and high velocities reached by the flow head in a short time appear to fit well with the required initial conditions of observed tsunamis as obtained from back-calculations. Investigations of high-speed video recordings of laboratory debris flows were combined with measurements of total and pore pressure. The results are pointing towards yet another important role of ambient water: Water that intrudes from the water cushion underneath the hydroplaning head and through cracks in the upper surface of the debris flow may drastically soften initially stiff clayey material in the "neck" of the flow, where significant stretching occurs due to the reduced friction at the bottom of the hydroplaning head. This self-reinforcing process may lead to the head separating from the main body and becoming an "outrunner" block as clearly observed in several natural debris flows. Comparison of laboratory flows with different material composition indicates a gradual transition from hydroplaning plug flows of stiff clay-rich material, with a very low suspension rate, to the strongly agitated flow of sandy materials that develop a pronounced turbidity current. Statistical analysis of the great number of distinguishable lobes in the Storegga slide complex reveals power-law scaling behavior of the runout distance with the release mass over many orders of magnitude. Mathematical flow models based on viscoplastic material behavior (e.g. BING) successfully reproduce the observed scaling behavior only for relatively small clay-rich debris flows while granular (frictional) models fail at all scales

  5. Emerging insights into the dynamics of submarine debris flows

    Directory of Open Access Journals (Sweden)

    A. Elverhøi

    2005-01-01

    Full Text Available Recent experimental and theoretical work on the dynamics of submarine debris flows is summarized. Hydroplaning was first discovered in laboratory flows and later shown to likely occur in natural debris flows as well. It is a prime mechanism for explaining the extremely long runout distances observed in some natural debris flows even of over-consolidated clay materials. Moreover, the accelerations and high velocities reached by the flow head in a short time appear to fit well with the required initial conditions of observed tsunamis as obtained from back-calculations. Investigations of high-speed video recordings of laboratory debris flows were combined with measurements of total and pore pressure. The results are pointing towards yet another important role of ambient water: Water that intrudes from the water cushion underneath the hydroplaning head and through cracks in the upper surface of the debris flow may drastically soften initially stiff clayey material in the 'neck' of the flow, where significant stretching occurs due to the reduced friction at the bottom of the hydroplaning head. This self-reinforcing process may lead to the head separating from the main body and becoming an 'outrunner' block as clearly observed in several natural debris flows. Comparison of laboratory flows with different material composition indicates a gradual transition from hydroplaning plug flows of stiff clay-rich material, with a very low suspension rate, to the strongly agitated flow of sandy materials that develop a pronounced turbidity current. Statistical analysis of the great number of distinguishable lobes in the Storegga slide complex reveals power-law scaling behavior of the runout distance with the release mass over many orders of magnitude. Mathematical flow models based on viscoplastic material behavior (e.g. BING successfully reproduce the observed scaling behavior only for relatively small clay-rich debris flows while granular (frictional models

  6. Traking of Laboratory Debris Flow Fronts with Image Analysis

    Science.gov (United States)

    Queiroz de Oliveira, Gustavo; Kulisch, Helmut; Fischer, Jan-Thomas; Scheidl, Christian; Pudasaini, Shiva P.

    2015-04-01

    Image analysis technique is applied to track the time evolution of rapid debris flow fronts and their velocities in laboratory experiments. These experiments are parts of the project avaflow.org that intends to develop a GIS-based open source computational tool to describe wide spectrum of rapid geophysical mass flows, including avalanches and real two-phase debris flows down complex natural slopes. The laboratory model consists of a large rectangular channel 1.4m wide and 10m long, with adjustable inclination and other flow configurations. The setup allows investigate different two phase material compositions including large fluid fractions. The large size enables to transfer the results to large-scale natural events providing increased measurement accuracy. The images are captured by a high speed camera, a standard digital camera. The fronts are tracked by the camera to obtain data in debris flow experiments. The reflectance analysis detects the debris front in every image frame; its presence changes the reflectance at a certain pixel location during the flow. The accuracy of the measurements was improved with a camera calibration procedure. As one of the great problems in imaging and analysis, the systematic distortions of the camera lens are contained in terms of radial and tangential parameters. The calibration procedure estimates the optimal values for these parameters. This allows us to obtain physically correct and undistorted image pixels. Then, we map the images onto a physical model geometry, which is the projective photogrammetry, in which the image coordinates are connected with the object space coordinates of the flow. Finally, the physical model geometry is rewritten in the direct linear transformation form, which allows for the conversion from one to another coordinate system. With our approach, the debris front position can then be estimated by combining the reflectance, calibration and the linear transformation. The consecutive debris front

  7. Propagation and deposition of stony debris flows at channel confluences

    Science.gov (United States)

    Stancanelli, L. M.; Lanzoni, S.; Foti, E.

    2015-07-01

    The fluid dynamics of stony debris flows generated in two small tributaries adjacent to each other and flowing into a main receiving channel was analyzed experimentally at a laboratory scale. The analysis on the propagation along the tributaries and deposition in the main channel provide information about sediment-water mobility, dangerous damming, and potential hazard. Debris flows were generated by releasing a preset water discharge over an erodible layer of saturated gravels material. As a consequence, the debris flow sediment concentration varied accordingly to the entrainment rate which, in turn, was strongly controlled by the tributary slope. The data collected by acoustic level sensors, pore fluid pressure transducers, and a load cell were used to characterize the evolution of bulk density and solid concentration of the sediment-water mixture. These two parameters were relevant to assess the stony debris flow mobility which contributes to determine the shape of sediment deposits in the main channel. The detailed bed topography surveys carried out in the main channel at the end of each experiment provided information on the morphology of these deposits and on the interplay of adjacent confluences. The influences of confluence angle, tributary slopes, and triggering conditions have been investigated, for a total of 18 different configurations. Within the investigated range of parameters, the slope angle was the parameter that mainly influences the stony debris flow mobility while, for adjacent confluences, the degree of obstruction within the receiving channel was strongly influenced by the triggering scenario.

  8. Generation of Martian chaos and channels by debris flows

    Science.gov (United States)

    Nummedal, D.; Prior, D. B.

    1981-01-01

    A debris flow mechanism is proposed to account for the formation of chaos and the large channels debouching into Crysae Planitia from the adjacent southern uplands of Mars. Based on considerations of the juxtaposition of individual channel environments, the morphological assemblages within each environment and flow dynamics, it is suggested that the debris flows were triggered by the large-scale failure of subsurface sediments, possibly initiated by a seismic event. During the initial, slow-moving phase of the flow, the debris would have formed gently sinuous channels with multiple side-wall slumps, grooves and ridges, and elongate erosional remnants. The flow would have gained mobility as the debris moved downslope, producing travel distances greatly in excess of those characteristic of terrestrial examples, and eroded, streamlined remnants at the distal reaches of the channel. Finally, due to internal and boundary friction, the flow would have been slowed down once it entered the Chryse plains, resulting in a thin debris blanket with no depositional relief.

  9. Estimation of flow velocity for a debris flow via the two-phase fluid model

    Directory of Open Access Journals (Sweden)

    S. Guo

    2014-06-01

    Full Text Available The two-phase fluid model is applied in this study to calculate the steady velocity of a debris flow along a channel bed. By using the momentum equations of the solid and liquid phases in the debris flow together with an empirical formula to describe the interaction between two phases, the steady velocities of the solid and liquid phases are obtained theoretically. The comparison of those velocities obtained by the proposed method with the observed velocities of two real-world debris flows shows that the proposed method can estimate accurately the velocity for a debris flow.

  10. Debris flow hazard assessment for the Oregon Caves National Monument

    Science.gov (United States)

    Friday, John

    1983-01-01

    After experiencing a devastating debris flow in the Oregon Caves National Monument, the National Park Service needs an evaluation of the hazard of additional flows. Soil properties at six random sites were compared with those at the source of the debris flow. Although all sites had soils that could become unstable with sufficient moisture, soil at one site had properties similar to those at the scar and the potential for another flow was confirmed. The report suggests that winter weather conditions be closely monitored and compared to the antecedent conditions prior to the known failure. When the threshold for additional mass wasting is believed imminent, appropriate action can be taken to insure the safety of work personnel and the public. The peak streamflow that preceded the 5,200 cu yds of debris is estimated to have a 0.5 percent chance of being equaled or exceeded in any given year. (USGS)

  11. Rainfall Generated Debris flows on Mount Shasta: July 21, 2015

    Science.gov (United States)

    Mikulovsky, R. P.; De La Fuente, J. A.; Courtney, A.; Bachmann, S.; Rodriguez, H.; Rust, B.; Schneider, F.; Veich, D.

    2015-12-01

    Convective storms on the evening of July 21, 2015 generated a number of debris flows on the SE flank of Mount Shasta Volcano, Shasta-Trinity National Forest. Widespread rilling, gullying and sheet erosion occurred throughout the affected area. These storms damaged roads by scouring drainage ditches, blocking culverts, eroding road prisms, and depositing debris where streams emerged from their incised channels and flowed over their alluvial fans. Effects were limited geographically to a narrow band about 6 miles wide trending in a northeasterly direction. Debris flows were identified at Pilgrim Creek and nearby channels, and Mud Creek appears to have experienced sediment laden flows rather than debris flows. Doppler radar data reveal that the storm cells remained nearly stationary for two hours before moving in a northeasterly direction. Debris flows triggered by convective storms occur often at Mount Shasta, with a similar event recorded in 2003 and a larger one in 1935, which also involved glacial melt. The 1935 debris flow at Whitney Creek buried Highway 97 north of Weed, CA, and took out the railroad above the highway. In September, 2014, a large debris flow occurred in Mud Creek, but it was associated solely with glacial melt and was not accompanied by rain. The 2014 event at Mud Creek filled the channel and parts of the floodplain with debris. This debris was in turn reworked and eroded by sediment laden flows on July 21, 2015. This study was initiated in August, 2015, and began with field inventories to identify storm effects. Lidar data will be used to identify possible avulsion points that could result in unexpected flash flooding outside of the main Mud Creek channel and on adjacent streams. The results of this study will provide critical information that can be used to assess flash flood risk and better understand how to manage those risks. Finally, some conclusions may be drawn on the kinds of warning systems that may be appropriate for possible flash

  12. Debris-flow initiation from large, slow-moving landslides

    Science.gov (United States)

    Reid, M.E.; Brien, D.L.; LaHusen, R.G.; Roering, J.J.; de la Fuente, J.; Ellen, S.D.; ,

    2003-01-01

    In some mountainous terrain, debris flows preferentially initiate from the toes and margins of larger, deeper, slower-moving landslides. During the wet winter of 1997, we began real-time monitoring of the large, active Cleveland Corral landslide complex in California, USA. When the main slide is actively moving, small, shallow, first-time slides on the toe and margins mobilize into debris flows and travel down adjacent gullies. We monitored the acceleration of one such failure; changes in velocity provided precursory indications of rapid failure. Three factors appear to aid the initiation of debris flows at this site: 1) locally steepened ground created by dynamic landslide movement, 2) elevated pore-water pressures and abundant soil moisture, and 3) locally cracked and dilated materials. This association between debris flows and large landslides can be widespread in some terrain. Detailed photographic mapping in two watersheds of northwestern California illustrates that the areal density of debris-flow source landsliding is about 3 to 7 times greater in steep geomorphically fresher landslide deposits than in steep ground outside landslide deposits. ?? 2003 Millpress.

  13. An example of debris-flows hazard modeling using GIS

    Directory of Open Access Journals (Sweden)

    L. Melelli

    2004-01-01

    Full Text Available We present a GIS-based model for predicting debris-flows occurrence. The availability of two different digital datasets and the use of a Digital Elevation Model (at a given scale have greatly enhanced our ability to quantify and to analyse the topography in relation to debris-flows. In particular, analysing the relationship between debris-flows and the various causative factors provides new understanding of the mechanisms. We studied the contact zone between the calcareous basement and the fluvial-lacustrine infill adjacent northern area of the Terni basin (Umbria, Italy, and identified eleven basins and corresponding alluvial fans. We suggest that accumulations of colluvium in topographic hollows, whatever the sources might be, should be considered potential debris-flow source areas. In order to develop a susceptibility map for the entire area, an index was calculated from the number of initiation locations in each causative factor unit divided by the areal extent of that unit within the study area. This index identifies those units that produce the most debris-flows in each Representative Elementary Area (REA. Finally, the results are presented with the advantages and the disadvantages of the approach, and the need for further research.

  14. Monitoring Debris Flows Using Spatial Filtering and Entropy Determination Approaches

    Directory of Open Access Journals (Sweden)

    Hung-Ming Kao

    2013-01-01

    Full Text Available We developed an automatic debris flow warning system in this study. The system uses a fixed video camera mounted over mountainous streams with a high risk for debris flows. The focus of this study is to develop an automatic algorithm for detecting debris flows with a low computational effort which can facilitate real-time implementation. The algorithm is based on a moving object detection technique to detect debris flow by comparing among video frames. Background subtraction is the kernel of the algorithm to reduce the computational effort, but non-rigid properties and color similarity of the object and the background color introduces some difficulties. Therefore, we used several spatial filtering approaches to increase the performance of the background subtraction. To increase the accuracy entropy is used with histogram analysis to identify whether a debris flow occurred. The modified background subtraction approach using spatial filtering and entropy determination is adopted to overcome the error in moving detection caused by non-rigid and similarities in color properties. The results of this study show that the approach described here can improve performance and also reduce the computational effort.

  15. Sedimentological evidence for debris-flow formation of Martian gullies

    Science.gov (United States)

    de Haas, Tjalling; Hauber, Ernst; Ventra, Dario; Conway, Susan; Kleinhans, Maarten

    2015-04-01

    Gullies are among the youngest landforms formed by liquid water on Mars, and therefore of critical importance in resolving the planet's recent hydrologic and climatic history. The key to estimating the amount of liquid water involved in gully formation is their formative mechanism. Water-free sediment flows, debris flows and fluvial flows, which all require very different amounts of liquid water, contributed to gully formation but their abundance and effectiveness differs greatly between sites. We show that many gullies dominantly formed by debris flows, based on sedimentological analysis of outcrops in gully-fans rather than surficial debris-flow features, which are often degraded beyond recognition by weathering and wind erosion or masked by ice-dust mantling. This resolves the controversy between previously published morphometric analyses implying debris-flow formation and observations of modified fan surfaces often interpreted to have formed by fluvial flows. Furthermore, it shows that deriving formative processes on gullies from surface characteristics can be highly misleading, which should therefore be inferred from multiple approaches, including sedimentological outcrop and morphometric analyses.

  16. Critical conditions of bed sediment entrainment due to debris flow

    Directory of Open Access Journals (Sweden)

    M. Papa

    2004-01-01

    Full Text Available The present study describes entrainment characteristics of bed material into debris flow, based on flume tests, numerical and dimensional analyses. Flume tests are conducted to investigate influences of bed sediment size on erosion rate by supplying debris flows having unsaturated sediment concentration over erodible beds. Experimental results show that the erosion rate decreases monotonically with increase of sediment size, although erosion rate changes with sediment concentration of debris flow body. In order to evaluate critical condition of bed sediment entrainment, a length scale which measures an effective bed shear stress is introduced. The effective bed shear stress is defined as total shear stress minus yield stress on the bed surface. The results show that critical entrainment conditions can be evaluated well in terms of Shields curve using the effective bed shear stress instead of a usual bed shear stress.

  17. Debris-flow initiation experiments using diverse hydrologic triggers

    Science.gov (United States)

    Reid, Mark E.; LaHusen, Richard G.; Iverson, Richard M.

    1997-01-01

    Controlled debris-flow initiation experiments focused on three hydrologic conditions that can trigger slope failure: localized ground-water inflow; prolonged moderate-intensity rainfall; and high-intensity rainfall. Detailed monitoring of slope hydrology and deformation provided exceptionally complete data on conditions preceding and accompanying slope failure and debris-flow mobilization. Ground-water inflow and high-intensity sprinkling led to abrupt, complete failure whereas moderate-intensity sprinkling led to retrogressive, block-by-block failure. Failure during ground-water inflow and during moderate-intensity sprinkling occurred with a rising water table and positive pore pressures. Failure during high-intensity sprinkling occurred without widespread positive pore pressures. In all three cases, pore pressures in most locations increased dramatically (within 2-3 seconds) during failure. In some places, pressures in unsaturated materials rapidly 'flashed' from zero to elevated positive values. Transiently elevated pore pressures and partially liquefied soil enhanced debris-flow mobilization.

  18. DESIGN OF SLIT DAMS FOR CONTROLLING STONY DEBRIS FLOWS

    Institute of Scientific and Technical Information of China (English)

    Hui-Pang LIEN

    2003-01-01

    A new method to a slit dam for controlling the stony debris flow has been derived based on the mass conservation law of the stony debris flow passing through a slit dam and the laboratory experiment results.This new method is then combined with three primary efficiency expressions: the dimensionless sediment outflow ratio,the sediment concentration ratio,and the sediment storage rate to develop a simple module,with which the height and the spacing of the posts,as well as the total spacing of slit dam are determined.Furthermore,these expressions can also be applied to check those slit dams that have already been constructed with their effectiveness against various magnitudes of the debris flow. The comparison between these expressions and laboratory data is in reasonable agreement.

  19. A new debris flow monitoring barrier to measure debris flow impact/structure/ground interaction in the Gadria torrent

    Science.gov (United States)

    Nagl, Georg; Hübl, Johannes

    2017-04-01

    Debris flow monitoring is a keystone in debris flow research. Based on the lack of investigations of the interaction of rapid mass movement and structural mitigation measures, a new monitoring system has been installed in the well monitored Gadria torrent in South Tyrol. For design of active structural measures, like check dams, the engineering task is to come to an amicable solution of all necessary subjects. Starting with the estimation of parameters of the rapid mass movement itself to the design load and finally to the foundation of the structure. At all stages big uncertainties are given. The basis for accurate design is a comprehensive approach. For this reason, a new monitoring station was built in autumn 2016, to investigate the interaction of a debris flow with the structures and the ground. Two structures unify the new monitoring system. The first, a transversal check dam, flush to channel bed, contain two weighing devices each equipped with a pore pressure sensor. One device is also able to measure the shear force additional in two directions. The second barrier similar to a debris flow breaker but only with one singe wall centered on a foundation plate, is located downstream to the first one. 14 load cells are installed on the upward front of the structure to analyze the spatial force distribution of debris flow impact pressure. Nine earth pressure sensors under the foundation of the structure deliver the earth pressure distribution. The acceleration of the construction can be measured by a 3D accelerometer installed on the top. In case of a movement, two extensometers detect any displacement. Mounted strain gauges give insights of stresses in concrete and reinforcement. Each sensor has a sampling frequency of 2400 Hz. Furthermore it is planned to measure the flow velocity distribution over flow depth too. The new monitoring station should help to acquire data for understanding the debris flow/structure/ground interaction to facilitate the improvement

  20. Hydrometeorological threshold conditions for debris flow initiation in Norway

    Directory of Open Access Journals (Sweden)

    N. K. Meyer

    2012-10-01

    Full Text Available Debris flows, triggered by extreme precipitation events and rapid snow melt, cause considerable damage to the Norwegian infrastructure every year. To define intensity-duration (ID thresholds for debris flow initiation critical water supply conditions arising from intensive rainfall or snow melt were assessed on the basis of daily hydro-meteorological information for 502 documented debris flow events. Two threshold types were computed: one based on absolute ID relationships and one using ID relationships normalized by the local precipitation day normal (PDN. For each threshold type, minimum, medium and maximum threshold values were defined by fitting power law curves along the 10th, 50th and 90th percentiles of the data population. Depending on the duration of the event, the absolute threshold intensities needed for debris flow initiation vary between 15 and 107 mm day−1. Since the PDN changes locally, the normalized thresholds show spatial variations. Depending on location, duration and threshold level, the normalized threshold intensities vary between 6 and 250 mm day−1. The thresholds obtained were used for a frequency analysis of over-threshold events giving an estimation of the exceedance probability and thus potential for debris flow events in different parts of Norway. The absolute thresholds are most often exceeded along the west coast, while the normalized thresholds are most frequently exceeded on the west-facing slopes of the Norwegian mountain ranges. The minimum thresholds derived in this study are in the range of other thresholds obtained for regions with a climate comparable to Norway. Statistics reveal that the normalized threshold is more reliable than the absolute threshold as the former shows no spatial clustering of debris flows related to water supply events captured by the threshold.

  1. Impulsive force of debris flow on a curved dam

    Institute of Scientific and Technical Information of China (English)

    Chjeng-Lun SHIEH; Chia-Hsien TING; Hung-Wen PAN

    2008-01-01

    Although Sabo dams are an efficient method for river and basin management,traditional Sabo dams have a great impact on ecology and landscape.Moreover,such dams are hit and often damaged by great impulsive force when they block the debris flow.Therefore,alternative shapes for Sabo dam deserve thorough investigation.In this investigation,a curved dam was designed by changing the upstream-dam-surface geometric shape to reduce the impulsive force of the debris flow,with enhanced stability and reduced concrete mass being the anticipated outcomes.In this study,the flume and laboratory facilities simulated the impulsive force of the debris flow to the Sabo dams.Three geometric forms,including vertical,slanted and curved Sabo dams,were used to determine the impulsive force.Impulsive force theories of the debris flow were derived from the momentum equation and the Bernoulli equation.In these,the impulsive force was balanced by the friction force of the Sabo dam and the opposite force of the load cell behind the dam as it was hit by the debris flow.Positive correlations were found when comparing the experimental data with the theoretical results.These findings suggest that our impulsive force theory has predictive validity with regard to the experimental data.The results from both theory and experimental data clearly show that curved dams were sustained less force than the other dams under the same debris flow.This comparison demonstrates the importance of curved geometry for a well-designed Sabo dam.

  2. Effects of the Basal Boundary on Debris-flow Dynamics

    Science.gov (United States)

    Iverson, R. M.; Logan, M.; Lahusen, R. G.; Berti, M.

    2006-12-01

    Data aggregated from 37 large-scale experiments reveal some counterintuitive effects of bed roughness on debris-flow dynamics. In each experiment 10 m3 of water-saturated sand and gravel, mixed with 1 to 12% silt and clay by dry weight, was abruptly released from a gate at the head of a 2-m wide, 1.2-m deep, 82.5-m long rectangular flume inclined 31° throughout most of its length and adjoined to a gently sloping, planar runout surface at its toe. The flume's basal boundary consisted of either a smooth, planar concrete surface or a concrete surface roughened with a grid of conical bumps. Tilt-table tests with dry debris-flow sediment showed that this roughness imparted a basal friction angle of 38°, comparable to the sediment's internal friction angle of 38-42°, whereas the smooth-bed friction angle was 28°. About 20 electronic sensors installed in the flume yielded data on flow speeds and depths as well as basal stresses and pore pressures. Behavior observed in all experiments included development of steep, unsaturated, coarse-grained debris-flow snouts and tapering, liquefied, fine-grained tails. Flows on the rough bed were typically about 50% thicker and 20% slower than flows on the smooth bed, although the rough bed caused snout steepening that enabled flow fronts to move faster than expected, given the increased bed friction. Moreover, flows on rough beds ran out further than flows on smooth beds owing to enhanced grain-size segregation and lateral levee formation. With the rough bed, measured basal stresses and pore pressures differed little from values expected from static gravitational loading of partially liquefied debris. With the smooth bed, however, measured basal stresses and pore pressures were nearly twice as large as expected values. This anomaly resulted from flow disturbance at the upstream lips of steel plates in which sensors were mounted. The lips produced barely visible ripples in otherwise smooth flow surfaces, yet sufficed to generate

  3. Debris flows and cosmogenic catchment wide denudation rates

    Science.gov (United States)

    Kober, F.; Hippe, K.; Salcher, B.; Ivy-Ochs, S.; Kubik, P. W.; Christl, M.; Wacker, L.

    2012-04-01

    One of the basic question in alpine Quantitative Geomorphology is: Are widely measured cosmogenic nuclide-derived denudation rates in alpine catchments truly representative for the whole catchment at any given time? Or in contrast can they vary markedly in response to extreme events and perturbations? And if such perturbations affect cosmogenic nuclide-derived denudation rates then what bias can occur when such denudation rates are compared with sediment yield or thermochronological data or to various morphometric parameters, such as slope, mean elevation or uplift rates as potential controlling factors? We present 10Be and 14C results measured in sand samples from an active river channel from a single catchment (upper Aare), in the Swiss Alps (up to monthly sampling between 2008 to 2011). Our goal was to establish a time series to see if extreme events (such as landslides or debris flows) do have a discernible effect on derived denudation rates. The admixture of sediment of debris flows in 2009, originating upstream of the sampling spot, began to have a marked effect on 10Be concentrations and thus catchment wide denudation rates that are assumed to be in a long-term range mode prior to 2009. In summer of 2010, several extreme debris flows were recorded in the studied catchment. Samples taken document a doubling of denudation rates over the values determined from 2008. These cosmogenic nuclide data clearly demonstrate the impact of episodic events on sediment flux and the related perturbation of catchment wide denudation rates. We have recently expanded this dataset into 2011, with i) a spatial sub-sampling of debris flow and non-debris flow catchment compartments and ii) including again a major debris flow event in early autumn 2011. These data will be presented at the conference. Never-the-less the fact that the CWDR's only doubled does suggest a certain robustness in the method beyond a certain catchment size. In addition to the 10Be data, in situ 14C

  4. Nonlinear Analysis of Bedload Transport Rate of Paroxysm Debris Flow

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The evolution characteristics of bedload transport feature of paroxysm debris flow have been studied by means of both theory analysis and experimental data.The analysis based on the flume experiment data of a sand pile model as well as a large amount of field data of debris flow clearly shown that the statistical distribu- tion for the main variable of the sand pile made of non-uniform sand (according the sand pile experiment,φ≥2.55) conform to the negative power law,that means the non-uniform sand syste...

  5. Mount Baker lahars and debris flows, ancient, modern, and future

    Science.gov (United States)

    Tucker, David S; Scott, Kevin M.; Grossman, Eric E.; Linneman, Scott

    2014-01-01

    The Middle Fork Nooksack River drains the southwestern slopes of the active Mount Baker stratovolcano in northwest Washington State. The river enters Bellingham Bay at a growing delta 98 km to the west. Various types of debris flows have descended the river, generated by volcano collapse or eruption (lahars), glacial outburst floods, and moraine landslides. Initial deposition of sediment during debris flows occurs on the order of minutes to a few hours. Long-lasting, down-valley transport of sediment, all the way to the delta, occurs over a period of decades, and affects fish habitat, flood risk, gravel mining, and drinking water.

  6. On predicting debris flows in arid mountain belts

    Science.gov (United States)

    Stolle, Amelie; Langer, Maria; Blöthe, Jan Henrik; Korup, Oliver

    2015-03-01

    The use of topographic metrics for estimating the susceptibility to, and reconstructing the characteristics of, debris flows has a long research tradition, although largely devoted to humid mountainous terrain. The exceptional 2010 monsoonal rainstorms in the high-altitude mountain desert of Ladakh and Zanskar, NW India, were a painful reminder of how susceptible arid regions are to rainfall-triggered flash floods, landslides, and debris flows. The rainstorms of August 4-6 triggered numerous debris flows, killing 182 people, devastating 607 houses, and more than 10 bridges around Ladakh's capital of Leh. The lessons from this disaster motivated us to revisit methods of predicting (a) flow parameters such as peak discharge and maximum velocity from field and remote sensing data, and (b) the susceptibility to debris flows from catchment morphometry. We focus on quantifying uncertainties tied to these approaches. Comparison of high-resolution satellite images pre- and post-dating the 2010 rainstorm reveals the extent of damage and catastrophic channel widening. Computations based on these geomorphic markers indicate maximum flow velocities of 1.6-6.7 m s- 1 with runout of up to ~ 10 km on several alluvial fans that sustain most of the region's settlements. We estimate median peak discharges of 310-610 m3 s- 1, which are largely consistent with previous estimates. Monte Carlo-based error propagation for a single given flow-reconstruction method returns a variance in discharge similar to one derived from juxtaposing several different flow reconstruction methods. We further compare discriminant analysis, classification tree modelling, and Bayesian logistic regression to predict debris-flow susceptibility from morphometric variables of 171 catchments in the Ladakh Range. These methods distinguish between fluvial and debris flow-prone catchments at similar success rates, but Bayesian logistic regression allows quantifying uncertainties and relationships between potential

  7. Research on the Characteristics of Group Debris flow Hazards after Wenchuan Earthquake:A Case Study in the Longchi Area of Dujiangyan,Sichuan, China%汶川强震区群发性泥石流特征研究--以四川省都江堰龙池“8·13”群发泥石流为例

    Institute of Scientific and Technical Information of China (English)

    马煜; 余斌; 李彩侠; 曾晋

    2014-01-01

    汶川地震导致大量崩塌和滑坡等次生地质灾害,为泥石流发生提供了丰富的物源,强降雨过后,汶川强震区的群发性泥石流出现了高发区。在2008-2010年的三个雨季里,强震区暴发了多处群发性泥石流灾害,龙池所在的龙溪河流域“8·13”群发泥石流灾害就是其中之一。首先对龙池龙溪河流域2010年8月13日暴发的45条泥石流沟进行简单的灾害阐述,其次在调查数据的基础上阐述了群发泥石流的特征:①成因多样,主因为地震和降雨综合的作用;②规模不一,以中小型为主,流体性质多集中为过渡性-粘性;③隐蔽性强,泥石流活动多集中在极小流域,主要为沟谷型泥石流;④泥石流活动集中在断裂带附近;⑤危害方式以冲蚀、淤埋和堵塞河道为主,且具有灾害链作用和叠加-放大作用。最后针对震区群发泥石流的活动特征,提出增强减灾措施的针对性。%The secondary disasters of landslide and collapse in Wenchuan Earthquake provide rich sources for debris flow.The occurrence of group debris flow is frequent in the disaster area during the heavy rainfall after the earthquake.In the rainy seasons of 2008,2009 and 2010,meizoseismal areas have breakout mass of group debris flow disasters.esp.group debris flow hazards in Longchi,Dujiangyan,Sichuan Province is one of these disasters. Based on field investigation and analysis,the disasters of 45 debris flow of Longchi in Longxi river basin disasters were firstly elaborated.Then,the relevant characteristics of group debris flow were studied as:(1 )Various rea-sons,Mainly because of the comprehensive effect of earthquake and rainfall;(2)Different scales,Mostly are small and medium types,Most of debris flows are sub-viscous and viscous debris flows;(3 )Most catchments of debris flow were small catchment and gully debris flow;(4 )Most debris flows are distribution in the triggering belt of

  8. Studies of fluid instabilities in flows of lava and debris

    Science.gov (United States)

    Fink, Jonathan H.

    1987-01-01

    At least two instabilities have been identified and utilized in lava flow studies: surface folding and gravity instability. Both lead to the development of regularly spaced structures on the surfaces of lava flows. The geometry of surface folds have been used to estimate the rheology of lava flows on other planets. One investigation's analysis assumed that lava flows have a temperature-dependent Newtonian rheology, and that the lava's viscosity decreased exponentially inward from the upper surface. The author reviews studies by other investigators on the analysis of surface folding, the analysis of Taylor instability in lava flows, and the effect of surface folding on debris flows.

  9. Secondary crater-initiated debris flow on the Moon

    Science.gov (United States)

    Martin-Wells, K. S.; Campbell, D. B.; Campbell, B. A.; Carter, L. M.; Fox, Q.

    2017-07-01

    In recent work, radar circular polarization echo properties have been used to identify secondary craters without distinctive ;secondary; morphologies. Because of the potential for this method to improve our knowledge of secondary crater populations-in particular the effect of secondary populations on crater-derived ages based on small craters-it is important to understand the origin of radar polarization signatures associated with secondary impacts. In this paper, we utilize Lunar Reconnaissance Orbiter Camera photographs to examine the geomorphology of secondary craters with radar circular polarization ratio enhancements. Our investigation reveals evidence of dry debris flow with an impact melt component at such secondary craters. We hypothesize that these debris flows were initiated by the secondary impacts themselves, and that they have entrained blocky material ejected from the secondaries. By transporting this blocky material downrange, we propose that these debris flows (rather than solely ballistic emplacement) are responsible for the tail-like geometries of enhanced radar circular polarization ratio associated with the secondary craters investigated in this work. Evidence of debris flow was observed at both clustered and isolated secondary craters, suggesting that such flow may be a widespread occurrence, with important implications for the mixing of primary and local material in crater rays.

  10. EDDA: integrated simulation of debris flow erosion, deposition and property changes

    OpenAIRE

    Chen, H. X.; Zhang, L. M.

    2014-01-01

    Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA, is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yie...

  11. Debris flow cartography using differential GNSS and Theodolite measurements

    Science.gov (United States)

    Khazaradze, Giorgi; Guinau, Marta; Calvet, Jaume; Furdada, Gloria; Victoriano, Ane; Génova, Mar; Suriñach, Emma

    2016-04-01

    The presented results form part of a CHARMA project, which pursues a broad objective of reducing damage caused by uncontrolled mass movements, such as rockfalls, snow avalanches and debris flows. Ultimate goal of the project is to contribute towards the establishment of new scientific knowledge and tools that can help in the design and creation of early warning systems. Here we present the specific results that deal with the application of differential GNSS and classical geodetic (e.g. theodolite) methods for mapping debris and torrential flows. Specifically, we investigate the Portainé stream located in the Pallars Sobirà region of Catalonia (Spain), in the eastern Pyrenees. In the last decade more than ten debris-flow type phenomena have affected the region, causing considerable economic losses. Since early 2014, we have conducted several field campaigns within the study area, where we have employed a multi-disciplinary approach, consisting of geomorphological, dendro-chronological and geodetic methods, in order to map the river bed and reconstruct the history of the extreme flooding and debris flow events. Geodetic studies included several approaches, using the classical and satellite based methods. The former consisted of angle and distance measurements between the Geodolite 502 total station and the reflecting prisms placed on top of the control points located within the riverbed. These type of measurements are precise, although present several disadvantages such as the lack of absolute coordinates that makes the geo-referencing difficult, as well as a relatively time-consuming process that involves two persons. For this reason, we have also measured the same control points using the differential GNSS system, in order to evaluate the feasibility of replacing the total station measurements with the GNSS. The latter measuring method is fast and can be conducted by one person. However, the fact that the study area is within the riverbed, often below the trees

  12. Experimental testing of flexible barriers for containment of debris flows

    Science.gov (United States)

    DeNatale, Jay S.; Iverson, Richard M.; Major, Jon J.; LaHusen, Richard G.; Fliegel, Gregg L.; Duffy, John D.

    1999-01-01

    In June 1996, six experiments conducted at the U.S. Geological Survey Debris Flow Flume demonstrated that flexible, vertical barriers constructed of wire rope netting can stop small debris flows. All experimental debris flows consisted of water-saturated gravelly sand with less than two percent finer sediment by weight. All debris flows had volumes of about 10 cubic meters, masses of about 20 metre tons, and impact velocities of 5 to 9 meters per second. In four experiments, the debris flow impacted pristine, unreformed barriers of varying design; in the other two experiments, the debris flow impacted barriers already loaded with sediment from a previous flow. Differences in barrier design led to differences in barrier performance. Experiments were conducted with barriers constructed of square-mesh wire-rope netting with 30centimeter, 20centimeter, and 15 centimeter mesh openings as well as 30centimeter diameter interlocking steel rings. In all cases, sediment cascading downslope at the leading edge of the debris flows tended to spray through the nets. Nets fitted with finer-mesh chain link or chicken wire liners contained more sediment than did unlined nets, and a ring net fitted with a synthetic silt screen liner contained nearly 100 percent of the sediment. Irreversible net displacements of up to 2 meters and friction brake engagement on the support and anchor cables dissipated some of the impact energy. However, substantial forces developed in the steel support columns and the lateral and tie-back anchor cables attached to these columns. As predicted by elementary mechanics, the anchor cables experienced larger tensile forces when the support columns were hinged at the base rather than bolted rigidly to the foundation. Measured loads in the lateral anchor cables exceeded those in the tie-back anchor cables and the load cell capacity of 45 kilo-Newtons. Measurements also indicated that the peak loads in the tie- back anchors were highly transient and occurred at

  13. Concepts and parameterisation of Perla and FLM model using Flow-R for debris flow

    Science.gov (United States)

    Horton, P.; Jaboyedoff, M.; Rudaz, B.

    2012-04-01

    The Flow-R software was built to allow regional debris flow susceptibility assessment. It uses propagation algorithms such as the friction model from Perla and friction-limited models (FLM). By using concepts from both models, a methodology is proposed to evaluate the friction angle and mass-to-drag ratio based on the maximum velocity estimation for debris flows, and on the observed runout on the debris fan. The goal is to use the energy line concept, the debris fan slope, and the runout on the latter, to estimate the friction angle, the Mass to Drag ratio and maximum flow velocity for a given debris flow event and specific conditions of a catchment. A relation between those parameters themselves and between them and the observed characteristics of the flow (runout, speed of flow, viscosity, thickness) is established. The sensitivity of the Flow-R model is tested on two real cases and a theoretical topography for both model types. The importance of the friction angle, relative to M/D, is established. It demonstrates that the FLM model gives results similar to the Perla model, and is useful to determine the friction angle and M/D parameters on debris fan topography, using known events as calibration for each case. Those parameters can then be used as input for local hazard simulation and prediction. In addition, using a broad set of parameters instead of of an ideal one, inducing different propagation results, is proposed for debris flow hazard mapping and assessment.

  14. The Influence of an EPS Concrete Buffer Layer Thickness on Debris Dams Impacted by Massive Stones in the Debris Flow

    Directory of Open Access Journals (Sweden)

    Xianbin Yu

    2015-01-01

    Full Text Available The failure of debris dams impacted by the massive stones in a debris flow represents a difficult design problem. Reasonable materials selection and structural design can effectively improve the resistance impact performance of debris dams. Based on the cushioning properties of expanded polystyrene (EPS concrete, EPS concrete as a buffer layer poured on the surface of a rigid debris dam was proposed. A three-dimensional numerical calculation model of an EPS concrete buffer layer/rigid debris dam was established. The single-factor theory revealed change rules for the thickness of the buffer layer concerning the maximal impact force of the rigid debris dam surface through numerical simulation. Moreover, the impact force-time/history curves under different calculation conditions for the rigid debris dam surface were compared. Simulation results showed that the EPS concrete buffer layer can not only effectively extend the impact time of massive stones affecting the debris dam but also reduce the impact force of the rigid debris dam caused by massive stones in the debris flow. The research results provide theoretical guidance for transferring the energy of the massive stone impact, creating a structural design and optimizing debris dams.

  15. Debris flow relationships in the Central Spanish Pyrenees

    NARCIS (Netherlands)

    Beguería, S.; Lorente, A.; Garcia-Ruiz, J.M.

    2007-01-01

    It is commonly accepted that, in terms of volume moved in a short space of time, debris flows are one of the most powerful mechanisms for transporting material downslope (Johnson & Rodine, 1984; Takahashi, 1991; Bathurst et al., 1997). They occur if i) sediment availability, ii) water input, and iii

  16. Debris flow characteristics and relationships in the Central Spanish Pyrenees

    NARCIS (Netherlands)

    Lorente, A.; Beguería, S.; Bathurst, J.C.; García-Ruiz, J.M.

    2007-01-01

    Unconfined debris flows (i.e., not in incised channels) are one of the most active geomorphic processes in mountainous areas. Since they can threaten settlements and infrastructure, statistical and physically based procedures have been developed to assess the potential for landslide erosion. In this

  17. Debris flow early warning systems in Norway: organization and tools

    Science.gov (United States)

    Kleivane, I.; Colleuille, H.; Haugen, L. E.; Alve Glad, P.; Devoli, G.

    2012-04-01

    In Norway, shallow slides and debris flows occur as a combination of high-intensity precipitation, snowmelt, high groundwater level and saturated soil. Many events have occurred in the last decades and are often associated with (or related to) floods events, especially in the Southern of Norway, causing significant damages to roads, railway lines, buildings, and other infrastructures (i.e November 2000; August 2003; September 2005; November 2005; Mai 2008; June and Desember 2011). Since 1989 the Norwegian Water Resources and Energy Directorate (NVE) has had an operational 24 hour flood forecasting system for the entire country. From 2009 NVE is also responsible to assist regions and municipalities in the prevention of disasters posed by landslides and snow avalanches. Besides assisting the municipalities through implementation of digital landslides inventories, susceptibility and hazard mapping, areal planning, preparation of guidelines, realization of mitigation measures and helping during emergencies, NVE is developing a regional scale debris flow warning system that use hydrological models that are already available in the flood warning systems. It is well known that the application of rainfall thresholds is not sufficient to evaluate the hazard for debris flows and shallow slides, and soil moisture conditions play a crucial role in the triggering conditions. The information on simulated soil and groundwater conditions and water supply (rain and snowmelt) based on weather forecast, have proved to be useful variables that indicate the potential occurrence of debris flows and shallow slides. Forecasts of runoff and freezing-thawing are also valuable information. The early warning system is using real-time measurements (Discharge; Groundwater level; Soil water content and soil temperature; Snow water equivalent; Meteorological data) and model simulations (a spatially distributed version of the HBV-model and an adapted version of 1-D soil water and energy balance

  18. Risk and size estimation of debris flow caused by storm rainfall in mountain regions

    Institute of Scientific and Technical Information of China (English)

    CHENG Genwei

    2003-01-01

    Debris flow is a common disaster in mountain regions. The valley slope, storm rainfall and amassed sand-rock materials in a watershed may influence the types of debris flow. The bursting of debris flow is not a pure random event. Field investigations show the periodicity of its burst, but no directive evidence has been found yet. A risk definition of debris flow is proposed here based upon the accumulation and the starting conditions of loose material in channel. According to this definition, the risk of debris flow is of quasi-periodicity. A formula of risk estimation is derived. Analysis of relative factors reveals the relationship between frequency and size of debris flow. For a debris flow creek, the longer the time interval between two occurrences of debris flows is, the bigger the bursting event will be.

  19. Debris-flow Dynamics Inferred From Aggregated Results of 28 Large-scale Experiments

    Science.gov (United States)

    Iverson, R. M.; Logan, M.; Lahusen, R. G.; Berti, M.

    2008-12-01

    Key features of debris-flow dynamics are revealed by identifying reproducible trends in data collected during 28 large-scale experiments with closely controlled initial and boundary conditions. In each experiment, 10 m3 of water-saturated sediment consisting mostly of sand and gravel discharges abruptly from behind a vertical headgate, descends a ~90 m concrete flume inclined 31 degrees, and forms a deposit on a nearly horizontal runout surface. The experiments are grouped into three sets of 8 to 11 replicates distinguished by differing mud contents (1% vs. 7% by dry weight) and basal boundary roughnesses (1 mm vs. 20 mm characteristic amplitude). Aggregation of sensor data from each set of replicates reveals universal patterns, as well as variances, in evolution of flow velocities, depths, basal normal stresses, and basal pore pressures. The patterns show that debris flows consistently develop blunt, coarse-grained, high-friction flow fronts pushed from behind by nearly liquefied, finer-grained debris. This flow architecture yields lobate deposits bounded by coarse-grained snouts and lateral levees. The aggregated data also show that imposed differences in basal boundary conditions and debris compositions produce systematic -- and sometimes surprising -- differences in flow dynamics and deposits. For example, flows on rough beds run out further than flows on smooth beds, despite the fact that flows on smooth beds attain greater velocities. This counterintuitive behavior results from enhanced grain-size segregation in the presence of a rough bed; segregation accentuates development of lateral levees that channelize flow and retard depletion of downstream momentum by lateral spreading. Another consistent finding is that flows with significant mud content are more mobile (attain greater velocities and runouts) than flows lacking much mud. This behavior is evident despite the fact that mud measurably increases the viscosity and yield strength of the fluid component

  20. RHEOLOGICAL PROPERTIES OF VISCOUS DEBRIS FLOWS IN THE JIANGJIA RAVINE, YUNNAN, CHINA

    Institute of Scientific and Technical Information of China (English)

    Yuyi WANG; Chyandeng JAN; Changzhi LI; Wenliang HAN

    2001-01-01

    The rheological properties of natural debris flow are studied using experimental data obtained from a rheometer built by the authors. The present study is aimed to address the rheological properties of viscous debris flow at low shear rate. It is found that overstress effect and shear-rate-thinning phenomenon characterize the viscous debris flow in the Jiangjia Ravine, China. Results obtained from this study are believed to lay the foundation for further study on the theory of debris flow rheology.

  1. Transformation of dilative and contractive landslide debris into debris flows-An example from marin County, California

    Science.gov (United States)

    Fleming, R.W.; Ellen, S.D.; Algus, M.A.

    1989-01-01

    The severe rainstorm of January 3, 4 and 5, 1982, in the San Francisco Bay area, California, produced numerous landslides, many of which transformed into damaging debris flows. The process of transformation was studied in detail at one site where only part of a landslide mobilized into several episodes of debris flow. The focus of our investigation was to learn whether the landslide debris dilated or contracted during the transformation from slide to flow. The landslide debris consisted of sandy colluvium that was separable into three soil horizons that occupied the axis of a small topographic swale. Failure involved the entire thickness of colluvium; however, over parts of the landslide, the soil A-horizon failed separately from the remainder of the colluvium. Undisturbed samples were taken for density measurements from outside the landslide, from the failure zone and overlying material from the part of the landslide that did not mobilize into debris flows, and from the debris-flow deposits. The soil A-horizon was contractive and mobilized to flows in a process analogous to liquefaction of loose, granular soils during earthquakes. The soil B- and C-horizons were dilative and underwent 2 to 5% volumetric expansion during landslide movement that permitted mobilization of debris-flow episodes. Several criteria can be used in the field to differentiate between contractive and dilative behavior including lag time between landsliding and mobilization of flow, episodic mobilization of flows, and partial or complete transformation of the landslide. ?? 1989.

  2. Valles Marineris, Mars: Wet debris flows and ground ice

    Science.gov (United States)

    Lucchitta, B.K.

    1987-01-01

    Detailed study of the Valles Marineris equatorial troughs suggests that the landslides in that area contained water and probably were gigantic wet debris flows: one landslide complex generated a channel that has several bends and extends for 250 km. Further support for water or ice in debris masses includes rounded flow lobes and transport of some slide masses in the direction of the local topographic slope. Differences in speed and emplacement efficiency between Martian and terrestrial landslides can be attributed to the entrainment of volatiles on Mars, but they can also be explained by other mechanisms. Support that the wall rock contained water comes from the following observations: (1) the water within the landslide debris must have been derived from wall rock; (2) debris appears to have been transported through tributary canyons; (3) locally, channels emerged from the canyons; (4) the wall rock apprarently disintegrated and flowed easily; and (5) fault zones within the troughs are unusually resistant to erosion. The study further suggests that, in the equatorial region of Mars, material below depths of 400-800 m was not desiccated during the time of landslide activity (within the last billion years of Martian history). Therefore the Martian ground-water or groundice reservoir, if not a relic from ancient times, must have been replenished. ?? 1987.

  3. A study of methods to estimate debris flow velocity

    Science.gov (United States)

    Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.

    2008-01-01

    Debris flow velocities are commonly back-calculated from superelevation events which require subjective estimates of radii of curvature of bends in the debris flow channel or predicted using flow equations that require the selection of appropriate rheological models and material property inputs. This research investigated difficulties associated with the use of these conventional velocity estimation methods. Radii of curvature estimates were found to vary with the extent of the channel investigated and with the scale of the media used, and back-calculated velocities varied among different investigated locations along a channel. Distinct populations of Bingham properties were found to exist between those measured by laboratory tests and those back-calculated from field data; thus, laboratory-obtained values would not be representative of field-scale debris flow behavior. To avoid these difficulties with conventional methods, a new preliminary velocity estimation method is presented that statistically relates flow velocity to the channel slope and the flow depth. This method presents ranges of reasonable velocity predictions based on 30 previously measured velocities. ?? 2008 Springer-Verlag.

  4. Rainfall-triggering response patterns of post-seismic debris flows in the Wenchuan earthquake area

    NARCIS (Netherlands)

    Zhou, W.; Tang, C.; van Asch, Th.W.J.; Zhou, nn.

    2013-01-01

    Several giant debris flows occurred in southwestern China after the Wenchuan earthquake, causing serious casualties and economic losses. Debris flows were frequently triggered after the earthquake. A relatively accurate prediction of these post-seismic debris flows can help to reduce the consequent

  5. Effects of debris flow composition on runout, depositional mechanisms, and deposit morphology in laboratory experiments

    NARCIS (Netherlands)

    de Haas, Tjalling; Braat, Lisanne; Leuven, Jasper R F W; Lokhorst, Ivar R.; Kleinhans, Maarten G.

    2015-01-01

    Predicting debris flow runout is of major importance for hazard mitigation. Apart from topography and volume, runout distance and area depends on debris flow composition and rheology, but how is poorly understood. We experimentally investigated effects of composition on debris flow runout, depositio

  6. GIS-based numerical simulations of the July 2014 Nagiso debris flow in Nagano Prefecture, Japan

    Science.gov (United States)

    Wang, Chunxiang; Fukuoka, Hiroshi

    2015-04-01

    A debris flow disaster took place in Nagiso, Nagano Prefecture of Japan in the later afternoon of 9 July 2014 triggered by 76 mm torrential rain associated with the typhoon Neoguri. This debris flow killed one resident and completely destroyed several houses. Although the source of the debris flows, especially the origin of their large boulders exceeding 5 m, are not clear, it seems that those debris flows initiated in the two upstream torrents and they joined Nashisawa torrent. Finally the debris flow ran and deposited in the Kiso River. The downstream residents are much aware of the many historical cases on similar debris flow disasters in the torrents in Nagiso and surrounding communities. Most of the residents could evacuate immediately after they felt the ground tremors induced by the running debris flow. Authors used LAHARZ (Schilling 1998) to simulate the Nagiso debris flow using 5-meter resolution Digital Elevation Model and several debris-flow volumes for the calibration. We also performed a numerical simulation to predicting the runout distance and to get insight into the behavior of the debris flow movement. A GIS-based depth-averaged 2D numerical model using a coupled viscous and Coulomb type law is used to simulate a debris flow from initiation to deposition. We compared the two simulation results and suggested the more appropriate coefficients of equations in LAHARZ for calculating the cross sectional area and planimetric area for application to the July 2014 Nagiso debris flows.

  7. Dynamic controls on erosion and deposition on debris-flow fans.

    OpenAIRE

    Schürch, P.; Densmore, A. L.; Rosser, N.J.; B. W. McArdell

    2011-01-01

    Debris flows are among the most hazardous and unpredictable of surface processes in mountainous areas. This is partly because debris-flow erosion and deposition are poorly understood, resulting in major uncertainties in flow behavior, channel stability, and sequential effects of multiple flows. Here we apply terrestrial laser scanning and flow hydrograph analysis to quantify erosion and deposition in a series of debris flows at Illgraben, Switzerland. We identify flow depth as an important co...

  8. Experimental study on the rheological behaviour of debris flow

    Directory of Open Access Journals (Sweden)

    A. Scotto di Santolo

    2010-12-01

    Full Text Available A model able to describe all the processes involved in a debris flow can be very complex owing to the sudden changing of the material that turns from solid into liquid state. The two phases of the phenomenon are analysed separately referring to soil mechanics procedures with regard to the trigger phase, and to an equivalent fluid for the post-failure phase. The present paper is devoted to show the experimental results carried out to evaluate the behaviour assumed by a pyroclastic-derived soil during the flow. A traditional fluid tool has been utilized: a standard rotational rheometer equipped with two different geometries. The soils tested belong to deposits that cover the slopes of the Campania region, Italy, often affected by debris flows. The influence of solid concentration Cv and grain size distribution was tested: the soils were destructurated, sieved and mixed with water starting from the in situ porosity. All material mixtures showed a non-Newtonian fluid behaviour with a yield stress τy that increases with a solid volumetric concentration and decreases for an increase of sand fraction. The experimental data were fitted with standard model for fluids. A simple relation between Cv and τy was obtained. The yield stress seems to be a key parameter for describing and predicting the post-failure behaviour of debris flows. These results suggest that in the field a small change in solid fraction, due to rainfall, will cause a slight decrease of the static yield stress, readily inducing a rapid flow which will stop only when the dynamic yield stress is reached, namely on a much smoother slope. This can explain the in situ observed post-failure behaviour of debris flows, which are able to flow over very long distances even on smooth slopes.

  9. Debris flow runup on vertical barriers and adverse slopes

    Science.gov (United States)

    Iverson, Richard M.; George, David L.; Logan, Matthew

    2016-12-01

    Runup of debris flows against obstacles in their paths is a complex process that involves profound flow deceleration and redirection. We investigate the dynamics and predictability of runup by comparing results from large-scale laboratory experiments, four simple analytical models, and a depth-integrated numerical model (D-Claw). The experiments and numerical simulations reveal the important influence of unsteady, multidimensional flow on runup, and the analytical models highlight key aspects of the underlying physics. Runup against a vertical barrier normal to the flow path is dominated by rapid development of a shock, or jump in flow height, associated with abrupt deceleration of the flow front. By contrast, runup on sloping obstacles is initially dominated by a smooth flux of mass and momentum from the flow body to the flow front, which precedes shock development and commonly increases the runup height. D-Claw simulations that account for the emergence of shocks show that predicted runup heights vary systematically with the adverse slope angle and also with the Froude number and degree of liquefaction (or effective basal friction) of incoming flows. They additionally clarify the strengths and limitations of simplified analytical models. Numerical simulations based on a priori knowledge of the evolving dynamics of incoming flows yield quite accurate runup predictions. Less predictive accuracy is attained in ab initio simulations that compute runup based solely on knowledge of static debris properties in a distant debris flow source area. Nevertheless, the paucity of inputs required in ab initio simulations enhances their prospective value in runup forecasting.

