Dimension from covariance matrices.
Carroll, T L; Byers, J M
2017-02-01
We describe a method to estimate embedding dimension from a time series. This method includes an estimate of the probability that the dimension estimate is valid. Such validity estimates are not common in algorithms for calculating the properties of dynamical systems. The algorithm described here compares the eigenvalues of covariance matrices created from an embedded signal to the eigenvalues for a covariance matrix of a Gaussian random process with the same dimension and number of points. A statistical test gives the probability that the eigenvalues for the embedded signal did not come from the Gaussian random process.
Contributions to Large Covariance and Inverse Covariance Matrices Estimation
Kang, Xiaoning
2016-01-01
Estimation of covariance matrix and its inverse is of great importance in multivariate statistics with broad applications such as dimension reduction, portfolio optimization, linear discriminant analysis and gene expression analysis. However, accurate estimation of covariance or inverse covariance matrices is challenging due to the positive definiteness constraint and large number of parameters, especially in the high-dimensional cases. In this thesis, I develop several approaches for estimat...
Covariance matrices of experimental data
International Nuclear Information System (INIS)
Perey, F.G.
1978-01-01
A complete statement of the uncertainties in data is given by its covariance matrix. It is shown how the covariance matrix of data can be generated using the information available to obtain their standard deviations. Determination of resonance energies by the time-of-flight method is used as an example. The procedure for combining data when the covariance matrix is non-diagonal is given. The method is illustrated by means of examples taken from the recent literature to obtain an estimate of the energy of the first resonance in carbon and for five resonances of 238 U
Forecasting Covariance Matrices: A Mixed Frequency Approach
DEFF Research Database (Denmark)
Halbleib, Roxana; Voev, Valeri
This paper proposes a new method for forecasting covariance matrices of financial returns. The model mixes volatility forecasts from a dynamic model of daily realized volatilities estimated with high-frequency data with correlation forecasts based on daily data. This new approach allows for flexi......This paper proposes a new method for forecasting covariance matrices of financial returns. The model mixes volatility forecasts from a dynamic model of daily realized volatilities estimated with high-frequency data with correlation forecasts based on daily data. This new approach allows...... for flexible dependence patterns for volatilities and correlations, and can be applied to covariance matrices of large dimensions. The separate modeling of volatility and correlation forecasts considerably reduces the estimation and measurement error implied by the joint estimation and modeling of covariance...
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander
2015-01-07
We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(n log n). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and optimal design
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander
2015-01-05
We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(nlogn). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and op- timal design.
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander; Genton, Marc G.; Sun, Ying; Tempone, Raul
2015-01-01
We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(n log n). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and optimal design
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander; Genton, Marc G.; Sun, Ying; Tempone, Raul
2015-01-01
We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(nlogn). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and op- timal design.
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander; Genton, Marc G.; Sun, Ying
2015-01-01
We approximate large non-structured Matérn covariance matrices of size n×n in the H-matrix format with a log-linear computational cost and storage O(kn log n), where rank k ≪ n is a small integer. Applications are: spatial statistics, machine learning and image analysis, kriging and optimal design.
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander
2015-11-30
We approximate large non-structured Matérn covariance matrices of size n×n in the H-matrix format with a log-linear computational cost and storage O(kn log n), where rank k ≪ n is a small integer. Applications are: spatial statistics, machine learning and image analysis, kriging and optimal design.
Noisy covariance matrices and portfolio optimization II
Pafka, Szilárd; Kondor, Imre
2003-03-01
Recent studies inspired by results from random matrix theory (Galluccio et al.: Physica A 259 (1998) 449; Laloux et al.: Phys. Rev. Lett. 83 (1999) 1467; Risk 12 (3) (1999) 69; Plerou et al.: Phys. Rev. Lett. 83 (1999) 1471) found that covariance matrices determined from empirical financial time series appear to contain such a high amount of noise that their structure can essentially be regarded as random. This seems, however, to be in contradiction with the fundamental role played by covariance matrices in finance, which constitute the pillars of modern investment theory and have also gained industry-wide applications in risk management. Our paper is an attempt to resolve this embarrassing paradox. The key observation is that the effect of noise strongly depends on the ratio r= n/ T, where n is the size of the portfolio and T the length of the available time series. On the basis of numerical experiments and analytic results for some toy portfolio models we show that for relatively large values of r (e.g. 0.6) noise does, indeed, have the pronounced effect suggested by Galluccio et al. (1998), Laloux et al. (1999) and Plerou et al. (1999) and illustrated later by Laloux et al. (Int. J. Theor. Appl. Finance 3 (2000) 391), Plerou et al. (Phys. Rev. E, e-print cond-mat/0108023) and Rosenow et al. (Europhys. Lett., e-print cond-mat/0111537) in a portfolio optimization context, while for smaller r (around 0.2 or below), the error due to noise drops to acceptable levels. Since the length of available time series is for obvious reasons limited in any practical application, any bound imposed on the noise-induced error translates into a bound on the size of the portfolio. In a related set of experiments we find that the effect of noise depends also on whether the problem arises in asset allocation or in a risk measurement context: if covariance matrices are used simply for measuring the risk of portfolios with a fixed composition rather than as inputs to optimization, the
Flexible Bayesian Dynamic Modeling of Covariance and Correlation Matrices
Lan, Shiwei; Holbrook, Andrew; Fortin, Norbert J.; Ombao, Hernando; Shahbaba, Babak
2017-01-01
Modeling covariance (and correlation) matrices is a challenging problem due to the large dimensionality and positive-definiteness constraint. In this paper, we propose a novel Bayesian framework based on decomposing the covariance matrix
MATXTST, Basic Operations for Covariance Matrices
International Nuclear Information System (INIS)
Geraldo, Luiz P.; Smith, Donald
1989-01-01
1 - Description of program or function: MATXTST and MATXTST1 perform the following operations for a covariance matrix: - test for singularity; - test for positive definiteness; - compute the inverse if the matrix is non-singular; - compute the determinant; - determine the number of positive, negative, and zero eigenvalues; - examine all possible 3 X 3 cross correlations within a sub-matrix corresponding to a leading principal minor which is non-positive definite. While the two programs utilize the same input, the calculational procedures employed are somewhat different and their functions are complementary. The available input options include: i) the full covariance matrix, ii) the basic variables plus the relative covariance matrix, or iii) uncertainties in the basic variables plus the correlation matrix. 2 - Method of solution: MATXTST employs LINPACK subroutines SPOFA and SPODI to test for positive definiteness and to perform further optional calculations. Subroutine SPOFA factors a symmetric matrix M using the Cholesky algorithm to determine the elements of a matrix R which satisfies the relation M=R'R, where R' is the transposed matrix of R. Each leading principal minor of M is tested until the first one is found which is not positive definite. MATXTST1 uses LINPACK subroutines SSICO, SSIFA, and SSIDI to estimate whether the matrix is near to singularity or not (SSICO), and to perform the matrix diagonalization process (SSIFA). The algorithm used in SSIFA is generalization of the Method of Lagrange Reduction. SSIDI is used to compute the determinant and inertia of the matrix. 3 - Restrictions on the complexity of the problem: Matrices of sizes up to 50 X 50 elements can be treated by present versions of the programs
Structural Analysis of Covariance and Correlation Matrices.
Joreskog, Karl G.
1978-01-01
A general approach to analysis of covariance structures is considered, in which the variances and covariances or correlations of the observed variables are directly expressed in terms of the parameters of interest. The statistical problems of identification, estimation and testing of such covariance or correlation structures are discussed.…
Physical properties of the Schur complement of local covariance matrices
International Nuclear Information System (INIS)
Haruna, L F; Oliveira, M C de
2007-01-01
General properties of global covariance matrices representing bipartite Gaussian states can be decomposed into properties of local covariance matrices and their Schur complements. We demonstrate that given a bipartite Gaussian state ρ 12 described by a 4 x 4 covariance matrix V, the Schur complement of a local covariance submatrix V 1 of it can be interpreted as a new covariance matrix representing a Gaussian operator of party 1 conditioned to local parity measurements on party 2. The connection with a partial parity measurement over a bipartite quantum state and the determination of the reduced Wigner function is given and an operational process of parity measurement is developed. Generalization of this procedure to an n-partite Gaussian state is given, and it is demonstrated that the n - 1 system state conditioned to a partial parity projection is given by a covariance matrix such that its 2 x 2 block elements are Schur complements of special local matrices
ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES.
Fan, Jianqing; Rigollet, Philippe; Wang, Weichen
High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓ r norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics.
On estimating cosmology-dependent covariance matrices
International Nuclear Information System (INIS)
Morrison, Christopher B.; Schneider, Michael D.
2013-01-01
We describe a statistical model to estimate the covariance matrix of matter tracer two-point correlation functions with cosmological simulations. Assuming a fixed number of cosmological simulation runs, we describe how to build a 'statistical emulator' of the two-point function covariance over a specified range of input cosmological parameters. Because the simulation runs with different cosmological models help to constrain the form of the covariance, we predict that the cosmology-dependent covariance may be estimated with a comparable number of simulations as would be needed to estimate the covariance for fixed cosmology. Our framework is a necessary first step in planning a simulations campaign for analyzing the next generation of cosmological surveys
Non-evaluation applications for covariance matrices
Energy Technology Data Exchange (ETDEWEB)
Smith, D.L.
1982-05-01
The possibility for application of covariance matrix techniques to a variety of common research problems other than formal data evaluation are demonstrated by means of several examples. These examples deal with such matters as fitting spectral data, deriving uncertainty estimates for results calculated from experimental data, obtaining the best values for plurally-measured quantities, and methods for analysis of cross section errors based on properties of the experiment. The examples deal with realistic situations encountered in the laboratory, and they are treated in sufficient detail to enable a careful reader to extrapolate the methods to related problems.
Covariance matrices and applications to the field of nuclear data
International Nuclear Information System (INIS)
Smith, D.L.
1981-11-01
A student's introduction to covariance error analysis and least-squares evaluation of data is provided. It is shown that the basic formulas used in error propagation can be derived from a consideration of the geometry of curvilinear coordinates. Procedures for deriving covariances for scaler and vector functions of several variables are presented. Proper methods for reporting experimental errors and for deriving covariance matrices from these errors are indicated. The generalized least-squares method for evaluating experimental data is described. Finally, the use of least-squares techniques in data fitting applications is discussed. Specific examples of the various procedures are presented to clarify the concepts
Flexible Bayesian Dynamic Modeling of Covariance and Correlation Matrices
Lan, Shiwei
2017-11-08
Modeling covariance (and correlation) matrices is a challenging problem due to the large dimensionality and positive-definiteness constraint. In this paper, we propose a novel Bayesian framework based on decomposing the covariance matrix into variance and correlation matrices. The highlight is that the correlations are represented as products of vectors on unit spheres. We propose a variety of distributions on spheres (e.g. the squared-Dirichlet distribution) to induce flexible prior distributions for covariance matrices that go beyond the commonly used inverse-Wishart prior. To handle the intractability of the resulting posterior, we introduce the adaptive $\\\\Delta$-Spherical Hamiltonian Monte Carlo. We also extend our structured framework to dynamic cases and introduce unit-vector Gaussian process priors for modeling the evolution of correlation among multiple time series. Using an example of Normal-Inverse-Wishart problem, a simulated periodic process, and an analysis of local field potential data (collected from the hippocampus of rats performing a complex sequence memory task), we demonstrated the validity and effectiveness of our proposed framework for (dynamic) modeling covariance and correlation matrices.
Modeling and Forecasting Large Realized Covariance Matrices and Portfolio Choice
Callot, Laurent A.F.; Kock, Anders B.; Medeiros, Marcelo C.
2017-01-01
We consider modeling and forecasting large realized covariance matrices by penalized vector autoregressive models. We consider Lasso-type estimators to reduce the dimensionality and provide strong theoretical guarantees on the forecast capability of our procedure. We show that we can forecast
Video based object representation and classification using multiple covariance matrices.
Zhang, Yurong; Liu, Quan
2017-01-01
Video based object recognition and classification has been widely studied in computer vision and image processing area. One main issue of this task is to develop an effective representation for video. This problem can generally be formulated as image set representation. In this paper, we present a new method called Multiple Covariance Discriminative Learning (MCDL) for image set representation and classification problem. The core idea of MCDL is to represent an image set using multiple covariance matrices with each covariance matrix representing one cluster of images. Firstly, we use the Nonnegative Matrix Factorization (NMF) method to do image clustering within each image set, and then adopt Covariance Discriminative Learning on each cluster (subset) of images. At last, we adopt KLDA and nearest neighborhood classification method for image set classification. Promising experimental results on several datasets show the effectiveness of our MCDL method.
On spectral distribution of high dimensional covariation matrices
DEFF Research Database (Denmark)
Heinrich, Claudio; Podolskij, Mark
In this paper we present the asymptotic theory for spectral distributions of high dimensional covariation matrices of Brownian diffusions. More specifically, we consider N-dimensional Itô integrals with time varying matrix-valued integrands. We observe n equidistant high frequency data points...... of the underlying Brownian diffusion and we assume that N/n -> c in (0,oo). We show that under a certain mixed spectral moment condition the spectral distribution of the empirical covariation matrix converges in distribution almost surely. Our proof relies on method of moments and applications of graph theory....
Estimating correlation and covariance matrices by weighting of market similarity
Michael C. M\\"unnix; Rudi Sch\\"afer; Oliver Grothe
2010-01-01
We discuss a weighted estimation of correlation and covariance matrices from historical financial data. To this end, we introduce a weighting scheme that accounts for similarity of previous market conditions to the present one. The resulting estimators are less biased and show lower variance than either unweighted or exponentially weighted estimators. The weighting scheme is based on a similarity measure which compares the current correlation structure of the market to the structures at past ...
Estimation of Fuzzy Measures Using Covariance Matrices in Gaussian Mixtures
Directory of Open Access Journals (Sweden)
Nishchal K. Verma
2012-01-01
Full Text Available This paper presents a novel computational approach for estimating fuzzy measures directly from Gaussian mixtures model (GMM. The mixture components of GMM provide the membership functions for the input-output fuzzy sets. By treating consequent part as a function of fuzzy measures, we derived its coefficients from the covariance matrices found directly from GMM and the defuzzified output constructed from both the premise and consequent parts of the nonadditive fuzzy rules that takes the form of Choquet integral. The computational burden involved with the solution of λ-measure is minimized using Q-measure. The fuzzy model whose fuzzy measures were computed using covariance matrices found in GMM has been successfully applied on two benchmark problems and one real-time electric load data of Indian utility. The performance of the resulting model for many experimental studies including the above-mentioned application is found to be better and comparable to recent available fuzzy models. The main contribution of this paper is the estimation of fuzzy measures efficiently and directly from covariance matrices found in GMM, avoiding the computational burden greatly while learning them iteratively and solving polynomial equations of order of the number of input-output variables.
Group covariance and metrical theory
International Nuclear Information System (INIS)
Halpern, L.
1983-01-01
The a priori introduction of a Lie group of transformations into a physical theory has often proved to be useful; it usually serves to describe special simplified conditions before a general theory can be worked out. Newton's assumptions of absolute space and time are examples where the Euclidian group and translation group have been introduced. These groups were extended to the Galilei group and modified in the special theory of relativity to the Poincare group to describe physics under the given conditions covariantly in the simplest way. The criticism of the a priori character leads to the formulation of the general theory of relativity. The general metric theory does not really give preference to a particular invariance group - even the principle of equivalence can be adapted to a whole family of groups. The physical laws covariantly inserted into the metric space are however adapted to the Poincare group. 8 references
Extreme eigenvalues of sample covariance and correlation matrices
DEFF Research Database (Denmark)
Heiny, Johannes
This thesis is concerned with asymptotic properties of the eigenvalues of high-dimensional sample covariance and correlation matrices under an infinite fourth moment of the entries. In the first part, we study the joint distributional convergence of the largest eigenvalues of the sample covariance...... matrix of a p-dimensional heavy-tailed time series when p converges to infinity together with the sample size n. We generalize the growth rates of p existing in the literature. Assuming a regular variation condition with tail index ... eigenvalues are essentially determined by the extreme order statistics from an array of iid random variables. The asymptotic behavior of the extreme eigenvalues is then derived routinely from classical extreme value theory. The resulting approximations are strikingly simple considering the high dimension...
ERRORJ, Multigroup covariance matrices generation from ENDF-6 format
International Nuclear Information System (INIS)
Chiba, Go
2007-01-01
1 - Description of program or function: ERRORJ produces multigroup covariance matrices from ENDF-6 format following mainly the methods of the ERRORR module in NJOY94.105. New version differs from previous version in the following features: Additional features in ERRORJ with respect to the NJOY94.105/ERRORR module: - expands processing for the covariance matrices of resolved and unresolved resonance parameters; - processes average cosine of scattering angle and fission spectrum; - treats cross-correlation between different materials and reactions; - accepts input of multigroup constants with various forms (user input, GENDF, etc.); - outputs files with various formats through utility NJOYCOVX (COVERX format, correlation matrix, relative error and standard deviation); - uses a 1% sensitivity method for processing of resonance parameters; - ERRORJ can process the JENDL-3.2 and 3.3 covariance matrices. Additional features of the version 2 with respect to the previous version of ERRORJ: - Since the release of version 2, ERRORJ has been modified to increase its reliability and stability, - calculation of the correlation coefficients in the resonance region, - Option for high-speed calculation is implemented, - Perturbation amount is optimised in a sensitivity calculation, - Effect of the resonance self-shielding can be considered, - a compact covariance format (LCOMP=2) proposed by N. M. Larson can be read. Additional features of the version 2.2.1 with respect to the previous version of ERRORJ: - Several routines were modified to reduce calculation time. The new one needs shorter calculation time (50-70%) than the old version without changing results. - In the U-233 and Pu-241 files of JENDL-3.3 an inconsistency between resonance parameters in MF=32 and those in MF=2 was corrected. NEA-1676/06: This version differs from the previous one (NEA-1676/05) in the following: ERRORJ2.2.1 was modified to treat the self-shielding effect accurately. NEA-1676/07: This version
Semiparametric estimation of covariance matrices for longitudinal data.
Fan, Jianqing; Wu, Yichao
2008-12-01
Estimation of longitudinal data covariance structure poses significant challenges because the data are usually collected at irregular time points. A viable semiparametric model for covariance matrices was proposed in Fan, Huang and Li (2007) that allows one to estimate the variance function nonparametrically and to estimate the correlation function parametrically via aggregating information from irregular and sparse data points within each subject. However, the asymptotic properties of their quasi-maximum likelihood estimator (QMLE) of parameters in the covariance model are largely unknown. In the current work, we address this problem in the context of more general models for the conditional mean function including parametric, nonparametric, or semi-parametric. We also consider the possibility of rough mean regression function and introduce the difference-based method to reduce biases in the context of varying-coefficient partially linear mean regression models. This provides a more robust estimator of the covariance function under a wider range of situations. Under some technical conditions, consistency and asymptotic normality are obtained for the QMLE of the parameters in the correlation function. Simulation studies and a real data example are used to illustrate the proposed approach.
Yang, Yang; DeGruttola, Victor
2012-06-22
Traditional resampling-based tests for homogeneity in covariance matrices across multiple groups resample residuals, that is, data centered by group means. These residuals do not share the same second moments when the null hypothesis is false, which makes them difficult to use in the setting of multiple testing. An alternative approach is to resample standardized residuals, data centered by group sample means and standardized by group sample covariance matrices. This approach, however, has been observed to inflate type I error when sample size is small or data are generated from heavy-tailed distributions. We propose to improve this approach by using robust estimation for the first and second moments. We discuss two statistics: the Bartlett statistic and a statistic based on eigen-decomposition of sample covariance matrices. Both statistics can be expressed in terms of standardized errors under the null hypothesis. These methods are extended to test homogeneity in correlation matrices. Using simulation studies, we demonstrate that the robust resampling approach provides comparable or superior performance, relative to traditional approaches, for single testing and reasonable performance for multiple testing. The proposed methods are applied to data collected in an HIV vaccine trial to investigate possible determinants, including vaccine status, vaccine-induced immune response level and viral genotype, of unusual correlation pattern between HIV viral load and CD4 count in newly infected patients.
Shaw, Simon C.; Goldstein, Michael
2017-01-01
We explore the effect of finite population sampling in design problems with many variables cross-classified in many ways. In particular, we investigate designs where we wish to sample individuals belonging to different groups for which the underlying covariance matrices are separable between groups and variables. We exploit the generalised conditional independence structure of the model to show how the analysis of the full model can be reduced to an interpretable series of lower dimensional p...
Some thoughts on positive definiteness in the consideration of nuclear data covariance matrices
Energy Technology Data Exchange (ETDEWEB)
Geraldo, L.P.; Smith, D.L.
1988-01-01
Some basic mathematical features of covariance matrices are reviewed, particularly as they relate to the property of positive difiniteness. Physical implications of positive definiteness are also discussed. Consideration is given to an examination of the origins of non-positive definite matrices, to procedures which encourage the generation of positive definite matrices and to the testing of covariance matrices for positive definiteness. Attention is also given to certain problems associated with the construction of covariance matrices using information which is obtained from evaluated data files recorded in the ENDF format. Examples are provided to illustrate key points pertaining to each of the topic areas covered.
Some thoughts on positive definiteness in the consideration of nuclear data covariance matrices
International Nuclear Information System (INIS)
Geraldo, L.P.; Smith, D.L.
1988-01-01
Some basic mathematical features of covariance matrices are reviewed, particularly as they relate to the property of positive difiniteness. Physical implications of positive definiteness are also discussed. Consideration is given to an examination of the origins of non-positive definite matrices, to procedures which encourage the generation of positive definite matrices and to the testing of covariance matrices for positive definiteness. Attention is also given to certain problems associated with the construction of covariance matrices using information which is obtained from evaluated data files recorded in the ENDF format. Examples are provided to illustrate key points pertaining to each of the topic areas covered
International Nuclear Information System (INIS)
Roussin, R.W.; Drischler, J.D.; Marable, J.H.
1980-01-01
In recent years multigroup sensitivity profiles and covariance matrices have been added to the Radiation Shielding Information Center's Data Library Collection (DLC). Sensitivity profiles are available in a single package. DLC-45/SENPRO, and covariance matrices are found in two packages, DLC-44/COVERX and DLC-77/COVERV. The contents of these packages are described and their availability is discussed
Perils of parsimony: properties of reduced-rank estimates of genetic covariance matrices.
Meyer, Karin; Kirkpatrick, Mark
2008-10-01
Eigenvalues and eigenvectors of covariance matrices are important statistics for multivariate problems in many applications, including quantitative genetics. Estimates of these quantities are subject to different types of bias. This article reviews and extends the existing theory on these biases, considering a balanced one-way classification and restricted maximum-likelihood estimation. Biases are due to the spread of sample roots and arise from ignoring selected principal components when imposing constraints on the parameter space, to ensure positive semidefinite estimates or to estimate covariance matrices of chosen, reduced rank. In addition, it is shown that reduced-rank estimators that consider only the leading eigenvalues and -vectors of the "between-group" covariance matrix may be biased due to selecting the wrong subset of principal components. In a genetic context, with groups representing families, this bias is inverse proportional to the degree of genetic relationship among family members, but is independent of sample size. Theoretical results are supplemented by a simulation study, demonstrating close agreement between predicted and observed bias for large samples. It is emphasized that the rank of the genetic covariance matrix should be chosen sufficiently large to accommodate all important genetic principal components, even though, paradoxically, this may require including a number of components with negligible eigenvalues. A strategy for rank selection in practical analyses is outlined.
Chang, Jinyuan; Zhou, Wen; Zhou, Wen-Xin; Wang, Lan
2017-03-01
Comparing large covariance matrices has important applications in modern genomics, where scientists are often interested in understanding whether relationships (e.g., dependencies or co-regulations) among a large number of genes vary between different biological states. We propose a computationally fast procedure for testing the equality of two large covariance matrices when the dimensions of the covariance matrices are much larger than the sample sizes. A distinguishing feature of the new procedure is that it imposes no structural assumptions on the unknown covariance matrices. Hence, the test is robust with respect to various complex dependence structures that frequently arise in genomics. We prove that the proposed procedure is asymptotically valid under weak moment conditions. As an interesting application, we derive a new gene clustering algorithm which shares the same nice property of avoiding restrictive structural assumptions for high-dimensional genomics data. Using an asthma gene expression dataset, we illustrate how the new test helps compare the covariance matrices of the genes across different gene sets/pathways between the disease group and the control group, and how the gene clustering algorithm provides new insights on the way gene clustering patterns differ between the two groups. The proposed methods have been implemented in an R-package HDtest and are available on CRAN. © 2016, The International Biometric Society.
On the covariance matrices in the evaluated nuclear data
International Nuclear Information System (INIS)
Corcuera, R.P.
1983-05-01
The implications of the uncertainties of nuclear data on reactor calculations are shown. The concept of variance, covariance and correlation are expressed first by intuitive definitions and then through statistical theory. The format of the covariance data for ENDF/B is explained and the formulas to obtain the multigroup covariances are given. (Author) [pt
Litvinenko, Alexander
2017-01-01
matrices. Therefore covariance matrices are approximated in the hierarchical ($\\H$-) matrix format with computational cost $\\mathcal{O}(k^2n \\log^2 n/p)$ and storage $\\mathcal{O}(kn \\log n)$, where the rank $k$ is a small integer (typically $k<25$), $p
Multilevel maximum likelihood estimation with application to covariance matrices
Czech Academy of Sciences Publication Activity Database
Turčičová, Marie; Mandel, J.; Eben, Kryštof
Published online: 23 January ( 2018 ) ISSN 0361-0926 R&D Projects: GA ČR GA13-34856S Institutional support: RVO:67985807 Keywords : Fisher information * High dimension * Hierarchical maximum likelihood * Nested parameter spaces * Spectral diagonal covariance model * Sparse inverse covariance model Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.311, year: 2016
Data depth and rank-based tests for covariance and spectral density matrices
Chau, Joris
2017-06-26
In multivariate time series analysis, objects of primary interest to study cross-dependences in the time series are the autocovariance or spectral density matrices. Non-degenerate covariance and spectral density matrices are necessarily Hermitian and positive definite, and our primary goal is to develop new methods to analyze samples of such matrices. The main contribution of this paper is the generalization of the concept of statistical data depth for collections of covariance or spectral density matrices by exploiting the geometric properties of the space of Hermitian positive definite matrices as a Riemannian manifold. This allows one to naturally characterize most central or outlying matrices, but also provides a practical framework for rank-based hypothesis testing in the context of samples of covariance or spectral density matrices. First, the desired properties of a data depth function acting on the space of Hermitian positive definite matrices are presented. Second, we propose two computationally efficient pointwise and integrated data depth functions that satisfy each of these requirements. Several applications of the developed methodology are illustrated by the analysis of collections of spectral matrices in multivariate brain signal time series datasets.
Data depth and rank-based tests for covariance and spectral density matrices
Chau, Joris; Ombao, Hernando; Sachs, Rainer von
2017-01-01
In multivariate time series analysis, objects of primary interest to study cross-dependences in the time series are the autocovariance or spectral density matrices. Non-degenerate covariance and spectral density matrices are necessarily Hermitian and positive definite, and our primary goal is to develop new methods to analyze samples of such matrices. The main contribution of this paper is the generalization of the concept of statistical data depth for collections of covariance or spectral density matrices by exploiting the geometric properties of the space of Hermitian positive definite matrices as a Riemannian manifold. This allows one to naturally characterize most central or outlying matrices, but also provides a practical framework for rank-based hypothesis testing in the context of samples of covariance or spectral density matrices. First, the desired properties of a data depth function acting on the space of Hermitian positive definite matrices are presented. Second, we propose two computationally efficient pointwise and integrated data depth functions that satisfy each of these requirements. Several applications of the developed methodology are illustrated by the analysis of collections of spectral matrices in multivariate brain signal time series datasets.
Activities of covariance utilization working group
International Nuclear Information System (INIS)
Tsujimoto, Kazufumi
2013-01-01
During the past decade, there has been a interest in the calculational uncertainties induced by nuclear data uncertainties in the neutronics design of advanced nuclear system. The covariance nuclear data is absolutely essential for the uncertainty analysis. In the latest version of JENDL, JENDL-4.0, the covariance data for many nuclides, especially actinide nuclides, was substantialy enhanced. The growing interest in the uncertainty analysis and the covariance data has led to the organisation of the working group for covariance utilization under the JENDL committee. (author)
More on Estimation of Banded and Banded Toeplitz Covariance Matrices
Berntsson, Fredrik; Ohlson, Martin
2017-01-01
In this paper we consider two different linear covariance structures, e.g., banded and bended Toeplitz, and how to estimate them using different methods, e.g., by minimizing different norms. One way to estimate the parameters in a linear covariance structure is to use tapering, which has been shown to be the solution to a universal least squares problem. We know that tapering not always guarantee the positive definite constraints on the estimated covariance matrix and may not be a suitable me...
Schur Complement Inequalities for Covariance Matrices and Monogamy of Quantum Correlations.
Lami, Ludovico; Hirche, Christoph; Adesso, Gerardo; Winter, Andreas
2016-11-25
We derive fundamental constraints for the Schur complement of positive matrices, which provide an operator strengthening to recently established information inequalities for quantum covariance matrices, including strong subadditivity. This allows us to prove general results on the monogamy of entanglement and steering quantifiers in continuous variable systems with an arbitrary number of modes per party. A powerful hierarchical relation for correlation measures based on the log-determinant of covariance matrices is further established for all Gaussian states, which has no counterpart among quantities based on the conventional von Neumann entropy.
Massive data compression for parameter-dependent covariance matrices
Heavens, Alan F.; Sellentin, Elena; de Mijolla, Damien; Vianello, Alvise
2017-12-01
We show how the massive data compression algorithm MOPED can be used to reduce, by orders of magnitude, the number of simulated data sets which are required to estimate the covariance matrix required for the analysis of Gaussian-distributed data. This is relevant when the covariance matrix cannot be calculated directly. The compression is especially valuable when the covariance matrix varies with the model parameters. In this case, it may be prohibitively expensive to run enough simulations to estimate the full covariance matrix throughout the parameter space. This compression may be particularly valuable for the next generation of weak lensing surveys, such as proposed for Euclid and Large Synoptic Survey Telescope, for which the number of summary data (such as band power or shear correlation estimates) is very large, ∼104, due to the large number of tomographic redshift bins which the data will be divided into. In the pessimistic case where the covariance matrix is estimated separately for all points in an Monte Carlo Markov Chain analysis, this may require an unfeasible 109 simulations. We show here that MOPED can reduce this number by a factor of 1000, or a factor of ∼106 if some regularity in the covariance matrix is assumed, reducing the number of simulations required to a manageable 103, making an otherwise intractable analysis feasible.
Directory of Open Access Journals (Sweden)
James M. Cheverud
2007-03-01
Full Text Available Comparisons of covariance patterns are becoming more common as interest in the evolution of relationships between traits and in the evolutionary phenotypic diversification of clades have grown. We present parallel analyses of covariance matrix similarity for cranial traits in 14 New World Monkey genera using the Random Skewers (RS, T-statistics, and Common Principal Components (CPC approaches. We find that the CPC approach is very powerful in that with adequate sample sizes, it can be used to detect significant differences in matrix structure, even between matrices that are virtually identical in their evolutionary properties, as indicated by the RS results. We suggest that in many instances the assumption that population covariance matrices are identical be rejected out of hand. The more interesting and relevant question is, How similar are two covariance matrices with respect to their predicted evolutionary responses? This issue is addressed by the random skewers method described here.
Spearing, Debra; Woehlke, Paula
To assess the effect on discriminant analysis in terms of correct classification into two groups, the following parameters were systematically altered using Monte Carlo techniques: sample sizes; proportions of one group to the other; number of independent variables; and covariance matrices. The pairing of the off diagonals (or covariances) with…
PUFF-IV, Code System to Generate Multigroup Covariance Matrices from ENDF/B-VI Uncertainty Files
International Nuclear Information System (INIS)
2007-01-01
1 - Description of program or function: The PUFF-IV code system processes ENDF/B-VI formatted nuclear cross section covariance data into multigroup covariance matrices. PUFF-IV is the newest release in this series of codes used to process ENDF uncertainty information and to generate the desired multi-group correlation matrix for the evaluation of interest. This version includes corrections and enhancements over previous versions. It is written in Fortran 90 and allows for a more modular design, thus facilitating future upgrades. PUFF-IV enhances support for resonance parameter covariance formats described in the ENDF standard and now handles almost all resonance parameter covariance information in the resolved region, with the exception of the long range covariance sub-subsections. PUFF-IV is normally used in conjunction with an AMPX master library containing group averaged cross section data. Two utility modules are included in this package to facilitate the data interface. The module SMILER allows one to use NJOY generated GENDF files containing group averaged cross section data in conjunction with PUFF-IV. The module COVCOMP allows one to compare two files written in COVERX format. 2 - Methods: Cross section and flux values on a 'super energy grid,' consisting of the union of the required energy group structure and the energy data points in the ENDF/B-V file, are interpolated from the input cross sections and fluxes. Covariance matrices are calculated for this grid and then collapsed to the required group structure. 3 - Restrictions on the complexity of the problem: PUFF-IV cannot process covariance information for energy and angular distributions of secondary particles. PUFF-IV does not process covariance information in Files 34 and 35; nor does it process covariance information in File 40. These new formats will be addressed in a future version of PUFF
ZZ RRDF-98, Cross-sections and covariance matrices for 22 neutron induced dosimetry reactions
International Nuclear Information System (INIS)
Zolotarev, K.I.; Ignatyuk, A.V.; Mahokhin, V.N.; Pashchenko, A.B.