  10. Method and its application of the momentum model for debris flow risk zoning

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In order to ascertain the distribution of flow depth and velocity of debris flow, the combination of numerical modeling and the GIS technology has been used to simulate the movement process of debris flow out of the outlet. The main model of momentum classification of risk zoning of debris flow is Z=Khv. Based on the distribution of the velocity and depth of debris flow, the distribution of momentum can be ascertained. Thereby the classification of risk zoning of debris flow can be worked out. A case study of Chacaito Valley in Caracas, Venezuela, is presented to illustrate the application of the method.

  11. Flood and Debris Flow Hazard Predictions in Steep, Burned Landscapes

    Science.gov (United States)

    Rengers, Francis; McGuire, Luke; Kean, Jason; Staley, Dennis

    2016-04-01

    Post-wildfire natural hazards such as flooding and debris flows threaten infrastructure and can even lead to loss of life. The risk from these natural hazards could be reduced if floods and debris flows could be predicted from modeling. Our ability to test predictive models is primarily constrained by a lack of observational data that can be used for comparison with model predictions. Following the 2009 Station Fire in the San Gabriel Mountains, CA, USA, we conducted a study with high-resolution topography and hydrologic measurements to test the effectiveness of two different hydrologic routing models to predict flood and debris flow timing. Our research focuses on comparing the performance of two hydrologic models with differing levels of complexity and efficiency using high-resolution, lidar-derived digital elevation models. The simpler model uses the kinematic wave approximation to route flows, while the more complex model uses the full shallow water equations. In both models precipitation is spatially uniform and infiltration is simulated using the Green-Ampt infiltration equation. Input data for the numerical models was constrained by time series data of soil moisture, and rainfall collected at field sites as well as high-resolution lidar-derived digital elevation models. We ran the numerical models and varied parameter values for the roughness coefficient and hydraulic conductivity. These parameter values were calibrated by minimizing the difference between the simulated and observed flow timing. Moreover, the two parameters were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. The calibrated parameters were subsequently used to model a third watershed, and the results show a good match with observed timing of flow peaks for both models. Calibrated roughness coefficients are generally higher when using the kinematic wave approximation relative to the full shallow water equations, and decrease with increasing spatial

  12. Internal characteristics of refractive-index matched debris flows

    Science.gov (United States)

    Gollin, Devis; Bowman, Elisabeth; Sanvitale, Nicoletta

    2016-04-01

    Debris flows are channelized masses of granular material saturated with water that travel at high speeds downslope. Their destructive character represents a hazard to lives and properties, especially in regions of high relief and runoff. The characteristics that distinguish their heterogeneous, multi-phase, nature are numerous: non-uniform surge formation, particle size ranging from clay to boulders, flow segregation with larger particles concentrating at the flow front and fluid at the tail making the composition and volume of the bulk varying with time and space. These aspects render these events very difficult to characterise and predict, in particular in the area of the deposit spread or runout - zones which are generally of most interest in terms of human risk. At present, considerable gaps exist in our understanding of the flow dynamics of debris flows, which originates from their complex motion and relatively poor observations available. Flume studies offer the potential to examine in detail the behaviour of model debris flows, however, the opaque nature of these flows is a major obstacle in gaining insight of their internal behaviour. Measurements taken at the sidewalls may be poorly representative leading to incomplete or misleading results. To probe internally to the bulk of the flow, alternative, nonintrusive techniques can be used, enabling, for instance, velocities and solid concentrations within the flowing material to be determined. We present experimental investigations into polydisperse granular flows of spherical immersed particles down an inclined flume, with specific attention directed to their internal behavior. To this end, the refractive indices of solids and liquid are closely matched allowing the two phases to be distinguished. Measurements are then made internally at a point in the channel via Plane Laser Induced Fluorescence, Particle Tracking Velocimetry, PTV and Particle Image Velocimetry, PIV. The objective is to to increase our

  13. Environmental Vulnerability,Ecosystem Resilience and Debris Flow Disasters-Taking Disaster of Debris Flow in Dongchuan of Yunnan Province as a Case Study

    Institute of Scientific and Technical Information of China (English)

    Li Yongxiang

    2015-01-01

    The Dongchuan district of Kun-ming,Yunnan is a place where debris flows hap-pens frequently.As a result, the district is called a“natural museum of debris flow disasters”.This ar-ticle will analyze the causes of debris flows in Dongchuan, management approaches, and the im-pacts of the disaster on the local people from the perspective of anthropology.It will reflect environ-mental vulnerability, ecosystem resilience, and their anthropological significance.Moreover, this article will also propose some suggestions on sol-ving the problems of debris flow in Dongchuan from the angle of anthropology.

  14. New debris disks in nearby young moving groups

    CERN Document Server

    Moór, A; Ábrahám, P; Balog, Z; Csengeri, T; Henning, Th; Juhász, A; Kiss, Cs

    2016-01-01

    A significant fraction of nearby young moving group members harbor circumstellar debris dust disks. Due to their proximity and youth, these disks are attractive targets for studying the early evolution of debris dust and planetesimal belts. Here we present 70 and 160$\\mu$m observations of 31 systems in the $\\beta$ Pic moving group, and in the Tucana-Horologium, Columba, Carina and Argus associations, using the Herschel Space Observatory. None of these stars were observed at far-infrared wavelengths before. Our Herschel measurements were complemented by photometry from the WISE satellite for the whole sample, and by submillimeter/millimeter continuum data for one source, HD 48370. We identified six stars with infrared excess, four of them are new discoveries. By combining our new findings with results from the literature, we examined the incidence and general characteristics of debris disks around Sun-like members of the selected groups. With their dust temperatures of <45 K the newly identified disks aroun...

  15. Volcanic Debris Flows in the Elysium Region of Mars

    Science.gov (United States)

    Christiansen, E. H.; Ryan, M. P.

    1985-01-01

    Photogeologic studies of the Elysium volcanic province appear to provide a specific example of the importance of volcanic-ice interaction to produce the channels of Hrad and Granicus Valles. In addition, these studies shows that the channels lie on the surface of a large sedimentary deposit which is interpreted as an accumulation of volcanic debris flows or lahars. In spite of some similarities with Martian outflow channels, this latter difference may distinguish the Elysium channels from other types of Martian channels. Geologic relations are described which demonstrate that the debris flows formed amidst other volcanic activity in the Elysium region thereby suggesting that the magmatism was important to the generation of the mobilizing liquid. The lahars resulted from the melting of ground ice and liquefaction of subsurface materials. The intersection of this fluid reservoir with the regional fracture system lead to the rapid expulsion of a muddy slurry down the steep western slope of the province.

  16. Modeling Experiment of Break of Debris-Flow Dam

    Institute of Scientific and Technical Information of China (English)

    CHENG Zunlan; GENG Xueyong; DANG Chao; LIU Jingjing

    2007-01-01

    Glaciers are extensively developed in the southwest of Tibet and the moraines are widely distributed with large depth. Large-scale debris flows are often reported which blocked rivers and formed dams. In this paper, seven large debris flows in four valleys are discussed, among which five dams developed. 13 sets of experiments have been conducted in laboratory to simulate the formation and failure of the dam. Finally, a model of dam failure is proposed and a formula is established to calculate the flood discharge:Q = kbhhk/T (B)/LG0.41, where bk is the outlet width of the dam atthe original water level, ht the erosive depth, T the time fromoverflow to final state of failure, the average width of lake; L thelength of the lake, and G the total potential energy of the water inthe lake.

  17. A Model of Debris Flow Forecast Based on the Water-Soil Coupling Mechanism

    Institute of Scientific and Technical Information of China (English)

    Shaojie Zhang; Hongjuan Yang; Fangqiang Wei; Yuhong Jiang; Dunlong Liu

    2014-01-01

    Debris flow forecast is an important means of disaster mitigation. However, the accuracy of the statistics-based debris flow forecast is unsatisfied while the mechanism-based forecast is un-available at the watershed scale because most of existing researches on the initiation mechanism of de-bris flow took a single slope as the main object. In order to solve this problem, this paper developed a model of debris flow forecast based on the water-soil coupling mechanism at the watershed scale. In this model, the runoff and the instable soil caused by the rainfall in a watershed is estimated by the distrib-uted hydrological model (GBHM) and an instable identification model of the unsaturated soil. Because the debris flow is a special fluid composed of soil and water and has a bigger density, the density esti-mated by the runoff and instable soil mass in a watershed under the action of a rainfall is employed as a key factor to identify the formation probability of debris flow in the forecast model. The Jiangjia Gulley, a typical debris flow valley with a several debris flow events each year, is selected as a case study wa-tershed to test this forecast model of debris flow. According the observation data of Dongchuan Debris Flow Observation and Research Station, CAS located in Jiangjia Gulley, there were 4 debris flow events in 2006. The test results show that the accuracy of the model is satisfied.

  18. CIS-Based Risk Assessment of Debris Flow Disasters in the Upper Reach of Yangtze River

    Institute of Scientific and Technical Information of China (English)

    HAN Yongshun; LIU Hongjiang; ZHONG Dunlun; SU Fenghuan; LI Chaokui

    2007-01-01

    This paper discussed theory and methodologies of debris-flow risk assessment and established an implementation process according to indicators of debris-flow hazard degree, vulnerability, risk degree, etc. Among these methodologies, historical and potential hazard degree was comprehensively considered into hazard assessment and hazard index was presented to indicate the debris-flow hazard degree. Regarding debris-flow vulnerability assessment, its statistical data and calculating procedure were based on the hazard-degree regionalization instead of administrative divisions, which improved the assessing scientificity and precision. These quantitative methodologies integrated with Geography Information System (GIS) were applied to the risk assessment of debris flows in the upper reach of Yangtze River. Its results were in substantial agreement on investigation data and the actual distribution of debris flows, which showed that these principles and methodologies were reasonable and feasible and can provide basis or reference for debris-flow risk assessment and disaster management.

  19. Disaster Reduction Decision Support System Against Debris Flows and Landslides Along Highway in Mountainous Area

    Institute of Scientific and Technical Information of China (English)

    LiFa-bin; WeiFang-qiang; CuiPeng; ZhouWan-cun

    2003-01-01

    Highways in mountainous areas are easy to be damaged by such natural disasters as debris flows and landslides and disaster reduction decision support system (DRDSS) is one of the important means to mitigate these disasters. Guided by the theories and technologies of debris flow and landslide reduction and supported by geographical information system (GIS), remote sensing and database techniques, a DRDSS against debris flow and landslide along highways in mountainous areas has been established on the basis of such principles as pertinence, systematicness, effectiveness, easy to use, open and expandability. The system consists of database, disaster analysis models and decisions on reduction of debris flows and landslides, mainly functioning to zone disaster dangerous degree, analyze debris flow activity,simulate debris flow deposition and diffusion, analyze landslide stability, select optimal highway renovation scheme and plan disaster prevention and control engineering. This system has been applied successfully to the debris flow and landslide treatment works along Palongzangbu Section of Siehuan-Tibet Highway.

  20. Disaster Reduction Decision Support System Against Debris Flows and Landslides Along Highway in Mountainous Area

    Institute of Scientific and Technical Information of China (English)

    Li Fa-bin; Wei Fang-qiang; Cui Peng; Zhou Wan-cun

    2003-01-01

    Highways in mountainous areas are easy to be damaged by such natural disasters as debris flows and landslides and disaster reduction decision support system (DRDSS) is one of the important means to mitigate these disasters. Guided by the theories and technologies of debris flow and landslide reduction and supported by geographical information system (GIS), remote sensing and database techniques, a DRDSS against debris flow and landslide along highways in mountainous areas has been established on the basis of such principles as pertinence, systematicness, effectiveness, easy to use, open and expandability. The system consists of database, disaster analysis models and decisions on reduction of debris flows and landslides, mainly functioning to zone disaster dangerous degree, analyze debris flow activity,simulate debris flow deposition and diffusion, analyze landslide stability, select optimal highway renovation scheme and plan disaster prevention and control ergineering. This system has been applied successfully to the debris flow and landslide treatment works along Palongzangbu Section of Sichuan-Tibet Highway.

  1. RESEARCH ON ABRASION OF DEBRIS FLOW TO HIGH-SPEED DRAINAGE STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    陈洪凯; 唐红梅; 吴四飞

    2004-01-01

    As one weak topic in research of debris flow, abrasion of debris flow shortens obviously application life of control structure composed of concrete. High-speed drainage structure, one of the most effective techniques to control giant debris flow disaster, has shortened one-third application life due to abrasion by debris flow. Based on velocity calculation method founded by two-phase theory, research of abrasion mechanism of debris flow to high-speed drainage structure was made. The mechanism includes both abrasion mechanism of homogeneous sizing and shearing mechanism of particle of debris flow to high-speed drainage trough structure. Further abrasion equations of both sizing and particle were established by Newton movement theory of debris flow. And abrasion amount formula of the high-speed drainage trough structure is set up by dimensional analysis. Amount to calculating in the formula is consistent with testing data in-situ, which is valuable in design of high-speed drainage structure.

  2. Initiation processes for run-off generated debris flows in the Wenchuan earthquake area of China

    NARCIS (Netherlands)

    Hu, W.; Dong, X. J.; Xu, Q.; Wang, G. H.; van Asch, T. W J; Hicher, P. Y.

    2016-01-01

    The frequency of huge debris flows greatly increased in the epicenter area of the Wenchuan earthquake. Field investigation revealed that runoff during rainstorm played a major role in generating debris flows on the loose deposits, left by coseismic debris avalanches. However, the mechanisms of these

  3. EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes

    Science.gov (United States)

    Chen, H. X.; Zhang, L. M.

    2015-03-01

    Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA (Erosion-Deposition Debris flow Analysis), is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of the debris flow mixture determined at limit equilibrium using the Mohr-Coulomb equation is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, an adaptive time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional debris flow with constant properties and a two-dimensional dam-break water flow. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.

  4. Topographic Controls on Landslide and Debris-Flow Mobility

    Science.gov (United States)

    McCoy, S. W.; Pettitt, S.

    2014-12-01

    Regardless of whether a granular flow initiates from failure and liquefaction of a shallow landslide or from overland flow that entrains sediment to form a debris flow, the resulting flow poses hazards to downslope communities. Understanding controls on granular-flow mobility is critical for accurate hazard prediction. The topographic form of granular-flow paths can vary significantly across different steeplands and is one of the few flow-path properties that can be readily altered by engineered control structures such as closed-type check dams. We use grain-scale numerical modeling (discrete element method simulations) of free-surface, gravity-driven granular flows to investigate how different topographic profiles with the same mean slope and total relief can produce notable differences in flow mobility due to strong nonlinearities inherent to granular-flow dynamics. We describe how varying the profile shape from planar, to convex up, to concave up, as well how varying the number, size, and location of check dams along a flow path, changes flow velocity, thickness, discharge, energy dissipation, impact force and runout distance. Our preliminary results highlight an important path dependence for this nonlinear system, show that caution should be used when predicting flow dynamics from path-averaged properties, and provide some mechanics-based guidance for engineering control structures.

  5. A comparative assessment of two different debris flow propagation approaches – blind simulations on a real debris flow event

    Directory of Open Access Journals (Sweden)

    L. M. Stancanelli

    2014-11-01

    Full Text Available A detailed comparison between the performances of two different approaches to debris flow modelling has been carried out. In particular, the results of a mono-phase Bingham model (FLO-2D and these of a two phase model (TRENT-2D obtained from a blind test have been compared. As a benchmark test the catastrophic event of 1 October 2009 which struck Sicily causing several fatalities and damages has been chosen. The predicted temporal evolution of several parameters of the debris flow (as the flow depths and the propagation velocities has been analyzed in order to investigate the advantages and disadvantages of the two models in reproducing the global dynamics of the event. Analysis between the models results with survey data have been carried out, not only for the determination of statistical indicators of prediction accuracy, but also for the application of the Receiver Operator Characteristic (ROC approach. Provided that the proper rheological parameters and boundary conditions are assigned, both models seem capable of reproducing the inundation areas in a fairly good way. However, the main differences in the application rely in the choice of such rheological parameters. Indeed, within the more user friendly FLO-2D model the tuning of the parameters must be done empirically, with no evidence of the physics of the phenomena. On the other hand, for the TRENT-2D the parameters are physically based and can be estimated from the properties of the solid material, thus reproducing more reliable results. A second important difference between the two models is that in the first method the debris flow is treated as homogeneous flow, in which the total mass is kept constant from initiation in the upper part of the basin up to the deposition on debris fan. On the contrary, the second approach is suite to reproduce the erosion and deposition processes and the displaced mass can be directly related to the rainfall event. Application of both models in an highly

  6. A comparative assessment of two different debris flow propagation approaches - blind simulations on a real debris flow event

    Science.gov (United States)

    Stancanelli, L. M.; Foti, E.

    2015-04-01

    A detailed comparison between the performances of two different approaches to debris flow modelling was carried out. In particular, the results of a mono-phase Bingham model (FLO-2D) and that of a two-phase model (TRENT-2D) obtained from a blind test were compared. As a benchmark test the catastrophic event of 1 October 2009 which struck Sicily causing several fatalities and damage was chosen. The predicted temporal evolution of several parameters of the debris flow (such as flow depth and propagation velocity) was analysed in order to investigate the advantages and disadvantages of the two models in reproducing the global dynamics of the event. An analysis between the models' results with survey data have been carried out, not only for the determination of statistical indicators of prediction accuracy, but also for the application of the Receiver Operator Characteristic (ROC) approach. Provided that the proper rheological parameters and boundary conditions are assigned, both models seem capable of reproducing the inundation areas in a reasonably accurate way. However, the main differences in the application rely on the choice of such rheological parameters. Indeed, within the more user-friendly FLO-2D model the tuning of the parameters must be done empirically, with no evidence of the physics of the phenomena. On the other hand, for the TRENT-2D the parameters are physically based and can be estimated from the properties of the solid material, thus reproducing more reliable results. A second important difference between the two models is that in the first method the debris flow is treated as a homogeneous flow, in which the total mass is kept constant from its initiation in the upper part of the basin to the deposition in a debris fan. In contrast, the second approach is suited to reproduce the erosion and deposition processes and the displaced mass can be directly related to the rainfall event. Application of both models in a highly urbanized area reveals the

  7. Gravel Accumulation in Deposits of Viscous Debris Flows with Hyper-concentration

    Institute of Scientific and Technical Information of China (English)

    WANG Yuyi; TAN Rongzhi; JAN Chyandeng; TIAN Bing

    2009-01-01

    According to the observational data of viscous debris flows with hyper-concentration, debris flows can be classified into three types: high-viscous, viscous, and sub-viscous debris flows. Distinct formation mechanism of different graded bedding structures in deposits of viscous debris flows was analyzed in this paper by using their yield-stress ratio and flow plug ratio. This paper specially analyzed the effect of Weissenberg which the gravels in squirm condition of hyper-concentration viscous flows would tend to move vertically, and the formation mechanism of the gravels accumulated at surface was also studied. The analysis in this paper can establish a foundation for the studies on differentiation of bedding structures of debris flow deposits and studies on dynamic parameters of debris flows.

  8. 1d Numerical Simulation of A Swiss Debris Flow: Comparison of Flow Laws

    Science.gov (United States)

    McArdell, B. W.; Graf, Ch.; Naef, D.; Rickenmann, D.

    Efforts to numerically model debris flows have been limited by a lack of appropriate numerical tools. Here we report on our efforts to systematically evaluate different flow laws using a numerical tool under development at our institute. The model, DFEM, is a finite element solution of the shallow water equations in one or two dimensions and is based on the FEMTOOL libraries from Rutschmann (1993). Debris flow constitu- tive relations or flow laws include turbulent (e.g. Manning, Chézy, Voellmy), laminar (Bingham, Newtonian laminar), and inertial formulations (dilatant/grain shearing) as well as combinations of flow laws when appropriate. The model is applied to a recent debris flow event from the Schipfenbach torrent, Switzerland (Hürlimann, submitted), where we maintain an automated debris flow observation station. Observations include flow depth measurements from ultrasonic depth measurement devices, reach-averaged velocities estimated from the travel time between ultrasonic gages and geophones, velocity and flow behavior from video cam- eras situated near the flow retention basin on the fan, and post-event field surveys. Preliminary results suggest that the flow of debris in the steep reaches of the torrent channel can be reasonably described by a simple turbulent flow law (e.g. Manning- Strickler or Chézy) with a large overall flow resistance, and that both the flow in the channel and the deposition on the fan can be satisfactorily simulated using the Voellmy fluid approach. The results using the Voellmy fluid approach are in agree- ment with results calculated from the AVAL-1D snow avalanche simulation code and input parameters for debris instead of snow, corroborating the implementation in the DFEM model. The AVAL-1D code is commercially available, providing another tool that may be used by workers in the natural hazards field for debris flow routing in torrent channels and on alluvial fans. References: Hürlimann, M., Rickenmann, D. and Graf, Ch., Field

  9. On the connection of permafrost and debris flow activity in Austria

    Science.gov (United States)

    Huber, Thomas; Kaitna, Roland

    2016-04-01

    Debris flows represent a severe hazard in alpine regions and typically result from a critical combination of relief energy, water, and sediment. Hence, besides water-related trigger conditions, the availability of abundant sediment is a major control on debris flows activity in alpine regions. Increasing temperatures due to global warming are expected to affect periglacial regions and by that the distribution of alpine permafrost and the depth of the active layer, which in turn might lead to increased debris flow activity and increased interference with human interests. In this contribution we assess the importance of permafrost on documented debris flows in the past by connecting the modeled permafrost distribution with a large database of historic debris flows in Austria. The permafrost distribution is estimated based on a published model approach and mainly depends of altitude, relief, and exposition. The database of debris flows includes more than 4000 debris flow events in around 1900 watersheds. We find that 27 % of watersheds experiencing debris flow activity have a modeled permafrost area smaller than 5 % of total area. Around 7 % of the debris flow prone watersheds have an area larger than 5 %. Interestingly, our first results indicate that watersheds without permafrost experience significantly less, but more intense debris flow events than watersheds with modeled permafrost occurrence. Our study aims to contribute to a better understanding of geomorphic activity and the impact of climate change in alpine environments.

  10. Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO

    Science.gov (United States)

    Grimsley, K. J.; Rathburn, S. L.; Friedman, J. M.; Mangano, J. F.

    2016-07-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  11. Variation in initiation condition of debris flows in the mountain regions surrounding Beijing

    Science.gov (United States)

    Ma, Chao; Wang, Yu-jie; Du, Cui; Wang, Yun-qi; Li, Yun-peng

    2016-11-01

    Debris flows in the mountain regions surrounding Beijing have been occurring for a long time and have resulted in great economic losses. In this study, 23 rainstorm events, surficial sediments, and debris flow deposits were analyzed to quantify the area's rainfall threshold and to investigate how such conditions may be used to predict debris flow in this region. Rainfall threshold of intensity-duration (I-D) functions after vegetation recovery was higher than before recovery and also higher than I-D levels in other regions where debris flows are closely associated with runoff. Field investigations revealed that surficial sediments were characterized by coarse-grained sediments and that debris flow deposits lacked fine particles. Local debris flows can be triggered by runoff; however, no single standard equation is used to predict the conditions that lead to runoff-triggered debris flow; and commonly used equations give different values. Here, we propose an empirical function that takes into account peak discharge per width and particle diameter. This model should be verified with further investigations so that it can be used as a reference to analyze the conditions that lead to debris flow in the study area. Finally, debris flows may have been related to occasional storms in the study area, which has been experiencing substantially increased temperatures and decreased annual precipitation. This work provides important information about the conditions that initiated debris flow in the Beijing mountain regions in the last few decades.

  12. Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO.

    Science.gov (United States)

    Grimsley, K J; Rathburn, S L; Friedman, J M; Mangano, J F

    2016-07-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  13. Debris flow occurrence and sediment persistence, Upper Colorado River Valley, CO

    Science.gov (United States)

    Grimsley, Kyle J; Rathburn, Sara L.; Friedman, Jonathan M.; Mangano, Joseph F.

    2016-01-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  14. The importance of erosion for debris flow runout modelling from applications to the Swiss Alps

    OpenAIRE

    F. Frank; B. W. McArdell; Huggel, C; A. Vieli

    2015-01-01

    This study describes an investigation of channel-bed erosion of sediment by debris flows. An erosion model, developed using field data from debris flows at the Illgraben catchment, Switzerland, was incorporated into the existing RAMMS debris-flow model, which solves the 2-D shallow-water equations for granular flows. In the erosion model, the relationship between maximum shear stress and measured erosion is used to determine the maximum potential erosion depth. Additionally,...

  15. Modeling of debris flow depositional patterns according to the catchment and sediment source area characteristics

    OpenAIRE

    2015-01-01

    A method to predict the most probable flow rheology in Alpine debris flows is presented. The methods classifies outcropping rock masses in catchments on the basis of the type of resulting unconsolidated deposits. The grain size distribution of the debris material and the depositional style of past debris flow events are related to the dominant flow processes: viscoplastic and frictional/collisional. Three catchments in the upper Susa Valley (Western Alps), characterized by different lithologi...

  16. EDDA: integrated simulation of debris flow erosion, deposition and property changes

    Directory of Open Access Journals (Sweden)

    H. X. Chen

    2014-11-01

    Full Text Available Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA, is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of debris flow mixture is determined at limit equilibrium using the Mohr–Coulomb equation, which is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, a variable time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional dam-break water flow and a one-dimensional debris flow with constant properties. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.

  17. EDDA: integrated simulation of debris flow erosion, deposition and property changes

    Science.gov (United States)

    Chen, H. X.; Zhang, L. M.

    2014-11-01

    Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA, is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of debris flow mixture is determined at limit equilibrium using the Mohr-Coulomb equation, which is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, a variable time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional dam-break water flow and a one-dimensional debris flow with constant properties. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.

  18. Critical Rainfall Conditions Triggering Shallow Landslides or Debris Flows in Torrents - Analysis of Debris Flow events 2012, 2013 and 2014 in Austria

    Science.gov (United States)

    Moser, Markus; Mehlhorn, Susanne; Janu, Stefan

    2015-04-01

    Generally, debris flows are caused by both small-scale intensive precipitation and long lasting rainfalls with lower intensity but high pre-wetting or both combined. The triggering mechanism of the debris flow events in Austria 2012, 2013 and 2014 were mass movements (rapid shallow landslides) on steep slopes in the upper catchments. Those masses slide with very high velocity into the torrent beds provoking hyperconcentrated flows or debris flows. In areas of the geologically unstable Greywacke zone, the torrents were cleared up onto the bedrock and the debris was deposited in the storage areas of existing debris flow breakers or in torrents without technical protection measures the debris caused catastrophic damage to residential buildings and other infrastructural facilities on the alluvial fan. Following the events, comprehensive documentation work was undertaken comprising precipitation analysis (rainfall data, weather radar data), identification and quantification of the landslide masses, cross profiles along the channel and of deposition in the storage areas or on the fan. The documentation and analysis of torrential events is an essential part of an integrated risk management. It supports the understanding of the occurred processes to mitigate future hazards. Unfortunately, the small-scale heavy rain events are not detected by the precipitation stations. Therefore, weather radar data (INCA-Data) analysis was used to determine the - usually very local - intensities which caused those catastrophic landslides and debris flows. Analysis results showed an agreement with the range of the previously known precipitation thresholds for debris flow triggering in the Alps.

  19. A two-fluid model for avalanche and debris flows.

    Science.gov (United States)

    Pitman, E Bruce; Le, Long

    2005-07-15

    Geophysical mass flows--debris flows, avalanches, landslides--can contain O(10(6)-10(10)) m(3) or more of material, often a mixture of soil and rocks with a significant quantity of interstitial fluid. These flows can be tens of meters in depth and hundreds of meters in length. The range of scales and the rheology of this mixture presents significant modelling and computational challenges. This paper describes a depth-averaged 'thin layer' model of geophysical mass flows containing a mixture of solid material and fluid. The model is derived from a 'two-phase' or 'two-fluid' system of equations commonly used in engineering research. Phenomenological modelling and depth averaging combine to yield a tractable set of equations, a hyperbolic system that describes the motion of the two constituent phases. If the fluid inertia is small, a reduced model system that is easier to solve may be derived.

  20. Debris flows as geomorphic agents in the Huachuca Mountains of southeastern Arizona

    Science.gov (United States)

    Wohl, E.E.; Pearthree, P.P.

    1991-01-01

    Numerous debris flows occurred in the Huachuca Mountains of southeastern Arizona during the summer rainy season of 1988 in areas that were burned by a forest fire earlier in the summer. Debris flows occurred following a major forest fire in 1977 as well, suggesting a causal link between fires and debris flows. Abundant evidence of older debris flows preserved along channels and in mountain front fans indicates that debris flows have occurred repeteadly during the late Quaternary in this environment. Soil development in sequences of debris-flow deposits indicates that debris flows probably recur over time intervals of several hundred to a thousand years in individual drainage basins in the study area. Surface runoff in the steep drainage basins of the Huachuca Mountains is greatly enhanced following forest fires, as the hillslopes are denuded of their vegetative cover. Water and sediment eroded from the hillslope regolith are rapidly introduced into the upper reaches of tributary channels by widespread rilling and slope wash during rainfall events. This influx of water and sediment destabilizes regolith previously accumulated in the channel, triggering debris flows that scour the channel to bedrock in the upper reaches. Following a debris flow, the scoured, trapezoidally-shaped channel gradually assumes a swale shape and the percentage of exposed bedrock declines, as material is introduced from the slopes. Debris flows do a tremendous amount of work in a very short time, however, and are the major channel-forming events. Where the tributary channels enter larger, trunk channels, the debris flows serve as the main source of very coarse sediment. The local slope and coarse particle distribution of the trunk channel depend on the competence of water flows in the channel to transport the material introduced by debris flows. Where the smaller channels drain directly to the mountain front, debris flows create extensive alluvial fans which dominate the morphology of the

  1. Regional Prediction of Impending Debris Flow Based on Doppler Weather Radar

    Institute of Scientific and Technical Information of China (English)

    JIANG Yuhong; WEI Fangqiang; ZHANG Jinghong; GU Linkang; DENG Bo; LIU Hongjiang

    2007-01-01

    Debris flow prediction is one of the important means to reduce the loss caused by debris flow. This paper built a regional prediction model of impending debris flow based on regional environmentalbackground (including topography, geology, land use, and etc.), rainfalland debris flow data. A system of regional prediction of impending debris flow was set up on ArcGIS 9.0 platform according to the model.The system used forecast precipitation data of Doppler weather radarand observational precipitation data as its input data. It could provide aprediction about the possibility of debris flow one to three hours beforeit happened, and was put into use in Liangshan Meteorological Observatory in Sichuan province in the monsoon of 2006.

  2. Remote sensing of rainfall for debris-flow hazard assessment

    Science.gov (United States)

    Wieczorek, G.F.; Coe, J.A.; Godt, J.W.; ,

    2003-01-01

    Recent advances in remote sensing of rainfall provide more detailed temporal and spatial data on rainfall distribution. Four case studies of abundant debris flows over relatively small areas triggered during intense rainstorms are examined noting the potential for using remotely sensed rainfall data for landslide hazard analysis. Three examples with rainfall estimates from National Weather Service Doppler radar and one example with rainfall estimates from infrared imagery from a National Oceanic and Atmospheric Administration satellite are compared with ground-based measurements of rainfall and with landslide distribution. The advantages and limitations of using remote sensing of rainfall for landslide hazard analysis are discussed. ?? 2003 Millpress,.

  3. Dark Matter Debris Flows in the Milky Way

    CERN Document Server

    Lisanti, Mariangela

    2011-01-01

    We show that subhalos falling into the Milky Way create a flow of tidally-stripped debris particles near the galactic center with characteristic velocity behavior. In the Via Lactea-II N-body simulation, this unvirialized component constitutes a few percent of the local density and has velocities peaked at 340 km/s in the solar neighborhood. Such velocity substructure has important implications for surveys of low-metallicity stars, as well as direct detection experiments sensitive to dark matter with large scattering thresholds.

  4. Debris flow hazard modelling on medium scale: Valtellina di Tirano, Italy

    OpenAIRE

    J. Blahut; P. Horton; S. Sterlacchini; Jaboyedoff, M.

    2010-01-01

    Debris flow hazard modelling at medium (regional) scale has been subject of various studies in recent years. In this study, hazard zonation was carried out, incorporating information about debris flow initiation probability (spatial and temporal), and the delimitation of the potential runout areas. Debris flow hazard zonation was carried out in the area of the Consortium of Mountain Municipalities of Valtellina di Tirano (Central Alps, Italy). The complexity of the phenomenon, the scale of th...

  5. Characteristics of rainfall triggering of debris flows in the Chenyulan watershed, Taiwan

    OpenAIRE

    Chen, J. C.; C. D. Jan; Huang, W. S.

    2013-01-01

    This paper reports the variation in rainfall characteristics associated with debris flows in the Chenyulan watershed, central Taiwan, between 1963 and 2009. The maximum hourly rainfall Im, the maximum 24 h rainfall Rd, and the rainfall index RI (defined as the product RdIm) were analysed for each rainfall event that triggered a debris flow within the watershed. The corresponding number of debris flows initiated by each rainfall event (N) was also investigated via image analy...

  6. Field measurement of basal forces generated by erosive debris flows

    Science.gov (United States)

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  7. Interactions between the accumulation of sediment storage and debris flow characteristics in a debris-flow initiation zone, Ohya landslide body, Japan

    OpenAIRE

    Imaizumi, Fumitoshi; Hayakawa, Yuichi S.; Hotta, Norifumi; Tsunetaka, Haruka; Ohsaka, Okihiro; Tsuchiya, Satoshi

    2017-01-01

    Debris flows often occur in steep mountain channels, and can be extremely hazardous as a result of their destructive power, long travel distance, and high velocity. However, their characteristics in the initiation zones, which could possibly be affected by temporal changes in the channel topography associated with sediment supply from hillslopes and the evacuation of sediment by debris flows, are poorly understood. Thus, we studied the interaction between the flow characteristics and the topo...

  8. Flume Experiment on Stream Blockage by the Debris Flow From Tributary

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Stream blockage by the debris flow from tributary valleys is a common phenomenon in mountainous area,which takes place when large quantities of sediment transported by debris flow reaches a river channel causing its complete or partial blockage.The dam formed by debris flow may causes upstream and downstream flooding,and presents great threat to people and property.Because of the catastrophic influence on people and property,debris-flow dam has attracted many attentions from the researchers and local adm...

  9. Application of extension theory in risk zoning of debris flow in Beijing

    Institute of Scientific and Technical Information of China (English)

    BAI Liping; WANG Yeyao; SUN Jiali; GONG Bin

    2009-01-01

    The occurrence of debris flow is affected by many factors. Risk zoning of debris flow plays a vital role in the early-warning and prediction of abrupt geological hazards, and exploration of new method is needed in the early-warning and prediction of geological hazards. The extension theory is a new method to solve contradiction matters. Based on extension theory, AHP and GIS, the risk zoning model of debris flow was established in this paper. The result of this research provides a new way in the risk zoning, early-warning and prediction of debris flow

  10. Debris Flow Monitoring System and Observed Event in Taiwan: A Case Study at Aiyuzi River

    Institute of Scientific and Technical Information of China (English)

    HSIAO Taichung; LEE Bingjean; CHOU Tienyin; LIEN Huipain; CHANG Yinghuei

    2007-01-01

    Since 2002, the Soil and Water Conservation Bureau, which is responsible for the conservation and administrative management of hillside in Taiwan, has been cooperating with Feng Chia University. Together, they have successfully carried out the establishment and maintenance of 13 fixed debris flow monitoring stations over the island and 2 mobile debris flow monitoring stations. During July 2004, a powerful southwest air current brought by Mindulle Typhoon caused serious flood in central and southern Taiwan. This paper aims to describe the establishment of debris flow monitoring systems in Taiwan and the observation of the debris flow event during Mindulle Typhoon at Aiyuzi River in Shenmu Village, Nantou County by the monitoring station.

  11. Debris Avalanches and Debris Flows Transformed from Collapses in the Trans-Mexican Volcanic Belt, México.

    Science.gov (United States)

    Capra, L.; Macias, J.; Scott, K.; Abrams, M.; Garduño, V.

    2001-12-01

    Volcanoes of the Trans-Mexican Volcanic Belt (TMVB) have yielded numerous sector and flank collapses during Pleistocene and Holocene time. Sector collapses associated with magmatic activity have yielded debris avalanches with generally limited runout extent (e.g. Popocatépetl, Jocotitlán, and Colima volcanoes). In contrast, flank collapses (smaller failures not involving the volcano summit), both associated and unassociated with magmatic activity and correlated with intense hydrothermal alteration in ice-capped volcanoes, commonly have yielded highly mobile cohesive debris flows (e.g. Pico de Orizaba and Nevado de Toluca volcanoes). Collapse orientation in the TMVB is preferentially to the south and north-east, probably reflecting the tectonic regime of active E-W and NNW faults. The different mobilities of the flows transformed from collapses have important implications for hazard assessment. Both sector and flank collapse can yield highly mobile debris flows, but this transformation is more common in the case of the smaller failures. High mobility is related to factors such as water and clay content of the failed material, the paleotopography, and the extent of entrainment of sediment during flow (bulking). Both debris-avalanches and debris-flows are volcanic hazards that occur from both active volcanoes, as well as those that are inactive or dormant volcanoes, and may by triggered by earthquakes, precipitation, or simple gravity. There will be no precursory warning in such non-volcanic cases.

  12. Can the flow dynamics of debris flows be identified from seismic data?

    Science.gov (United States)

    Kean, J. W.; Coe, J. A.; Smith, J. B.; Coviello, V.; McCoy, S. W.

    2014-12-01

    There is growing interest in the use of seismic and acoustic data to interpret a variety of geomorphic processes including landslides and debris flows. This measurement technique is attractive because a broad area can be monitored from a safe distance, unlike more direct methods of instrumentation, which are restricted to known flow paths and are vulnerable to damage by the flow. Previous work has shown that measurements of ground vibrations are capable of detecting the timing, speed, and location of landslides and debris flows. A remaining question is whether or not additional flow properties, such as basal stress, impact force, or flow magnitude can be inferred reliably from seismic data. This question has been difficult to answer, because detailed, independent measurements of flow dynamics are lacking. Here, we explore characteristics of debris-flow induced ground vibrations using new data from the Chalk Cliffs monitoring site in central Colorado. Monitoring included a heavily instrumented cross-section consisting of two tri-axial geophones to record ground vibrations (at 333 Hz), a small, 225 cm2 force plate to record basal impact forces (at 333 Hz), a laser distance meter to record flow stage over the plate (at 10 Hz), and a high definition camera to record flow dynamics (at 24 Hz). One geophone (A) was mounted on a boulder partially buried in colluvium; the other (B) was mounted directly to weathered bedrock typical of the site. This combination of instrumentation allowed us to compare the spectral response of different geophone installations to independently measured flow depth and basal impact force. We also compared the response of the geophones to surges that flowed over a sediment-covered bed (40-cm thick) to surges that flowed over a bare bedrock channel. Preliminary results showed that site conditions have a large effect on recorded debris-flow vibrations. The seismic signature of debris flow was very different between the geophones, with geophone B

  13. Transformation of cohesive and noncohesive debris flows in subaerial and subaqueous settings

    Science.gov (United States)

    Sohn, Y. K.

    2003-04-01

    Debris flows are an important means of sediment transport and deposition in subaerial and subaqueous settings. They commonly transform into dilute flow types (e.g., hyperconcentrated flow, concentrated density flow, or turbidity current) when they mix with ambient water. In subaerial settings, noncohesive debris flows transform easily into dilute flow types when they run over a streamflow, producing a transition facies composed of a hyperconcentrated-flow deposit overlain by a debris-flow deposit in one sedimentation unit. On the other hand, cohesive debris flows are able to maintain their coherence and textural uniformity over 100 km without transforming into dilute flows. The behavioral difference between the cohesive and the noncohesive flows is caused mainly by the difference in the miscibility of the flows with associated streamflows, which depends strongly on the mud content in the matrix. In subaqueous settings, cohesive debris flows can be efficiently diluted because their impermeable (muddy) matrix facilitates hydroplaning. In this case, they produce a transition facies similar to that of subaerial noncohesive debris flows. Noncohesive debris flows in subaqueous settings may transform into dilute flow types as readily as subaerial ones because of larger flow resistance and the lack of surface tension effects by interstitial water. Some studies suggest, however, that clast-rich debris flows may be subject to neither hydroplaning nor vigorous surface transformation, remaining as debris flows to their termini. Further study on the transformation processes and related sedimentary features is necessary for resolving a number of problems regarding hazard assessment of mass-movement processes, characterization of reservoir rocks, and the definition and classification of sediment gravity flows.

  14. Finite volume methods for submarine debris flows and generated waves

    Science.gov (United States)

    Kim, Jihwan; Løvholt, Finn; Issler, Dieter

    2016-04-01

    Submarine landslides can impose great danger to the underwater structures and generate destructive tsunamis. Submarine debris flows often behave like visco-plastic materials, and the Herschel-Bulkley rheological model is known to be appropriate for describing the motion. In this work, we develop numerical schemes for the visco-plastic debris flows using finite volume methods in Eulerian coordinates with two horizontal dimensions. We provide parameter sensitivity analysis and demonstrate how common ad-hoc assumptions such as including a minimum shear layer depth influence the modeling of the landslide dynamics. Hydrodynamic resistance forces, hydroplaning, and remolding are all crucial terms for underwater landslides, and are hence added into the numerical formulation. The landslide deformation is coupled to the water column and simulated in the Clawpack framework. For the propagation of the tsunamis, the shallow water equations and the Boussinesq-type equations are employed to observe how important the wave dispersion is. Finally, two cases in central Norway, i.e. the subaerial quick clay landslide at Byneset in 2012, and the submerged tsunamigenic Statland landslide in 2014, are both presented for validation. The research leading to these results has received funding from the Research Council of Norway under grant number 231252 (Project TsunamiLand) and the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 603839 (Project ASTARTE).

  15. Gaseous Tidal Debris found in the NGC 3783 Group

    CERN Document Server

    Kilborn, V A; Koribalski, B S; Brough, S; Kern, K; Kilborn, Virginia A.; Forbes, Duncan A.; Koribalski, Baerbel S.; Brough, Sarah; Kern, Katie

    2006-01-01

    We have conducted wide-field HI mapping of a ~5.5 x 5.5 degree region surrounding the NGC 3783 galaxy group, to an HI mass limit of ~4 x 10^8 Msun. The observations were made using the multibeam system on the Parkes 64-m radiotelescope, as part of the Galaxy Evolution Multiwavelength Study (GEMS). We find twelve HI detections in our Parkes data, four more than catalogued in HIPASS. We find two new group members, and discover an isolated region of HI gas with an HI mass of ~4 x 10^8 Msun, without a visible corresponding optical counterpart. We discuss the likelihood of this HI region being a low surface brightness galaxy, primordial gas, or a remnant of tidal debris. For the NGC 3783 group we derive a mean recession velocity of 2903 km/s, and a velocity dispersion of 190 km/s. The galaxy NGC 3783 is the nearest galaxy to the luminosity weighted centre of the group, and is at the group mean velocity. From the X-ray and dynamical state of this galaxy group, this group appears to be in the early stages of its evo...

  16. Post-Failure behaviour of pyroclastic debris flow

    Science.gov (United States)

    Scotto di Santolo, Anna; Pellegrino, Anna Maria; Evangelista, Aldo; Coussot, Philippe

    2010-05-01

    The Campania Region is covered by pyroclastic soils accumulated in the last tens of thousands of years as a result of volcanic activity of Campi Flegrei (Phlegrean Fields) and Somma-Vesuvio. These materials cover the slope of the hilly area of Naples and mountain sides of Appennino. Even if they present significant physical and mechanical differences from site to site, they are posing the same geotechnical problems: they are usually unsaturated and collapse due to the increase of water content after prolonged rains creating simple or complex type of landslides (translational or rotational sliding or falls that lead to debris flows). While the mechanical properties of natural soils are the object of a number of research works, the evolution of the material after failure is much less often studied. Typically the post failure behaviour of this material may be "solid-like" or "fluid-like", according to causes that are not well-known. The object of this presentation is the study of the rheological behaviour of the "fluid like" material mixtures with fluid mechanics tools. Three natural pyroclastic deposits were sampled and the soils were remixed with distilled water at different solid volume fractions. The behaviour of these mixtures was investigated like a fluid with a vane rotor rheometer and an inclined plane. The main results are that the rheological behaviour is strongly related to the solid volume concentration, but the transition between solid-like to fluid-like behaviour occurs in a small range of solid concentration slightly different for each material tested. In the fluid-like behaviour the material mixtures behave like a yield stress fluid and a classical Herschel-Bulkley model well represents the experimental data. Nevertheless a hysteresis effect, associated with instability of the material behaviour, is observed for the largest solid concentrations. In that case the material starts to flow abruptly beyond a critical stress and rapidly reaches a relatively

  17. Headless Debris Flows From Mount Spurr Volcano, Alaska

    Science.gov (United States)

    McGimsey, R. G.; Neal, C. A.; Waythomas, C. F.; Wessels, R.; Coombs, M. L.; Wallace, K. L.

    2004-12-01

    Sometime between June 20 and July 15, 2004-and contemporaneous with an increase of seismicity beneath the volcano, and elevated gas emissions-a sudden release of impounded water from the summit area of Mt. Spurr volcano produced about a dozen separate debris flow lobes emanating from crevasses and bergschrunds in the surface ice several hundred meters down the east-southeast flank from the summit. These debris flows were first observed by AVO staff on a July 15 overflight and appeared to represent a single flooding event; subsequent snow cover and limited accessibility have prevented direct investigation of these deposits. Observed from the air, they are dark, elongate lobate deposits, up to several hundred meters long and tens of meters wide, draping the steep (up to ~45 degree) slopes and cascading over and into crevasses. A water-rich phase from the flows continued down slope of the termini of several lobate deposits, eroding linear rills into the snow and ice down slope. We infer that the dark material composing these flows is likely remobilized coarse lapilli from the June 1992 tephra fall produced by an eruption of Crater Peak, a satellite vent of Mt. Spurr located 3.5 km to the south. Between 1 and 2 meters of basaltic andesite tephra fell directly on the Spurr summit during the 1992 eruption. The exact mechanism for sudden release of water-laden remobilized tephra flows from the summit basin is not clear. However, observations in early August, 2004, of an 80 m x 110-m-wide pit in the summit area snow and ice suggest the possibility of a partial roof collapse of a summit meltwater basin, likely associated with subglacial melting due to recent heat flux. Such a collapse could have led to the hydraulic surge of meltwater, and rapid mixing with tephra to produce slurries. These slurries traveled down slope beneath the ice surface to emerge through existing crevasses and other easy points of exit on the steep inclines. Mount Spurr is an ice- and snow covered

  18. Debris flow grain size scales with sea surface temperature over glacial-interglacial timescales

    Science.gov (United States)

    D'Arcy, Mitch; Roda Boluda, Duna C.; Whittaker, Alexander C.; Araújo, João Paulo C.

    2015-04-01

    Debris flows are common erosional processes responsible for a large volume of sediment transfer across a range of landscapes from arid settings to the tropics. They are also significant natural hazards in populated areas. However, we lack a clear set of debris flow transport laws, meaning that: (i) debris flows remain largely neglected by landscape evolution models; (ii) we do not understand the sensitivity of debris flow systems to past or future climate changes; and (iii) it remains unclear how to interpret debris flow stratigraphy and sedimentology, for example whether their deposits record information about past tectonics or palaeoclimate. Here, we take a grain size approach to characterising debris flow deposits from 35 well-dated alluvial fan surfaces in Owens Valley, California. We show that the average grain sizes of these granitic debris flow sediments precisely scales with sea surface temperature throughout the entire last glacial-interglacial cycle, increasing by ~ 7 % per 1 ° C of climate warming. We compare these data with similar debris flow systems in the Mediterranean (southern Italy) and the tropics (Rio de Janeiro, Brazil), and find equivalent signals over a total temperature range of ~ 14 ° C. In each area, debris flows are largely governed by rainfall intensity during triggering storms, which is known to increase exponentially with temperature. Therefore, we suggest that these debris flow systems are transporting predictably coarser-grained sediment in warmer, stormier conditions. This implies that debris flow sedimentology is governed by discharge thresholds and may be a sensitive proxy for past changes in rainfall intensity. Our findings show that debris flows are sensitive to climate changes over short timescales (≤ 104 years) and therefore highlight the importance of integrating hillslope processes into landscape evolution models, as well as providing new observational constraints to guide this. Finally, we comment on what grain size

  19. Initiation of Recent Debris Flows on Mount Rainier, Washington: A Climate Warming Signal?

    Science.gov (United States)

    Copeland, E. A.; Kennard, P.; Nolin, A. W.; Lancaster, S. T.; Grant, G. E.

    2008-12-01

    The first week of November 2006 an intense rainstorm inundated the Pacific Northwest and triggered debris flows on many large volcanoes in the Cascade Range of Washington and Oregon. At Mount Rainier, Washington, 45.7 cm of rain was recorded in 36 hours; the storm was preceded by a week of light precipitation and moderate temperatures, so that rain fell on nearly-saturated ground with minimal snow cover. The November 2006 storm was exceptional in that it resulted in a 100-year flood and caused an unprecedented six-month closure of Mount Rainier National Park. It also focused inquiry as to whether debris flows from Cascade volcanoes are likely to occur more frequently in the future as glaciers recede due to climate warming, leaving unstable moraines and sediment that can act as initiation sites. We examined the recent history of debris flows from Mount Rainier using aerial photographs and field surveyed debris flow tracks. Prior to 2001, debris flows were recorded in association with rainfall or glacial outburst floods in 4 drainages, but 3 additional drainages were first impacted by debris flows in 2001, 2005, and 2006, respectively. We discovered that most of the recent debris flows initiated as small gullies in unconsolidated material at the edge of fragmented glaciers or areas of permanent snow and ice. Other initiation sites occur on steep-sided un-vegetated moraines. Of the 28 named glaciers on Mount Rainier, debris flows initiated near five glaciers in the exceptional storm of 2006 (Winthrop, Inter, Kautz-Success, Van Trump, Pyramid, and South Tahoma). Less exceptional storms, however, have also produced wide-spread debris flows: in September 2005, 15.3 cm of rain fell in 48 hours on minimal snow cover and caused debris flows in all except 2 of the glacier drainages that initiated in 2006. Debris flows from both storms initiated at elevations of 1980 to 2400 m, traveled 5 to 10 kilometers, and caused significant streambed aggradation. These results suggest a

  20. Runoff-generated debris flows: observations and modeling of surge initiation, magnitude, and frequency

    Science.gov (United States)

    Kean, Jason W.; McCoy, Scott W.; Tucker, Gregory E.; Staley, Dennis M.; Coe, Jeffrey A.

    2013-01-01

    Runoff during intense rainstorms plays a major role in generating debris flows in many alpine areas and burned steeplands. Yet compared to debris flow initiation from shallow landslides, the mechanics by which runoff generates a debris flow are less understood. To better understand debris flow initiation by surface water runoff, we monitored flow stage and rainfall associated with debris flows in the headwaters of two small catchments: a bedrock-dominated alpine basin in central Colorado (0.06 km2) and a recently burned area in southern California (0.01 km2). We also obtained video footage of debris flow initiation and flow dynamics from three cameras at the Colorado site. Stage observations at both sites display distinct patterns in debris flow surge characteristics relative to rainfall intensity (I). We observe small, quasiperiodic surges at low I; large, quasiperiodic surges at intermediate I; and a single large surge followed by small-amplitude fluctuations about a more steady high flow at high I. Video observations of surge formation lead us to the hypothesis that these flow patterns are controlled by upstream variations in channel slope, in which low-gradient sections act as “sediment capacitors,” temporarily storing incoming bed load transported by water flow and periodically releasing the accumulated sediment as a debris flow surge. To explore this hypothesis, we develop a simple one-dimensional morphodynamic model of a sediment capacitor that consists of a system of coupled equations for water flow, bed load transport, slope stability, and mass flow. This model reproduces the essential patterns in surge magnitude and frequency with rainfall intensity observed at the two field sites and provides a new framework for predicting the runoff threshold for debris flow initiation in a burned or alpine setting.

  1. Catastrophic debris-flows: geological hazard and human influence

    Science.gov (United States)

    Del Ventisette, Chiara; Garfagnoli, Francesca; Ciampalini, Andrea; Battistini, Alessandro; Gigli, Giovanni; Moretti, Sandro; Casagli, Nicola

    2013-04-01

    Rainfall-induced landslides are widespread phenomena often affecting urbanized areas and causing intense damages and casualties. The management of the post-event phase requires a fast evaluation of the involved areas and triggering factors. The latter are fundamental to evaluate the stability of the area affected by landslides, in order to facilitate quick and safe activities of the Civil Protection Authorities during the emergency. On October 1st 2009, a prolonged and intense rainstorm triggered hundreds of landslides (predominantly debris flows) in an area of about 50 km2 in the north-eastern sector of Sicily (Italy). Debris flows swept the highest parts of many villages and passed over the SS114 state highway and the Messina-Catania railway, causing more than 30 fatalities. This work deals with the geological and hydro-geomorphological studies performed as a part of the post-disaster activities operated in collaboration with Civil Protection Authority, with the aim of examining landslides effects and mechanisms. The data were elaborated into a GIS platform, to evaluate the influence of urbanization on the drainage pattern and were correlated with the lithological and structural framework of the area. The case study of Giampilieri focuses the attention on the necessity of sustainable land use and reasonable urban management in areas characterized by a high hydrogeological hazard and on the tremendous destructive power of these phenomena, which are capable of causing a large number of victims in such small villages. Field surveys and stereo-photo geomorphological analysis revealed a significant human influence on determining landslide triggering causes, as well as the final amount of damage. In particular, destruction and injuries in the built-up area of Giampilieri were made even more severe by the main water flow lines made narrower due to building activity and enlargement of the urban area. The area maintains a high degree of hazard: deposits of poorly

  2. Influence of check dams on debris-flow run-out intensity

    Directory of Open Access Journals (Sweden)

    A. Remaître

    2008-12-01

    Full Text Available Debris flows are very dangerous phenomena claiming thousands of lives and millions of Euros each year over the world. Disaster mitigation includes non-structural (hazard mapping, insurance policies, active structural (drainage systems and passive structural (check dams, stilling basins countermeasures. Since over twenty years, many efforts are devoted by the scientific and engineering communities to the design of proper devices able to capture the debris-flow volume and/or break down the energy. If considerable theoretical and numerical work has been performed on the size, the shape and structure of check dams, allowing the definition of general design criteria, it is worth noting that less research has focused on the optimal location of these dams along the debris-flow pathway.

    In this paper, a methodological framework is proposed to evaluate the influence of the number and the location of the check dams on the reduction of the debris-flow intensity (in term of flow thickness, flow velocity and volume. A debris-flow model is used to simulate the run-out of the debris flow. The model uses the Janbu force diagram to resolve the force equilibrium equations; a bingham fluid rheology is introduced and represents the resistance term. The model has been calibrated on two muddy debris-flow events that occurred in 1996 and 2003 at the Faucon watershed (South French Alps.

    Influence of the check dams on the debris-flow intensity is quantified taking into account several check dams configurations (number and location as input geometrical parameters. Results indicate that debris-flow intensity is decreasing with the distance between the source area and the first check dams. The study demonstrates that a small number of check dams located near the source area may decrease substantially the debris-flow intensity on the alluvial fans.

  3. The vulnerability assessment of rainfall-induced debris flows in Taiwan

    Science.gov (United States)

    Lu, George Yen-Hsu

    2007-12-01

    A debris flow vulnerability assessment which incorporates topographic and rainfall effects is developed. Rainfall at a scale compatible with the resolution of digital elevation model is obtained using a neural network estimation method with a wind induced topographic effect and rainfall derived from satellite rain estimates and an improved inverse distance weight method. The technique is tested using data collected during the passage of typhoon Tori-Ji on July 2001, which caused massive debris flows in central Taiwan. Numerous debris flows triggered by the typhoon were used as control for the study. The results show that the proposed wind-topography neural network (WTNN) technique outperforms other popular interpolation techniques, including inversed distance weight method (IDW), ordinary kriging (OK), co-kriging method, and multiple linear regression method. Multiple fuzzy-logic-based debris flow susceptibility factors are used to characterize watersheds. Self-organizing maps (SOM) was adopted for the debris flow vulnerability assessment by incorporating estimated rainfall and debris flow susceptibility factors. The result examined by contingency table agrees to the assessment proposed by Soil and Water Conservation Bureau of Taiwan and National Science and Technology Center for Hazard Reduction of Taiwan. An index of vulnerability representing the degrees of hazard is implemented in a GIS-based decision support system which decision maker can use to manage debris flow environmental issues. Key Words. Debris flow, spatial interpolation, vulnerability assessment, satellite rainfall, neural network, GIS.

  4. RESEARCH ON METHOD TO CALCULATE VELOCITIES OF SOLID PHASE AND LIQUID PHASE IN DEBRIS FLOW

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction,then general equations of velocities of solid phase and liquid phase were founded in twophase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation.

  5. Differentiation of debris-flow and flash-flood deposits: implications for paleoflood investigations

    Science.gov (United States)

    Waythomas, Christopher F.; Jarrett, Robert D.; ,

    1993-01-01

    Debris flows and flash floods are common geomorphic processes in the Colorado Rocky Mountain Front Range and foothills. Usually, debris flows and flash floods are associated with excess summer rainfall or snowmelt, in areas were unconsolidated surficial deposits are relatively thick and slopes are steep. In the Front Range and foothills, flash flooding is limited to areas below about 2300m whereas, debris flow activity is common throughout the foothill and alpine zones and is not necessarily elevation limited. Because flash floods and debris flows transport large quantities of bouldery sediment, the resulting deposits appear somewhat similar even though such deposits were produced by different processes. Discharge estimates based on debris-flow deposits interpreted as flash-flood deposits have large errors because techniques for discharge retrodiction were developed for water floods with negligible sediment concentrations. Criteria for differentiating between debris-flow and flash-flood deposits are most useful for deposits that are fresh and well-exposed. However, with the passage of time, both debris-flow and flash-flood deposits become modified by the combined effects of weathering, colluviation, changes in surface morphology, and in some instances removal of interstitial sediment. As a result, some of the physical characteristics of the deposits become more alike. Criteria especially applicable to older deposits are needed. We differentiate flash-flood from debris-flow and other deposits using clast fabric measurements and other morphologic and sedimentologic techniques (e.g., deposit morphology, clast lithology, particle size and shape, geomorphic setting).

  6. Effects of composition of grains of debris flow on its impact force

    Science.gov (United States)

    Tang, jinbo; Hu, Kaiheng; Cui, Peng

    2017-04-01

    Debris flows compose of solid material with broad size distribution from fine sand to boulders. Impact force imposed by debris flows is a very important issue for protection engineering design and strongly influenced by their grain composition. However, this issue has not been studied in depth and the effects of grain composition not been considered in the calculation of the impact force. In this present study, the small-scale flume experiments with five kinds of compositions of grains for debris flow were carried out to study the effect of the composition of grains of debris flow on its impact force. The results show that the impact force of debris flow increases with the grain size, the hydrodynamic pressure of debris flow is calibrated based on the normalization parameter dmax/d50, in which dmax is the maximum size and d50 is the median size. Furthermore, a log-logistic statistic distribution could be used to describe the distribution of magnitude of impact force of debris flow, where the mean and the variance of the present distribution increase with grain size. This distribution proposed in the present study could be used to the reliability analysis of structures impacted by debris flow.

  7. Comparing debris flow relationships in the Alps and in the Pyrenees

    NARCIS (Netherlands)

    Beguería, S.; García-Ruiz, J.M.; Lorente, A.; Martí, C.

    2007-01-01

    Debris flows are a well known geomorphic process all over the World, as can be seen in the map presented by Innes (1983). In fact, many authors consider that debris flows are the most active geomorphic hazard in mountain areas, affecting human settlements, infrastructures and touristic resorts (Taka

  8. Linking rainfall-induced landslides with debris flows runout patterns towards catchment scale hazard assessment

    Science.gov (United States)

    Fan, Linfeng; Lehmann, Peter; McArdell, Brian; Or, Dani

    2017-03-01

    Debris flows and landslides induced by heavy rainfall represent an ubiquitous and destructive natural hazard in steep mountainous regions. For debris flows initiated by shallow landslides, the prediction of the resulting pathways and associated hazard is often hindered by uncertainty in determining initiation locations, volumes and mechanical state of the mobilized debris (and by model parameterization). We propose a framework for linking a simplified physically-based debris flow runout model with a novel Landslide Hydro-mechanical Triggering (LHT) model to obtain a coupled landslide-debris flow susceptibility and hazard assessment. We first compared the simplified debris flow model of Perla (1980) with a state-of-the art continuum-based model (RAMMS) and with an empirical model of Rickenmann (1999) at the catchment scale. The results indicate that predicted runout distances by the Perla model are in reasonable agreement with inventory measurements and with the other models. Predictions of localized shallow landslides by LHT model provides information on water content of released mass. To incorporate effects of water content and flow viscosity as provided by LHT on debris flow runout, we adapted the Perla model. The proposed integral link between landslide triggering susceptibility quantified by LHT and subsequent debris flow runout hazard calculation using the adapted Perla model provides a spatially and temporally resolved framework for real-time hazard assessment at the catchment scale or along critical infrastructure (roads, railroad lines).

  9. Sensitivity of the initiation of debris flow to initial soil moisture

    NARCIS (Netherlands)

    Hu, W.; Xu, Q.; Wang, G. H.; van Asch, T. W J; Hicher, P. Y.

    2015-01-01

    The initiation of debris flows is commonly attributed either to fluidization as a result of rainfall-induced landslides or to gully erosion induced by concentrated runoffs. A series of flume tests have been performed to show how the initial soil moisture influences the initiation of debris flows. At

  10. Grain-Size Analysis of Debris Flow Alluvial Fans in Panxi Area along Jinsha River, China

    Directory of Open Access Journals (Sweden)

    Wen Zhang

    2015-11-01

    Full Text Available The basic geometric parameters of 236 debris flow catchments were determined by interpreting SPOT5 remote sensing images with a resolution of 2.5 m in a 209 km section along the Jinsha River in the Panxi area, China. A total of 27 large-scale debris flow catchments were selected for detailed in situ investigation. Samples were taken from two profiles in the deposition zone for each debris flow catchment. The φ value gradation method of the grain size was used to obtain 54 histograms with abscissa in a logarithmic scale. Five types of debris flows were summarized from the outline of the histogram. Four grain size parameters were calculated: mean grain size, standard deviation, coefficient of skewness, and coefficient of kurtosis. These four values were used to evaluate the features of the histogram. The grain index that reflects the transport (kinetic energy information of debris flows was defined to describe the characteristics of the debris-flow materials. Furthermore, a normalized grain index based on the catchment area was proposed to allow evaluation of the debris flow mobility. The characteristics of the debris-flow materials were well-described by the histogram of grain-size distribution and the normalized grain index.

  11. Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado

    Science.gov (United States)

    Godt, Jonathan W.; Coe, Jeffrey A.

    2007-02-01

    On 28 July 1999, about 480 alpine debris flows were triggered by an afternoon thunderstorm along the Continental Divide in Clear Creek and Summit counties in the central Front Range of Colorado. The thunderstorm produced about 43 mm of rain in 4 h, 35 mm of which fell in the first 2 h. Several debris flows triggered by the storm impacted Interstate Highway 70, U.S. Highway 6, and the Arapahoe Basin ski area. We mapped the debris flows from color aerial photography and inspected many of them in the field. Three processes initiated debris flows. The first process initiated 11% of the debris flows and involved the mobilization of shallow landslides in thick, often well vegetated, colluvium. The second process, which was responsible for 79% of the flows, was the transport of material eroded from steep unvegetated hillslopes via a system of coalescing rills. The third, which has been termed the "firehose effect," initiated 10% of the debris flows and occurred where overland flow became concentrated in steep bedrock channels and scoured debris from talus deposits and the heads of debris fans. These three processes initiated high on steep hillsides (> 30°) in catchments with small contributing areas (material along their paths.

  12. Bed Stability and Debris Flow Erosion: A Dynamic "Shields Criterion" Associated with Bed Structure

    Science.gov (United States)

    Longjas, A.; Hill, K. M.

    2015-12-01

    Debris flows are mass movements that play an important role in transporting sediment from steep uplands to rivers at lower slopes. As the debris flow moves downstream, it entrains materials such as loose boulders, gravel, sand and mud deposited locally by shorter flows such as slides and rockfalls. To capture the conditions under which debris flows entrain bed sediment, some models use something akin to the Shields' criterion and an excess shear stress of the flow. However, these models typically neglect granular-scale effects in the bed which can modify the conditions under which a debris flow is erosional or depositional. For example, it is well known that repeated shearing causes denser packing in loose dry soils, which undoubtedly changes their resistance to shear. Here, we present laboratory flume experiments showing that the conditions for entrainment by debris flows is significantly dependent on the aging of an erodible bed even for narrowly distributed spherical particles. We investigate this quantitatively using particle tracking measurements to quantify instantaneous erosion rates and the evolving bed structure or "fabric". With progressive experiments we find a signature that emerges in the bed fabric that is correlated with an increasing apparent "fragility" of the bed. Specifically, a system that is originally depositional may become erosional after repeated debris flow events, and an erodible bed becomes increasingly erodible with repeated flows. We hypothesize that related effects of bed aging at the field scale may be partly responsible for the increasing destructiveness of secondary flows of landslides and debris flows.

  13. Sedimentology, Behavior, and Hazards of Debris Flows at Mount Rainier, Washington

    Science.gov (United States)

    Scott, K.M.; Vallance, J.W.; Pringle, P.T.

    1995-01-01

    Mount Rainier is potentially the most dangerous volcano in the Cascade Range because of its great height, frequent earthquakes, active hydrothermal system, and extensive glacier mantle. Many debris flows and their distal phases have inundated areas far from the volcano during postglacial time. Two types of debris flows, cohesive and noncohesive, have radically different origins and behavior that relate empirically to clay content. The two types are the major subpopulations of debris flows at Mount Rainier. The behavior of cohesive flows is affected by the cohesion and adhesion of particles; noncohesive flows are dominated by particle collisions to the extent that particle cataclasis becomes common during near-boundary shear. Cohesive debris flows contain more than 3 to 5 percent of clay-size sediment. The composition of these flows changed little as they traveled more than 100 kilometers from Mount Rainier to inundate parts of the now-populated Puget Sound lowland. They originate as deep-seated failures of sectors of the volcanic edifice, and such failures are sufficiently frequent that they are the major destructional process of Mount Rainier's morphologic evolution. In several deposits of large cohesive flows, a lateral, megaclast-bearing facies (with a mounded or hummocky surface) contrasts with a more clay-rich facies in the center of valleys and downstream. Cohesive flows at Mount Rainier do not correlate strongly with volcanic activity and thus can recur without warning, possibly triggered by non-magmatic earthquakes or by changes in the hydrothermal system. Noncohesive debris flows contain less than 3 to 5 percent clay-size sediment. They form most commonly by bulking of sediment in water surges, but some originate directly or indirectly from shallow slope failures that do not penetrate the hydrothermally altered core of the volcano. In contrast with cohesive flows, most noncohesive flows transform both from and to other flow types and are, therefore, the

  14. A Debris-flow Simulation Model for the Evaluation of Protection Structures

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Debris flow is the flow of a solid-fluid mixture and in this investigation it is treated as the flow of a continuum in routing. A numerical model is proposed describing debris flow including erosion and deposition processes with suitable boundary conditions. The numerical model is applied to evaluate the effects of protection structures against debris flow caused by heavy rainfall on the Shen-Mu Stream of Nantou County located in central Taiwan. Simulation results indicated that the proposed model can offer useful pre-planning guidelines for engineers.

  15. Debris flows resulting from glacial-lake outburst floods in tibet, China

    Science.gov (United States)

    Cui, P.; Dang, C.; Cheng, Z.; Scott, K.

    2010-01-01

    During the last 70 years of general climatic amelioration, 18 glacial-lake outburst floods (GLOFs) and related debris flows have occurred from 15 moraine-dammed lakes in Tibet, China. Catastrophic loss of life and property has occurred because of the following factors: the large volumes of water discharged, the steep gradients of the U-shaped channels, and the amount and texture of the downstream channel bed and bank material. The peak discharge of each GLOF exceeded 1000 m3/s. These flood discharges transformed to non-cohesive debris flows if the channels contained sufficient loose sediment for entrainment (bulking) and if their gradients were >1%. We focus on this key element, transformation, and suggest that it be included in evaluating future GLOF-related risk, the probability of transformation to debris flow and hyperconcentrated flow. The general, sequential evolution of the flows can be described as from proximal GLOFs, to sedimentladen streamflow, to hyperconcentrated flow, to non-cohesive debris flow (viscous or cohesive debris flow only if sufficient fine sediment is present), and then, distally, back to hyperconcentrated flow and sediment-laden streamflow as sediment is progressively deposited. Most of the Tibet examples transformed only to non-cohesive debris flows. The important lesson for future hazard assessment and mitigation planning is that, as a GLOF entrains (bulks) enough sediment to become a debris flow, the flow volume must increase by at least three times (the "bulking factor"). In fact, the transforming flow waves overrun and mix with downstream streamflow, in addition to adding the entrained sediment (and thus enabling addition of yet more sediment and a bulking factor in excess of three times). To effectively reduce the risk of GLOF debris flows, reducing the level of a potentially dangerous lake with a siphon or excavated spillway or installing gabions in combination with a downstream debris dam are the primary approaches.

  16. Sediment transfer processes in a debris-flow dominated catchment in the Swiss Alps

    Science.gov (United States)

    McArdell, B. W.; Berger, C.; Schlunegger, F.

    2009-12-01

    The transfer of sediment from steep hillslopes into channels and subsequent mobilization remains a problem with implications for the development of landscapes as well as applications in natural hazards mitigation. The Illgraben catchment in the Swiss Alps is among the most active catchments in Europe, with several 100’000 cubic meters of sediment exported from the catchment (active area debris flows every year, providing an exceptional opportunity to investigate the transfer of sediment from hillslopes to the outlet of the channel at the distal end of the alluvial fan. Thirty-four debris flows or similar torrential flash flood/hyper-concentrated flows have been recorded at the debris flow observation station since the year 2000. Data are available for many flow properties including front velocity (max. 10 m/s) and front flow depth (max. 3.25 m) as well as estimates for debris flow volume (max. 85,000 cubic meters). Flow bulk density data are also available from a large force plate installation for most flows since 2004, permitting estimation of sediment export from the catchment by debris flows. The channel morphology is strongly affected by these events, and debris flows can increase their volume considerably by entraining material from the channel bed. Aerial photography of the initiation area and upper catchment (fall 2007, early summer and fall 2008; fall 2009 is planned) and photogrammetric analyses allow detection of areas of land surface elevation change (deposition or erosion). Strong hillslope channel coupling is expected, with sediment delivery to the steep torrent channels by rockfall and other mass-movement processes. The upper catchment is generally quite active, yet the main sediment source of debris flows varies from event to event In some cases it was possible to identify the movement of small landslides into torrent channels and the subsequent removal by debris flows. In other cases no landslide activity was obvious and the sediment for the

  17. ANALYSIS OF DEBRIS FLOW BEHAVIOR USING AIRBORNE LIDAR AND IMAGE DATA

    Directory of Open Access Journals (Sweden)

    G. Kim

    2016-06-01

    Full Text Available The frequency of debris flow events caused by severe rainstorms has increased in Korea. LiDAR provides high-resolution topographical data that can represent the land surface more effectively than other methods. This study describes the analysis of geomorphologic changes using digital surface models derived from airborne LiDAR and aerial image data acquired before and after a debris flow event in the southern part of Seoul, South Korea in July 2011. During this event, 30 houses were buried, 116 houses were damaged, and 22 human casualties were reported. Longitudinal and cross-sectional profiles of the debris flow path reconstructed from digital surface models were used to analyze debris flow behaviors such as landslide initiation, transport, erosion, and deposition. LiDAR technology integrated with GIS is a very useful tool for understanding debris flow behavior.

  18. Thirty-one years of debris-flow observation and monitoring near La Honda, California, USA

    Science.gov (United States)

    Wieczorek, G.F.; Wilson, R.C.; Ellen, S.D.; Reid, M.E.; Jayko, A.S.

    2007-01-01

    From 1975 until 2006,18 intense storms triggered at least 248 debris flows within 10 km2 northwest of the town of La Honda within the Santa Cruz Mountains, California. In addition to mapping debris flows and other types of landslides, studies included soil sampling and geologic mapping, piezometric and tensiometer monitoring, and rainfall measurement and recording. From 1985 until 1995, a system with radio telemetered rain gages and piezometers within the La Honda region was used for issuing six debris-flow warnings within the San Francisco Bay region through the NOAA ALERT system. Depending upon the relative intensity of rainfall during storms, debris flows were generated from deep slumps, shallow slumps, shallow slides in colluvium and shallow slides over bedrock. Analysis shows the storms with abundant antecedent rainfall followed by several days of steady heavy intense rainfall triggered the most abundant debris flows. ?? 2007 millpress.

  19. The Response of Debris-Flow Events to Solar Proton Flares (Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    DING Mingtao; WEI Fangqiang; ZHANG Jinghong; WANG Hongjuan

    2007-01-01

    By analyzing the observation data from Dongchuan Debris Flow Observation and Research Station and historical data from year 1965 to 1990 gotten from National Astronomical Observatories/ Yunnan Observatory, the responding of debris flow in Jiangjia Ravine to Solar Proton Flare is studied. The following conclusion can be drawn. Solar Proton Flare, as one of most important astronomical factors, affects the activity of debris flow in Yunnan. Generally, from 1965 to 1990, the more active Solar Proton Flare is, the greater the probability of high frequency and large runoff of debris flow is. On the contrary, the less active Solar Proton Flare is, the greater the probability of low frequency, small runoff, and low sediment transport of debris flow is.

  20. Analysis of Debris Flow Behavior Using Airborne LIDAR and Image Data

    Science.gov (United States)

    Kim, G.; Yune, C. Y.; Paik, J.; Lee, S. W.

    2016-06-01

    The frequency of debris flow events caused by severe rainstorms has increased in Korea. LiDAR provides high-resolution topographical data that can represent the land surface more effectively than other methods. This study describes the analysis of geomorphologic changes using digital surface models derived from airborne LiDAR and aerial image data acquired before and after a debris flow event in the southern part of Seoul, South Korea in July 2011. During this event, 30 houses were buried, 116 houses were damaged, and 22 human casualties were reported. Longitudinal and cross-sectional profiles of the debris flow path reconstructed from digital surface models were used to analyze debris flow behaviors such as landslide initiation, transport, erosion, and deposition. LiDAR technology integrated with GIS is a very useful tool for understanding debris flow behavior.

  1. Distribution of Debris Flows in Glacier National Park,Montana, U.S.A.

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The spectacular scenery of Glacier National Park is the result of glacial erosion as well as post-glacial mass wasting processes. Debris flow magnitude and frequency have been established through extensive fieldwork across seven separate drainage basins in the eastern portion of the park. This paper summarizes the investigation of the hypotheses that debris flow distribution in the Glacier National Park, east of the Continental Divide is (a) not random; and (b) concentrated adjacent to the Continental Divide. The location of 2317 debris flows were identified and mapped from sixty-three 1-m resolution Digital Orthophoto Quarter Quadrangles and their spatial distribution was then analyzed using ArcView Spatial Analyst GIS software. The GIS analysis showed that the debris flows are not randomly distributed nor are they concentrated directly adjacent to the Divide. While the Continental Divide provides orographic enhancement of precipitation directly adjacent to the Divide, the debris flows are not concentrated there due to a lack of available weathered regolith. The most recent Little Ice Age glaciation removed the debris directly adjacent to the Divide, and without an adequate debris supply, these steep slopes experience few debris flows. Both abundant water and an adequate debris supply are necessary to initiate slope failure, resulting in a clustering of debris flows at the break in slope where valley walls contact talus slopes. A variety of summer storm and antecedent moisture conditions initiate slope failures in the Glacier National Park, with no distinct meteorological threshold. With over two million visitors every year, and millions of dollars of park infrastructure at risk, identifying the hazard of debris flows is essential to future park management plans.

  2. Debris flow hazard modelling on medium scale: Valtellina di Tirano, Italy

    Directory of Open Access Journals (Sweden)

    J. Blahut

    2010-11-01

    Full Text Available Debris flow hazard modelling at medium (regional scale has been subject of various studies in recent years. In this study, hazard zonation was carried out, incorporating information about debris flow initiation probability (spatial and temporal, and the delimitation of the potential runout areas. Debris flow hazard zonation was carried out in the area of the Consortium of Mountain Municipalities of Valtellina di Tirano (Central Alps, Italy. The complexity of the phenomenon, the scale of the study, the variability of local conditioning factors, and the lacking data limited the use of process-based models for the runout zone delimitation. Firstly, a map of hazard initiation probabilities was prepared for the study area, based on the available susceptibility zoning information, and the analysis of two sets of aerial photographs for the temporal probability estimation. Afterwards, the hazard initiation map was used as one of the inputs for an empirical GIS-based model (Flow-R, developed at the University of Lausanne (Switzerland. An estimation of the debris flow magnitude was neglected as the main aim of the analysis was to prepare a debris flow hazard map at medium scale. A digital elevation model, with a 10 m resolution, was used together with landuse, geology and debris flow hazard initiation maps as inputs of the Flow-R model to restrict potential areas within each hazard initiation probability class to locations where debris flows are most likely to initiate. Afterwards, runout areas were calculated using multiple flow direction and energy based algorithms. Maximum probable runout zones were calibrated using documented past events and aerial photographs. Finally, two debris flow hazard maps were prepared. The first simply delimits five hazard zones, while the second incorporates the information about debris flow spreading direction probabilities, showing areas more likely to be affected by future debris flows. Limitations of the modelling arise

  3. Modeling the travel distances of debris flows and debris slides: quantifying hillside morphology

    Directory of Open Access Journals (Sweden)

    Bogdan Strîmbu

    2011-06-01

    Full Text Available A travel distance model for debris flows and slides is presented based on information collected in southeast British Columbia, Canada. The model incorporates a variable that represents terrain morphology by a single number, quantification made using a one-to-one correspondence between the binary and decimal numeration systems. The terrain morphology coding has a site-specific character, providing a process-based representation of local conditions. Multiple regression analysis was used to assess the dependence of event travel distance on terrain morphology, slope, stand height, terrain curvature and canopy closure (R2 = 0.975, p < 0.001. The model fulfills all the assumptions and requirements of regression analysis (i.e. normality, homoscedasticity, non – correlated errors, lack of colinearity or outliers. An independent data set was used to test the model. The model successfully predicted all but one of the test dataset events, and one of four outliers. The model consists of an equation that can be used in mass movement risk assessment associated, with different forest activities (e.g. harvesting, road building. 

  4. Triggering conditions and mobility of debris flows associated to complex earthflows

    Science.gov (United States)

    Malet, J.-P.; Laigle, D.; Remaître, A.; Maquaire, O.

    2005-03-01

    Landslides on black marl slopes of the French Alps are, in most cases, complex catastrophic failures in which the initial structural slides transform into slow-moving earthflows. Under specific hydrological conditions, these earthflows can transform into debris flows. Due to their sediment volume and their high mobility, debris flow induced by landslides are far much dangerous than these resulting from continuous erosive processes. A fundamental point to correctly delineate the area exposed to debris flows on the alluvial fans is therefore to understand why and how some earthflows transform into debris flow while most of them stabilize. In this paper, a case of transformation from earthflow to debris flow is presented and analysed. An approach combining geomorphology, hydrology, geotechnics and rheology is adopted to model the debris flow initiation (failure stage) and its runout (postfailure stage). Using the Super-Sauze earthflow (Alpes-de-Haute-Provence, France) as a case study, the objective is to characterize the hydrological and mechanical conditions leading to debris flow initiation in such cohesive material. Results show a very good agreement between the observed runout distances and these calculated using the debris flow modeling code Cemagref 1-D. The deposit thickness in the depositional area and the velocities of the debris flows are also well reproduced. Furthermore, a dynamic slope stability analysis shows that conditions in the debris source area under average pore water pressures and moisture contents are close to failure. A small excess of water can therefore initiate failure. Seepage analysis is used to estimate the volume of debris that can be released for several hydroclimatic conditions. The failed volumes are then introduced in the Cemagref 1-D runout code to propose debris flow hazard scenarios. Results show that clayey earthflow can transform under 5-year return period rainfall conditions into 1-km runout debris flow of volumes ranging

  5. Spatial estimation of debris flows-triggering rainfall and its dependence on rainfall severity

    Science.gov (United States)

    Destro, Elisa; Marra, Francesco; Nikolopoulos, Efthymios; Zoccatelli, Davide; Creutin, Jean-Dominique; Borga, Marco

    2016-04-01

    Forecasting the occurrence of landslides and debris flows (collectively termed 'debris flows' hereinafter) is fundamental for issuing hazard warnings, and focuses largely on rainfall as a triggering agent. Debris flow forecasting relies very often on the identification of combinations of depth and duration of rainfall - rainfall thresholds - that trigger widespread debris flows. Rainfall estimation errors related to the sparse nature of raingauge data are enhanced in case of convective rainfall events characterized by limited spatial extent. Such errors have been shown to cause underestimation of the rainfall thresholds and, thus, less efficient forecasts of debris flows occurrence. This work examines the spatial organization of debris flows-triggering rainfall around the debris flow initiation points using high-resolution, carefully corrected radar data for a set of short duration (debris-flow triggering rainfall events that occurred in the study area between 2005 and 2014. The selected events are among the most severe in the region during this period and triggered a total of 99 debris flows that caused significant damage to people and infrastructures. We show that the spatial rainfall organisation depends on the severity (measured via the estimated return time-RT) of the debris flow-triggering rainfall. For more frequent events (RTdebris flow location coincides with a local minimum, whereas for less frequent events (RT>20 yrs) the triggering rainfall presents a local peak corresponding to the debris flow initiation point. Dependence of these features on rainfall duration is quite limited. The characteristics of the spatial rainfall organisation are exploited to understand the performances and results of three different rainfall interpolation techniques: nearest neighbour (NN), inverse distance weighting (IDW) and ordinary kriging (OK). We show that the features of the spatial organization of the debris flow triggering rainfall explain the biases in the

  6. Calibration of numerical models for small debris flows in Yosemite Valley, California, USA

    Science.gov (United States)

    Bertolo, P.; Wieczorek, G.F.

    2005-01-01

    This study compares documented debris flow runout distances with numerical simulations in the Yosemite Valley of California, USA, where about 15% of historical events of slope instability can be classified as debris flows and debris slides (Wieczorek and Snyder, 2004). To model debris flows in the Yosemite Valley, we selected six streams with evidence of historical debris flows; three of the debris flow deposits have single channels, and the other three split their pattern in the fan area into two or more channels. From field observations all of the debris flows involved coarse material, with only very small clay content. We applied the one dimensional DAN (Dynamic ANalysis) model (Hungr, 1995) and the two-dimensional FLO2D model (O'Brien et al., 1993) to predict and compare the runout distance and the velocity of the debris flows observed in the study area. As a first step, we calibrated the parameters for the two softwares through the back analysis of three debris- flows channels using a trial-and-error procedure starting with values suggested in the literature. In the second step we applied the selected values to the other channels, in order to evaluate their predictive capabilities. After parameter calibration using three debris flows we obtained results similar to field observations We also obtained a good agreement between the two models for velocities. Both models are strongly influenced by topography: we used the 30 m cell size DTM available for the study area, that is probably not accurate enough for a highly detailed analysis, but it can be sufficient for a first screening. European Geosciences Union ?? 2005 Author(s). This work is licensed under a Creative Commons License.

  7. Empirical closures for particulate debris bed spreading induced by gas–liquid flow

    Energy Technology Data Exchange (ETDEWEB)

    Basso, S., E-mail: simoneb@kth.se; Konovalenko, A.; Kudinov, P.

    2016-02-15

    Highlights: • Experimental study of the debris bed self-leveling phenomenon. • A scaling approach and a non-dimensional model to describe particle flow rate are proposed. • The model is validated against experiments with particles of different properties and at different gas injection conditions. - Abstract: Efficient removal of decay heat from the nuclear reactor core debris is paramount for termination of severe accident progression. One of the strategies is based on melt fragmentation, quenching and cooling in a deep pool of water under the reactor vessel. Geometrical configuration of the debris bed is among the important factors which determine possibility of removing the decay heat from the debris bed by natural circulation of the coolant. For instance, a tall mound-shape debris bed can be non-coolable, while the same debris can be coolable if spread uniformly. Decay heat generates a significant amount of thermal energy which goes to production of steam inside the debris bed. Two-phase flow escaping through the top layer of the bed becomes a source of mechanical energy which can move the particulate debris along the slope of the bed. The motion of the debris will lead to flattening of the bed. Such process is often called “self-leveling” phenomenon. Spreading of the debris bed by the self-leveling process can take significant time, depending on the initial debris bed configuration and other parameters. There is a competition between the time scales for reaching (i) a coolable configuration of the bed, and (ii) onset of dryout and re-melting of the debris. In the previous work we have demonstrated that the rate of particulate debris spreading is determined by local gas velocity and local slope angle of the bed. In this work we develop a scaling approach and a closure for prediction of debris spreading rate based on generalization of available experimental data. We demonstrate that introduced scaling criteria are universal for particles of different

  8. Slit-check dams for the control of debris flow

    Science.gov (United States)

    Armanini, Aronne; Larcher, Michele

    2017-04-01

    Debris flows are paroxysmal events that mobilize, alongside water, huge quantities of sediment in a very short time, then with both solid and liquid huge discharges, possibly exceeding the capacity of the current torrent restoration works. In this respect, the climate change forcing cannot be ignored. In the majority of urbanized areas, that are generally the most vulnerable, there is often not enough space to create channelling works able to let the volumes pass through without overflowing. The simplest, less expensive and most sustainable solution consists in reducing the peak solid discharge by creating storage areas upstream of the settlements, typically upstream of the alluvial fans, allowing for reduced works of canalization, that are compatible with the constraints imposed by the urbanization. The general idea consists in storing a part of the flowing solids during the peak of the hydrograph and releasing it in a successive phase or during minor floods. For this purpose, and in order to optimize the solid peak discharge reduction, it is necessary that properly designed open-check dams, capable of inducing a significative sedimentation of the solid discharge only when this exceeds a design-threshold value, control the deposition basins. A correct design of the check dam is crucial in order to induce the sedimentation in the right amount and at the right moment: a too early sedimentation might fill the volume before the peak, like in the case of close-check dams, while a too weak sedimentation might not use the whole available volume. In both cases, the channelling works might not be sufficient to let all the flow pass through, compromising the safety of the settlement. To avoid this inconvenience, we propose the use of slit-check dams, whose efficiency has already been proved for bed load. Check dams are often designed only on the base of the designer's experience. Besides, even today it is often believed that the filtering effect of open check dams is

  9. Debris-flow monitoring at the Rebaixader torrent, Central Pyrenees, Spain: results on initiation, volume and dynamic behaviour

    OpenAIRE

    Hurlimann Ziegler, Marcel; Abancó, Clàudia; Moya Sánchez, José

    2014-01-01

    The sophisticated monitoring system installed in the Rebaixader catchment incorporates a total of 6 different stations: four stations recording information on the initiation mechanisms (two meteorological stations and two infiltration stations), and two stations focussing on the debris flow detection and the dynamic behaviour of the flows. Between August 2009 and August 2013, seven debris flows and seventeen debris floods were detected. The volumes of the debris flows ranged from 2,100 to 16,...

  10. Determination of the suspension competence of debris flows based on particle size analysis

    Institute of Scientific and Technical Information of China (English)

    Hong-juan YANG; Fang-qiang WEI; Kai-heng HU; Chuan-chang WANG

    2014-01-01

    The determination of the critical particle size between solid and fluid phases, i.e., the suspension competence, is fundamental for debris flow. A method for determining suspension competence based on particle size analysis is presented in this paper. Suspension competence of static experimental water-debris mixtures prepared with the sediment of Jiangjia Gully is~0.025 mm if the bulk density is less than 1,800 kg m-3 and it increases with bulk density of more concentrated mixtures. Suspension competence of natural debris flows in Jiangjia Gully increases exponentially with the bulk density. These two data sets are compared in order to understand the suspension mechanism. It is concluded that turbulence may play a leading role in particle suspension in non-viscous and sub-viscous debris flows, while in viscous debris flows both matrix strength and excess pore water pressure play important roles.

  11. Interactions between accumulation conditions of sediment storage and debris flow characteristics in a debris-flow initiation zone in Ohya landslide, Japan

    Science.gov (United States)

    Imaizumi, Fumitoshi; Hayakawa, Yuichi S.; Hotta, Norifumi; Tsunetaka, Haruka; Tsuchiya, Satoshi; Ohsaka, Okihiro

    2015-04-01

    It is important to understand the behavior of debris flow in the initiation zone for the development of mitigative measures, such as warning systems and structures. Volume and surface topography of sediment storage in the initiation zones change with time affected by the sediment supply from hillslopes as well as the evacuation of sediment by occurrence of debris flows. However, influences of such changes on the characteristics of the debris flow are not well understood because of a lack of field data. To clarify interactions between accumulation conditions of sediment storage and debris flow characteristics in the initiation zone, we conducted field observations in the Ohya landslide, central Japan. Flows that monitored by our video-camera system could be classified as either flows comprising mainly muddy water, or flows comprising mainly cobbles and boulders. Flows comprising mainly muddy water are turbulent and are characterized by black surfaces due to high concentrations of silty shale, whereas muddy water is almost absent at the surface of flows comprising mainly cobbles and boulders. Changes in the topography in the initiation zones were periodically measured by the airbone LiDAR scanning and terrestrial laser scanning. Slope gradient in most parts of the sediment storage was steeper than 20˚ when the volume of sediment storage was large. In such cases, debris flows were usually dominated by flows comprising mainly cobbles and boulders, and topography formed by occurrence of the debris flows was also steeper than 20˚. Simple analysis on the shear stress and the shear strength elucidates that such steep topography can be formed by movement of unsaturated or nearly saturated sediments. In contrast, slope gradient in some parts of the sediment storage was gentler than 20˚ when only small volume of sediment existed in the initiation zone. Occurrence of debris flows comprising manly muddy water, which was usually monitored when the volume of sediment storage

  12. Volcano fact sheet; glacier-generated debris flows at Mount Rainier

    Science.gov (United States)

    Walder, J.S.; Driedger, C.L.

    1993-01-01

    Mount Rainier is a young volcano whose slopes are undergoing rapid change by a variety of geologic processes, including debris flows. Debris flows are churning masses of water, rock and mud that travel rapidly down the volcano's steep, glacially carved valleys, leaving in their wake splintered trees, picnic sites buried in mud, and damaged roads. Debris flows typically contain as much as 65 to 70 percent rock and soil by volume and have the appearance of wet concrete. At Mount Rainier National Park, these flows invariably begin in remote areas nearly inaccessible to people, but may move rapidly downstream into areas frequented by visitors.

  13. GIS-based risk analysis of debris flow: an application in Sichuan, southwest China

    Institute of Scientific and Technical Information of China (English)

    B.E DI; N.S.CHEN; P.CUI; Z.L.LI; Y.P.HE; Y.C.GAO

    2008-01-01

    Debris flow is a serious geologic hazard in China.It is estimated that nationally debris flows cause up to 2 billion RMB (250 million US$) in damages and 300-600 deaths and injuries annually.To mitigate debris flow hazards,it is necessary to map,model,and identify zones of debris flow hazards and vulnerability as to inform the local people about the potential risk with a geographic information system.This research presents a regional scale case study modeling debris flow risk (hazard and vulnerability) in Sichuan Province,Southwestern China.In this area,3,290 debris flows have been identified and the spatial-temporal distribution and activity characteristics of them have been documented.Based on the available meteorological data,a Digital Elevation Model with the rate of 1:250,000 and a regional geological map,the 24-hr rainfall threshold (y) for debris flow occurrence is closely related (significant at 99% confidence level) to the index (x) defined using a geology factor (rock hardness:a) and a topographical factor (channel gradient:d) where y = 21 + 10200 / x,in which x = 2.7 × ea + 1000 × d.The discipline is constructive in developing the rainfall threshold for debris flow activity in remote mountainous areas that lack data.For a given watershed,a four-level debris flow hazard map is developed by comparing the rainfall threshold to the design rainfall intensities with 50-,20-,and 5-year average recurrence intervals,respectively.The degree of debris flow vulnerability is determined by the watershed socio-economic conditions.A four-class debris flow risk map,at the final phase of the research,is generated by combining debris flow hazards and vulnerability.With the debris flow risk assessment,the Sichuan Province is classified into the slight,moderate,severe and very severe regions,which accounts for 36%,19%,20% and 25% of total area respectively.

  14. Procedures for the documentation of historical debris flows: application to the Chieppena Torrent (Italian alps).

    Science.gov (United States)

    Marchi, Lorenzo; Cavalli, Marco

    2007-09-01

    The reconstruction of triggering conditions, geomorphic effects, and damage produced by historical floods and debris flows significantly contributes to hazard assessment, allowing improved risk mitigation measures to be defined. Methods for the analysis of historical floods and debris flows vary greatly according to the type and quality of available data, which in turn are influenced by the time the events occurred. For floods and debris flows occurring in the Alps a few decades ago (between about 1950 and 1980), the documentation is usually better than for previous periods but, unlike events of most recent years, quantitative data are usually scanty and the description of the events does not aim to identify processes according to current terminology and classifications. The potential, and also the limitations of historical information available for the reconstruction of historical debris flows in the Alps have been explored by analyzing a high-magnitude debris flow that occurred on November 4, 1966 in the Chieppena Torrent (northeastern Italy). Reconstruction of the event was based on the use of written documentation, terrestrial and aerial photographs, and geomorphological maps. The analysis aimed to define the temporal development of phenomena, recognizing the type of flow processes and assessing some basic flow variables, such as volume, channel-debris yield rate, erosion depth, total distance traveled, and runout distance on the alluvial fan. The historical development of torrent hydraulic works, both before and after the debris flow of November 1966, was also analyzed with regard to the technical solutions adopted and their performance.

  15. Basal interstitial water pressure in laboratory debris flows over a rigid bed in an open channel

    Directory of Open Access Journals (Sweden)

    N. Hotta

    2012-08-01

    Full Text Available Measuring the interstitial water pressure of debris flows under various conditions gives essential information on the flow stress structure. This study measured the basal interstitial water pressure during debris flow routing experiments in a laboratory flume. Because a sensitive pressure gauge is required to measure the interstitial water pressure in shallow laboratory debris flows, a differential gas pressure gauge with an attached diaphragm was used. Although this system required calibration before and after each experiment, it showed a linear behavior and a sufficiently high temporal resolution for measuring the interstitial water pressure of debris flows. The values of the interstitial water pressure were low. However, an excess of pressure beyond the hydrostatic pressure was observed with increasing sediment particle size. The measured excess pressure corresponded to the theoretical excess interstitial water pressure, derived as a Reynolds stress in the interstitial water of boulder debris flows. Turbulence was thought to induce a strong shear in the interstitial space of sediment particles. The interstitial water pressure in boulder debris flows should be affected by the fine sediment concentration and the phase transition from laminar to turbulent debris flow; this should be the subject of future studies.

  16. Debris flow impact on mitigation barriers: a new method for particle-fluid-structure interactions

    Science.gov (United States)

    Marchelli, Maddalena; Pirulli, Marina; Pudasaini, Shiva P.

    2016-04-01

    Channelized debris-flows are a type of mass movements that involve water-charged, predominantly coarse-grained inorganic and organic material flowing rapidly down steep confined pre-existing channels (Van Dine, 1985). Due to their rapid movements and destructive power, structural mitigation measures have become an integral part of counter measures against these phenomena, to mitigate and prevent damages resulting from debris-flow impact on urbanized areas. In particular, debris barriers and storage basins, with some form of debris-straining structures incorporated into the barrier constructed across the path of a debris-flow, have a dual role to play: (1) to stimulate deposition by presenting a physical obstruction against flow, and (2) to guarantee that during normal conditions stream water and bedload can pass through the structure; while, during and after an extreme event, the water that is in the flow and some of the fine-grained sediment can escape. A new method to investigate the dynamic interactions between the flowing mass and the debris barrier is presented, with particular emphasis on the effect of the barrier in controlling the water and sediment content of the escaping mass. This aspect is achieved by implementing a new mechanical model into an enhanced two-phase dynamical mass flow model (Pudasaini, 2012), in which solid particles mixture and viscous fluid are taken into account. The complex mechanical model is defined as a function of the energy lost during impact, the physical and geometrical properties of the debris barrier, separate but strongly interacting dynamics of boulder and fluid flows during the impact, particle concentration distribution, and the slope characteristics. The particle-filtering-process results in a large variation in the rheological properties of the fluid-dominated escaping mass, including the substantial reduction in the bulk density, and the inertial forces of the debris-flows. Consequently, the destructive power and run

  17. Spatial and temporal patterns of debris flow deposition in the Oregon Coast Range, USA

    Science.gov (United States)

    May, Christine L.; Gresswell, Robert E.

    2004-01-01

    Patterns of debris-flow occurrence were investigated in 125 headwater basins in the Oregon Coast Range. Time since the previous debris-flows was established using dendrochronology, and recurrence interval estimates ranged from 98 to 357 years. Tributary basins with larger drainage areas had a greater abundance of potential landslide source areas and a greater frequency of scouring events compared to smaller basins. The flux rate of material delivered to the confluence with a larger river influenced the development of small-scale debris-flow fans. Fans at the mouths of tributary basins with smaller drainage areas had a higher likelihood of being eroded by the mainstem river in the interval between debris-flows, compared to bigger basins that had larger, more persistent fans. Valley floor width of the receiving channel also influenced fan development because it limited the space available to accommodate fan formation. Of 63 recent debris-flows, 52% delivered sediment and wood directly to the mainstem river, 30% were deposited on an existing fan before reaching the mainstem, and 18% were deposited within the confines of the tributary valley before reaching the confluence. Spatial variation in the location of past and present depositional surfaces indicated that sequential debris-flow deposits did not consistently form in the same place. Instead of being spatially deterministic, results of this study suggest that temporally variable and stochastic factors may be important for predicting the runout length of debris-flows.

  18. The 13 August 2010 catastrophic debris flows after the 2008 Wenchuan earthquake, China

    Directory of Open Access Journals (Sweden)

    Q. Xu

    2012-01-01

    Full Text Available From 12 to 14 August 2010, heavy rainstorms occurred in the Sichuan province in SW China in areas which were affected by the 2008 Wenchuan Earthquake, inducing catastrophic debris flows. This disaster is named as "the 8.13 debris flows". The results of the research presented in this paper show that the 8.13 debris flows are characterized by a simultaneous occurrence, rapid-onsets, destructive impacts, and disaster chain effects. They are located along the seismic fault, because the source materials mainly originate from loose deposits of landslides which were triggered by the Wenchuan Earthquake. The presence of large amounts of these loose materials on the slopes and the development of high intensity rainfall events are the main causes for the formation of these debris flows. The study of the 8.13 debris flows can provide a benchmark for the analysis of the long-term evolution of these debris flows in order to make proper engineering decisions. A flexible drainage system is proposed in this paper as a preventive measure to mitigate the increasing activity of these debris flows in the earthquake-affected area.

  19. Assessment of the debris-flow susceptibility in tropical mountains using clast distribution patterns

    Science.gov (United States)

    de Carvalho Faria Lima Lopes, Laís; de Almeida Prado Bacellar, Luís; Amorim Castro, Paulo de Tarso

    2016-12-01

    Channel morphometric parameters and clast distribution patterns in selected basins of the Ferriferous Quadrangle tropical mountains, Brazil, were analyzed in order to assess susceptibility to debris flows. Median bed surface clast size (D50) in the main stream channel of these basins shows a coarsening downstream trend with drainage areas of up to 6 km2, which is attributed to debris flow dominated-channels by some authors. The composition and roundness of the bed load, clast sand, and the presence of allochthonous large boulders throughout the channels also suggest the occurrence of past debris flow in the region. Luminescence Optically Stimulated (LOE) dating points out that debris flow could have occurred as a consequence of climate changes in the Late Pleistocene and Holocene and it can now be triggered by deforestation or extreme rainfall events. There has not been any record of past debris flow in the study area, or in other mountainous regions of Brazil where debris flows have recently occurred. Thus, the adopted approach can be useful to assess debris flow susceptibility in this and other similar areas.

  20. Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado

    Science.gov (United States)

    Godt, J.W.; Coe, J.A.

    2007-01-01

    On 28 July 1999, about 480 alpine debris flows were triggered by an afternoon thunderstorm along the Continental Divide in Clear Creek and Summit counties in the central Front Range of Colorado. The thunderstorm produced about 43??mm of rain in 4??h, 35??mm of which fell in the first 2??h. Several debris flows triggered by the storm impacted Interstate Highway 70, U.S. Highway 6, and the Arapahoe Basin ski area. We mapped the debris flows from color aerial photography and inspected many of them in the field. Three processes initiated debris flows. The first process initiated 11% of the debris flows and involved the mobilization of shallow landslides in thick, often well vegetated, colluvium. The second process, which was responsible for 79% of the flows, was the transport of material eroded from steep unvegetated hillslopes via a system of coalescing rills. The third, which has been termed the "firehose effect," initiated 10% of the debris flows and occurred where overland flow became concentrated in steep bedrock channels and scoured debris from talus deposits and the heads of debris fans. These three processes initiated high on steep hillsides (> 30??) in catchments with small contributing areas (flow process. Based on field observations and examination of soils mapping of the northern part of the study area, we identified a relation between the degree of soil development and the process type that generated debris flows. In general, areas with greater soil development were less likely to generate runoff and therefore less likely to generate debris flows by the firehose effect or by rilling. The character of the surficial cover and the spatially variable hydrologic response to intense rainfall, rather than a threshold of contributing area and topographic slope, appears to control the initiation process in the high alpine of the Front Range. Because debris flows initiated by rilling and the firehose effect tend to increase in volume as they travel downslope, these

  1. Disaster Characteristics and Mitigation Measures of Huge Glacial Debris Flows along the Sichuan-Tibet Railway

    Science.gov (United States)

    Liu, Jinfeng; You, Yong; Zhang, Guangze; Wang, Dong; Chen, Jiangang; Chen, Huayong

    2017-04-01

    The Ranwu-Tongmai section of the Sichuan-Tibet Railway passes through the Palongzangbu River basin which locates in the southeast Qinghai-Tibetan Plateau. Due to widely distributed maritime glacier in this area, the huge glacier debris flows are very developed. Consequently, the disastrous glacier debris flows with huge scale (106-108 m3 for one debris flow event) and damage become one of the key influencing factors for the route alignment of the Sichuan-Tibet Railway. The research on disaster characteristics and mitigation measures of huge glacial debris flows in the study area were conducted by the remote sensing interpretation, field investigation, parameter calculation and numerical simulation. Firstly, the distribution of the glaciers, glacier lakes and glacier debris flows were identified and classified; and the disaster characteristics for the huge glacier debris flow were analyzed and summarized. Secondly, the dynamic parameters including the flood peak discharge, debris flow peak discharge, velocity, total volume of a single debris flow event were calculated. Based on the disaster characteristics and the spatial relation with the railway, some mitigation principles and measures were proposed. Finally, the Guxiang Gully, where a huge glacier debris flow with 2*108m3 in volume occurred in 1953, was selected as a typical case to analyze its disaster characteristics and mitigation measures. The interpretation results show that the glacier area is about 970 km2 which accounts for 19% of the total study area. 130 glacier lakes and 102 glacier debris flows were identified and classified. The Sichuan-Tibet Railway passes through 43 glacier debris flows in the study area. The specific disaster characteristics were analyzed and corresponding mitigation measures were proposed for the route selection of the railway. For the Guxiang Gully, a numerical simulation to simulate the deposition condition at the alluvial fan was conducted. the simulation results show that the

  2. Debris Flow Damage Incurred to Buildings: An In-Situ Back Analysis

    Science.gov (United States)

    Jalayer, Fatemeh; Aronica, Giuseppe T.; Recupero, Antonino; Carozza, Stefano; Manfredi, Gaetano

    2016-04-01

    The flash-flood debris event of the October 1st 2009 in the area of Messina, Sicily, Italy has led to loss of life and significant damage to the constructed environment. Focusing the attention on an eighteenth masonry building (damaged and upgraded after the Messina-Reggio Calabria Earthquake of 1906) located in the village of Scaletta Zanclea, we have strived to reconstruct analytically the damages incurred to this building due to the debris flow event of 2009. In order to re-construct the damages incurred to the building due to the flash flood/debris flow event, hydrostatic and hydrodynamic force envelopes, calculated via a 2D hydrodynamic finite element model specifically designed for debris flow spatial propagation, have been applied to the building in question (assuming perfect coherence between static and dynamic maxima). The hydrograph for the solid discharge is then estimated by scaling up the liquid volume to the estimated debris volume. The hydrodynamic model used for the debris flow propagation proved to be well suited for these specific applications. The debris flow diffusion is simulated by solving the differential equations for a single-phase 2D flow employing triangular mesh elements, taking into account also the channeling of the flow through the building. The damage to the building is modeled, based on the maximum hydraulic actions caused by the debris flow, using 2D finite shell elements, modeling the boundary conditions provided by the openings, floor slab, orthogonal wall panels and the foundation. The finite element approach showed its capability in describing the complex geometries of the urban environments as the distributed nature of the 2D code allows to derive a reliable spatial distribution of debris flow actions. The reconstruction of the event and the damages to the case-study building confirms the location of the damages induced by the event.