2005-01-01
1 - Description of program or function: Format: ENDF-6 format; Number of groups: Continuous energy; Dosimetry reactions: 6-C-12(n,2n), 8-O-16(n,2n), 9-F-19(n,2n), 12-Mg-24(n,p), 22-Ti-46(n,2n), 22-Ti-46(n,p), 22-Ti-47(n,x), 22-Ti-48(n,p), 22-Ti-48(n,x), 22-Ti-49(n,x), 23-V-51(n,alpha), 26-Fe-54(n,2n), 26-Fe-54(n,alpha), 26-Fe-56(n,p), 27-Co-59(n,alpha), 29-Cu-63(n,alpha), 33-As-75(n,2n), 41-Nb-93(n,2n), 41-Nb-93(n,n'), 45-Rh-103(n,n'), 49-In-115(n,n'), 59-Pr-141(n,2n); Origin: Russian Federation; Weighting spectrum: None. RRDF-98 contains original evaluations of cross section data performed at the Institute of Physics and Power Engineering, Obninsk, for 22 neutron induced dosimetry reactions. The dataset also contains the corresponding covariance matrices. 2 - Methods: The evaluation of excitation functions was performed on the basis of statistical analysis of corrected experimental data in the framework of generalized least squares method and taking into account the results of optical-statistical STAPRE and GNASH calculations. The experimental cross section data including the most recent results were critically reviewed and processed in this study. If necessary, the data were normalized in order to make adjustments in relevant cross sections and decay schemes. The covariance matrices were prepared and the evaluated cross section data are presented in ENDF-6 format (Files 3, 33). For estimation of correlations between experimental data the total uncertainties of measured cross sections have been separated into statistical and systematic parts and correlation coefficients between components of systematic parts were assigned according to information given in the original publications and EXFOR library. Then the correlation matrix of cross sections measured within one experiment was calculated and approximated by matrix with a constant (average) correlation coefficient. The overall correlation matrix was composed of such sub-matrices in the assumption that the cross
Characteristic Polynomials of Sample Covariance Matrices: The Non-Square Case
Kösters, Holger
2009-01-01
We consider the sample covariance matrices of large data matrices which have i.i.d. complex matrix entries and which are non-square in the sense that the difference between the number of rows and the number of columns tends to infinity. We show that the second-order correlation function of the characteristic polynomial of the sample covariance matrix is asymptotically given by the sine kernel in the bulk of the spectrum and by the Airy kernel at the edge of the spectrum. Similar results are g...
Group covariant protocols for quantum string commitment
International Nuclear Information System (INIS)
Tsurumaru, Toyohiro
2006-01-01
We study the security of quantum string commitment (QSC) protocols with group covariant encoding scheme. First we consider a class of QSC protocol, which is general enough to incorporate all the QSC protocols given in the preceding literatures. Then among those protocols, we consider group covariant protocols and show that the exact upperbound on the binding condition can be calculated. Next using this result, we prove that for every irreducible representation of a finite group, there always exists a corresponding nontrivial QSC protocol which reaches a level of security impossible to achieve classically
Nonlinear entanglement witnesses, covariance matrices and the geometry of separable states
Energy Technology Data Exchange (ETDEWEB)
Guehne, Otfried [Institut fuer Quantenoptik und Quanteninformation, Oesterreichische Akademie der Wissenschaften, A-6020 Innsbruck (Austria); Luetkenhaus, Norbert [Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)
2007-05-15
Entanglement witnesses provide a standard tool for the analysis of entanglement in experiments. We investigate possible nonlinear entanglement witnesses from several perspectives. First, we demonstrate that they can be used to show that the set of separable states has no facets. Second, we give a new derivation of nonlinear witnesses based on covariance matrices. Finally, we investigate extensions to the multipartite case.
MIMO-radar Waveform Covariance Matrices for High SINR and Low Side-lobe Levels
Ahmed, Sajid; Alouini, Mohamed-Slim
2012-01-01
MIMO-radar has better parametric identifiability but compared to phased-array radar it shows loss in signal-to-noise ratio due to non-coherent processing. To exploit the benefits of both MIMO-radar and phased-array two transmit covariance matrices
Nonlinear realization of general covariance group
International Nuclear Information System (INIS)
Hamamoto, Shinji
1979-01-01
The structure of the theory resulting from the nonlinear realization of general covariance group is analysed. We discuss the general form of free Lagrangian for Goldstone fields, and propose as a special choice one reasonable form which is shown to describe a gravitational theory with massless tensor graviton and massive vector tordion. (author)
Directory of Open Access Journals (Sweden)
R. Caballero-Águila
2014-01-01
Full Text Available The optimal least-squares linear estimation problem is addressed for a class of discrete-time multisensor linear stochastic systems subject to randomly delayed measurements with different delay rates. For each sensor, a different binary sequence is used to model the delay process. The measured outputs are perturbed by both random parameter matrices and one-step autocorrelated and cross correlated noises. Using an innovation approach, computationally simple recursive algorithms are obtained for the prediction, filtering, and smoothing problems, without requiring full knowledge of the state-space model generating the signal process, but only the information provided by the delay probabilities and the mean and covariance functions of the processes (signal, random parameter matrices, and noises involved in the observation model. The accuracy of the estimators is measured by their error covariance matrices, which allow us to analyze the estimator performance in a numerical simulation example that illustrates the feasibility of the proposed algorithms.
Litvinenko, Alexander
2017-09-26
The main goal of this article is to introduce the parallel hierarchical matrix library HLIBpro to the statistical community. We describe the HLIBCov package, which is an extension of the HLIBpro library for approximating large covariance matrices and maximizing likelihood functions. We show that an approximate Cholesky factorization of a dense matrix of size $2M\\\\times 2M$ can be computed on a modern multi-core desktop in few minutes. Further, HLIBCov is used for estimating the unknown parameters such as the covariance length, variance and smoothness parameter of a Mat\\\\\\'ern covariance function by maximizing the joint Gaussian log-likelihood function. The computational bottleneck here is expensive linear algebra arithmetics due to large and dense covariance matrices. Therefore covariance matrices are approximated in the hierarchical ($\\\\H$-) matrix format with computational cost $\\\\mathcal{O}(k^2n \\\\log^2 n/p)$ and storage $\\\\mathcal{O}(kn \\\\log n)$, where the rank $k$ is a small integer (typically $k<25$), $p$ the number of cores and $n$ the number of locations on a fairly general mesh. We demonstrate a synthetic example, where the true values of known parameters are known. For reproducibility we provide the C++ code, the documentation, and the synthetic data.
Litvinenko, Alexander
2017-09-24
The main goal of this article is to introduce the parallel hierarchical matrix library HLIBpro to the statistical community. We describe the HLIBCov package, which is an extension of the HLIBpro library for approximating large covariance matrices and maximizing likelihood functions. We show that an approximate Cholesky factorization of a dense matrix of size $2M\\\\times 2M$ can be computed on a modern multi-core desktop in few minutes. Further, HLIBCov is used for estimating the unknown parameters such as the covariance length, variance and smoothness parameter of a Mat\\\\\\'ern covariance function by maximizing the joint Gaussian log-likelihood function. The computational bottleneck here is expensive linear algebra arithmetics due to large and dense covariance matrices. Therefore covariance matrices are approximated in the hierarchical ($\\\\mathcal{H}$-) matrix format with computational cost $\\\\mathcal{O}(k^2n \\\\log^2 n/p)$ and storage $\\\\mathcal{O}(kn \\\\log n)$, where the rank $k$ is a small integer (typically $k<25$), $p$ the number of cores and $n$ the number of locations on a fairly general mesh. We demonstrate a synthetic example, where the true values of known parameters are known. For reproducibility we provide the C++ code, the documentation, and the synthetic data.
International Nuclear Information System (INIS)
Smith, D.L.
1988-01-01
The last decade has been a period of rapid development in the implementation of covariance-matrix methodology in nuclear data research. This paper offers some perspective on the progress which has been made, on some of the unresolved problems, and on the potential yet to be realized. These discussions address a variety of issues related to the development of nuclear data. Topics examined are: the importance of designing and conducting experiments so that error information is conveniently generated; the procedures for identifying error sources and quantifying their magnitudes and correlations; the combination of errors; the importance of consistent and well-characterized measurement standards; the role of covariances in data parameterization (fitting); the estimation of covariances for values calculated from mathematical models; the identification of abnormalities in covariance matrices and the analysis of their consequences; the problems encountered in representing covariance information in evaluated files; the role of covariances in the weighting of diverse data sets; the comparison of various evaluations; the influence of primary-data covariance in the analysis of covariances for derived quantities (sensitivity); and the role of covariances in the merging of the diverse nuclear data information. 226 refs., 2 tabs
MIMO-radar Waveform Covariance Matrices for High SINR and Low Side-lobe Levels
Ahmed, Sajid
2012-12-29
MIMO-radar has better parametric identifiability but compared to phased-array radar it shows loss in signal-to-noise ratio due to non-coherent processing. To exploit the benefits of both MIMO-radar and phased-array two transmit covariance matrices are found. Both of the covariance matrices yield gain in signal-to-interference-plus-noise ratio (SINR) compared to MIMO-radar and have lower side-lobe levels (SLL)\\'s compared to phased-array and MIMO-radar. Moreover, in contrast to recently introduced phased-MIMO scheme, where each antenna transmit different power, our proposed schemes allows same power transmission from each antenna. The SLL\\'s of the proposed first covariance matrix are higher than the phased-MIMO scheme while the SLL\\'s of the second proposed covariance matrix are lower than the phased-MIMO scheme. The first covariance matrix is generated using an auto-regressive process, which allow us to change the SINR and side lobe levels by changing the auto-regressive parameter, while to generate the second covariance matrix the values of sine function between 0 and $\\\\pi$ with the step size of $\\\\pi/n_T$ are used to form a positive-semidefinite Toeplitiz matrix, where $n_T$ is the number of transmit antennas. Simulation results validate our analytical results.
Minimax Rate-optimal Estimation of High-dimensional Covariance Matrices with Incomplete Data.
Cai, T Tony; Zhang, Anru
2016-09-01
Missing data occur frequently in a wide range of applications. In this paper, we consider estimation of high-dimensional covariance matrices in the presence of missing observations under a general missing completely at random model in the sense that the missingness is not dependent on the values of the data. Based on incomplete data, estimators for bandable and sparse covariance matrices are proposed and their theoretical and numerical properties are investigated. Minimax rates of convergence are established under the spectral norm loss and the proposed estimators are shown to be rate-optimal under mild regularity conditions. Simulation studies demonstrate that the estimators perform well numerically. The methods are also illustrated through an application to data from four ovarian cancer studies. The key technical tools developed in this paper are of independent interest and potentially useful for a range of related problems in high-dimensional statistical inference with missing data.
Minimax Rate-optimal Estimation of High-dimensional Covariance Matrices with Incomplete Data*
Cai, T. Tony; Zhang, Anru
2016-01-01
Missing data occur frequently in a wide range of applications. In this paper, we consider estimation of high-dimensional covariance matrices in the presence of missing observations under a general missing completely at random model in the sense that the missingness is not dependent on the values of the data. Based on incomplete data, estimators for bandable and sparse covariance matrices are proposed and their theoretical and numerical properties are investigated. Minimax rates of convergence are established under the spectral norm loss and the proposed estimators are shown to be rate-optimal under mild regularity conditions. Simulation studies demonstrate that the estimators perform well numerically. The methods are also illustrated through an application to data from four ovarian cancer studies. The key technical tools developed in this paper are of independent interest and potentially useful for a range of related problems in high-dimensional statistical inference with missing data. PMID:27777471
Performance of penalized maximum likelihood in estimation of genetic covariances matrices
Directory of Open Access Journals (Sweden)
Meyer Karin
2011-11-01
Full Text Available Abstract Background Estimation of genetic covariance matrices for multivariate problems comprising more than a few traits is inherently problematic, since sampling variation increases dramatically with the number of traits. This paper investigates the efficacy of regularized estimation of covariance components in a maximum likelihood framework, imposing a penalty on the likelihood designed to reduce sampling variation. In particular, penalties that "borrow strength" from the phenotypic covariance matrix are considered. Methods An extensive simulation study was carried out to investigate the reduction in average 'loss', i.e. the deviation in estimated matrices from the population values, and the accompanying bias for a range of parameter values and sample sizes. A number of penalties are examined, penalizing either the canonical eigenvalues or the genetic covariance or correlation matrices. In addition, several strategies to determine the amount of penalization to be applied, i.e. to estimate the appropriate tuning factor, are explored. Results It is shown that substantial reductions in loss for estimates of genetic covariance can be achieved for small to moderate sample sizes. While no penalty performed best overall, penalizing the variance among the estimated canonical eigenvalues on the logarithmic scale or shrinking the genetic towards the phenotypic correlation matrix appeared most advantageous. Estimating the tuning factor using cross-validation resulted in a loss reduction 10 to 15% less than that obtained if population values were known. Applying a mild penalty, chosen so that the deviation in likelihood from the maximum was non-significant, performed as well if not better than cross-validation and can be recommended as a pragmatic strategy. Conclusions Penalized maximum likelihood estimation provides the means to 'make the most' of limited and precious data and facilitates more stable estimation for multi-dimensional analyses. It should
Covariant differential complexes of quantum linear groups
International Nuclear Information System (INIS)
Isaev, A.P.; Pyatov, P.N.
1993-01-01
We consider the possible covariant external algebra structures for Cartan's 1-forms (Ω) on G L q (N) and S L q (N). Our starting point is that Ω s realize an adjoint representation of quantum group and all monomials of Ω s possess the unique ordering. For the obtained external algebras we define the differential mapping d possessing the usual nilpotence condition, and the generally deformed version of Leibnitz rules. The status of the known examples of G L q (N)-differential calculi in the proposed classification scheme and the problems of S L q (N)-reduction are discussed. (author.). 26 refs
Bayesian estimation of covariance matrices: Application to market risk management at EDF
International Nuclear Information System (INIS)
Jandrzejewski-Bouriga, M.
2012-01-01
In this thesis, we develop new methods of regularized covariance matrix estimation, under the Bayesian setting. The regularization methodology employed is first related to shrinkage. We investigate a new Bayesian modeling of covariance matrix, based on hierarchical inverse-Wishart distribution, and then derive different estimators under standard loss functions. Comparisons between shrunk and empirical estimators are performed in terms of frequentist performance under different losses. It allows us to highlight the critical importance of the definition of cost function and show the persistent effect of the shrinkage-type prior on inference. In a second time, we consider the problem of covariance matrix estimation in Gaussian graphical models. If the issue is well treated for the decomposable case, it is not the case if you also consider non-decomposable graphs. We then describe a Bayesian and operational methodology to carry out the estimation of covariance matrix of Gaussian graphical models, decomposable or not. This procedure is based on a new and objective method of graphical-model selection, combined with a constrained and regularized estimation of the covariance matrix of the model chosen. The procedures studied effectively manage missing data. These estimation techniques were applied to calculate the covariance matrices involved in the market risk management for portfolios of EDF (Electricity of France), in particular for problems of calculating Value-at-Risk or in Asset Liability Management. (author)
Covariant Derivatives and the Renormalization Group Equation
Dolan, Brian P.
The renormalization group equation for N-point correlation functions can be interpreted in a geometrical manner as an equation for Lie transport of amplitudes in the space of couplings. The vector field generating the diffeomorphism has components given by the β functions of the theory. It is argued that this simple picture requires modification whenever any one of the points at which the amplitude is evaluated becomes close to any other. This modification necessitates the introduction of a connection on the space of couplings and new terms appear in the renormalization group equation involving covariant derivatives of the β function and the curvature associated with the connection. It is shown how the connection is related to the operator product expansion coefficients, but there remains an arbitrariness in its definition.
Group inverses of M-matrices and their applications
Kirkland, Stephen J
2013-01-01
Group inverses for singular M-matrices are useful tools not only in matrix analysis, but also in the analysis of stochastic processes, graph theory, electrical networks, and demographic models. Group Inverses of M-Matrices and Their Applications highlights the importance and utility of the group inverses of M-matrices in several application areas. After introducing sample problems associated with Leslie matrices and stochastic matrices, the authors develop the basic algebraic and spectral properties of the group inverse of a general matrix. They then derive formulas for derivatives of matrix f
International Nuclear Information System (INIS)
Akemann, Gernot; Checinski, Tomasz; Kieburg, Mario
2016-01-01
We compute the spectral statistics of the sum H of two independent complex Wishart matrices, each of which is correlated with a different covariance matrix. Random matrix theory enjoys many applications including sums and products of random matrices. Typically ensembles with correlations among the matrix elements are much more difficult to solve. Using a combination of supersymmetry, superbosonisation and bi-orthogonal functions we are able to determine all spectral k -point density correlation functions of H for arbitrary matrix size N . In the half-degenerate case, when one of the covariance matrices is proportional to the identity, the recent results by Kumar for the joint eigenvalue distribution of H serve as our starting point. In this case the ensemble has a bi-orthogonal structure and we explicitly determine its kernel, providing its exact solution for finite N . The kernel follows from computing the expectation value of a single characteristic polynomial. In the general non-degenerate case the generating function for the k -point resolvent is determined from a supersymmetric evaluation of the expectation value of k ratios of characteristic polynomials. Numerical simulations illustrate our findings for the spectral density at finite N and we also give indications how to do the asymptotic large- N analysis. (paper)
PUFF-III: A Code for Processing ENDF Uncertainty Data Into Multigroup Covariance Matrices
International Nuclear Information System (INIS)
Dunn, M.E.
2000-01-01
PUFF-III is an extension of the previous PUFF-II code that was developed in the 1970s and early 1980s. The PUFF codes process the Evaluated Nuclear Data File (ENDF) covariance data and generate multigroup covariance matrices on a user-specified energy grid structure. Unlike its predecessor, PUFF-III can process the new ENDF/B-VI data formats. In particular, PUFF-III has the capability to process the spontaneous fission covariances for fission neutron multiplicity. With regard to the covariance data in File 33 of the ENDF system, PUFF-III has the capability to process short-range variance formats, as well as the lumped reaction covariance data formats that were introduced in ENDF/B-V. In addition to the new ENDF formats, a new directory feature is now available that allows the user to obtain a detailed directory of the uncertainty information in the data files without visually inspecting the ENDF data. Following the correlation matrix calculation, PUFF-III also evaluates the eigenvalues of each correlation matrix and tests each matrix for positive definiteness. Additional new features are discussed in the manual. PUFF-III has been developed for implementation in the AMPX code system, and several modifications were incorporated to improve memory allocation tasks and input/output operations. Consequently, the resulting code has a structure that is similar to other modules in the AMPX code system. With the release of PUFF-III, a new and improved covariance processing code is available to process ENDF covariance formats through Version VI
Davies, Christopher E; Glonek, Gary Fv; Giles, Lynne C
2017-08-01
One purpose of a longitudinal study is to gain a better understanding of how an outcome of interest changes among a given population over time. In what follows, a trajectory will be taken to mean the series of measurements of the outcome variable for an individual. Group-based trajectory modelling methods seek to identify subgroups of trajectories within a population, such that trajectories that are grouped together are more similar to each other than to trajectories in distinct groups. Group-based trajectory models generally assume a certain structure in the covariances between measurements, for example conditional independence, homogeneous variance between groups or stationary variance over time. Violations of these assumptions could be expected to result in poor model performance. We used simulation to investigate the effect of covariance misspecification on misclassification of trajectories in commonly used models under a range of scenarios. To do this we defined a measure of performance relative to the ideal Bayesian correct classification rate. We found that the more complex models generally performed better over a range of scenarios. In particular, incorrectly specified covariance matrices could significantly bias the results but using models with a correct but more complicated than necessary covariance matrix incurred little cost.
Zhu, Lingxue; Lei, Jing; Devlin, Bernie; Roeder, Kathryn
2017-09-01
Scientists routinely compare gene expression levels in cases versus controls in part to determine genes associated with a disease. Similarly, detecting case-control differences in co-expression among genes can be critical to understanding complex human diseases; however statistical methods have been limited by the high dimensional nature of this problem. In this paper, we construct a sparse-Leading-Eigenvalue-Driven (sLED) test for comparing two high-dimensional covariance matrices. By focusing on the spectrum of the differential matrix, sLED provides a novel perspective that accommodates what we assume to be common, namely sparse and weak signals in gene expression data, and it is closely related with Sparse Principal Component Analysis. We prove that sLED achieves full power asymptotically under mild assumptions, and simulation studies verify that it outperforms other existing procedures under many biologically plausible scenarios. Applying sLED to the largest gene-expression dataset obtained from post-mortem brain tissue from Schizophrenia patients and controls, we provide a novel list of genes implicated in Schizophrenia and reveal intriguing patterns in gene co-expression change for Schizophrenia subjects. We also illustrate that sLED can be generalized to compare other gene-gene "relationship" matrices that are of practical interest, such as the weighted adjacency matrices.
Covariance matrices for nuclear cross sections derived from nuclear model calculations
International Nuclear Information System (INIS)
Smith, D. L.
2005-01-01
The growing need for covariance information to accompany the evaluated cross section data libraries utilized in contemporary nuclear applications is spurring the development of new methods to provide this information. Many of the current general purpose libraries of evaluated nuclear data used in applications are derived either almost entirely from nuclear model calculations or from nuclear model calculations benchmarked by available experimental data. Consequently, a consistent method for generating covariance information under these circumstances is required. This report discusses a new approach to producing covariance matrices for cross sections calculated using nuclear models. The present method involves establishing uncertainty information for the underlying parameters of nuclear models used in the calculations and then propagating these uncertainties through to the derived cross sections and related nuclear quantities by means of a Monte Carlo technique rather than the more conventional matrix error propagation approach used in some alternative methods. The formalism to be used in such analyses is discussed in this report along with various issues and caveats that need to be considered in order to proceed with a practical implementation of the methodology
Universal correlations and power-law tails in financial covariance matrices
Akemann, G.; Fischmann, J.; Vivo, P.
2010-07-01
We investigate whether quantities such as the global spectral density or individual eigenvalues of financial covariance matrices can be best modelled by standard random matrix theory or rather by its generalisations displaying power-law tails. In order to generate individual eigenvalue distributions a chopping procedure is devised, which produces a statistical ensemble of asset-price covariances from a single instance of financial data sets. Local results for the smallest eigenvalue and individual spacings are very stable upon reshuffling the time windows and assets. They are in good agreement with the universal Tracy-Widom distribution and Wigner surmise, respectively. This suggests a strong degree of robustness especially in the low-lying sector of the spectra, most relevant for portfolio selections. Conversely, the global spectral density of a single covariance matrix as well as the average over all unfolded nearest-neighbour spacing distributions deviate from standard Gaussian random matrix predictions. The data are in fair agreement with a recently introduced generalised random matrix model, with correlations showing a power-law decay.
Directory of Open Access Journals (Sweden)
Janiga-Ćmiel Anna
2016-12-01
Full Text Available The paper looks at the issues related to the research on and assessment of the contagion effect. Based on several examinations of two selected EU countries, Poland paired with one of the EU member states; it presents the interaction between their economic development. A DCC-GARCH model constructed for the purpose of the study was used to generate a covariance matrix Ht, which enabled the calculation of correlation matrices Rt. The resulting variance vectors were used to present a linear correlation model on which a further analysis of the contagion effect was based. The aim of the study was to test a contagion effect among selected EU countries in the years 2000–2014. The transmission channel under study was the GDP of a selected country. The empirical studies confirmed the existence of the contagion effect between the economic development of the Polish and selected EU economies.
Computation of large covariance matrices by SAMMY on graphical processing units and multicore CPUs
Energy Technology Data Exchange (ETDEWEB)
Arbanas, G.; Dunn, M.E.; Wiarda, D., E-mail: arbanasg@ornl.gov, E-mail: dunnme@ornl.gov, E-mail: wiardada@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States)
2011-07-01
Computational power of Graphical Processing Units and multicore CPUs was harnessed by the nuclear data evaluation code SAMMY to speed up computations of large Resonance Parameter Covariance Matrices (RPCMs). This was accomplished by linking SAMMY to vendor-optimized implementations of the matrix-matrix multiplication subroutine of the Basic Linear Algebra Library to compute the most time-consuming step. The {sup 235}U RPCM computed previously using a triple-nested loop was re-computed using the NVIDIA implementation of the subroutine on a single Tesla Fermi Graphical Processing Unit, and also using the Intel's Math Kernel Library implementation on two different multicore CPU systems. A multiplication of two matrices of dimensions 16,000×20,000 that had previously taken days, took approximately one minute on the GPU. Comparable performance was achieved on a dual six-core CPU system. The magnitude of the speed-up suggests that these, or similar, combinations of hardware and libraries may be useful for large matrix operations in SAMMY. Uniform interfaces of standard linear algebra libraries make them a promising candidate for a programming framework of a new generation of SAMMY for the emerging heterogeneous computing platforms. (author)
Computation of large covariance matrices by SAMMY on graphical processing units and multicore CPUs
International Nuclear Information System (INIS)
Arbanas, G.; Dunn, M.E.; Wiarda, D.
2011-01-01
Computational power of Graphical Processing Units and multicore CPUs was harnessed by the nuclear data evaluation code SAMMY to speed up computations of large Resonance Parameter Covariance Matrices (RPCMs). This was accomplished by linking SAMMY to vendor-optimized implementations of the matrix-matrix multiplication subroutine of the Basic Linear Algebra Library to compute the most time-consuming step. The 235 U RPCM computed previously using a triple-nested loop was re-computed using the NVIDIA implementation of the subroutine on a single Tesla Fermi Graphical Processing Unit, and also using the Intel's Math Kernel Library implementation on two different multicore CPU systems. A multiplication of two matrices of dimensions 16,000×20,000 that had previously taken days, took approximately one minute on the GPU. Comparable performance was achieved on a dual six-core CPU system. The magnitude of the speed-up suggests that these, or similar, combinations of hardware and libraries may be useful for large matrix operations in SAMMY. Uniform interfaces of standard linear algebra libraries make them a promising candidate for a programming framework of a new generation of SAMMY for the emerging heterogeneous computing platforms. (author)
Directory of Open Access Journals (Sweden)
Daniel Bartz
Full Text Available Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA algorithm, which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we show that our proposed method leads to improved portfolio allocation.
Bartz, Daniel; Hatrick, Kerr; Hesse, Christian W; Müller, Klaus-Robert; Lemm, Steven
2013-01-01
Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA) algorithm, which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we show that our proposed method leads to improved portfolio allocation.
Bartz, Daniel; Hatrick, Kerr; Hesse, Christian W.; Müller, Klaus-Robert; Lemm, Steven
2013-01-01
Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA) algorithm, which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we show that our proposed method leads to improved portfolio allocation. PMID:23844016
DEFF Research Database (Denmark)
Bingham, Rory J.; Tscherning, Christian; Knudsen, Per
2011-01-01
The availability of the full error variance-covariance matrices for the GOCE gravity field models is an important feature of the GOCE mission. Potentially, it will allow users to evaluate the accuracy of a geoid or mean dynamic topography (MDT) derived from the gravity field model at any particul...
Institute of Scientific and Technical Information of China (English)
XIA Yuanqing; HAN Jingqing
2005-01-01
This paper concerns robust Kalman filtering for systems under norm bounded uncertainties in all the system matrices and error covariance constraints. Sufficient conditions are given for the existence of such filters in terms of Riccati equations. The solutions to the conditions can be used to design the filters. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed design procedure.
Runcie, Daniel E; Mukherjee, Sayan
2013-07-01
Quantitative genetic studies that model complex, multivariate phenotypes are important for both evolutionary prediction and artificial selection. For example, changes in gene expression can provide insight into developmental and physiological mechanisms that link genotype and phenotype. However, classical analytical techniques are poorly suited to quantitative genetic studies of gene expression where the number of traits assayed per individual can reach many thousand. Here, we derive a Bayesian genetic sparse factor model for estimating the genetic covariance matrix (G-matrix) of high-dimensional traits, such as gene expression, in a mixed-effects model. The key idea of our model is that we need consider only G-matrices that are biologically plausible. An organism's entire phenotype is the result of processes that are modular and have limited complexity. This implies that the G-matrix will be highly structured. In particular, we assume that a limited number of intermediate traits (or factors, e.g., variations in development or physiology) control the variation in the high-dimensional phenotype, and that each of these intermediate traits is sparse - affecting only a few observed traits. The advantages of this approach are twofold. First, sparse factors are interpretable and provide biological insight into mechanisms underlying the genetic architecture. Second, enforcing sparsity helps prevent sampling errors from swamping out the true signal in high-dimensional data. We demonstrate the advantages of our model on simulated data and in an analysis of a published Drosophila melanogaster gene expression data set.
Quasi quantum group covariant q-oscillators
International Nuclear Information System (INIS)
Schomerus, V.
1992-05-01
If q is a p-th root of unity there exists a quasi-co-associative truncated quantum group algebra U T q (sl 2 ) whose indecomposable representations are the physical representations of U q (sl 2 ), whose co-product yields the truneated tensor product of physical representations of U q (sl 2 ), and whose R-matrix satisfies quasi Yang Baxter equations. For primitive p-th roots q, we consider a 2-dimensional q-oscillator which admits U T q (sl 2 ) as a symmetry algebra. Its wave functions lie in a space F T q of 'functions on the truncated quantum plane', i.e. of polynomials in noncommuting complex coordinate functions z a , on which multiplication operators Z a and the elements of U T q (sl 2 ) can act. This illustrates the concept of quasi quantum planes. Due to the truncation, the Hilbert space of states is finite dimensional. The subspaces F T(n) of monomials in x a of n-th degree vanish for n ≥ p-1, and F T(n) carries the 2J+1 dimensional irreducible representation of U T q (sl 2 ) if n=2J, J=0, 1/2, ... 1/2(p-2). Partial derivatives δ a are introduced. We find a *-operation on the algebra of multiplication operators Z i and derivatives δ b such that the adjoints Z * a act as differentiation on the truncated quantum plane. Multiplication operators Z a ('creation operators') and their adjoints ('annihilation operators') obey q -1/2 -commutation relations. The *-operation is used to determine a positive definite scalar product on the truncated quantum plane F T q . Some natural candidates of Hamiltonians for the q-oscillators are determined. (orig./HSI)
ℋ-matrix techniques for approximating large covariance matrices and estimating its parameters
Litvinenko, Alexander; Genton, Marc G.; Sun, Ying; Keyes, David E.
2016-01-01
In this work the task is to use the available measurements to estimate unknown hyper-parameters (variance, smoothness parameter and covariance length) of the covariance function. We do it by maximizing the joint log-likelihood function. This is a non-convex and non-linear problem. To overcome cubic complexity in linear algebra, we approximate the discretised covariance function in the hierarchical (ℋ-) matrix format. The ℋ-matrix format has a log-linear computational cost and storage O(knlogn), where rank k is a small integer. On each iteration step of the optimization procedure the covariance matrix itself, its determinant and its Cholesky decomposition are recomputed within ℋ-matrix format. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)
ℋ-matrix techniques for approximating large covariance matrices and estimating its parameters
Litvinenko, Alexander
2016-10-25
In this work the task is to use the available measurements to estimate unknown hyper-parameters (variance, smoothness parameter and covariance length) of the covariance function. We do it by maximizing the joint log-likelihood function. This is a non-convex and non-linear problem. To overcome cubic complexity in linear algebra, we approximate the discretised covariance function in the hierarchical (ℋ-) matrix format. The ℋ-matrix format has a log-linear computational cost and storage O(knlogn), where rank k is a small integer. On each iteration step of the optimization procedure the covariance matrix itself, its determinant and its Cholesky decomposition are recomputed within ℋ-matrix format. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)
Selecting groups of covariates in the elastic net
DEFF Research Database (Denmark)
Clemmensen, Line Katrine Harder
This paper introduces a novel method to select groups of variables in sparse regression and classication settings. The groups are formed based on the correlations between covariates and ensure that for example spatial or spectral relations are preserved without explicitly coding for these....... The preservation of relations gives increased interpretability. The method is based on the elastic net and adaptively selects highly correlated groups of variables and does therefore not waste time in grouping irrelevant variables for the problem at hand. The method is illustrated on a simulated data set...
Dark matter statistics for large galaxy catalogs: power spectra and covariance matrices
Klypin, Anatoly; Prada, Francisco
2018-06-01
Large-scale surveys of galaxies require accurate theoretical predictions of the dark matter clustering for thousands of mock galaxy catalogs. We demonstrate that this goal can be achieve with the new Parallel Particle-Mesh (PM) N-body code GLAM at a very low computational cost. We run ˜22, 000 simulations with ˜2 billion particles that provide ˜1% accuracy of the dark matter power spectra P(k) for wave-numbers up to k ˜ 1hMpc-1. Using this large data-set we study the power spectrum covariance matrix. In contrast to many previous analytical and numerical results, we find that the covariance matrix normalised to the power spectrum C(k, k΄)/P(k)P(k΄) has a complex structure of non-diagonal components: an upturn at small k, followed by a minimum at k ≈ 0.1 - 0.2 hMpc-1, and a maximum at k ≈ 0.5 - 0.6 hMpc-1. The normalised covariance matrix strongly evolves with redshift: C(k, k΄)∝δα(t)P(k)P(k΄), where δ is the linear growth factor and α ≈ 1 - 1.25, which indicates that the covariance matrix depends on cosmological parameters. We also show that waves longer than 1h-1Gpc have very little impact on the power spectrum and covariance matrix. This significantly reduces the computational costs and complexity of theoretical predictions: relatively small volume ˜(1h-1Gpc)3 simulations capture the necessary properties of dark matter clustering statistics. As our results also indicate, achieving ˜1% errors in the covariance matrix for k < 0.50 hMpc-1 requires a resolution better than ɛ ˜ 0.5h-1Mpc.
A Geometrical Framework for Covariance Matrices of Continuous and Categorical Variables
Vernizzi, Graziano; Nakai, Miki
2015-01-01
It is well known that a categorical random variable can be represented geometrically by a simplex. Accordingly, several measures of association between categorical variables have been proposed and discussed in the literature. Moreover, the standard definitions of covariance and correlation coefficient for continuous random variables have been…
High-Dimensional Multivariate Repeated Measures Analysis with Unequal Covariance Matrices
Harrar, Solomon W.; Kong, Xiaoli
2015-01-01
In this paper, test statistics for repeated measures design are introduced when the dimension is large. By large dimension is meant the number of repeated measures and the total sample size grow together but either one could be larger than the other. Asymptotic distribution of the statistics are derived for the equal as well as unequal covariance cases in the balanced as well as unbalanced cases. The asymptotic framework considered requires proportional growth of the sample sizes and the dimension of the repeated measures in the unequal covariance case. In the equal covariance case, one can grow at much faster rate than the other. The derivations of the asymptotic distributions mimic that of Central Limit Theorem with some important peculiarities addressed with sufficient rigor. Consistent and unbiased estimators of the asymptotic variances, which make efficient use of all the observations, are also derived. Simulation study provides favorable evidence for the accuracy of the asymptotic approximation under the null hypothesis. Power simulations have shown that the new methods have comparable power with a popular method known to work well in low-dimensional situation but the new methods have shown enormous advantage when the dimension is large. Data from Electroencephalograph (EEG) experiment is analyzed to illustrate the application of the results. PMID:26778861
Separation of Correlated Astrophysical Sources Using Multiple-Lag Data Covariance Matrices
Directory of Open Access Journals (Sweden)
Baccigalupi C
2005-01-01
Full Text Available This paper proposes a new strategy to separate astrophysical sources that are mutually correlated. This strategy is based on second-order statistics and exploits prior information about the possible structure of the mixing matrix. Unlike ICA blind separation approaches, where the sources are assumed mutually independent and no prior knowledge is assumed about the mixing matrix, our strategy allows the independence assumption to be relaxed and performs the separation of even significantly correlated sources. Besides the mixing matrix, our strategy is also capable to evaluate the source covariance functions at several lags. Moreover, once the mixing parameters have been identified, a simple deconvolution can be used to estimate the probability density functions of the source processes. To benchmark our algorithm, we used a database that simulates the one expected from the instruments that will operate onboard ESA's Planck Surveyor Satellite to measure the CMB anisotropies all over the celestial sphere.
Consensus clustering approach to group brain connectivity matrices
Directory of Open Access Journals (Sweden)
Javier Rasero
2017-10-01
Full Text Available A novel approach rooted on the notion of consensus clustering, a strategy developed for community detection in complex networks, is proposed to cope with the heterogeneity that characterizes connectivity matrices in health and disease. The method can be summarized as follows: (a define, for each node, a distance matrix for the set of subjects by comparing the connectivity pattern of that node in all pairs of subjects; (b cluster the distance matrix for each node; (c build the consensus network from the corresponding partitions; and (d extract groups of subjects by finding the communities of the consensus network thus obtained. Different from the previous implementations of consensus clustering, we thus propose to use the consensus strategy to combine the information arising from the connectivity patterns of each node. The proposed approach may be seen either as an exploratory technique or as an unsupervised pretraining step to help the subsequent construction of a supervised classifier. Applications on a toy model and two real datasets show the effectiveness of the proposed methodology, which represents heterogeneity of a set of subjects in terms of a weighted network, the consensus matrix.
DOWNER (version 79-1): group collapse cross section and transfer matrices
International Nuclear Information System (INIS)
Cullen, D.E.
1979-01-01
FORTRAN-callable subroutines are provided to allow a user to group-collapse cross sections and/or transfer matrices from any arbitrary initial group structure to any arbitrary final group structure. 3 figures
Siren, J; Ovaskainen, O; Merilä, J
2017-10-01
The genetic variance-covariance matrix (G) is a quantity of central importance in evolutionary biology due to its influence on the rate and direction of multivariate evolution. However, the predictive power of empirically estimated G-matrices is limited for two reasons. First, phenotypes are high-dimensional, whereas traditional statistical methods are tuned to estimate and analyse low-dimensional matrices. Second, the stability of G to environmental effects and over time remains poorly understood. Using Bayesian sparse factor analysis (BSFG) designed to estimate high-dimensional G-matrices, we analysed levels variation and covariation in 10,527 expressed genes in a large (n = 563) half-sib breeding design of three-spined sticklebacks subject to two temperature treatments. We found significant differences in the structure of G between the treatments: heritabilities and evolvabilities were higher in the warm than in the low-temperature treatment, suggesting more and faster opportunity to evolve in warm (stressful) conditions. Furthermore, comparison of G and its phenotypic equivalent P revealed the latter is a poor substitute of the former. Most strikingly, the results suggest that the expected impact of G on evolvability-as well as the similarity among G-matrices-may depend strongly on the number of traits included into analyses. In our results, the inclusion of only few traits in the analyses leads to underestimation in the differences between the G-matrices and their predicted impacts on evolution. While the results highlight the challenges involved in estimating G, they also illustrate that by enabling the estimation of large G-matrices, the BSFG method can improve predicted evolutionary responses to selection. © 2017 John Wiley & Sons Ltd.
Groups, matrices, and vector spaces a group theoretic approach to linear algebra
Carrell, James B
2017-01-01
This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group. Applications involving symm etry groups, determinants, linear coding theory ...
Wilson, S.
1977-01-01
A method is presented for the determination of the representation matrices of the spin permutation group (symmetric group), a detailed knowledge of these matrices being required in the study of the electronic structure of atoms and molecules. The method is characterized by the use of two different coupling schemes. Unlike the Yamanouchi spin algebraic scheme, the method is not recursive. The matrices for the fundamental transpositions can be written down directly in one of the two bases. The method results in a computationally significant reduction in the number of matrix elements that have to be stored when compared with, say, the standard Young tableaux group theoretical approach.
Multi-Group Covariance Data Generation from Continuous-Energy Monte Carlo Transport Calculations
International Nuclear Information System (INIS)
Lee, Dong Hyuk; Shim, Hyung Jin
2015-01-01
The sensitivity and uncertainty (S/U) methodology in deterministic tools has been utilized for quantifying uncertainties of nuclear design parameters induced by those of nuclear data. The S/U analyses which are based on multi-group cross sections can be conducted by an simple error propagation formula with the sensitivities of nuclear design parameters to multi-group cross sections and the covariance of multi-group cross section. The multi-group covariance data required for S/U analysis have been produced by nuclear data processing codes such as ERRORJ or PUFF from the covariance data in evaluated nuclear data files. However in the existing nuclear data processing codes, an asymptotic neutron flux energy spectrum, not the exact one, has been applied to the multi-group covariance generation since the flux spectrum is unknown before the neutron transport calculation. It can cause an inconsistency between the sensitivity profiles and the covariance data of multi-group cross section especially in resolved resonance energy region, because the sensitivities we usually use are resonance self-shielded while the multi-group cross sections produced from an asymptotic flux spectrum are infinitely-diluted. In order to calculate the multi-group covariance estimation in the ongoing MC simulation, mathematical derivations for converting the double integration equation into a single one by utilizing sampling method have been introduced along with the procedure of multi-group covariance tally
Tian, Wei; Cai, Li; Thissen, David; Xin, Tao
2013-01-01
In item response theory (IRT) modeling, the item parameter error covariance matrix plays a critical role in statistical inference procedures. When item parameters are estimated using the EM algorithm, the parameter error covariance matrix is not an automatic by-product of item calibration. Cai proposed the use of Supplemented EM algorithm for…
Westgate, Philip M
2016-01-01
When generalized estimating equations (GEE) incorporate an unstructured working correlation matrix, the variances of regression parameter estimates can inflate due to the estimation of the correlation parameters. In previous work, an approximation for this inflation that results in a corrected version of the sandwich formula for the covariance matrix of regression parameter estimates was derived. Use of this correction for correlation structure selection also reduces the over-selection of the unstructured working correlation matrix. In this manuscript, we conduct a simulation study to demonstrate that an increase in variances of regression parameter estimates can occur when GEE incorporates structured working correlation matrices as well. Correspondingly, we show the ability of the corrected version of the sandwich formula to improve the validity of inference and correlation structure selection. We also study the relative influences of two popular corrections to a different source of bias in the empirical sandwich covariance estimator.
Dynamical R Matrices of Elliptic Quantum Groups and Connection Matrices for the q-KZ Equations
Directory of Open Access Journals (Sweden)
Hitoshi Konno
2006-12-01
Full Text Available For any affine Lie algebra ${mathfrak g}$, we show that any finite dimensional representation of the universal dynamical $R$ matrix ${cal R}(lambda$ of the elliptic quantum group ${cal B}_{q,lambda}({mathfrak g}$ coincides with a corresponding connection matrix for the solutions of the $q$-KZ equation associated with $U_q({mathfrak g}$. This provides a general connection between ${cal B}_{q,lambda}({mathfrak g}$ and the elliptic face (IRF or SOS models. In particular, we construct vector representations of ${cal R}(lambda$ for ${mathfrak g}=A_n^{(1}$, $B_n^{(1}$, $C_n^{(1}$, $D_n^{(1}$, and show that they coincide with the face weights derived by Jimbo, Miwa and Okado. We hence confirm the conjecture by Frenkel and Reshetikhin.
Manifestations of group covariance in a metric theory
International Nuclear Information System (INIS)
Halpern, L.
1984-01-01
The requirement to present Dirac's Large Number Hypothesis in one system of units in which the resulting modifications to Einstein's theory are exhibited, led to the construction of generalizations of General Relativity based rigorously on the geometry of semisimple groups. The foundations of such a theory are discussed and some of the possible interpretations are presented. (author)
Siudzińska, Katarzyna; Chruściński, Dariusz
2018-03-01
In matrix algebras, we introduce a class of linear maps that are irreducibly covariant with respect to the finite group generated by the Weyl operators. In particular, we analyze the irreducibly covariant quantum channels, that is, the completely positive and trace-preserving linear maps. Interestingly, imposing additional symmetries leads to the so-called generalized Pauli channels, which were recently considered in the context of the non-Markovian quantum evolution. Finally, we provide examples of irreducibly covariant positive but not necessarily completely positive maps.
International Nuclear Information System (INIS)
Plevnik, Lucijan; Žerovnik, Gašper
2016-01-01
Highlights: • Methods for random sampling of correlated parameters. • Link to open-source code for sampling of resonance parameters in ENDF-6 format. • Validation of the code on realistic and artificial data. • Validation of covariances in three major contemporary nuclear data libraries. - Abstract: Methods for random sampling of correlated parameters are presented. The methods are implemented for sampling of resonance parameters in ENDF-6 format and a link to the open-source code ENDSAM is given. The code has been validated on realistic data. Additionally, consistency of covariances of resonance parameters of three major contemporary nuclear data libraries (JEFF-3.2, ENDF/B-VII.1 and JENDL-4.0u2) has been checked.
Introduction into Hierarchical Matrices
Litvinenko, Alexander
2013-12-05
Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.
Introduction into Hierarchical Matrices
Litvinenko, Alexander
2013-01-01
Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.
International Nuclear Information System (INIS)
Smith, D.L.
1987-03-01
Attention is called to the considerable sensitivity of many uncertainty calculations to the magnitude of the long-ranged correlations which appear in covariance matrices. If such correlations do exist, they must be included in order to properly assess the impact of the uncertainties in the data. If, however, certain assumed long-range correlations are unrealistic, then analyses involving such correlation information are almost certain to produce misleading results. The issue is discussed in general terms, and its importance is illustrated by examples based in part on recent work from this laboratory. Some practical suggestions are offered for dealing with the matter of correlations in instances where the available information is incomplete. 23 refs., 2 figs., 1 tab
Few group collapsing of covariance matrix data based on a conservation principle
International Nuclear Information System (INIS)
Hiruta, H.; Palmiotti, G.; Salvatores, M.; Arcilla, R. Jr.; Oblozinsky, P.; McKnight, R.D.
2008-01-01
A new algorithm for a rigorous collapsing of covariance data is proposed, derived, implemented, and tested. The method is based on a conservation principle that allows preserving at a broad energy group structure the uncertainty calculated in a fine group energy structure for a specific integral parameter, using as weights the associated sensitivity coefficients
Bazzani, Armando; Castellani, Gastone C; Cooper, Leon N
2010-05-01
We analyze the effects of noise correlations in the input to, or among, Bienenstock-Cooper-Munro neurons using the Wigner semicircular law to construct random, positive-definite symmetric correlation matrices and compute their eigenvalue distributions. In the finite dimensional case, we compare our analytic results with numerical simulations and show the effects of correlations on the lifetimes of synaptic strengths in various visual environments. These correlations can be due either to correlations in the noise from the input lateral geniculate nucleus neurons, or correlations in the variability of lateral connections in a network of neurons. In particular, we find that for fixed dimensionality, a large noise variance can give rise to long lifetimes of synaptic strengths. This may be of physiological significance.
Secret Message Decryption: Group Consulting Projects Using Matrices and Linear Programming
Gurski, Katharine F.
2009-01-01
We describe two short group projects for finite mathematics students that incorporate matrices and linear programming into fictional consulting requests presented as a letter to the students. The students are required to use mathematics to decrypt secret messages in one project involving matrix multiplication and inversion. The second project…
Estimation of group means when adjusting for covariates in generalized linear models.
Qu, Yongming; Luo, Junxiang
2015-01-01
Generalized linear models are commonly used to analyze categorical data such as binary, count, and ordinal outcomes. Adjusting for important prognostic factors or baseline covariates in generalized linear models may improve the estimation efficiency. The model-based mean for a treatment group produced by most software packages estimates the response at the mean covariate, not the mean response for this treatment group for the studied population. Although this is not an issue for linear models, the model-based group mean estimates in generalized linear models could be seriously biased for the true group means. We propose a new method to estimate the group mean consistently with the corresponding variance estimation. Simulation showed the proposed method produces an unbiased estimator for the group means and provided the correct coverage probability. The proposed method was applied to analyze hypoglycemia data from clinical trials in diabetes. Copyright © 2014 John Wiley & Sons, Ltd.
ZZ COVFILS, 30-Group Covariance Library from ENDF/B-5 for Sensitivity Studies
International Nuclear Information System (INIS)
Muir, D.W.
1997-01-01
1 - Description of program or function: Format: ENDB/F; Number of groups: 30-Group Covariance Library; Nuclides: H-1, B-10, C, O-16, Cr, Fe, Ni, Cu, Pb. Origin: ENDF/B-V. COVFILS is a 30-Group Covariance Library. It contains neutron cross sections, and their uncertainties and correlation in multigroup form. These data can be used, in conjunction with sensitivity information, to estimate the data-related uncertainty in calculated integral quantities such as radiation-damage or heating. 2 - Method of solution: COVFILS was obtained by processing evaluations from ENDF/B-V with ERRORR module of the NJOY nuclear data processing system (LA-9303-M, Vols. 1).The group structure is the Los Alamos 30-group structure which is listed in 'File 1' of each multigroup data set in the library
International Nuclear Information System (INIS)
Giovannini, N.
1977-01-01
A complete description of the projective unitary/antiunitary representations of the general covariance group for a charged (relativistic) particle moving in an external (classical), e.m. field is given. This group was derived in a previous paper, independently of any equation of motion, on the basis of some simple physical assumptions. The physical consequences of these results are then discussed and it is shown how they open some new perspectives. (Auth.)
International Nuclear Information System (INIS)
LaBauve, R.J.; Muir, D.W.
1978-01-01
A library of 30-group multigroup covariance data was prepared from preliminary ENDF/B-V data with the NJOY code. Data for Fe, Cr, Ni, 10 B, C, Cu, H, and Pb are included in this library. Reactions include total cross sections, elastic and inelastic scattering cross sections, and the most important absorption cross sections. Typical data from the file are shown. 3 tables
Fischer matrices of Dempwolff group $2^{5}{^{cdot}}GL(5,2$
Directory of Open Access Journals (Sweden)
Ayoub Basheer Mohammed Basheer
2012-12-01
Full Text Available In cite{Demp2} Dempwolff proved the existence of a group of theform $2^{5}{^{cdot}}GL(5,2$ (a non split extension of theelementary abelian group $2^{5}$ by the general linear group$GL(5,2$. This group is the second largest maximal subgroup of thesporadic Thompson simple group $mathrm{Th}.$ In this paper wecalculate the Fischer matrices of Dempwolff group $overline{G} =2^{5}{^{cdot}}GL(5,2.$ The theory of projective characters isinvolved and we have computed the Schur multiplier together with aprojective character table of an inertia factor group. The fullcharacter table of $overline{G}$ is then can be calculated easily.
Energy Technology Data Exchange (ETDEWEB)
Ren Dongni; Li Zhuo; Gao Yonghua; Feng Qingling, E-mail: biomater@mail.tsinghua.edu.c [State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)
2010-10-01
Calcium carbonate mineralization is significantly influenced by organic matrices in vivo. The effect mainly relies on functional groups in proteins. In order to study the influence of functional groups on calcium carbonate mineralization, -OH, -NH{sub 2} and -COOH groups were grafted onto single crystal silicon chips, and such modified chips were used as substrates in in vitro mineralization experiments. An x-ray photoelectron spectroscopy (XPS) test was conducted to examine the grafting efficiency, and the three groups were successfully grafted. Calcium carbonate mineralization on a modified silicon substrate was examined by a scanning electron microscope (SEM) and x-ray diffraction (XRD), and the results showed that the effects of -OH, -NH{sub 2} and -COOH groups were quite different. Furthermore, a water-soluble protein matrix (WSM) and an acid-soluble protein matrix (ASM) extracted from fish otolith were adsorbed onto the -COOH-modified silicon substrate, and the effects of the protein matrices on calcium carbonate mineralization were studied. The results showed that both WSM and ASM of lapillus could mediate aragonite crystallization, but the size and morphology of the formed crystals were different. The WSM and ASM of asteriscus adsorbed on the silicon substrate had little effect on calcium carbonate mineralization; almost all the crystals were calcite, while both asteriscus WSM and ASM in solution could mediate vaterite crystals, and the morphologies of vaterite crystal aggregates were different.
International Nuclear Information System (INIS)
Ren Dongni; Li Zhuo; Gao Yonghua; Feng Qingling
2010-01-01
Calcium carbonate mineralization is significantly influenced by organic matrices in vivo. The effect mainly relies on functional groups in proteins. In order to study the influence of functional groups on calcium carbonate mineralization, -OH, -NH 2 and -COOH groups were grafted onto single crystal silicon chips, and such modified chips were used as substrates in in vitro mineralization experiments. An x-ray photoelectron spectroscopy (XPS) test was conducted to examine the grafting efficiency, and the three groups were successfully grafted. Calcium carbonate mineralization on a modified silicon substrate was examined by a scanning electron microscope (SEM) and x-ray diffraction (XRD), and the results showed that the effects of -OH, -NH 2 and -COOH groups were quite different. Furthermore, a water-soluble protein matrix (WSM) and an acid-soluble protein matrix (ASM) extracted from fish otolith were adsorbed onto the -COOH-modified silicon substrate, and the effects of the protein matrices on calcium carbonate mineralization were studied. The results showed that both WSM and ASM of lapillus could mediate aragonite crystallization, but the size and morphology of the formed crystals were different. The WSM and ASM of asteriscus adsorbed on the silicon substrate had little effect on calcium carbonate mineralization; almost all the crystals were calcite, while both asteriscus WSM and ASM in solution could mediate vaterite crystals, and the morphologies of vaterite crystal aggregates were different.
Ren, Dongni; Li, Zhuo; Gao, Yonghua; Feng, Qingling
2010-10-01
Calcium carbonate mineralization is significantly influenced by organic matrices in vivo. The effect mainly relies on functional groups in proteins. In order to study the influence of functional groups on calcium carbonate mineralization, -OH, -NH2 and -COOH groups were grafted onto single crystal silicon chips, and such modified chips were used as substrates in in vitro mineralization experiments. An x-ray photoelectron spectroscopy (XPS) test was conducted to examine the grafting efficiency, and the three groups were successfully grafted. Calcium carbonate mineralization on a modified silicon substrate was examined by a scanning electron microscope (SEM) and x-ray diffraction (XRD), and the results showed that the effects of -OH, -NH2 and -COOH groups were quite different. Furthermore, a water-soluble protein matrix (WSM) and an acid-soluble protein matrix (ASM) extracted from fish otolith were adsorbed onto the -COOH-modified silicon substrate, and the effects of the protein matrices on calcium carbonate mineralization were studied. The results showed that both WSM and ASM of lapillus could mediate aragonite crystallization, but the size and morphology of the formed crystals were different. The WSM and ASM of asteriscus adsorbed on the silicon substrate had little effect on calcium carbonate mineralization; almost all the crystals were calcite, while both asteriscus WSM and ASM in solution could mediate vaterite crystals, and the morphologies of vaterite crystal aggregates were different.
International Nuclear Information System (INIS)
Haapasalo, Erkka Theodor; Pellonpaeae, Juha-Pekka
2011-01-01
We represent quantum observables as normalized positive operator valued measures and consider convex sets of observables which are covariant with respect to a unitary representation of a locally compact Abelian symmetry group G. The value space of such observables is a transitive G-space. We characterize the extreme points of covariant observables and also determine the covariant extreme points of the larger set of all quantum observables. The results are applied to position, position difference, and time observables.
International Nuclear Information System (INIS)
Bui Xuan Hai.
1990-05-01
For an arbitrary skew field T we study the lattice of subgroups of the special linear group Γ=SL(n,T) that contain the subgroup Δ-SD(n,T) of diagonal matrices with Dieudonne's determinant equal to 1. We show that the description of these subgroups is standard in the following sense: For any subgroup H,Δ≤H≤Γ there exists a unique unital net such that Γ(σ) ≤H≤N(σ), where Γ(σ) is the net subgroup that corresponds to the net σ and N(σ) is the normalizer of Γ(σ) in Γ. (author). 11 refs
COVFILS: 30-group covariance library based on ENDF/B-V
International Nuclear Information System (INIS)
Muir, D.W.; LaBauve, R.J.
1981-03-01
A library of 30-group cross sections and covariances called COVFILS has been prepared from ENDF/B-V data using the NJOY code system. COVFILS includes data on the total cross section, scattering cross sections, and the most important absorption cross sections for 1 H, 10 B, C, 16 O, Cr, Fe, Ni, Cu, and Pb. This report contains detailed descriptions of various features of the library, a listing of a FORTRAN retrieval program, and 143 plots of the multigroup cross-section uncertainties and their correlations
Kisil, Vladimir V.
2010-01-01
The paper develops theory of covariant transform, which is inspired by the wavelet construction. It was observed that many interesting types of wavelets (or coherent states) arise from group representations which are not square integrable or vacuum vectors which are not admissible. Covariant transform extends an applicability of the popular wavelets construction to classic examples like the Hardy space H_2, Banach spaces, covariant functional calculus and many others. Keywords: Wavelets, cohe...
Funatogawa, Takashi; Funatogawa, Ikuko; Shyr, Yu
2011-05-01
When primary endpoints of randomized trials are continuous variables, the analysis of covariance (ANCOVA) with pre-treatment measurements as a covariate is often used to compare two treatment groups. In the ANCOVA, equal slopes (coefficients of pre-treatment measurements) and equal residual variances are commonly assumed. However, random allocation guarantees only equal variances of pre-treatment measurements. Unequal covariances and variances of post-treatment measurements indicate unequal slopes and, usually, unequal residual variances. For non-normal data with unequal covariances and variances of post-treatment measurements, it is known that the ANCOVA with equal slopes and equal variances using an ordinary least-squares method provides an asymptotically normal estimator for the treatment effect. However, the asymptotic variance of the estimator differs from the variance estimated from a standard formula, and its property is unclear. Furthermore, the asymptotic properties of the ANCOVA with equal slopes and unequal variances using a generalized least-squares method are unclear. In this paper, we consider non-normal data with unequal covariances and variances of post-treatment measurements, and examine the asymptotic properties of the ANCOVA with equal slopes using the variance estimated from a standard formula. Analytically, we show that the actual type I error rate, thus the coverage, of the ANCOVA with equal variances is asymptotically at a nominal level under equal sample sizes. That of the ANCOVA with unequal variances using a generalized least-squares method is asymptotically at a nominal level, even under unequal sample sizes. In conclusion, the ANCOVA with equal slopes can be asymptotically justified under random allocation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERRORJ. Covariance processing code. Version 2.2
International Nuclear Information System (INIS)
Chiba, Go
2004-07-01
ERRORJ is the covariance processing code that can produce covariance data of multi-group cross sections, which are essential for uncertainty analyses of nuclear parameters, such as neutron multiplication factor. The ERRORJ code can process the covariance data of cross sections including resonance parameters, angular and energy distributions of secondary neutrons. Those covariance data cannot be processed by the other covariance processing codes. ERRORJ has been modified and the version 2.2 has been developed. This document describes the modifications and how to use. The main topics of the modifications are as follows. Non-diagonal elements of covariance matrices are calculated in the resonance energy region. Option for high-speed calculation is implemented. Perturbation amount is optimized in a sensitivity calculation. Effect of the resonance self-shielding on covariance of multi-group cross section can be considered. It is possible to read a compact covariance format proposed by N.M. Larson. (author)
Covariance matrix estimation for stationary time series
Xiao, Han; Wu, Wei Biao
2011-01-01
We obtain a sharp convergence rate for banded covariance matrix estimates of stationary processes. A precise order of magnitude is derived for spectral radius of sample covariance matrices. We also consider a thresholded covariance matrix estimator that can better characterize sparsity if the true covariance matrix is sparse. As our main tool, we implement Toeplitz [Math. Ann. 70 (1911) 351–376] idea and relate eigenvalues of covariance matrices to the spectral densities or Fourier transforms...
International Nuclear Information System (INIS)
Muender, W; Weichselbaum, A; Holzner, A; Delft, Jan von; Henley, C L
2010-01-01
A useful concept for finding numerically the dominant correlations of a given ground state in an interacting quantum lattice system in an unbiased way is the correlation density matrix (CDM). For two disjoint, separated clusters, it is defined to be the density matrix of their union minus the direct product of their individual density matrices and contains all the correlations between the two clusters. We show how to extract from the CDM a survey of the relative strengths of the system's correlations in different symmetry sectors and the nature of their decay with distance (power law or exponential), as well as detailed information on the operators carrying long-range correlations and the spatial dependence of their correlation functions. To achieve this goal, we introduce a new method of analysing the CDM, termed the dominant operator basis (DOB) method, which identifies in an unbiased fashion a small set of operators for each cluster that serve as a basis for the dominant correlations of the system. We illustrate this method by analysing the CDM for a spinless extended Hubbard model that features a competition between charge density correlations and pairing correlations, and show that the DOB method successfully identifies their relative strengths and dominant correlators. To calculate the ground state of this model, we use the density matrix renormalization group, formulated in terms of a variational matrix product state (MPS) approach within which subsequent determination of the CDM is very straightforward. In an extended appendix, we give a detailed tutorial introduction to our variational MPS approach for ground state calculations for one-dimensional quantum chain models. We present in detail how MPSs overcome the problem of large Hilbert space dimensions in these models and describe all the techniques needed for handling them in practice.
Molenaar, Dylan; Dolan, Conor V.; Wicherts, Jelle M.
2009-01-01
Research into sex differences in general intelligence, g, has resulted in two opposite views. In the first view, a g-difference is nonexistent, while in the second view, g is associated with a male advantage. Past research using Multi-Group Covariance and Mean Structure Analysis (MG-CMSA) found no sex difference in g. This failure raised the…
International Nuclear Information System (INIS)
Bachoc, Francois
2014-01-01
Covariance parameter estimation of Gaussian processes is analyzed in an asymptotic framework. The spatial sampling is a randomly perturbed regular grid and its deviation from the perfect regular grid is controlled by a single scalar regularity parameter. Consistency and asymptotic normality are proved for the Maximum Likelihood and Cross Validation estimators of the covariance parameters. The asymptotic covariance matrices of the covariance parameter estimators are deterministic functions of the regularity parameter. By means of an exhaustive study of the asymptotic covariance matrices, it is shown that the estimation is improved when the regular grid is strongly perturbed. Hence, an asymptotic confirmation is given to the commonly admitted fact that using groups of observation points with small spacing is beneficial to covariance function estimation. Finally, the prediction error, using a consistent estimator of the covariance parameters, is analyzed in detail. (authors)
ANL Critical Assembly Covariance Matrix Generation - Addendum
Energy Technology Data Exchange (ETDEWEB)
McKnight, Richard D. [Argonne National Lab. (ANL), Argonne, IL (United States); Grimm, Karl N. [Argonne National Lab. (ANL), Argonne, IL (United States)
2014-01-13
In March 2012, a report was issued on covariance matrices for Argonne National Laboratory (ANL) critical experiments. That report detailed the theory behind the calculation of covariance matrices and the methodology used to determine the matrices for a set of 33 ANL experimental set-ups. Since that time, three new experiments have been evaluated and approved. This report essentially updates the previous report by adding in these new experiments to the preceding covariance matrix structure.
Chang, Chiung-Chih; Chang, Ya-Ting; Huang, Chi-Wei; Tsai, Shih-Jen; Hsu, Shih-Wei; Huang, Shu-Hua; Lee, Chen-Chang; Chang, Wen-Neng; Lui, Chun-Chung; Lien, Chia-Yi
2018-02-08
Alzheimer's disease (AD) is a complex neurodegenerative disease, and genetic differences may mediate neuronal degeneration. In humans, a single-nucleotide polymorphism in the B-cell chronic lymphocytic leukemia/lymphoma-2 (Bcl-2) gene, rs956572, has been found to significantly modulate Bcl-2 protein expression in the brain. The Bcl-2 AA genotype has been associated with reduced Bcl-2 levels and lower gray matter volume in healthy populations. We hypothesized that different Bcl-2 genotype groups may modulate large-scale brain networks that determine neurobehavioral test scores. Gray matter structural covariance networks (SCNs) were constructed in 104 patients with AD using T1-weighted magnetic resonance imaging with seed-based correlation analysis. The patients were stratified into two genotype groups on the basis of Bcl-2 expression (G carriers, n = 76; A homozygotes, n = 28). Four SCNs characteristic of AD were constructed from seeds in the default mode network, salience network, and executive control network, and cognitive test scores served as the major outcome factor. For the G carriers, influences of the SCNs were observed mostly in the default mode network, of which the peak clusters anchored by the posterior cingulate cortex seed determined the cognitive test scores. In contrast, genetic influences in the A homozygotes were found mainly in the executive control network, and both the dorsolateral prefrontal cortex seed and the interconnected peak clusters were correlated with the clinical scores. Despite a small number of cases, the A homozygotes showed greater covariance strength than the G carriers among all four SCNs. Our results suggest that the Bcl-2 rs956572 polymorphism is associated with different strengths of structural covariance in AD that determine clinical outcomes. The greater covariance strength in the four SCNs shown in the A homozygotes suggests that different Bcl-2 polymorphisms play different modulatory roles.
ANGELO-LAMBDA, Covariance matrix interpolation and mathematical verification
International Nuclear Information System (INIS)
Kodeli, Ivo
2007-01-01
1 - Description of program or function: The codes ANGELO-2.3 and LAMBDA-2.3 are used for the interpolation of the cross section covariance data from the original to a user defined energy group structure, and for the mathematical tests of the matrices, respectively. The LAMBDA-2.3 code calculates the eigenvalues of the matrices (both for the original or the converted) and lists them accordingly into positive and negative matrices. This verification is strongly recommended before using any covariance matrices. These versions of the two codes are the extended versions of the previous codes available in the Packages NEA-1264 - ZZ-VITAMIN-J/COVA. They were specifically developed for the purposes of the OECD LWR UAM benchmark, in particular for the processing of the ZZ-SCALE5.1/COVA-44G cross section covariance matrix library retrieved from the SCALE-5.1 package. Either the original SCALE-5.1 libraries or the libraries separated into several files by Nuclides can be (in principle) processed by ANGELO/LAMBDA codes, but the use of the one-nuclide data is strongly recommended. Due to large deviations of the correlation matrix terms from unity observed in some SCALE5.1 covariance matrices, the previous more severe acceptance condition in the ANGELO2.3 code was released. In case the correlation coefficients exceed 1.0, only a warning message is issued, and coefficients are replaced by 1.0. 2 - Methods: ANGELO-2.3 interpolates the covariance matrices to a union grid using flat weighting. LAMBDA-2.3 code includes the mathematical routines to calculate the eigenvalues of the covariance matrices. 3 - Restrictions on the complexity of the problem: The algorithm used in ANGELO is relatively simple, therefore the interpolations involving energy group structure which are very different from the original (e.g. large difference in the number of energy groups) may not be accurate. In particular in the case of the MT=1018 data (fission spectra covariances) the algorithm may not be
Krylov, Piotr
2017-01-01
This monograph is a comprehensive account of formal matrices, examining homological properties of modules over formal matrix rings and summarising the interplay between Morita contexts and K theory. While various special types of formal matrix rings have been studied for a long time from several points of view and appear in various textbooks, for instance to examine equivalences of module categories and to illustrate rings with one-sided non-symmetric properties, this particular class of rings has, so far, not been treated systematically. Exploring formal matrix rings of order 2 and introducing the notion of the determinant of a formal matrix over a commutative ring, this monograph further covers the Grothendieck and Whitehead groups of rings. Graduate students and researchers interested in ring theory, module theory and operator algebras will find this book particularly valuable. Containing numerous examples, Formal Matrices is a largely self-contained and accessible introduction to the topic, assuming a sol...
Position Error Covariance Matrix Validation and Correction
Frisbee, Joe, Jr.