  3. Relations between rainfall and triggering of debris-flow: case study of Cancia (Dolomites, Northeastern Italy

    Directory of Open Access Journals (Sweden)

    M. Bacchini

    2003-01-01

    Full Text Available Debris-flows occurring in the area of Cancia (Dolomites, Northeastern Italy in recent years have exposed the population to serious risk. In response to the recurring hazard, an alarm and monitoring system was installed to provide a sufficient level of safeguard for inhabitants and infrastructures. The data recorded at three rain gauges during debris-flow events has been analysed, taking into consideration the different elevation of the gauges to delineate the storm rainfall distributions. Rainfall data is compared with the occurrence of debris-flows to examine relations between debris-flow initiation and rainfall. In addition, the data is compared with that recorded during debris-flows which occurred under similar or different geological settings in the Eastern Italian Alps, in order to define triggering thresholds. A threshold for debris-flow activity in terms of mean intensity, duration and mean annual precipitation (M.A.P. is defined for the study area The normalised rainfall and the normalised intensity are expressed as a per cent with respect to M.A.P. This threshold is compared with thresholds proposed by other authors, and the comparison shows that a lower value is obtained, indicating the debris-flow susceptibility of the area. The threshold equations are:  R/M.A.P. = - 1.36 · ln(I + 3.93  where I > 2 mm/h  I /M.A.P. = 0.74 · D-0.56.  The determination of a debris-flow threshold is linked to the necessity of a fast decisional phase in a warning system for debris-flow protection. This threshold cannot be used as a predictive tool, but rather as a warning signal for technicians who manage the monitoring/warning system.

  4. The 13 August 2010 catastrophic debris flows after the 2008 Wenchuan earthquake, China

    NARCIS (Netherlands)

    Xu, Q.; Zhang, S.; Li, W.L.; Asch, Th.W.J. van

    2012-01-01

    From 12 to 14 August 2010, heavy rainstorms occurred in the Sichuan province in SW China in areas which were affected by the 2008 Wenchuan Earthquake, inducing catastrophic debris flows. This disaster is named as “the 8.13 debris flows”. The results of the research presented in this paper show that

  5. Site-specific Vulnerability Assessment for Debris Flows: Two Case Studies

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Here the vulnerability is defined as the potential total maximum losses due to a debris flow damaging event for a specific debris flow fan. The vulnerability is classified into property vulnerability and population vulnerability. Assessment indexes include the assets of buildings, traffic facilities, lifeline works, personal properties, and land resources for property vulnerability; age, education, and wealth of the inhabitants, natural population growth rate, and population density for population vulnerability. The vulnerability is expressed as the sum of the transformed values of the losses of property and population. Two study cases with post-fact damages by historic debris flow events in Sichuan of SW China are presented.

  6. Numerical modelling study of gully recharge and debris flows in Haida Gwaii, British Columbia

    Science.gov (United States)

    Martin, Yvonne; Johnson, Edward; Chaikina, Olga

    2015-04-01

    In high mountains, debris flows are a major process responsible for transferring sediment to more downstream fluvial reaches. This sediment transfer begins on mountain hillslopes where various mass wasting processes move sediment from hillslopes to uppermost reaches of the channel system (these reaches are herein referred to as gullies and only experience water flow during high intensity precipitation events). Sediment recharge into gullies, which has received minimal attention in the scientific literature, refers to the transfer of sediment and other debris from surrounding hillslopes into gullies (Jakob and Oden, 2005). Debris flow occurrence and debris flow volumes depend on some precipitation threshold as well as volumes of material contained in the particular gully. For example, if one debris flow has removed all of the accumulated material from the gully, then any subsequent debris flow will be smaller if enough time has not yet passed for notable sediment recharge. Herein, we utilize the numerical model of landscape development, LandMod (Martin, 1998; Dadson and Church, 2005; Martin, 2007), to explore connections between hillslope processes, gully recharge rates, and transfer of sediment to downstream channel reaches in the Haida Gwaii, British Columbia. Hillslope processes in the model include shallow landsliding, bedrock failures and weathering. The updated debris flow algorithm is based on extensive field data available for debris flows in Haida Gwaii (e.g., Rood, 1984; Oden, 1994; Jakob and Oden, 2005), as well as theoretical considerations based on debris flow studies. The most significant model extension is the calculation of gully recharge rates; for each gully, the total accumulated sediment in gullies at each time step is determined using a power-law relation for area-normalized recharge rate versus elapsed time since the last debris flow. Thus, when the stochastic driver for debris flow occurrence triggers an event, the amount of stored material is

  7. A Preliminary Study on 1D Numerical Experiment of Water Debris Flow in Gully

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to improve and enhance the numerical modeling methods and its application on debris flow problems,a preliminary study has been proposed in accordance with the corrected water-sediment numerical model on the premise of revised resistance and sediment capacity equations.Firstly,an overview the recent re- search achievements on numerical simulation of debris flow has been conducted,the results shown that a gener- al numerical model for debris flow can not be existed at all because the complex rheol...

  8. Multi-Layer Forecast Project of Rain-Induced Debris Flow

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-hong; WEI Fang-qiang; LIU Shu-zhen; CUI Peng; ZHONG Dun-lun; LI Fa-bin; GAO Ke-chang

    2005-01-01

    Based on four kinds of methods--numerical weather prediction model, cloud image of stationary meteorological satellite, echo image of meteorological radar and telemetric rain gauge, multi space-time scale precipitation prediction products have been achieved, and multi-layer project of debris flow forecast is established with different space-time scale to get different forecast precision. The forecast system has the advantages in combination of regions and ravines, rational compounding of time and space scale. The project, which has debris flow forecast models of Sichuan province, Liangshan district and single ravine, can forecast debris flow in 3 layers and meets the demand of hazard mitigation in corresponding layer.

  9. Annual precipitation gray forecast in disaster year of Chedaren debris flow

    Institute of Scientific and Technical Information of China (English)

    MENG Fanqi; LI Guangjie

    2009-01-01

    The Chedaren ravine belongs to high-prone areas of debris flow in Jilin Province,which threaten the local people's life and security seriously. The authors used the residual correction theory to amend the GM (1, 1) model and forecast annual precipitation in disaster year of the Chedaren ravine; it provides scientific foundation for early warning of debris flow disaster in the rainy season based on weather forecast. The prediction results show that annual precipitation is 724.7 mm in 2009; the region will probably occur large-scale debris flow during the rainy season.

  10. Regional danger assessment of Debris flow and its engineering mitigation practice in Sichuan-Tibet highway

    Science.gov (United States)

    Su, Pengcheng; Sun, Zhengchao; li, Yong

    2017-04-01

    Luding-Kangding highway cross the eastern edge of Qinghai-Tibet Plateau where belong to the most deep canyon area of plateau and mountains in western Sichuan with high mountain and steep slope. This area belongs to the intersection among Xianshuihe, Longmenshan and Anninghe fault zones which are best known in Sichuan province. In the region, seismic intensity is with high frequency and strength, new tectonic movement is strong, rock is cracked, there are much loose solid materials. Debris flow disaster is well developed under the multiple effects of the earthquake, strong rainfall and human activity which poses a great threat to the local people's life and property security. So this paper chooses Kangding and LuDing as the study area to do the debris flow hazard assessment through the in-depth analysis of development characteristics and formation mechanism of debris flow. Which can provide important evidence for local disaster assessment and early warning forecast. It also has the important scientific significance and practical value to safeguard the people's life and property safety and the security implementation of the national major project. In this article, occurrence mechanism of debris flow disasters in the study area is explored, factor of evaluation with high impact to debris flow hazards is identified, the database of initial evaluation factors is made by the evaluation unit of basin. The factors with high impact to hazards occurrence are selected by using the stepwise regression method of logistic regression model, at the same time the factors with low impact are eliminated, then the hazard evaluation factor system of debris flow is determined in the study area. Then every factors of evaluation factor system are quantified, and the weights of all evaluation factors are determined by using the analysis of stepwise regression. The debris flows hazard assessment and regionalization of all the whole study area are achieved eventually after establishing the

  11. Hazard assessment of debris flows for Leung King Estateof Hong Kong by incorporating GIS with numericalsimulations

    Directory of Open Access Journals (Sweden)

    K. T. Chau

    2004-01-01

    Full Text Available As over seventy percent of the land of Hong Kong is mountainous, rainfall-induced debris flows are not uncommon in Hong Kong. The objective of this study is to incorporate numerical simulations of debris flows with GIS to identify potential debris flow hazard areas. To illustrate this approach, the proposed methodology is applied to Leung King Estate in Tuen Mun. A Digital Elevation Model (DEM of the terrain and the potential debris-flow sources were generated by using GIS to provide the required terrain and flow source data for the numerical simulations. A theoretical model by Takahashi et al. (1992 improved by incorporating a new erosion initiation criterion was used for simulating the runout distances of debris flows. The well-documented 1990 Tsing Shan debris flow, which occurred not too far from Leung King Estate, was used to calibrate most of the flow parameters needed for computer simulations. Based on the simulation results, a potential hazard zone was identified and presented by using GIS. Our proposed hazard map was thus determined by flow dynamics and a deposition mechanism through computer simulations without using any so- called expert opinions, which are bounded to be subjective and biased.

  12. On the evaluation of debris flows dynamics by means of mathematical models

    Directory of Open Access Journals (Sweden)

    M. Arattano

    2003-01-01

    Full Text Available The prediction of debris flow dynamic characteristics in a debris flow prone torrent is generally made through the investigation of past events. This investigation can be carried out through a survey of the marks left by past debris flows along the channel and through a detailed analysis of the type and shape of the deposits found on the debris fan. The rheological behaviour of future debris flows can then be inferred from the results of these surveys and their dynamic characteristics can be estimated applying well known formulas proposed in literature. These latter will make use of the assumptions on the rheological behaviour previously made. This type of estimation has been performed for a debris flow occurred in an instrumented basin, on the North-Eastern Italian Alps, in 1996 and the results have been compared to those obtained by means of a mathematical simulation. For the calibration of the mathematical model the limnographs recorded by three different ultrasonic gauges installed along a torrent reach on the fan were used. The comparison evidenced the importance of time data recordings for a correct prediction of the debris flows dynamics. Without the availability of data recordings, the application of formulas based only on assumptions derived from field analysis could be misleading.

  13. The enormous Chillos Valley Lahar: An ash-flow-generated debris flow from Cotopaxi Volcano, Ecuador

    Science.gov (United States)

    Mothes, P.A.; Hall, M.L.; Janda, R.J.

    1998-01-01

    The Chillos Valley Lahar (CVL), the largest Holocene debris flow in area and volume as yet recognized in the northern Andes, formed on Cotopaxi volcano's north and northeast slopes and descended river systems that took it 326 km north-northwest to the Pacific Ocean and 130+ km east into the Amazon basin. In the Chillos Valley, 40 km downstream from the volcano, depths of 80-160 m and valley cross sections up to 337000m2 are observed, implying peak flow discharges of 2.6-6.0 million m3/s. The overall volume of the CVL is estimated to be ???3.8 km3. The CVL was generated approximately 4500 years BP by a rhyolitic ash flow that followed a small sector collapse on the north and northeast sides of Cotopaxi, which melted part of the volcano's icecap and transformed rapidly into the debris flow. The ash flow and resulting CVL have identical components, except for foreign fragments picked up along the flow path. Juvenile materials, including vitric ash, crystals, and pumice, comprise 80-90% of the lahar's deposit, whereas rhyolitic, dacitic, and andesitic lithics make up the remainder. The sand-size fraction and the 2- to 10-mm fraction together dominate the deposit, constituting ???63 and ???15 wt.% of the matrix, respectively, whereas the silt-size fraction averages less than ???10 wt.% and the clay-size fraction less than 0.5 wt.%. Along the 326-km runout, these particle-size fractions vary little, as does the sorting coefficient (average = 2.6). There is no tendency toward grading or improved sorting. Limited bulking is recognized. The CVL was an enormous non-cohesive debris flow, notable for its ash-flow origin and immense volume and peak discharge which gave it characteristics and a behavior akin to large cohesive mudflows. Significantly, then, ash-flow-generated debris flows can also achieve large volumes and cover great areas; thus, they can conceivably affect large populated regions far from their source. Especially dangerous, therefore, are snowclad volcanoes

  14. Modeling of debris flow depositional patterns according to the catchments and sediment source areas characteristics

    Science.gov (United States)

    Tiranti, Davide; Deangeli, Chiara

    2015-03-01

    A method to predict the most probable flow rheology in Alpine debris flows is presented. The methods classifies outcropping rock masses in catchments on the basis of the type of resulting unconsolidated deposits. The grain size distribution of the debris material and the depositional style of past debris flow events are related to the dominant flow processes: viscoplastic and frictional/collisional. Three catchments in the upper Susa Valley (Western Alps), characterized by different lithologies, were selected for numerical analysis carried out with a Cellular Automata code with viscoplastic and frictional/collisional rheologies. The obtained numerical results are in good agreement with in site evidences in terms of depositional patterns, confirming the possibility of choosing the rheology of the debris flow based on the source material within the catchment.

  15. The Rheology of Vegetative Ash-laden Debris Flows

    Science.gov (United States)

    Burns, K. A.; Gabet, E.

    2006-12-01

    There is mounting observational evidence that vegetative ash created in a forest fire may play a major role in reducing infiltration and leads to the generation of debris flows on these burned hillslopes. A viscometer was used to measure the viscosity of ash slurries of varying concentrations, as well as slurries containing both fine- grained clastic sediment (sand and silt sized) and vegetative ash at varying concentrations. Initial results from these experiments indicate that increasing the concentration of ash increases effective viscosity of the slurry. Increasing the ash concentration by 5% increases the effective viscosity of the slurry by 10-50% over a range of shear rates. Also, ash-only slurries appear to shear thin with increasing shear rate at all concentrations. For example, with a 60% ash concentration, increasing the shear rate from 5/s to 40/s reduces the effective viscosity by 90%. For the mixed ash and fine-grained sediment slurries, increasing the percentage of ash relative to the percentage of clastic sediment dramatically increases the viscosity of the slurry even though the ash and finest-grained sediment are approximately the same size. A 50% concentration slurry containing only silt-sized clastic particles has a 40-70% lower effective viscosity than a slurry of the same concentration containing only ash particles. Therefore, the ash particles behave differently than clastic sediment particles.

  16. Predicting spatial distribution of postfire debris flows and potential consequences for native trout in headwater streams

    Science.gov (United States)

    Sedell, Edwin R; Gresswell, Bob; McMahon, Thomas E.

    2015-01-01

    Habitat fragmentation and degradation and invasion of nonnative species have restricted the distribution of native trout. Many trout populations are limited to headwater streams where negative effects of predicted climate change, including reduced stream flow and increased risk of catastrophic fires, may further jeopardize their persistence. Headwater streams in steep terrain are especially susceptible to disturbance associated with postfire debris flows, which have led to local extirpation of trout populations in some systems. We conducted a reach-scale spatial analysis of debris-flow risk among 11 high-elevation watersheds of the Colorado Rocky Mountains occupied by isolated populations of Colorado River Cutthroat Trout (Oncorhynchus clarkii pleuriticus). Stream reaches at high risk of disturbance by postfire debris flow were identified with the aid of a qualitative model based on 4 primary initiating and transport factors (hillslope gradient, flow accumulation pathways, channel gradient, and valley confinement). This model was coupled with a spatially continuous survey of trout distributions in these stream networks to assess the predicted extent of trout population disturbances related to debris flows. In the study systems, debris-flow potential was highest in the lower and middle reaches of most watersheds. Colorado River Cutthroat Trout occurred in areas of high postfire debris-flow risk, but they were never restricted to those areas. Postfire debris flows could extirpate trout from local reaches in these watersheds, but trout populations occupy refugia that should allow recolonization of interconnected, downstream reaches. Specific results of our study may not be universally applicable, but our risk assessment approach can be applied to assess postfire debris-flow risk for stream reaches in other watersheds.

  17. Field investigations of the interaction between debris flows and forest vegetation in two Alpine fans

    Science.gov (United States)

    Michelini, Tamara; Bettella, Francesco; D'Agostino, Vincenzo

    2017-02-01

    A key objective in debris-flow hazard mitigation is the reduction of the potential depositional area in the fan. From this point of view, forested areas are able to provide a protective function hindering the flow motion and promoting the surge deposition. Despite extensive research on Alpine forests and their protective functions, relatively few studies in the literature have quantitatively focused on the relationship between debris-flow depositional features and vegetation. In light of the above, our research investigates how vegetation characteristics in the fan area interact with debris-flow deposition. Field investigations were carried out in two Alpine fans where debris-flow events occurred in the summer of 2012. By recording the characteristics of 1567 involved trees and the associated deposit thicknesses, this paper provides a data set that contributes to the improvement of the knowledge of these interaction processes. The integration of literature findings and the analysis of the collected dataset adds insights into the relationships between tree characteristics and the dynamics of debris flow during the runout path. The main results prove the capacity of the forest of uniformly promoting flow-energy dissipation, presence of high species diversity in debris-flow deposits when comparing disturbed and undisturbed forest stands, tree mortality largely affecting small diameters management of protection forests in alluvial fans are suggested.

  18. Analysis of debris-flow recordings in an instrumented basin: confirmations and new findings

    Directory of Open Access Journals (Sweden)

    M. Arattano

    2012-03-01

    Full Text Available On 24 August 2006, a debris flow took place in the Moscardo Torrent, a basin of the Eastern Italian Alps instrumented for debris-flow monitoring. The debris flow was recorded by two seismic networks located in the lower part of the basin and on the alluvial fan, respectively. The event was also recorded by a pair of ultrasonic sensors installed on the fan, close to the lower seismic network. The comparison between the different recordings outlines particular features of the August 2006 debris flow, different from that of events recorded in previous years. A typical debris-flow wave was observed at the upper seismic network, with a main front abruptly appearing in the torrent, followed by a gradual decrease of flow height. On the contrary, on the alluvial fan the wave displayed an irregular pattern, with low flow depth and the main peak occurring in the central part of the surge both in the seismic recording and in the hydrographs. Recorded data and field evidences indicate that the surge observed on the alluvial fan was not a debris flow, and probably consisted in a water surge laden with fine to medium-sized sediment. The change in shape and characteristics of the wave can be ascribed to the attenuation of the surge caused by the torrent control works implemented in the lower basin during the last years.

  19. Wildfire impacts on the processes that generate debris flows in burned watersheds

    Science.gov (United States)

    Parise, M.; Cannon, S.H.

    2012-01-01

    Every year, and in many countries worldwide, wildfires cause significant damage and economic losses due to both the direct effects of the fires and the subsequent accelerated runoff, erosion, and debris flow. Wildfires can have profound effects on the hydrologic response of watersheds by changing the infiltration characteristics and erodibility of the soil, which leads to decreased rainfall infiltration, significantly increased overland flow and runoff in channels, and movement of soil. Debris-flow activity is among the most destructive consequences of these changes, often causing extensive damage to human infrastructure. Data from the Mediterranean area and Western United States of America help identify the primary processes that result in debris flows in recently burned areas. Two primary processes for the initiation of fire-related debris flows have been so far identified: (1) runoff-dominated erosion by surface overland flow; and (2) infiltration-triggered failure and mobilization of a discrete landslide mass. The first process is frequently documented immediately post-fire and leads to the generation of debris flows through progressive bulking of storm runoff with sediment eroded from the hillslopes and channels. As sediment is incorporated into water, runoff can convert to debris flow. The conversion to debris flow may be observed at a position within a drainage network that appears to be controlled by threshold values of upslope contributing area and its gradient. At these locations, sufficient eroded material has been incorporated, relative to the volume of contributing surface runoff, to generate debris flows. Debris flows have also been generated from burned basins in response to increased runoff by water cascading over a steep, bedrock cliff, and incorporating material from readily erodible colluvium or channel bed. Post-fire debris flows have also been generated by infiltration-triggered landslide failures which then mobilize into debris flows. However

  20. Topographic Impact Analysis of Group-occurring Landslide-induced Debris Flow in Xinglong Town Luding County%地形对泸定县兴隆镇群发性滑坡型泥石流的影响分析

    Institute of Scientific and Technical Information of China (English)

    李文杰; 冯文凯; 魏昌利; 何元宵; 贾金晓

    2016-01-01

    四川省泸定县兴隆镇2006年7月14日暴发了群发性泥石流 ,给当地人民造成了严重的损失.此次群发性泥石流范围较小 ,降雨和地质条件基本一致 ,那么地形条件则是泥石流爆发的首要考虑因素.为了研究地形条件对滑坡型泥石流的影响 ,从泥石流形成机理出发 ,选取研究区各沟谷流域面积A ,沟床比降 J ,沟谷两侧斜坡25°~45°坡度所占百分比 S等3个重要地形因子进行研究对比 ,建立了此次泥石流暴发的临界曲线及综合地形因子 G,得出在降雨和地质条件都近似的情况下 ,地形因子 G越大 ,地形条件越有利 ,越容易暴发泥石流.因此可用地形因子 G划分区域内沟谷泥石流的易发等级 ,为泥石流的危险性评价和监测预警提供了新的研究思路.%A group debris flows induced by landslides were triggered on July 14 ,2006 in Xinglong Town ,Luding Coun-ty ,Sichuan province ,which caused serious losses to the local people and society .The rainfall and geological conditions are roughly the same in the study area because the catchment size is smaller .The only determinant factor of triggering de-bris flow should be the topographic .In order to investigate the influence of the terrain conditions for debris flow by land-slides ,three important topographical factors the basin area A ,channel gradient J ,and the percentage ( S ) of catchment area with hill slope of 25°~45° were selected .The critical curve of the landslide outbreak was established ,and a new factor G= SJ0 .55 A0 .09 was proposed as a single topographical indicator .It can be concluded that if rainfall and geological conditions were similar ,the probability of debris flow formation should increase with increasing G -values .Therefore with the topographical factor G ,one can classify the risk level of gully debris flow by landslides .This research could pro-vide a new way for risk assessment ,monitoring and early warning of debris flow .

  1. Initiation processes for run-off generated debris flows in the Wenchuan earthquake area of China

    Science.gov (United States)

    Hu, W.; Dong, X. J.; Xu, Q.; Wang, G. H.; van Asch, T. W. J.; Hicher, P. Y.

    2016-01-01

    The frequency of huge debris flows greatly increased in the epicenter area of the Wenchuan earthquake. Field investigation revealed that runoff during rainstorm played a major role in generating debris flows on the loose deposits, left by coseismic debris avalanches. However, the mechanisms of these runoff-generated debris flows are not well understood due to the complexity of the initiation processes. To better understand the initiation mechanisms, we simulated and monitored the initiation process in laboratory flume test, with the help of a 3D laser scanner. We found that run-off incision caused an accumulation of material down slope. This failed as shallow slides when saturated, transforming the process into debris in a second stage. After this initial phase, the debris flow volume increased rapidly by a chain of subsequent cascading processes starting with collapses of the side walls, damming and breaching, leading to a rapid widening of the erosion channel. In terms of erosion amount, the subsequent mechanisms were much more important than the initial one. The damming and breaching were found to be the main reasons for the huge magnitude of the debris flows in the post-earthquake area. It was also found that the tested material was susceptible to excess pore pressure and liquefaction in undrained triaxial, which may be a reason for the fluidization in the flume tests.

  2. Contrasting origin of two clay-rich debris flows at Cayambe Volcanic Complex, Ecuador

    Science.gov (United States)

    Detienne, M.; Delmelle, P.; Guevara, A.; Samaniego, P.; Opfergelt, S.; Mothes, P. A.

    2017-04-01

    We investigate the sedimentological and mineralogical properties of a debris flow deposit west of Cayambe Volcanic Complex, an ice-clad edifice in Ecuador. The deposit exhibits a matrix facies containing up to 16 wt% of clays. However, the stratigraphic relationship of the deposit with respect to the Canguahua Formation, a widespread indurated volcaniclastic material in the Ecuadorian inter-Andean Valley, and the deposit alteration mineralogy differ depending on location. Thus, two different deposits are identified. The Río Granobles debris flow deposit ( 1 km3) is characterised by the alteration mineral assemblage smectite + jarosite, and sulphur isotopic analyses point to a supergene hydrothermal alteration environment. This deposit probably derives from a debris avalanche initiated before 14-21 ka by collapse of a hydrothermally altered rock mass from the volcano summit. In contrast, the alteration mineralogy of the second debris flow deposit, which may itself comprise more than one unit, is dominated by halloysite + smectite and relates to a shallower and more recent (3200 m) volcanic soils. Our study reinforces the significance of hydrothermal alteration in weakening volcano flanks and in favouring rapid transformation of a volcanic debris avalanche into a clay-rich debris flow. It also demonstrates that mineralogical analysis provides crucial information for resolving the origin of a debris flow deposit in volcanic terrains. Finally, we posit that slope instability, promoted by ongoing subglacial hydrothermal alteration, remains a significant hazard at Cayambe Volcanic Complex.

  3. Possible effect of ENSO on annual sediment discharge of debris flows in the Jiangjia Ravine based on Morlet wavelet transforms

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The multi-time-scale structures of an annual sediment discharge series of debris flow in the Jiangjia Ravine and the Southern Oscillation index are analysed using the method of Morlet wavelet transformations. The possible effects of El Nino episodes on the annual sediment discharge are discussed by comparing the period variations of ENSO and the discharge. The results show that the annual sediment discharge series of debris flow is related to El Nino episodes. Generally, the annual sediment discharge of debris flow is less than usual during an El Nino episode and debris flow is less active. On the contrary, the annual sediment discharge of debris flows is greater than usual during a La Nina episode and debris flows are more frequent. There is a relationship between the annual sediment discharges of debris flow in the Jiangjia Ravine and the summer Southern Oscillation index, with both having quasi-periodic variations of 2 and 5-6 years.

  4. "State of the Art" of technical protection measures in Austria and the effectiveness documented during bedload and debris flow events

    Science.gov (United States)

    Moser, Markus; Mehlhorn, Susanne; Rudolf-Miklau, Florian; Suda, Jürgen

    2017-04-01

    Since the beginning of systematic torrent control in Austria 130 years ago, barriers are constructed for protection purposes. Until the end of the 1960s, solid barriers were built at the exits of depositional areas to prevent dangerous debris flows from reaching high consequence areas. The development of solid barriers with large slots or slits to regulate sediment transport began with the use of reinforced concrete during the 1970s (Rudolf-Miklau, Suda 2011). In order to dissipate the energy of debris flows debris flow breakers have been designed since the 1980s. By slowing and depositing the surge front of the debris flow, downstream reaches of the stream channel and settlement areas should be exposed to considerably lower dynamic impact. In the past, the technological development of these constructions was only steered by the experiences of the engineering practice while an institutionalized process of standardization comparable to other engineering branches was not existent. In future all structures have to be designed and dimensioned according to the EUROCODE standards. This was the reason to establish an interdisciplinary working group (ON-K 256) at the Austrian Standards Institute (ASI), which has managed to developed comprehensive new technical standards for torrent control engineering, including load models, design, dimensioning and life cycle assessment of torrent control works (technical standard ONR 24800 - series). Extreme torrential events comprise four definable displacement processes floods; fluvial solid transport; hyper-concentrated solid transport (debris floods) and debris flow (stony debris flow or mud-earth flow). As a rule, the design of the torrential barriers has to follow its function (Kettl, 1984). Modern protection concepts in torrent control are scenario-oriented and try to optimize different functions in a chain of protections structures (function chain). More or less the first step for the designing the optimal construction type is

  5. Debris Disks in Nearby Young Moving Groups in the ALMA Era

    CERN Document Server

    Kóspál, Á

    2015-01-01

    Many members of nearby young moving groups exhibit infrared excess attributed to circumstellar debris dust, formed via erosion of planetesimals. With their proximity and well-dated ages, these groups are excellent laboratories for studying the early evolution of debris dust and of planetesimal belts. ALMA can spatially resolve the disk emission, revealing the location and extent of these belts, putting constraints on planetesimal evolution models, and allowing us to study planet-disk interactions. While the main trends of dust evolution in debris disks are well-known, there is almost no information on the evolution of gas. During the transition from protoplanetary to debris state, even the origin of gas is dubious. Here we review the exciting new results ALMA provided by observing young debris disks, and discuss possible future research directions.

  6. Reduction Effect Analysis of Erosion Control Facilities Using Debris Flow Numerical Model

    Science.gov (United States)

    Jun, Kyewon; Kim, Younghwan; Oh, Chaeyeon; Lee, Hojin; Kim, SoungDoug

    2017-04-01

    With the increase in frequency of typhoons and heavy rains following the climate change, the scale of damage from the calamities in the mountainous areas has been growing larger and larger, which is different from the past. For the case of Korea where 64% of land is consisted of the mountainous areas, establishment of the check dams has been drastically increased after 2000 in order to reduce the damages from the debris flow. However, due to the lack of data on scale, location and kind of check dams established for reducing the damages in debris flow, the measures to prevent damages based on experience and subjective basis have to be relied on. This study, the high-precision DEM data was structured by using the terrestrial LiDAR in the Jecheon area where the debris flow damage occurred in July 2009. And, from the numerical models of the debris flow, Kanako-2D that is available to reflect the erosion and deposition action was applied to install the erosion control facilities (water channel, check dam) and analyzed the effect of reducing the debris flow shown in the downstream. After installing the erosion control facilities, most of debris flow moves along the water channel to reduce the area to expand the debris flow, and after installing the check dam, the flow depth and flux of the debris flow were reduced along with the erosion. However, even after constructing the erosion control facilities, damages were still inflicted on private residences or agricultural sites located on the upper regions where the deposition was made. Acknowledgments This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2016R1D1A3B03933362)

  7. Capturing spatiotemporal variation in wildfires for improving postwildfire debris-flow hazard assessments: Chapter 20

    Science.gov (United States)

    Haas, Jessica R.; Thompson, Matthew P.; Tillery, Anne C.; Scott, Joe H.

    2017-01-01

    Wildfires can increase the frequency and magnitude of catastrophic debris flows. Integrated, proactive natural hazard assessment would therefore characterize landscapes based on the potential for the occurrence and interactions of wildfires and postwildfire debris flows. This chapter presents a new modeling effort that can quantify the variability surrounding a key input to postwildfire debris-flow modeling, the amount of watershed burned at moderate to high severity, in a prewildfire context. The use of stochastic wildfire simulation captures variability surrounding the timing and location of ignitions, fire weather patterns, and ultimately the spatial patterns of watershed area burned. Model results provide for enhanced estimates of postwildfire debris-flow hazard in a prewildfire context, and multiple hazard metrics are generated to characterize and contrast hazards across watersheds. Results can guide mitigation efforts by allowing planners to identify which factors may be contributing the most to the hazard rankings of watersheds.

  8. Model and Method of Debris Flow Risk Zoning Based on Momentum Analysis

    Institute of Scientific and Technical Information of China (English)

    WEI Fangqiang; ZHANG Yu; HU Kaiheng; GAO Kechang

    2006-01-01

    A model of debris flow risk zoning is carried out with momentum analysis of debris flow. This model zones the debris flow inundation fan with density and velocity calculated by numerical simulation. The risk classification standard is determined according to the ultimate bearing capacities of different structures under impacting. And the ultimate bearing capacities are tested by impact failure experiment of destruction. Two structures typical in Chinese mountain towns, reinforced concrete frame construction and brickwork with concrete, are chosen in the experiment. The model makes debris flow risk zoning quantitative and the results comparable widely. The results differ much from that of other methods especially in the identification of medium and low risk zones.

  9. Implementation of the RAMMS DEBRIS FLOW to Italian case studies

    Science.gov (United States)

    Vennari, Carmela; Mc Ardell, Brian; Parise, Mario; Santangelo, Nicoletta; Santo, Antonio

    2016-04-01

    RAMMS (RApid Mass MovementS) Debris Flow runout model solves 2D shallow-water equation using the Voellmy friction law. The model has been developed by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), and the Swiss Federal Institute for Snow and Avalanche Research (SLF). It requires as input the following data: topography, release area or hydrograph, and the friction parameters μ and ξ. Deposition height, velocity, pressure and momentum are the most important outcomes, also in terms of Max values. The model was applied primarily in Alpine catchments to simulate debris flow runout. Beside the Alps, alluvial events are very common even in torrential catchments of the Southern Apennines of Italy, and contribute to build alluvial fans mainly located at the foothill of carbonate and volcanic mountains. During the last decades several events occurred in these areas, often highly populated, and caused serious damage to society and to people. Several case studies have been selected from a database on alluvial events in torrential catchments of Campania region, aimed at applying the RAMMS model to back-analyze the documented events, and to simulate future similar scenarios in different triggering conditions. In order to better understand the obtained data and choose the best results, field data are mandatories. For this reason we focused our attention on torrential events for which field data concerning deposition area and deposition height were available. We simulated different scenarios, with variable peak discharge and friction parameters, reproducing also the influence of anthropogenic structures. To choose the best results, observed data and predicted data were compared in an objective way, by means of a quantitative analysis. Predicted and observed deposition areas were compared in a GIS environment, and the best test was evaluated by computing several statistics accuracy derived from the confusion matrix, including the sensitivity, that

  10. Mobility statistics and automated hazard mapping for debris flows and rock avalanches

    Science.gov (United States)

    Griswold, Julia P.; Iverson, Richard M.

    2008-01-01

    Power-law equations that are physically motivated and statistically tested and calibrated provide a basis for forecasting areas likely to be inundated by debris flows, rock avalanches, and lahars with diverse volumes. The equations A=α1V2/3 and B=α2V2/3 are based on the postulate that the maximum valley cross-sectional area (A) and total valley planimetric area (B) likely to be inundated by a flow depend only on its volume (V) and the topography of the flow path. Testing of these equations involves determining whether or not they fit data for documented flows satisfactorily, and calibration entails determining best-fit values of the coefficients α1 and α2 for debris flows, rock avalanches, and lahars. This report describes statistical testing and calibration of the equations by using field data compiled from many sources, and it describes application of the equations to delineation of debris-flow hazard zones. Statistical results show that for each type of flow (debris flows, rock avalanches, and lahars), the dependence of A and B on V is described well by power laws with exponents equal to 2/3. This value of the exponent produces fits that are effectively indistinguishable from the best fits obtained by using adjustable power-law exponents. Statistically calibrated values of the coefficients α1 and α2 provide scale-invariant indices of the relative mobilities of rock avalanches (α1 = 0.2, α2 = 20), nonvolcanic debris flows (α1 = 0.1, α2 = 20), and lahars (α1 = 0.05, α2 = 200). These values show, for example, that a lahar of specified volume can be expected to inundate a planimetric area ten times larger than that inundated by a rock avalanche or nonvolcanic debris flow of the same volume. The utility of the calibrated debris-flow inundation equations A=0.1V2/3 and B=20V2/3 is demonstrated by using them within the GIS program LAHARZ to delineate nested hazard zones for future debris flows in an area bordering the Umpqua River in the south-central Oregon

  11. Radar rainfall estimation for the identification of debris-flow precipitation thresholds

    Science.gov (United States)

    Marra, Francesco; Nikolopoulos, Efthymios I.; Creutin, Jean-Dominique; Borga, Marco

    2014-05-01

    Identification of rainfall thresholds for the prediction of debris-flow occurrence is a common approach for warning procedures. Traditionally the debris-flow triggering rainfall is derived from the closest available raingauge. However, the spatial and temporal variability of intense rainfall on mountainous areas, where debris flows take place, may lead to large uncertainty in point-based estimates. Nikolopoulos et al. (2014) have shown that this uncertainty translates into a systematic underestimation of the rainfall thresholds, leading to a step degradation of the performances of the rainfall threshold for identification of debris flows occurrence under operational conditions. A potential solution to this limitation lies on use of rainfall estimates from weather radar. Thanks to their high spatial and temporal resolutions, these estimates offer the advantage of providing rainfall information over the actual debris flow location. The aim of this study is to analyze the value of radar precipitation estimations for the identification of debris flow precipitation thresholds. Seven rainfall events that triggered debris flows in the Adige river basin (Eastern Italian Alps) are analyzed using data from a dense raingauge network and a C-Band weather radar. Radar data are elaborated by using a set of correction algorithms specifically developed for weather radar rainfall application in mountainous areas. Rainfall thresholds for the triggering of debris flows are identified in the form of average intensity-duration power law curves using a frequentist approach by using both radar rainfall estimates and raingauge data. Sampling uncertainty associated to the derivation of the thresholds is assessed by using a bootstrap technique (Peruccacci et al. 2012). Results show that radar-based rainfall thresholds are largely exceeding those obtained by using raingauge data. Moreover, the differences between the two thresholds may be related to the spatial characteristics (i.e., spatial

  12. Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado

    Science.gov (United States)

    Cannon, S.H.; Kirkham, R.M.; Parise, M.

    2001-01-01

    A torrential rainstorm on September 1, 1994 at the recently burned hillslopes of Storm King Mountain, CO, resulted in the generation of debris flows from every burned drainage basin. Maps (1:5000 scale) of bedrock and surficial materials and of the debris-flow paths, coupled with a 10-m Digital Elevation Model (DEM) of topography, are used to evaluate the processes that generated fire-related debris flows in this setting. These evaluations form the basis for a descriptive model for fire-related debris-flow initiation. The prominent paths left by the debris flows originated in 0- and 1st-order hollows or channels. Discrete soil-slip scars do not occur at the heads of these paths. Although 58 soil-slip scars were mapped on hillslopes in the burned basins, material derived from these soil slips accounted for only about 7% of the total volume of material deposited at canyon mouths. This fact, combined with observations of significant erosion of hillslope materials, suggests that a runoff-dominated process of progressive sediment entrainment by surface runoff, rather than infiltration-triggered failure of discrete soil slips, was the primary mechanism of debris-flow initiation. A paucity of channel incision, along with observations of extensive hillslope erosion, indicates that a significant proportion of material in the debris flows was derived from the hillslopes, with a smaller contribution from the channels. Because of the importance of runoff-dominated rather than infiltration-dominated processes in the generation of these fire-related debris flows, the runoff-contributing area that extends upslope from the point of debris-flow initiation to the drainage divide, and its gradient, becomes a critical constraint in debris-flow initiation. Slope-area thresholds for fire-related debris-flow initiation from Storm King Mountain are defined by functions of the form Acr(tan ??)3 = S, where Acr is the critical area extending upslope from the initiation location to the

  13. Catastrophic debris flows transformed from landslides in volcanic terrains : mobility, hazard assessment and mitigation strategies

    Science.gov (United States)

    Scott, Kevin M.; Macias, Jose Luis; Naranjo, Jose Antonio; Rodriguez, Sergio; McGeehin, John P.

    2001-01-01

    Communities in lowlands near volcanoes are vulnerable to significant volcanic flow hazards in addition to those associated directly with eruptions. The largest such risk is from debris flows beginning as volcanic landslides, with the potential to travel over 100 kilometers. Stratovolcanic edifices commonly are hydrothermal aquifers composed of unstable, altered rock forming steep slopes at high altitudes, and the terrain surrounding them is commonly mantled by readily mobilized, weathered airfall and ashflow deposits. We propose that volcano hazard assessments integrate the potential for unanticipated debris flows with, at active volcanoes, the greater but more predictable potential of magmatically triggered flows. This proposal reinforces the already powerful arguments for minimizing populations in potential flow pathways below both active and selected inactive volcanoes. It also addresses the potential for volcano flank collapse to occur with instability early in a magmatic episode, as well as the 'false-alarm problem'-the difficulty in evacuating the potential paths of these large mobile flows. Debris flows that transform from volcanic landslides, characterized by cohesive (muddy) deposits, create risk comparable to that of their syneruptive counterparts of snow and ice-melt origin, which yield noncohesive (granular) deposits, because: (1) Volcano collapses and the failures of airfall- and ashflow-mantled slopes commonly yield highly mobile debris flows as well as debris avalanches with limited runout potential. Runout potential of debris flows may increase several fold as their volumes enlarge beyond volcanoes through bulking (entrainment) of sediment. Through this mechanism, the runouts of even relatively small collapses at Cascade Range volcanoes, in the range of 0.1 to 0.2 cubic kilometers, can extend to populated lowlands. (2) Collapse is caused by a variety of triggers: tectonic and volcanic earthquakes, gravitational failure, hydrovolcanism, and

  14. Application of the Empirical Thresholds of Precipitation to the Debris Flows in Mexico

    Science.gov (United States)

    Cardoso-Landa, G.

    2013-05-01

    The debris flows are particularly dangerous for the life and the properties due to its high speeds and great destructive force, destroying houses, ways, bridges, trees and cultures, currents and ecosystems throughout its trajectory. The extraordinary precipitation events are one of the predominant physical processes that produce the genesis of the debris flows. The empirical thresholds of precipitation are based on the historical analyses of the occurrence relation precipitation/debris flow, for example statistical analyses. At the present time a limited number of this type of empirical thresholds exists and have been used different diagrams to represent them, depending on the combinations of precipitation parameters more commonly used: antecedent precipitation, duration, accumulated intensity and rain, and the most commons are that obtained by Caine and Aleotti. An analytical presentation of the concept of threshold of precipitation of a debris flow was recently introduced by Iritanno et al. (1998), who introduced the called function of mobilization Y(t), indirectly describing all the factors that contribute to trigger a process of landslides and that is dependent, in every moment of time t, the amount of water infiltrate on the ground before the time t. In the full article was applied the Iritanno's function of mobilization to the records of precipitation that produced the debris flows in the north of Puebla State, in the country of México, obtaining relationships intensity of rain-duration for these debris flows are greater from 3.43 to 2.1 times over empirical thresholds of precipitation generators of debris flows proposed by Caine and Aleotti in other regions of the world. .Intensity of precipitation for the debris flows in Mexicot;

  15. Particle-fluid-structure interaction for debris flow impact on flexible barriers

    OpenAIRE

    A. Leonardi; Wittel, F. K.; Mendoza, M.; Vetter, R.; Herrmann, H.J.

    2014-01-01

    Flexible barriers are increasingly used for the protection from debris flow in mountainous terrain due to their low cost and environmental impact. However, a numerical tool for rational design of such structures is still missing. In this work, a hybrid computational framework is presented, using a total Lagrangian formulation of the Finite Element Method (FEM) to represent a flexible barrier. The actions exerted on the structure by a debris flow are obtained from simultaneous simulations of t...

  16. Numerical Modeling of Debris Flow Force Caused by Climate Change and Its application to Check Dam

    Science.gov (United States)

    KIM, S. D.; Jun, K.; JUN, B. H.; Lee, H. J.; TAK, W. J.

    2016-12-01

    Due to global warming, climate change cause a super hurricane and heavy rainfall frequently. Heavy rainfall cause by debris flow in mountainous terrains, and disasters by debris flow force have continuously increased. The purpose of this study is to analyze the characteristics of debris flow force acting on the check dam. The numerical approach to the debris flow force was performed by the Finite Difference Method (FDM) based on the erosion-deposition combination model including the equation of continuity, mass conservation, and momentum conservation. In order to investigate behavior of the debris flow force according to the variance of supplying water discharge and channel slope angle, a rectangular straight channel and one closed type check dam was set up for conducting numerical simulations. As the supply water discharges increase, the curve of the impact force by debris flow becomes unstable and fluctuation with high impact force occurred as time passes. And the peak impact force showed a steeper slope and appeared more quickly, the high impact force undergoes a fluctuation with high speed, and acting on the check dam. At the mountainous upstream, strong rainfall energy provoke a repeat erosion and deposition which results in debris flow force causing much damage along the check dam at the mountainous place. The analyses of the present study help provide information to predict future debris flow force and how to design for the check dam. This research was supported by a grant [MPSS-NH-2014-74] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government

  17. Probabilistic rainfall thresholds for triggering debris flows in a human-modified landscape

    Science.gov (United States)

    Giannecchini, Roberto; Galanti, Yuri; D'Amato Avanzi, Giacomo; Barsanti, Michele

    2016-03-01

    In the Carrara Marble Basin (CMB; Apuan Alps, Italy) quarrying has accumulated widespread and thick quarry waste, lying on steep slopes and invading valley bottoms. The Apuan Alps are one of the rainiest areas in Italy and rainstorms often cause landslides and debris flows. The stability conditions of quarry waste are difficult to assess, owing to its textural, geotechnical and hydrogeological variability. Therefore, empirical rainfall thresholds may be effective in forecasting the possible occurrence of debris flows in the CMB. Three types of thresholds were defined for three rain gauges of the CMB and for the whole area: rainfall intensity-rainfall duration (ID), cumulated event rainfall-rainfall duration (ED), and cumulated event rainfall normalized by the mean annual precipitation-rainfall intensity (EMAPI). The rainfall events recorded from 1950 to 2005 was analyzed and compared with the occurrence of debris flows involving the quarry waste. They were classified in events that triggered one or more debris flows and events that did not trigger debris flows. This dataset was fitted using the logistic regression method that allows us to define a set of thresholds, corresponding to different probabilities of failure (from 10% to 90%) and therefore to different warning levels. The performance of the logistic regression in defining probabilistic thresholds was evaluated by means of contingency tables, skill scores and receiver operating characteristic (ROC) analysis. These analyses indicate that the predictive capability of the three types of threshold is acceptable for each rain gauge and for the whole CMB. The best compromise between the number of correct debris flow predictions and the number of wrong predictions is obtained for the 40% probability thresholds. The results obtained can be tested in an experimental debris flows forecasting system based on rainfall thresholds, and could have implications for the debris flow hazard and risk assessment in the CMB.

  18. Pleistocene cohesive debris flows at Nevado de Toluca Volcano, central Mexico

    Science.gov (United States)

    Capra, L.; Macías, J. L.

    2000-10-01

    During the Pleistocene, intense hydrothermal alteration promoted a flank failure of the southern portion of Nevado de Toluca volcano. This event produced a debris avalanche that transformed into a cohesive debris flow (Pilcaya deposit) owing to water saturation and weakness of the altered pre-avalanche rocks. The Pilcaya debris flow traveled along a narrow tectonic depression up to a distance of 40 km and then spread over a flat plain reaching up to 55 km from the volcano summit. This transition zone corresponds with a sudden break in slope from 5 to 0.5° that caused a rapid reduction in velocity and thickening of the flow that consequently reduced its competence to transport large particles. The resulting deposit thickens from 15 to 40 m, and contains boulders up to 15 m in diameter that form hummocky morphology close to the transitional zone. Sometime after the emplacement of the Pilcaya debris flow, heavy rains and superficial drainage contributed to remobilize the upper portions of the deposit causing two secondary lahars. These debris flows called El Mogote, traveled up to 75 km from the volcano. The edifice collapse generated lahars with a total volume of 2.8 km 3 that devastated an approximate area of 250 km 2. The area versus volume plot for both deposits shows that the magnitude of the event is comparable to other cohesive debris flows such as the Teteltzingo lahar (Pico de Orizaba, Mexico) and the Osceola mudflow (Mount Rainier, Wa). The Pilcaya debris flow represents additional evidence of debris flow transformed from a flank failure, a potentially devastating phenomenon that could threaten distant areas from the volcano previously considered without risk.

  19. Estimation of magnitudes of debris flows in selected torrential watersheds in Slovenia

    OpenAIRE

    Sodnik, Jošt; Mikoš, Matjaž

    2006-01-01

    In this paper the application of different methods for estimation of magnitudes of rainfall-induced debris flows in 18 torrents in the Upper Sava River valley, NW Slovenia, and in 2 torrents in Pohorje, N Slovenia is described. Additional verification of the methods was performed in the torrential watersheds with active debris flows in the recent past (Predelica and Brusnik in the Soca River basin, W Slovenia). For some of the methods, the knowledge of morphometric characteristics of a torren...

  20. A Detailed Study of Debris Flow Source Areas in the Northern Colorado Front Range.

    Science.gov (United States)

    Arana-Morales, A.; Baum, R. L.; Godt, J.

    2014-12-01

    Nearly continuous, heavy rainfall occurred during 9-13 September 2013 causing flooding and widespread landslides and debris flows in the northern Colorado Front Range. Whereas many recent studies have identified erosion as the most common process leading to debris flows in the mountains of Colorado, nearly all of the debris flows mapped in this event began as small, shallow landslides. We mapped the boundaries of 415 September 2013 debris flows in the Eldorado Springs and Boulder 7.5-minute quadrangles using 0.5-m-resolution satellite imagery. We characterized the landslide source areas of six debris flows in the field as part of an effort to identify what factors controlled their locations. Four were on a dip slope in sedimentary rocks in the Pinebrook Hills area, near Boulder, and the other two were in granitic rocks near Gross Reservoir. Although we observed no obvious geomorphic differences between the source areas and surrounding non-landslide areas, we noted several characteristics that the source areas all had in common. Slopes of the source areas ranged from 28° to 35° and most occurred on planar or slightly concave slopes that were vegetated with grass, small shrubs, and sparse trees. The source areas were shallow, irregularly shaped, and elongated downslope: widths ranged from 4 to 9 m, lengths from 6 to 40 m and depths ranged from 0.7 to 1.2 m. Colluvium was the source material for all of the debris flows and bedrock was exposed in the basal surface of all of the source areas. We observed no evidence for concentrated surface runoff upslope from the sources. Local curvature and roughness of bedrock and surface topography, and depth distribution and heterogeneity of the colluvium appear to have controlled the specific locations of these shallow debris-flow source areas. The observed distribution and characteristics of the source areas help guide ongoing efforts to model initiation of the debris flows.

  1. Modeling four occurred debris flow events in the Dolomites area (North-Eastern Italian Alps)

    Science.gov (United States)

    Boreggio, Mauro; Gregoretti, Carlo; Degetto, Massimo; Bernard, Martino

    2016-04-01

    Four occurred debris flows in the Dolomites area (North-Eastern Italian Alps) are modeled by back-analysis. The four debris flows events are those occurred at Rio Lazer (Trento) on the 4th of November 1966, at Fiames (Belluno) on the 5th of July 2006, at Rovina di Cancia (Belluno) on the 18th of July 2009 and at Rio Val Molinara (Trento) on the 15th of August 2010. In all the events, runoff entrained sediments present on natural channels and formed a solid-liquid wave that routed downstream. The first event concerns the routing of debris flow on an inhabited fan. The second event the deviation of debris flow from the usual path due to an obstruction with the excavation of a channel in the scree and the downstream spreading in a wood. The third event concerns the routing of debris flow in a channel with an ending the reservoir, its overtopping and final spreading in the inhabited area. The fourth event concerns the routing of debris flow along the main channel downstream the initiation area until spreading just upstream a village. All the four occurred debris flows are simulated by modeling runoff that entrained debris flow for determining the solid-liquid hydrograph. The routing of the solid-liquid hydrograph is simulated by a bi-phase cell model based on the kinematic approach. The comparison between simulated and measured erosion and deposition depths is satisfactory. Nearly the same parameters for computing erosion and deposition were used for all the four occurred events. The maps of erosion and deposition depths are obtained by comparing the results of post-event surveys with the pre-event DEM. The post-event surveys were conducted by using different instruments (LiDAR and GPS) or the combination photos-single points depth measurements (in this last case it is possible obtaining the deposition/erosion depths by means of stereoscopy techniques).

  2. Can we reduce debris flow to an equivalent one-phase flow?

    Science.gov (United States)

    Chareyre, B.; Marzougui, D.; Chauchat, J.

    2015-09-01

    A recent extension of the discrete element method is reported for the simulation of dense mixtures of non-colloidal particles and viscous fluids in the non-inertial regime. As an application, we examine the interplay between rate dependent dilatancy and hydro-mechanical coupling which can be expected in debris flow. The numerical model includes sphere-sphere contacts using a soft contact approach [2], short range hydrodynamic interactions defined by frame-invariant expressions of forces and torques in the lubrication approximation, and drag forces resulting from the poromechanical coupling computed with the DEM-PFV technique [3]. The bulk shear stress is decomposed into contact stress and hydrodynamic stress. Both contributions are shown to be increasing functions of a dimensionless shear rate Iv, in agreement with experimental results [4]. Statistics of microstructural variables highlight a complex interplay between solid contacts and hydrodynamic interactions. In contrast with a popular idea, the results suggest that lubrication may not necessarily reduce the contribution of contact forces to the bulk shear stress. The proposed model is general and applies directly to sheared satured granular media in which pore pressure feedback plays a key role. We argue that it can be the case for debris fow, especially during the triggering phase, when run-out include transitional phases, and when the flow is stopped. It is then concluded that debris cannot be computed by assuming solely the rheological properties of an equivalent mixture.

  3. Modelling debris transport within glaciers by advection in a full-Stokes ice flow model

    Science.gov (United States)

    Wirbel, Anna; Jarosch, Alexander H.; Nicholson, Lindsey

    2017-04-01

    As mountain glaciers recede worldwide, an increasing proportion of the remaining glacierized area is expected to become debris covered. The spatio-temporal development of a surface debris cover has profound effects on the glacier behaviour and meltwater generation, yet little is known about how glacier dynamics influence the spatial distribution of an emerging debris cover. Motivated by this lack of understanding, we present a coupled model to simulate advection and resulting deformation of debris features within glaciers. The finite element model developed in python consists of an advection scheme coupled to a full-Stokes ice flow model, using FEniCS as the numerical framework. We show results from numerical tests that demonstrate its suitability to model advection-dominated transport of concentration in a divergence-free velocity field. The capabilities of the coupled model are demonstrated by simulating transport of debris features of different initial size, shape and location through modelled velocity fields of representative mountain glaciers. The results indicate that deformation of initial debris inputs, as a consequence of being transported through the glacier, plays an important role in determining the location and rate of debris emergence at the glacier surface. The presented work lays the foundation for comprehensive simulations of realistic patterns of debris cover, their spatial and temporal variability and the timescales over which debris covers can form.