2016-01-01
In order to calculate operationally accurate collision probabilities, the position error covariance matrices predicted at times of closest approach must be sufficiently accurate representations of the position uncertainties. This presentation will discuss why the Gaussian distribution is a reasonable expectation for the position uncertainty and how this assumed distribution type is used in the validation and correction of position error covariance matrices.
High-dimensional covariance estimation with high-dimensional data
Pourahmadi, Mohsen
2013-01-01
Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and mac
Gaskins, J T; Daniels, M J
2016-01-02
The estimation of the covariance matrix is a key concern in the analysis of longitudinal data. When data consists of multiple groups, it is often assumed the covariance matrices are either equal across groups or are completely distinct. We seek methodology to allow borrowing of strength across potentially similar groups to improve estimation. To that end, we introduce a covariance partition prior which proposes a partition of the groups at each measurement time. Groups in the same set of the partition share dependence parameters for the distribution of the current measurement given the preceding ones, and the sequence of partitions is modeled as a Markov chain to encourage similar structure at nearby measurement times. This approach additionally encourages a lower-dimensional structure of the covariance matrices by shrinking the parameters of the Cholesky decomposition toward zero. We demonstrate the performance of our model through two simulation studies and the analysis of data from a depression study. This article includes Supplementary Material available online.
Criteria of the validation of experimental and evaluated covariance data
International Nuclear Information System (INIS)
Badikov, S.
2008-01-01
The criteria of the validation of experimental and evaluated covariance data are reviewed. In particular: a) the criterion of the positive definiteness for covariance matrices, b) the relationship between the 'integral' experimental and estimated uncertainties, c) the validity of the statistical invariants, d) the restrictions imposed to correlations between experimental errors, are described. Applying these criteria in nuclear data evaluation was considered and 4 particular points have been examined. First preserving positive definiteness of covariance matrices in case of arbitrary transformation of a random vector was considered, properties of the covariance matrices in operations widely used in neutron and reactor physics (splitting and collapsing energy groups, averaging the physical values over energy groups, estimation parameters on the basis of measurements by means of generalized least squares method) were studied. Secondly, an algorithm for comparison of experimental and estimated 'integral' uncertainties was developed, square root of determinant of a covariance matrix is recommended for use in nuclear data evaluation as a measure of 'integral' uncertainty for vectors of experimental and estimated values. Thirdly, a set of statistical invariants-values which are preserved in statistical processing was presented. And fourthly, the inequality that signals a correlation between experimental errors that leads to unphysical values is given. An application is given concerning the cross-section of the (n,t) reaction on Li 6 with a neutron incident energy comprised between 1 and 100 keV
Energy Technology Data Exchange (ETDEWEB)
Lepretre, A.; Herault, N. [CEA Saclay, Dept. d' Astrophysique de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Brusegan, A.; Noguere, G.; Siegler, P. [Institut des Materiaux et des Metrologies - IRMM, Joint Research Centre, Gell (Belgium)
2002-12-01
This report is a follow up of the report CEA DAPNIA/SPHN-99-04T of Vincent Gressier. In the frame of a collaboration between the 'Commissariat a l'Energie Atomique (CEA)' and the Institute for Reference Materials and Measurement (IRMM, Geel, Belgique), the resonance parameters of neptunium 237 have been determined in the energy interval between 0 and 500 eV. These parameters have been obtained by using the Refit code in analysing simultaneously three transmission experiments. The covariance matrix of statistical origin is provided. A new method, based on various sensitivity studies is proposed for determining also the covariance matrix of systematic origin, relating the resonance parameters. From an experimental viewpoint, the study indicated that, with a large probability, the background spectrum has structure. A two dimensional profiler for the neutron density has been proved feasible. Such a profiler could, among others, demonstrate the existence of the structured background. (authors)
Classical r-matrices and Poisson bracket structures on infinite-dimensional groups
International Nuclear Information System (INIS)
Aratyn, H.; Nissimov, E.; Pacheva, S.
1992-01-01
Starting with a canonical symplectic structure defined on the contangent bundle T * G we derive, via Dirac hamiltonian reduction, Poisson brackets (PBs) on an arbitrary infinite-dimensional group G (admitting central extension). The PB structures are given in terms of an r-operator kernel related to the two-cocycle of the underlying Lie algebra and satisfying a differential classical Yang-Baxter equation. The explicit expressions of the PBs among the group variables for the (N, 0) for N=0, 1, ..., 4 (super-) Virasoro groups and the group of area-preserving diffeomorphisms on the torus are presented. (orig.)
On Parametrization of the Linear GL(4,C) and Unitary SU(4) Groups in Terms of Dirac Matrices
Red'Kov, Victor M.; Bogush, Andrei A.; Tokarevskaya, Natalia G.
2008-02-01
Parametrization of 4 × 4-matrices G of the complex linear group GL(4,C) in terms of four complex 4-vector parameters (k,m,n,l) is investigated. Additional restrictions separating some subgroups of GL(4,C) are given explicitly. In the given parametrization, the problem of inverting any 4 × 4 matrix G is solved. Expression for determinant of any matrix G is found: det G = F(k,m,n,l). Unitarity conditions G+ = G-1 have been formulated in the form of non-linear cubic algebraic equations including complex conjugation. Several simplest solutions of these unitarity equations have been found: three 2-parametric subgroups G1, G2, G3 - each of subgroups consists of two commuting Abelian unitary groups; 4-parametric unitary subgroup consis! ting of a product of a 3-parametric group isomorphic SU(2) and 1-parametric Abelian group. The Dirac basis of generators Λk, being of Gell-Mann type, substantially differs from the basis λi used in the literature on SU(4) group, formulas relating them are found - they permit to separate SU(3) subgroup in SU(4). Special way to list 15 Dirac generators of GL(4,C) can be used {Λk} = {μiÅνjÅ(μiVνj = KÅL ÅM )}, which permit to factorize SU(4) transformations according to S = eiaμ eibνeikKeilLeimM, where two first factors commute with each other and are isomorphic to SU(2) group, the three last ones are 3-parametric groups, each of them consisting of three Abelian commuting unitary subgroups. Besides, the structure of fifteen Dirac matrices Λk permits to separate twenty 3-parametric subgroups in SU(4) isomorphic to SU(2); those subgroups might be used as bigger elementary blocks in constructing of a general transformation SU(4). It is shown how one can specify the present approach for the pseudounitary group SU(2,2) and SU(3,1).
Recent Advances with the AMPX Covariance Processing Capabilities in PUFF-IV
International Nuclear Information System (INIS)
Wiarda, Dorothea; Arbanas, Goran; Leal, Luiz C.; Dunn, Michael E.
2008-01-01
The program PUFF-IV is used to process resonance parameter covariance information given in ENDF/B File 32 and point-wise covariance matrices given in ENDF/B File 33 into group-averaged covariances matrices on a user-supplied group structure. For large resonance covariance matrices, found for example in 235U, the execution time of PUFF-IV can be quite long. Recently the code was modified to take advandage of Basic Linear Algebra Subprograms (BLAS) routines for the most time-consuming matrix multiplications. This led to a substantial decrease in execution time. This faster processing capability allowed us to investigate the conversion of File 32 data into File 33 data using a larger number of user-defined groups. While conversion substantially reduces the ENDF/B file size requirements for evaluations with a large number of resonances, a trade-off is made between the number of groups used to represent the resonance parameter covariance as a point-wise covariance matrix and the file size. We are also investigating a hybrid version of the conversion, in which the low-energy part of the File 32 resonance parameter covariances matrix is retained and the correlations with higher energies as well as the high energy part are given in File 33.
Création du groupe FMR (Flux, Matrices, Réseaux
Directory of Open Access Journals (Sweden)
Laurent Beauguitte
2013-06-01
Full Text Available Laurent Beauguitte et César Ducruetont pris l’initiative de créer un groupe de travail sur les réseaux en vue d’intégrer dans l’approche géographique les outils et méthodes issues de l’analyse des réseaux (planaires, sociaux, complexes. Ces derniers paraissent en effet fournir des pistes intéressantes pour l’analyse des flux de toute nature (commerciaux, humains, informationnels, financiers. Ce groupe tient une réunion mensuelle depuis le 26 octobre 2010 à Paris. Trois axes de travail sont...
Predicting Covariance Matrices with Financial Conditions Indexes
A. Opschoor (Anne); D.J.C. van Dijk (Dick); M. van der Wel (Michel)
2013-01-01
textabstractWe model the impact of financial conditions on asset market volatility and correlation. We propose extensions of (factor-)GARCH models for volatility and DCC models for correlation that allow for including indexes that measure financial conditions. In our empirical application we
International Nuclear Information System (INIS)
Peelle, R.W.
1986-01-01
This paper discusses the need for nuclear data covariance files in various fields. The particular fields discussed are: fission reactor core physics, fast reactor shielding, fission reactor fuel cycle, fission power reactor pressure vessel surveillance, delayed neutron parameters for fission, fusion reactor blanket and shielding and fusion reactor dosimetry. Also discussed are the availability of sensitivity and uncertainty analysis techniques to utilize evaluated covariance files, covariance file processing codes and methods for evaluating nuclear data covariance quantiti. Topics on international cooperation are also discussed
Energy Technology Data Exchange (ETDEWEB)
Lorenzen, R.
2007-03-15
Starting from the assumption of modular P{sub 1}CT symmetry in quantum field theory a representation of the universal covering of the Poincar'e group is constructed in terms of pairs of modular conjugations. The modular conjugations are associated with field algebras of unbounded operators localised in wedge regions. It turns out that an essential step consists in characterising the universal covering group of the Lorentz group by pairs of wedge regions, in conjunction with an analysis of its geometrical properties. In this thesis two approaches to this problem are developed in four spacetime dimensions. First a realisation of the universal covering as the quotient space over the set of pairs of wedge regions is presented. In spite of the intuitive definition, the necessary properties of a covering space are not straightforward to prove. But the geometrical properties are easy to handle. The second approach takes advantage of the well-known features of spin groups, given as subgroups of Clifford algebras. Characterising elements of spin groups by pairs of wedge regions is possible in an elegant manner. The geometrical analysis is performed by means of the results achieved in the first approach. These geometrical properties allow for constructing a representation of the universal cover of the Lorentz group in terms of pairs of modular conjugations. For this representation the derivation of the spin-statistics theorem is straightforward, and a PCT operator can be defined. Furthermore, it is possible to transfer the results to nets of field algebras in algebraic quantum field theory with ease. Many of the usual assumptions in quantum field theory like the spectrum condition or the existence of a covariant unitary representation, as well as the assumption on the quantum field to have only finitely many components, are not required. For the standard axioms, the crucial assumption of modular P{sub 1}CT symmetry constitutes no loss of generality because it is a
International Nuclear Information System (INIS)
Lorenzen, R.
2007-03-01
Starting from the assumption of modular P 1 CT symmetry in quantum field theory a representation of the universal covering of the Poincar'e group is constructed in terms of pairs of modular conjugations. The modular conjugations are associated with field algebras of unbounded operators localised in wedge regions. It turns out that an essential step consists in characterising the universal covering group of the Lorentz group by pairs of wedge regions, in conjunction with an analysis of its geometrical properties. In this thesis two approaches to this problem are developed in four spacetime dimensions. First a realisation of the universal covering as the quotient space over the set of pairs of wedge regions is presented. In spite of the intuitive definition, the necessary properties of a covering space are not straightforward to prove. But the geometrical properties are easy to handle. The second approach takes advantage of the well-known features of spin groups, given as subgroups of Clifford algebras. Characterising elements of spin groups by pairs of wedge regions is possible in an elegant manner. The geometrical analysis is performed by means of the results achieved in the first approach. These geometrical properties allow for constructing a representation of the universal cover of the Lorentz group in terms of pairs of modular conjugations. For this representation the derivation of the spin-statistics theorem is straightforward, and a PCT operator can be defined. Furthermore, it is possible to transfer the results to nets of field algebras in algebraic quantum field theory with ease. Many of the usual assumptions in quantum field theory like the spectrum condition or the existence of a covariant unitary representation, as well as the assumption on the quantum field to have only finitely many components, are not required. For the standard axioms, the crucial assumption of modular P 1 CT symmetry constitutes no loss of generality because it is a consequence of
Updated Covariance Processing Capabilities in the AMPX Code System
International Nuclear Information System (INIS)
Wiarda, Dorothea; Dunn, Michael E.
2007-01-01
A concerted effort is in progress within the nuclear data community to provide new cross-section covariance data evaluations to support sensitivity/uncertainty analyses of fissionable systems. The objective of this work is to update processing capabilities of the AMPX library to process the latest Evaluated Nuclear Data File (ENDF)/B formats to generate covariance data libraries for radiation transport software such as SCALE. The module PUFF-IV was updated to allow processing of new ENDF covariance formats in the resolved resonance region. In the resolved resonance region, covariance matrices are given in terms of resonance parameters, which need to be processed into covariance matrices with respect to the group-averaged cross-section data. The parameter covariance matrix can be quite large if the evaluation has many resonances. The PUFF-IV code has recently been used to process an evaluation of 235U, which was prepared in collaboration between Oak Ridge National Laboratory and Los Alamos National Laboratory.
Treatment of Nuclear Data Covariance Information in Sample Generation
Energy Technology Data Exchange (ETDEWEB)
Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Adams, Brian M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wieselquist, William [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division
2017-10-01
This report summarizes a NEAMS (Nuclear Energy Advanced Modeling and Simulation) project focused on developing a sampling capability that can handle the challenges of generating samples from nuclear cross-section data. The covariance information between energy groups tends to be very ill-conditioned and thus poses a problem using traditional methods for generated correlated samples. This report outlines a method that addresses the sample generation from cross-section matrices.
Treatment of Nuclear Data Covariance Information in Sample Generation
International Nuclear Information System (INIS)
Swiler, Laura Painton; Adams, Brian M.; Wieselquist, William
2017-01-01
This report summarizes a NEAMS (Nuclear Energy Advanced Modeling and Simulation) project focused on developing a sampling capability that can handle the challenges of generating samples from nuclear cross-section data. The covariance information between energy groups tends to be very ill-conditioned and thus poses a problem using traditional methods for generated correlated samples. This report outlines a method that addresses the sample generation from cross-section matrices.
DEFF Research Database (Denmark)
Gebreyesus, Grum; Lund, Mogens Sandø; Buitenhuis, Albert Johannes
2017-01-01
Accurate genomic prediction requires a large reference population, which is problematic for traits that are expensive to measure. Traits related to milk protein composition are not routinely recorded due to costly procedures and are considered to be controlled by a few quantitative trait loci...... of large effect. The amount of variation explained may vary between regions leading to heterogeneous (co)variance patterns across the genome. Genomic prediction models that can efficiently take such heterogeneity of (co)variances into account can result in improved prediction reliability. In this study, we...... developed and implemented novel univariate and bivariate Bayesian prediction models, based on estimates of heterogeneous (co)variances for genome segments (BayesAS). Available data consisted of milk protein composition traits measured on cows and de-regressed proofs of total protein yield derived for bulls...
Uncertainty covariances in robotics applications
International Nuclear Information System (INIS)
Smith, D.L.
1984-01-01
The application of uncertainty covariance matrices in the analysis of robot trajectory errors is explored. First, relevant statistical concepts are reviewed briefly. Then, a simple, hypothetical robot model is considered to illustrate methods for error propagation and performance test data evaluation. The importance of including error correlations is emphasized
Covariance as input to and output from resonance analyses
International Nuclear Information System (INIS)
Larson, N.M.
1992-01-01
Accurate data analysis requires understanding of the roles played by both data and parameter covariance matrices. In this paper the entire data reduction/analysis process is examined, for neutron-induced reactions in the resonance region. Interrelationships between data and parameter covariance matrices are examined and alternative reduction/analysis methods discussed
Energy Technology Data Exchange (ETDEWEB)
Despotopulos, J D; Sudowe, R
2012-02-21
somewhere between Nb and Pa. Much more recent studies have examined the properties of Db from HNO{sub 3}/HF matrices, and suggest Db forms complexes similar to those of Pa. Very little experimental work into the behavior of element 114 has been performed. Thermochromatography experiments of three atoms of element 114 indicate that the element 114 is at least as volatile as Hg, At, and element 112. Lead was shown to deposit on gold at temperatures about 1000 C higher than the atoms of element 114. Results indicate a substantially increased stability of element 114. No liquid phase studies of element 114 or its homologs (Pb, Sn, Ge) or pseudo-homologs (Hg, Cd) have been performed. Theoretical predictions indicate that element 114 is should have a much more stable +2 oxidation state and neutral state than Pb, which would result in element 114 being less reactive and less metallic than Pb. The relativistic effects on the 7p{sub 1/2} electrons are predicted to cause a diagonal relationship to be introduced into the periodic table. Therefore, 114{sup 2+} is expected to behave as if it were somewhere between Hg{sup 2+}, Cd{sup 2+}, and Pb{sup 2+}. In this work two commercially available extraction chromatography resins are evaluated, one for the separation of Db homologs and pseudo?homologs from each other as well as from potential interfering elements such as Group IV Rf homologs and actinides, and the other for separation of element 114 homologs. One resin, Eichrom's DGA resin, contains a N,N,N',N'-tetra-n-octyldiglycolamide extractant, which separates analytes based on both size and charge characteristics of the solvated metal species, coated on an inert support. The DGA resin was examined for Db chemical systems, and shows a high degree of selectivity for tri-, tetra-, and hexavalent metal ions in multiple acid matrices with fast kinetics. The other resin, Eichrom's Pb resin, contains a di-t-butylcyclohexano 18-crown-6 extractant with isodecanol solvent
Neutron spectrum adjustment. The role of covariances
International Nuclear Information System (INIS)
Remec, I.
1992-01-01
Neutron spectrum adjustment method is shortly reviewed. Practical example dealing with power reactor pressure vessel exposure rates determination is analysed. Adjusted exposure rates are found only slightly affected by the covariances of measured reaction rates and activation cross sections, while the multigroup spectra covariances were found important. Approximate spectra covariance matrices, as suggested in Astm E944-89, were found useful but care is advised if they are applied in adjustments of spectra at locations without dosimetry. (author) [sl
The Bayesian Covariance Lasso.
Khondker, Zakaria S; Zhu, Hongtu; Chu, Haitao; Lin, Weili; Ibrahim, Joseph G
2013-04-01
Estimation of sparse covariance matrices and their inverse subject to positive definiteness constraints has drawn a lot of attention in recent years. The abundance of high-dimensional data, where the sample size ( n ) is less than the dimension ( d ), requires shrinkage estimation methods since the maximum likelihood estimator is not positive definite in this case. Furthermore, when n is larger than d but not sufficiently larger, shrinkage estimation is more stable than maximum likelihood as it reduces the condition number of the precision matrix. Frequentist methods have utilized penalized likelihood methods, whereas Bayesian approaches rely on matrix decompositions or Wishart priors for shrinkage. In this paper we propose a new method, called the Bayesian Covariance Lasso (BCLASSO), for the shrinkage estimation of a precision (covariance) matrix. We consider a class of priors for the precision matrix that leads to the popular frequentist penalties as special cases, develop a Bayes estimator for the precision matrix, and propose an efficient sampling scheme that does not precalculate boundaries for positive definiteness. The proposed method is permutation invariant and performs shrinkage and estimation simultaneously for non-full rank data. Simulations show that the proposed BCLASSO performs similarly as frequentist methods for non-full rank data.
Covariance structure in the skull of Catarrhini: a case of pattern stasis and magnitude evolution.
de Oliveira, Felipe Bandoni; Porto, Arthur; Marroig, Gabriel
2009-04-01
The study of the genetic variance/covariance matrix (G-matrix) is a recent and fruitful approach in evolutionary biology, providing a window of investigating for the evolution of complex characters. Although G-matrix studies were originally conducted for microevolutionary timescales, they could be extrapolated to macroevolution as long as the G-matrix remains relatively constant, or proportional, along the period of interest. A promising approach to investigating the constancy of G-matrices is to compare their phenotypic counterparts (P-matrices) in a large group of related species; if significant similarity is found among several taxa, it is very likely that the underlying G-matrices are also equivalent. Here we study the similarity of covariance and correlation structure in a broad sample of Old World monkeys and apes (Catarrhini). We made phylogenetically structured comparisons of correlation and covariance matrices derived from 39 skull traits, ranging from between species to the superfamily level. We also compared the overall magnitude of integration between skull traits (r2) for all Catarrhini genera. Our results show that P-matrices were not strictly constant among catarrhines, but the amount of divergence observed among taxa was generally low. There was significant and positive correlation between the amount of divergence in correlation and covariance patterns among the 30 genera and their phylogenetic distances derived from a recently proposed phylogenetic hypothesis. Our data demonstrate that the P-matrices remained relatively similar along the evolutionary history of catarrhines, and comparisons with the G-matrix available for a New World monkey genus (Saguinus) suggests that the same holds for all anthropoids. The magnitude of integration, in contrast, varied considerably among genera, indicating that evolution of the magnitude, rather than the pattern of inter-trait correlations, might have played an important role in the diversification of the
International Nuclear Information System (INIS)
Lepretre, A.; Herault, N.; Brusegan, A.; Noguere, G.; Siegler, P.
2002-12-01
This report is a follow up of the report CEA DAPNIA/SPHN-99-04T of Vincent Gressier. In the frame of a collaboration between the 'Commissariat a l'Energie Atomique (CEA)' and the Institute for Reference Materials and Measurement (IRMM, Geel, Belgique), the resonance parameters of neptunium 237 have been determined in the energy interval between 0 and 500 eV. These parameters have been obtained by using the Refit code in analysing simultaneously three transmission experiments. The covariance matrix of statistical origin is provided. A new method, based on various sensitivity studies is proposed for determining also the covariance matrix of systematic origin, relating the resonance parameters. From an experimental viewpoint, the study indicated that, with a large probability, the background spectrum has structure. A two dimensional profiler for the neutron density has been proved feasible. Such a profiler could, among others, demonstrate the existence of the structured background. (authors)
ACORNS, Covariance and Correlation Matrix Diagonalization
International Nuclear Information System (INIS)
Szondi, E.J.
1990-01-01
1 - Description of program or function: The program allows the user to verify the different types of covariance/correlation matrices used in the activation neutron spectrometry. 2 - Method of solution: The program performs the diagonalization of the input covariance/relative covariance/correlation matrices. The Eigen values are then analyzed to determine the rank of the matrices. If the Eigen vectors of the pertinent correlation matrix have also been calculated, the program can perform a complete factor analysis (generation of the factor matrix and its rotation in Kaiser's 'varimax' sense to select the origin of the correlations). 3 - Restrictions on the complexity of the problem: Matrix size is limited to 60 on PDP and to 100 on IBM PC/AT
Averaging operations on matrices
Indian Academy of Sciences (India)
2014-07-03
Jul 3, 2014 ... Role of Positive Definite Matrices. • Diffusion Tensor Imaging: 3 × 3 pd matrices model water flow at each voxel of brain scan. • Elasticity: 6 × 6 pd matrices model stress tensors. • Machine Learning: n × n pd matrices occur as kernel matrices. Tanvi Jain. Averaging operations on matrices ...
The covariance matrix of neutron spectra used in the REAL 84 exercise
International Nuclear Information System (INIS)
Matzke, M.
1986-08-01
Covariance matrices of continuous functions are discussed. It is pointed out that the number of non-vanishing eigenvalues corresponds to the number of random variables (parameters) involved in the construction of the continuous functions. The covariance matrices used in the REAL 84 international intercomparison of unfolding methods of neutron spectra are investigated. It is shown that a small rank of these covariance matrices leads to a restriction of the possible solution spectra. (orig.) [de
Multivariate covariance generalized linear models
DEFF Research Database (Denmark)
Bonat, W. H.; Jørgensen, Bent
2016-01-01
are fitted by using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of types of response variables and covariance structures, including multivariate extensions......We propose a general framework for non-normal multivariate data analysis called multivariate covariance generalized linear models, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link...... function combined with a matrix linear predictor involving known matrices. The method is motivated by three data examples that are not easily handled by existing methods. The first example concerns multivariate count data, the second involves response variables of mixed types, combined with repeated...
Earth Observing System Covariance Realism
Zaidi, Waqar H.; Hejduk, Matthew D.
2016-01-01
The purpose of covariance realism is to properly size a primary object's covariance in order to add validity to the calculation of the probability of collision. The covariance realism technique in this paper consists of three parts: collection/calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics. An empirical cumulative distribution function (ECDF) Goodness-of-Fit (GOF) method is employed to determine if a covariance is properly sized by comparing the empirical distribution of Mahalanobis distance calculations to the hypothesized parent 3-DoF chi-squared distribution. To realistically size a covariance for collision probability calculations, this study uses a state noise compensation algorithm that adds process noise to the definitive epoch covariance to account for uncertainty in the force model. Process noise is added until the GOF tests pass a group significance level threshold. The results of this study indicate that when outliers attributed to persistently high or extreme levels of solar activity are removed, the aforementioned covariance realism compensation method produces a tuned covariance with up to 80 to 90% of the covariance propagation timespan passing (against a 60% minimum passing threshold) the GOF tests-a quite satisfactory and useful result.
Generalisations of Fisher Matrices
Directory of Open Access Journals (Sweden)
Alan Heavens
2016-06-01
Full Text Available Fisher matrices play an important role in experimental design and in data analysis. Their primary role is to make predictions for the inference of model parameters—both their errors and covariances. In this short review, I outline a number of extensions to the simple Fisher matrix formalism, covering a number of recent developments in the field. These are: (a situations where the data (in the form of ( x , y pairs have errors in both x and y; (b modifications to parameter inference in the presence of systematic errors, or through fixing the values of some model parameters; (c Derivative Approximation for LIkelihoods (DALI - higher-order expansions of the likelihood surface, going beyond the Gaussian shape approximation; (d extensions of the Fisher-like formalism, to treat model selection problems with Bayesian evidence.
International Nuclear Information System (INIS)
Kodeli, Ivan-Alexander
2005-01-01
The new cross-section covariance matrix library ZZ-VITAMIN-J/COVA/EFF3 intended to simplify and encourage sensitivity and uncertainty analysis was prepared and is available from the NEA Data Bank. The library is organised in a ready-to-use form including both the covariance matrix data as well as processing tools:-Cross-section covariance matrices from the EFF-3 evaluation for five materials: 9 Be, 28 Si, 56 Fe, 58 Ni and 60 Ni. Other data will be included when available. -FORTRAN program ANGELO-2 to extrapolate/interpolate the covariance matrices to a users' defined energy group structure. -FORTRAN program LAMBDA to verify the mathematical properties of the covariance matrices, like symmetry, positive definiteness, etc. The preparation, testing and use of the covariance matrix library are presented. The uncertainties based on the cross-section covariance data were compared with those based on other evaluations, like ENDF/B-VI. The collapsing procedure used in the ANGELO-2 code was compared and validated with the one used in the NJOY system
Courvoisier, E.; Bicaba, Y.; Colin, X.
2016-05-01
The water absorption in two aromatic linear polymers (PEEK and PEI) was studied between 10% and 90% RH at 30, 50 and 70°C. It was found that these polymers display classical Henry and Fick's behaviors. Moreover, they have very close values of equilibrium water concentration C∞ and water diffusivity D presumably because their respective polar groups establish molecular interactions of the same nature with water. This assumption was checked from a literature compilation of values of C∞ and D for a large variety of linear and tridimensional polymers containing a single type of polar group. It was then evidenced that almost all types of carbonyl group (in particular, those belonging to imides, amides and ketones) have the same molar contribution to water absorption, except those belonging to esters which are much less hydrophilic. Furthermore, hydroxyl and sulfone groups are much more hydrophilic than carbonyl groups so that their molar contribution is located on another master curve. On this basis, semi-empirical structure/water transport property relationships were proposed. It was found that C∞ increases exponentially with the concentration of polar groups (presumably because water is doubly bonded), but also with the intensity of their molecular interactions with water. In contrast, D is inversely proportional to C∞, which means that polar group-water interactions slow down the rate of water diffusion.
International Nuclear Information System (INIS)
Garg, S.B.
1990-01-01
A 75 group neutron-photon coupled cross-section library has been developed for 42 reactor nuclides utilizing the basic cross-section files - ENDF/B-IV for neutrons and DLC-7F for photons. 50 neutron energy groups and gamma energy groups are included in this library which should be well suited to carry out safety, shielding and core physics studies of nuclear reactors based on fission or fusion processes. This library is also adequate for oil logging and mineral exploration investigations. (author). 11 refs., 3 tabs
Spectral data for a pair of matrices of order three and an action of the group GL(2,Z)
International Nuclear Information System (INIS)
Neretin, Yurii A
2011-01-01
We consider the 10-dimensional complex space whose points are cubic curves on the projective complex plane with three marked points. The triples of marked points on the curve are defined up to equivalence of divisors. We construct a natural action of the group GL(2,Z) on this space.
DANTE, Activation Analysis Neutron Spectra Unfolding by Covariance Matrix Method
International Nuclear Information System (INIS)
Petilli, M.
1981-01-01
1 - Description of problem or function: The program evaluates activation measurements of reactor neutron spectra and unfolds the results for dosimetry purposes. Different evaluation options are foreseen: absolute or relative fluxes and different iteration algorithms. 2 - Method of solution: A least-square fit method is used. A correlation between available data and their uncertainties has been introduced by means of flux and activity variance-covariance matrices. Cross sections are assumed to be constant, i.e. with variance-covariance matrix equal to zero. The Lagrange multipliers method has been used for calculating the solution. 3 - Restrictions on the complexity of the problem: 9 activation experiments can be analyzed. 75 energy groups are accepted
Double stochastic matrices in quantum mechanics
International Nuclear Information System (INIS)
Louck, J.D.
1997-01-01
The general set of doubly stochastic matrices of order n corresponding to ordinary nonrelativistic quantum mechanical transition probability matrices is given. Lande's discussion of the nonquantal origin of such matrices is noted. Several concrete examples are presented for elementary and composite angular momentum systems with the focus on the unitary symmetry associated with such systems in the spirit of the recent work of Bohr and Ulfbeck. Birkhoff's theorem on doubly stochastic matrices of order n is reformulated in a geometrical language suitable for application to the subset of quantum mechanical doubly stochastic matrices. Specifically, it is shown that the set of points on the unit sphere in cartesian n'-space is subjective with the set of doubly stochastic matrices of order n. The question is raised, but not answered, as to what is the subset of points of this unit sphere that correspond to the quantum mechanical transition probability matrices, and what is the symmetry group of this subset of matrices
EQUIVALENT MODELS IN COVARIANCE STRUCTURE-ANALYSIS
LUIJBEN, TCW
1991-01-01
Defining equivalent models as those that reproduce the same set of covariance matrices, necessary and sufficient conditions are stated for the local equivalence of two expanded identified models M1 and M2 when fitting the more restricted model M0. Assuming several regularity conditions, the rank
Inverse m-matrices and ultrametric matrices
Dellacherie, Claude; San Martin, Jaime
2014-01-01
The study of M-matrices, their inverses and discrete potential theory is now a well-established part of linear algebra and the theory of Markov chains. The main focus of this monograph is the so-called inverse M-matrix problem, which asks for a characterization of nonnegative matrices whose inverses are M-matrices. We present an answer in terms of discrete potential theory based on the Choquet-Deny Theorem. A distinguished subclass of inverse M-matrices is ultrametric matrices, which are important in applications such as taxonomy. Ultrametricity is revealed to be a relevant concept in linear algebra and discrete potential theory because of its relation with trees in graph theory and mean expected value matrices in probability theory. Remarkable properties of Hadamard functions and products for the class of inverse M-matrices are developed and probabilistic insights are provided throughout the monograph.
Transformation of covariant quark Wigner operator to noncovariant one
International Nuclear Information System (INIS)
Selikhov, A.V.
1989-01-01
The gauge in which covariant and noncovariant quark Wigner operators coincide has been found. In this gauge the representations of vector potential via field strength tensor is valid. The system of equations for the coefficients of covariant Wigner operator expansion in the basis γ-matrices algebra is obtained. 12 refs.; 3 figs
Condition Number Regularized Covariance Estimation.
Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala
2013-06-01
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the "large p small n " setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required.
Condition Number Regularized Covariance Estimation*
Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala
2012-01-01
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the “large p small n” setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required. PMID:23730197
Likelihood Approximation With Hierarchical Matrices For Large Spatial Datasets
Litvinenko, Alexander
2017-09-03
We use available measurements to estimate the unknown parameters (variance, smoothness parameter, and covariance length) of a covariance function by maximizing the joint Gaussian log-likelihood function. To overcome cubic complexity in the linear algebra, we approximate the discretized covariance function in the hierarchical (H-) matrix format. The H-matrix format has a log-linear computational cost and storage O(kn log n), where the rank k is a small integer and n is the number of locations. The H-matrix technique allows us to work with general covariance matrices in an efficient way, since H-matrices can approximate inhomogeneous covariance functions, with a fairly general mesh that is not necessarily axes-parallel, and neither the covariance matrix itself nor its inverse have to be sparse. We demonstrate our method with Monte Carlo simulations and an application to soil moisture data. The C, C++ codes and data are freely available.
International Nuclear Information System (INIS)
Roldan-Valadez, Ernesto; Piña-Jimenez, Carlos; Favila, Rafael; Rios, Camilo
2013-01-01
Introduction: There is an age-related conversion of red to yellow bone marrow in the axial skeleton, with a gender-related difference less well established. Our purpose was to clarify the variability of bone marrow fat fraction (FF) in the lumbar spine due to the interaction of gender and age groups. Methods: 44 healthy volunteers (20 males, 30–65 years old and 24 females, 30–69 years old) underwent 3T magnetic resonance spectroscopy (MRS) and conventional MRI examination of the lumbar spine; single-voxel spectrum was acquired for each vertebral body (VB). After controlling body mass index (BMI), a two-way between-groups multivariate analysis of covariance (MANCOVA) assessed the gender and age group differences in FF quantification for each lumbar VB. Results: There was a significant interaction between gender and age group, p = .017, with a large effect size (partial η 2 = .330). However the interaction explained only 33% of the observed variance. Main effects were not statistically significant. BMI was non-significantly related to FF quantification. Conclusions: Young males showed a high FF content, which declined in the 4th decade, then increased the next 3 decades to reach a FF content just below the initial FF means. Females’ FF were low in the 3rd decade, depicted an accelerated increase in the 4th decade, then a gradual increase the next 3 decades to reach a FF content similar to males’ values. Our findings suggest that quantification of bone marrow FF using MRS might be used as a surrogate biomarker of bone marrow activity in clinical settings
Energy Technology Data Exchange (ETDEWEB)
Roldan-Valadez, Ernesto, E-mail: ernest.roldan@usa.net [Magnetic Resonance Unit, Medica Sur Clinic and Foundation, Mexico City (Mexico); Piña-Jimenez, Carlos [Magnetic Resonance Unit, Medica Sur Clinic and Foundation, Mexico City (Mexico); Favila, Rafael [GE Healthcare, Mexico City (Mexico); Rios, Camilo [Neurochemistry Department, Mexican National Institute of Neurology and Neurosurgery, Mexico City (Mexico)
2013-11-01
Introduction: There is an age-related conversion of red to yellow bone marrow in the axial skeleton, with a gender-related difference less well established. Our purpose was to clarify the variability of bone marrow fat fraction (FF) in the lumbar spine due to the interaction of gender and age groups. Methods: 44 healthy volunteers (20 males, 30–65 years old and 24 females, 30–69 years old) underwent 3T magnetic resonance spectroscopy (MRS) and conventional MRI examination of the lumbar spine; single-voxel spectrum was acquired for each vertebral body (VB). After controlling body mass index (BMI), a two-way between-groups multivariate analysis of covariance (MANCOVA) assessed the gender and age group differences in FF quantification for each lumbar VB. Results: There was a significant interaction between gender and age group, p = .017, with a large effect size (partial η{sup 2} = .330). However the interaction explained only 33% of the observed variance. Main effects were not statistically significant. BMI was non-significantly related to FF quantification. Conclusions: Young males showed a high FF content, which declined in the 4th decade, then increased the next 3 decades to reach a FF content just below the initial FF means. Females’ FF were low in the 3rd decade, depicted an accelerated increase in the 4th decade, then a gradual increase the next 3 decades to reach a FF content similar to males’ values. Our findings suggest that quantification of bone marrow FF using MRS might be used as a surrogate biomarker of bone marrow activity in clinical settings.
New perspective in covariance evaluation for nuclear data
International Nuclear Information System (INIS)
Kanda, Y.
1992-01-01
Methods of nuclear data evaluation have been highly developed during the past decade, especially after introducing the concept of covariance. This makes it utmost important how to evaluate covariance matrices for nuclear data. It can be said that covariance evaluation is just the nuclear data evaluation, because the covariance matrix has quantitatively decisive function in current evaluation methods. The covariance primarily represents experimental uncertainties. However, correlation of individual uncertainties between different data must be taken into account and it can not be conducted without detailed physical considerations on experimental conditions. This procedure depends on the evaluator and the estimated covariance does also. The mathematical properties of the covariance have been intensively discussed. Their physical properties should be studied to apply it to the nuclear data evaluation, and then, in this report, are reviewed to give the base for further development of the covariance application. (orig.)
Generally covariant gauge theories
International Nuclear Information System (INIS)
Capovilla, R.
1992-01-01
A new class of generally covariant gauge theories in four space-time dimensions is investigated. The field variables are taken to be a Lie algebra valued connection 1-form and a scalar density. Modulo an important degeneracy, complex [euclidean] vacuum general relativity corresponds to a special case in this class. A canonical analysis of the generally covariant gauge theories with the same gauge group as general relativity shows that they describe two degrees of freedom per space point, qualifying therefore as a new set of neighbors of general relativity. The modification of the algebra of the constraints with respect to the general relativity case is computed; this is used in addressing the question of how general relativity stands out from its neighbors. (orig.)
International Nuclear Information System (INIS)
Nuamah, N.N.N.N.
1991-01-01
This paper postulates the assumptions underlying the Mean Approach model and recasts the re-expressions of the normal equations of this model in partitioned matrices of covariances. These covariance structures have been analysed. (author). 16 refs
Quality Quantification of Evaluated Cross Section Covariances
International Nuclear Information System (INIS)
Varet, S.; Dossantos-Uzarralde, P.; Vayatis, N.
2015-01-01
Presently, several methods are used to estimate the covariance matrix of evaluated nuclear cross sections. Because the resulting covariance matrices can be different according to the method used and according to the assumptions of the method, we propose a general and objective approach to quantify the quality of the covariance estimation for evaluated cross sections. The first step consists in defining an objective criterion. The second step is computation of the criterion. In this paper the Kullback-Leibler distance is proposed for the quality quantification of a covariance matrix estimation and its inverse. It is based on the distance to the true covariance matrix. A method based on the bootstrap is presented for the estimation of this criterion, which can be applied with most methods for covariance matrix estimation and without the knowledge of the true covariance matrix. The full approach is illustrated on the 85 Rb nucleus evaluations and the results are then used for a discussion on scoring and Monte Carlo approaches for covariance matrix estimation of the cross section evaluations
Holmes, John B; Dodds, Ken G; Lee, Michael A
2017-03-02
An important issue in genetic evaluation is the comparability of random effects (breeding values), particularly between pairs of animals in different contemporary groups. This is usually referred to as genetic connectedness. While various measures of connectedness have been proposed in the literature, there is general agreement that the most appropriate measure is some function of the prediction error variance-covariance matrix. However, obtaining the prediction error variance-covariance matrix is computationally demanding for large-scale genetic evaluations. Many alternative statistics have been proposed that avoid the computational cost of obtaining the prediction error variance-covariance matrix, such as counts of genetic links between contemporary groups, gene flow matrices, and functions of the variance-covariance matrix of estimated contemporary group fixed effects. In this paper, we show that a correction to the variance-covariance matrix of estimated contemporary group fixed effects will produce the exact prediction error variance-covariance matrix averaged by contemporary group for univariate models in the presence of single or multiple fixed effects and one random effect. We demonstrate the correction for a series of models and show that approximations to the prediction error matrix based solely on the variance-covariance matrix of estimated contemporary group fixed effects are inappropriate in certain circumstances. Our method allows for the calculation of a connectedness measure based on the prediction error variance-covariance matrix by calculating only the variance-covariance matrix of estimated fixed effects. Since the number of fixed effects in genetic evaluation is usually orders of magnitudes smaller than the number of random effect levels, the computational requirements for our method should be reduced.
Poincare covariance and κ-Minkowski spacetime
International Nuclear Information System (INIS)
Dabrowski, Ludwik; Piacitelli, Gherardo
2011-01-01
A fully Poincare covariant model is constructed as an extension of the κ-Minkowski spacetime. Covariance is implemented by a unitary representation of the Poincare group, and thus complies with the original Wigner approach to quantum symmetries. This provides yet another example (besides the DFR model), where Poincare covariance is realised a la Wigner in the presence of two characteristic dimensionful parameters: the light speed and the Planck length. In other words, a Doubly Special Relativity (DSR) framework may well be realised without deforming the meaning of 'Poincare covariance'. -- Highlights: → We construct a 4d model of noncommuting coordinates (quantum spacetime). → The coordinates are fully covariant under the undeformed Poincare group. → Covariance a la Wigner holds in presence of two dimensionful parameters. → Hence we are not forced to deform covariance (e.g. as quantum groups). → The underlying κ-Minkowski model is unphysical; covariantisation does not cure this.
Phenotypic covariance at species' borders.
Caley, M Julian; Cripps, Edward; Game, Edward T
2013-05-28
Understanding the evolution of species limits is important in ecology, evolution, and conservation biology. Despite its likely importance in the evolution of these limits, little is known about phenotypic covariance in geographically marginal populations, and the degree to which it constrains, or facilitates, responses to selection. We investigated phenotypic covariance in morphological traits at species' borders by comparing phenotypic covariance matrices (P), including the degree of shared structure, the distribution of strengths of pair-wise correlations between traits, the degree of morphological integration of traits, and the ranks of matricies, between central and marginal populations of three species-pairs of coral reef fishes. Greater structural differences in P were observed between populations close to range margins and conspecific populations toward range centres, than between pairs of conspecific populations that were both more centrally located within their ranges. Approximately 80% of all pair-wise trait correlations within populations were greater in the north, but these differences were unrelated to the position of the sampled population with respect to the geographic range of the species. Neither the degree of morphological integration, nor ranks of P, indicated greater evolutionary constraint at range edges. Characteristics of P observed here provide no support for constraint contributing to the formation of these species' borders, but may instead reflect structural change in P caused by selection or drift, and their potential to evolve in the future.
Impact of the 235U Covariance Data in Benchmark Calculations
International Nuclear Information System (INIS)
Leal, Luiz C.; Mueller, D.; Arbanas, G.; Wiarda, D.; Derrien, H.
2008-01-01
The error estimation for calculated quantities relies on nuclear data uncertainty information available in the basic nuclear data libraries such as the U.S. Evaluated Nuclear Data File (ENDF/B). The uncertainty files (covariance matrices) in the ENDF/B library are generally obtained from analysis of experimental data. In the resonance region, the computer code SAMMY is used for analyses of experimental data and generation of resonance parameters. In addition to resonance parameters evaluation, SAMMY also generates resonance parameter covariance matrices (RPCM). SAMMY uses the generalized least-squares formalism (Bayes method) together with the resonance formalism (R-matrix theory) for analysis of experimental data. Two approaches are available for creation of resonance-parameter covariance data. (1) During the data-evaluation process, SAMMY generates both a set of resonance parameters that fit the experimental data and the associated resonance-parameter covariance matrix. (2) For existing resonance-parameter evaluations for which no resonance-parameter covariance data are available, SAMMY can retroactively create a resonance-parameter covariance matrix. The retroactive method was used to generate covariance data for 235U. The resulting 235U covariance matrix was then used as input to the PUFF-IV code, which processed the covariance data into multigroup form, and to the TSUNAMI code, which calculated the uncertainty in the multiplication factor due to uncertainty in the experimental cross sections. The objective of this work is to demonstrate the use of the 235U covariance data in calculations of critical benchmark systems
Free probability and random matrices
Mingo, James A
2017-01-01
This volume opens the world of free probability to a wide variety of readers. From its roots in the theory of operator algebras, free probability has intertwined with non-crossing partitions, random matrices, applications in wireless communications, representation theory of large groups, quantum groups, the invariant subspace problem, large deviations, subfactors, and beyond. This book puts a special emphasis on the relation of free probability to random matrices, but also touches upon the operator algebraic, combinatorial, and analytic aspects of the theory. The book serves as a combination textbook/research monograph, with self-contained chapters, exercises scattered throughout the text, and coverage of important ongoing progress of the theory. It will appeal to graduate students and all mathematicians interested in random matrices and free probability from the point of view of operator algebras, combinatorics, analytic functions, or applications in engineering and statistical physics.
Manin matrices and Talalaev's formula
International Nuclear Information System (INIS)
Chervov, A; Falqui, G
2008-01-01
In this paper we study properties of Lax and transfer matrices associated with quantum integrable systems. Our point of view stems from the fact that their elements satisfy special commutation properties, considered by Yu I Manin some 20 years ago at the beginning of quantum group theory. These are the commutation properties of matrix elements of linear homomorphisms between polynomial rings; more explicitly these read: (1) elements of the same column commute; (2) commutators of the cross terms are equal: [M ij , M kl ] [M kj , M il ] (e.g. [M 11 , M 22 ] = [M 21 , M 12 ]). The main aim of this paper is twofold: on the one hand we observe and prove that such matrices (which we call Manin matrices in short) behave almost as well as matrices with commutative elements. Namely, the theorems of linear algebra (e.g., a natural definition of the determinant, the Cayley-Hamilton theorem, the Newton identities and so on and so forth) have a straightforward counterpart in the case of Manin matrices. On the other hand, we remark that such matrices are somewhat ubiquitous in the theory of quantum integrability. For instance, Manin matrices (and their q-analogs) include matrices satisfying the Yang-Baxter relation 'RTT=TTR' and the so-called Cartier-Foata matrices. Also, they enter Talalaev's remarkable formulae: det(∂ z -L gaudin (z)), det(1-e -∂z T Yangian (z)) for the 'quantum spectral curve', and appear in the separation of variables problem and Capelli identities. We show that theorems of linear algebra, after being established for such matrices, have various applications to quantum integrable systems and Lie algebras, e.g. in the construction of new generators in Z(U crit (gl-hat n )) (and, in general, in the construction of quantum conservation laws), in the Knizhnik-Zamolodchikov equation, and in the problem of Wick ordering. We propose, in the appendix, a construction of quantum separated variables for the XXX-Heisenberg system
Classifying regularized sensor covariance matrices: An alternative to CSP
Roijendijk, L.M.M.; Gielen, C.C.A.M.; Farquhar, J.D.R.
2016-01-01
Common spatial patterns ( CSP) is a commonly used technique for classifying imagined movement type brain-computer interface ( BCI) datasets. It has been very successful with many extensions and improvements on the basic technique. However, a drawback of CSP is that the signal processing pipeline
Classifying regularised sensor covariance matrices: An alternative to CSP
Roijendijk, L.M.M.; Gielen, C.C.A.M.; Farquhar, J.D.R.
2016-01-01
Common spatial patterns (CSP) is a commonly used technique for classifying imagined movement type brain computer interface (BCI) datasets. It has been very successful with many extensions and improvements on the basic technique. However, a drawback of CSP is that the signal processing pipeline
Chan, David
2000-01-01
Demonstrates how the mean and covariance structure analysis model of D. Sorbom (1974) can be used to detect uniform and nonuniform differential item functioning (DIF) on polytomous ordered response items assumed to approximate a continuous scale. Uses results from 773 civil service employees administered the Kirton Adaption-Innovation Inventory…
International Nuclear Information System (INIS)
Kawano, Toshihiko; Shibata, Keiichi.
1997-09-01
A covariance evaluation system for the evaluated nuclear data library was established. The parameter estimation method and the least squares method with a spline function are used to generate the covariance data. Uncertainties of nuclear reaction model parameters are estimated from experimental data uncertainties, then the covariance of the evaluated cross sections is calculated by means of error propagation. Computer programs ELIESE-3, EGNASH4, ECIS, and CASTHY are used. Covariances of 238 U reaction cross sections were calculated with this system. (author)
Generation of integral experiment covariance data and their impact on criticality safety validation
Energy Technology Data Exchange (ETDEWEB)
Stuke, Maik; Peters, Elisabeth; Sommer, Fabian
2016-11-15
The quantification of statistical dependencies in data of critical experiments and how to account for them properly in validation procedures has been discussed in the literature by various groups. However, these subjects are still an active topic in the Expert Group on Uncertainty Analysis for Criticality Safety Assessment (UACSA) of the OECDNEA Nuclear Science Committee. The latter compiles and publishes the freely available experimental data collection, the International Handbook of Evaluated Criticality Safety Benchmark Experiments, ICSBEP. Most of the experiments were performed as series and share parts of experimental setups, consequently leading to correlation effects in the results. The correct consideration of correlated data seems to be inevitable if the experimental data in a validation procedure is limited or one cannot rely on a sufficient number of uncorrelated data sets, e.g. from different laboratories using different setups. The general determination of correlations and the underlying covariance data as well as the consideration of them in a validation procedure is the focus of the following work. We discuss and demonstrate possible effects on calculated k{sub eff}'s, their uncertainties, and the corresponding covariance matrices due to interpretation of evaluated experimental data and its translation into calculation models. The work shows effects of various modeling approaches, varying distribution functions of parameters and compares and discusses results from the applied Monte-Carlo sampling method with available data on correlations. Our findings indicate that for the reliable determination of integral experimental covariance matrices or the correlation coefficients a detailed study of the underlying experimental data, the modeling approach and assumptions made, and the resulting sensitivity analysis seems to be inevitable. Further, a Bayesian method is discussed to include integral experimental covariance data when estimating an
Generation of integral experiment covariance data and their impact on criticality safety validation
International Nuclear Information System (INIS)
Stuke, Maik; Peters, Elisabeth; Sommer, Fabian
2016-11-01
The quantification of statistical dependencies in data of critical experiments and how to account for them properly in validation procedures has been discussed in the literature by various groups. However, these subjects are still an active topic in the Expert Group on Uncertainty Analysis for Criticality Safety Assessment (UACSA) of the OECDNEA Nuclear Science Committee. The latter compiles and publishes the freely available experimental data collection, the International Handbook of Evaluated Criticality Safety Benchmark Experiments, ICSBEP. Most of the experiments were performed as series and share parts of experimental setups, consequently leading to correlation effects in the results. The correct consideration of correlated data seems to be inevitable if the experimental data in a validation procedure is limited or one cannot rely on a sufficient number of uncorrelated data sets, e.g. from different laboratories using different setups. The general determination of correlations and the underlying covariance data as well as the consideration of them in a validation procedure is the focus of the following work. We discuss and demonstrate possible effects on calculated k eff 's, their uncertainties, and the corresponding covariance matrices due to interpretation of evaluated experimental data and its translation into calculation models. The work shows effects of various modeling approaches, varying distribution functions of parameters and compares and discusses results from the applied Monte-Carlo sampling method with available data on correlations. Our findings indicate that for the reliable determination of integral experimental covariance matrices or the correlation coefficients a detailed study of the underlying experimental data, the modeling approach and assumptions made, and the resulting sensitivity analysis seems to be inevitable. Further, a Bayesian method is discussed to include integral experimental covariance data when estimating an application
Relativistic covariant wave equations and acausality in external fields
International Nuclear Information System (INIS)
Pijlgroms, R.B.J.
1980-01-01
The author considers linear, finite dimensional, first order relativistic wave equations: (βsup(μ)ideltasub(μ)-β)PSI(x) = 0 with βsup(μ) and β constant matrices. Firstly , the question of the relativistic covariance conditions on these equations is considered. Then the theory of these equations with β non-singular is summarized. Theories with βsup(μ), β square matrices and β singular are also discussed. Non-square systems of covariant relativistic wave equations for arbitrary spin > 1 are then considered. Finally, the interaction with external fields and the acausality problem are discussed. (G.T.H.)
Robust Covariance Estimators Based on Information Divergences and Riemannian Manifold
Directory of Open Access Journals (Sweden)
Xiaoqiang Hua
2018-03-01
Full Text Available This paper proposes a class of covariance estimators based on information divergences in heterogeneous environments. In particular, the problem of covariance estimation is reformulated on the Riemannian manifold of Hermitian positive-definite (HPD matrices. The means associated with information divergences are derived and used as the estimators. Without resorting to the complete knowledge of the probability distribution of the sample data, the geometry of the Riemannian manifold of HPD matrices is considered in mean estimators. Moreover, the robustness of mean estimators is analyzed using the influence function. Simulation results indicate the robustness and superiority of an adaptive normalized matched filter with our proposed estimators compared with the existing alternatives.
Undesirable effects of covariance matrix techniques for error analysis
International Nuclear Information System (INIS)
Seibert, D.
1994-01-01
Regression with χ 2 constructed from covariance matrices should not be used for some combinations of covariance matrices and fitting functions. Using the technique for unsuitable combinations can amplify systematic errors. This amplification is uncontrolled, and can produce arbitrarily inaccurate results that might not be ruled out by a χ 2 test. In addition, this technique can give incorrect (artificially small) errors for fit parameters. I give a test for this instability and a more robust (but computationally more intensive) method for fitting correlated data
Energy Technology Data Exchange (ETDEWEB)
Fukuma, Masafumi; Sugishita, Sotaro; Umeda, Naoya [Department of Physics, Kyoto University,Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan)
2015-07-17
We propose a class of models which generate three-dimensional random volumes, where each configuration consists of triangles glued together along multiple hinges. The models have matrices as the dynamical variables and are characterized by semisimple associative algebras A. Although most of the diagrams represent configurations which are not manifolds, we show that the set of possible diagrams can be drastically reduced such that only (and all of the) three-dimensional manifolds with tetrahedral decompositions appear, by introducing a color structure and taking an appropriate large N limit. We examine the analytic properties when A is a matrix ring or a group ring, and show that the models with matrix ring have a novel strong-weak duality which interchanges the roles of triangles and hinges. We also give a brief comment on the relationship of our models with the colored tensor models.
Matrices and linear transformations
Cullen, Charles G
1990-01-01
""Comprehensive . . . an excellent introduction to the subject."" - Electronic Engineer's Design Magazine.This introductory textbook, aimed at sophomore- and junior-level undergraduates in mathematics, engineering, and the physical sciences, offers a smooth, in-depth treatment of linear algebra and matrix theory. The major objects of study are matrices over an arbitrary field. Contents include Matrices and Linear Systems; Vector Spaces; Determinants; Linear Transformations; Similarity: Part I and Part II; Polynomials and Polynomial Matrices; Matrix Analysis; and Numerical Methods. The first
Autism-specific covariation in perceptual performances: "g" or "p" factor?
Meilleur, Andrée-Anne S; Berthiaume, Claude; Bertone, Armando; Mottron, Laurent
2014-01-01
Autistic perception is characterized by atypical and sometimes exceptional performance in several low- (e.g., discrimination) and mid-level (e.g., pattern matching) tasks in both visual and auditory domains. A factor that specifically affects perceptive abilities in autistic individuals should manifest as an autism-specific association between perceptual tasks. The first purpose of this study was to explore how perceptual performances are associated within or across processing levels and/or modalities. The second purpose was to determine if general intelligence, the major factor that accounts for covariation in task performances in non-autistic individuals, equally controls perceptual abilities in autistic individuals. We asked 46 autistic individuals and 46 typically developing controls to perform four tasks measuring low- or mid-level visual or auditory processing. Intelligence was measured with the Wechsler's Intelligence Scale (FSIQ) and Raven Progressive Matrices (RPM). We conducted linear regression models to compare task performances between groups and patterns of covariation between tasks. The addition of either Wechsler's FSIQ or RPM in the regression models controlled for the effects of intelligence. In typically developing individuals, most perceptual tasks were associated with intelligence measured either by RPM or Wechsler FSIQ. The residual covariation between unimodal tasks, i.e. covariation not explained by intelligence, could be explained by a modality-specific factor. In the autistic group, residual covariation revealed the presence of a plurimodal factor specific to autism. Autistic individuals show exceptional performance in some perceptual tasks. Here, we demonstrate the existence of specific, plurimodal covariation that does not dependent on general intelligence (or "g" factor). Instead, this residual covariation is accounted for by a common perceptual process (or "p" factor), which may drive perceptual abilities differently in autistic and
Autism-Specific Covariation in Perceptual Performances: “g” or “p” Factor?
Meilleur, Andrée-Anne S.; Berthiaume, Claude; Bertone, Armando; Mottron, Laurent
2014-01-01
Background Autistic perception is characterized by atypical and sometimes exceptional performance in several low- (e.g., discrimination) and mid-level (e.g., pattern matching) tasks in both visual and auditory domains. A factor that specifically affects perceptive abilities in autistic individuals should manifest as an autism-specific association between perceptual tasks. The first purpose of this study was to explore how perceptual performances are associated within or across processing levels and/or modalities. The second purpose was to determine if general intelligence, the major factor that accounts for covariation in task performances in non-autistic individuals, equally controls perceptual abilities in autistic individuals. Methods We asked 46 autistic individuals and 46 typically developing controls to perform four tasks measuring low- or mid-level visual or auditory processing. Intelligence was measured with the Wechsler's Intelligence Scale (FSIQ) and Raven Progressive Matrices (RPM). We conducted linear regression models to compare task performances between groups and patterns of covariation between tasks. The addition of either Wechsler's FSIQ or RPM in the regression models controlled for the effects of intelligence. Results In typically developing individuals, most perceptual tasks were associated with intelligence measured either by RPM or Wechsler FSIQ. The residual covariation between unimodal tasks, i.e. covariation not explained by intelligence, could be explained by a modality-specific factor. In the autistic group, residual covariation revealed the presence of a plurimodal factor specific to autism. Conclusions Autistic individuals show exceptional performance in some perceptual tasks. Here, we demonstrate the existence of specific, plurimodal covariation that does not dependent on general intelligence (or “g” factor). Instead, this residual covariation is accounted for by a common perceptual process (or “p” factor), which may drive
Autism-specific covariation in perceptual performances: "g" or "p" factor?
Directory of Open Access Journals (Sweden)
Andrée-Anne S Meilleur
Full Text Available Autistic perception is characterized by atypical and sometimes exceptional performance in several low- (e.g., discrimination and mid-level (e.g., pattern matching tasks in both visual and auditory domains. A factor that specifically affects perceptive abilities in autistic individuals should manifest as an autism-specific association between perceptual tasks. The first purpose of this study was to explore how perceptual performances are associated within or across processing levels and/or modalities. The second purpose was to determine if general intelligence, the major factor that accounts for covariation in task performances in non-autistic individuals, equally controls perceptual abilities in autistic individuals.We asked 46 autistic individuals and 46 typically developing controls to perform four tasks measuring low- or mid-level visual or auditory processing. Intelligence was measured with the Wechsler's Intelligence Scale (FSIQ and Raven Progressive Matrices (RPM. We conducted linear regression models to compare task performances between groups and patterns of covariation between tasks. The addition of either Wechsler's FSIQ or RPM in the regression models controlled for the effects of intelligence.In typically developing individuals, most perceptual tasks were associated with intelligence measured either by RPM or Wechsler FSIQ. The residual covariation between unimodal tasks, i.e. covariation not explained by intelligence, could be explained by a modality-specific factor. In the autistic group, residual covariation revealed the presence of a plurimodal factor specific to autism.Autistic individuals show exceptional performance in some perceptual tasks. Here, we demonstrate the existence of specific, plurimodal covariation that does not dependent on general intelligence (or "g" factor. Instead, this residual covariation is accounted for by a common perceptual process (or "p" factor, which may drive perceptual abilities differently in
GLq(N)-covariant quantum algebras and covariant differential calculus
International Nuclear Information System (INIS)
Isaev, A.P.; Pyatov, P.N.
1993-01-01
We consider GL q (N)-covariant quantum algebras with generators satisfying quadratic polynomial relations. We show that, up to some inessential arbitrariness, there are only two kinds of such quantum algebras, namely, the algebras with q-deformed commutation and q-deformed anticommutation relations. The connection with the bicovariant differential calculus on the linear quantum groups is discussed. (orig.)
Székely, Gábor J.; Rizzo, Maria L.
2010-01-01
Distance correlation is a new class of multivariate dependence coefficients applicable to random vectors of arbitrary and not necessarily equal dimension. Distance covariance and distance correlation are analogous to product-moment covariance and correlation, but generalize and extend these classical bivariate measures of dependence. Distance correlation characterizes independence: it is zero if and only if the random vectors are independent. The notion of covariance with...
The application of sparse estimation of covariance matrix to quadratic discriminant analysis
Sun, Jiehuan; Zhao, Hongyu
2015-01-01
Background Although Linear Discriminant Analysis (LDA) is commonly used for classification, it may not be directly applied in genomics studies due to the large p, small n problem in these studies. Different versions of sparse LDA have been proposed to address this significant challenge. One implicit assumption of various LDA-based methods is that the covariance matrices are the same across different classes. However, rewiring of genetic networks (therefore different covariance matrices) acros...
Convex Banding of the Covariance Matrix.
Bien, Jacob; Bunea, Florentina; Xiao, Luo
2016-01-01
We introduce a new sparse estimator of the covariance matrix for high-dimensional models in which the variables have a known ordering. Our estimator, which is the solution to a convex optimization problem, is equivalently expressed as an estimator which tapers the sample covariance matrix by a Toeplitz, sparsely-banded, data-adaptive matrix. As a result of this adaptivity, the convex banding estimator enjoys theoretical optimality properties not attained by previous banding or tapered estimators. In particular, our convex banding estimator is minimax rate adaptive in Frobenius and operator norms, up to log factors, over commonly-studied classes of covariance matrices, and over more general classes. Furthermore, it correctly recovers the bandwidth when the true covariance is exactly banded. Our convex formulation admits a simple and efficient algorithm. Empirical studies demonstrate its practical effectiveness and illustrate that our exactly-banded estimator works well even when the true covariance matrix is only close to a banded matrix, confirming our theoretical results. Our method compares favorably with all existing methods, in terms of accuracy and speed. We illustrate the practical merits of the convex banding estimator by showing that it can be used to improve the performance of discriminant analysis for classifying sound recordings.
Networks of myelin covariance.
Melie-Garcia, Lester; Slater, David; Ruef, Anne; Sanabria-Diaz, Gretel; Preisig, Martin; Kherif, Ferath; Draganski, Bogdan; Lutti, Antoine
2018-04-01
Networks of anatomical covariance have been widely used to study connectivity patterns in both normal and pathological brains based on the concurrent changes of morphometric measures (i.e., cortical thickness) between brain structures across subjects (Evans, ). However, the existence of networks of microstructural changes within brain tissue has been largely unexplored so far. In this article, we studied in vivo the concurrent myelination processes among brain anatomical structures that gathered together emerge to form nonrandom networks. We name these "networks of myelin covariance" (Myelin-Nets). The Myelin-Nets were built from quantitative Magnetization Transfer data-an in-vivo magnetic resonance imaging (MRI) marker of myelin content. The synchronicity of the variations in myelin content between anatomical regions was measured by computing the Pearson's correlation coefficient. We were especially interested in elucidating the effect of age on the topological organization of the Myelin-Nets. We therefore selected two age groups: Young-Age (20-31 years old) and Old-Age (60-71 years old) and a pool of participants from 48 to 87 years old for a Myelin-Nets aging trajectory study. We found that the topological organization of the Myelin-Nets is strongly shaped by aging processes. The global myelin correlation strength, between homologous regions and locally in different brain lobes, showed a significant dependence on age. Interestingly, we also showed that the aging process modulates the resilience of the Myelin-Nets to damage of principal network structures. In summary, this work sheds light on the organizational principles driving myelination and myelin degeneration in brain gray matter and how such patterns are modulated by aging. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Moeyaert, Mariola; Ugille, Maaike; Ferron, John M.; Beretvas, S. Natasha; Van den Noortgate, Wim
2016-01-01
The impact of misspecifying covariance matrices at the second and third levels of the three-level model is evaluated. Results indicate that ignoring existing covariance has no effect on the treatment effect estimate. In addition, the between-case variance estimates are unbiased when covariance is either modeled or ignored. If the research interest…
The utility of covariance of combining ability in plant breeding.
Arunachalam, V
1976-11-01
The definition of covariances of half- and full sibs, and hence that of variances of general and specific combining ability with regard to a quantitative character, is extended to take into account the respective covariances between a pair of characters. The interpretation of the dispersion and correlation matrices of general and specific combining ability is discussed by considering a set of single, three- and four-way crosses, made using diallel and line × tester mating systems in Pennisetum typhoides. The general implications of the concept of covariance of combining ability in plant breeding are discussed.
Bergshoeff, E.; Pope, C.N.; Stelle, K.S.
1990-01-01
We discuss the notion of higher-spin covariance in w∞ gravity. We show how a recently proposed covariant w∞ gravity action can be obtained from non-chiral w∞ gravity by making field redefinitions that introduce new gauge-field components with corresponding new gauge transformations.
von Cramon-Taubadel, Noreen; Schroeder, Lauren
2016-10-01
Estimation of the variance-covariance (V/CV) structure of fragmentary bioarchaeological populations requires the use of proxy extant V/CV parameters. However, it is currently unclear whether extant human populations exhibit equivalent V/CV structures. Random skewers (RS) and hierarchical analyses of common principal components (CPC) were applied to a modern human cranial dataset. Cranial V/CV similarity was assessed globally for samples of individual populations (jackknifed method) and for pairwise population sample contrasts. The results were examined in light of potential explanatory factors for covariance difference, such as geographic region, among-group distance, and sample size. RS analyses showed that population samples exhibited highly correlated multivariate responses to selection, and that differences in RS results were primarily a consequence of differences in sample size. The CPC method yielded mixed results, depending upon the statistical criterion used to evaluate the hierarchy. The hypothesis-testing (step-up) approach was deemed problematic due to sensitivity to low statistical power and elevated Type I errors. In contrast, the model-fitting (lowest AIC) approach suggested that V/CV matrices were proportional and/or shared a large number of CPCs. Pairwise population sample CPC results were correlated with cranial distance, suggesting that population history explains some of the variability in V/CV structure among groups. The results indicate that patterns of covariance in human craniometric samples are broadly similar but not identical. These findings have important implications for choosing extant covariance matrices to use as proxy V/CV parameters in evolutionary analyses of past populations. © 2016 Wiley Periodicals, Inc.
Covariant differential calculus on quantum Minkowski space and the q-analogue of Dirac equation
International Nuclear Information System (INIS)
Song Xingchang; Academia Sinica, Beijing
1992-01-01
The covariant differential calculus on the quantum Minkowski space is presented with the help of the generalized Wess-Zumino method and the quantum Pauli matrices and quantum Dirac matrices are constructed parallel to those in the classical case. Combining these two aspects a q-analogue of Dirac equation follows directly. (orig.)
Litvinenko, Alexander
2018-03-12
Part 1: Parallel H-matrices in spatial statistics 1. Motivation: improve statistical model 2. Tools: Hierarchical matrices 3. Matern covariance function and joint Gaussian likelihood 4. Identification of unknown parameters via maximizing Gaussian log-likelihood 5. Implementation with HLIBPro. Part 2: Low-rank Tucker tensor methods in spatial statistics
Application of Parallel Hierarchical Matrices in Spatial Statistics and Parameter Identification
Litvinenko, Alexander
2018-04-20
Parallel H-matrices in spatial statistics 1. Motivation: improve statistical model 2. Tools: Hierarchical matrices [Hackbusch 1999] 3. Matern covariance function and joint Gaussian likelihood 4. Identification of unknown parameters via maximizing Gaussian log-likelihood 5. Implementation with HLIBPro
HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS.