  4. The fluidity of boulder debris flows is affected by fine sediment in the pore water

    Science.gov (United States)

    Hotta, Norifumi; Kaneko, Takahiro; Iwata, Tomoyuki; Nishimoto, Haruo

    2013-04-01

    Basic equations for debris flows are frequently derived using the simple assumption of monogranular particles. However, actual debris flows include a great diversity of grain sizes, resulting in inherent features such as inverse grading, particle size segregation, and liquefaction of fine sediment. The liquefaction of fine sediment affects the fluidity of debris flows, although the behavior and influence of fine sediment in debris flows have not been examined sufficiently. This study used flume tests to detect the effect of fine sediment on the characteristics of laboratory debris flows consisting of particles with two diameters: one diameter was fixed at a large particle size, while the small diameters were varied with the experimental conditions. From the experiments, the greatest sediment concentration and flow depth were observed in the debris flows mixed with finer sediment, indicating increased flow resistance. Then, the experimental friction coefficient was compared with the theoretical friction coefficient derived by substituting the experimental values into the constitutive equations for debris flow. The theoretical friction coefficient was obtained from two models with different fine-sediment treatments: one assuming that all of the fine sediments were solid particles and the other that the particles consisted of a fluid phase involving pore water liquefaction. A discriminant index was introduced to clarify which contribution from the two models could better explain the experimental results. The comparison of the friction coefficients detected a fully liquefied state for the finest particle mixture with sediment. However, even with the same particle size, the debris flows could be regarded as a liquefied state, a solid state, or a partially liquefied transition state depending on the experimental conditions other than the sediment particle size. These results infer that the liquefaction of fine sediment in debris flows was induced not only by the

  5. Debris flow susceptibility mapping using a qualitative heuristic method and Flow-R along the Yukon Alaska Highway Corridor, Canada

    Science.gov (United States)

    Blais-Stevens, A.; Behnia, P.

    2016-02-01

    This research activity aimed at reducing risk to infrastructure, such as a proposed pipeline route roughly parallel to the Yukon Alaska Highway Corridor (YAHC), by filling geoscience knowledge gaps in geohazards. Hence, the Geological Survey of Canada compiled an inventory of landslides including debris flow deposits, which were subsequently used to validate two different debris flow susceptibility models. A qualitative heuristic debris flow susceptibility model was produced for the northern region of the YAHC, from Kluane Lake to the Alaska border, by integrating data layers with assigned weights and class ratings. These were slope angle, slope aspect, surficial geology, plan curvature, and proximity to drainage system. Validation of the model was carried out by calculating a success rate curve which revealed a good correlation with the susceptibility model and the debris flow deposit inventory compiled from air photos, high-resolution satellite imagery, and field verification. In addition, the quantitative Flow-R method was tested in order to define the potential source and debris flow susceptibility for the southern region of Kluane Lake, an area where documented debris flow events have blocked the highway in the past (e.g. 1988). Trial and error calculations were required for this method because there was not detailed information on the debris flows for the YAHC to allow us to define threshold values for some parameters when calculating source areas, spreading, and runout distance. Nevertheless, correlation with known documented events helped define these parameters and produce a map that captures most of the known events and displays debris flow susceptibility in other, usually smaller, steep channels that had not been previously documented.

  6. Coupling of rainfall-induced landslide triggering model with predictions of debris flow runout distances

    Science.gov (United States)

    Lehmann, Peter; von Ruette, Jonas; Fan, Linfeng; Or, Dani

    2014-05-01

    Rapid debris flows initiated by rainfall induced shallow landslides present a highly destructive natural hazard in steep terrain. The impact and run-out paths of debris flows depend on the volume, composition and initiation zone of released material and are requirements to make accurate debris flow predictions and hazard maps. For that purpose we couple the mechanistic 'Catchment-scale Hydro-mechanical Landslide Triggering (CHLT)' model to compute timing, location, and landslide volume with simple approaches to estimate debris flow runout distances. The runout models were tested using two landslide inventories obtained in the Swiss Alps following prolonged rainfall events. The predicted runout distances were in good agreement with observations, confirming the utility of such simple models for landscape scale estimates. In a next step debris flow paths were computed for landslides predicted with the CHLT model for a certain range of soil properties to explore its effect on runout distances. This combined approach offers a more complete spatial picture of shallow landslide and subsequent debris flow hazards. The additional information provided by CHLT model concerning location, shape, soil type and water content of the released mass may also be incorporated into more advanced models of runout to improve predictability and impact of such abruptly-released mass.

  7. Debris-flow hazards in the blue ridge of Central Virginia

    Science.gov (United States)

    Wieczorek, G.F.; Morgan, B.A.; Campbell, R.H.

    2000-01-01

    The June 27, 1995, storm in Madison County, Virginia produced debris flows and floods that devastated a small (130 km2) area of the Blue Ridge in the eastern United States. Although similar debris-flow inducing storm events may return only approximately once every two thousand years to the same given locale, these events affecting a similar small-sized area occur about every three years somewhere in the central and southern Appalachian Mountains. From physical examinations and mapping of debris-flow sources, paths, and deposits in Madison County, we develop methods for identifying areas subject to debris flows using Geographic Information Systems (GIS) technology. We examined the rainfall intensity and duration characteristics of the June 27, 1995, and other storms, in the Blue Ridge of central Virginia, and have defined a minimum threshold necessary to trigger debris flows in granitic rocks. In comparison with thresholds elsewhere, longer and more intense rainfall is necessary to trigger debris flows in the Blue Ridge.

  8. Debris flows in the Eastern Italian Alps: seasonality and atmospheric circulation patterns

    Directory of Open Access Journals (Sweden)

    E. I. Nikolopoulos

    2014-12-01

    Full Text Available The work examines the seasonality and large-scale atmospheric circulation patterns of debris flows in the Trentino-Alto Adige region (Eastern Italian Alps. Analysis is based on classification algorithms applied on a uniquely dense archive of debris flows and hourly rain gauge precipitation series covering the period 2000–2009. Results highlight the seasonal and synoptic forcing patterns linked to debris flows in the study area. Summer and fall season account for 92% of the debris flows in the record, while atmospheric circulation characterized by Zonal West, Mixed and Meridional South, Southeast patterns account for 80%. Both seasonal and circulation patterns exhibit geographical preference. In the case of seasonality, there is a strong north–south separation of summer–fall dominance while spatial distribution of dominant circulation patterns exhibits clustering, with both Zonal West and Mixed prevailing in the northwest and central east part of the region, while the southern part relates to Meridional South, Southeast pattern. Seasonal and synoptic pattern dependence is pronounced also on the debris flow triggering rainfall properties. Examination of rainfall intensity–duration thresholds derived for different data classes (according to season and synoptic pattern revealed a distinct variability in estimated thresholds. These findings imply a certain control on debris-flow events and can therefore be used to improve existing alert systems.

  9. Characteristics of rainfall triggering of debris flows in the Chenyulan watershed, Taiwan

    Directory of Open Access Journals (Sweden)

    J. C. Chen

    2013-04-01

    Full Text Available This paper reports the variation in rainfall characteristics associated with debris flows in the Chenyulan watershed, central Taiwan, between 1963 and 2009. The maximum hourly rainfall Im, the maximum 24 h rainfall Rd, and the rainfall index RI (defined as the product RdIm were analysed for each rainfall event that triggered a debris flow within the watershed. The corresponding number of debris flows initiated by each rainfall event (N was also investigated via image analysis and/or field investigation. The relationship between N and RI was analysed. Higher RI of a rainfall event would trigger a larger number of debris flows. This paper also discusses the effects of the Chi-Chi earthquake (CCE on this relationship and on debris flow initiation. The results showed that the critical RI for debris flow initiation had significant variations and was significantly lower in the years immediately following the CCE of 1999, but appeared to revert to the pre-earthquake condition about five years later. Under the same extreme rainfall event of RI = 365 cm2 h−1, the value of N in the CCE-affected period could be six times larger than that in the non-CCE-affected periods.

  10. Using Fuzzy Relations and GIS Method to Evaluate Debris Flow Hazard

    Institute of Scientific and Technical Information of China (English)

    SONG Shujun; ZHANG Baolei; FENG Wenlan; ZHOU Wancun

    2006-01-01

    The study area,located in the southeast of Tibet along the Sichuan-Tibet highway,is a part of Palongzangbu River basin where mountain hazards take place frequently.On the ground of field surveying,historical data and previous research,a total of 31 debris flow gullies are identified in the study area and 5 factors are chosen as main parameters for evaluating the hazard of debris flows in this study.Spatial analyst functions of geographic information system (GIS) are utilized to produce debris flow inventory and parameter maps.All data are built into a spatial database for evaluating debris flow hazard.Integrated with GIS techniques,the fuzzy relation method is used to calculate the strength of relationship between debris flow inventory and parameters of the database.With this methodology,a hazard map of debris flows is produced.According to this map,6.6% of the study area is classified as very high hazard,7.3% as high hazard,8.4% as moderate hazard,32.1% as low hazard and 45.6% as very low hazard or non-hazard areas.After validating the results,this methodology is ultimately confirmed to be available.

  11. Processing the ground vibration signal produced by debris flows: the methods of amplitude and impulses compared

    Science.gov (United States)

    Arattano, M.; Abancó, C.; Coviello, V.; Hürlimann, M.

    2014-12-01

    Ground vibration sensors have been increasingly used and tested, during the last few years, as devices to monitor debris flows and they have also been proposed as one of the more reliable devices for the design of debris flow warning systems. The need to process the output of ground vibration sensors, to diminish the amount of data to be recorded, is usually due to the reduced storing capabilities and the limited power supply, normally provided by solar panels, available in the high mountain environment. There are different methods that can be found in literature to process the ground vibration signal produced by debris flows. In this paper we will discuss the two most commonly employed: the method of impulses and the method of amplitude. These two methods of data processing are analyzed describing their origin and their use, presenting examples of applications and their main advantages and shortcomings. The two methods are then applied to process the ground vibration raw data produced by a debris flow occurred in the Rebaixader Torrent (Spanish Pyrenees) in 2012. The results of this work will provide means for decision to researchers and technicians who find themselves facing the task of designing a debris flow monitoring installation or a debris flow warning equipment based on the use of ground vibration detectors.

  12. Model simulations of flood and debris flow timing in steep catchments after wildfire

    Science.gov (United States)

    Rengers, Francis; Mcguire, Luke; Kean, Jason W.; Staley, Dennis M.; Hobley, D.E.J

    2016-01-01

    Debris flows are a typical hazard on steep slopes after wildfire, but unlike debris flows that mobilize from landslides, most post-wildfire debris flows are generated from water runoff. The majority of existing debris-flow modeling has focused on landslide-triggered debris flows. In this study we explore the potential for using process-based rainfall-runoff models to simulate the timing of water flow and runoff-generated debris flows in recently burned areas. Two different spatially distributed hydrologic models with differing levels of complexity were used: the full shallow water equations and the kinematic wave approximation. Model parameter values were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. These watersheds were affected by the 2009 Station Fire in the San Gabriel Mountains, CA, USA. Input data for the numerical models were constrained by time series of soil moisture, flow stage, and rainfall collected at field sites, as well as high-resolution lidar-derived digital elevation models. The calibrated parameters were used to model a third watershed in the burn area, and the results show a good match with observed timing of flow peaks. The calibrated roughness parameter (Manning's $n$) was generally higher when using the kinematic wave approximation relative to the shallow water equations, and decreased with increasing spatial scale. The calibrated effective watershed hydraulic conductivity was low for both models, even for storms occurring several months after the fire, suggesting that wildfire-induced changes to soil-water infiltration were retained throughout that time. Overall the two model simulations were quite similar suggesting that a kinematic wave model, which is simpler and more computationally efficient, is a suitable approach for predicting flood and debris flow timing in steep, burned watersheds.

  13. Investigating the self-organization of debris flows: theory, modelling, and empirical work

    Science.gov (United States)

    von Elverfeldt, Kirsten; Keiler, Margreth; Elmenreich, Wilfried; Fehárvári, István; Zhevzhyk, Sergii

    2014-05-01

    Here we present the conceptual framework of an interdisciplinary project on the theory, empirics, and modelling of the self-organisation mechanisms within debris flows. Despite the fact that debris flows are causing severe damages in mountainous regions such as the Alps, the process behaviour of debris flows is still not well understood. This is mainly due to the process dynamics of debris flows: Erosion and material entrainment are essential for their destructive power, and because of this destructiveness it is nearly impossible to measure and observe these mechanisms in action. Hence, the interactions between channel bed and debris flow remain largely unknown whilst this knowledge is crucial for the understanding of debris flow behaviour. Furthermore, while these internal parameter interactions are changing during an event, they are at the same time governing the temporal and spatial evolution of a given event. This project aims at answering some of these unknowns by means of bringing theory, empirical work, and modelling of debris flows together. It especially aims at explaining why process types are switching along the flow path during an event, e.g. the change from a debris flow to a hyperconcentrated flow and back. A second focus is the question of why debris flows sometimes exhibit strong erosion and sediment mobilisation during an event and at other times they do not. A promising theoretical framework for the analysis of these observations is that of self-organizing systems, and especially Haken's theory of synergetics. Synergetics is an interdisciplinary theory of open systems that are characterized by many individual, yet interacting parts, resulting in spatio-temporal structures. We hypothesize that debris flows can successfully be analysed within this theoretical framework. In order to test this hypothesis, an innovative modelling approach is chosen in combination with detailed field work. In self-organising systems the interactions of the system

  14. Frequency and magnitude of debris flows on Cheekye River, British Columbia

    Science.gov (United States)

    Jakob, M.; Friele, P.

    2010-01-01

    Natural hazard and risk assessments are predicated on a detailed understanding of the relationship between frequency and magnitude of the hazardous process under investigation. When information is sought from the deep past (i.e., several thousand years), continuous event records do not exist and the researcher has to rely on proxy data to develop the frequency-magnitude ( F- M) model. Such work is often prohibitively expensive and few well-researched examples for mass movement are available worldwide. The Cheekye fan is a desirable location for land development and has a depth and breadth of previous research unprecedented on any debris-flow fan in Canada. We pursued two principal strains of research to formulate a reliable F- M relationship. The first focuses on stratigraphic analyses combined with radiometric dating and dendrochronology to reconstruct a comprehensive picture of Holocene debris-flow activity. The second approach examines hydrological limitations of rock avalanche evolution into debris flows through either entrainment of saturated sediments or by failure of a landslide-generated dam and upstream impoundment. We thus hypothesize that debris flows from Cheekye River can be separated into two quasi-homogenous populations: those that are typically triggered by relatively small debris avalanches, slumps, or rock falls or simply by progressive bulking of in-stream erodible sediments; and those that are thought to result from transformation of rock avalanches. Our work suggests that debris flows exceeding some 3 million m 3 in volume are unlikely to reach the Cheekye fan as a result of limited water available to fully fluidize a rock avalanche. This analysis has also demonstrated that in order to arrive at reasonable estimates for the frequency and magnitude of debris flows on a complex alluvial fan significant multidisciplinary efforts are required. Without the significant precursor investigations and the additional efforts of this study, life and

  15. Upland Processes and Controls on September 2013 Debris Flows, Rocky Mountain National Park, Colorado

    Science.gov (United States)

    Patton, A. I.; Rathburn, S. L.; Bilderback, E. L.

    2015-12-01

    The extreme rainstorms that occurred in Colorado in September 2013 initiated numerous debris flows in the northern Front Range. These flows delivered sediment to upland streams, impacted buildings and infrastructure in and near Rocky Mountain National Park (RMNP), and underscored the importance of ongoing hazards in mountainous areas. Slope failures occurred primarily at elevations above 2600 m on south facing slopes >40 degrees. The 2013 failures provide a valuable opportunity to better understand site-specific geomorphic variables that control slope failure in the interior United States and the frequency of debris flows in steep terrain. Slope characteristics including soil depth, vegetation type and prevalence, contributing area, slope convexity/concavity and soil texture were compared between 11 debris flow sites and 30 control sites that did not fail in RMNP. This analysis indicates that slope morphology is the primary controlling factor: 45% of the debris flow sites initiated in or below a colluvial hollow and 36% of the failed sites initiated in other areas of convergent hillslope topography. Only one of the 30 control sites (3%) was located within a colluvial hollow and only two control sites (6%) were located in other areas of convergent topography. Difference in the average maximum soil thickness between debris flow sites (0.9 m) and control sites (0.7 m) is not significant but may reflect the difficulty of using a soil probe in glacially derived soils. Additional research includes field mapping and geochronologic study at one 2013 debris deposit with evidence of multiple mass movements. Preliminary results from the mapping indicate that up to six debris flows have occurred at this site. Radiocarbon analysis of organic material and 10Be analysis of quartz from boulders in old debris levees indicate the timing of past events in this area. Future land management in RMNP will utilize this understanding of controls on slope failure and event frequency.

  16. Characteristics of Large Low-frequency Debris Flow Hazards and Mitigation Strategies

    Institute of Scientific and Technical Information of China (English)

    WANG Shige

    2005-01-01

    A low-frequency debris flow took place in the north coastal range of Venezuela on Dec. 16, 1999,and scientists all over the world paid attention to this catastrophe. Four characteristics of low-frequency debris hazard are discussed: long return period and extreme catastrophe, special rare triggering factors,difficulty in distinguishing and a series of small hazards subsequent to the catastrophe. Different measures, such as preventing, forecast - warning,engineering, can be used for mitigating and controlling the catastrophe. In engineering practice, it is a key that large silt-trap dams are used to control rare large debris flow. A kind of low dam with cheap cost can be used to replace high dam in developing countries. A planning for controlling debris flow hazard in Cerro Grande stream of Venezuela is presented at the end of this paper.

  17. Debris Flow Hazard Map Simulation using FLO-2D For Selected Areas in the Philippines

    Science.gov (United States)

    Khallil Ferrer, Peter; Llanes, Francesca; dela Resma, Marvee; Realino, Victoriano, II; Obrique, Julius; Ortiz, Iris Jill; Aquino, Dakila; Narod Eco, Rodrigo; Mahar Francisco Lagmay, Alfredo

    2014-05-01

    On December 4, 2012, Super Typhoon Bopha wreaked havoc in the southern region of Mindanao, leaving 1,067 people dead and causing USD 800 million worth of damage. Classified as a Category 5 typhoon by the Joint Typhoon Warning Center (JTWC), Bopha brought intense rainfall and strong winds that triggered landslides and debris flows, particularly in Barangay (village) Andap, New Bataan municipality, in the southern Philippine province of Compostela Valley. The debris flow destroyed school buildings and covered courts and an evacuation center. Compostela Valley also suffered the most casualties of any province: 612 out of a total of 1,067. In light of the disaster in Compostela, measures were immediately devised to improve available geohazard maps to raise public awareness about landslides and debris flows. A debris flow is a very rapid to extremely rapid flow of saturated non-plastic debris in a steep channel. They are generated when heavy rainfall saturates sediments, causing them to flow down river channels within an alluvial fan situated at the base of the slope of a mountain drainage network. Many rural communities in the Philippines, such as Barangay Andap, are situated at the apex of alluvial fans and in the path of potential debris flows. In this study, we conducted simulations of debris flows to assess the risks in inhabited areas throughout the Philippines and validated the results in the field, focusing on the provinces of Pangasinan and Aurora as primary examples. Watersheds that drain in an alluvial fan using a 10-m resolution Synthetic Aperture Radar (SAR)-derived Digital Elevation Model (DEM) was first delineated, and then a 1 in 100-year rain return rainfall scenario for the watershed was used to simulate debris flows using FLO-2D, a flood-routing software. The resulting simulations were used to generate debris flow hazard maps which are consistent with danger zones in alluvial fans delineated previously from satellite imagery and available DEMs. The

  18. A process for fire-related debris flow initiation, Cerro Grande fire, New Mexico

    Science.gov (United States)

    Cannon, S.H.; Bigio, E.R.; Mine, E.

    2001-01-01

    In this study we examine factors that pertain to the generation of debris flows from a basin recently burned by wildfire. Throughout the summer 2000 thunderstorm season, we monitored rain gauges, channel cross-sections, hillslope transects, and nine sediment-runoff traps deployed in a steep, 0??15 km2 basin burned by the May 2000 Cerro Grande fire in New Mexico. Debris flows were triggered in the monitored basin during a rainstorm on July 16, 2000, in response to a maximum 30 min rainfall intensity of 31 mm h-1 (return period of approximately 2 years). Eleven other storms occurred before and after the July storm; these storms resulted in significant runoff, but did not generate debris flows. The debris flows generated by the July 16 storm initiated on a broad, open hillslope as levee-lined rills. The levees were composed of gravel- and cobble-sized material supported by an abundant fine-grained matrix. Debris-flow deposits were observed only on the hillslopes and in the first and second-order drainages of the monitored basin. No significant amounts of channel incision were measured following the passage of the debris flows, indicating that most of the material in the flows originated from the hillslopes. Sediment-runoff concentrations of between 0??23 and 0??81 kg 1-1 (with a mean of 0-42 kg 1-1) were measured from the hillslope traps following the debris-flow-producing storm. These concentrations, however, were not unique to the July 16 storm. The materials entrained by the July 16 storm contained a higher proportion of silt- plus clay-sized materials in the debris flows. The difference in materials demonstrates the critical role of the availability of fine-grained wood ash mantling the hillslopes in the runoff-dominated generation of post-wildfire debris flows. The highest sediment-runoff concentrations, again not unique to debris-flow production, were produced from maximum 30 min rainfall intensities greater than 20 mm h-1. Copyright ?? 2001 John Wiley and Sons

  19. Evidence for debris flow gully formation initiated by shallow subsurface water on Mars

    Science.gov (United States)

    Lanza, N.L.; Meyer, G.A.; Okubo, C.H.; Newsom, Horton E.; Wiens, R.C.

    2010-01-01

    The morphologies of some martian gullies appear similar to terrestrial features associated with debris flow initiation, erosion, and deposition. On Earth, debris flows are often triggered by shallow subsurface throughflow of liquid water in slope-mantling colluvium. This flow causes increased levels of pore pressure and thus decreased shear strength, which can lead to slide failure of slope materials and subsequent debris flow. The threshold for pore pressure-induced failure creates a distinct relationship between the contributing area supplying the subsurface flow and the slope gradient. To provide initial tests of a similar debris flow initiation hypothesis for martian gullies, measurements of the contributing areas and slope gradients were made at the channel heads of martian gullies seen in three HiRISE stereo pairs. These gullies exhibit morphologies suggestive of debris flows such as leveed channels and lobate debris fans, and have well-defined channel heads and limited evidence for multiple flows. Our results show an area-slope relationship for these martian gullies that is consistent with that observed for terrestrial gullies formed by debris flow, supporting the hypothesis that these gullies formed as the result of saturation of near-surface regolith by a liquid. This model favors a source of liquid that is broadly distributed within the source area and shallow; we suggest that such liquid could be generated by melting of broadly distributed icy materials such as snow or permafrost. This interpretation is strengthened by observations of polygonal and mantled terrain in the study areas, which are both suggestive of near-surface ice. ?? 2009 Elsevier Inc.

  20. Landslide and debris-flow hazard analysis and prediction using GIS in Minamata Hougawachi area, Japan

    Science.gov (United States)

    Wang, Chunxiang; Esaki, Tetsuro; Xie, Mowen; Qiu, Cheng

    2006-10-01

    On July 20, 2003, following a short duration of heavy rainfall, a debris-flow disaster occurred in the Minamata Hougawachi area, Kumamoto Prefecture, Japan. This disaster was triggered by a landslide. In order to assess the landslide and debris-flow hazard potential of this mountainous region, the study of historic landslides is critical. The objective of the study is to couple 3D slope-stability analysis models and 2D numerical simulation of debris flow within a geographical information systems in order to identity the potential landslide-hazard area. Based on field observations, the failure mechanism of the past landslide is analyzed and the mechanical parameters for 3D slope-stability analysis are calculated from the historic landslide. Then, to locate potential new landslides, the studied area is divided into slope units. Based on 3D slope-stability analysis models and on Monte Carlo simulation, the spots of potential landslides are identified. Finally, we propose a depth-averaged 2D numerical model, in which the debris and water mixture is assumed to be a uniform continuous, incompressible, unsteady Newtonian fluid. The method accurately models the historic debris flow. According to the 2D numerical simulation, the results of the debris-flow model, including the potentially inundated areas, are analyzed, and potentially affected houses, river and road are mapped.

  1. Variability in rainfall threshold for debris flow after the Chi-Chi earthquake in central Taiwan, China

    Institute of Scientific and Technical Information of China (English)

    C. L. SHIEH; Y. S. CHEN; Y. J. TSAI; J. H. WU

    2009-01-01

    The purpose of this study is to analyze variability in rainfall threshold for debris flow (critical rainfall for debris flow triggering) after the ML 7.3 Chi-Chi earthquake in central Taiwan in 1999.Two study sites with different geological conditions were surveyed in the earthquake area. Streambed surveys were conducted to continuously monitor debris flows between 1999 and 2006. During the 7-year study period, every debris flow event was identified, and the streambed characterized. Results show that the rainfall threshold for debris flow was remarkably lower just after the Chi-ChiEarthquake, but gradually recovered. To date, this rainfall threshold is still lower than the original level prior to the earthquake. This variability in rainfall threshold is closely related to the amount of sediment material in the initiation area of debris flow, which increased rapidly due to landslides resulting from the earthquake. With the increase in sediment material, the rainfall threshold was lowered severely during the first year following the Chi-Chi earthquake. However, heavy rainfalls mobilized the sediment material, causing debris flows and transporting sediment downstream. With the decrease in sediment material, the rainfall threshold recovered gradually over time. Furthermore,debris flows occurred only in the subbasins that had sufficient sediment material to cause significant movement. Hence, these results confirm that the sediment material in the initiation area of debris flow is a crucial component of the rainfall threshold for debris flow.

  2. Determination of the runoff threshold for triggering debris flows in the area affected by the Wenchuan Earthquake

    OpenAIRE

    Cui, P.; Guo, X.J.; Zhuang, J. Q.

    2014-01-01

    We constructed an experiment to determine the critical runoff discharge for debris flow initiation in Wenchuan Earthquake area. A single dimensionless discharge variable was integrated to incorporate influential parameters, including channel width, median particle diameter, and surface flow discharge. The results revealed that relationship with the debris flow density, slope and discharge required. Taking into account the behaviors of debris flow formation corresponding to d...

  3. A study on the early-warning technique concerning debris flow disasters

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    According to the principle of the eruption of debris flows, the new torrent classification techniques are brought forward. The torrent there can be divided into 4 types such as the debris flow torrent with high destructive strength, the debris flow torrent, high sand-carrying capacity flush flood torrent and common flush flood by the techniques. In this paper, the classification indices system and the quantitative rating methods are presented. Based on torrent classification, debris flow torrent hazard zone mapping techniques by which the debris flow disaster early-warning object can be ascertained accurately are identified. The key techniques of building the debris flow disaster neural network (NN)real time forecasting model are given detailed explanations in this paper, including the determination of neural node at the input layer, the output layer and the implicit layer, the construction of knowledge source and the initial weight value and so on. With this technique, the debris flow disaster real-time forecasting neural network model is built according to the rainfall features of the historical debris flow disasters, which includes multiple rain factors such as rainfall of the disaster day, the rainfall of 15 days before the disaster day, the maximal rate of rainfall in one hour and ten minutes. It can forecast the probability, critical rainfall of eruption of the debris flows, through the real-time rainfall monitoring or weather forecasting. Based on the torrent classification and hazard zone mapping, combined with rainfall monitoring in the rainy season and real-time forecasting models, the debris flow disaster early-warning system is built. In this system, the GIS technique, the advanced international software and hardware are applied, which makes the system′s performance steady with good expansibility. The system is a visual information system that serves management and decision-making, which can facilitate timely inspect of the variation of the torrent

  4. Potential postwildfire debris-flow hazards—A prewildfire evaluation for the Jemez Mountains, north-central New Mexico

    Science.gov (United States)

    Tillery, Anne C.; Haas, Jessica R.

    2016-08-11

    and Rio Grande-Santa Fe watershed areas. No subbasins in this group have basin areas less than 1.0 km2. Many of these areas already had significant mass‑wasting episodes following the Las Conchas Fire in 2011. Other subbasins with integrated hazard index values in the top 2 percent are scattered throughout the Jemez River watershed area, including some subbasins in the interior of the Valles Caldera. Only a few subbasins in the top integrated hazard index group are in the Rio Chama watershed area.This prewildfire assessment approach is valuable to resource managers because the analysis of the debris-flow threat is made before a wildfire occurs, which facilitates prewildfire management, planning, and mitigation. In north‑central New Mexico, widespread watershed restoration efforts are being done to safeguard vital watersheds against the threat of catastrophic wildfire. This study was designed to help select ideal locations for the restoration efforts that could have the best return on investment.

  5. Quantitative reconstruction of late Holocene surface evolution on an alpine debris-flow fan

    Science.gov (United States)

    Schürch, Peter; Densmore, Alexander L.; Ivy-Ochs, Susan; Rosser, Nick J.; Kober, Florian; Schlunegger, Fritz; McArdell, Brian; Alfimov, Vasili

    2016-12-01

    Debris-flow fans form a ubiquitous record of past debris-flow activity in mountainous areas, and may be useful for inferring past flow characteristics and consequent future hazard. Extracting information on past debris flows from fan records, however, requires an understanding of debris-flow deposition and fan surface evolution; field-scale studies of these processes have been very limited. In this paper, we document the patterns and timing of debris-flow deposition on the surface of the large and exceptionally active Illgraben fan in southwestern Switzerland. We use terrain analysis, radiocarbon dating of sediment fill in the Illgraben catchment, and cosmogenic 10Be and 36Cl exposure dating of debris-flow deposits on the fan to constrain the temporal evolution of the sediment routing system in the catchment and on the fan during the past 3200 years. We show that the fan surface preserves a set of debris-flow lobes that were predominantly deposited after the occurrence of a large rock avalanche near the fan apex at about 3200 years ago. This rock avalanche shifted the apex of the fan and impounded sediment within the Illgraben catchment. Subsequent evolution of the fan surface has been governed by both lateral and radial shifts in the active depositional lobe, revealed by the cosmogenic radionuclide dates and by cross-cutting geometrical relationships on the fan surface. This pattern of frequent avulsion and fan surface occupation provides field-scale evidence of the type of large-scale compensatory behavior observed in experimental sediment routing systems.

  6. Debris flow monitoring in the Acquabona watershed on the Dolomites (Italian Alps)

    Science.gov (United States)

    Berti, M.; Genevois, R.; LaHusen, R.; Simoni, A.; Tecca, P.R.

    2000-01-01

    In 1997 a field monitoring system was installed in Acquabona Creek in the Dolomites (Eastern Italian Alps) to observe the hydrologic conditions for debris flow occurrence and some dynamic properties of debris flow. The monitoring system consists of three remote stations: an upper one located at the head of a deeply-incised channel and two others located downstream. The system is equipped with sensors for measuring rainfall, pore pressures in the mobile channel bottom, ground vibrations, debris flow depth, total normal stress and fluid pore-pressure at the base of the flow. Two video cameras record events at the upper channel station and one video is installed at the lowermost station. During summer 1998, three debris flows (volumes from less than 1000 m3 up to 9000 m3) occurred at Acquabona. The following results were obtained from a preliminary analysis of the data: 1) All of the flows were triggered by rainfalls of less than 1 hour duration, with peak rainfall intensities ranging from 4.8 to 14.7 mm / 10 minute. 2) Debris flows initiated in several reaches of the channel, including the head of the talus slope. 3) The initial surges of the mature flows had a higher solid concentration and a lower velocity (up to 4 m/s) than succeeding, more dilute surges (more than 7 m/s). 4) Total normal stress and pore fluid pressures measured at the base of the flow (mean depth about 1.1 m) were similar (about 15 kPa), indicating a completely liquefied flow. 5) Peak flows entrained debris at a rate of about 6 m3/m of channel length and channel bed scouring was proportional to the local slope gradient and was still evident in the lower channel where the slope was 7??. ?? 2000 Elsevier Science Ltd. All rights reserved.

  7. LATE PLIOCENE-HOLOCENE DEBRIS FLOW DEPOSITS IN THE IONIAN SEA (EASTERN MEDITERRANEAN

    Directory of Open Access Journals (Sweden)

    GIOVANNI ALOISI DE LARDEREL

    1997-11-01

    Full Text Available Widespread coring of the Eastern Mediterranean Basin has outlined the existence of a systematic relation between lithology of debris flow deposits and physiographic setting. Whilst the topographic highs are characterized by pelagic sedimentation, the basin floors are alternatively subject to pelagic sedimentation and re-sedimentation pro cesses. Amongst the latters, turbidity flows and debris flows are the most common transport mechanisms.In this paper we present the study of the debris flow pro cess in the Ionian Sea using visual description of cores, grain size, carbonate content and smear slide analysis carried out on gravity and piston cores recovered over the past 20 years. A distinction has been made between debris flow deposits originating from the continental margins (North Africa and Malta Escarpment and those emplaced in the small basins amidst the Calabrian and Mediterranean ridges "Cobblestone Topography". As a result of the difference in setting, the former debris flow deposits include a great variety of lithologies and ages whilst the latter involve the pelagic sediments forming the typical Eastern Mediterranean Plio-Quaternary succession. A detailed study of clast and matrix structures makes it possible to describe the flows in terms of existing classifications of sediment gravity flows and to assume a clast support mechanism. Finally, biostratigraphy coupled with the presence of widespread marker beds enabled us to estimate the age of emplacement of the deposits and to hypothesize a triggering mechanism for flow initiation. Three flows are strictly related to the pelagic turbidite named homogenite, triggered by the explosive eruption of the Santorini volcano (Minoan eruption and therefore have an estimated age of 3,500 BP. The other deposits have ages ranging from 9,000 BP to about 70,000 BP and were originated by debris flows triggered by events such as earthquakes and glacial low sea level stands.    

  8. Predicting debris flow occurrence in Eastern Italian Alps based on hydrological and geomorphological modelling

    Science.gov (United States)

    Nikolopoulos, Efthymios I.; Borga, Marco; Destro, Elisa; Marchi, Lorenzo

    2015-04-01

    Most of the work so far on the prediction of debris flow occurrence is focused on the identification of critical rainfall conditions. However, findings in the literature have shown that critical rainfall thresholds cannot always accurately identify debris flow occurrence, leading to false detections (positive or negative). One of the main reasons for this limitation is attributed to the fact that critical rainfall thresholds do not account for the characteristics of underlying land surface (e.g. geomorphology, moisture conditions, sediment availability, etc), which are strongly related to debris flow triggering. In addition, in areas where debris flows occur predominantly as a result of channel bed failure (as in many Alpine basins), the triggering factor is runoff, which suggests that identification of critical runoff conditions for debris flow prediction is more pertinent than critical rainfall. The primary objective of this study is to investigate the potential of a triggering index (TI), which combines variables related to runoff generation and channel morphology, for predicting debris flows occurrence. TI is based on a threshold criterion developed on past works (Tognacca et al., 2000; Berti and Simoni, 2005; Gregoretti and Dalla Fontana, 2008) and combines information on unit width peak flow, local channel slope and mean grain size. Estimation of peak discharge is based on the application of a distributed hydrologic model, while local channel slope is derived from a high-resolution (5m) DEM. Scaling functions of peak flows and channel width with drainage area are adopted since it is not possible to measure channel width or simulate peak flow at all channel nodes. TI values are mapped over the channel network thus allowing spatially distributed prediction but instead of identifying debris flow occurrence on single points, we identify their occurrence with reference to the tributary catchment involved. Evaluation of TI is carried out for five different basins

  9. A New M Dwarf Debris Disk Candidate in a Young Moving Group Discovered with Disk Detective

    CERN Document Server

    Silverberg, Steven M; Wisniewski, John P; Gagne, Jonathan; Bans, Alissa S; Bhattacharjee, Shambo; Currie, Thayne R; Debes, John R; Biggs, Joseph R; Bosch, Milton; Doll, Katharina; Durantini-Luca, Hugo A; Enachioaie, Alexandru; Griffith,, Philip; Hyogo, Michiharu; Piniero, Fernanda

    2016-01-01

    We used the Disk Detective citizen science project and the BANYAN II Bayesian analysis tool to identify a new candidate member of a nearby young association with infrared excess. WISE J080822.18-644357.3, an M5.5-type debris disk system with significant excess at both 12 and 22 $\\mu$m, is a likely member ($\\sim 90\\%$ BANYAN II probability) of the $\\sim 45$ Myr-old Carina association. Since this would be the oldest M dwarf debris disk detected in a moving group, this discovery could be an important constraint on our understanding of M dwarf debris disk evolution.

  10. A New M Dwarf Debris Disk Candidate in a Young Moving Group Discovered with Disk Detective

    Science.gov (United States)

    Silverberg, Steven M.; Kuchner, Marc J.; Wisniewski, John P.; Gagne, Jonathan; Bans, Alissa S.; Bhattacharjee, Shambo; Currie, Thayne R.; Debes, John R.; Biggs, Joseph R; Bosch, Milton

    2016-01-01

    We used the Disk Detective citizen science project and the BANYAN II Bayesian analysis tool to identify a new candidate member of a nearby young association with infrared excess. WISE J080822.18-644357.3, an M5.5-type debris disk system with significant excess at both 12 and 22 microns, is a likely member (approx.90% BANYAN II probability) of the approx.45 Myr old Carina association. Since this would be the oldest M dwarf debris disk detected in a moving group, this discovery could be an important constraint on our understanding of M dwarf debris disk evolution.

  11. Simulating debris flows through a hexagonal cellular automata model: SCIDDICA S3–hex

    Directory of Open Access Journals (Sweden)

    D. D’Ambrosio

    2003-01-01

    Full Text Available Cellular Automata (CA represent a formal frame for dynamical systems, which evolve on the base of local interactions. Some types of landslide, such as debris flows, match well this requirement. The latest hexagonal release (S3–hex of the deterministic model SCIDDICA, specifically developed for simulating debris flows, is described. For CA simulation purposes, landslides can be viewed as a dynamical system, subdivided into elementary parts, whose state evolves exclusively as a consequence of local interactions within a spatial and temporal discretum. Space is the world of the CA, here constituted by hexagonal cells. The attributes of each cell ("substates" describe physical characteristics. For computational reasons, the natural phenomenon is "decomposed" into a number of elementary processes, whose proper composition makes up the "transition function" of the CA. By simultaneously applying this function to all the cells, the evolution of the phenomenon can be simulated in terms of modifications of the substates. SCIDDICA S3–hex exhibits a great flexibility in modelling debris flows. With respect to the previous releases of the model, the mechanism of progressive erosion of the soil cover has been added to the transition function. Considered substates are: altitude; thickness and energy of landslide debris; depth of erodable soil cover; debris outflows. Considered elementary processes are: mobilisation triggering and effect (T1, debris outflows (I1, update of landslide debris thickness and energy (I2, and energy loss (T2.  Simulations of real debris flows, occurred in Campania (Southern Italy in May 1998 (Sarno and December 1999 (San Martino V.C. and Cervinara, have been performed for model calibration purposes; some examples of analysis are briefly described. Possible applications of the method are: risk mapping, also based on a statistical approach; evaluating the effects of mitigation actions (e.g. stream deviations, topographic

  12. In situ measurements of post-fire debris flows in southern California: Comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions

    Science.gov (United States)

    Kean, J.W.; Staley, D.M.; Cannon, S.H.

    2011-01-01

    Debris flows often occur in burned steeplands of southern California, sometimes causing property damage and loss of life. In an effort to better understand the hydrologic controls on post-fire debris-flow initiation, timing and magnitude, we measured the flow stage, rainfall, channel bed pore fluid pressure and hillslope soil-moisture accompanying 24 debris flows recorded in five different watersheds burned in the 2009 Station and Jesusita Fires (San Gabriel and Santa Ynez Mountains). The measurements show substantial differences in debris-flow dynamics between sites and between sequential events at the same site. Despite these differences, the timing and magnitude of all events were consistently associated with local peaks in short duration (debris-flow stage was best cross-correlated with time series of 5-min rainfall intensity, and lagged the rainfall by an average of just 5 min. An index of debris-flow volume was also best correlated with short-duration rainfall intensity, but found to be poorly correlated with storm cumulative rainfall and hillslope soil water content. Post-event observations of erosion and slope stability modeling suggest that the debris flows initiated primarily by processes related to surface water runoff, rather than shallow landslides. By identifying the storm characteristics most closely associated with post-fire debris flows, these measurements provide valuable guidance for warning operations and important constraints for developing and testing models of post-fire debris flows. copyright. 2011 by the American Geophysical Union.

  13. In situ measurements of post-fire debris flows in southern California: Comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions

    Science.gov (United States)

    Kean, Jason W.; Staley, Dennis M.; Cannon, Susan H.

    2011-12-01

    Debris flows often occur in burned steeplands of southern California, sometimes causing property damage and loss of life. In an effort to better understand the hydrologic controls on post-fire debris-flow initiation, timing and magnitude, we measured the flow stage, rainfall, channel bed pore fluid pressure and hillslope soil-moisture accompanying 24 debris flows recorded in five different watersheds burned in the 2009 Station and Jesusita Fires (San Gabriel and Santa Ynez Mountains). The measurements show substantial differences in debris-flow dynamics between sites and between sequential events at the same site. Despite these differences, the timing and magnitude of all events were consistently associated with local peaks in short duration (debris-flow stage was best cross-correlated with time series of 5-min rainfall intensity, and lagged the rainfall by an average of just 5 min. An index of debris-flow volume was also best correlated with short-duration rainfall intensity, but found to be poorly correlated with storm cumulative rainfall and hillslope soil water content. Post-event observations of erosion and slope stability modeling suggest that the debris flows initiated primarily by processes related to surface water runoff, rather than shallow landslides. By identifying the storm characteristics most closely associated with post-fire debris flows, these measurements provide valuable guidance for warning operations and important constraints for developing and testing models of post-fire debris flows.

  14. Quick Analysis Method for Estimating Debris Flow Prone Area Caused by Overflow from Landslide dam

    Science.gov (United States)

    Shimizu, T.; Uchida, T.; Yamakoshi, T.; Yoshino, K.; Kisa, H.; Ishizuka, T.; Kaji, A.

    2012-04-01

    When earthquake or torrential rainfall cause deep catastrophic landslides, landslide dams can be formed in mountainous region. If water overflows from the landslide dams, large scale debris flow can occurs and possibly causes serious disasters in the downward region. Debris flow caused by the overflow from landslide dam is possible to affect the larger area than normal debris flow and flash flood. It is important for both a decision maker and resident in the area to recognize the disaster prone area as early as possible. For that reason, it is important to establish a quick analysis method for estimating debris flow prone area caused by overflow from landslide dams under the emergency situation. This situation requires the method to have both accuracy and speed for release. Nonetheless these two factors have trade-off relationship. We recently developed the quick analysis method to estimate debris flow disaster prone area caused by overflow from landslide dams. The method including the ways of efficient survey and numerical simulation programs called QUAD-L (QUick Analysis system for Debris flow caused by Landslide dam overflow). Our quick analysis system was actually applied to show the area for evacuation against debris flow caused by overflow from landslide dam formed by the 2011 Typhoon Talas which hit mainly the central region of Japan on September 2-4th, 2011. In addition to background of this application, since May 1st, 2011, Erosion and Sediment Control (SABO) Department of the Ministry of Land, Infrastructure, Transport and Tourism, Japan (MLIT) launched a new scheme using above-mentioned quick analysis method.

  15. Experimental study of debris flow caused by domino failures of landslide dams

    Institute of Scientific and Technical Information of China (English)

    Hua-Yong CHEN; Peng CUI; Gordon G.D.ZHOU; Xing-Hua ZHU; Jin-Bo TANG

    2014-01-01

    The formation of landslide dams is often induced by earthquakes in mountainous areas. The failure of a landslide dam typically results in catastrophic flash floods or debris flows downstream. Significant attention has been given to the processes and mechanisms involved in the failure of individual landslide dams. However, the processes leading to domino failures of multiple landslide dams remain unclear. In this study, experimental tests were carried out to investigate the domino failure of landslide dams and the consequent enlargement of downstream debris flows. Different blockage conditions were considered, including complete blockage, partial blockage and erodible bed (no blockage). The mean velocity of the flow front was estimated by videos. Total stress transducers (TSTs) and Laser range finders (LRFs) were employed to measure the total stress and the depth of the flow front, respectively. Under a complete blockage pattern, a portion of the debris flow was trapped in front of each retained landslide dam before the latter collapsed completely. This was accompanied by a dramatic decrease in the mean velocity of the flow front. Conversely, under both partial blockage and erodible bed conditions, the mean velocity of the flow front increased gradually downward along the sloping channel. Domino failures of the landslide dams were triggered when a series of dams (complete blockage and partial blockage) were distributed along the flume. However, not all of these domino failures led to enlarged debris flows. The modes of dam failures have significant impacts on the enlargement of debris flows. Therefore, further research is necessary to understand the mechanisms of domino failures of landslide dams and their effects on the enlargement of debris flows.

  16. Onset of submarine debris flow deposition far from original giant landslide.

    Science.gov (United States)

    Talling, P J; Wynn, R B; Masson, D G; Frenz, M; Cronin, B T; Schiebel, R; Akhmetzhanov, A M; Dallmeier-Tiessen, S; Benetti, S; Weaver, P P E; Georgiopoulou, A; Zühlsdorff, C; Amy, L A

    2007-11-22

    Submarine landslides can generate sediment-laden flows whose scale is impressive. Individual flow deposits have been mapped that extend for 1,500 km offshore from northwest Africa. These are the longest run-out sediment density flow deposits yet documented on Earth. This contribution analyses one of these deposits, which contains ten times the mass of sediment transported annually by all of the world's rivers. Understanding how this type of submarine flow evolves is a significant problem, because they are extremely difficult to monitor directly. Previous work has shown how progressive disintegration of landslide blocks can generate debris flow, the deposit of which extends downslope from the original landslide. We provide evidence that submarine flows can produce giant debris flow deposits that start several hundred kilometres from the original landslide, encased within deposits of a more dilute flow type called turbidity current. Very little sediment was deposited across the intervening large expanse of sea floor, where the flow was locally very erosive. Sediment deposition was finally triggered by a remarkably small but abrupt decrease in sea-floor gradient from 0.05 degrees to 0.01 degrees. This debris flow was probably generated by flow transformation from the decelerating turbidity current. The alternative is that non-channelized debris flow left almost no trace of its passage across one hundred kilometres of flat (0.2 degrees to 0.05 degrees) sea floor. Our work shows that initially well-mixed and highly erosive submarine flows can produce extensive debris flow deposits beyond subtle slope breaks located far out in the deep ocean.

  17. Water fact sheet, history of landslides and debris flows at Mount Rainier

    Science.gov (United States)

    Scott, K.M.; Vallance, J.W.

    1993-01-01

    Many landslides and debris flows have originated from Mount Rainier since the retreat of glaciers from Puget Sound about 10,000 years ago. The recurrent instability is due to several factors--height of the steep-sided volcanic cone, frequent volcanic activity, continuous weakening of rock by steam and hot, chemical-laden water, and exposure of unstable areas as the mountains glaciers have receded. The landslide scars and deposits tell a fascinating story of the changing shape of the volcano. Landslides occur when part of the volcano "collapses" or fails and slides away from the rest of the volcano. The failed mass rapidly breaks up into a jumble of disaggregated pieces that flow at high velocity like a fluid. Clay and water in the debris cause further change to a liquid slurry known as a debris flow or mudflow. Volcanic debris flows are also widely known by the Indonesian term "lahar." Although the largest debris flows at Rainier form from landslides, many smaller flows are caused by volcanic eruptions, intense rainfall, and glacial-outburst floods.

  18. Numerical simulation of failure behavior of granular debris flows based on flume model tests.

    Science.gov (United States)

    Zhou, Jian; Li, Ye-xun; Jia, Min-cai; Li, Cui-na

    2013-01-01

    In this study, the failure behaviors of debris flows were studied by flume model tests with artificial rainfall and numerical simulations (PFC(3D)). Model tests revealed that grain sizes distribution had profound effects on failure mode, and the failure in slope of medium sand started with cracks at crest and took the form of retrogressive toe sliding failure. With the increase of fine particles in soil, the failure mode of the slopes changed to fluidized flow. The discrete element method PFC(3D) can overcome the hypothesis of the traditional continuous medium mechanic and consider the simple characteristics of particle. Thus, a numerical simulations model considering liquid-solid coupled method has been developed to simulate the debris flow. Comparing the experimental results, the numerical simulation result indicated that the failure mode of the failure of medium sand slope was retrogressive toe sliding, and the failure of fine sand slope was fluidized sliding. The simulation result is consistent with the model test and theoretical analysis, and grain sizes distribution caused different failure behavior of granular debris flows. This research should be a guide to explore the theory of debris flow and to improve the prevention and reduction of debris flow.

  19. Numerical Simulation of Failure Behavior of Granular Debris Flows Based on Flume Model Tests

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    2013-01-01

    Full Text Available In this study, the failure behaviors of debris flows were studied by flume model tests with artificial rainfall and numerical simulations (PFC3D. Model tests revealed that grain sizes distribution had profound effects on failure mode, and the failure in slope of medium sand started with cracks at crest and took the form of retrogressive toe sliding failure. With the increase of fine particles in soil, the failure mode of the slopes changed to fluidized flow. The discrete element method PFC3D can overcome the hypothesis of the traditional continuous medium mechanic and consider the simple characteristics of particle. Thus, a numerical simulations model considering liquid-solid coupled method has been developed to simulate the debris flow. Comparing the experimental results, the numerical simulation result indicated that the failure mode of the failure of medium sand slope was retrogressive toe sliding, and the failure of fine sand slope was fluidized sliding. The simulation result is consistent with the model test and theoretical analysis, and grain sizes distribution caused different failure behavior of granular debris flows. This research should be a guide to explore the theory of debris flow and to improve the prevention and reduction of debris flow.

  20. Gully recharge rates and debris flows: A combined numerical modeling and field-based investigation, Haida Gwaii, British Columbia

    Science.gov (United States)

    Martin, Yvonne E.; Johnson, E. A.; Chaikina, Olga

    2017-02-01

    Rainfall, snowmelt and/or other mass movements are possible triggers to initiate debris flows. In supply-limited landscapes, clastic and organic materials (together termed debris) accumulate in the gully via various geomorphic processes that occur on gully sidewalls. The conceptualization of this phenomenon has been termed the gully recharge rate, with several recent field studies measuring such rates in coastal British Columbia. In the present study, a simple numerical model is introduced to estimate debris flow volumes in Haida Gwaii, British Columbia based on debris flow recurrence intervals, gully recharge rates and factors affecting deposition of debris flow material. Debris flow volumes obtained in model runs are somewhat lower than field-based values by about half, which is a reasonable result for this exploratory study. The annual erosion rate (clastic material) for debris flows in the model run is 0.031 mm yr- 1. This value is about 0.57 × of the field-based value and is lower than the erosion rate for debris slides in Haida Gwaii of 0.1 mm yr- 1. Deposition of debris flows in the model occurs in 60% of cases due to a decrease in channel gradient, with deposition resulting from high stream junction angles being less common. Locations for initiation of debris flow deposition were situated in stream orders 3 and 4 in 60% of cases. Sensitivity analysis shows that in comparison to other model variables, recharge rate has the greatest effect on the statistics and frequency distributions of debris flow volumes and total debris flow volume (summation of all debris activity in a basin) over the study time period.

  1. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment

    Science.gov (United States)

    Iverson, R.M.; Reid, M.E.; Logan, M.; LaHusen, R.G.; Godt, J.W.; Griswold, J.P.

    2011-01-01

    Debris flows typically occur when intense rainfall or snowmelt triggers landslides or extensive erosion on steep, debris-mantled slopes. The flows can then grow dramatically in size and speed as they entrain material from their beds and banks, but the mechanism of this growth is unclear. Indeed, momentum conservation implies that entrainment of static material should retard the motion of the flows if friction remains unchanged. Here we use data from large-scale experiments to assess the entrainment of bed material by debris flows. We find that entrainment is accompanied by increased flow momentum and speed only if large positive pore pressures develop in wet bed sediments as the sediments are overridden by debris flows. The increased pore pressure facilitates progressive scour of the bed, reduces basal friction and instigates positive feedback that causes flow speed, mass and momentum to increase. If dryer bed sediment is entrained, however, the feedback becomes negative and flow momentum declines. We infer that analogous feedbacks could operate in other types of gravity-driven mass flow that interact with erodible beds. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  2. Meteoroid and debris special investigation group data acquisition procedures

    Science.gov (United States)

    See, Thomas H.; Allbrooks, Martha K.; Atkinson, Dale R.; Sapp, Clyde A.; Simon, Charles G.; Zolensky, Mike E.

    1992-01-01

    The entire LDEF spacecraft was examined by M&D SIG for impact (i.e., craters greater than or = 0.5 mm and penetrations greater than or = 0.3 mm in diameter) and related features (e.g., debris, secondaries). During the various detailed surveys conducted at NASA Kennedy, approx. 5,000 impact related features were photodocumented, and their locations measured and recorded; an additional approx. 30,000 smaller features were counted. The equipment and techniques used by the M&D SIG permitted the determination and recording of the locations and diameters of the 5,000 imaged features. A variety of experimental and LDEF structural hardware was acquired by the M&D SIG and is presently being examined and curated at NASA Johnson.

  3. Wildfire-related debris-flow generation through episodic progressive sediment-bulking processes, western USA

    Science.gov (United States)

    Cannon, S.H.; Gartner, J.E.; Parrett, C.; Parise, M.; ,

    2003-01-01

    Debris-flow initiation processes on hillslopes recently burned by wildfire differ from those generally recognized on unburned, vegetated hillslopes. These differences result from fire-induced changes in the hydrologic response to rainfall events. In this study, detailed field and aerial photographic mapping, observations, and measurements of debris-flow events from three sites in the western U.S. are used to describe and evaluate the process of episodic progressive sediment bulking of storm runoff that leads to the generation of post-wildfire debris flows. Our data demonstrate the effects of material credibility, sediment availability on hillslopes and in channels, the degree of channel confinement, the formation of continuous channel incision, and the upslope contributing area and its gradient on the generation of flows and the magnitude of the response are demonstrated. ?? 2003 Millpress.

  4. Impact of the 2008 Wenchuan earthquake in China on subsequent long-term debris flow activities in the epicentral area

    Science.gov (United States)

    Zhang, S.; Zhang, L. M.

    2017-01-01

    The 2008 Wenchuan earthquake triggered the largest number of landslides among the recent strong earthquake events around the world. The loose landslide materials were retained on steep terrains and deep gullies. In the period from 2008 to 2015, numerous debris flows occurred during rainstorms along the Provincial Road 303 (PR303) near the epicentre of the earthquake, causing serious damage to the reconstructed highway. Approximately 5.24 × 106 m3 of debris-flow sediment was deposited shortly after the earthquake. This paper evaluates the evolution of the debris flows that occurred after the Wenchuan earthquake, which helps understand long-term landscape evolution and cascading effects in regions impacted by mega earthquakes. With the aid of a GIS platform combined with field investigations, we continuously tracked movements of the loose deposit materials in all the debris flow gullies along an 18 km reach of PR303 and the characteristics of the regional debris flows during several storms in the past seven years. This paper presents five important aspects of the evolution of debris flows: (1) supply of debris flow materials; (2) triggering rainfall; (3) initiation mechanisms and types of debris flows; (4) runout characteristics; and (5) elevated riverbed due to the deposited materials from the debris flows. The hillslope soil deposits gradually evolved into channel deposits and the solid materials in the channels moved towards the ravine mouth. Accordingly, channelized debris flows became dominant gradually. Due to the decreasing source material volume and changes in debris flow characteristics, the triggering rainfall tends to increase from 30 mm h- 1 in 2008 to 64 mm h- 1 in 2013, and the runout distance tends to decrease over time. The runout materials blocked the river and elevated the riverbed by at least 30 m in parts of the study area. The changes in the post-seismic debris flow activity can be categorized into three stages, i.e., active, unstable, and

  5. Meteorological factors driven glacial till changing and the associated periglacial debris flows in Tianmo Valley, southeast Tibetan Plateau

    OpenAIRE

    Deng, Mingfeng; Chen, Ningsheng; Liu, Mei

    2016-01-01

    Meteorological studies have indicated that high Alpines are strongly affected by climate warming. Periglacial debris flows are more frequent in deglaciated regions. The combination of rainfall and air temperature controls the initiation of periglacial debris flows; and the addition of melt-water due to higher air temperatures enhances the complexity of the triggering mechanism compared to storm-induced debris flows. In south-eastern Tibetan Plateau where temperate glaciers are widely distribu...

  6. Evaluating the use of high-resolution numerical weather forecast for debris flow prediction.

    Science.gov (United States)

    Nikolopoulos, Efthymios I.; Bartsotas, Nikolaos S.; Borga, Marco; Kallos, George

    2015-04-01

    The sudden occurrence combined with the high destructive power of debris flows pose a significant threat to human life and infrastructures. Therefore, developing early warning procedures for the mitigation of debris flows risk is of great economical and societal importance. Given that rainfall is the predominant factor controlling debris flow triggering, it is indisputable that development of effective debris flows warning procedures requires accurate knowledge of the properties (e.g. duration, intensity) of the triggering rainfall. Moreover, efficient and timely response of emergency operations depends highly on the lead-time provided by the warning systems. Currently, the majority of early warning systems for debris flows are based on nowcasting procedures. While the latter may be successful in predicting the hazard, they provide warnings with a relatively short lead-time (~6h). Increasing the lead-time is necessary in order to improve the pre-incident operations and communication of the emergency, thus coupling warning systems with weather forecasting is essential for advancing early warning procedures. In this work we evaluate the potential of using high-resolution (1km) rainfall fields forecasted with a state-of-the-art numerical weather prediction model (RAMS/ICLAMS), in order to predict the occurrence of debris flows. Analysis is focused over the Upper Adige region, Northeast Italy, an area where debris flows are frequent. Seven storm events that generated a large number (>80) of debris flows during the period 2007-2012 are analyzed. Radar-based rainfall estimates, available from the operational C-band radar located at Mt Macaion, are used as the reference to evaluate the forecasted rainfall fields. Evaluation is mainly focused on assessing the error in forecasted rainfall properties (magnitude, duration) and the correlation in space and time with the reference field. Results show that the forecasted rainfall fields captured very well the magnitude and

  7. A new hierarchical Bayesian approach to analyse environmental and climatic influences on debris flow occurrence

    Science.gov (United States)

    Jomelli, Vincent; Pavlova, Irina; Eckert, Nicolas; Grancher, Delphine; Brunstein, Daniel

    2015-12-01

    How can debris flow occurrences be modelled at regional scale and take both environmental and climatic conditions into account? And, of the two, which has the most influence on debris flow activity? In this paper, we try to answer these questions with an innovative Bayesian hierarchical probabilistic model that simultaneously accounts for how debris flows respond to environmental and climatic variables. In it, full decomposition of space and time effects in occurrence probabilities is assumed, revealing an environmental and a climatic trend shared by all years/catchments, respectively, clearly distinguished from residual "random" effects. The resulting regional and annual occurrence probabilities evaluated as functions of the covariates make it possible to weight the respective contribution of the different terms and, more generally, to check the model performances at different spatio-temporal scales. After suitable validation, the model can be used to make predictions at undocumented sites and could be used in further studies for predictions under future climate conditions. Also, the Bayesian paradigm easily copes with missing data, thus making it possible to account for events that may have been missed during surveys. As a case study, we extract 124 debris flow event triggered between 1970 and 2005 in 27 catchments located in the French Alps from the French national natural hazard survey and model their variability of occurrence considering environmental and climatic predictors at the same time. We document the environmental characteristics of each debris flow catchment (morphometry, lithology, land cover, and the presence of permafrost). We also compute 15 climate variables including mean temperature and precipitation between May and October and the number of rainy days with daily cumulative rainfall greater than 10/15/20/25/30/40 mm day- 1. Application of our model shows that the combination of environmental and climatic predictors explained 77% of the overall

  8. Description and analysis of the debris flows occurred during 2008 in the Eastern Pyrenees

    Directory of Open Access Journals (Sweden)

    M. Portilla

    2010-07-01

    Full Text Available Rainfall-triggered landslides taking place in the Spanish Eastern Pyrenees have usually been analysed on a regional scale. Most research focussed either on terrain susceptibility or on the characteristics of the critical rainfall, neglecting a detailed analysis of individual events. In contrast to other mountainous regions, research on debris flow has only been performed marginally and associated hazard has mostly been neglected.

    In this study, five debris flows, which occurred in 2008, are selected; and site specific descriptions and analysis regarding geology, morphology, rainfall data and runout were performed. The results are compared with worldwide data and some conclusions on hazard assessment are presented.

    The five events can be divided into two in-channel debris flows and three landslide-triggered debris flows. The in-channel generated debris flows exceeded 10 000 m3, which are unusually large mass movements compared to historic events which occurred in the Eastern Pyrenees. In contrast, the other events mobilised total volumes less than 2000 m3. The geomorphologic analysis showed that the studied events emphasize similar patterns when compared to published data focussing on slope angle in the initiation zone or catchment area.

    Rainfall data revealed that all debris flows were triggered by high intensity-short duration rainstorms during the summer season. Unfortunately, existing rainfall thresholds in the Eastern Pyrenees consider long-lasting rainfall, usually occurring in autumn/winter. Therefore, new thresholds should be established taking into account the rainfall peak intensity in mm/h, which seems to be a much more relevant factor for summer than the event's total precipitation.

    The runout analysis of the 2008 debris flows confirms the trend that larger volumes generally induce higher mobility. The numerical simulation of the Riu Runer event shows that its dynamic behaviour

  9. Controls on debris flow bulking in proglacial gully networks on Mount Rainier, WA

    Science.gov (United States)

    Legg, N. T.; Meigs, A.; Grant, G. E.; Kennard, P.

    2012-12-01

    Conversion of floodwaters to debris flows due to sediment bulking continues to be a poorly understood phenomenon. This study examines the initiation zone of a series of six debris flows that originated in proglacial areas of catchments on the flank of Mount Rainier during one storm in 2006. One-meter spatial resolution aerial photographs and LiDAR DEMs acquired before and after the storm reveal the lack of a single mass failure to explain the debris flow deposits. Rather, the imagery show appreciable gully widening along reaches up to approximately 1.5 km in length. Based on gully discharges estimated from rainfall rates and estimates of sediment contribution from gully wall width change, we find that the sediment volumes contributed from gully walls are sufficient to bulk floodwaters up to debris flow concentrations. Points in gullies where width change began (upstream limit) in 2006 have a power law trend (R2 = 0.58) in terms of slope-drainage area. Reaches with noticeable width change, which we refer to as bulking reaches (BR), plot along a similar trend with greater drainage areas and gentler slopes. We then extracted slope and drainage area of all proglacial drainage networks to examine differences in morphology between debris flow basins (DFB) and non-debris flow basins (NDFB), hypothesizing that DFB would have a greater portion of their drainage networks with similar morphology to BR than NDFB. A comparison of total network length with greater slope and area than BR reveals that the two basins types are not statistically different. Lengths of the longest reaches with greater slope and drainage area than the BR trend, however, are statistically longer in DFB than in the NDFBs (p<0.05). These results suggest that debris flow initiation by sediment bulking does not operate as a simple threshold phenomenon in slope-area space. Instead debris flow initiation via bulking depends upon slope, drainage area, and gully length. We suspect the dependence on length

  10. Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland

    Science.gov (United States)

    Walter, Fabian; Burtin, Arnaud; McArdell, Brian W.; Hovius, Niels; Weder, Bianca; Turowski, Jens M.

    2017-06-01

    Heavy precipitation can mobilize tens to hundreds of thousands of cubic meters of sediment in steep Alpine torrents in a short time. The resulting debris flows (mixtures of water, sediment and boulders) move downstream with velocities of several meters per second and have a high destruction potential. Warning protocols for affected communities rely on raising awareness about the debris-flow threat, precipitation monitoring and rapid detection methods. The latter, in particular, is a challenge because debris-flow-prone torrents have their catchments in steep and inaccessible terrain, where instrumentation is difficult to install and maintain. Here we test amplitude source location (ASL) as a processing scheme for seismic network data for early warning purposes. We use debris-flow and noise seismograms from the Illgraben catchment, Switzerland, a torrent system which produces several debris-flow events per year. Automatic in situ detection is currently based on geophones mounted on concrete check dams and radar stage sensors suspended above the channel. The ASL approach has the advantage that it uses seismometers, which can be installed at more accessible locations where a stable connection to mobile phone networks is available for data communication. Our ASL processing uses time-averaged ground vibration amplitudes to estimate the location of the debris-flow front. Applied to continuous data streams, inversion of the seismic amplitude decay throughout the network is robust and efficient, requires no manual identification of seismic phase arrivals and eliminates the need for a local seismic velocity model. We apply the ASL technique to a small debris-flow event on 19 July 2011, which was captured with a temporary seismic monitoring network. The processing rapidly detects the debris-flow event half an hour before arrival at the outlet of the torrent and several minutes before detection by the in situ alarm system. An analysis of continuous seismic records furthermore

  11. Sedimentology and clast fabric of subaerial debris flow facies in a glacially-influenced alluvial fan

    Science.gov (United States)

    Eyles, N.; Kocsis, S.

    1988-09-01

    A large alluvial fan (2 km 2), constructed between 11,000 and 7000 years B.P. at the mouth of Cinquefoil Creek in interior British Columbia, Canada, is identified as "glacially-influenced, debris flow-dominated". The fan was rapidly constructed during and immediately after deglaciation when large volumes of glacial debris were resedimented downslope; fans of this type are widespread in the glaciated portion of the North American Cordillera. Diamict facies, deposited as debris flows, account for 48% of the fan volume, sheetflodd gravels 37%, and other facies 15%. Diamicts show three facies types; crudely-bedded facies containing rafts of soft sediment that are attributed to downslope collapse and mixing of heterogeneous glacial deposits. These occur within the core of the fan. Massive and weakly graded (inverse to normal) diamict facies, derived from the downslope flow of weathered volcanic bedrock, occur within a well-defined bed that can be traced across the entire fan. The occurrence of weakly graded facies as lateral equivalents to massive facies within the same bed, implies the partial development of turbulent, high-velocity "streams" within a viscous debris flow moving over a slope of 6°. Clast fabrics in these facies show weakly-clustered a-axes dipping up and downslope comparable to other debris flows and lahars. The Cinquefoil fan, its internal structure and facies, provides a good "modern" analogue for ancient diamictite sequences deposited in areas of active uplift, rifting and glaciation.

  12. Experimental Research of Reinforced Concrete Buildings Struck by Debris Flow in Mountain Areas of Western China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu; WEI Fangqiang; WANG Qing

    2007-01-01

    It's very important to simulate impact load of debris flow effectively and to investigate dynamic response of architectures under dynamic impact of debris flow, which are necessary to design disaster mitigation construction. Firstly, reinforced concrete domestic architectures in mountain areas of western China had been chosen as main architecture style. The bearing load style and the destructed shape of reinforced framed construction impacted by discontinuous viscous debris flow were studied systematically. Secondly, Jiangjia Ravine debris flow valley in Yunnan Province, China had been chosen as research region. Utilizing based data from fieldwork and practical survey, the authors simulated and calculated theoretically impact force of discontinuous viscous debris flow. Thirdly, an impact data collecting system (IMHE IDCS) was designed and developed to fulfill designed simulation experiments. Finally, a series of impact test of researched structure models had been fulfilled. During experiment, the destructed shape and course of models were observed and the dynamic displacement data and main natural frequency data of models were collected and analyzed.

  13. Empirical atmospheric thresholds for debris flows and flash floods in the Southern French Alps

    Directory of Open Access Journals (Sweden)

    T. Turkington

    2014-01-01

    Full Text Available Debris flows and flash floods are often preceded by intense, convective rainfall. The establishment of reliable rainfall thresholds is an important component for quantitative hazard and risk assessment, and for the development of an early warning system. Traditional empirical thresholds based on peak intensity, duration and antecedent rainfall can be difficult to verify due to the localized character of the rainfall and the absence of weather radar or sufficiently dense rain gauge networks in mountainous regions. However, convective rainfall can be strongly linked to regional atmospheric patterns and profiles. There is potential to employ this in empirical threshold analysis. This work develops a methodology to determine robust thresholds for flash floods and debris flows utilizing regional atmospheric conditions derived from ECMWF ERA-Interim reanalysis data, comparing the results with rain gauge derived thresholds. The method includes selecting the appropriate atmospheric indicators, categorizing the potential thresholds, determining and testing the thresholds. The method is tested in the Ubaye Valley in the southern French Alps, which is known to have localized convection triggered debris flows and flash floods. This paper shows that instability of the atmosphere and specific humidity at 850 hPa are the most important atmospheric indicators for debris flows and flash floods in the study area. Furthermore, this paper demonstrates that atmospheric reanalysis data is an important asset, and could replace rainfall measurements in empirical exceedence thresholds for debris flows and flash floods.

  14. Hazard Assessment of Debris-Flow along the Baicha River in Heshigten Banner, Inner Mongolia, China

    Science.gov (United States)

    Cao, Chen; Xu, Peihua; Chen, Jianping; Zheng, Lianjing; Niu, Cencen

    2016-01-01

    This study focused on a cloud model approach for considering debris-flow hazard assessment, in which the cloud model provided a model for transforming the qualitative and quantitative expressions. Additionally, the entropy method and analytical hierarchy process were united for calculating the parameters weights. The weighting method avoids the disadvantages inherent in using subjective or objective methods alone. Based on the cloud model and component weighting method, a model was established for the analysis of debris-flow hazard assessment. There are 29 debris-flow catchments around the pumped storage power station in the study area located near Zhirui (Inner Mongolia, China). Field survey data and 3S technologies were used for data collection. The results of the cloud model calculation process showed that of the 29 catchments, 25 had low debris-flow hazard assessment, three had moderate hazard assessment, and one had high hazard assessment. The widely used extenics method and field geological surveys were used to validate the proposed approach. This approach shows high potential as a useful tool for debris-flow hazard assessment analysis. Compared with other prediction methods, it avoids the randomness and fuzziness in uncertainty problems, and its prediction results are considered reasonable. PMID:28036079

  15. Preliminary Study on the Damping Effect of a Lateral Damping Buffer under a Debris Flow Load

    Directory of Open Access Journals (Sweden)

    Zheng Lu

    2017-02-01

    Full Text Available Simulating the impact of debris flows on structures and exploring the feasibility of applying energy dissipation devices or shock isolators to reduce the damage caused by debris flows can make great contribution to the design of disaster prevention structures. In this paper, we propose a new type of device, a lateral damping buffer, to reduce the vulnerability of building structures to debris flows. This lateral damping buffer has two mechanisms of damage mitigation: when debris flows impact on a building, it acts as a buffer, and when the structure vibrates due to the impact, it acts as a shock absorber, which can reduce the maximum acceleration response and subsequent vibration respectively. To study the effectiveness of such a lateral damping buffer, an impact test is conducted, which mainly involves a lateral damping buffer attached to a two-degree-of-freedom structure under a simulated debris flow load. To enable the numerical study, the equation of motion of the structure along with the lateral damping buffer is derived. A subsequent parametric study is performed to optimize the lateral damping buffer. Finally, a practical design procedure is also provided.

  16. Debris flow sensitivity to glacial-interglacial climate change - supply vs transport

    Science.gov (United States)

    D'Arcy, Mitch; Roda Boluda, Duna C.; Whittaker, Alexander C.

    2016-04-01

    Numerical models suggest that small mountain catchment-alluvial fan systems might be sensitive to climate changes over glacial-interglacial cycles, and record these palaeoclimate signals in the sedimentology of their deposits. However, these models are still largely untested, and the propagation of climate signals through simple sediment routing systems remains contentious. Here, we present detailed sedimentological records from 8 debris flow fan systems in Owens Valley, California, that capture the past ~ 120 ka of deposition. We identify a strong and sustained relationship between deposit grain size and palaeoclimate records over a full glacial-interglacial cycle, with significantly coarser-grained deposits found in warm and dry periods. Our data show that these systems are highly sensitive to climate with a rapid response timescale of debris flows are triggered by surface runoff during intense storms, we interpret that enhanced runoff rates in warm and stormy conditions are responsible for entraining larger clasts during debris flow initiation. This implies that debris flow fans might record signals of past storm intensity. Our study utilises field sedimentology and focuses on short transport distances (~ 10 km) and climate changes over ~ 1-100 ka timespans, but could additionally have important implications for how eroding landscapes might respond to future warming scenarios. We address the importance of extreme events (such as storms and debris flows) for determining how sensitive landscapes are to climate variability.

  17. Debris flows on the Great Kobuk Sand Dunes, Alaska: Implications for analogous processes on Mars

    Science.gov (United States)

    Hooper, Donald M.; Dinwiddie, Cynthia L.

    2014-02-01

    We observed niveo-aeolian deposits, denivation features, and small meltwater-induced debris flows that had formed at the Great Kobuk Sand Dunes, northwestern interior Alaska in late March 2010. This high-latitude, cold-climate dune field is being studied as a planetary analog to improve our understanding of factors that may trigger debris flows on the lee slopes of martian aeolian dunes. Debris flows consisted of a sand and liquid water mixture that cascaded down the lee slopes of two barchanoid dunes on days when measured ground surface temperatures were below freezing. We hypothesize that relatively dark sand on snow caused local hot spots where solar radiation could be absorbed by the sand and conducted into the underlying snow, enabling meltwater to form and sand to be mobilized. This investigation provides insights into the interactions between niveo-aeolian deposition, slope aspect and insolation, thawing, and initiation of alluvial processes. These debris flows are morphologically similar to those associated with seasonal gullies or erosion tracks visible on the slopes of mid- to high-latitude dune fields in both martian hemispheres. Localized heating and thawing at scales too small for orbital sensors to identify may yield martian debris flows at current climate conditions.

  18. A real-world application of Monte Carlo procedure for debris flow risk assessment

    Science.gov (United States)

    Calvo, B.; Savi, F.

    2009-05-01

    A method for formal risk analysis in debris flow-prone areas is proposed. In this paper risk is defined as the mean annual probability for buildings located in hazardous areas to be damaged by a debris flow. As is well known, specific risk assessment involves the evaluation of both hazard and vulnerability. To quantify debris flow hazard, a Monte Carlo procedure is applied that randomly selects the input variables of mathematical models simulating triggering, propagation and stoppage of debris flows. This allows to estimate the probability density function of the output variables characterizing the destructive power of debris flow (for instance total force, sum of hydrostatic and hydrodynamic forces) at each point of the alluvial fan. Three different vulnerability functions are adopted: two of them are derived from assessments of different types of natural risk, such as snow avalanches and flood waves. The third vulnerability function is obtained from structural analysis of buildings damaged during a mudflow that occurred in Sarno, Italy. The proposed procedure is applied to assess specific risk on the alluvial fan of Ardenno, located in the Valtellina valley, Italian Alps, and the effect that the use of different vulnerability functions has on the risk maps is explored and discussed.

  19. New insights into debris-flow hazards from an extraordinary event in the Colorado Front Range

    Science.gov (United States)

    Coe, Jeffrey A.; Kean, Jason W.; Godt, Jonathan W.; Baum, Rex L.; Jones, Eric S.; Gochis, David; Anderson, Gregory S

    2016-01-01

    Rainfall on 9–13 September 2013 triggered at least 1,138 debris flows in a 3430 km2 area of the Colorado Front Range. The historical record reveals that the occurrence of these flows over such a large area in the interior of North America is highly unusual. Rainfall that triggered the debris flows began after ~75 mm of antecedent rain had fallen, a relatively low amount compared to other parts of the United States. Most flows were triggered in response to two intense rainfall periods, one 12.5-hour-long period on 11–12 September, and one 8-hour-long period on 12 September. The maximum 10 min. intensities during these periods were 67 and 39 mm/hr. Ninety-five percent of flows initiated in canyons and on hogbacks at elevations lower than a widespread erosion surface of low slope and relief (25°), predominantly south- and east-facing slopes with upslope contributing areas 3300 m2. Areal concentrations of debris flows revealed that colluvial soils formed on sedimentary rocks were more susceptible to flows than soils on crystalline rocks. This event should serve as an alert to government authorities, emergency responders, and residents in the Front Range and other interior continental areas with steep slopes. Widespread debris flows in these areas occur infrequently but may pose a greater risk than in areas with shorter return periods, because the public is typically unprepared for them.

  20. Debris flows on forested cones - reconstruction and comparison of frequencies in two catchments in Val Ferret, Switzerland

    OpenAIRE

    Bollschweiler, M.; Stoffel, M.

    2007-01-01

    International audience; Debris flows represent a major threat to infrastructure in many regions of the Alps. Since systematic acquisition of data on debris-flow events in Switzerland only started after the events of 1987, there is a lack of historical knowledge on earlier debris-flow events for most torrents. It is therefore the aim of this study to reconstruct the debris-flow activity for the Reuse de Saleinaz and the La Fouly torrents in Val Ferret (Valais, Switzerland). In total, 556 incre...

  1. Investigation and Assessment of Landslides and Debris Flows in Sichuan Province of China by Remote Sensing Technique

    Institute of Scientific and Technical Information of China (English)

    ZHANG Baolei; ZHANG Shumin; ZHOU Wancun

    2006-01-01

    Taking TM images, ETM images, SPOT images, aerial photos and other remote sensing data as fundamental sources, this research makes a thorough investigation on landslides and debris flows in Sichuan Province, China, using spectral matching, and image mosaic. And then, the spatial characteristics of landslides and debris flows in the year of 2005 are assessed and made into figures. The environmental factors which induce landslides and debris flows such as slope, vegetation coverage, lithology, rainfall and so on are obtained by GIS spatial analysis method. Finally, the relationships of landslides or debris flows with some environmental factors are analyzed based on the grade of each environmental factor. The results indicate: 1) The landslides and debris flows are mainly in the eastern and southern area of Sichuan Province, however, there are few landslides and debris flows in the western particularly the northwestern Sichuan. 2) The landslides and debris flows of Sichuan Province are mostly located in the regions with small slope degree.The occurring rate of debris flow reduces with the increase of the vegetation coverage degree, but the vegetation coverage degree has little to do with the occurrence of landslide. The more rainfall a place has, the easier the landslides and debris flows take place.

  2. Map showing alpine debris flows triggered by a July 28, 1999 thunderstorm in the central Front Range of Colorado

    Science.gov (United States)

    Godt, Jonathan W.; Coe, Jeffrey A.

    2003-01-01

    This 1:24,000-scale map shows an inventory of debris flows that were triggered above timberline by a thunderstorm in the central Front Range of Colorado. We have classified the debris flows into two categories based on the style of initiation processes in the debris-flow source areas: 1) soil slip, and 2) non-soil slip erosive processes. This map and associated digital data are part of a larger study of the debris-flow event, results of which we plan to present in a forthcoming paper.

  3. Estimation of the annual flow and stock of marine debris in South Korea for management purposes.

    Science.gov (United States)

    Jang, Yong Chang; Lee, Jongmyoung; Hong, Sunwook; Mok, Jin Yong; Kim, Kyoung Shin; Lee, Yun Jeong; Choi, Hyun-Woo; Kang, Hongmook; Lee, Sukhui

    2014-09-15

    The annual flow and stock of marine debris in the Sea of Korea was estimated by summarizing previous survey results and integrating them with other relevant information to underpin the national marine debris management plan. The annual inflow of marine debris was estimated to be 91,195 tons [32,825 tons (36% of the total) from sources on land and 58,370 tons (64%) from ocean sources]. As of the end of 2012, the total stock of marine debris on all South Korean coasts (12,029 tons), the seabed (137,761 tons), and in the water column (2451 tons) was estimated to be 152,241 tons. In 2012, 42,595 tons of marine debris was collected from coasts, seabeds, and the water column. This is a very rare case study that estimated the amount of marine debris at a national level, the results of which provide essential information for the development of efficient marine debris management policies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Influences of Sediment Viscosity and Bed Slope on Transport and Deposition Characteristics of Debris flow in Flume Experiments

    Science.gov (United States)

    Eu, Song; Li, Qiwen; Lee, Eunjai; Im, Sangjun

    2017-04-01

    Debris flow is a rapid flow of soil-water mixture along a confined channel. Implementing mitigation structures against debris flow, such as debris flow barrier or flexible net, is the widely used mitigation strategy to prevent the debris flow hazard. To design those structures enough to endure debris flow events, accurate estimation of flow behavior and hazardous area of debris flow is necessary. In this study, we conducted the small-scale flume experiments to analyze flow behavior and corresponding deposit characteristics according to the slope conditions of flume and viscosity of sediment mixture. In terms of flow characteristics of debris mixtures, there was a positive correlation between flow velocity and flume inclination while slower velocity was observed in higher viscosity of mixture. Results of flow depth, however, showed no significant difference along variation of flume angles and mixture viscosity. The deposit characteristics, including runout length and spreading width, showed a positive correlation with approaching flow velocity. The larger runout length and deposit width were observed in higher flow velocity, and runout length was more sensitive to the change of flow velocity compared to spreading width. (This study was carried out with the support of ´R&D Program for Forestry Technology (Project No. S211316L020110)´ provided by Korea Forest Service.)

  5. The application of numerical debris flow modelling for the generation of physical vulnerability curves

    Directory of Open Access Journals (Sweden)

    B. Quan Luna

    2011-07-01

    Full Text Available For a quantitative assessment of debris flow risk, it is essential to consider not only the hazardous process itself but also to perform an analysis of its consequences. This should include the estimation of the expected monetary losses as the product of the hazard with a given magnitude and the vulnerability of the elements exposed. A quantifiable integrated approach of both hazard and vulnerability is becoming a required practice in risk reduction management. This study aims at developing physical vulnerability curves for debris flows through the use of a dynamic run-out model. Dynamic run-out models for debris flows are able to calculate physical outputs (extension, depths, velocities, impact pressures and to determine the zones where the elements at risk could suffer an impact. These results can then be applied to consequence analyses and risk calculations. On 13 July 2008, after more than two days of intense rainfall, several debris and mud flows were released in the central part of the Valtellina Valley (Lombardy Region, Northern Italy. One of the largest debris flows events occurred in a village called Selvetta. The debris flow event was reconstructed after extensive field work and interviews with local inhabitants and civil protection teams. The Selvetta event was modelled with the FLO-2D program, an Eulerian formulation with a finite differences numerical scheme that requires the specification of an input hydrograph. The internal stresses are isotropic and the basal shear stresses are calculated using a quadratic model. The behaviour and run-out of the flow was reconstructed. The significance of calculated values of the flow depth, velocity, and pressure were investigated in terms of the resulting damage to the affected buildings. The physical damage was quantified for each affected structure within the context of physical vulnerability, which was calculated as the ratio between the monetary loss and the reconstruction value. Three

  6. PIV Visualization of Bubble Induced Flow Circulation in 2-D Rectangular Pool for Ex-Vessel Debris Bed Coolability

    Energy Technology Data Exchange (ETDEWEB)

    Han, Teayang; Kim, Eunho; Park, Hyun Sun; Moriyama, Kiyofumi [POSTECH, Pohang (Korea, Republic of)

    2015-10-15

    The previous research works demonstrated the debris bed formation on the flooded cavity floor in experiments. Even in the cases the core melt is once solidified, the debris bed can be re-melted due to the decay heat. If the debris bed is not cooled enough by the coolant, the re-melted debris bed will react with the concrete base mat. This situation is called the molten core-concrete interaction (MCCI) which threatens the integrity of the containment by generated gases which pressurize the containment. Therefore securing the long term coolability of the debris bed in the cavity is crucial. According to the previous research works, the natural convection driven by the rising bubbles affects the coolability and the formation of the debris bed. Therefore, clarification of the natural convection characteristics in and around the debris bed is important for evaluation of the coolability of the debris bed. In this study, two-phase flow around the debris bed in a 2D slice geometry is visualized by PIV method to obtain the velocity map of the flow. The DAVINCI-PIV was developed to investigate the flow around the debris bed. In order to simulate the boiling phenomena induced by the decay heat of the debris bed, the air was injected separately by the air chamber system which consists of the 14 air-flowmeters. The circulation flow developed by the rising bubbles was visualized by PIV method.

  7. Simulating Debris Flows Through A Hexagonal Cellular Automata Model: Sciddica (release S3a).

    Science.gov (United States)

    Iovine, G.; di Gregorio, S.; D'Ambrosio, D.; Lupiano, V.; Rongo, R.; Spataro, W.

    Cellular Automata (CA) are a powerful tool for modelling natural and artificial sys- tems that can be described in terms of local interactions among their constituent parts. Some types of landslides, such as debris flows, match well this requirement. The general frame and the latest, hexagonal release (S3a) of the deterministic, CA-based model SCIDDICA - specifically developed for simulating debris flows - are described. For simulation purposes, landslides can be viewed as a dynamical system, subdivided into elementary parts, whose state evolves exclusively as a consequence of local in- teractions within a spatial and temporal discretum. Space is the world of the CA, constituted by hexagonal cells. The attributes of each cell (namely "substates") de- scribe their average, physical characteristics. For computational reasons, the natural phenomenon to be simulated is "decomposed" into a number of elementary processes (local interactions), whose proper composition makes up the "transition function" of the CA. By simultaneously applying this function to all the cells, the evolution of the phenomenon can be simulated in terms of modifications of the substates. SCIDDICA- S3a exhibited great flexibility in modelling debris flows. With respect to its previous releases, the mechanism of progressive erosion of the detrital cover has been added to the transition function. Considered substates are: altitude, landslide debris amount and energy, depth and type of detrital cover, water content of the debris, debris out- flows and inflows. Considered elementary processes are: outflows and inflows, energy variation, detrital cover mobilisation, water loss, debris solidification. Simulations of real debris flows, occurred in Campania (Southern Italy) on May 1998 (Sarno) and on December 1999 (San Martino V.C. and Cervinara), are presented. The validation of the model required the best assessment of values to be assigned to empirical param- eters. After that, the application of the

  8. A comparison of laboratory and field observations of superelevation in debris flows

    Science.gov (United States)

    McArdell, Brian W.; Scheidl, Christian; Graf, Christoph; Rickenmann, Dieter

    2017-04-01

    Post-event estimation of debris-flow velocity is a central part of hazard analysis. Estimates of debris-flow velocity are useful for e.g. dimensioning mitigation measures, calibrating or testing debris-flow runout models, constructing intensity-based hazard maps, and designing warning systems. However independent field observations of velocity are rare and it is often necessary to indirectly estimate flow velocity. The difference in mud elevation on either side of a channel through a bend of a constant radius can be used to estimate the flow velocity using a vortex method developed for a Newtonian fluid. In 2015 we reported on the application of the vortex method to calculate the front velocity of debris flows in the laboratory (Scheidl et al., 2015). In the laboratory experiments, we found a statistically significant correction factor k for the application of the vortex equation to debris flows under supercritical flow conditions, with somewhat more scatter for subcritical flows. Nevertheless, it was possible to derive a forced-vortex equation, without a correction factor, after considering active and passive earth pressures within the flow. Herein, we compare the laboratory results with field data from the Illgraben and Schipfenbach torrents in Switzerland. Using video recordings and flow trajectory data for 17 debris flows at the Illgraben debris-flow observation station in Switzerland, we were able to independently test the application of the new forced vortex equation against field data. The general trend observed in the laboratory are confirmed using the field data: the correction factor k decreases with increasing Froude number of the flow. However the field data show a much larger degree of scatter in the vortex-equation correction factor in comparison with the laboratory data. The debris flows in the field differ from the laboratory channel in many ways. Although the observation section at the Illgraben was fairly uniform in terms of the surface width of

  9. DEBRIS FLOW AND LANDSLIDE HAZARDS UNDER CERTAIN TYPES OF ATMOSPHERIC CIRCULATION

    Directory of Open Access Journals (Sweden)

    Nina Kononova

    2012-01-01

    Full Text Available Conditions of formation and development of landslides and debris flows in the Black Sea coast of the Caucasus and on Sakhalin Island were considered. They are formed under the influence of heavy rainfall under the influence of the Mediterranean cyclones outlet in the Black Sea coast of the Caucasus and of the Pacific cyclones outlet on Sakhalin Island in the same macro-circulation processes. Activity of landslides and debris flows in these regions has been shown to be connected with certain types of atmospheric circulation during the XX—the beginning of the XXI century. Based on these results, possible increase in the activity of landslides and debris flows, in the Black Sea coast of the Caucasus and Sakhalin Island, is suggested.

  10. Debris-flow deposits and watershed erosion rates near southern Death Valley, CA, United States

    Science.gov (United States)

    Schmidt, K.M.; Menges, C.M.; ,

    2003-01-01

    Debris flows from the steep, granitic hillslopes of the Kingston Range, CA are commensurate in age with nearby fluvial deposits. Quaternary chronostratigraphic differentiation of debris-flow deposits is based upon time-dependent characteristics such as relative boulder strength, derived from Schmidt Hammer measurements, degree of surface desert varnish, pedogenesis, and vertical separation. Rock strength is highest for Holocene-aged boulders and decreases for Pleistocene-aged boulders weathering to grus. Volumes of age-stratified debris-flow deposits, constrained by deposit thickness above bedrock, GPS surveys, and geologic mapping, are greatest for Pleistocene deposits. Shallow landslide susceptibility, derived from a topographically based GIS model, in conjunction with deposit volumes produces watershed-scale erosion rates of ???2-47 mm ka-1, with time-averaged Holocene rates exceeding Pleistocene rates. ?? 2003 Millpress.

  11. Preliminary research on the design of flexible barriers for debris flow

    Institute of Scientific and Technical Information of China (English)

    Huan ZHANG; Li-zhou ZHANG

    2014-01-01

    Rigid barriers,including check dams,steel cells and retaining wal s,are widely utilized for debris flow mitigation.It has to be said that these rigid structures are general y effective and technical feasible.However,with the enhancement of environmental awareness and innovative materials,flexible barriers have been being created which are very engineering effective,envi-ronmental friendly,material saving as wel as easy construction in rugged terrain.Although the merits of such structures are summarized in above,the understanding of such barriers are very limited.Most of constructions are just on the basis of engineering experience and largely depend on the factor of safety to eliminate the uncertainties.In this paper,method for debris flow dynam-ics calibration and conventional ideas for the design of flexible barriers wil be il ustrated and an advanced method-finite element wil be used to analyze the debris flow.

  12. Automated, reproducible delineation of zones at risk from inundation by large volcanic debris flows

    Science.gov (United States)

    Schilling, Steve P.; Iverson, Richard M.

    1997-01-01

    Large debris flows can pose hazards to people and property downstream from volcanoes. We have developed a rapid, reproducible, objective, and inexpensive method to delineate distal debris-flow hazard zones. Our method employs the results of scaling and statistical analyses of the geometry of volcanic debris flows (lahars) to predict inundated valley cross-sectional areas (A) and planimetric areas (B) as functions of lahar volume. We use a range of specified lahar volumes to evaluate A and B. In a Geographic Information System (GIS) we employ the resulting range of predicted A and B to delineate gradations in inundation hazard, which is highest near the volcano and along valley thalwegs and diminishes as distances from the volcano and elevations above valley floors increase. Comparison of our computer-generated hazard maps with those constructed using traditional, field-based methods indicates that our method can provide an accurate means of delineating lahar hazard zones.

  13. Report on the 4th International Conference on monitoring, simulation, prevention and remediation of dense and debris flows - Debris Flow 2012

    Directory of Open Access Journals (Sweden)

    Daniele de Wrachien

    2012-09-01

    Full Text Available Debris and hyper-concentrated flows are amongst the most destructive of all water-related disasters. These hazards are likely to become more frequent and more important in the future due to the effects of the increase in population, urbanization, land subsidence and the impact of climate change. They affect both rural and urban environments, particularly in river basins and in mountain areas. In recent years, they have attracted more and more attention from the scientific and professional communities due to the number of lives lost, and there is growing public concern for the future. New methods and measures are required to cope with debris flow changes and to achieve a harmonious balance between the environment and economic forces.

  14. Exploiting Maximum Entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (north-eastern Sicily, Italy).

    KAUST Repository

    Lombardo, L.

    2016-07-18

    This study aims at evaluating the performance of the Maximum Entropy method in assessing landslide susceptibility, exploiting topographic and multispectral remote sensing predictors. We selected the catchment of the Giampilieri stream, which is located in the north-eastern sector of Sicily (southern Italy), as test site. On 1/10/2009, a storm rainfall triggered in this area hundreds of debris flow/avalanche phenomena causing extensive economical damage and loss of life. Within this area a presence-only-based statistical method was applied to obtain susceptibility models capable of distinguish future activation sites of debris flow and debris slide, which where the main source failure mechanisms for flow or avalanche type propagation. The set of predictors used in this experiment comprised primary and secondary topographic attributes, derived by processing a high resolution digital elevation model, CORINE land cover data and a set of vegetation and mineral indices obtained by processing multispectral ASTER images. All the selected data sources are dated before the disaster. A spatially random partition technique was adopted for validation, generating fifty replicates for each of the two considered movement typologies in order to assess accuracy, precision and reliability of the models. The debris slide and debris flow susceptibility models produced high performances with the first type being the best fitted. The evaluation of the probability estimates around the mean value for each mapped pixel shows an inverted relation, with the most robust models corresponding to the debris flows. With respect to the role of each predictor within the modelling phase, debris flows appeared to be primarily controlled by topographic attributes whilst the debris slides were better explained by remotely sensed derived indices, particularly by the occurrence of previous wildfires across the slope. The overall excellent performances of the two models suggest promising perspectives for

  15. Predicting the probability and volume of postwildfire debris flows in the intermountain western United States

    Science.gov (United States)

    Cannon, S.H.; Gartner, J.E.; Rupert, M.G.; Michael, J.A.; Rea, A.H.; Parrett, C.

    2010-01-01

    Empirical models to estimate the probability of occurrence and volume of postwildfire debris flows can be quickly implemented in a geographic information system (GIS) to generate debris-flow hazard maps either before or immediately following wildfires. Models that can be used to calculate the probability of debris-flow production from individual drainage basins in response to a given storm were developed using logistic regression analyses of a database from 388 basins located in 15 burned areas located throughout the U.S. Intermountain West. The models describe debris-flow probability as a function of readily obtained measures of areal burned extent, soil properties, basin morphology, and rainfall from short-duration and low-recurrence-interval convective rainstorms. A model for estimating the volume of material that may issue from a basin mouth in response to a given storm was developed using multiple linear regression analysis of a database from 56 basins burned by eight fires. This model describes debris-flow volume as a function of the basin gradient, aerial burned extent, and storm rainfall. Applications of a probability model and the volume model for hazard assessments are illustrated using information from the 2003 Hot Creek fire in central Idaho. The predictive strength of the approach in this setting is evaluated using information on the response of this fire to a localized thunderstorm in August 2003. The mapping approach presented here identifies those basins that are most prone to the largest debris-flow events and thus provides information necessary to prioritize areas for postfire erosion mitigation, warnings, and prefire management efforts throughout the Intermountain West.

  16. Debris Flows and Record Floods from Extreme Mesoscale Convective Thunderstorms over the Santa Catalina Mountains, Arizona

    Science.gov (United States)

    Magirl, Christopher S.; Shoemaker, Craig; Webb, Robert H.; Schaffner, Mike; Griffiths, Peter G.; Pytlak, Erik

    2007-01-01

    Ample geologic evidence indicates early Holocene and Pleistocene debris flows from the south side of the Santa Catalina Mountains north of Tucson, Arizona, but few records document historical events. On July 31, 2006, an unusual set of atmospheric conditions aligned to produce record floods and an unprecedented number of debris flows in the Santa Catalinas. During the week prior to the event, an upper-level area of low pressure centered near Albuquerque, New Mexico generated widespread heavy rainfall in southern Arizona. After midnight on July 31, a strong complex of thunderstorms developed over central Arizona in a deformation zone that formed on the back side of the upper-level low. High atmospheric moisture (2.00' of precipitable water) coupled with cooling aloft spawned a mesoscale thunderstorm complex that moved southeast into the Tucson basin. A 15-20 knot low-level southwesterly wind developed with a significant upslope component over the south face of the Santa Catalina Mountains advecting moist and unstable air into the merging storms. National Weather Service radar indicated that a swath of 3-6' of rainfall occurred over the lower and middle elevations of the southern Santa Catalina Mountains. This intense rain falling on saturated soil triggered over 250 hillslope failures and debris flows throughout the mountain range. Sabino Canyon, a heavily used recreation area administered by the U.S. Forest Service, was the epicenter of mass wasting, where at least 18 debris flows removed structures, destroyed the roadway in multiple locations, and closed public access for months. The debris flows were followed by streamflow floods which eclipsed the record discharge in the 75-year gaging record of Sabino Creek. In five canyons adjacent to Sabino Canyon, debris flows approached or excited the mountain front, compromising floow conveyance structures and flooding some homes.

  17. Debris-flow runout predictions based on the average channel slope (ACS)

    Science.gov (United States)

    Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.

    2008-01-01

    Prediction of the runout distance of a debris flow is an important element in the delineation of potentially hazardous areas on alluvial fans and for the siting of mitigation structures. Existing runout estimation methods rely on input parameters that are often difficult to estimate, including volume, velocity, and frictional factors. In order to provide a simple method for preliminary estimates of debris-flow runout distances, we developed a model that provides runout predictions based on the average channel slope (ACS model) for non-volcanic debris flows that emanate from confined channels and deposit on well-defined alluvial fans. This model was developed from 20 debris-flow events in the western United States and British Columbia. Based on a runout estimation method developed for snow avalanches, this model predicts debris-flow runout as an angle of reach from a fixed point in the drainage channel to the end of the runout zone. The best fixed point was found to be the mid-point elevation of the drainage channel, measured from the apex of the alluvial fan to the top of the drainage basin. Predicted runout lengths were more consistent than those obtained from existing angle-of-reach estimation methods. Results of the model compared well with those of laboratory flume tests performed using the same range of channel slopes. The robustness of this model was tested by applying it to three debris-flow events not used in its development: predicted runout ranged from 82 to 131% of the actual runout for these three events. Prediction interval multipliers were also developed so that the user may calculate predicted runout within specified confidence limits. ?? 2008 Elsevier B.V. All rights reserved.

  18. Combining Spatial Models for Shallow Landslides and Debris-Flows Prediction

    Directory of Open Access Journals (Sweden)

    Eurípedes Vargas do Amaral

    2013-05-01

    Full Text Available Mass movements in Brazil are common phenomena, especially during strong rainfall events that occur frequently in the summer season. These phenomena cause losses of lives and serious damage to roads, bridges, and properties. Moreover, the illegal occupation by slums on the slopes around the cities intensifies the effect of the mass movement. This study aimed to develop a methodology that combines models of shallow landslides and debris-flows in order to create a map with landslides initiation and debris-flows volume and runout distance. The study area comprised of two catchments in Rio de Janeiro city: Quitite and Papagaio that drained side by side the west flank of the Maciço da Tijuca, with an area of 5 km2. The method included the following steps: (a location of the susceptible areas to landslides using SHALSTAB model; (b determination of rheological parameters of debris-flow from the back-analysis technique; and (c combination of SHALSTAB and FLO-2D models to delineate the areas more susceptible to mass movements. These scenarios were compared with the landslide and debris-flow event of February 1996. Many FLO-2D simulations were exhaustively made to estimate the rheological parameters from the back-analysis technique. Those rheological coefficients of single simulation were back-calculated by adjusting with area and depth of the debris-flow obtained from field data. The initial material volume in the FLO-2D simulations was estimated from SHALSTAB model. The combination of these two mathematical models, SHALSTAB and FLO-2D, was able to predict both landslides and debris-flow events. Such procedures can reduce the casualties and property damage, delineating hazard areas, to estimate hazard intensities for input into risk studies providing information for public policy and planning.

  19. Comparing models of debris-flow susceptibility in the alpine environment

    Science.gov (United States)

    Carrara, Alberto; Crosta, Giovanni; Frattini, Paolo

    Debris-flows are widespread in Val di Fassa (Trento Province, Eastern Italian Alps) where they constitute one of the most dangerous gravity-induced surface processes. From a large set of environmental characteristics and a detailed inventory of debris flows, we developed five models to predict location of debris-flow source areas. The models differ in approach (statistical vs. physically-based) and type of terrain unit of reference (slope unit vs. grid cell). In the statistical models, a mix of several environmental factors classified areas with different debris-flow susceptibility; however, the factors that exert a strong discriminant power reduce to conditions of high slope-gradient, pasture or no vegetation cover, availability of detrital material, and active erosional processes. Since slope and land use are also used in the physically-based approach, all model results are largely controlled by the same leading variables. Overlaying susceptibility maps produced by the different methods (statistical vs. physically-based) for the same terrain unit of reference (grid cell) reveals a large difference, nearly 25% spatial mismatch. The spatial discrepancy exceeds 30% for susceptibility maps generated by the same method (discriminant analysis) but different terrain units (slope unit vs. grid cell). The size of the terrain unit also led to different susceptibility maps (almost 20% spatial mismatch). Maps based on different statistical tools (discriminant analysis vs. logistic regression) differed least (less than 10%). Hence, method and terrain unit proved to be equally important in mapping susceptibility. Model performance was evaluated from the percentages of terrain units that each model correctly classifies, the number of debris-flow falling within the area classified as unstable by each model, and through the metric of ROC curves. Although all techniques implemented yielded results essentially comparable; the discriminant model based on the partition of the study

  20. Conditions for generation of fire-related debris flows, Capulin Canyon, New Mexico

    Science.gov (United States)

    Cannon, S.H.; Reneau, S.L.

    2000-01-01

    Comparison of the responses of three drainage basins burned by the Dome fire of 1996 in New Mexico is used to identify the hillslope, channel and fire characteristics that indicate a susceptibility specifically to wildfire-related debris flow. Summer thunderstorms generated three distinct erosive responses from each of three basins. The Capulin Canyon basin showed widespread erosive sheetwash and rilling from hillslopes, and severe flooding occurred in the channel; the North Tributary basin exhibited extensive erosion of the mineral soil to a depth of 5 cm and downslope movement of up to boulder-sized material, and at least one debris flow occurred in the channel; negligible surface runoff was observed in the South Tributary basin. The negligible surface runoff observed in the South Tributary basin is attributed to the limited extent and severity of the fire in that basin. The factors that best distinguish between debris-flow producing and flood-producing drainages are drainage basin morphology and lithology. A rugged drainage basin morphology, an average 12 per cent channel gradient, and steep, rough hillslopes coupled with colluvium and soil weathered from volcaniclastic and volcanic rocks promoted the generation of debris flows. A less rugged basin morphology, an average gradient of 5 per cent, and long, smooth slopes mantled with pumice promoted flooding. Flood and debris-flow responses were produced without the presence of water-repellent soils. The continuity and severity of the burn mosaic, the condition of the riparian vegetation, the condition of the fibrous root mat, accumulations of dry ravel and colluvial material in the channel and on hillslopes, and past debris-flow activity, appeared to have little bearing on the distinctive responses of the basins. Published in 2000 by John Wiley and Sons, Ltd.

  1. GIS-based cell model for simulating debris flow runout on a fan

    Science.gov (United States)

    Gregoretti, Carlo; Degetto, Massimo; Boreggio, Mauro

    2016-03-01

    A GIS-based cell model, based on a kinematic approach is proposed to simulate debris flow routing on a fan. The sediment-water mixture is modeled as a monophasic continuum, and the flow pattern is discretized by square cells, 1 m in size, that coincide with the DEM cells. Flow occurs from cells with a higher mixture free surface to those with a lower mixture free surface. A uniform-flow law is used if the elevation of the former cell is higher than that of the latter; otherwise, the flow is simulated using the broad-crested weir law. Erosion and deposition are simulated using an empirical law that is adjusted for a monophasic continuum. The sediment concentration in the routing volume is computed at each time step and controls both erosion and deposition. The cell model is used to simulate a debris flow that occurred on the Rio Lazer (Dolomites, North-Eastern Italian Alps) on November 4th, 1966. Furthermore, the hydrologic and the hydraulic conditions for the initiation of debris flow are simulated, providing the solid-liquid hydrograph of the resulting debris flow. A number of simulations has been carried out with physically reasonable parameters. The results are compared with the extension of the debris-flow deposition area and the map of observed depths of deposited sediments. This comparison shows that the proposed model provides good performance. The analysis of sensitivity carried out by systematically varying the model parameters shows that lower performances are associated with parameter values that are not physically reasonable. The same event is also simulated using a cellular automata model and a finite volume two-dimensional model. The results show that the two models provide a sediment deposition pattern less accurate than that provided by the present cell model.

  2. The influence of human activity and precipitation change on mid-long term evolution of landslide and debris flow disasters

    Institute of Scientific and Technical Information of China (English)

    Yun Tao; Chuan Tang

    2013-01-01

    After defining landslide and debris flow, human activity, and precipitation indices, using with landslide and debris flow disaster data in low-latitude plateau of China, reflecting human activity and precipitation data, the influence of human activity and precipitation on mid-long term evolution of landslide and debris flow was studied with the wavelet technique. Results indicate that mid-long evolution of landslide and debris flow disaster trends to increase 0.9 unit every year, and presents obvious stage feature. The abrupt point from rare to frequent periods took place in 1993. There is significant in-phase resonance oscillation between human activity and landslide and debris flow frequency on a scale of 11-16 years, in which the variation of human activity occurs about 0.2-2.8 years before landslide and debris flow variation. Thus, the increase of landslide and debris flow frequency in low latitude plateau of China may be mainly caused by geo-environmental degradation induced by human activity. After the impact of human activity is removed, there is sig-nificant in-phase resonance oscillation between landslide and debris flow frequency and summer rainfall in low-latitude plateau of China in quasi-three-year and quasi-six-year scales, in which the variation of summer precipitation occurs about 0.0-0.8 years before landslide and debris flow variation. Summer precipitation is one of important external causes which impacts landslide and debris flow frequency in low-latitude plateau of China. The mid-long term evolution predicting model of landslide and debris flow disasters frequency in low-latitude plateau region with better fitting and predicting ability was built by considering human activity and summer rainfall.

  3. Historical Account to the State of the Art in Debris Flow Modeling

    Science.gov (United States)

    Pudasaini, Shiva P.