Fan, Jianqing; Liao, Yuan; Mincheva, Martina
2011-01-01
The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied.
Indian Academy of Sciences (India)
IAS Admin
harmonic analysis and complex analysis, in ... gebra describes not only the study of linear transforma- tions and .... special case of the Jordan canonical form of matrices. ..... Richard Bronson, Schaum's Outline Series Theory And Problems Of.
Discrete canonical transforms that are Hadamard matrices
International Nuclear Information System (INIS)
Healy, John J; Wolf, Kurt Bernardo
2011-01-01
The group Sp(2,R) of symplectic linear canonical transformations has an integral kernel which has quadratic and linear phases, and which is realized by the geometric paraxial optical model. The discrete counterpart of this model is a finite Hamiltonian system that acts on N-point signals through N x N matrices whose elements also have a constant absolute value, although they do not form a representation of that group. Those matrices that are also unitary are Hadamard matrices. We investigate the manifolds of these N x N matrices under the Sp(2,R) equivalence imposed by the model, and find them to be on two-sided cosets. By means of an algorithm we determine representatives that lead to collections of mutually unbiased bases.
Impact of the 235U covariance data in benchmark calculations
International Nuclear Information System (INIS)
Leal, Luiz; Mueller, Don; Arbanas, Goran; Wiarda, Dorothea; Derrien, Herve
2008-01-01
The error estimation for calculated quantities relies on nuclear data uncertainty information available in the basic nuclear data libraries such as the U.S. Evaluated Nuclear Data File (ENDF/B). The uncertainty files (covariance matrices) in the ENDF/B library are generally obtained from analysis of experimental data. In the resonance region, the computer code SAMMY is used for analyses of experimental data and generation of resonance parameters. In addition to resonance parameters evaluation, SAMMY also generates resonance parameter covariance matrices (RPCM). SAMMY uses the generalized least-squares formalism (Bayes' method) together with the resonance formalism (R-matrix theory) for analysis of experimental data. Two approaches are available for creation of resonance-parameter covariance data. (1) During the data-evaluation process, SAMMY generates both a set of resonance parameters that fit the experimental data and the associated resonance-parameter covariance matrix. (2) For existing resonance-parameter evaluations for which no resonance-parameter covariance data are available, SAMMY can retroactively create a resonance-parameter covariance matrix. The retroactive method was used to generate covariance data for 235 U. The resulting 235 U covariance matrix was then used as input to the PUFF-IV code, which processed the covariance data into multigroup form, and to the TSUNAMI code, which calculated the uncertainty in the multiplication factor due to uncertainty in the experimental cross sections. The objective of this work is to demonstrate the use of the 235 U covariance data in calculations of critical benchmark systems. (authors)
Likelihood Approximation With Parallel Hierarchical Matrices For Large Spatial Datasets
Litvinenko, Alexander
2017-11-01
The main goal of this article is to introduce the parallel hierarchical matrix library HLIBpro to the statistical community. We describe the HLIBCov package, which is an extension of the HLIBpro library for approximating large covariance matrices and maximizing likelihood functions. We show that an approximate Cholesky factorization of a dense matrix of size $2M\\\\times 2M$ can be computed on a modern multi-core desktop in few minutes. Further, HLIBCov is used for estimating the unknown parameters such as the covariance length, variance and smoothness parameter of a Matérn covariance function by maximizing the joint Gaussian log-likelihood function. The computational bottleneck here is expensive linear algebra arithmetics due to large and dense covariance matrices. Therefore covariance matrices are approximated in the hierarchical ($\\\\H$-) matrix format with computational cost $\\\\mathcal{O}(k^2n \\\\log^2 n/p)$ and storage $\\\\mathcal{O}(kn \\\\log n)$, where the rank $k$ is a small integer (typically $k<25$), $p$ the number of cores and $n$ the number of locations on a fairly general mesh. We demonstrate a synthetic example, where the true values of known parameters are known. For reproducibility we provide the C++ code, the documentation, and the synthetic data.
Likelihood Approximation With Parallel Hierarchical Matrices For Large Spatial Datasets
Litvinenko, Alexander; Sun, Ying; Genton, Marc G.; Keyes, David E.
2017-01-01
The main goal of this article is to introduce the parallel hierarchical matrix library HLIBpro to the statistical community. We describe the HLIBCov package, which is an extension of the HLIBpro library for approximating large covariance matrices and maximizing likelihood functions. We show that an approximate Cholesky factorization of a dense matrix of size $2M\\times 2M$ can be computed on a modern multi-core desktop in few minutes. Further, HLIBCov is used for estimating the unknown parameters such as the covariance length, variance and smoothness parameter of a Matérn covariance function by maximizing the joint Gaussian log-likelihood function. The computational bottleneck here is expensive linear algebra arithmetics due to large and dense covariance matrices. Therefore covariance matrices are approximated in the hierarchical ($\\H$-) matrix format with computational cost $\\mathcal{O}(k^2n \\log^2 n/p)$ and storage $\\mathcal{O}(kn \\log n)$, where the rank $k$ is a small integer (typically $k<25$), $p$ the number of cores and $n$ the number of locations on a fairly general mesh. We demonstrate a synthetic example, where the true values of known parameters are known. For reproducibility we provide the C++ code, the documentation, and the synthetic data.
Ros, B.P.; Bijma, F.; de Munck, J.C.; de Gunst, M.C.M.
2016-01-01
This paper deals with multivariate Gaussian models for which the covariance matrix is a Kronecker product of two matrices. We consider maximum likelihood estimation of the model parameters, in particular of the covariance matrix. There is no explicit expression for the maximum likelihood estimator
Covariant representations of nuclear *-algebras
International Nuclear Information System (INIS)
Moore, S.M.
1978-01-01
Extensions of the Csup(*)-algebra theory for covariant representations to nuclear *-algebra are considered. Irreducible covariant representations are essentially unique, an invariant state produces a covariant representation with stable vacuum, and the usual relation between ergodic states and covariant representations holds. There exist construction and decomposition theorems and a possible relation between derivations and covariant representations
Paragrassmann analysis and covariant quantum algebras
International Nuclear Information System (INIS)
Filippov, A.T.; Isaev, A.P.; Kurdikov, A.B.; Pyatov, P.N.
1993-01-01
This report is devoted to the consideration from the algebraic point of view the paragrassmann algebras with one and many paragrassmann generators Θ i , Θ p+1 i = 0. We construct the paragrassmann versions of the Heisenberg algebra. For the special case, this algebra is nothing but the algebra for coordinates and derivatives considered in the context of covariant differential calculus on quantum hyperplane. The parameter of deformation q in our case is (p+1)-root of unity. Our construction is nondegenerate only for even p. Taking bilinear combinations of paragrassmann derivatives and coordinates we realize generators for the covariant quantum algebras as tensor products of (p+1) x (p+1) matrices. (orig./HSI)
On covariance structure in noisy, big data
Paffenroth, Randy C.; Nong, Ryan; Du Toit, Philip C.
2013-09-01
Herein we describe theory and algorithms for detecting covariance structures in large, noisy data sets. Our work uses ideas from matrix completion and robust principal component analysis to detect the presence of low-rank covariance matrices, even when the data is noisy, distorted by large corruptions, and only partially observed. In fact, the ability to handle partial observations combined with ideas from randomized algorithms for matrix decomposition enables us to produce asymptotically fast algorithms. Herein we will provide numerical demonstrations of the methods and their convergence properties. While such methods have applicability to many problems, including mathematical finance, crime analysis, and other large-scale sensor fusion problems, our inspiration arises from applying these methods in the context of cyber network intrusion detection.
Covariant Noncommutative Field Theory
Energy Technology Data Exchange (ETDEWEB)
Estrada-Jimenez, S [Licenciaturas en Fisica y en Matematicas, Facultad de Ingenieria, Universidad Autonoma de Chiapas Calle 4a Ote. Nte. 1428, Tuxtla Gutierrez, Chiapas (Mexico); Garcia-Compean, H [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN P.O. Box 14-740, 07000 Mexico D.F., Mexico and Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Monterrey Via del Conocimiento 201, Parque de Investigacion e Innovacion Tecnologica (PIIT) Autopista nueva al Aeropuerto km 9.5, Lote 1, Manzana 29, cp. 66600 Apodaca Nuevo Leon (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato P.O. Box E-143, 37150 Leon Gto. (Mexico); Ramirez, C [Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, P.O. Box 1364, 72000 Puebla (Mexico)
2008-07-02
The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced.
Covariant Noncommutative Field Theory
International Nuclear Information System (INIS)
Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C.
2008-01-01
The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced
Earth Observing System Covariance Realism Updates
Ojeda Romero, Juan A.; Miguel, Fred
2017-01-01
This presentation will be given at the International Earth Science Constellation Mission Operations Working Group meetings June 13-15, 2017 to discuss the Earth Observing System Covariance Realism updates.
Covariance data processing code. ERRORJ
International Nuclear Information System (INIS)
Kosako, Kazuaki
2001-01-01
The covariance data processing code, ERRORJ, was developed to process the covariance data of JENDL-3.2. ERRORJ has the processing functions of covariance data for cross sections including resonance parameters, angular distribution and energy distribution. (author)
Joint Estimation of Multiple Precision Matrices with Common Structures.
Lee, Wonyul; Liu, Yufeng
Estimation of inverse covariance matrices, known as precision matrices, is important in various areas of statistical analysis. In this article, we consider estimation of multiple precision matrices sharing some common structures. In this setting, estimating each precision matrix separately can be suboptimal as it ignores potential common structures. This article proposes a new approach to parameterize each precision matrix as a sum of common and unique components and estimate multiple precision matrices in a constrained l 1 minimization framework. We establish both estimation and selection consistency of the proposed estimator in the high dimensional setting. The proposed estimator achieves a faster convergence rate for the common structure in certain cases. Our numerical examples demonstrate that our new estimator can perform better than several existing methods in terms of the entropy loss and Frobenius loss. An application to a glioblastoma cancer data set reveals some interesting gene networks across multiple cancer subtypes.
ERRORJ. Covariance processing code system for JENDL. Version 2
International Nuclear Information System (INIS)
Chiba, Gou
2003-09-01
ERRORJ is the covariance processing code system for Japanese Evaluated Nuclear Data Library (JENDL) that can produce group-averaged covariance data to apply it to the uncertainty analysis of nuclear characteristics. ERRORJ can treat the covariance data for cross sections including resonance parameters as well as angular distributions and energy distributions of secondary neutrons which could not be dealt with by former covariance processing codes. In addition, ERRORJ can treat various forms of multi-group cross section and produce multi-group covariance file with various formats. This document describes an outline of ERRORJ and how to use it. (author)
Chemiluminescence in cryogenic matrices
Lotnik, S. V.; Kazakov, Valeri P.
1989-04-01
The literature data on chemiluminescence (CL) in cryogenic matrices have been classified and correlated for the first time. The role of studies on phosphorescence and CL at low temperatures in the development of cryochemistry is shown. The features of low-temperature CL in matrices of nitrogen and inert gases (fine structure of spectra, matrix effects) and the data on the mobility and reactivity of atoms and radicals at very low temperatures are examined. The trends in the development of studies on CL in cryogenic matrices, such as the search for systems involving polyatomic molecules and extending the forms of CL reactions, are followed. The reactions of active nitrogen with hydrocarbons that are accompanied by light emission and CL in the oxidation of carbenes at T >= 77 K are examined. The bibliography includes 112 references.
Matrices in Engineering Problems
Tobias, Marvin
2011-01-01
This book is intended as an undergraduate text introducing matrix methods as they relate to engineering problems. It begins with the fundamentals of mathematics of matrices and determinants. Matrix inversion is discussed, with an introduction of the well known reduction methods. Equation sets are viewed as vector transformations, and the conditions of their solvability are explored. Orthogonal matrices are introduced with examples showing application to many problems requiring three dimensional thinking. The angular velocity matrix is shown to emerge from the differentiation of the 3-D orthogo
Slater, David; Ruef, Anne; Sanabria‐Diaz, Gretel; Preisig, Martin; Kherif, Ferath; Draganski, Bogdan; Lutti, Antoine
2017-01-01
Abstract Networks of anatomical covariance have been widely used to study connectivity patterns in both normal and pathological brains based on the concurrent changes of morphometric measures (i.e., cortical thickness) between brain structures across subjects (Evans, 2013). However, the existence of networks of microstructural changes within brain tissue has been largely unexplored so far. In this article, we studied in vivo the concurrent myelination processes among brain anatomical structures that gathered together emerge to form nonrandom networks. We name these “networks of myelin covariance” (Myelin‐Nets). The Myelin‐Nets were built from quantitative Magnetization Transfer data—an in‐vivo magnetic resonance imaging (MRI) marker of myelin content. The synchronicity of the variations in myelin content between anatomical regions was measured by computing the Pearson's correlation coefficient. We were especially interested in elucidating the effect of age on the topological organization of the Myelin‐Nets. We therefore selected two age groups: Young‐Age (20–31 years old) and Old‐Age (60–71 years old) and a pool of participants from 48 to 87 years old for a Myelin‐Nets aging trajectory study. We found that the topological organization of the Myelin‐Nets is strongly shaped by aging processes. The global myelin correlation strength, between homologous regions and locally in different brain lobes, showed a significant dependence on age. Interestingly, we also showed that the aging process modulates the resilience of the Myelin‐Nets to damage of principal network structures. In summary, this work sheds light on the organizational principles driving myelination and myelin degeneration in brain gray matter and how such patterns are modulated by aging. PMID:29271053
Pozsgay, Victor; Hirsch, Flavien; Branciard, Cyril; Brunner, Nicolas
2017-12-01
We introduce Bell inequalities based on covariance, one of the most common measures of correlation. Explicit examples are discussed, and violations in quantum theory are demonstrated. A crucial feature of these covariance Bell inequalities is their nonlinearity; this has nontrivial consequences for the derivation of their local bound, which is not reached by deterministic local correlations. For our simplest inequality, we derive analytically tight bounds for both local and quantum correlations. An interesting application of covariance Bell inequalities is that they can act as "shared randomness witnesses": specifically, the value of the Bell expression gives device-independent lower bounds on both the dimension and the entropy of the shared random variable in a local model.
Fusion algebra and fusing matrices
International Nuclear Information System (INIS)
Gao Yihong; Li Miao; Yu Ming.
1989-09-01
We show that the Wilson line operators in topological field theories form a fusion algebra. In general, the fusion algebra is a relation among the fusing (F) matrices. In the case of the SU(2) WZW model, some special F matrix elements are found in this way, and the remaining F matrix elements are then determined up to a sign. In addition, the S(j) modular transformation of the one point blocks on the torus is worked out. Our results are found to agree with those obtained from the quantum group method. (author). 24 refs
Infinite matrices and sequence spaces
Cooke, Richard G
2014-01-01
This clear and correct summation of basic results from a specialized field focuses on the behavior of infinite matrices in general, rather than on properties of special matrices. Three introductory chapters guide students to the manipulation of infinite matrices, covering definitions and preliminary ideas, reciprocals of infinite matrices, and linear equations involving infinite matrices.From the fourth chapter onward, the author treats the application of infinite matrices to the summability of divergent sequences and series from various points of view. Topics include consistency, mutual consi
Energy Technology Data Exchange (ETDEWEB)
Bourget, Antoine; Troost, Jan [Laboratoire de Physique Théorique, École Normale Supérieure, 24 rue Lhomond, 75005 Paris (France)
2016-03-23
We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N=(4,4) supersymmetry in two dimensions. For seed target spaces K3 and T{sup 4}, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.
2014-04-01
materials, the affinity ligand would need identification , as well as chemistries that graft the affinity ligand onto the surface of magnetic...ACTIVE CAPTURE MATRICES FOR THE DETECTION/ IDENTIFICATION OF PHARMACEUTICALS...6 As shown in Figure 2.3-1a, the spectra exhibit similar baselines and the spectral peaks lineup . Under these circumstances, the spectral
Kenyon, Chris R
2018-01-01
HIV prevalence varies from 1.7% to 14.8% between ethnic groups in Uganda. Understanding the factors responsible for this heterogeneity in HIV spread may guide prevention efforts. We evaluated the relationship between HIV prevalence by ethnic group and a range of risk factors as well as the prevalence of herpes simplex virus-2 (HSV-2), syphilis and symptomatic STIs in the 2004/2005 Uganda HIV/AIDS Sero-Behavioural Survey-a two stage, nationally representative, population based survey of 15-59-year-olds. Spearman's correlation was used to assess the relationship between HIV prevalence and each variable. There was a positive association between HIV prevalence and HSV-2, symptomatic STIs and high-risk sex (sex with a non-cohabiting, non-marital partner) for women. Non-significant positive associations were present between HIV and high-risk sex for men and lifetime number of partners for men and women. Variation in sexual behavior may contribute to the variations in HIV, HSV-2 and other STI prevalence by ethnic group in Uganda. Further work is necessary to delineate which combinations of risk factors determine differential STI spread in Uganda.
Dispersion curve estimation via a spatial covariance method with ultrasonic wavefield imaging.
Chong, See Yenn; Todd, Michael D
2018-05-01
Numerous Lamb wave dispersion curve estimation methods have been developed to support damage detection and localization strategies in non-destructive evaluation/structural health monitoring (NDE/SHM) applications. In this paper, the covariance matrix is used to extract features from an ultrasonic wavefield imaging (UWI) scan in order to estimate the phase and group velocities of S0 and A0 modes. A laser ultrasonic interrogation method based on a Q-switched laser scanning system was used to interrogate full-field ultrasonic signals in a 2-mm aluminum plate at five different frequencies. These full-field ultrasonic signals were processed in three-dimensional space-time domain. Then, the time-dependent covariance matrices of the UWI were obtained based on the vector variables in Cartesian and polar coordinate spaces for all time samples. A spatial covariance map was constructed to show spatial correlations within the full wavefield. It was observed that the variances may be used as a feature for S0 and A0 mode properties. The phase velocity and the group velocity were found using a variance map and an enveloped variance map, respectively, at five different frequencies. This facilitated the estimation of Lamb wave dispersion curves. The estimated dispersion curves of the S0 and A0 modes showed good agreement with the theoretical dispersion curves. Copyright © 2018 Elsevier B.V. All rights reserved.
Covariant phase difference observables in quantum mechanics
International Nuclear Information System (INIS)
Heinonen, Teiko; Lahti, Pekka; Pellonpaeae, Juha-Pekka
2003-01-01
Covariant phase difference observables are determined in two different ways, by a direct computation and by a group theoretical method. A characterization of phase difference observables which can be expressed as the difference of two phase observables is given. The classical limits of such phase difference observables are determined and the Pegg-Barnett phase difference distribution is obtained from the phase difference representation. The relation of Ban's theory to the covariant phase theories is exhibited
Generalized Linear Covariance Analysis
Carpenter, James R.; Markley, F. Landis
2014-01-01
This talk presents a comprehensive approach to filter modeling for generalized covariance analysis of both batch least-squares and sequential estimators. We review and extend in two directions the results of prior work that allowed for partitioning of the state space into solve-for'' and consider'' parameters, accounted for differences between the formal values and the true values of the measurement noise, process noise, and textita priori solve-for and consider covariances, and explicitly partitioned the errors into subspaces containing only the influence of the measurement noise, process noise, and solve-for and consider covariances. In this work, we explicitly add sensitivity analysis to this prior work, and relax an implicit assumption that the batch estimator's epoch time occurs prior to the definitive span. We also apply the method to an integrated orbit and attitude problem, in which gyro and accelerometer errors, though not estimated, influence the orbit determination performance. We illustrate our results using two graphical presentations, which we call the variance sandpile'' and the sensitivity mosaic,'' and we compare the linear covariance results to confidence intervals associated with ensemble statistics from a Monte Carlo analysis.
A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance.
Zheng, Binqi; Fu, Pengcheng; Li, Baoqing; Yuan, Xiaobing
2018-03-07
The Unscented Kalman filter (UKF) may suffer from performance degradation and even divergence while mismatch between the noise distribution assumed as a priori by users and the actual ones in a real nonlinear system. To resolve this problem, this paper proposes a robust adaptive UKF (RAUKF) to improve the accuracy and robustness of state estimation with uncertain noise covariance. More specifically, at each timestep, a standard UKF will be implemented first to obtain the state estimations using the new acquired measurement data. Then an online fault-detection mechanism is adopted to judge if it is necessary to update current noise covariance. If necessary, innovation-based method and residual-based method are used to calculate the estimations of current noise covariance of process and measurement, respectively. By utilizing a weighting factor, the filter will combine the last noise covariance matrices with the estimations as the new noise covariance matrices. Finally, the state estimations will be corrected according to the new noise covariance matrices and previous state estimations. Compared with the standard UKF and other adaptive UKF algorithms, RAUKF converges faster to the actual noise covariance and thus achieves a better performance in terms of robustness, accuracy, and computation for nonlinear estimation with uncertain noise covariance, which is demonstrated by the simulation results.
Introduction to matrices and vectors
Schwartz, Jacob T
2001-01-01
In this concise undergraduate text, the first three chapters present the basics of matrices - in later chapters the author shows how to use vectors and matrices to solve systems of linear equations. 1961 edition.
International Nuclear Information System (INIS)
Sebestyen, A.
1975-07-01
The principle of covariance is extended to coordinates corresponding to internal degrees of freedom. The conditions for a system to be isolated are given. It is shown how internal forces arise in such systems. Equations for internal fields are derived. By an interpretation of the generalized coordinates based on group theory it is shown how particles of the ordinary sense enter into the model and as a simple application the gravitational interaction of two pointlike particles is considered and the shift of the perihelion is deduced. (Sz.Z.)
Bapat, Ravindra B
2014-01-01
This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reo...
How (not) to teach Lorentz covariance of the Dirac equation
International Nuclear Information System (INIS)
Nikolić, Hrvoje
2014-01-01
In the textbook proofs of the Lorentz covariance of the Dirac equation, one treats the wave function as a spinor and gamma matrices as scalars, leading to a quite complicated formalism with several pedagogic drawbacks. As an alternative, I propose to teach the Dirac equation and its Lorentz covariance by using a much simpler, but physically equivalent formalism, in which these drawbacks do not appear. In this alternative formalism, the wave function transforms as a scalar and gamma matrices as components of a vector, such that the standard physically relevant bilinear combinations do not change their transformation properties. The alternative formalism allows also a natural construction of some additional non-standard bilinear combinations with well-defined transformation properties. (paper)
Hierarchical quark mass matrices
International Nuclear Information System (INIS)
Rasin, A.
1998-02-01
I define a set of conditions that the most general hierarchical Yukawa mass matrices have to satisfy so that the leading rotations in the diagonalization matrix are a pair of (2,3) and (1,2) rotations. In addition to Fritzsch structures, examples of such hierarchical structures include also matrices with (1,3) elements of the same order or even much larger than the (1,2) elements. Such matrices can be obtained in the framework of a flavor theory. To leading order, the values of the angle in the (2,3) plane (s 23 ) and the angle in the (1,2) plane (s 12 ) do not depend on the order in which they are taken when diagonalizing. We find that any of the Cabbibo-Kobayashi-Maskawa matrix parametrizations that consist of at least one (1,2) and one (2,3) rotation may be suitable. In the particular case when the s 13 diagonalization angles are sufficiently small compared to the product s 12 s 23 , two special CKM parametrizations emerge: the R 12 R 23 R 12 parametrization follows with s 23 taken before the s 12 rotation, and vice versa for the R 23 R 12 R 23 parametrization. (author)
Estimation of covariance matrix on the experimental data for nuclear data evaluation
International Nuclear Information System (INIS)
Murata, T.
1985-01-01
In order to evaluate fission and capture cross sections of some U and Pu isotopes for JENDL-3, we have a plan for evaluating them simultaneously with a least-squares method. For the simultaneous evaluation, the covariance matrix is required for each experimental data set. In the present work, we have studied the procedures for deriving the covariance matrix from the error data given in the experimental papers. The covariance matrices were obtained using the partial errors and estimated correlation coefficients between the same type partial errors for different neutron energy. Some examples of the covariance matrix estimation are explained and the preliminary results of the simultaneous evaluation are presented. (author)
Covariant field equations in supergravity
Energy Technology Data Exchange (ETDEWEB)
Vanhecke, Bram [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium); Ghent University, Faculty of Physics, Gent (Belgium); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)
2017-12-15
Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Covariant field equations in supergravity
International Nuclear Information System (INIS)
Vanhecke, Bram; Proeyen, Antoine van
2017-01-01
Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Intrinsic Density Matrices of the Nuclear Shell Model
International Nuclear Information System (INIS)
Deveikis, A.; Kamuntavichius, G.
1996-01-01
A new method for calculation of shell model intrinsic density matrices, defined as two-particle density matrices integrated over the centre-of-mass position vector of two last particles and complemented with isospin variables, has been developed. The intrinsic density matrices obtained are completely antisymmetric, translation-invariant, and do not employ a group-theoretical classification of antisymmetric states. They are used for exact realistic density matrix expansion within the framework of the reduced Hamiltonian method. The procedures based on precise arithmetic for calculation of the intrinsic density matrices that involve no numerical diagonalization or orthogonalization have been developed and implemented in the computer code. (author). 11 refs., 2 tabs
Inference for High-dimensional Differential Correlation Matrices.
Cai, T Tony; Zhang, Anru
2016-01-01
Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed.
Progress on Nuclear Data Covariances: AFCI-1.2 Covariance Library
International Nuclear Information System (INIS)
Oblozinsky, P.; Oblozinsky, P.; Mattoon, C.M.; Herman, M.; Mughabghab, S.F.; Pigni, M.T.; Talou, P.; Hale, G.M.; Kahler, A.C.; Kawano, T.; Little, R.C.; Young, P.G
2009-01-01
Improved neutron cross section covariances were produced for 110 materials including 12 light nuclei (coolants and moderators), 78 structural materials and fission products, and 20 actinides. Improved covariances were organized into AFCI-1.2 covariance library in 33-energy groups, from 10 -5 eV to 19.6 MeV. BNL contributed improved covariance data for the following materials: 23 Na and 55 Mn where more detailed evaluation was done; improvements in major structural materials 52 Cr, 56 Fe and 58 Ni; improved estimates for remaining structural materials and fission products; improved covariances for 14 minor actinides, and estimates of mubar covariances for 23 Na and 56 Fe. LANL contributed improved covariance data for 235 U and 239 Pu including prompt neutron fission spectra and completely new evaluation for 240 Pu. New R-matrix evaluation for 16 O including mubar covariances is under completion. BNL assembled the library and performed basic testing using improved procedures including inspection of uncertainty and correlation plots for each material. The AFCI-1.2 library was released to ANL and INL in August 2009.
Covariance expressions for eigenvalue and eigenvector problems
Liounis, Andrew J.
There are a number of important scientific and engineering problems whose solutions take the form of an eigenvalue--eigenvector problem. Some notable examples include solutions to linear systems of ordinary differential equations, controllability of linear systems, finite element analysis, chemical kinetics, fitting ellipses to noisy data, and optimal estimation of attitude from unit vectors. In many of these problems, having knowledge of the eigenvalue and eigenvector Jacobians is either necessary or is nearly as important as having the solution itself. For instance, Jacobians are necessary to find the uncertainty in a computed eigenvalue or eigenvector estimate. This uncertainty, which is usually represented as a covariance matrix, has been well studied for problems similar to the eigenvalue and eigenvector problem, such as singular value decomposition. There has been substantially less research on the covariance of an optimal estimate originating from an eigenvalue-eigenvector problem. In this thesis we develop two general expressions for the Jacobians of eigenvalues and eigenvectors with respect to the elements of their parent matrix. The expressions developed make use of only the parent matrix and the eigenvalue and eigenvector pair under consideration. In addition, they are applicable to any general matrix (including complex valued matrices, eigenvalues, and eigenvectors) as long as the eigenvalues are simple. Alongside this, we develop expressions that determine the uncertainty in a vector estimate obtained from an eigenvalue-eigenvector problem given the uncertainty of the terms of the matrix. The Jacobian expressions developed are numerically validated with forward finite, differencing and the covariance expressions are validated using Monte Carlo analysis. Finally, the results from this work are used to determine covariance expressions for a variety of estimation problem examples and are also applied to the design of a dynamical system.
Lorentz Covariance of Langevin Equation
International Nuclear Information System (INIS)
Koide, T.; Denicol, G.S.; Kodama, T.
2008-01-01
Relativistic covariance of a Langevin type equation is discussed. The requirement of Lorentz invariance generates an entanglement between the force and noise terms so that the noise itself should not be a covariant quantity. (author)
Distance covariance for stochastic processes
DEFF Research Database (Denmark)
Matsui, Muneya; Mikosch, Thomas Valentin; Samorodnitsky, Gennady
2017-01-01
The distance covariance of two random vectors is a measure of their dependence. The empirical distance covariance and correlation can be used as statistical tools for testing whether two random vectors are independent. We propose an analog of the distance covariance for two stochastic processes...
M Wedderburn, J H
1934-01-01
It is the organization and presentation of the material, however, which make the peculiar appeal of the book. This is no mere compendium of results-the subject has been completely reworked and the proofs recast with the skill and elegance which come only from years of devotion. -Bulletin of the American Mathematical Society The very clear and simple presentation gives the reader easy access to the more difficult parts of the theory. -Jahrbuch über die Fortschritte der Mathematik In 1937, the theory of matrices was seventy-five years old. However, many results had only recently evolved from sp
Schneider, Hans
1989-01-01
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t
Intermittency and random matrices
Sokoloff, Dmitry; Illarionov, E. A.
2015-08-01
A spectacular phenomenon of intermittency, i.e. a progressive growth of higher statistical moments of a physical field excited by an instability in a random medium, attracted the attention of Zeldovich in the last years of his life. At that time, the mathematical aspects underlying the physical description of this phenomenon were still under development and relations between various findings in the field remained obscure. Contemporary results from the theory of the product of independent random matrices (the Furstenberg theory) allowed the elaboration of the phenomenon of intermittency in a systematic way. We consider applications of the Furstenberg theory to some problems in cosmology and dynamo theory.
Covariant n2-plet mass formulas
International Nuclear Information System (INIS)
Davidson, A.
1979-01-01
Using a generalized internal symmetry group analogous to the Lorentz group, we have constructed a covariant n 2 -plet mass operator. This operator is built as a scalar matrix in the (n;n*) representation, and its SU(n) breaking parameters are identified as intrinsic boost ones. Its basic properties are: covariance, Hermiticity, positivity, charge conjugation, quark contents, and a self-consistent n 2 -1, 1 mixing. The GMO and the Okubo formulas are obtained by considering two different limits of the same generalized mass formula
Accelerating Matrix-Vector Multiplication on Hierarchical Matrices Using Graphical Processing Units
Boukaram, W.
2015-03-25
Large dense matrices arise from the discretization of many physical phenomena in computational sciences. In statistics very large dense covariance matrices are used for describing random fields and processes. One can, for instance, describe distribution of dust particles in the atmosphere, concentration of mineral resources in the earth\\'s crust or uncertain permeability coefficient in reservoir modeling. When the problem size grows, storing and computing with the full dense matrix becomes prohibitively expensive both in terms of computational complexity and physical memory requirements. Fortunately, these matrices can often be approximated by a class of data sparse matrices called hierarchical matrices (H-matrices) where various sub-blocks of the matrix are approximated by low rank matrices. These matrices can be stored in memory that grows linearly with the problem size. In addition, arithmetic operations on these H-matrices, such as matrix-vector multiplication, can be completed in almost linear time. Originally the H-matrix technique was developed for the approximation of stiffness matrices coming from partial differential and integral equations. Parallelizing these arithmetic operations on the GPU has been the focus of this work and we will present work done on the matrix vector operation on the GPU using the KSPARSE library.
Modelling the Covariance Structure in Marginal Multivariate Count Models
DEFF Research Database (Denmark)
Bonat, W. H.; Olivero, J.; Grande-Vega, M.
2017-01-01
The main goal of this article is to present a flexible statistical modelling framework to deal with multivariate count data along with longitudinal and repeated measures structures. The covariance structure for each response variable is defined in terms of a covariance link function combined...... be used to indicate whether there was statistical evidence of a decline in blue duikers and other species hunted during the study period. Determining whether observed drops in the number of animals hunted are indeed true is crucial to assess whether species depletion effects are taking place in exploited...... with a matrix linear predictor involving known matrices. In order to specify the joint covariance matrix for the multivariate response vector, the generalized Kronecker product is employed. We take into account the count nature of the data by means of the power dispersion function associated with the Poisson...
The recurrence sequences via Sylvester matrices
Karaduman, Erdal; Deveci, Ömür
2017-07-01
In this work, we define the Pell-Jacobsthal-Slyvester sequence and the Jacobsthal-Pell-Slyvester sequence by using the Slyvester matrices which are obtained from the characteristic polynomials of the Pell and Jacobsthal sequences and then, we study the sequences defined modulo m. Also, we obtain the cyclic groups and the semigroups from the generating matrices of these sequences when read modulo m and then, we derive the relationships among the orders of the cyclic groups and the periods of the sequences. Furthermore, we redefine Pell-Jacobsthal-Slyvester sequence and the Jacobsthal-Pell-Slyvester sequence by means of the elements of the groups and then, we examine them in the finite groups.
Exploiting Data Sparsity In Covariance Matrix Computations on Heterogeneous Systems
Charara, Ali M.