    2013-04-01

    In this contribution, I present a historical account of debris flow modelling leading to the state of the art in simulations and applications. A generalized two-phase model is presented that unifies existing avalanche and debris flow theories. The new model (Pudasaini, 2012) covers both the single-phase and two-phase scenarios and includes many essential and observable physical phenomena. In this model, the solid-phase stress is closed by Mohr-Coulomb plasticity, while the fluid stress is modeled as a non-Newtonian viscous stress that is enhanced by the solid-volume-fraction gradient. A generalized interfacial momentum transfer includes viscous drag, buoyancy and virtual mass forces, and a new generalized drag force is introduced to cover both solid-like and fluid-like drags. Strong couplings between solid and fluid momentum transfer are observed. The two-phase model is further extended to describe the dynamics of rock-ice avalanches with new mechanical models. This model explains dynamic strength weakening and includes internal fluidization, basal lubrication, and exchanges of mass and momentum. The advantages of the two-phase model over classical (effectively single-phase) models are discussed. Advection and diffusion of the fluid through the solid are associated with non-linear fluxes. Several exact solutions are constructed, including the non-linear advection-diffusion of fluid, kinematic waves of debris flow front and deposition, phase-wave speeds, and velocity distribution through the flow depth and through the channel length. The new model is employed to study two-phase subaerial and submarine debris flows, the tsunami generated by the debris impact at lakes/oceans, and rock-ice avalanches. Simulation results show that buoyancy enhances flow mobility. The virtual mass force alters flow dynamics by increasing the kinetic energy of the fluid. Newtonian viscous stress substantially reduces flow deformation, whereas non-Newtonian viscous stress may change the

  4. Spatial estimation of debris flows-triggering rainfall and its dependence on rainfall return period

    Science.gov (United States)

    Destro, Elisa; Marra, Francesco; Nikolopoulos, Efthymios I.; Zoccatelli, Davide; Creutin, Jean Dominique; Borga, Marco

    2017-02-01

    Forecasting the occurrence of debris flows is fundamental for issuing hazard warnings, and often focuses on rainfall as a triggering agent and on the use of empirical rainfall thresholds based on rain gauge observations. A recognized component of the uncertainty associated with the use of rainfall thresholds is related to the sampling of strongly varying rainfall variability with sparse rain gauge networks. In this work we examine the spatial distribution of rainfall depth in areas up to 10 km from the debris flow initiation points as a function of return period, and we exploit this information to analyze the errors expected in the estimation of debris flow triggering rainfall when rain gauge data are used. In particular, we investigate the impact of rain gauge density and of the use of different interpolation methods. High-resolution, adjusted radar rainfall estimates, representing the best available spatially-distributed rainfall estimates at the debris flows initiation point and in the surrounding area, are sampled by stochastically generated rain gauge networks characterized by varying densities. Debris flow triggering rainfall is estimated by means of three rainfall interpolation methods: nearest neighbor, inverse distance weighting and ordinary kriging. On average, triggering rainfall shows a local peak corresponding to the debris flow initiation point, with a decay of rainfall with distance which increases with the return period of the triggering rainfall. Interpolation of the stochastically generated rain gauge measurements leads to an underestimation of the triggering rainfall that, irrespective of the interpolation methods, increases with the return period and decreases with the rain gauge density. For small return period events and high rain gauge density, the differences among the methods are minor. With increasing the return period and decreasing the rain gauge density, the nearest neighbor method is less biased, because it makes use only of the

  5. The comparisson of material properties of debris flows from Stože, Slano blato

    Directory of Open Access Journals (Sweden)

    Bojan Majes

    2002-12-01

    Full Text Available The three large landslides that occured in Slovenia in past few years and threaten the population and infrastructure were relatively well investigated geologically and geomechanically.One of common characteristics of all three landslides is the occurence of fast debris flows. One part of laboratory investigations was therefore focused into the study of materials that under given circumstances transform into debris flow. In addition to standard geomechanical investigations their behaviour was tested also in rheometer.In the paper the results of all laboratory tests are compared for the mentioned threelandslides. The results of rheometer tests showed a consistency between test results andmaterial behaviour on site for two tested materials.

  6. Particle support mechanism in viscous debris flows at Jiangjia Ravine, Yunnan, China

    Institute of Scientific and Technical Information of China (English)

    王裕宜[1; 费祥俊[2

    1999-01-01

    Hyperconcentrated viscous debris flows can move rapidly on low-gradient ravine under shear, because they have highly excessive pore pressure. The relationship between excessive pore-pressure (Pe) and volume concentration (Cvt) in viscous debris flows, i.e. Pe=2 494.76Cvt0.94, is quantitatively shown; the correlation coefficient γ=0.9671, 95% confidence interval is 0.9053<ρ<0.9937. About 92.29% of all grains (by weight) is supported by excessive pore pressure.##属性不符

  7. 绵竹清平8·13群发泥石流成因、特征与发展趋势%Formation, characteristics and trend of the group debris flows occurred on August 13 in Qingping, Mianzhu County

    Institute of Scientific and Technical Information of China (English)

    倪化勇; 郑万模; 唐业旗; 王德伟; 陈绪钰; 徐如阁; 宋志

    2011-01-01

    Serious debris flows occurred at 1 o' clock on August 13,2010 in Qingping Country in Mianzhu,Sichuan, which is one of the most serious disaster areas after the 2008 - 5 - 12 earthquake. About 27 debris flows broke out almost at the same time and debris flow from Wenjiagou was the most serious one with a deposition volume of 310 × 104 m3. As many as 9 residents lost their lives unfortunately, about 379 houses were destroyed. As the formation is concerned, this disaster was caused by both the 2008 -5 - 12 earthquake and strong rainfall. In terms of characteristics, 7 features were presented, such as group occurrence in space, complexity in initiation process, long duration in occurring process, transitional chain in damaging process, large magnitude and disaster concealment. As discharged materials were less (about 10% to 50% ) compared to the total source materials,debris flows will further occur with a higher frequency in Qingping Country. Consequently, geological safety problems including disaster chains and capacity of geological environment must be emphasized and scientific assessment is suggested to be carried out in the course of reconstruction.%2010年8月13日凌晨,5·12汶川地震极重灾区绵竹市清平乡发生群发泥石流灾害,27条沟谷发生泥石流,占泥石流沟总数的69.4%,其中以文家沟泥石流最为严重.在调查基础上,分析了8·13特大群发泥石流的成因、特征和发展趋势,并提出了灾后规划重建中的地质安全问题.从成因上看,8·13特大群发泥石流是5·12汶川地震和强降雨共同作用的结果;从特征上来看,泥石流呈现出暴发空间的群发性、启动过程的复杂性、发生过程的持续性,成灾过程的链式性、危害形式的多样性、泥石流规模的放大性和泥石流隐患的隐蔽性等7个方面的特征;清平乡各沟8·13泥石流冲出方量约占物源总量的10%~50%,泥石流存在进一步频发、群发的态势,建议在灾后规

  8. Debris flow monitoring experience in the Cancia basin (Dolomites, Northeast Italian Alps).

    Science.gov (United States)

    Stancanelli, Laura; Bernard, Martino; Gregoretti, Carlo; Berti, Matteo; Simoni, Alessandro; Lanzoni, Stefano

    2016-04-01

    The monitoring campaign presented here aims to understand the dynamics of sediment transport processes in small head-water catchments of the Italian Alps and to evaluate the rainfall thresholds for debris flow triggering. The monitored basin of Cancia is located on the Eastern Italian Dolomites, in the Belluno Province. In particular, it is situated on the left side on the Boite river valley, next to the Borca di Cadore village, and is delimited by the western slope of the Mt. Antelao. The drainage area is 1.8 km2 while the elevation ranges from 2451 m a.s.l. to 880 m a.s.l., with a slope varying from 30-40° in the upper part to 10-15° in the lower part (fan area). The basin is characterized by a lithology very common in the Italian Alps, which consist of high permeability, poorly sorted rock debris, containing boulders up to 3-4 m in diameter, and include heterogeneous scree, alluvium and old debris flow deposits. The spatial distribution of sediment is characterized by: an upper part where prevails the presence of rocks, a medium part characterized by poorly sorted rock debris and fine sediment material, and a downstream part plenty of sediment material The Cancia basin is prone to stony debris flows, owing to the plenty availability of loose and coarse sediments and frequent convective events. In particular, the smaller grain sized material is provided by the erosion of lateral slope, while gravel, pebbles and cobbles are provided by the upper part of the basin, characterized by rocky material. The precipitation regime is marked by rainfalls of short duration and high intensity, usually occurring in the summer period. The debris flow channel has began to be surveyed in August 2009 to identify the debris flow generation area. At the beginning of July 2013 topographical surveys of the channel downstream the triggering area began in order to investigate the morphological evolution of the debris flow channel from 2013 until 2015. Moreover, at the beginning of

  9. Debris Flow Risk Management Framework and Risk Analysis in Taiwan, A Preliminary Study

    Science.gov (United States)

    Tsao, Ting-Chi; Hsu, Wen-Ko; Chiou, Lin-Bin; Cheng, Chin-Tung; Lo, Wen-Chun; Chen, Chen-Yu; Lai, Cheng-Nong; Ju, Jiun-Ping

    2010-05-01

    Taiwan is located on a seismically active mountain belt between the Philippine Sea plate and Eurasian plate. After 1999's Chi-Chi earthquake (Mw=7.6), landslide and debris flow occurred frequently. In Aug. 2009, Typhoon Morakot struck Taiwan and numerous landslides and debris flow events, some with tremendous fatalities, were observed. With limited resources, authorities should establish a disaster management system to cope with slope disaster risks more effectively. Since 2006, Taiwan's authority in charge of debris flow management, the Soil and Water Conservation Bureau (SWCB), completed the basic investigation and data collection of 1,503 potential debris flow creeks around Taiwan. During 2008 and 2009, a debris flow quantitative risk analysis (QRA) framework, based on landslide risk management framework of Australia, was proposed and conducted on 106 creeks of the 30 villages with debris flow hazard history. Information and value of several types of elements at risk (bridge, road, building and crop) were gathered and integrated into a GIS layer, with the vulnerability model of each elements at risk applied. Through studying the historical hazard events of the 30 villages, numerical simulations of debris flow hazards with different magnitudes (5, 10, 25, 50, 100 and 200 years return period) were conducted, the economic losses and fatalities of each scenario were calculated for each creek. When taking annual exceeding probability into account, the annual total risk of each creek was calculated, and the results displayed on a debris flow risk map. The number of fatalities and frequency were calculated, and the F-N curves of 106 creeks were provided. For F-N curves, the individual risk to life per year of 1.0E-04 and slope of 1, which matched with international standards, were considered to be an acceptable risk. Applying the results of the 106 creeks onto the F-N curve, they were divided into 3 categories: Unacceptable, ALARP (As Low As Reasonable Practicable) and

  10. GIS-based two-dimensional numerical simulation of rainfall-induced debris flow

    Directory of Open Access Journals (Sweden)

    C. Wang

    2008-02-01

    Full Text Available This paper aims to present a useful numerical method to simulate the propagation and deposition of debris flow across the three dimensional complex terrain. A depth-averaged two-dimensional numerical model is developed, in which the debris and water mixture is assumed to be continuous, incompressible, unsteady flow. The model is based on the continuity equations and Navier-Stokes equations. Raster grid networks of digital elevation model in GIS provide a uniform grid system to describe complex topography. As the raster grid can be used as the finite difference mesh, the continuity and momentum equations are solved numerically using the finite difference method. The numerical model is applied to simulate the rainfall-induced debris flow occurred in 20 July 2003, in Minamata City of southern Kyushu, Japan. The simulation reproduces the propagation and deposition and the results are in good agreement with the field investigation. The synthesis of numerical method and GIS makes possible the solution of debris flow over a realistic terrain, and can be used to estimate the flow range, and to define potentially hazardous areas for homes and road section.

  11. GIS-based two-dimensional numerical simulation of rainfall-induced debris flow

    Science.gov (United States)

    Wang, C.; Li, S.; Esaki, T.

    2008-02-01

    This paper aims to present a useful numerical method to simulate the propagation and deposition of debris flow across the three dimensional complex terrain. A depth-averaged two-dimensional numerical model is developed, in which the debris and water mixture is assumed to be continuous, incompressible, unsteady flow. The model is based on the continuity equations and Navier-Stokes equations. Raster grid networks of digital elevation model in GIS provide a uniform grid system to describe complex topography. As the raster grid can be used as the finite difference mesh, the continuity and momentum equations are solved numerically using the finite difference method. The numerical model is applied to simulate the rainfall-induced debris flow occurred in 20 July 2003, in Minamata City of southern Kyushu, Japan. The simulation reproduces the propagation and deposition and the results are in good agreement with the field investigation. The synthesis of numerical method and GIS makes possible the solution of debris flow over a realistic terrain, and can be used to estimate the flow range, and to define potentially hazardous areas for homes and road section.

  12. Modeling debris-flow runout patterns on two alpine fans with different dynamic simulation models

    Directory of Open Access Journals (Sweden)

    K. Schraml

    2015-02-01

    Full Text Available Predicting potential deposition areas of future debris-flow events is important for engineering hazard assessment in alpine regions. For this, numerical simulation models are commonly used tools. However, knowledge of appropriate model parameters is essential but often not available. In this study we use two numerical simulation models, RAMMS-DF (Rapid Mass Movement System – Debris Flow and DAN3D (Dynamic Analysis of Landslides in Three Dimensions, to back-calculate two well-documented debris-flow events in Austria and to compare the range and sensitivity of input parameters for the Voellmy flow model. All simulations are based on the same digital elevation model with a 1 m resolution and similar initial conditions. Our results show that both simulation tools are capable of matching observed deposition patterns. The best fit parameter set of μ [–] and ξ [m s−2] range between 0.07–0.11 and 200–300 m s−2, respectively, for RAMMS-DF, and 0.07–0.08 and 300–400 m s−2, respectively, for DAN3D. Sensitivity analyses show a higher sensitivity of model parameters for the DAN3D model than for the RAMMS-DF model. This study shall contribute to the evaluation of realistic model parameters for simulation of debris-flows in steep mountain catchments and highlights the sensitivity of the models.

  13. Pedimentation versus debris-flow origin of plateau-side desert terraces in southern Utah.

    Science.gov (United States)

    Williams, V.S.

    1984-01-01

    Plateau-side terraces in arid areas around the world are commonly described as pediment remnants, although, in many cases, they may have been formed by debris-flow deposition. Pediments do exist in the area of the Aquarius and Kaiparowits Plateaus of southern Utah; however, many alluvial terraces that were classified by previous workers as pediments are actually formed of thick deposits of sediment released into valleys by episodic landslide events. Although both pediment and debris-flow depositional terraces have smooth, alluvium-covered upper surfaces, the two can be distinguished by the shape of the underlying bedrock surface and the process of formation. The relation of younger terraces to landsliding is clear, because the terrace surfaces are graded to the toes of slide lobes, but the origin of older terraces is less obvious, because older lobes of slide debris have generally been removed by erosion. -from Author

  14. 1D numerical model of muddy subaqueous and subaerial debris flows

    Science.gov (United States)

    Imran, J.; Parker, G.; Locat, J.; Lee, H.

    2001-01-01

    A 1D numerical model of the downslope flow and deposition of muddy subaerial and subaqueous debris flows is presented. The model incorporates the Herschel-Bulkley and bilinear rheologies of viscoplastic fluid. The more familiar Bingham model is integrated into the Herschel-Bulkley rheological model. The conservation equations of mass and momentum of single-phase laminar debris flow are layer-integrated using the slender flow approximation. They are then expressed in a Lagrangian framework and solved numerically using an explicit finite difference scheme. Starting from a given initial shape, a debris flow is allowed to collapse and propagate over a specified topography. Comparison between the model predictions and laboratory experiments shows reasonable agreement. The model is used to study the effect of the ambient fluid density, initial shape of the failed mass, and rheological model on the simulated propagation of the front and runout characteristics of muddy debris flows. It is found that initial failure shape influence the front velocity but has little bearing on the final deposit shape. In the Bingham model, the excess of shear stress above the yield strength is proportional to the strain rate to the first power. This exponent is free to vary in the Herschel-Bulkley model. When it is set at a value lower than unity, the resulting final deposits are thicker and shorter than in the case of the Bingham rheology. The final deposit resulting from the bilinear model is longer and thinner than that from the Bingham model due to the fact that the debris flow is allowed to act as a Newtonian fluid at low shear rate in the bilinear model.

  15. Debris avalanches and debris flows transformed from collapses in the Trans-Mexican Volcanic Belt, Mexico - behavior, and implications for hazard assessment

    Science.gov (United States)

    Capra, L.; Macías, J. L.; Scott, K. M.; Abrams, M.; Garduño-Monroy, V. H.

    2002-03-01

    Volcanoes of the Trans-Mexican Volcanic Belt (TMVB) have yielded numerous sector and flank collapses during Pleistocene and Holocene times. Sector collapses associated with magmatic activity have yielded debris avalanches with generally limited runout extent (e.g. Popocatépetl, Jocotitlán, and Colima volcanoes). In contrast, flank collapses (smaller failures not involving the volcano summit), both associated and unassociated with magmatic activity and correlating with intense hydrothermal alteration in ice-capped volcanoes, commonly have yielded highly mobile cohesive debris flows (e.g. Pico de Orizaba and Nevado de Toluca volcanoes). Collapse orientation in the TMVB is preferentially to the south and northeast, probably reflecting the tectonic regime of active E-W and NNW faults. The differing mobilities of the flows transformed from collapses have important implications for hazard assessment. Both sector and flank collapse can yield highly mobile debris flows, but this transformation is more common in the cases of the smaller failures. High mobility is related to factors such as water content and clay content of the failed material, the paleotopography, and the extent of entrainment of sediment during flow (bulking). The ratio of fall height to runout distance commonly used for hazard zonation of debris avalanches is not valid for debris flows, which are more effectively modeled with the relation inundated area to failure or flow volume coupled with the topography of the inundated area.

  16. Debris flow prevention pattern in national parks-Taking the world natural heritage Jiuzhaigou as an example

    Institute of Scientific and Technical Information of China (English)

    CUI; Peng; LIU; Suqing; TANG; Bangxing; CHEN; Xiaoqing

    2003-01-01

    With the development of the ecological tourism, how to control debris flow in national parks becomes an urgent problem. The characteristics of prevention of the debris flow in the areas are systematically studied, and a scientific strategy is introduced for dealing with debris flows. In term of the activity attribute of the debris flow and objects protected in Jiuzhaigou, some methods are proposed to arrange the projects of hazard mitigation, and finally an approach is established to carry out the technology in the control of the debris flow scientifically, reasonably and feasibly. Integrating the aforesaid strategy with methods, the pattern of prevention and countermeasures of the debris flow has been theorized, in this way the mitigation hazards engineering is in harmony with the natural view and combined with the ecology. The prevention pattern of the debris flow in national parks is divergent from those in other areas such as towns, traffic lines, and farmland.After the successful application of the pattern in the Jiuzhaigou National Park, it effectively controls debris flows and achieves the expected target, such as conserving the landscape resource, sustaining ecological environment, and securing the visitors and residents.

  17. Emergency assessment of post-fire debris-flow hazards for the 2013 Powerhouse fire, southern California

    Science.gov (United States)

    Staley, Dennis M.; Smoczyk, Gregory M.; Reeves, Ryan R.

    2013-01-01

    Wildfire dramatically alters the hydrologic response of a watershed such that even modest rainstorms can produce dangerous flash floods and debris flows. Existing empirical models were used to predict the probability and magnitude of debris-flow occurrence in response to a 10-year recurrence interval rainstorm for the 2013 Powerhouse fire near Lancaster, California. Overall, the models predict a relatively low probability for debris-flow occurrence in response to the design storm. However, volumetric predictions suggest that debris flows that occur may entrain a significant volume of material, with 44 of the 73 basins identified as having potential debris-flow volumes between 10,000 and 100,000 cubic meters. These results suggest that even though the likelihood of debris flow is relatively low, the consequences of post-fire debris-flow initiation within the burn area may be significant for downstream populations, infrastructure, and wildlife and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National-Weather-Service-issued Debris Flow and Flash Flood Outlooks, Watches, and Warnings and that residents adhere to any evacuation orders.

  18. Triggering conditions and depositional characteristics of a disastrous debris flow event in Zhouqu city, Gansu Province, northwestern China

    NARCIS (Netherlands)

    Tang, C.; Rengers, N.; Asch, Th.W.J. van; Yang, Y.H.; Wang, G.F.

    2011-01-01

    On 7 August 2010, catastrophic debris flows were triggered by a rainstorm in the catchments of the Sanyanyu and Luojiayu torrents, Zhouqu County, Gansu Province northwestern China. These two debris flows originated shortly after a rainstorm with an intensity of 77.3 mm h−1 and transported a total vo

  19. 泥石流颗粒组成的分形特征%Fractality of grain composition of debris flows

    Institute of Scientific and Technical Information of China (English)

    李泳; 陈晓清; 胡凯衡

    2005-01-01

    Debris flows in essence are the process of mass transportation controlled by the constitution featured by a wide-ranged distribution of grain size. Debris-flow samples of different densities collected from different regions and gullies reveal that cumulative curve of grain composition, in particular for debris flows of high density, ps >2 g/cm3, can be fitted well by exponential function with exponents varying with regions and gullies. Debris flows fall into a harrow-valued domain of the exponent, as evidenced by Jiangjiagou Gully (JJG) with high occurrence frequency of debris flows.Furthermore, fractality of grain composition and porosity have been derived from cumulative curves in a certain size range, a range that determines the upper limit of grains constituting the matrix of debris flows. One can conclude that fractal structure of porosity plays crucial roles in soil fluidization that initiates debris flows, and debris flows occur at some range of fractal dimension, in coincidence with field observations.

  20. Distribution of Amphipods (Gammarus nipponensis Ueno) Among Mountain Headwater Streams with Different Legacies of Debris Flow Occurrence

    Science.gov (United States)

    To understand the impacts of debris flows on the distribution of an amphipod with limited dispersal ability in the context of stream networks, we surveyed the presence of Gammarus nipponensis in 87 headwater streams with different legacies of debris flow occurrence within an 8.5-...

  1. An integrated model to assess critical rain fall thresholds for the critical run-out distances of debris flows

    NARCIS (Netherlands)

    van Asch, Th.W.J.; Tang, C.; Alkema, D.; Zhu, J.; Zhou, W.

    2013-01-01

    A dramatic increase in debris flows occurred in the years after the 2008 Wenchuan earthquake in SW China due to the deposition of loose co-seismic landslide material. This paper proposes a preliminary integrated model, which describes the relationship between rain input and debris flow run-out in or

  2. Frequency of the debris flow of four selected low-order streams in central Taiwan by using sequential aerial photographs and typhoon rainfall records

    Science.gov (United States)

    Chang, J.-C.; Shen, S.-M.; Liu, Y.-S.

    2003-04-01

    The Taiwan Island, located at the collision boundary of the Eurasia Plate and the Philippine Sea Plate, is characterized by intensive weathering, frequent landslides and debris flows. The latter, however, had never been regarded as a serious threat until the extensive debris flows, induced by Typhoon Herb in 1996 and/or Typhoon Toraji in 2001, caused unprecedented hazardous damages in many low-order streams, especially in the Chenyulan river basin, central Taiwan. Certain streams that remained intact in 1996 experienced dramatic change in 2001. For a better understanding of the historical records of the debris flow, a thorough examination of 17~29 versions of aerial photographs (ranging from 1951 to 2000) of four selected small catchments, which are located in the northern part of the Chenyulan basin, were conducted. The result shows that the Fengchiu stream has experienced six debris flow events over last 50 years and stands for the most vulnerable group in the basin. Statistically, the accumulation rainfall amount of an individual typhoon over 200 mm may trigger debris flow in this stream. During the same period, the other three streams did not experience any dramatic change Typhoon Toraji (>400 mm / 12 hrs). The devastating earthquake (magnitude 7.3), which occurred in 1999 and caused extensive landslides and rockfalls, is also believed playing an important role.

  3. High-resolution modeling of overland flow and sediment transport following wildfire: Insights into initiation mechanisms and sediment sources for runoff-generated debris flows

    Science.gov (United States)

    McGuire, L.; Kean, J. W.; Staley, D. M.; Rengers, F. K.

    2015-12-01

    Sediment transport in steep landscapes may be facilitated by both water-dominated flows and debris-flow processes. Given the differences in erosion potential and mobility possessed by runoff and debris flows, knowledge of the conditions that determine the runoff-to-debris-flow transition has important implications for hazard assessment as well as our understanding of the long-term evolution of steep bedrock channels. Debris flows in alpine areas and burned steeplands are frequently triggered by runoff following high-intensity rainfall, but the mechanics by which runoff generates a debris flow are not well understood. To examine the connections between runoff and debris flow initiation, we developed a numerical model that couples overland flow with sediment transport and debris-flow processes. We applied the model to study erosion and debris-flow initiation that occurred during a rainfall event that produced numerous debris flows within a burned drainage basin in the San Gabriel Mountains, CA, USA. Input data for the numerical model was constrained by rain gauges, stage measurements at the basin outlet, soil-moisture sensors, and high-resolution topographic data obtained using a terrestrial laser scanner (TLS). Numerical model predictions, which compare well with TLS-derived measurements of topographic change, indicate that hillslope erosion at our study site was primarily the result of raindrop-induced sediment transport. Further, results indicate that the majority of sediment eroded from the hillslopes was deposited within the channel system during the storm with only minor amounts being transported out of the basin in suspension. Based on model results, we hypothesize that numerous debris flows were generated from the mass failure of sediment dams that built up within the channel system throughout the storm. This study adds to our understanding of sediment transport in steep landscapes and provides insight into the topographic and hydrologic factors that

  4. The Debris Flow of September 20, 2014, in Mud Creek, Mount Shasta Volcano, Northern California

    Science.gov (United States)

    De La Fuente, J. A.; Bachmann, S.; Courtney, A.; Meyers, N.; Mikulovsky, R.; Rust, B.; Coots, F.; Veich, D.

    2015-12-01

    The debris flow in Mud Creek on September 20, 2014 occurred during a warm spell at the end of an unusually long and hot summer. No precipitation was recorded during or immediately before the event, and it appears to have resulted from rapid glacial melt. It initiated on the toe of the Konwakiton Glacier, and immediately below it. The flow track was small in the upper parts (40 feet wide), but between 8,000 and 10,000 feet in elevation, it entrained a large volume of debris from the walls and bed of the deeply incised gorge and transported it down to the apex of the Mud Creek alluvial fan (4,800'). At that point, it overflowed the channel and deposited debris on top of older (1924) debris flow deposits, and the debris plugged a road culvert 24 feet wide and 12 feet high. A small fraction of the flow was diverted to a pre-existing overflow channel which parallels Mud Creek, about 1,000 feet to the west. The main debris flow traveled down Mud Creek, confined to the pre-existing channel, but locally got to within a foot or so of overflowing the banks. At elevation 3920', video was taken during the event by a private citizen and placed on YouTube. The video revealed that the flow matrix consisted of a slurry of water/clay/silt/sand/gravel, transporting boulders 1-6 feet in diameter along with the flow. Cobble-sized rock appears to be absent. Sieve analysis of the debris flow matrix material revealed a fining of particles in a downstream direction, as expected. The thickness of deposits on the fan generally decreased in a downstream direction. Deposits were 5-6 feet deep above the Mud Creek dam, which is at 4,800' elevation, and 4-5 feet deep at the dam itself. Further downstream, thicknesses decreased as follows: 3920'aqueduct crossing, 3-4 feet; 3620' Pilgrim Creek Road crossing, 2-3 feet; 3,520', 1-2 feet; 3,440' abandoned railroad grade, 1 foot. This event damaged roads, and future events could threaten life and property. There is a need to better understand local

  5. Estimating the size and travel distance of Klapperhorn Mountain debris flows for risk analysis along railway, Canada

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Debris flows occurring on Klapperhorn Mountain in the Yellowhead Pass in the Canadian Rocky Mountains pose a significant hazard to railway operations at the base of the mountain. The size (volume) and travel distance of these debris flows play an important role in assessing the risk to the railway. GIS analysis, airphoto interpretation together with field work were undertaken on two debris flows located at track mileage 54.0 and 54.3. Characteristics of these two debris flow events were analyzed, including debris flow path morphology and event behavior. Their sizes and travel distances were estimated using an empirical-statistical model (UBCDFLOW) under different initiation conditions. Their potential impact on the railway bridge was evaluated using a bridge blockage ratio.

  6. Updated logistic regression equations for the calculation of post-fire debris-flow likelihood in the western United States

    Science.gov (United States)

    Staley, Dennis M.; Negri, Jacquelyn A.; Kean, Jason W.; Laber, Jayme L.; Tillery, Anne C.; Youberg, Ann M.

    2016-06-30

    Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can generate dangerous flash floods and debris flows. To reduce public exposure to hazard, the U.S. Geological Survey produces post-fire debris-flow hazard assessments for select fires in the western United States. We use publicly available geospatial data describing basin morphology, burn severity, soil properties, and rainfall characteristics to estimate the statistical likelihood that debris flows will occur in response to a storm of a given rainfall intensity. Using an empirical database and refined geospatial analysis methods, we defined new equations for the prediction of debris-flow likelihood using logistic regression methods. We showed that the new logistic regression model outperformed previous models used to predict debris-flow likelihood.

  7. Rainfall intensity-duration threshold and erosion competence of debris flows in four areas affected by the 2008 Wenchuan earthquake

    Science.gov (United States)

    Ma, Chao; Wang, Yujie; Hu, Kaiheng; Du, Cui; Yang, Wentao

    2017-04-01

    Debris flows in the Wenchuan seismic region have caused human casualties and severe damage to local infrastructure. Consequently, the triggering rainfall threshold and erosion capability of post-quake debris flows has become an important research topic worldwide. In this study, we analyze five years of rainstorms and debris flow data from four typical earthquake-hit regions in order to examine the local rainfall intensity-duration (I-D) thresholds and debris supply conditions. It was found that debris flow events in the four seismic areas exhibited different I-D thresholds, related to local mean annual hourly precipitation and debris flow supply conditions. The I-D thresholds, normalized by mean annual maximum hourly rainfall, illustrate that post-quake rainfall thresholds were reduced by at least 30% compared to pre-quake levels. Regression analysis revealed a clear linear relationship between the debris supply condition and the empirical coefficient, α, of the I-D equation. This means that rainfall thresholds of post-quake debris flows in different areas are distinctive and are strongly affected by sediment volume. Different relationships between the entrainment rate and the debris volume per watershed area and its product with the channel gradient illustrate that stream sediments in Yingxiu and Dujiangyan are more eroded, and that local debris flows might persist over a shorter time than in Qingping and Beichuan in the future. Finally, debris flows in the studied area exhibit no tendency of reduction in erosion competence entrainment rate, as found in Taiwan, which might be indicative of a higher entrainment rate persisting for a longer time.

  8. Glacial-interglacial climate changes recorded by debris flow fan deposits, Owens Valley, California

    Science.gov (United States)

    D'Arcy, Mitch; Roda-Boluda, Duna C.; Whittaker, Alexander C.

    2017-08-01

    It is hotly debated whether and how climate changes are recorded by terrestrial stratigraphy. Basin sediments produced by catchment-alluvial fan systems may record past climate over a variety of timescales, and could offer unique information about how climate controls sedimentation. Unfortunately, there are fundamental uncertainties about how climatic variables such as rainfall and temperature translate into sedimentological signals. Here, we examine 35 debris flow fan surfaces in Owens Valley, California, that record deposition throughout the past 125,000 years, during which climate has varied significantly. We show that the last full glacial-interglacial cycle is recorded with high fidelity by the grain size distributions of the debris flow deposits. These flows transported finer sediment during the cooler glacial climate, and became systematically coarser-grained as the climate warmed and dried. We explore the physical mechanisms that might explain this signal, and rule out changes in sediment supply through time. Instead, we propose that grain size records past changes in storm intensity, which is responsible for debris flow initiation in this area and is decoupled from average rainfall rates. This is supported by an exponential Clausius-Clapeyron-style scaling between grain size and temperature, and also reconciles with climate dynamics and the initiation of debris flows. The fact that these alluvial fans exhibit a strong, sustained sensitivity to orbital climate changes sheds new light on how eroding landscapes and their sedimentary products respond to climatic forcing. Finally, our findings highlight the importance of threshold-controlled events, such as storms and debris flows, in driving erosion and sedimentation at the Earth's surface in response to climate change.

  9. Extreme rainfall and debris flows from an orographic thunderstorm in the Eastern Italian Alps

    Science.gov (United States)

    Tarolli, Paolo; Marra, Francesco; Penna, Daniele; Nikolopoulos, Efthymios I.

    2013-04-01

    The upper Adige river basin, in Northern Italy, occupy a distinctive hydrometeorological niche, characterised by high frequency of orographic thunderstorms. Relatively small-extent flash floods and debris flows are triggered by these storm events. The hydrometeorological and hydrological controls of these events are examined through analyses of a storm system occurred on August 1, 2005 on the Rio Gola river basin (6.59 km2, Eastern Italian Alps, Adige river basin). The intense orographic convective system produced locally extreme rainfall peaks in 1.5 hours. The storm concentrated on small, rocky and steeply sloping basin where concentrated overland flow feeds ephemeral channels incised in slope deposits. Despite the short duration of the event the storm triggered an unusually large debris flow, with a volume of about 100,000 m3, producing significant geomorphological impacts and abrupt changes in the extent of incision and channel widening. Hydrometeorological analyses of the storm are based on radar reflectivity observations, raingauge and streamgauge data. The orographic organization of the precipitation system is examined by means of the hypsometric rainfall moments. Detailed geomorphological field surveys, rainfall estimates from radar observations, and the application of a distributed hydrological model in comparison with observed discharge, served as the basis to evaluate erosion processes and quantify the water runoff production at the initiation debris flow area. The hydrological analysis is used to evaluate the consistency among the different observations and to identify the critical factors controlling the debris flow triggering. The hydrological analysis shows that the critical factor is storm concentration on rocky and steeply surfaces and formation of concentrated surface flow at the bottom of channels filled by coarse loose debris.

  10. Coupled prediction of flash flood response and debris flow occurrence in an alpine basin

    Science.gov (United States)

    Amponsah, William

    2015-04-01

    Coupled prediction of flash flood response and debris flow occurrence in an alpine basin Author(s): William Amponsah1, E.I. Nikolopoulos2, Lorenzo Marchi1, Roberto Dinale4, Francesco Marra3,Davide Zoccatelli2 , Marco Borga2 Affiliation(s): 1CNR - IRPI, Corso Stati Uniti 4, 35127, Padova, ITALY, 2Department of Land, Environment, Agriculture and Forestry, University of Padova,VialeDell'Università 16, 35020, Legnaro PD, ITALY 3Department of Geography, Hebrew University of Jerusalem, ISRAEL 4Ufficio Idrografico, Provincia Autonoma di Bolzano, Bolzano, Italy This contribution examines the main hydrologic and morphologic metrics responsible for widespread triggering of debris-flows associated with flash flood occurrences in headwater alpine catchments.To achieve this objective, we investigate the precipitation forcing, hydrologic responses and landslides and debris-flow occurrences that prevailed during the August 4-5, 2012 extreme flash flood on the 140 km2 Vizze basin in the Eastern Alps of Italy. An intensive post-event survey was carried out a few days after the flood. This included the surveys of cross-sectional geometry and flood marks for the estimation of the peak discharges at multiple river sections and of the initiation and deposition areas of several debris flows. Rainfall estimates are based on careful analysis of weather radar observations and raingauge data. These data and observations permitted the implementation and calibration of a spatially distributed hydrological model, which was used to derive simulated flood hydrographs in 58 tributaries of the Vizze basin. Of these, 33 generated debris-flows, with area ranging from 0.02 km2 to 10 km2, with an average of 1.5 km2. With 130 mm peak event rainfall and a duration of 4 hours (with a max intensity of 90 mm h-1 for 10 min), model-simulated unit peak discharges range from 4 m3 s-1 km-2for elementary catchments up to 10 km2 to 2 m3 s-1 km-2 for catchments in the range of 50 - 100 km2. These are very high

  11. Forecasting inundation from debris flows that grow during travel, with application to the Oregon Coast Range, USA

    Science.gov (United States)

    Reid, Mark E.; Coe, Jeffrey A.; Brien, Dianne

    2016-01-01

    Many debris flows increase in volume as they travel downstream, enhancing their mobility and hazard. Volumetric growth can result from diverse physical processes, such as channel sediment entrainment, stream bank collapse, adjacent landsliding, hillslope erosion and rilling, and coalescence of multiple debris flows; incorporating these varied phenomena into physics-based debris-flow models is challenging. As an alternative, we embedded effects of debris-flow growth into an empirical/statistical approach to forecast potential inundation areas within digital landscapes in a GIS framework. Our approach used an empirical debris-growth function to account for the effects of growth phenomena. We applied this methodology to a debris-flow-prone area in the Oregon Coast Range, USA, where detailed mapping revealed areas of erosion and deposition along paths of debris flows that occurred during a large storm in 1996. Erosion was predominant in stream channels with slopes > 5°. Using pre- and post-event aerial photography, we derived upslope contributing area and channel-length growth factors. Our method reproduced the observed inundation patterns produced by individual debris flows; it also generated reproducible, objective potential inundation maps for entire drainage networks. These maps better matched observations than those using previous methods that focus on proximal or distal regions of a drainage network.

  12. Forecasting inundation from debris flows that grow volumetrically during travel, with application to the Oregon Coast Range, USA

    Science.gov (United States)

    Reid, Mark E.; Coe, Jeffrey A.; Brien, Dianne L.

    2016-11-01

    Many debris flows increase in volume as they travel downstream, enhancing their mobility and hazard. Volumetric growth can result from diverse physical processes, such as channel sediment entrainment, stream bank collapse, adjacent landsliding, hillslope erosion and rilling, and coalescence of multiple debris flows; incorporating these varied phenomena into physics-based debris-flow models is challenging. As an alternative, we embedded effects of debris-flow growth into an empirical/statistical approach to forecast potential inundation areas within digital landscapes in a GIS framework. Our approach used an empirical debris-growth function to account for the effects of growth phenomena. We applied this methodology to a debris-flow-prone area in the Oregon Coast Range, USA, where detailed mapping revealed areas of erosion and deposition along paths of debris flows that occurred during a large storm in 1996. Erosion was predominant in stream channels with slopes > 5°. Using pre- and post-event aerial photography, we derived upslope contributing area and channel-length growth factors. Our method reproduced the observed inundation patterns produced by individual debris flows; it also generated reproducible, objective potential inundation maps for entire drainage networks. These maps better matched observations than those using previous methods that focus on proximal or distal regions of a drainage network.

  13. Transformation of Ground Vibration Signal for Debris-Flow Monitoring and Detection in Alarm Systems

    Directory of Open Access Journals (Sweden)

    José Moya

    2012-04-01

    Full Text Available Debris flows are fast mass movements formed by a mix of water and solid materials, which occur in steep torrents, and are a source of high risks for human settlements. Geophones are widely used to detect the ground vibration induced by passing debris flows. However, the recording of geophone signals usually requires storing a huge amount of data, which leads to problems in storage capacity and power consumption. This paper presents a method to transform and simplify the signals measured by geophones. The key input parameter is the ground velocity threshold, which removes the seismic noise that is not related to debris flows. A signal conditioner was developed to implement the transformation and the ground velocity threshold was set by electrical resistors. The signal conditioner was installed at various European monitoring sites to test the method. Results show that data amount and power consumption can be greatly reduced without losing much information on the main features of the debris flows. However, the outcome stresses the importance of choosing a ground vibration threshold, which must be accurately calibrated. The transformation is also suitable to detect other rapid mass movements and to distinguish among different processes, which points to a possible implementation in alarm systems.

  14. Debris flow and landslide hazard mapping and risk analysis in China

    Institute of Scientific and Technical Information of China (English)

    Xilin LIU; Chengjun YU; Peijun SHI; Weihua FANG

    2012-01-01

    This paper assesses the hazardousness,vulnerability and risk of debris flow and landslide in China and compiles maps with a scale of 1∶6000000,based on Geographical Information System (GIS) technology,hazard regionalization map,socioeconomic data from 2000.Integrated hazardousness of debris flow and landslide is equivalent to the sum of debris flow hazardousness and landslide hazardousness.Vulnerability is assessed by employing a simplified assessment model.Risk is calculated by the following formula:Risk =Hazardousness × Vulnerability.The analysis results of assessment of hazardousness,vulnerability and risk show that there are extremely high risk regions of 104 km2,high risk regions of 283008 km2,moderate risk regions of 3161815 km2,low risk regions of 3299604km2,and extremely low risk regions of 2681709 km2.Exploitation activities should be prohibited in extremely high risk and high risk regions and restricted in moderate risk regions.The present study on risk analysis of debris flow and landslide not only sheds new light on the future work in this direction but also provides a scientific basis for disaster prevention and mitigation policy making.

  15. Transformation of ground vibration signal for debris-flow monitoring and detection in alarm systems.

    Science.gov (United States)

    Abancó, Clàudia; Hürlimann, Marcel; Fritschi, Bruno; Graf, Christoph; Moya, José

    2012-01-01

    Debris flows are fast mass movements formed by a mix of water and solid materials, which occur in steep torrents, and are a source of high risks for human settlements. Geophones are widely used to detect the ground vibration induced by passing debris flows. However, the recording of geophone signals usually requires storing a huge amount of data, which leads to problems in storage capacity and power consumption. This paper presents a method to transform and simplify the signals measured by geophones. The key input parameter is the ground velocity threshold, which removes the seismic noise that is not related to debris flows. A signal conditioner was developed to implement the transformation and the ground velocity threshold was set by electrical resistors. The signal conditioner was installed at various European monitoring sites to test the method. Results show that data amount and power consumption can be greatly reduced without losing much information on the main features of the debris flows. However, the outcome stresses the importance of choosing a ground vibration threshold, which must be accurately calibrated. The transformation is also suitable to detect other rapid mass movements and to distinguish among different processes, which points to a possible implementation in alarm systems.

  16. Assessing potential debris flow runout: a comparison of two simulation models

    Directory of Open Access Journals (Sweden)

    M. Pirulli

    2008-08-01

    Full Text Available In the present paper some of the problems related to the application of the continuum mechanics modelling to debris flow runout simulation are discussed.
    Particularly, a procedure is proposed to face the uncertainties in the choice of a numerical code and in the setting of rheological parameter values that arise when the prediction of a debris flow propagation is required.
    In this frame, the two codes RASH3D and FLO2D are used to numerically analyse the propagation of potential debris flows affecting two study sites in Southern Italy.
    For these two study sites, a lack in information prevents that the rheological parameters can be obtained from the back analysis of similar well documented debris flow events in the area. As a prediction of the possible runout area is however required by decision makers, an alternative approach based on the analysis of the alluvial fans existing at the toe of the two studied basins is proposed to calibrate rheological parameters on the safe side.
    From the comparison of the results obtained with RASH3D (where a Voellmy and a Quadratic rheologies are implemented and FLO2D (where a Quadratic rheology is implemented it emerges that, for the two examined cases, numerical analyses carried out with RASH3D assuming a Voellmy rheology can be considered on the safe side respect to those carried out with a Quadratic rheology.

  17. Debris Flows in Direct Dark Matter Searches-The modulation effect

    CERN Document Server

    Vergados, J D

    2012-01-01

    The effect of some possible non standard WIMP velocity distributions, like the Debris Flows recently proposed, on the direct dark matter detection rates is investigated. We find that such distributions may be deciphered from the data, especially if the time variation of the event rates due to the annual motion of the Earth is observed

  18. Recognizing the importance of tropical forests in limiting rainfall-induced debris flows

    Science.gov (United States)

    Worldwide concern for continuing loss of montane forest cover in the tropics usually focuses on adverse ecological consequences. Less recognized, but equally important to inhabitants of these affected regions, is an increasing susceptibility to rainfall-induced debris flows and t...

  19. Objective definition of rainfall intensity-duration thresholds for the initiation of post-fire debris flows in southern California

    Science.gov (United States)

    Staley, Dennis; Kean, Jason W.; Cannon, Susan H.; Schmidt, Kevin M.; Laber, Jayme L.

    2012-01-01

    Rainfall intensity–duration (ID) thresholds are commonly used to predict the temporal occurrence of debris flows and shallow landslides. Typically, thresholds are subjectively defined as the upper limit of peak rainstorm intensities that do not produce debris flows and landslides, or as the lower limit of peak rainstorm intensities that initiate debris flows and landslides. In addition, peak rainstorm intensities are often used to define thresholds, as data regarding the precise timing of debris flows and associated rainfall intensities are usually not available, and rainfall characteristics are often estimated from distant gauging locations. Here, we attempt to improve the performance of existing threshold-based predictions of post-fire debris-flow occurrence by utilizing data on the precise timing of debris flows relative to rainfall intensity, and develop an objective method to define the threshold intensities. We objectively defined the thresholds by maximizing the number of correct predictions of debris flow occurrence while minimizing the rate of both Type I (false positive) and Type II (false negative) errors. We identified that (1) there were statistically significant differences between peak storm and triggering intensities, (2) the objectively defined threshold model presents a better balance between predictive success, false alarms and failed alarms than previous subjectively defined thresholds, (3) thresholds based on measurements of rainfall intensity over shorter duration (≤60 min) are better predictors of post-fire debris-flow initiation than longer duration thresholds, and (4) the objectively defined thresholds were exceeded prior to the recorded time of debris flow at frequencies similar to or better than subjective thresholds. Our findings highlight the need to better constrain the timing and processes of initiation of landslides and debris flows for future threshold studies. In addition, the methods used to define rainfall thresholds in this

  20. Sediment delivery in debris-flow torrents: two case studies in the Italian Alps

    Science.gov (United States)

    Bertoldi, Gabriele; Vincenzo, D'Agostino

    2013-04-01

    Flood-risk mitigation strategy is moving from fixed, structural and costly mitigation measures to more effective proactive solutions. This change is driven both by Flood Directive 2007/60/EC and limitations of financial resources and it requires a deep knowledge of the involved processes. In mountain catchments debris flow and debris floods are the most important sources of hazard and their impact on the fan areas is heavily conditioned by the sediment dynamics along the 'transport' reaches of the torrents. Last advances show how many cases of erosion and deposition within the transport reach greatly affect the total volume that is delivered to the fan as well the overall dynamics of the debris flow/flood event. Due to logistic and practical constraints this intermediate phase of the process has been scarcely investigated and the complex behavior of the sediment budgeting in torrent-streams is emerging. The objective of this work consists of collecting information on the evolution of the debris-flow sediment budget along Alpine torrents in order to provide novel data about erosive, depositional and recharging processes under different geological conditions. Two high frequency debris-flow catchments have been selected: the Rio Rudan basin in the geological setting of the Dolomites (near Cortina d'Ampezzo, Veneto Region, Italy) and the metamorphic dominated catchment of the Rio Gadria (near Lasa, Trentino Alto Adige, Italy), which has been recently instrumented (EU project Monitor II). Periodical field monitoring has been carried out since summer 2011. 25 cross sections have been observed in the Rio Rudan catchment along a 480 m torrent reach (slope of 36%) where additional sediment entrainment after debris-flow initiation takes place. 20 cross sections have been selected in the upper Rio Gadria basin and more precisely in two reaches close to debris-flow triggerring areas. Other 31 cross sections have been also monitored of the Rio Gadria main channel covering a

  1. Discharge of landslide-induced debris flows: case studies of Typhoon Morakot in southern Taiwan

    Directory of Open Access Journals (Sweden)

    J.-C. Chen

    2014-01-01

    volume, the deposition area, maximum flow depth, and deposition depth, were collected by field investigations and simulated using the numerical modeling software FLO-2D. The discharge coefficient cb, defined as the ratio of the debris-flow discharge Qdp to the water-flow discharge Qwp, was proposed to determine Qdp, and Qwp was estimated by a rational equation. Then, cb was calibrated by a comparison between the field investigation and the numerical simulation of the inundation characteristics of debris flows. Our results showed that the values of cb range from 6 to 18, and their values are affected by the landslide ratio The empirical relationships between Qdp and Qwp were also presented.

  2. Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event

    Science.gov (United States)

    Park, D. W.; Nikhil, N. V.; Lee, S. R.

    2013-11-01

    This paper presents the results from the application of a regional, physically based stability model: Transient Rainfall Infiltration and Grid-based Regional Slope-stability analysis (TRIGRS) for a region on Woomyeon Mountain, Seoul, South Korea. This model couples an infinite-slope stability analysis with a one-dimensional analytical solution to predict the transient pore pressure response to the infiltration of rainfall. TRIGRS also adopts the geographic information system (GIS) framework for determining the whole behaviour of a slope. In this paper, we suggest an index for evaluating the results produced by the model. Particular attention is devoted to the prediction of routes of debris flow, using a runoff module. In this context, the paper compares observed landslide and debris flow events with those predicted by the TRIGRS model. The TRIGRS model, originally developed to predict shallow landslides, has been extended in this study for application to debris flows. The results predicted by the TRIGRS model are presented as safety factor (FS) maps corresponding to transient rainfall events, and in terms of debris flow paths using methods proposed by several researchers in hydrology. In order to quantify the effectiveness of the model, we proposed an index called LRclass (landslide ratio for each predicted FS class). The LRclass index is mainly applied in regions where the landslide scar area is not well defined (or is unknown), in order to avoid overestimation of the model results. The use of the TRIGRS routing module was proposed to predict the paths of debris flow, especially in areas where the rheological properties and erosion rates of the materials are difficult to obtain. Although an improvement in accuracy is needed, this module is very useful for preliminary spatio-temporal assessment over wide areas. In summary, the TRIGRS model is a powerful tool of use to decision makers for susceptibility mapping, particularly when linked with various advanced

  3. Risk assessment of debris flow in Yushu seismic area in China: a perspective for the reconstruction

    Science.gov (United States)

    Lan, H. X.; Li, L. P.; Zhang, Y. S.; Gao, X.; Liu, H. J.

    2013-11-01

    The 14 April 2010 Ms = 7.1 Yushu Earthquake (YE) had caused severe damage in the Jiegu township, the residential centre of Yushu Tibetan Autonomous Prefecture, Qinghai Province, China. In view of the fragile geological conditions after YE, risk assessment of secondary geohazards becomes an important concern for the reconstruction. A quantitative methodology was developed to assess the risk of debris flow by taking into account important intensity information. Debris flow scenarios were simulated with respect to rainfall events with 10, 50 and 100 yr returning period, respectively. The possible economic loss and fatalities caused by damage to buildings were assessed both in the settlement area and in the low hazard settlement area regarding the simulated debris flow events. Three modelled building types were adopted, i.e. hollow brick wood (HBW), hollow brick concrete (HBC) and reinforced concrete (RC) buildings. The results suggest that HBC structure achieves a good balance for the cost-benefit relationship compared with HBW and RC structures and thus could be an optimal choice for most of the new residential buildings in the Jiegu township. The low hazard boundary presents significant risk reduction efficiency in the 100 yr returning debris flow event. In addition, the societal risk for the settlement area is unacceptable when the 100 yr returning event occurs but reduces to ALARP (as low as reasonably practicable) level as the low hazard area is considered. Therefore, the low hazard area was highly recommended to be taken into account in the reconstruction. Yet, the societal risk might indeed approach an unacceptable level if one considers that YE has inevitably increased the occurrence frequency of debris flow. The quantitative results should be treated as a perspective for the reconstruction rather than precise numbers of future losses, owing to the complexity of the problem and the deficiency of data.

  4. Effects of Alluvial and Debris Flow Fans on Channel Morphology in Idaho, Washington, and Oregon

    Science.gov (United States)

    Bigelow, P. E.; Benda, L.; Miller, D.; Andras, K.

    2003-12-01

    Formation of debris flow and alluvial fans at tributary confluences from episodic erosion associated with large storms and fires ("extreme events") are often viewed negatively over short time spans (years). However, when viewed over long periods of time (decades to centuries), fans that form at tributary junctions are often sources of morphological diversity in streams and rivers. To evaluate effects of tributary fans on the morphology of mainstem channels, we surveyed a total of 44 km of streams in the Sawtooth Mountains of Idaho (27 km), Olympic Mountains of Washington (10 km), and Central Coast Range of Oregon (7 km). Rejuvenated alluvial fans resulting from post-fire gully erosion in the Sawtooth Mountains created gradient nick points in 4th to 6th order mainstem channels (30 to 350 km2 drainage area) that increased sediment storage upstream resulting in decreased channel gradients, widened flood plains, side channel construction, and the beginning of terrace formation. Downstream effects included increased channel gradients, often creating rapids. In 3rd and 4th order mainstem channels (< 10 km2 drainage area) in the Olympic Mountains, there was statistically significant association between low-order confluences containing debris flow deposits and gravel abundance, wide channels, and numbers of logs and large pools. Moreover, heterogeneity of mainstem channel morphology increased in proximity to low-order confluences prone to debris flows in the Olympic study sites. In 3rd and 4th order channels in the Oregon Coast Range, density of large wood and boulders in mainstem channels (< 30 km2 drainage area) increased with proximity to all debris flow fans at low-order confluences regardless of fan age, while channel gradients and sediment depth in mainstem channels increased with proximity to recent (< 60 yrs old) debris fans. Consequently, alluvial and debris flow fans can be significant agents of heterogeneity in riverine habitats, similar to other sources of

  5. Debris-flow hazards in areas affected by the June 27, 1995, storm in Madison County, Virginia

    Science.gov (United States)

    Morgan, B.A.; Wieczorek, G.F.; Campbell, R.H.; Gori, P.L.