2018-05-24
Covariance matrices are ubiquitous in computational sciences, typically describing the correlation of elements of large multivariate spatial data sets. For example, covari- ance matrices are employed in climate/weather modeling for the maximum likelihood estimation to improve prediction, as well as in computational ground-based astronomy to enhance the observed image quality by filtering out noise produced by the adap- tive optics instruments and atmospheric turbulence. The structure of these covariance matrices is dense, symmetric, positive-definite, and often data-sparse, therefore, hier- archically of low-rank. This thesis investigates the performance limit of dense matrix computations (e.g., Cholesky factorization) on covariance matrix problems as the number of unknowns grows, and in the context of the aforementioned applications. We employ recursive formulations of some of the basic linear algebra subroutines (BLAS) to accelerate the covariance matrix computation further, while reducing data traffic across the memory subsystems layers. However, dealing with large data sets (i.e., covariance matrices of billions in size) can rapidly become prohibitive in memory footprint and algorithmic complexity. Most importantly, this thesis investigates the tile low-rank data format (TLR), a new compressed data structure and layout, which is valuable in exploiting data sparsity by approximating the operator. The TLR com- pressed data structure allows approximating the original problem up to user-defined numerical accuracy. This comes at the expense of dealing with tasks with much lower arithmetic intensities than traditional dense computations. In fact, this thesis con- solidates the two trends of dense and data-sparse linear algebra for HPC. Not only does the thesis leverage recursive formulations for dense Cholesky-based matrix al- gorithms, but it also implements a novel TLR-Cholesky factorization using batched linear algebra operations to increase hardware occupancy and
Complex Wedge-Shaped Matrices: A Generalization of Jacobi Matrices
Czech Academy of Sciences Publication Activity Database
Hnětynková, Iveta; Plešinger, M.
2015-01-01
Roč. 487, 15 December (2015), s. 203-219 ISSN 0024-3795 R&D Projects: GA ČR GA13-06684S Keywords : eigenvalues * eigenvector * wedge-shaped matrices * generalized Jacobi matrices * band (or block) Krylov subspace methods Subject RIV: BA - General Mathematics Impact factor: 0.965, year: 2015
Tensor Dictionary Learning for Positive Definite Matrices.
Sivalingam, Ravishankar; Boley, Daniel; Morellas, Vassilios; Papanikolopoulos, Nikolaos
2015-11-01
Sparse models have proven to be extremely successful in image processing and computer vision. However, a majority of the effort has been focused on sparse representation of vectors and low-rank models for general matrices. The success of sparse modeling, along with popularity of region covariances, has inspired the development of sparse coding approaches for these positive definite descriptors. While in earlier work, the dictionary was formed from all, or a random subset of, the training signals, it is clearly advantageous to learn a concise dictionary from the entire training set. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between sparse coding and dictionary update stages, and different atom update methods are described. A discriminative version of the dictionary learning approach is also proposed, which simultaneously learns dictionaries for different classes in classification or clustering. Experimental results demonstrate the advantage of learning dictionaries from data both from reconstruction and classification viewpoints. Finally, a software library is presented comprising C++ binaries for all the positive definite sparse coding and dictionary learning approaches presented here.
International Nuclear Information System (INIS)
Ginelli, Francesco; Politi, Antonio; Chaté, Hugues; Livi, Roberto
2013-01-01
Recent years have witnessed a growing interest in covariant Lyapunov vectors (CLVs) which span local intrinsic directions in the phase space of chaotic systems. Here, we review the basic results of ergodic theory, with a specific reference to the implications of Oseledets’ theorem for the properties of the CLVs. We then present a detailed description of a ‘dynamical’ algorithm to compute the CLVs and show that it generically converges exponentially in time. We also discuss its numerical performance and compare it with other algorithms presented in the literature. We finally illustrate how CLVs can be used to quantify deviations from hyperbolicity with reference to a dissipative system (a chain of Hénon maps) and a Hamiltonian model (a Fermi–Pasta–Ulam chain). This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (paper)
Deriving covariant holographic entanglement
Energy Technology Data Exchange (ETDEWEB)
Dong, Xi [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States); Lewkowycz, Aitor [Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Rangamani, Mukund [Center for Quantum Mathematics and Physics (QMAP), Department of Physics, University of California, Davis, CA 95616 (United States)
2016-11-07
We provide a gravitational argument in favour of the covariant holographic entanglement entropy proposal. In general time-dependent states, the proposal asserts that the entanglement entropy of a region in the boundary field theory is given by a quarter of the area of a bulk extremal surface in Planck units. The main element of our discussion is an implementation of an appropriate Schwinger-Keldysh contour to obtain the reduced density matrix (and its powers) of a given region, as is relevant for the replica construction. We map this contour into the bulk gravitational theory, and argue that the saddle point solutions of these replica geometries lead to a consistent prescription for computing the field theory Rényi entropies. In the limiting case where the replica index is taken to unity, a local analysis suffices to show that these saddles lead to the extremal surfaces of interest. We also comment on various properties of holographic entanglement that follow from this construction.
Conformally covariant composite operators in quantum chromodynamics
International Nuclear Information System (INIS)
Craigie, N.S.; Dobrev, V.K.; Todorov, I.T.
1983-03-01
Conformal covariance is shown to determine renormalization properties of composite operators in QCD and in the C 6 3 -model at the one-loop level. Its relevance to higher order (renormalization group improved) perturbative calculations in the short distance limit is also discussed. Light cone operator product expansions and spectral representations for wave functions in QCD are derived. (author)
Covariant differential calculus on the quantum hyperplane
International Nuclear Information System (INIS)
Wess, J.
1991-01-01
We develop a differential calculus on the quantum hyperplane covariant with respect to the action of the quantum group GL q (n). This is a concrete example of noncommutative differential geometry. We describe the general constraints for a noncommutative differential calculus and verify that the example given here satisfies all these constraints. We also discuss briefly the integration over the quantum plane. (orig.)
VanderLaan Circulant Type Matrices
Directory of Open Access Journals (Sweden)
Hongyan Pan
2015-01-01
Full Text Available Circulant matrices have become a satisfactory tools in control methods for modern complex systems. In the paper, VanderLaan circulant type matrices are presented, which include VanderLaan circulant, left circulant, and g-circulant matrices. The nonsingularity of these special matrices is discussed by the surprising properties of VanderLaan numbers. The exact determinants of VanderLaan circulant type matrices are given by structuring transformation matrices, determinants of well-known tridiagonal matrices, and tridiagonal-like matrices. The explicit inverse matrices of these special matrices are obtained by structuring transformation matrices, inverses of known tridiagonal matrices, and quasi-tridiagonal matrices. Three kinds of norms and lower bound for the spread of VanderLaan circulant and left circulant matrix are given separately. And we gain the spectral norm of VanderLaan g-circulant matrix.
Directory of Open Access Journals (Sweden)
Ryan Louise
2007-11-01
Full Text Available Abstract Background The Conditional Autoregressive (CAR model is widely used in many small-area ecological studies to analyse outcomes measured at an areal level. There has been little evaluation of the influence of different neighbourhood weight matrix structures on the amount of smoothing performed by the CAR model. We examined this issue in detail. Methods We created several neighbourhood weight matrices and applied them to a large dataset of births and birth defects in New South Wales (NSW, Australia within 198 Statistical Local Areas. Between the years 1995–2003, there were 17,595 geocoded birth defects and 770,638 geocoded birth records with available data. Spatio-temporal models were developed with data from 1995–2000 and their fit evaluated within the following time period: 2001–2003. Results We were able to create four adjacency-based weight matrices, seven distance-based weight matrices and one matrix based on similarity in terms of a key covariate (i.e. maternal age. In terms of agreement between observed and predicted relative risks, categorised in epidemiologically relevant groups, generally the distance-based matrices performed better than the adjacency-based neighbourhoods. In terms of recovering the underlying risk structure, the weight-7 model (smoothing by maternal-age 'Covariate model' was able to correctly classify 35/47 high-risk areas (sensitivity 74% with a specificity of 47%, and the 'Gravity' model had sensitivity and specificity values of 74% and 39% respectively. Conclusion We found considerable differences in the smoothing properties of the CAR model, depending on the type of neighbours specified. This in turn had an effect on the models' ability to recover the observed risk in an area. Prior to risk mapping or ecological modelling, an exploratory analysis of the neighbourhood weight matrix to guide the choice of a suitable weight matrix is recommended. Alternatively, the weight matrix can be chosen a priori
Abel-grassmann's groupoids of modulo matrices
International Nuclear Information System (INIS)
Javaid, Q.; Awan, M.D.; Naqvi, S.H.A.
2016-01-01
The binary operation of usual addition is associative in all matrices over R. However, a binary operation of addition in matrices over Z/sub n/ of a nonassociative structures of AG-groupoids and AG-groups are defined and investigated here. It is shown that both these structures exist for every integer n >≥ 3. Various properties of these structures are explored like: (i) Every AG-groupoid of matrices over Z/sub n/ is transitively commutative AG-groupoid and is a cancellative AG-groupoid if n is prime. (ii) Every AG-groupoid of matrices over Z/sub n/ of Type-II is a T/sup 3/-AG-groupoid. (iii) An AG-groupoid of matrices over Z/sub n/ ; G /sub nAG/(t,u), is an AG-band, if t+u=1(mod n). (author)
Diagonalization of the mass matrices
International Nuclear Information System (INIS)
Rhee, S.S.
1984-01-01
It is possible to make 20 types of 3x3 mass matrices which are hermitian. We have obtained unitary matrices which could diagonalize each mass matrix. Since the three elements of mass matrix can be expressed in terms of the three eigenvalues, msub(i), we can also express the unitary matrix in terms of msub(i). (Author)
Enhancing Understanding of Transformation Matrices
Dick, Jonathan; Childrey, Maria
2012-01-01
With the Common Core State Standards' emphasis on transformations, teachers need a variety of approaches to increase student understanding. Teaching matrix transformations by focusing on row vectors gives students tools to create matrices to perform transformations. This empowerment opens many doors: Students are able to create the matrices for…
General Galilei Covariant Gaussian Maps
Gasbarri, Giulio; Toroš, Marko; Bassi, Angelo
2017-09-01
We characterize general non-Markovian Gaussian maps which are covariant under Galilean transformations. In particular, we consider translational and Galilean covariant maps and show that they reduce to the known Holevo result in the Markovian limit. We apply the results to discuss measures of macroscopicity based on classicalization maps, specifically addressing dissipation, Galilean covariance and non-Markovianity. We further suggest a possible generalization of the macroscopicity measure defined by Nimmrichter and Hornberger [Phys. Rev. Lett. 110, 16 (2013)].
Fast Computing for Distance Covariance
Huo, Xiaoming; Szekely, Gabor J.
2014-01-01
Distance covariance and distance correlation have been widely adopted in measuring dependence of a pair of random variables or random vectors. If the computation of distance covariance and distance correlation is implemented directly accordingly to its definition then its computational complexity is O($n^2$) which is a disadvantage compared to other faster methods. In this paper we show that the computation of distance covariance and distance correlation of real valued random variables can be...
Hierarchical matrices algorithms and analysis
Hackbusch, Wolfgang
2015-01-01
This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists ...
Intrinsic character of Stokes matrices
Gagnon, Jean-François; Rousseau, Christiane
2017-02-01
Two germs of linear analytic differential systems x k + 1Y‧ = A (x) Y with a non-resonant irregular singularity are analytically equivalent if and only if they have the same eigenvalues and equivalent collections of Stokes matrices. The Stokes matrices are the transition matrices between sectors on which the system is analytically equivalent to its formal normal form. Each sector contains exactly one separating ray for each pair of eigenvalues. A rotation in S allows supposing that R+ lies in the intersection of two sectors. Reordering of the coordinates of Y allows ordering the real parts of the eigenvalues, thus yielding triangular Stokes matrices. However, the choice of the rotation in x is not canonical. In this paper we establish how the collection of Stokes matrices depends on this rotation, and hence on a chosen order of the projection of the eigenvalues on a line through the origin.
Smooth individual level covariates adjustment in disease mapping.
Huque, Md Hamidul; Anderson, Craig; Walton, Richard; Woolford, Samuel; Ryan, Louise
2018-05-01
Spatial models for disease mapping should ideally account for covariates measured both at individual and area levels. The newly available "indiCAR" model fits the popular conditional autoregresssive (CAR) model by accommodating both individual and group level covariates while adjusting for spatial correlation in the disease rates. This algorithm has been shown to be effective but assumes log-linear associations between individual level covariates and outcome. In many studies, the relationship between individual level covariates and the outcome may be non-log-linear, and methods to track such nonlinearity between individual level covariate and outcome in spatial regression modeling are not well developed. In this paper, we propose a new algorithm, smooth-indiCAR, to fit an extension to the popular conditional autoregresssive model that can accommodate both linear and nonlinear individual level covariate effects while adjusting for group level covariates and spatial correlation in the disease rates. In this formulation, the effect of a continuous individual level covariate is accommodated via penalized splines. We describe a two-step estimation procedure to obtain reliable estimates of individual and group level covariate effects where both individual and group level covariate effects are estimated separately. This distributed computing framework enhances its application in the Big Data domain with a large number of individual/group level covariates. We evaluate the performance of smooth-indiCAR through simulation. Our results indicate that the smooth-indiCAR method provides reliable estimates of all regression and random effect parameters. We illustrate our proposed methodology with an analysis of data on neutropenia admissions in New South Wales (NSW), Australia. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Beamforming using subspace estimation from a diagonally averaged sample covariance.
Quijano, Jorge E; Zurk, Lisa M
2017-08-01
The potential benefit of a large-aperture sonar array for high resolution target localization is often challenged by the lack of sufficient data required for adaptive beamforming. This paper introduces a Toeplitz-constrained estimator of the clairvoyant signal covariance matrix corresponding to multiple far-field targets embedded in background isotropic noise. The estimator is obtained by averaging along subdiagonals of the sample covariance matrix, followed by covariance extrapolation using the method of maximum entropy. The sample covariance is computed from limited data snapshots, a situation commonly encountered with large-aperture arrays in environments characterized by short periods of local stationarity. Eigenvectors computed from the Toeplitz-constrained covariance are used to construct signal-subspace projector matrices, which are shown to reduce background noise and improve detection of closely spaced targets when applied to subspace beamforming. Monte Carlo simulations corresponding to increasing array aperture suggest convergence of the proposed projector to the clairvoyant signal projector, thereby outperforming the classic projector obtained from the sample eigenvectors. Beamforming performance of the proposed method is analyzed using simulated data, as well as experimental data from the Shallow Water Array Performance experiment.
Covariant electromagnetic field lines
Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.
2017-08-01
Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.
Community Detection for Correlation Matrices
Directory of Open Access Journals (Sweden)
Mel MacMahon
2015-04-01
Full Text Available A challenging problem in the study of complex systems is that of resolving, without prior information, the emergent, mesoscopic organization determined by groups of units whose dynamical activity is more strongly correlated internally than with the rest of the system. The existing techniques to filter correlations are not explicitly oriented towards identifying such modules and can suffer from an unavoidable information loss. A promising alternative is that of employing community detection techniques developed in network theory. Unfortunately, this approach has focused predominantly on replacing network data with correlation matrices, a procedure that we show to be intrinsically biased because of its inconsistency with the null hypotheses underlying the existing algorithms. Here, we introduce, via a consistent redefinition of null models based on random matrix theory, the appropriate correlation-based counterparts of the most popular community detection techniques. Our methods can filter out both unit-specific noise and system-wide dependencies, and the resulting communities are internally correlated and mutually anticorrelated. We also implement multiresolution and multifrequency approaches revealing hierarchically nested subcommunities with “hard” cores and “soft” peripheries. We apply our techniques to several financial time series and identify mesoscopic groups of stocks which are irreducible to a standard, sectorial taxonomy; detect “soft stocks” that alternate between communities; and discuss implications for portfolio optimization and risk management.
Community Detection for Correlation Matrices
MacMahon, Mel; Garlaschelli, Diego
2015-04-01
A challenging problem in the study of complex systems is that of resolving, without prior information, the emergent, mesoscopic organization determined by groups of units whose dynamical activity is more strongly correlated internally than with the rest of the system. The existing techniques to filter correlations are not explicitly oriented towards identifying such modules and can suffer from an unavoidable information loss. A promising alternative is that of employing community detection techniques developed in network theory. Unfortunately, this approach has focused predominantly on replacing network data with correlation matrices, a procedure that we show to be intrinsically biased because of its inconsistency with the null hypotheses underlying the existing algorithms. Here, we introduce, via a consistent redefinition of null models based on random matrix theory, the appropriate correlation-based counterparts of the most popular community detection techniques. Our methods can filter out both unit-specific noise and system-wide dependencies, and the resulting communities are internally correlated and mutually anticorrelated. We also implement multiresolution and multifrequency approaches revealing hierarchically nested subcommunities with "hard" cores and "soft" peripheries. We apply our techniques to several financial time series and identify mesoscopic groups of stocks which are irreducible to a standard, sectorial taxonomy; detect "soft stocks" that alternate between communities; and discuss implications for portfolio optimization and risk management.
Covariation in Natural Causal Induction.
Cheng, Patricia W.; Novick, Laura R.
1991-01-01
Biases and models usually offered by cognitive and social psychology and by philosophy to explain causal induction are evaluated with respect to focal sets (contextually determined sets of events over which covariation is computed). A probabilistic contrast model is proposed as underlying covariation computation in natural causal induction. (SLD)
Special matrices of mathematical physics stochastic, circulant and Bell matrices
Aldrovandi, R
2001-01-01
This book expounds three special kinds of matrices that are of physical interest, centering on physical examples. Stochastic matrices describe dynamical systems of many different types, involving (or not) phenomena like transience, dissipation, ergodicity, nonequilibrium, and hypersensitivity to initial conditions. The main characteristic is growth by agglomeration, as in glass formation. Circulants are the building blocks of elementary Fourier analysis and provide a natural gateway to quantum mechanics and noncommutative geometry. Bell polynomials offer closed expressions for many formulas co
Characterizing protein conformations by correlation analysis of coarse-grained contact matrices
Lindsay, Richard J.; Siess, Jan; Lohry, David P.; McGee, Trevor S.; Ritchie, Jordan S.; Johnson, Quentin R.; Shen, Tongye
2018-01-01
We have developed a method to capture the essential conformational dynamics of folded biopolymers using statistical analysis of coarse-grained segment-segment contacts. Previously, the residue-residue contact analysis of simulation trajectories was successfully applied to the detection of conformational switching motions in biomolecular complexes. However, the application to large protein systems (larger than 1000 amino acid residues) is challenging using the description of residue contacts. Also, the residue-based method cannot be used to compare proteins with different sequences. To expand the scope of the method, we have tested several coarse-graining schemes that group a collection of consecutive residues into a segment. The definition of these segments may be derived from structural and sequence information, while the interaction strength of the coarse-grained segment-segment contacts is a function of the residue-residue contacts. We then perform covariance calculations on these coarse-grained contact matrices. We monitored how well the principal components of the contact matrices is preserved using various rendering functions. The new method was demonstrated to assist the reduction of the degrees of freedom for describing the conformation space, and it potentially allows for the analysis of a system that is approximately tenfold larger compared with the corresponding residue contact-based method. This method can also render a family of similar proteins into the same conformational space, and thus can be used to compare the structures of proteins with different sequences.
An Empirical State Error Covariance Matrix Orbit Determination Example
Frisbee, Joseph H., Jr.
2015-01-01
State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. First, consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. Then it follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix of the estimate will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully include all of the errors in the state estimate. The empirical error covariance matrix is determined from a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm. It is a formally correct, empirical state error covariance matrix obtained through use of the average form of the weighted measurement residual variance performance index rather than the usual total weighted residual form. Based on its formulation, this matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty and whether the source is anticipated or not. It is expected that the empirical error covariance matrix will give a better, statistical representation of the state error in poorly modeled systems or when sensor performance
An Empirical State Error Covariance Matrix for Batch State Estimation
Frisbee, Joseph H., Jr.
2011-01-01
State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the
The invariant theory of matrices
Concini, Corrado De
2017-01-01
This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of m\\times m matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation. Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving the first fundamental theorem that describes a set of generators in the ring of invariants, and the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case...
Quantum matrices in two dimensions
International Nuclear Information System (INIS)
Ewen, H.; Ogievetsky, O.; Wess, J.
1991-01-01
Quantum matrices in two-dimensions, admitting left and right quantum spaces, are classified: they fall into two families, the 2-parametric family GL p,q (2) and a 1-parametric family GL α J (2). Phenomena previously found for GL p,q (2) hold in this general situation: (a) powers of quantum matrices are again quantum and (b) entries of the logarithm of a two-dimensional quantum matrix form a Lie algebra. (orig.)
Covariance Manipulation for Conjunction Assessment
Hejduk, M. D.
2016-01-01
The manipulation of space object covariances to try to provide additional or improved information to conjunction risk assessment is not an uncommon practice. Types of manipulation include fabricating a covariance when it is missing or unreliable to force the probability of collision (Pc) to a maximum value ('PcMax'), scaling a covariance to try to improve its realism or see the effect of covariance volatility on the calculated Pc, and constructing the equivalent of an epoch covariance at a convenient future point in the event ('covariance forecasting'). In bringing these methods to bear for Conjunction Assessment (CA) operations, however, some do not remain fully consistent with best practices for conducting risk management, some seem to be of relatively low utility, and some require additional information before they can contribute fully to risk analysis. This study describes some basic principles of modern risk management (following the Kaplan construct) and then examines the PcMax and covariance forecasting paradigms for alignment with these principles; it then further examines the expected utility of these methods in the modern CA framework. Both paradigms are found to be not without utility, but only in situations that are somewhat carefully circumscribed.
An introduction to the theory of canonical matrices
Turnbull, H W
2004-01-01
Thorough and self-contained, this penetrating study of the theory of canonical matrices presents a detailed consideration of all the theory's principal features. Topics include elementary transformations and bilinear and quadratic forms; canonical reduction of equivalent matrices; subgroups of the group of equivalent transformations; and rational and classical canonical forms. The final chapters explore several methods of canonical reduction, including those of unitary and orthogonal transformations. 1952 edition. Index. Appendix. Historical notes. Bibliographies. 275 problems.
Covariances for measured activation and fission ratios data
International Nuclear Information System (INIS)
Smith, D.L.; Meadows, J.W.; Watanabe, Y.
1986-01-01
Methods which are routinely used in the determination of covariance matrices for both integral and differential activation and fission-ratios data acquired at the Argonne National Laboratory Fast-Neutron Generator Facility (FNG) are discussed. Special consideration is given to problems associated with the estimation of correlations between various identified sources of experimental error. Approximation methods which are commonly used to reduce the labor involved in this analysis to manageable levels are described. Results from some experiments which have been recently carried out in this laboratory are presented to illustrate these procedures. 13 refs., 1 fig., 5 tabs
Evaluation and processing of covariance data
International Nuclear Information System (INIS)
Wagner, M.
1993-01-01
These proceedings of a specialists'meeting on evaluation and processing of covariance data is divided into 4 parts bearing on: part 1- Needs for evaluated covariance data (2 Papers), part 2- generation of covariance data (15 Papers), part 3- Processing of covariance files (2 Papers), part 4-Experience in the use of evaluated covariance data (2 Papers)
On reflectionless equi-transmitting matrices
Directory of Open Access Journals (Sweden)
Pavel Kurasov
2014-01-01
Full Text Available Reflectionless equi-transmitting unitary matrices are studied in connection to matching conditions in quantum graphs. All possible such matrices of size 6 are described explicitly. It is shown that such matrices form 30 six-parameter families intersected along 12 five-parameter families closely connected to conference matrices.
On Galilean covariant quantum mechanics
International Nuclear Information System (INIS)
Horzela, A.; Kapuscik, E.; Kempczynski, J.; Joint Inst. for Nuclear Research, Dubna
1991-08-01
Formalism exhibiting the Galilean covariance of wave mechanics is proposed. A new notion of quantum mechanical forces is introduced. The formalism is illustrated on the example of the harmonic oscillator. (author)
Marroig, G; Cheverud, J M
2001-12-01
Similarity of genetic and phenotypic variation patterns among populations is important for making quantitative inferences about past evolutionary forces acting to differentiate populations and for evaluating the evolution of relationships among traits in response to new functional and developmental relationships. Here, phenotypic co variance and correlation structure is compared among Platyrrhine Neotropical primates. Comparisons range from among species within a genus to the superfamily level. Matrix correlation followed by Mantel's test and vector correlation among responses to random natural selection vectors (random skewers) were used to compare correlation and variance/covariance matrices of 39 skull traits. Sampling errors involved in matrix estimates were taken into account in comparisons using matrix repeatability to set upper limits for each pairwise comparison. Results indicate that covariance structure is not strictly constant but that the amount of variance pattern divergence observed among taxa is generally low and not associated with taxonomic distance. Specific instances of divergence are identified. There is no correlation between the amount of divergence in covariance patterns among the 16 genera and their phylogenetic distance derived from a conjoint analysis of four already published nuclear gene datasets. In contrast, there is a significant correlation between phylogenetic distance and morphological distance (Mahalanobis distance among genus centroids). This result indicates that while the phenotypic means were evolving during the last 30 millions years of New World monkey evolution, phenotypic covariance structures of Neotropical primate skulls have remained relatively consistent. Neotropical primates can be divided into four major groups based on their feeding habits (fruit-leaves, seed-fruits, insect-fruits, and gum-insect-fruits). Differences in phenotypic covariance structure are correlated with differences in feeding habits, indicating
Phenotypic Covariation and Morphological Diversification in the Ruminant Skull.
Haber, Annat
2016-05-01
Differences among clades in their diversification patterns result from a combination of extrinsic and intrinsic factors. In this study, I examined the role of intrinsic factors in the morphological diversification of ruminants, in general, and in the differences between bovids and cervids, in particular. Using skull morphology, which embodies many of the adaptations that distinguish bovids and cervids, I examined 132 of the 200 extant ruminant species. As a proxy for intrinsic constraints, I quantified different aspects of the phenotypic covariation structure within species and compared them with the among-species divergence patterns, using phylogenetic comparative methods. My results show that for most species, divergence is well aligned with their phenotypic covariance matrix and that those that are better aligned have diverged further away from their ancestor. Bovids have dispersed into a wider range of directions in morphospace than cervids, and their overall disparity is higher. This difference is best explained by the lower eccentricity of bovids' within-species covariance matrices. These results are consistent with the role of intrinsic constraints in determining amount, range, and direction of dispersion and demonstrate that intrinsic constraints can influence macroevolutionary patterns even as the covariance structure evolves.
Spectra of sparse random matrices
International Nuclear Information System (INIS)
Kuehn, Reimer
2008-01-01
We compute the spectral density for ensembles of sparse symmetric random matrices using replica. Our formulation of the replica-symmetric ansatz shares the symmetries of that suggested in a seminal paper by Rodgers and Bray (symmetry with respect to permutation of replica and rotation symmetry in the space of replica), but uses a different representation in terms of superpositions of Gaussians. It gives rise to a pair of integral equations which can be solved by a stochastic population-dynamics algorithm. Remarkably our representation allows us to identify pure-point contributions to the spectral density related to the existence of normalizable eigenstates. Our approach is not restricted to matrices defined on graphs with Poissonian degree distribution. Matrices defined on regular random graphs or on scale-free graphs, are easily handled. We also look at matrices with row constraints such as discrete graph Laplacians. Our approach naturally allows us to unfold the total density of states into contributions coming from vertices of different local coordinations and an example of such an unfolding is presented. Our results are well corroborated by numerical diagonalization studies of large finite random matrices
Extensive set of low-fidelity cross sections covariances in fast neutron region
International Nuclear Information System (INIS)
Pigni, M.T.; Herman, M.; Oblozinsky, P.
2008-01-01
We produced a large set of neutron cross section covariances in the energy range of 5 keV - 20 MeV. The covariance matrices were calculated for 307 isotopes divided into three major regions: structural materials, fission products, and heavy nuclei. These results have been developed to provide initial, but consistent estimates of covariance data for nuclear criticality safety applications. The methodology for the determination of such covariance matrices is presented. It combines the nuclear reaction model code EMPIRE which calculates sensitivity of cross sections to nuclear reaction model parameters, and the Bayesian code KALMAN that propagates uncertainties of the model parameters to cross sections. Taking into account large number of materials, only marginal reference to experimental data was made. The covariances were derived from the perturbation of several key model parameters selected by the sensitivity analysis. These parameters refer to the optical model potential, the level densities and the strength of the pre-equilibrium emission. This work represents the first try ever to generate nuclear data covariances on such a large scale. (authors)
Using machine learning to assess covariate balance in matching studies.
Linden, Ariel; Yarnold, Paul R
2016-12-01
In order to assess the effectiveness of matching approaches in observational studies, investigators typically present summary statistics for each observed pre-intervention covariate, with the objective of showing that matching reduces the difference in means (or proportions) between groups to as close to zero as possible. In this paper, we introduce a new approach to distinguish between study groups based on their distributions of the covariates using a machine-learning algorithm called optimal discriminant analysis (ODA). Assessing covariate balance using ODA as compared with the conventional method has several key advantages: the ability to ascertain how individuals self-select based on optimal (maximum-accuracy) cut-points on the covariates; the application to any variable metric and number of groups; its insensitivity to skewed data or outliers; and the use of accuracy measures that can be widely applied to all analyses. Moreover, ODA accepts analytic weights, thereby extending the assessment of covariate balance to any study design where weights are used for covariate adjustment. By comparing the two approaches using empirical data, we are able to demonstrate that using measures of classification accuracy as balance diagnostics produces highly consistent results to those obtained via the conventional approach (in our matched-pairs example, ODA revealed a weak statistically significant relationship not detected by the conventional approach). Thus, investigators should consider ODA as a robust complement, or perhaps alternative, to the conventional approach for assessing covariate balance in matching studies. © 2016 John Wiley & Sons, Ltd.
Chequered surfaces and complex matrices
International Nuclear Information System (INIS)
Morris, T.R.; Southampton Univ.
1991-01-01
We investigate a large-N matrix model involving general complex matrices. It can be reinterpreted as a model of two hermitian matrices with specific couplings, and as a model of positive definite hermitian matrices. Large-N perturbation theory generates dynamical triangulations in which the triangles can be chequered (i.e. coloured so that neighbours are opposite colours). On a sphere there is a simple relation between such triangulations and those generated by the single hermitian matrix model. For the torus (and a quartic potential) we solve the counting problem for the number of triangulations that cannot be quechered. The critical physics of chequered triangulations is the same as that of the hermitian matrix model. We show this explicitly by solving non-perturbatively pure two-dimensional ''chequered'' gravity. The interpretative framework given here applies to a number of other generalisations of the hermitian matrix model. (orig.)
Continuous Covariate Imbalance and Conditional Power for Clinical Trial Interim Analyses
Ciolino, Jody D.; Martin, Renee' H.; Zhao, Wenle; Jauch, Edward C.; Hill, Michael D.; Palesch, Yuko Y.
2014-01-01
Oftentimes valid statistical analyses for clinical trials involve adjustment for known influential covariates, regardless of imbalance observed in these covariates at baseline across treatment groups. Thus, it must be the case that valid interim analyses also properly adjust for these covariates. There are situations, however, in which covariate adjustment is not possible, not planned, or simply carries less merit as it makes inferences less generalizable and less intuitive. In this case, covariate imbalance between treatment groups can have a substantial effect on both interim and final primary outcome analyses. This paper illustrates the effect of influential continuous baseline covariate imbalance on unadjusted conditional power (CP), and thus, on trial decisions based on futility stopping bounds. The robustness of the relationship is illustrated for normal, skewed, and bimodal continuous baseline covariates that are related to a normally distributed primary outcome. Results suggest that unadjusted CP calculations in the presence of influential covariate imbalance require careful interpretation and evaluation. PMID:24607294
Construction and use of gene expression covariation matrix
Directory of Open Access Journals (Sweden)
Bellis Michel
2009-07-01
Full Text Available Abstract Background One essential step in the massive analysis of transcriptomic profiles is the calculation of the correlation coefficient, a value used to select pairs of genes with similar or inverse transcriptional profiles across a large fraction of the biological conditions examined. Until now, the choice between the two available methods for calculating the coefficient has been dictated mainly by technological considerations. Specifically, in analyses based on double-channel techniques, researchers have been required to use covariation correlation, i.e. the correlation between gene expression changes measured between several pairs of biological conditions, expressed for example as fold-change. In contrast, in analyses of single-channel techniques scientists have been restricted to the use of coexpression correlation, i.e. correlation between gene expression levels. To our knowledge, nobody has ever examined the possible benefits of using covariation instead of coexpression in massive analyses of single channel microarray results. Results We describe here how single-channel techniques can be treated like double-channel techniques and used to generate both gene expression changes and covariation measures. We also present a new method that allows the calculation of both positive and negative correlation coefficients between genes. First, we perform systematic comparisons between two given biological conditions and classify, for each comparison, genes as increased (I, decreased (D, or not changed (N. As a result, the original series of n gene expression level measures assigned to each gene is replaced by an ordered string of n(n-1/2 symbols, e.g. IDDNNIDID....DNNNNNNID, with the length of the string corresponding to the number of comparisons. In a second step, positive and negative covariation matrices (CVM are constructed by calculating statistically significant positive or negative correlation scores for any pair of genes by comparing their
Loop diagrams without γ matrices
International Nuclear Information System (INIS)
McKeon, D.G.C.; Rebhan, A.
1993-01-01
By using a quantum-mechanical path integral to compute matrix elements of the form left-angle x|exp(-iHt)|y right-angle, radiative corrections in quantum-field theory can be evaluated without encountering loop-momentum integrals. In this paper we demonstrate how Dirac γ matrices that occur in the proper-time ''Hamiltonian'' H lead to the introduction of a quantum-mechanical path integral corresponding to a superparticle analogous to one proposed recently by Fradkin and Gitman. Direct evaluation of this path integral circumvents many of the usual algebraic manipulations of γ matrices in the computation of quantum-field-theoretical Green's functions involving fermions
Immanant Conversion on Symmetric Matrices
Directory of Open Access Journals (Sweden)
Purificação Coelho M.