    1997-01-01

    A severe storm on June 27, 1995 triggered hundreds of rock, debris and soil slides from the steep hillsides of Madison County, Virginia. Most of these transformed into debris flows that inundated areas downslope causing damage to structures, roads, utilities, livestock and crops. This report contains an analysis of areas susceptible to debris flows including an examination of source areas, channels and areas of deposition. These analyses are used to develop a methodology for identifying areas subject to debris-flow hazards in Madison County. The report concludes with a discussion of strategies for reducing debris-flow hazards and the long term risk of these hazards in Madison County as well as for similar areas along the eastern flank of the Blue Ridge.

  6. The FlatModel: a 2D numerical code to evaluate debris flow dynamics. Eastern Pyrenees basins application.

    Science.gov (United States)

    Bateman, A.; Medina, V.; Hürlimann, M.

    2009-04-01

    Debris flows are present in every country where a combination of high mountains and flash floods exists. In the northern part of the Iberian Peninsula, at the Pyrenees, sporadic debris events occur. We selected two different events. The first one was triggered at La Guingueta by the big exceptional flood event that produced many debris flows in 1982 which were spread all over the Catalonian Pyrenees. The second, more local event occurred in 2000 at the mountain Montserrat at the Pre-litoral mountain chain. We present here some results of the FLATModel, entirely developed at the Research Group in Sediment Transport of the Hydraulic, Marine and Environmental Engineering Department (GITS-UPC). The 2D FLATModel is a Finite Volume method that uses the Godunov scheme. Some numerical arranges have been made to analyze the entrainment process during the events, the Stop & Go phenomena and the final deposit of the material. The material rheology implemented is the Voellmy approach, because it acts very well evaluating the frictional and turbulent behavior. The FLATModel uses a GIS environment that facilitates the data analysis as the comparison between field and numerical data. The two events present two different characteristics, one is practically a one dimensional problem of 1400 m in length and the other has a more two dimensional behavior that forms a big fan.

  7. Numerical model of characteristics of a particulate debris bed coolability with single phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Je Whan

    2008-02-15

    Designed on the basis of defense-in-depth concept, liquid metal cooled fast reactor, such as KALIMER-600 (Korea Advanced Liquid Metal Reactor) is unlikely to undergo the HCDA (hypothetical core disruptive accident). Because of its inherent safety features, most of the incidents of abnormal operation end with reactor trip and no further progression. Under a postulated, very low probable core meltdown scenario without reactor trip, however, there exists a possibility of re-criticality and vessel melting and the status of debris generated plays an important role. For this reason, the analysis on the ability of post-accident heat removal (PAHR) should be preceded. As a part of this, single phase flow coolability analysis of the particulate debris bed formed at the top of core catcher has been performed to achieve in-vessel fuel retention. The analysis is based on the Ergun equation and Macdonald's work that describe the phenomena of flow through a porous media with Hardee and Nilson's study of temperature relationship of the debris beds. The forming process of particulate debris bed is described and single phase cooling model with numerical results are presented. The analysis was conducted in the condition of three cases, inner and inner+middle and whole core meltdown case. It was proved that the inner and inner+middle core meltdown case could be cooled down with single phase flow. The whole core meltdown case will need some other management. Also, parameter sensitivity test was done.

  8. Predicting the delivery of sediment and associated nutrients from post-fire debris flows in small upland catchments

    Science.gov (United States)

    Nyman, Petter; Sheridan, Gary; Smith, Hugh; Lane, Patrick

    2014-05-01

    Post-fire debris flows are extreme erosion events that can dominate the long term supply of sediment from headwaters to streams in upland catchments. Predicting the location, frequency and magnitude of debris flows is therefore important for understanding sediment dynamics in upland catchments and providing a basis on which to manage hydro-geomorphic risk in burned areas. In this study we survey 10 post-fire debris flow events in southeast Australia with aims to i) identify rainfall conditions underlying the debris flow response, ii) quantify erosion rates in hillslope and channel source areas, and iii) estimate the delivery of sediment and water quality constituents to receiving waterways. Rainfall events that triggered debris flows had an annual exceedance probability ranging from 0.1 to 0.6, and 30-minute intensities, I30, ranging from 17-60 mm h-1. Sediment delivery by debris flows (100-200 t ha-1) is similar to that which has been reported for similar events in the western US and Spain. In terms of eroded volume, there was on average an equal contribution from hillslopes and channels to debris flows, which is in agreement with the calculations of surface and subsurface source contributions obtained from radionuclide concentrations. In terms of the potential water quality impacts from post-fire debris flows, the hillslopes had much higher concentration of constituents such as fine clay and silt, plant available phosphorous and total carbon. The data on debris flow magnitude was used to evaluate two different approaches for predicting sediment delivery from debris flows. A statistical debris flow model developed by the US Geological Surveys and parameterized for catchments in western US performed well (R2 = 0.92) in terms of predicting the overall volume of material delivered at the catchment outlet. An alternative modeling approach, using local slope and contributing area as predictors of erosion, also produced good results, and could be used to obtain more

  9. Trace projection transformation: a new method for measurement of debris flow surface velocity fields

    Science.gov (United States)

    Yan, Yan; Cui, Peng; Guo, Xiaojun; Ge, Yonggang

    2016-12-01

    Spatiotemporal variation of velocity is important for debris flow dynamics. This paper presents a new method, the trace projection transformation, for accurate, non-contact measurement of a debris-flow surface velocity field based on a combination of dense optical flow and perspective projection transformation. The algorithm for interpreting and processing is implemented in C ++ and realized in Visual Studio 2012. The method allows quantitative analysis of flow motion through videos from various angles (camera positioned at the opposite direction of fluid motion). It yields the spatiotemporal distribution of surface velocity field at pixel level and thus provides a quantitative description of the surface processes. The trace projection transformation is superior to conventional measurement methods in that it obtains the full surface velocity field by computing the optical flow of all pixels. The result achieves a 90% accuracy of when comparing with the observed values. As a case study, the method is applied to the quantitative analysis of surface velocity field of a specific debris flow.

  10. Vadose zone process that control landslide initiation and debris flow propagation

    Science.gov (United States)

    Sidle, Roy C.

    2015-04-01

    Advances in the areas of geotechnical engineering, hydrology, mineralogy, geomorphology, geology, and biology have individually advanced our understanding of factors affecting slope stability; however, the interactions among these processes and attributes as they affect the initiation and propagation of landslides and debris flows are not well understood. Here the importance of interactive vadose zone processes is emphasized related to the mechanisms, initiation, mode, and timing of rainfall-initiated landslides that are triggered by positive pore water accretion, loss of soil suction and increase in overburden weight, and long-term cumulative rain water infiltration. Both large- and small-scale preferential flow pathways can both contribute to and mitigate instability, by respectively concentrating and dispersing subsurface flow. These mechanisms are influenced by soil structure, lithology, landforms, and biota. Conditions conducive to landslide initiation by infiltration versus exfiltration are discussed relative to bedrock structure and joints. The effects of rhizosphere processes on slope stability are examined, including root reinforcement of soil mantles, evapotranspiration, and how root structures affect preferential flow paths. At a larger scale, the nexus between hillslope landslides and in-channel debris flows is examined with emphasis on understanding the timing of debris flows relative to chronic and episodic infilling processes, as well as the episodic nature of large rainfall and related stormflow generation in headwater streams. The hydrogeomorphic processes and conditions that determine whether or not landslides immediately mobilize into debris flows is important for predicting the timing and extent of devastating debris flow runout in steep terrain. Given the spatial footprint of individual landslides, it is necessary to assess vadose zone processes at appropriate scales to ascertain impacts on mass wasting phenomena. Articulating the appropriate

  11. High frequency seismic monitoring of debris flows at Chalk Cliffs (CO), USA

    Science.gov (United States)

    Coviello, Velio; Kean, Jason; Smith, Joel; Coe, Jeffrey; Arattano, Massimo; McCoy, Scott

    2015-04-01

    A growing number of studies adopt passive seismic monitoring techniques to investigate slope instabilities and landslide processes. These techniques are attractive and convenient because large areas can be monitored from a safe distance. This is particularly true when the phenomena under investigation are rapid and infrequent mass movements like debris flows. Different types of devices are used to monitor debris flow processes, but among them ground vibration detectors (GVDs) present several, specific advantages that encourage their use. These advantages include: (i) the possibility to be installed outside the channel bed, (ii) the high adaptability to different and harsh field conditions, and (iii) the capability to detect the debris flow front arrival tens of seconds earlier than contact and stage sensors. Ground vibration data can provide relevant information on the dynamics of debris flows such as timing and velocity of the main surges. However, the processing of the raw seismic signal is usually needed, both to obtain a more effective representation of waveforms and to decrease the amount of data that need to be recorded and analyzed. With this objective, the methods of Amplitude and Impulses are commonly adopted to transform the raw signal to a 1-Hz signal that allows for a more useful representation of the phenomenon. In that way, peaks and other features become more visible and comparable with data obtained from other monitoring devices. In this work, we present the first debris flows seismic recordings gathered in the Chalk Cliffs instrumented basin, central Colorado, USA. In May 2014, two 4.5-Hz, three-axial geophones were installed in the upper part of the catchment. Seismic data are sampled at 333 Hz and then recorded by a standalone recording unit. One geophone is directly installed on bedrock, the other one mounted on a 1-m boulder partially buried in colluvium. This latter sensor integrates a heavily instrumented cross-section consisting of a 225 cm2

  12. A WISE-based search for debris discs amongst M dwarfs in nearby, young, moving groups

    Science.gov (United States)

    Binks, A. S.; Jeffries, R. D.

    2017-07-01

    We present a search for debris discs amongst M-dwarf members of nearby, young (5-150 Myr) moving groups (MGs) using infrared (IR) photometry, primarily from the Wide Infrared Survey Explorer (WISE). A catalogue of 100 MG M dwarfs that have suitable WISE data is compiled, and 19 of these are found to have significant IR excess emission at 22 μm. Our search is likely to be complete for discs where the ratio of flux from the disc to flux from the star fd/f* > 10-3. The spectral energy distributions are supplemented with Two-Micron All-Sky Survey (2MASS) photometry and data at longer wavelengths, and fitted with simple disc models to characterize the IR excesses. There is a bimodal distribution - 12 targets have W1 - W4 > 3, corresponding to fd/f* > 0.02, and are likely to be gas-rich, primordial discs. The remaining seven targets have W1 - W4 < 1 (fd/f* ≲ 10-3) and include three objects with previously known or suspected debris discs and four new debris disc candidates that are all members of the Beta Pic MG. All of the IR excesses are identified in stars that are likely members of MGs with age <30 Myr. The detected debris disc frequency falls from 13 ± 5 per cent to <7 per cent (at 95 per cent confidence) for objects younger or older than 30 Myr, respectively. This provides evidence for the evolution of debris discs on this time-scale and does not support models where the maximum of debris disc emission occurs much later in lower mass stars.

  13. Numerical Model for the Analysis of Coolability of a Particulate Debris Bed with Single Phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Cho, C. H.; Jeong, H. Y.; Chang, W. P.; Kwon, Y. M.; Lee, Y. B

    2008-01-15

    Preliminary safety analyses of the KALIMER-600 design have shown that the design has inherent safety characteristics and is capable of accommodating double-fault initiators such as ATWS events without coolant boiling or fuel melting. However, for the future design of sodium cooled fast reactor, the evaluation of the safety performance and the determination of containment requirements may be worth due consideration of triple-fault accident sequences of extremely low probability of occurrence that leads to core melting. For any postulated accident sequence which leads to core melting, in-vessel retention of the core debris will be required as a design requirement for the future design of sodium cooled fast reactor. Also, proof of the capacity of the debris bed cooling is an essential condition to solve the problem of in-vessel retention of the core debris. Accordingly, Numerical model development for the Analysis of coolability of a particulate debris bed with single phase flow was carried out for in-vessel retention of the core debris.

  14. Revaluation of a Coolability of a Packed Debris Bed with a Single Phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chungho; Suk, S. D.; Jeong, H. Y.; Kwon, Y. M.; Lee, Y. B

    2008-09-15

    Preliminary safety analyses of the KALIMER-600 design have shown that the design has inherent safety characteristics and is capable of accommodating double-fault initiators such as ATWS events without coolant boiling or fuel melting. However, for the future design of sodium cooled fast reactor, the evaluation of the safety performance and the determination of containment requirements may be worth due consideration of triple-fault accident sequences of extremely low probability of occurrence that leads to core melting. For any postulated accident sequence which leads to core melting, in-vessel retention of the core debris will be required as a design requirement for the future design of sodium cooled fast reactor. Also, proof of the capacity of the debris bed cooling is an essential condition to solve the problem of in-vessel retention of the core debris. Accordingly, evaluation of coolability of a packed debris bed with single phase flow was carried out for proof of the in-vessel retention of the core debris.

  15. Numerical Simulation of Interaction Between Tributary Debris Flow and Main River

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on two-phase flow theory and shallow water flow assumption,a mathematical model is applied to simulate debris flow.The model considers a two-phase mixture of sediments and water fluid.Assuming that the sediments and the water fluid move downstream with the same velocity,the flow of the mixture is described using a two dimensional depth averaged model with a unique 2-D momentum equation and two mass balance e- quations for the mixture and the sediments,respectively.The finite volume method is used f...

  16. Radar-based observatiions of variable thickness debris cover on martian ice masses: evidence of debris transfer by flowing ice on Mars

    Science.gov (United States)

    Souness, Colin; Brough, Stephen; Woodward, John; Hubbard, Bryn; Davis, Joel; Grindrod, Peter

    2016-04-01

    The mid-latitudes of Mars host a wide range of ice-based landforms, many of which display surface morphologies indicative of viscous flow of that ice. Despite being shrouded beneath a layer of rocky debris, these viscous flow features (VFFs) are thought to have similarities with terrestrial glaciers. Until recently most studies that focussed on the origin, structure and role of these martian VFFs were restricted to observations made from satellite imagery. Little data have been available to gain a clearer picture of VFF internal structure, which has impeded our collective ability to infer many particulars of VFF growth and flow, including the extent to which these ice flows have interacted with, and potentially helped shape, the martian landscape. However, the Shallow Radar (SHARAD) system mounted on the Mars Reconnaissance Orbiter (MRO) can, in some cases, provide a valuable insight into what lies beneath the surface of these ice masses. We present a SHARAD-based study of glacial systems on Mars which reveals pronounced heterogeneity in the thickness of their observed superficial debris covers. The surface debris layers in question appear to thicken in a down-slope direction. Radar data indicates that in the lower reaches of each studied glacial catchment, ice surface debris cover exceeds 10 m in thickness. The observed flow-parallel a-symmetry in debris thickness atop these martian glaciers is similar to that recorded on many terrestrial glaciers, indicating that cumulative down-flow debris mass transfer such as occurs within glacierised catchments on Earth may also currently operate, or have operated, on Mars. This suggests that glaciers on Mars have played a substantial role in redistributing lithic material from mountainous catchments to lower-lying areas, potentially throughout the glacial regions of Mars' mid-latitudes, thus making an important processual contribution to the evolution of Mars' contemporary landscape.

  17. Effective mitigation of debris flows at Lemon Dam, La Plata County, Colorado

    Science.gov (United States)

    deWolfe, V.G.; Santi, P.M.; Ey, J.; Gartner, J.E.

    2008-01-01

    To reduce the hazards from debris flows in drainage basins burned by wildfire, erosion control measures such as construction of check dams, installation of log erosion barriers (LEBs), and spreading of straw mulch and seed are common practice. After the 2002 Missionary Ridge Fire in southwest Colorado, these measures were implemented at Knight Canyon above Lemon Dam to protect the intake structures of the dam from being filled with sediment. Hillslope erosion protection measures included LEBs at concentrations of 220-620/ha (200-600% of typical densities), straw mulch was hand spread at concentrations up to 5.6??metric tons/hectare (125% of typical densities), and seeds were hand spread at 67-84??kg/ha (150% of typical values). The mulch was carefully crimped into the soil to keep it in place. In addition, 13 check dams and 3 debris racks were installed in the main drainage channel of the basin. The technical literature shows that each mitigation method working alone, or improperly constructed or applied, was inconsistent in its ability to reduce erosion and sedimentation. At Lemon Dam, however, these methods were effective in virtually eliminating sedimentation into the reservoir, which can be attributed to a number of factors: the density of application of each mitigation method, the enhancement of methods working in concert, the quality of installation, and rehabilitation of mitigation features to extend their useful life. The check dams effectively trapped the sediment mobilized during rainstorms, and only a few cubic meters of debris traveled downchannel, where it was intercepted by debris racks. Using a debris volume-prediction model developed for use in burned basins in the Western U.S., recorded rainfall events following the Missionary Ridge Fire should have produced a debris flow of approximately 10,000??m3 at Knight Canyon. The mitigation measures, therefore, reduced the debris volume by several orders of magnitude. For comparison, rainstorm

  18. Effective mitigation of debris flows at Lemon Dam, La Plata County, Colorado

    Science.gov (United States)

    deWolfe, Victor G.; Santi, Paul M.; Ey, J.; Gartner, Joseph E.

    2008-04-01

    To reduce the hazards from debris flows in drainage basins burned by wildfire, erosion control measures such as construction of check dams, installation of log erosion barriers (LEBs), and spreading of straw mulch and seed are common practice. After the 2002 Missionary Ridge Fire in southwest Colorado, these measures were implemented at Knight Canyon above Lemon Dam to protect the intake structures of the dam from being filled with sediment. Hillslope erosion protection measures included LEBs at concentrations of 220-620/ha (200-600% of typical densities), straw mulch was hand spread at concentrations up to 5.6 metric tons/hectare (125% of typical densities), and seeds were hand spread at 67-84 kg/ha (150% of typical values). The mulch was carefully crimped into the soil to keep it in place. In addition, 13 check dams and 3 debris racks were installed in the main drainage channel of the basin. The technical literature shows that each mitigation method working alone, or improperly constructed or applied, was inconsistent in its ability to reduce erosion and sedimentation. At Lemon Dam, however, these methods were effective in virtually eliminating sedimentation into the reservoir, which can be attributed to a number of factors: the density of application of each mitigation method, the enhancement of methods working in concert, the quality of installation, and rehabilitation of mitigation features to extend their useful life. The check dams effectively trapped the sediment mobilized during rainstorms, and only a few cubic meters of debris traveled downchannel, where it was intercepted by debris racks. Using a debris volume-prediction model developed for use in burned basins in the Western U.S., recorded rainfall events following the Missionary Ridge Fire should have produced a debris flow of approximately 10,000 m 3 at Knight Canyon. The mitigation measures, therefore, reduced the debris volume by several orders of magnitude. For comparison, rainstorm-induced debris

  19. Andic soil features and debris flows in Italy. New perspective towards prediction

    Science.gov (United States)

    Scognamiglio, Solange; Calcaterra, Domenico; Iamarino, Michela; Langella, Giuliano; Orefice, Nadia; Vingiani, Simona; Terribile, Fabio

    2016-04-01

    Debris flows are dangerous hazards causing fatalities and damage. Previous works have demonstrated that the materials involved by debris flows in Campania (southern Italy) are soils classified as Andosols. These soils have peculiar chemical and physical properties which make them fertile but also vulnerable to landslide. In Italy, andic soil properties are found both in volcanic and non-volcanic mountain ecosystems (VME and NVME). Here, we focused on the assessment of the main chemical and physical properties of the soils in the detachment areas of eight debris flows occurred in NVME of Italy in the last 70 years. Such landslides were selected by consulting the official Italian geodatabase (IFFI Project). Andic properties (by means of ammonium oxalate extractable Fe, Si and Al forms for the calculation of Alo+1/2Feo) were also evaluated and a comparison with soils of VME was performed to assess possible common features. Landslide source areas were characterised by slope gradient ranging from 25° to 50° and lithological heterogeneity of the bedrock. The soils showed similar, i.e. all were very deep, had a moderately thick topsoil with a high organic carbon (OC) content decreasing regularly with depth. The cation exchange capacity trend was generally consistent with the OC and the pH varied from extremely to slightly acid, but increased with depth. Furthermore, the soils had high water retention values both at saturation (0.63 to 0.78 cm3 cm-3) and in the dryer part of the water retention curve, and displayed a prevalent loamy texture. Such properties denote the chemical and physical fertility of the investigated ecosystems. The values of Alo+1/2Feoindicated that the soils had vitric or andic features and can be classified as Andosols. The comparison between NVME soils and those of VME showed similar depth, thickness of soil horizons, and family texture, whereas soil pH, degree of development of andic properties and allophane content were higher for VME soils. Such

  20. The Montesbelos mass-flow (southern Amazonian craton, Brazil): a Paleoproterozoic volcanic debris avalanche deposit?

    Science.gov (United States)

    Roverato, M.

    2016-07-01

    The present contribution documents the extremely well-preserved Paleoproterozoic architecture of the Montesbelos breccia (named here for the first time), which is interpreted as a rare example of a subaerial paleoproterozoic (>1.85 Ga) granular-dominated mass-flow deposit, few of which are recorded in the literature. Montesbelos deposit is part of the andesitic Sobreiro Formation located in the São Felix do Xingu region, southern Amazonian craton, northern Brazil. The large volume, high variability of textural features, presence of broken clasts, angular low sphericity fragments, mono- to heterolithic character, and the size of the outcrops point to a volcanic debris avalanche flow. Fluviatile sandy material and debris flows are associated with the deposit as a result of post-depositional reworking processes.

  1. The distribution of lobate debris aprons and similar flows on Mars

    Science.gov (United States)

    Squyres, S. W.

    1979-01-01

    Planet-wide mapping of lobate debris aprons and other similar flows on Mars shows a strong concentration in two latitudinal bands roughly 25 deg wide and centered at 40 deg N and 45 deg S. This distribution supports the idea that these flows form when erosional debris is transported downslope and becomes mixed with ice deposited from the atmosphere, as these latitudes should receive high seasonal H2O frost deposition relative to the rest of the planet. Flows are found in the northern hemisphere band wherever old highland surfaces occur but are found in the southern hemisphere only near the two major impact basins, Argyre and Hellas. These areas are apparently characterized by mass wasting that is rapid relative to most of the southern hemisphere highlands. The rate of mass wasting may be related to the degree of consolidation of highland material.

  2. Coupled DEM-CFD analyses of landslide-induced debris flows

    CERN Document Server

    Zhao, Tao

    2017-01-01

    This book reflects the latest research results in computer modelling of landslide-induced debris flows. The book establishes an understanding of the initiation and propagation mechanisms of landslides by means of numerical simulations, so that mitigation strategies to reduce the long-term losses from landslide hazards can be devised. In this context, the book employs the Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD) to investigate the mechanical and hydraulic behaviour of granular materials involved in landslides – an approach that yields meaningful insights into the flow mechanisms, concerning e.g. the mobilization of sediments, the generation and dissipation of excess pore water pressures, and the evolution of effective stresses. As such, the book provides valuable information, useful methods and robust numerical tools that can be successfully applied in the field of debris flow research.

  3. Magnitude-frequency relationships of debris flows — A case study based on field surveys and tree-ring records

    Science.gov (United States)

    Stoffel, Markus

    2010-03-01

    Debris-flow activity in a watershed is usually defined in terms of magnitude and frequency. While magnitude-frequency (M-F) relations have long formed the basis for risk assessment and engineering design in hydrology and fluvial hydraulics, only fragmentary and insufficiently specified data for debris flows exists. This paper reconstructs M-F relationships of 62 debris flows for an aggradational cone of a small (Swiss Alps since A.D. 1863. The frequency of debris flows is obtained from tree-ring records. The magnitude of individual events is given as S, M, L, XL, and derived from volumetric data of deposits, grain size distributions of boulders, and a series of surrogates (snout elevations, tree survival, lateral spread of surges). Class S and M debris flows ( 50 mm) in August and September, when the active layer of the rock glacier in the source area of debris flows is largest. Over the past ˜ 150 years, climate has exerted control on material released from the source area and prevented triggering of class XL events before 1922. With the projected climatic change, permafrost degradation and the potential increase in storm intensity are likely to produce " class XXL" events in the future with volumes surpassing 5 × 10 4 m 3 at the level of the debris-flow cone.

  4. RELATION BETWEEN PRECIPITATION AND INITIATION OF DEBRIS FLOWS IN THE JIANGJIA RAVINE,YUNNAN PROVINCE, SOUTHWEST CHINA

    Institute of Scientific and Technical Information of China (English)

    Zili FENG; Peng CUI; Xiaoqing CHEN; Jie CHEN

    2006-01-01

    In the Jiangjia Ravine, debris flows are often triggered by short-duration rainstorms frequently. To reveal the unique initiation process of debris flows, rainfall and debris flow initiation in an upstream area was continually observed. It is concluded that flash floods resulting from short-duration rainstorms play a key role in the initiation of debris flows. Surface runoff forms flash floods due to special topographic conditions. The flash floods mobilize the sediment deposits in the upper section of the branch gullies,hence, high density viscous debris flows initiate. The initiation of debris flows in the Jiangjia Ravine has a close relation with precipitation. Applying the Takahashi model of debris flow initiation, it is concluded that: to mobilize cohesive deposits in the gully bed the depth of flash floods must exceed a critical depth. This critical depth of floods makes the definition of thresholds of rainfall intensity possible. Considering the change in the initial infiltration rate at different initial water content of bank slopes, and the influence of antecedent precipitation on the initial water content, the relation between the thresholds of rainfall intensity and the antecedent precipitation show good agreement with the empirical relation established by previous research.

  5. The influence of vegetation cover on debris-flow density during an extreme rainfall in the northern Colorado Front Range

    Science.gov (United States)

    Rengers, Francis; Mcguire, Luke; Coe, Jeffrey A.; Kean, Jason W.; Baum, Rex L.; Staley, Dennis M.; Godt, Jonathan W.

    2016-01-01

    We explored regional influences on debris-flow initiation throughout the Colorado Front Range (Colorado, USA) by exploiting a unique data set of more than 1100 debris flows that initiated during a 5 day rainstorm in 2013. Using geospatial data, we examined the influence of rain, hillslope angle, hillslope aspect, and vegetation density on debris-flow initiation. In particular we used a greenness index to differentiate areas of high tree density from grass and bare soil. The data demonstrated an overwhelming propensity for debris-flow initiation on south-facing hillslopes. However, when the debris-flow density was analyzed with respect to total rainfall and greenness we found that most debris flows occurred in areas of high rainfall and low tree density, regardless of hillslope aspect. These results indicate that present-day tree density exerts a stronger influence on debris-flow initiation locations than aspect-driven variations in soil and bedrock properties that developed over longer time scales.

  6. Emergency assessment of post-fire debris-flow hazards for the 2013 Mountain fire, southern California

    Science.gov (United States)

    Staley, Dennis M.; Gartner, Joseph E.; Smoczyk, Greg M.; Reeves, Ryan R.

    2013-01-01

    Wildfire dramatically alters the hydrologic response of a watershed such that even modest rainstorms can produce dangerous flash floods and debris flows. We use empirical models to predict the probability and magnitude of debris flow occurrence in response to a 10-year rainstorm for the 2013 Mountain fire near Palm Springs, California. Overall, the models predict a relatively high probability (60–100 percent) of debris flow for six of the drainage basins in the burn area in response to a 10-year recurrence interval design storm. Volumetric predictions suggest that debris flows that occur may entrain a significant volume of material, with 8 of the 14 basins identified as having potential debris-flow volumes greater than 100,000 cubic meters. These results suggest there is a high likelihood of significant debris-flow hazard within and downstream of the burn area for nearby populations, infrastructure, and wildlife and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National Weather Service–issued Debris Flow and Flash Flood Outlooks, Watches and Warnings and that residents adhere to any evacuation orders.

  7. Renormalization group flows and anomalies

    CERN Document Server

    Komargodski, Zohar

    2015-01-01

    This chapter reviews various aspects of renormalization group flows and anomalies. The chapter considers specific Euclidean two-dimensional theories. Namely, the theories are invariant under translations and rotations in the two space directions. Here the chapter studies theories where, if possible, certain equations hold in fact also at coincident points. In other words, the chapter looks at theories where there is no local gravitational anomaly.

  8. Instrumental record of debris flow initiation during natural rainfall: Implications for modeling slope stability

    Science.gov (United States)

    Montgomery, D.R.; Schmidt, K.M.; Dietrich, W.E.; McKean, J.

    2009-01-01

    The middle of a hillslope hollow in the Oregon Coast Range failed and mobilized as a debris flow during heavy rainfall in November 1996. Automated pressure transducers recorded high spatial variability of pore water pressure within the area that mobilized as a debris flow, which initiated where local upward flow from bedrock developed into overlying colluvium. Postfailure observations of the bedrock surface exposed in the debris flow scar reveal a strong spatial correspondence between elevated piezometric response and water discharging from bedrock fractures. Measurements of apparent root cohesion on the basal (Cb) and lateral (Cl) scarp demonstrate substantial local variability, with areally weighted values of Cb = 0.1 and Cl = 4.6 kPa. Using measured soil properties and basal root strength, the widely used infinite slope model, employed assuming slope parallel groundwater flow, provides a poor prediction of hydrologie conditions at failure. In contrast, a model including lateral root strength (but neglecting lateral frictional strength) gave a predicted critical value of relative soil saturation that fell within the range defined by the arithmetic and geometric mean values at the time of failure. The 3-D slope stability model CLARA-W, used with locally observed pore water pressure, predicted small areas with lower factors of safety within the overall slide mass at sites consistent with field observations of where the failure initiated. This highly variable and localized nature of small areas of high pore pressure that can trigger slope failure means, however, that substantial uncertainty appears inevitable for estimating hydrologie conditions within incipient debris flows under natural conditions. Copyright 2009 by the American Geophysical Union.

  9. Satellite-rainfall estimation for identification of rainfall thresholds used for landslide/debris flow prediction

    Science.gov (United States)

    Maggioni, Viviana; Nikolopoulos, Efthymios I.; Marra, Francesco; Destro, Elisa; Borga, Marco

    2016-04-01

    Rainfall-induced landslides and debris flows pose a significant and widespread hazard, resulting in a large number of casualties and enormous economic damages worldwide. Rainfall thresholds are often used to identify the local or regional rainfall conditions that, when reached or exceeded, are likely to result in landslides or debris flows. Rain gauge data are the typical source of information for the definition of these rainfall thresholds. However, in-situ observations over mountainous areas, where these hazards mainly occur, are very sparse or inexistent. Therefore identification and use of gauge-based rainfall thresholds is impossible in many landslide prone areas over the globe. The vast advancements in satellite-based precipitation estimation over the last couple of decades have lead to the creation of a number of global precipitation datasets at various spatiotemporal resolutions. Although several investigations have shown that these datasets can be associated with considerable uncertainty, they provide the only source of precipitation information over many areas around the globe. Therefore it is important to assess their performance in the context of landslide/debris flow prediction and investigate how we can potentially benefit from the information they provide. In this work, we evaluate the performance of three widely used quasi-global satellite precipitation products (3B42v7, PERSIANN and CMORPH) for the identification of rainfall threshold for landslide/debris flow triggering. Products are available at 0.25deg/3h resolution. The study region is focused over the Upper Adige river basin, northern Italy where a detailed database of more than 400 identified debris flows (during period 2000-2015) and a raingauge network of 95 stations, is available. Rain-gauge based rainfall thresholds are compared against satellite-based thresholds to evaluate strengths and limitations in using satellite precipitation estimates for defining rainfall thresholds. Analysis of

  10. Debris-flow susceptibility and hazard assessment at a regional scale from GIS analysis

    Science.gov (United States)

    Bertrand, M.; Liébault, F.; Piégay, H.

    2012-12-01

    Small torrents of the Southern French Alps are prone to extreme events. Depending on the rainfall conditions, the sediment supply from hillslopes, and the gravitational energy, these events can occur under different forms, from floods to debris-flows. Debris-flows are recognized as the most dangerous phenomena and may have dramatic consequences for exposed people and infrastructures. As a first step of hazard assessment, we evaluated the debris-flow susceptibility, i.e. the likelihood that an event occurs in an area under particular physical conditions, not including the temporal dimension. The susceptibility is determined by (i) the morphometric controls of small upland catchments for debris-flows triggering and propagation, and by (ii) sediment supply conditions, i.e. erosion patterns feeding the channels. The morphometric controls are evaluated with indicators calculated from basic topographic variables. The sediment supply is evaluated by considering the cumulated surface of erosion area connected to the hydrographic network. We developed a statistical model to predict the geomorphic responses of the catchments (fluvial vs. debris-flow) and we apply this model within a GIS for regional-scale prediction. The model is based on two morphometric indicators, i.e. fan / channel slope and the Melton ruggedness index, and is based on a wide set of data including the Southern French Alps. We developed a GIS procedure to extract the indicators automatically using a 25m DEM and the hydrographic network as raw data. This model and its application have been validated with historical data. Sediment sources feeding debris-flow prone torrents are identified by first automatically mapping the erosion patches from the infrared orthophotos analysis then identifying the ones connected to the stream network. A classification method has been developed (segmentation into homogeneous objects classified with a neural network algorithm) and validated with expert interpretation on the

  11. Joint NOAA/NWS/USGS prototype debris flow warning system for recently burned areas in Southern California

    Science.gov (United States)

    Restrepo, P.; Jorgensen, D.P.; Cannon, S.H.; Costa, J.; Laber, J.; Major, J.; Martner, B.; Purpura, J.; Werner, K.

    2008-01-01

    Debris flows, also known as mudslides, are composed gravity-driven mixtures of sediment and water that travel through steep channels, over open hillslopes, and the like. Addressing this issue, US Geological Survey (USGS) and NOAA have established a debris-flow warning system that has the ability to monitor and forecast precipitation and issue timely weather hazard warning. In 2005, this joint NOAA-USGS prototype debris-flow warning system was issued in Southern California and as a result, it has provided valuable information to emergency managers in affected communities.

  12. Empirical models to predict the volumes of debris flows generated by recently burned basins in the western U.S.

    Science.gov (United States)

    Gartner, J.E.; Cannon, S.H.; Santi, P.M.; deWolfe, V.G.

    2008-01-01

    Recently burned basins frequently produce debris flows in response to moderate-to-severe rainfall. Post-fire hazard assessments of debris flows are most useful when they predict the volume of material that may flow out of a burned basin. This study develops a set of empirically-based models that predict potential volumes of wildfire-related debris flows in different regions and geologic settings. The models were developed using data from 53 recently burned basins in Colorado, Utah and California. The volumes of debris flows in these basins were determined by either measuring the volume of material eroded from the channels, or by estimating the amount of material removed from debris retention basins. For each basin, independent variables thought to affect the volume of the debris flow were determined. These variables include measures of basin morphology, basin areas burned at different severities, soil material properties, rock type, and rainfall amounts and intensities for storms triggering debris flows. Using these data, multiple regression analyses were used to create separate predictive models for volumes of debris flows generated by burned basins in six separate regions or settings, including the western U.S., southern California, the Rocky Mountain region, and basins underlain by sedimentary, metamorphic and granitic rocks. An evaluation of these models indicated that the best model (the Western U.S. model) explains 83% of the variability in the volumes of the debris flows, and includes variables that describe the basin area with slopes greater than or equal to 30%, the basin area burned at moderate and high severity, and total storm rainfall. This model was independently validated by comparing volumes of debris flows reported in the literature, to volumes estimated using the model. Eighty-seven percent of the reported volumes were within two residual standard errors of the volumes predicted using the model. This model is an improvement over previous models in

  13. Triggering conditions and depositional characteristics of a disastrous debris flow event in Zhouqu city, Gansu Province, northwestern China

    Directory of Open Access Journals (Sweden)

    C. Tang

    2011-11-01

    Full Text Available On 7 August 2010, catastrophic debris flows were triggered by a rainstorm in the catchments of the Sanyanyu and Luojiayu torrents, Zhouqu County, Gansu Province northwestern China. These two debris flows originated shortly after a rainstorm with an intensity of 77.3 mm h−1 and transported a total volume of about 2.2 million m3, which was deposited on an existing debris fan and into a river. This catastrophic event killed 1765 people living on this densely urbanised fan. The poorly sorted sediment contains boulders up to 3–4 m in diameter. In this study, the geomorphological features of both debris flow catchment areas are analyzed based on the interpretation of high-resolution remote sensing imagery combined with field investigation. The characteristics of the triggering rainfall and the initiation of the debris flow occurrence are discussed. Using empirical equations, the peak velocities and discharges of the debris flows were estimated to be around 9.7 m s−1 and 1358 m3 s−1 for the Sanyanyu torrent and 11 m s−1 and 572 m3 s−1 for the Luojiayu torrent. The results of this study contribute to a better understanding of the conditions leading to catastrophic debris flow events.

  14. Debris Flow Vulnerability Assessment in Urban Area Associated with Landslide Hazard Map : Application to Busan, Korea

    Science.gov (United States)

    Okjeong, Lee; Yoonkyung, Park; Mookwang, Sung; Sangdan, Kim

    2016-04-01

    In this presentation, an urban debris flow disaster vulnerability assessment methodology is suggested with major focus on urban social and economic aspect. The proposed methodology is developed based on the landslide hazard maps that Korean Forest Service has utilized to identify landslide source areas. Frist, debris flows are propagated to urban areas from such source areas by Flow-R model, and then urban vulnerability is evaluated by two categories; physical and socio-economic aspect. The physical vulnerability is associated to buildings that can be broken down by a landslide event directly. This study considers two popular building structure types, reinforced concrete frame and non-reinforced concretes frame, to evaluate the physically-based vulnerability. The socio-economic vulnerability is measured as a function of the resistant levels of the exposed people, the intensity and magnitude of indirect or intangible losses, and preparedness level of the local government. An indicator-based model is established to evaluate the life and indirect loss under urban debris flow disasters as well as the resilience ability against disasters. To illuminate the validity of the suggested methodology, physical and socio-economic vulnerability levels are investigated for Daejeon, Korea using the proposed approach. The results reveal that the higher population density areas under a weaker fiscal condition that are located at the downstream of mountainous areas are more vulnerable than the areas in opposite conditions. Key words: Debris flow disasters, Physical vulnerability, Socio-economic Vulnerability, Urban Acknowledgement This research was supported by a grant(13SCIPS04) from Smart Civil Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport(MOLIT) of Korea government and Korea Agency for Infrastructure Technology Advancement(KAIA).

  15. Debris-flow hazard assessment at regional scale by combining susceptibility mapping and radar rainfall

    Directory of Open Access Journals (Sweden)

    M. Berenguer

    2014-10-01

    Full Text Available This work presents a technique for debris flow (DF hazard assessment able to be used in the framework of DF early warning systems at regional scale. The developed system is applied at subbasin scale and is based on the concepts of fuzzy logic to combine two ingredients: (i DF subbasin susceptibility assessment based on geomorphological variables, and (ii the magnitude of the rainfall situation as depicted from radar rainfall estimates. The output of the developed technique is a three-class hazard level ("low", "moderate" and "high" in each subbasin when a new radar rainfall map is available. The developed technique has been applied in a domain in the Eastern Pyrenees (Spain from May to October 2010. The estimated hazard level stayed "low" during the entire period in 20% of the subbasins, while, in the most susceptible subbasins, the hazard level was at least moderate for up to10 days. Quantitative evaluation of the estimated hazard level was possible in a subbasin where debris flows were monitored during the analysis period. The technique was able to identify the 3 events observed in the catchment (1 debris flow and 2 hyperconcentrated flow events and produced no false alarm.

  16. Sediment Transportation Induced by Deep-Seated Landslides in a Debris Flow Basin in Taiwan

    Science.gov (United States)

    Lin, Meei Ling; Chen, Te Wei; Chen, Yong Sheng; Sin Jhuang, Han

    2016-04-01

    Typhoon Morakot brought huge amount of rainfall to the southern Taiwan in 2009 and caused severe landslides and debris flow hazard. After Typhoon Morakot, it was found that the volume of sediment transported by the debris flow and its effects on the affected area were much more significant compared to previous case history, which may due to the huge amount of rainfall causing significant deep-seated landslides in the basin. In this study, the effects and tendency of the sediment transportation in a river basin following deep-seated landslides caused by typhoon Morakot were evaluated. We used LiDAR, DEM, and aerial photo to identify characteristics of deep-seated landslides in a debris flow river basin, KSDF079 in Liuoguey District, Kaohsiung City, Taiwan. Eight deep-seated landslides were identified in the basin. To estimate the potential landslide volume associated with the deep-seated landslides, the stability analysis was conducted to locate the critical sliding surface, and the potential landside volume was estimated based on the estimation equation proposed by the International Geotechnical Societies' UNESCO Working Party on World Landslide Inventory (WP/WLI, 1990). The total potential landslide volume of the eight deep-seated landslides in KSDF079 basin was about 28,906,856 m3. Topographic analysis was performed by using DEM before and LiDAR derived DEM after typhoon Morakot to calculate the landslide volume transported. The result of erosion volume and deposition volume lead to a run out volume of 5,832,433 m3. The results appeared to consist well with the field condition and aerial photo. Comparing the potential landslide volume and run out volume of eight deep-seated landslides, it was found that the remaining potential landslide volume was about 80%. Field investigation and topographic analysis of the KSDF079 debris flow revealed that a significant amount of sediment deposition remained in the river channel ranging from the middle to the downstream

  17. Hazards Assessment of Regional Debris Flows Based on Geographic Information Science

    Institute of Scientific and Technical Information of China (English)

    JIANG Xiaobo; GUI Peng

    2007-01-01

    Supported by the spatial analysis feature of geographic information science and assessment model of regional debris flows, hazards degrees of the debris flows in the Upper Yangtze River Watershed (UYRW) are divided into five grades based on grid cell. The area of no danger, light danger, medium danger, severe danger and extreme severe danger regions respectively are 278 000, 288 000, 217 000, 127 000, 15 000 km2. Furthermore, the counties in the UYRW are classified into four classes based on the hazards degrees in each county. The number of severe danger, medium danger, light danger and no danger counties respectively are 49, 82, 77 and 105. The assessment results will be provided for the hazards forecasting and mitigation in the UYRW and ongoing regionalization of Main Function Regions in China as data and technique framework.

  18. Debris flows of the Simud-Tiu outflow system of Mars

    Science.gov (United States)

    Tanaka, Kenneth L.

    1988-01-01

    It is seen that the magnitude of geologic happenings are commonly quite different between the Earth and Mars because of differences in the makeup and breakup of their crusts. By assessing the differences, and the similarities, between planets, the geologic history of Mars can be more fully understood. The identification of debris-flow deposits in channels of Mars, for example, helps to establish which of several competing explanations for the origin of the channels actually occurred. In turn, the Earth is viewed in new, and commonly enlightening perspectives. By the way, it is fortunate that on Earth, thick sequences of impact ejected are not found that could be transformed into the monstrous debris flows that have devastated the Martian surface.

  19. Navier-Stokes Equation and Computational Scheme for Non-Newtonian Debris Flow

    Directory of Open Access Journals (Sweden)

    Ignazio Licata

    2014-01-01

    Full Text Available This paper proposes a computational approach to debris flow model. In recent years, the theoretical activity on the classical Herschel-Bulkley model (1926 has been very intense, but it was in the early 80s that the opportunity to explore the computational model has enabled considerable progress in identifying the subclasses of applicability of different sets of boundary conditions and their approximations. Here we investigate analytically the problem of the simulation of uniform motion for heterogeneous debris flow laterally confined taking into account mainly the geological data and methodological suggestions derived from simulation with cellular automata and grid systems, in order to propose a computational scheme able to operate a compromise between “global” predictive capacities and computing effort.

  20. Submerged area of typical torrential flood and debris-flow disasters in Mengzong Gully, China

    Directory of Open Access Journals (Sweden)

    Ai-Di Huo

    2016-05-01

    Full Text Available The torrential flooding and debris flow disasters associated with global climate change pose not only serious threat to individual lives and property, but also impact economic development. Accurately simulating flood scenarios can help to reduce the losses caused by torrential flooding and debris flow by making early warning, evacuation planning, and risk analysis possible. In this study, HEC-RAS software and HEC-GeoRAS module were employed in GIS (geographic information system to simulate the flood overtopping in the Mengzong Gully of Batang River in flood scenarios occurring once in 20, 50, and 100 years, respectively. The simulated floods provided valuable information including scope and depth of submersion via 2D visualization.

  1. Trigger Analysis and Modelling of Very Large Debris Flows in Santa Teresa, Cusco, Southern Peru

    Science.gov (United States)

    Buis, Daniel; Huggel, Christian; Frey, Holger; Giráldez, Claudia; Rohrer, Mario; Christen, Marc; Portocarrero, César

    2014-05-01

    The Peruvian Andes have repeatedly been affected by large mass movements such as landslides, avalanches and debris flows. In 1998, two very large debris flows in the region of Machu Picchu (Sacsara and Ahobamba), southern Peru, destroyed the town of Santa Teresa, an important hydropower scheme and further infrastructure. The debris flows on the order of 5 to 25 million m3 volume rank among the largest recently observed events of this type worldwide. Despite their extreme dimensions, these events have not been studied in detail. An important limitation for more insight studies is the remote location of the mass flows and the very sparse information and data available for the study region. Neither triggering processes nor mass flow process characteristics have been understood to date. This study tries to fill some of these gaps in understanding that are critical to improved assessment of hazards and eventual risk reduction measures. For the trigger analysis we used data and information from field work, a limited number of ground based meteorological data, and complementary satellite derived data. Results indicate that in the case of the Sacsara event, heavy rainfall likely was a main trigger. For Ahobamba, antecedent rainfall as well as snow and ice melt leading to saturation of glacial sediments must have played an important role. Simulations with a dynamic debris flow model (RAMMS) allowed us to constrain a number of flow parameters such as flow height and velocity, runout distance and flow and deposition volumes. Strong surging flow behavior was detected, resulting in very large runout distance (exceeding 20 km); which rather depends on the largest single surge volume, not the total event volume. Based on the identification of potential mass flow sources we modeled a number of scenarios. The assessment of related hazards, including a preliminary hazard map, showed that several communities in catchments draining towards Santa Teresa are endangered by mass movements

  2. Rapid geomorphic change caused by glacial outburst floods and debris flows along Tahoma Creek, Mount Rainier, Washington, USA

    Science.gov (United States)

    Walder, J.S.; Driedger, C.L.

    1994-01-01

    As part of a hazards-assessment study, we examined the nature and rate of geomorphic change caused by outburst floods and debris flows along Tahoma Creek. Mount Rainier, since 1967. Archival aerial photographs of the area proved to be a rich source of qualitative geomorphic information. On the basis of limited direct evidence and considerations of stream hydrology, we conclude that nearly all of these debris flows began as outburst floods from South Tahoma Glacier. The water floods transformed to debris flows by incorporating large masses of sediment in a 2-km-long channel reach where the stream has incised proglacial sediments and debris-rich, stagnant glacier ice. Comparison of topographic maps for 1970 and 1991 shows that the average sediment flux out of the incised reach has been about 2 to 4 × 105 m3 a-1 corresponding to an average denudation rate in the upper part of the Tahoma Creek drainage basin of about 20 to 40 mm a-1, a value exceeded only rarely in basins affected by debris flows. However, little of this sediment has yet passed out of the Tahoma Creek basin. Comparison of geomorphic change at Tahoma Creek to that in two other alpine basins affected by outburst floods suggests that debris-rich stagnant ice can be an important source of sediment for debris flows as long as floods are frequent or channel slope is great.

  3. Atmospheric Rivers as a Trigger for Landslides and Post-Fire Debris Flows in Southern California

    Science.gov (United States)

    Oakley, N.; Lancaster, J.; Stock, J. D.; Cerovski-Darriau, C.; Kaplan, M.; Ralph, F. M.

    2016-12-01

    Episodic storms strike the steeplands of Southern California, triggering shallow landslides and post-wildfire debris flows. These hazards have killed and injured people and destroyed property and infrastructure, in some cases with little warning. In the absence of more evolved monitoring networks, the National Weather Service, working with USGS, has proposed rainfall intensity-duration threshold values to forecast the risk of such mass-wasting events. Absent from this procedure, however, is an understanding of what kinds of storms have exceeded these thresholds and generated historic mass-wasting events. With the goal of testing what atmospheric conditions are associated with historic mass wasting episodes, we explored the instrumental record for mass-wasting events spanning several decades. We summarized meteorological conditions for 19 storm events associated with post-wildfire debris flows and 24 storm events associated with shallow landslides. In these catalogs, we found that 74% of post-wildfire debris flow events and 75% of shallow landslide events occurred during atmospheric river (AR) conditions. ARs are narrow corridors of high water vapor transport, typically in the lowest 2-3 km of the atmosphere. Previous work has attributed ARs to many of California's heavy precipitation events. Our analysis shows that AR conditions favor precipitation intensities and durations that trigger landsliding. These results suggest that AR-specific forecasting tools may provide Southern California communities with some level of early warning for widespread landsliding. An improved understanding of AR events can help preparedness and hazard mitigation related to landslides, post-wildfire debris flows, and flooding in southern California.

  4. Roads at risk: traffic detours from debris flows in southern Norway

    Science.gov (United States)

    Meyer, N. K.; Schwanghart, W.; Korup, O.; Nadim, F.

    2015-05-01

    Globalisation and interregional exchange of people, goods, and services has boosted the importance of and reliance on all kinds of transport networks. The linear structure of road networks is especially sensitive to natural hazards. In southern Norway, steep topography and extreme weather events promote frequent traffic disruption caused by debris flows. Topographic susceptibility and trigger frequency maps serve as input into a hazard appraisal at the scale of first-order catchments to quantify the impact of debris flows on the road network in terms of a failure likelihood of each link connecting two network vertices, e.g. road junctions. We compute total additional traffic loads as a function of traffic volume and excess distance, i.e. the extra length of an alternative path connecting two previously disrupted network vertices using a shortest-path algorithm. Our risk metric of link failure is the total additional annual traffic load, expressed as vehicle kilometres, because of debris-flow-related road closures. We present two scenarios demonstrating the impact of debris flows on the road network and quantify the associated path-failure likelihood between major cities in southern Norway. The scenarios indicate that major routes crossing the central and north-western part of the study area are associated with high link-failure risk. Yet options for detours on major routes are manifold and incur only little additional costs provided that drivers are sufficiently well informed about road closures. Our risk estimates may be of importance to road network managers and transport companies relying on speedy delivery of services and goods.

  5. Large scale debris-flow hazard assessment: a geotechnical approach and GIS modelling

    Directory of Open Access Journals (Sweden)

    G. Delmonaco

    2003-01-01

    Full Text Available A deterministic distributed model has been developed for large-scale debris-flow hazard analysis in the basin of River Vezza (Tuscany Region – Italy. This area (51.6 km 2 was affected by over 250 landslides. These were classified as debris/earth flow mainly involving the metamorphic geological formations outcropping in the area, triggered by the pluviometric event of 19 June 1996. In the last decades landslide hazard and risk analysis have been favoured by the development of GIS techniques permitting the generalisation, synthesis and modelling of stability conditions on a large scale investigation (>1:10 000. In this work, the main results derived by the application of a geotechnical model coupled with a hydrological model for the assessment of debris flows hazard analysis, are reported. This analysis has been developed starting by the following steps: landslide inventory map derived by aerial photo interpretation, direct field survey, generation of a database and digital maps, elaboration of a DTM and derived themes (i.e. slope angle map, definition of a superficial soil thickness map, geotechnical soil characterisation through implementation of a backanalysis on test slopes, laboratory test analysis, inference of the influence of precipitation, for distinct return times, on ponding time and pore pressure generation, implementation of a slope stability model (infinite slope model and generalisation of the safety factor for estimated rainfall events with different return times. Such an approach has allowed the identification of potential source areas of debris flow triggering. This is used to detected precipitation events with estimated return time of 10, 50, 75 and 100 years. The model shows a dramatic decrease of safety conditions for the simulation when is related to a 75 years return time rainfall event. It corresponds to an estimated cumulated daily intensity of 280–330 mm. This value can be considered the hydrological triggering

  6. ANALYSIS OF DEBRIS FLOW DISASTER DUE TO HEAVY RAIN BY X-BAND MP RADAR DATA

    OpenAIRE

    Nishio, M; Mori, M

    2016-01-01

    On August 20 of 2014, Hiroshima City (Japan) was struck by local heavy rain from an autumnal rain front. The resultant debris flow disaster claimed 75 victims and destroyed many buildings. From 1:30 am to 4:30 am on August 20, the accumulated rainfall in Hiroshima City exceeded 200 mm. Serious damage occurred in the Asakita and Asaminami wards of Hiroshima City. As a disaster prevention measure, local heavy rain (localized torrential rains) is usually observed by the Automated Meteor...

  7. Roads at risk – traffic detours from debris flows in southern Norway

    Directory of Open Access Journals (Sweden)

    N. K. Meyer

    2014-10-01

    Full Text Available Globalization and interregional exchange of people, goods, and services has boosted the importance of and reliance on all kinds of transport networks. The linear structure of road networks is especially sensitive to natural hazards. In southern Norway, steep topography and extreme weather events promote frequent traffic disruption caused by debris flows. Topographic susceptibility and trigger frequency maps serve as input into a hazard appraisal at the scale of first-order catchments to quantify the impact of debris flows on the road network in terms of a failure likelihood of each link connecting two network vertices, e.g., road junctions. We compute total additional traffic loads as a function of traffic volume and excess distance, i.e. the extra length of an alternative path connecting two previ