2014-01-01
Full Text Available Letr Σn(C denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C -> Σn (C satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +aB = dχ·(Φ(Α + αΦ(Β for all matrices A,В ε Σ„(С and all scalars a ε C are automatically linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on ΣИ(С.
International Nuclear Information System (INIS)
Geraldo, L.P.; Smith, D.L.
1989-01-01
The methodology of covariance matrix and square methods have been applied in the relative efficiency calibration for a Ge(Li) detector apllied in the relative efficiency calibration for a Ge(Li) detector. Procedures employed to generate, manipulate and test covariance matrices which serve to properly represent uncertainties of experimental data are discussed. Calibration data fitting using least square methods has been performed for a particular experimental data set. (author) [pt
GLq(N)-covariant quantum algebras and covariant differential calculus
International Nuclear Information System (INIS)
Isaev, A.P.; Pyatov, P.N.
1992-01-01
GL q (N)-covariant quantum algebras with generators satisfying quadratic polynomial relations are considered. It is that, up to some innessential arbitrariness, there are only two kinds of such quantum algebras, namely, the algebras with q-deformed commutation and q-deformed anticommutation relations. 25 refs
A class of covariate-dependent spatiotemporal covariance functions
Reich, Brian J; Eidsvik, Jo; Guindani, Michele; Nail, Amy J; Schmidt, Alexandra M.
2014-01-01
In geostatistics, it is common to model spatially distributed phenomena through an underlying stationary and isotropic spatial process. However, these assumptions are often untenable in practice because of the influence of local effects in the correlation structure. Therefore, it has been of prolonged interest in the literature to provide flexible and effective ways to model non-stationarity in the spatial effects. Arguably, due to the local nature of the problem, we might envision that the correlation structure would be highly dependent on local characteristics of the domain of study, namely the latitude, longitude and altitude of the observation sites, as well as other locally defined covariate information. In this work, we provide a flexible and computationally feasible way for allowing the correlation structure of the underlying processes to depend on local covariate information. We discuss the properties of the induced covariance functions and discuss methods to assess its dependence on local covariate information by means of a simulation study and the analysis of data observed at ozone-monitoring stations in the Southeast United States. PMID:24772199
On families of anticommuting matrices
Czech Academy of Sciences Publication Activity Database
Hrubeš, Pavel
2016-01-01
Roč. 493, March 15 (2016), s. 494-507 ISSN 0024-3795 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : anticommuting matrices * sum-of-squares formulas Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016 http://www.sciencedirect.com/science/article/pii/S0024379515007296
On families of anticommuting matrices
Czech Academy of Sciences Publication Activity Database
Hrubeš, Pavel
2016-01-01
Roč. 493, March 15 (2016), s. 494-507 ISSN 0024-3795 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : anticommuting matrices * sum -of-squares formulas Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016 http://www.sciencedirect.com/science/article/pii/S0024379515007296
Treating Sample Covariances for Use in Strongly Coupled Atmosphere-Ocean Data Assimilation
Smith, Polly J.; Lawless, Amos S.; Nichols, Nancy K.
2018-01-01
Strongly coupled data assimilation requires cross-domain forecast error covariances; information from ensembles can be used, but limited sampling means that ensemble derived error covariances are routinely rank deficient and/or ill-conditioned and marred by noise. Thus, they require modification before they can be incorporated into a standard assimilation framework. Here we compare methods for improving the rank and conditioning of multivariate sample error covariance matrices for coupled atmosphere-ocean data assimilation. The first method, reconditioning, alters the matrix eigenvalues directly; this preserves the correlation structures but does not remove sampling noise. We show that it is better to recondition the correlation matrix rather than the covariance matrix as this prevents small but dynamically important modes from being lost. The second method, model state-space localization via the Schur product, effectively removes sample noise but can dampen small cross-correlation signals. A combination that exploits the merits of each is found to offer an effective alternative.
Cosmic censorship conjecture revisited: covariantly
International Nuclear Information System (INIS)
Hamid, Aymen I M; Goswami, Rituparno; Maharaj, Sunil D
2014-01-01
In this paper we study the dynamics of the trapped region using a frame independent semi-tetrad covariant formalism for general locally rotationally symmetric (LRS) class II spacetimes. We covariantly prove some important geometrical results for the apparent horizon, and state the necessary and sufficient conditions for a singularity to be locally naked. These conditions bring out, for the first time in a quantitative and transparent manner, the importance of the Weyl curvature in deforming and delaying the trapped region during continual gravitational collapse, making the central singularity locally visible. (paper)
International Nuclear Information System (INIS)
Fiorito, L.; Diez, C.J.; Cabellos, O.; Stankovskiy, A.; Van den Eynde, G.; Labeau, P.E.
2014-01-01
Highlights: • Fission yield data and uncertainty comparison between major nuclear data libraries. • Fission yield covariance generation through Bayesian technique. • Study of the effect of fission yield correlations on decay heat calculations. • Covariance information contribute to reduce fission pulse decay heat uncertainty. - Abstract: Fission product yields are fundamental parameters in burnup/activation calculations and the impact of their uncertainties was widely studied in the past. Evaluations of these uncertainties were released, still without covariance data. Therefore, the nuclear community expressed the need of full fission yield covariance matrices to be able to produce inventory calculation results that take into account the complete uncertainty data. State-of-the-art fission yield data and methodologies for fission yield covariance generation were researched in this work. Covariance matrices were generated and compared to the original data stored in the library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235 U. Calculations were carried out using different libraries and codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the libraries. The uncertainty quantification was performed first with Monte Carlo sampling and then compared with linear perturbation. Indeed, correlations between fission yields strongly affect the uncertainty of decay heat. Eventually, a sensitivity analysis of fission product yields to fission pulse decay heat was performed in order to provide a full set of the most sensitive nuclides for such a calculation
Analytical Derivation of the Inverse Moments of One-Sided Correlated Gram Matrices With Applications
Elkhalil, Khalil
2016-02-03
This paper addresses the development of analytical tools for the computation of the inverse moments of random Gram matrices with one side correlation. Such a question is mainly driven by applications in signal processing and wireless communications wherein such matrices naturally arise. In particular, we derive closed-form expressions for the inverse moments and show that the obtained results can help approximate several performance metrics such as the average estimation error corresponding to the Best Linear Unbiased Estimator (BLUE) and the Linear Minimum Mean Square Error (LMMSE) estimator or also other loss functions used to measure the accuracy of covariance matrix estimates.
Covariant Gauss law commutator anomaly
International Nuclear Information System (INIS)
Dunne, G.V.; Trugenberger, C.A.; Massachusetts Inst. of Tech., Cambridge
1990-01-01
Using a (fixed-time) hamiltonian formalism we derive a covariant form for the anomaly in the commutator algebra of Gauss law generators for chiral fermions interacting with a dynamical non-abelian gauge field in 3+1 dimensions. (orig.)
Covariant gauges for constrained systems
International Nuclear Information System (INIS)
Gogilidze, S.A.; Khvedelidze, A.M.; Pervushin, V.N.
1995-01-01
The method of constructing of extended phase space for singular theories which permits the consideration of covariant gauges without the introducing of a ghost fields, is proposed. The extension of the phase space is carried out by the identification of the initial theory with an equivalent theory with higher derivatives and applying to it the Ostrogradsky method of Hamiltonian description. 7 refs
Conformally covariant massless spin-two field equations
International Nuclear Information System (INIS)
Drew, M.S.; Gegenberg, J.D.
1980-01-01
An explicit proof is constructed to show that the field equations for a symmetric tensor field hsub(ab) describing massless spin-2 particles in Minkowski space-time are not covariant under the 15-parameter group SOsub(4,2); this group is usually associated with conformal transformations on flat space, and here it will be considered as a global gauge group which acts upon matter fields defined on space-time. Notwithstanding the above noncovariance, the equations governing the rank-4 tensor Ssub(abcd) constructed from hsub(ab) are shown to be covariant provided the contraction Ssub(ab) vanishes. Conformal covariance is proved by demonstrating the covariance of the equations for the equivalent 5-component complex field; in fact, covariance is proved for a general field equation applicable to massless particles of any spin >0. It is shown that the noncovariance of the hsub(ab) equations may be ascribed to the fact that the transformation behaviour of hsub(ab) is not the same as that of a field consisting of a gauge only. Since this is in contradistinction to the situation for the electromagnetic-field equations, the vector form of the electromagnetic equations is cast into a form which can be duplicated for the hsub(ab)-field. This procedure results in an alternative, covariant, field equation for hsub(ab). (author)
The modified Gauss diagonalization of polynomial matrices
International Nuclear Information System (INIS)
Saeed, K.
1982-10-01
The Gauss algorithm for diagonalization of constant matrices is modified for application to polynomial matrices. Due to this modification the diagonal elements become pure polynomials rather than rational functions. (author)
Virial expansion for almost diagonal random matrices
Yevtushenko, Oleg; Kravtsov, Vladimir E.
2003-08-01
Energy level statistics of Hermitian random matrices hat H with Gaussian independent random entries Higeqj is studied for a generic ensemble of almost diagonal random matrices with langle|Hii|2rangle ~ 1 and langle|Hi\
Luo, Xiaodong
2013-10-01
This article examines the influence of covariance inflation on the distance between the measured observation and the simulated (or predicted) observation with respect to the state estimate. In order for the aforementioned distance to be bounded in a certain interval, some sufficient conditions are derived, indicating that the covariance inflation factor should be bounded in a certain interval, and that the inflation bounds are related to the maximum and minimum eigenvalues of certain matrices. Implications of these analytic results are discussed, and a numerical experiment is presented to verify the validity of the analysis conducted.
Luo, Xiaodong; Hoteit, Ibrahim
2013-01-01
This article examines the influence of covariance inflation on the distance between the measured observation and the simulated (or predicted) observation with respect to the state estimate. In order for the aforementioned distance to be bounded in a certain interval, some sufficient conditions are derived, indicating that the covariance inflation factor should be bounded in a certain interval, and that the inflation bounds are related to the maximum and minimum eigenvalues of certain matrices. Implications of these analytic results are discussed, and a numerical experiment is presented to verify the validity of the analysis conducted.
Institute of Scientific and Technical Information of China (English)
Xiaogu ZHENG
2009-01-01
An adaptive estimation of forecast error covariance matrices is proposed for Kalman filtering data assimilation. A forecast error covariance matrix is initially estimated using an ensemble of perturbation forecasts. This initially estimated matrix is then adjusted with scale parameters that are adaptively estimated by minimizing -2log-likelihood of observed-minus-forecast residuals. The proposed approach could be applied to Kalman filtering data assimilation with imperfect models when the model error statistics are not known. A simple nonlinear model (Burgers' equation model) is used to demonstrate the efficacy of the proposed approach.
MIMO Radar Transmit Beampattern Design Without Synthesising the Covariance Matrix
Ahmed, Sajid
2013-10-28
Compared to phased-array, multiple-input multiple-output (MIMO) radars provide more degrees-offreedom (DOF) that can be exploited for improved spatial resolution, better parametric identifiability, lower side-lobe levels at the transmitter/receiver, and design variety of transmit beampatterns. The design of the transmit beampattern generally requires the waveforms to have arbitrary auto- and crosscorrelation properties. The generation of such waveforms is a two step complicated process. In the first step a waveform covariance matrix is synthesised, which is a constrained optimisation problem. In the second step, to realise this covariance matrix actual waveforms are designed, which is also a constrained optimisation problem. Our proposed scheme converts this two step constrained optimisation problem into a one step unconstrained optimisation problem. In the proposed scheme, in contrast to synthesising the covariance matrix for the desired beampattern, nT independent finite-alphabet constantenvelope waveforms are generated and pre-processed, with weight matrix W, before transmitting from the antennas. In this work, two weight matrices are proposed that can be easily optimised for the desired symmetric and non-symmetric beampatterns and guarantee equal average power transmission from each antenna. Simulation results validate our claims.
Phenomenological mass matrices with a democratic warp
International Nuclear Information System (INIS)
Kleppe, A.
2018-01-01
Taking into account all available data on the mass sector, we obtain unitary rotation matrices that diagonalize the quark matrices by using a specific parametrization of the Cabibbo-Kobayashi-Maskawa mixing matrix. In this way, we find mass matrices for the up- and down-quark sectors of a specific, symmetric form, with traces of a democratic texture.
Covarient quantization of heterotic strings in supersymmetric chiral boson formulation
International Nuclear Information System (INIS)
Yu, F.
1992-01-01
This dissertation presents the covariant supersymmetric chiral boson formulation of the heterotic strings. The main feature of this formulation is the covariant quantization of the so-called leftons and rightons -- the (1,0) supersymmetric generalizations of the world-sheet chiral bosons -- that constitute basic building blocks of general heterotic-type string models. Although the (Neveu-Schwarz-Ramond or Green-Schwarz) heterotic strings provide the most realistic string models, their covariant quantization, with the widely-used Siegel formalism, has never been rigorously carried out. It is clarified in this dissertation that the covariant Siegel formalism is pathological upon quantization. As a test, a general classical covariant (NSR) heterotic string action that has the Siegel symmetry is constructed in arbitrary curved space-time coupled to (1,0) world-sheet super-gravity. In the light-cone gauge quantization, the critical dimensions are derived for such an action with leftons and rightons compactified on group manifolds G L x G R . The covariant quantization of this action does not agree with the physical results in the light-cone gauge quantization. This dissertation establishes a new formalism for the covariant quantization of heterotic strings. The desired consistent covariant path integral quantization of supersymmetric chiral bosons, and thus the general (NSR) heterotic-type strings with leftons and rightons compactified on torus circle-times d L S 1 x circle-times d R S 1 are carried out. An infinite set of auxiliary (1,0) scalar superfields is introduced to convert the second-class chiral constraint into first-class ones. The covariant gauge-fixed action has an extended BRST symmetry described by the graded algebra GL(1/1). A regularization respecting this symmetry is proposed to deal with the contributions of the infinite towers of auxiliary fields and associated ghosts
Generation of covariance files for the isotopes of Cr, Fe, Ni, Cu, and Pb in ENDF/B-VI
International Nuclear Information System (INIS)
Hetrick, D.M.; Larson, D.C.; Fu, C.Y.
1991-02-01
The considerations that governed the development of the uncertainty files for the isotopes of Cr, Fe, Ni, Cu, and Pb in ENDF/B-VI are summarized. Four different approaches were used in providing the covariance information. Some examples are given which show the standard deviations as a function of incident energy and the corresponding correlation matrices. 11 refs., 5 tabs
International Nuclear Information System (INIS)
Bombardelli, Diego
2016-01-01
In these notes we review the S-matrix theory in (1+1)-dimensional integrable models, focusing mainly on the relativistic case. Once the main definitions and physical properties are introduced, we discuss the factorization of scattering processes due to integrability. We then focus on the analytic properties of the two-particle scattering amplitude and illustrate the derivation of the S-matrices for all the possible bound states using the so-called bootstrap principle. General algebraic structures underlying the S-matrix theory and its relation with the form factors axioms are briefly mentioned. Finally, we discuss the S-matrices of sine-Gordon and SU (2), SU (3) chiral Gross–Neveu models. (topical review)
Synthesised standards in natural matrices
International Nuclear Information System (INIS)
Olsen, D.G.
1980-01-01
The problem of securing the most reliable standards for the accurate analysis of radionuclides is discussed in the paper and in the comment on the paper. It is contended in the paper that the best standards can be created by quantitative addition of accurately known spiking solutions into carefully selected natural matrices. On the other hand it is argued that many natural materials can be successfully standardized for numerous trace constituents. Both points of view are supported with examples. (U.K.)
Coherent states and covariant semi-spectral measures
International Nuclear Information System (INIS)
Scutaru, H.
1976-01-01
The close connection between Mackey's theory of imprimitivity systems and the so called generalized coherent states introduced by Perelomov is established. Coherent states give a covariant description of the ''localization'' of a quantum system in the phase space in a similar way as the imprimitivity systems give a covariant description of the localization of a quantum system in the configuration space. The observation that for any system of coherent states one can define a covariant semi-spectral measure made possible a rigurous formulation of this idea. A generalization of the notion of coherent states is given. Covariant semi-spectral measures associated with systems of coherent states are defined and characterized. Necessary and sufficient conditions for a unitary representation of a Lie group to be i) a subrepresentation of an induced one and ii) a representation with coherent states are given (author)
Revealing hidden covariation detection: evidence for implicit abstraction at study.
Rossnagel, C S
2001-09-01
Four experiments in the brain scans paradigm (P. Lewicki, T. Hill, & I. Sasaki, 1989) investigated hidden covariation detection (HCD). In Experiment 1 HCD was found in an implicit- but not in an explicit-instruction group. In Experiment 2 HCD was impaired by nonholistic perception of stimuli but not by divided attention. In Experiment 3 HCD was eliminated by interspersing stimuli that deviated from the critical covariation. In Experiment 4 a transfer procedure was used. HCD was found with dissimilar test stimuli that preserved the covariation but was almost eliminated with similar stimuli that were neutral as to the covariation. Awareness was assessed both by objective and subjective tests in all experiments. Results suggest that HCD is an effect of implicit rule abstraction and that similarity processing plays only a minor role. HCD might be suppressed by intentional search strategies that induce inappropriate aggregation of stimulus information.
Structural Covariance Networks in Children with Autism or ADHD.
Bethlehem, R A I; Romero-Garcia, R; Mak, E; Bullmore, E T; Baron-Cohen, S
2017-08-01
While autism and attention-deficit/hyperactivity disorder (ADHD) are considered distinct conditions from a diagnostic perspective, clinically they share some phenotypic features and have high comorbidity. Regardless, most studies have focused on only one condition, with considerable heterogeneity in their results. Taking a dual-condition approach might help elucidate shared and distinct neural characteristics. Graph theory was used to analyse topological properties of structural covariance networks across both conditions and relative to a neurotypical (NT; n = 87) group using data from the ABIDE (autism; n = 62) and ADHD-200 datasets (ADHD; n = 69). Regional cortical thickness was used to construct the structural covariance networks. This was analysed in a theoretical framework examining potential differences in long and short-range connectivity, with a specific focus on relation between central graph measures and cortical thickness. We found convergence between autism and ADHD, where both conditions show an overall decrease in CT covariance with increased Euclidean distance between centroids compared with a NT population. The 2 conditions also show divergence. Namely, there is less modular overlap between the 2 conditions than there is between each condition and the NT group. The ADHD group also showed reduced cortical thickness and lower degree in hub regions than the autism group. Lastly, the ADHD group also showed reduced wiring costs compared with the autism groups. Our results indicate a need for taking an integrated approach when considering highly comorbid conditions such as autism and ADHD. Furthermore, autism and ADHD both showed alterations in the relation between inter-regional covariance and centroid distance, where both groups show a steeper decline in covariance as a function of distance. The 2 groups also diverge on modular organization, cortical thickness of hub regions and wiring cost of the covariance network. Thus, on some network features the
Estimation and Forecasting of Large Realized Covariance Matrices and Portfolio Choice
DEFF Research Database (Denmark)
Callot, Laurent; Kock, Anders Bredahl; Medeiros, Marcelo C.
stocks and find that these dynamics are not stable as the data is aggregated from the daily to the weekly and monthly frequency. The theoretical performance guarantees on our forecasts are illustrated on the Dow Jones index. In particular, we can beat our benchmark by a wide margin at the longer forecast...
Litvinenko, Alexander
2017-01-01
and maximizing likelihood functions. We show that an approximate Cholesky factorization of a dense matrix of size $2M\\times 2M$ can be computed on a modern multi-core desktop in few minutes. Further, HLIBCov is used for estimating the unknown parameters
2015-03-01
biometrics for physiological characteristics, hyperspectral remote sensing for detecting signals buried in noise and clutter, and medical genetics for...s); %approximate bounds on the eigenvalues used in Eq. (8) that are derived %from the Marcenko- Pastur law k=p./n; %band
Otermann, Bente; van den Berg, Stéphanie Martine
2016-01-01
An abundance of research shows significant resemblance in standardized IQ scores in children and their biological parents. Twin and family studies based on such standardized scores suggest that a large proportion of the resemblance is due to genetic transmission, rather than cultural transmission.
Cheung, Mike W. L.; Chan, Wai
2009-01-01
Structural equation modeling (SEM) is widely used as a statistical framework to test complex models in behavioral and social sciences. When the number of publications increases, there is a need to systematically synthesize them. Methodology of synthesizing findings in the context of SEM is known as meta-analytic SEM (MASEM). Although correlation…
Sellentin, Elena; Heavens, Alan F.
2018-01-01
We investigate whether a Gaussian likelihood, as routinely assumed in the analysis of cosmological data, is supported by simulated survey data. We define test statistics, based on a novel method that first destroys Gaussian correlations in a data set, and then measures the non-Gaussian correlations that remain. This procedure flags pairs of data points that depend on each other in a non-Gaussian fashion, and thereby identifies where the assumption of a Gaussian likelihood breaks down. Using this diagnosis, we find that non-Gaussian correlations in the CFHTLenS cosmic shear correlation functions are significant. With a simple exclusion of the most contaminated data points, the posterior for s8 is shifted without broadening, but we find no significant reduction in the tension with s8 derived from Planck cosmic microwave background data. However, we also show that the one-point distributions of the correlation statistics are noticeably skewed, such that sound weak-lensing data sets are intrinsically likely to lead to a systematically low lensing amplitude being inferred. The detected non-Gaussianities get larger with increasing angular scale such that for future wide-angle surveys such as Euclid or LSST, with their very small statistical errors, the large-scale modes are expected to be increasingly affected. The shifts in posteriors may then not be negligible and we recommend that these diagnostic tests be run as part of future analyses.
Needs of reliable nuclear data and covariance matrices for Burnup Credit in JEFF-3 library
International Nuclear Information System (INIS)
Chambon, A.; Santamarina, A.; Riffard, C.; Lavaud, F.; Lecarpentier, D.
2013-01-01
Burnup Credit (BUC) is the concept which consists in taking into account credit for the reduction of nuclear spent fuel reactivity due to its burnup. In the case of PWR-MOx spent fuel, studies pointed out that the contribution of the 15 most absorbing, stable and non-volatile fission products selected to the credit is as important as the one of the actinides. In order to get a 'best estimate' value of the keff, biases of their inventory calculation and individual reactivity worth should be considered in criticality safety studies. This paper enhances the most penalizing bias towards criticality and highlights possible improvements of nuclear data for the 15 fission products (FPs) of PWR-MOx BUC. Concerning the fuel inventory, trends in function of the burnup can be derived from experimental validation of the DARWIN-2.3 package (using the JEFF- 3.1.1/SHEM library). Thanks to the BUC oscillation programme of separated FPs in the MINERVE reactor and fully validated scheme PIMS, calculation over experiment ratios can be accurately transposed to tendencies on the FPs integral cross sections. (authors)
MANOVA for Nested Designs with Unequal Cell Sizes and Unequal Cell Covariance Matrices
Directory of Open Access Journals (Sweden)
Li-Wen Xu
2014-01-01
satisfactorily for various cell sizes and parameter configurations and generally outperforms the AHT test in terms of controlling the nominal size. For the heteroscedastic cases, the PB test outperforms the AHT test in terms of power. In addition, the PB test does not lose too much power when the homogeneity assumption is actually valid.
Covariance specification and estimation to improve top-down Green House Gas emission estimates
Ghosh, S.; Lopez-Coto, I.; Prasad, K.; Whetstone, J. R.
2015-12-01
The National Institute of Standards and Technology (NIST) operates the North-East Corridor (NEC) project and the Indianapolis Flux Experiment (INFLUX) in order to develop measurement methods to quantify sources of Greenhouse Gas (GHG) emissions as well as their uncertainties in urban domains using a top down inversion method. Top down inversion updates prior knowledge using observations in a Bayesian way. One primary consideration in a Bayesian inversion framework is the covariance structure of (1) the emission prior residuals and (2) the observation residuals (i.e. the difference between observations and model predicted observations). These covariance matrices are respectively referred to as the prior covariance matrix and the model-data mismatch covariance matrix. It is known that the choice of these covariances can have large effect on estimates. The main objective of this work is to determine the impact of different covariance models on inversion estimates and their associated uncertainties in urban domains. We use a pseudo-data Bayesian inversion framework using footprints (i.e. sensitivities of tower measurements of GHGs to surface emissions) and emission priors (based on Hestia project to quantify fossil-fuel emissions) to estimate posterior emissions using different covariance schemes. The posterior emission estimates and uncertainties are compared to the hypothetical truth. We find that, if we correctly specify spatial variability and spatio-temporal variability in prior and model-data mismatch covariances respectively, then we can compute more accurate posterior estimates. We discuss few covariance models to introduce space-time interacting mismatches along with estimation of the involved parameters. We then compare several candidate prior spatial covariance models from the Matern covariance class and estimate their parameters with specified mismatches. We find that best-fitted prior covariances are not always best in recovering the truth. To achieve
Agricultural matrices affect ground ant assemblage composition inside forest fragments.
Directory of Open Access Journals (Sweden)
Diego Santana Assis
Full Text Available The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates; sugarcane (3; and pasture (3. At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart. Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was 'generalist' both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an 'ocean of crops'.
Agricultural matrices affect ground ant assemblage composition inside forest fragments.
Assis, Diego Santana; Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Barrios-Rojas, Katty Elena; Majer, Jonathan David; Vilela, Evaldo Ferreira
2018-01-01
The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was 'generalist' both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an 'ocean of crops'.
A Phylogenetic Analysis of Shape Covariance Structure in the Anthropoid Skull
De Oliveira, Felipe; Marroig, Gabriel; Garcia, Guilherme
2016-01-01
Phenotypic traits evolve in a coordinated manner due to developmental and functional interactions, mediated by the dynamics of natural selection; the dependence between traits arising from these three factors is captured by genetic ( G ) and phenotypic ( P ) covariance matrices. Mammalian skull development produces an intricate pattern of tissue organization and mutual signaling that integrates this structure, although the set of functions it performs is quite disparate. Therefore, the interp...
Are Low-order Covariance Estimates Useful in Error Analyses?
Baker, D. F.; Schimel, D.
2005-12-01
Atmospheric trace gas inversions, using modeled atmospheric transport to infer surface sources and sinks from measured concentrations, are most commonly done using least-squares techniques that return not only an estimate of the state (the surface fluxes) but also the covariance matrix describing the uncertainty in that estimate. Besides allowing one to place error bars around the estimate, the covariance matrix may be used in simulation studies to learn what uncertainties would be expected from various hypothetical observing strategies. This error analysis capability is routinely used in designing instrumentation, measurement campaigns, and satellite observing strategies. For example, Rayner, et al (2002) examined the ability of satellite-based column-integrated CO2 measurements to constrain monthly-average CO2 fluxes for about 100 emission regions using this approach. Exact solutions for both state vector and covariance matrix become computationally infeasible, however, when the surface fluxes are solved at finer resolution (e.g., daily in time, under 500 km in space). It is precisely at these finer scales, however, that one would hope to be able to estimate fluxes using high-density satellite measurements. Non-exact estimation methods such as variational data assimilation or the ensemble Kalman filter could be used, but they achieve their computational savings by obtaining an only approximate state estimate and a low-order approximation of the true covariance. One would like to be able to use this covariance matrix to do the same sort of error analyses as are done with the full-rank covariance, but is it correct to do so? Here we compare uncertainties and `information content' derived from full-rank covariance matrices obtained from a direct, batch least squares inversion to those from the incomplete-rank covariance matrices given by a variational data assimilation approach solved with a variable metric minimization technique (the Broyden-Fletcher- Goldfarb
Hierarchical Matrices Method and Its Application in Electromagnetic Integral Equations
Directory of Open Access Journals (Sweden)
Han Guo
2012-01-01
Full Text Available Hierarchical (H- matrices method is a general mathematical framework providing a highly compact representation and efficient numerical arithmetic. When applied in integral-equation- (IE- based computational electromagnetics, H-matrices can be regarded as a fast algorithm; therefore, both the CPU time and memory requirement are reduced significantly. Its kernel independent feature also makes it suitable for any kind of integral equation. To solve H-matrices system, Krylov iteration methods can be employed with appropriate preconditioners, and direct solvers based on the hierarchical structure of H-matrices are also available along with high efficiency and accuracy, which is a unique advantage compared to other fast algorithms. In this paper, a novel sparse approximate inverse (SAI preconditioner in multilevel fashion is proposed to accelerate the convergence rate of Krylov iterations for solving H-matrices system in electromagnetic applications, and a group of parallel fast direct solvers are developed for dealing with multiple right-hand-side cases. Finally, numerical experiments are given to demonstrate the advantages of the proposed multilevel preconditioner compared to conventional “single level” preconditioners and the practicability of the fast direct solvers for arbitrary complex structures.
Bayesian source term determination with unknown covariance of measurements
Belal, Alkomiet; Tichý, Ondřej; Šmídl, Václav
2017-04-01
Determination of a source term of release of a hazardous material into the atmosphere is a very important task for emergency response. We are concerned with the problem of estimation of the source term in the conventional linear inverse problem, y = Mx, where the relationship between the vector of observations y is described using the source-receptor-sensitivity (SRS) matrix M and the unknown source term x. Since the system is typically ill-conditioned, the problem is recast as an optimization problem minR,B(y - Mx)TR-1(y - Mx) + xTB-1x. The first term minimizes the error of the measurements with covariance matrix R, and the second term is a regularization of the source term. There are different types of regularization arising for different choices of matrices R and B, for example, Tikhonov regularization assumes covariance matrix B as the identity matrix multiplied by scalar parameter. In this contribution, we adopt a Bayesian approach to make inference on the unknown source term x as well as unknown R and B. We assume prior on x to be a Gaussian with zero mean and unknown diagonal covariance matrix B. The covariance matrix of the likelihood R is also unknown. We consider two potential choices of the structure of the matrix R. First is the diagonal matrix and the second is a locally correlated structure using information on topology of the measuring network. Since the inference of the model is intractable, iterative variational Bayes algorithm is used for simultaneous estimation of all model parameters. The practical usefulness of our contribution is demonstrated on an application of the resulting algorithm to real data from the European Tracer Experiment (ETEX). This research is supported by EEA/Norwegian Financial Mechanism under project MSMT-28477/2014 Source-Term Determination of Radionuclide Releases by Inverse Atmospheric Dispersion Modelling (STRADI).
Construction of MDS self-dual codes from orthogonal matrices
Shi, Minjia; Sok, Lin; Solé, Patrick
2016-01-01
In this paper, we give algorithms and methods of construction of self-dual codes over finite fields using orthogonal matrices. Randomization in the orthogonal group, and code extension are the main tools. Some optimal, almost MDS, and MDS self-dual codes over both small and large prime fields are constructed.
Dirac Matrices and Feynman’s Rest of the Universe
Directory of Open Access Journals (Sweden)
Young S. Kim
2012-10-01
Full Text Available There are two sets of four-by-four matrices introduced by Dirac. The first set consists of fifteen Majorana matrices derivable from his four γ matrices. These fifteen matrices can also serve as the generators of the group SL(4, r. The second set consists of ten generators of the Sp(4 group which Dirac derived from two coupled harmonic oscillators. It is shown possible to extend the symmetry of Sp(4 to that of SL(4, r if the area of the phase space of one of the oscillators is allowed to become smaller without a lower limit. While there are no restrictions on the size of phase space in classical mechanics, Feynman’s rest of the universe makes this Sp(4-to-SL(4, r transition possible. The ten generators are for the world where quantum mechanics is valid. The remaining five generators belong to the rest of the universe. It is noted that the groups SL(4, r and Sp(4 are locally isomorphic to the Lorentz groups O(3, 3 and O(3, 2 respectively. This allows us to interpret Feynman’s rest of the universe in terms of space-time symmetry.
International Nuclear Information System (INIS)
Chudnovsky, D.V.; Chudnovsky, G.V.
1981-01-01
We consider general expressions of factorized S-matrices with Abelian symmetry expressed in terms of theta-functions. These expressions arise from representations of the Heisenberg group. New examples of factorized S-matrices lead to a large class of completely integrable models of statistical mechanics which generalize the XYZ-model of the eight-vertex model. (orig.)
Covariant fields on anti-de Sitter spacetimes
Cotăescu, Ion I.
2018-02-01
The covariant free fields of any spin on anti-de Sitter (AdS) spacetimes are studied, pointing out that these transform under isometries according to covariant representations (CRs) of the AdS isometry group, induced by those of the Lorentz group. Applying the method of ladder operators, it is shown that the CRs with unique spin are equivalent with discrete unitary irreducible representations (UIRs) of positive energy of the universal covering group of the isometry one. The action of the Casimir operators is studied finding how the weights of these representations (reps.) may depend on the mass and spin of the covariant field. The conclusion is that on AdS spacetime, one cannot formulate a universal mass condition as in special relativity.
Alterations in Anatomical Covariance in the Prematurely Born.
Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Vohr, Betty R; Schneider, Karen C; Papademetris, Xenophon; Constable, R Todd; Ment, Laura R
2017-01-01
Preterm (PT) birth results in long-term alterations in functional and structural connectivity, but the related changes in anatomical covariance are just beginning to be explored. To test the hypothesis that PT birth alters patterns of anatomical covariance, we investigated brain volumes of 25 PTs and 22 terms at young adulthood using magnetic resonance imaging. Using regional volumetrics, seed-based analyses, and whole brain graphs, we show that PT birth is associated with reduced volume in bilateral temporal and inferior frontal lobes, left caudate, left fusiform, and posterior cingulate for prematurely born subjects at young adulthood. Seed-based analyses demonstrate altered patterns of anatomical covariance for PTs compared with terms. PTs exhibit reduced covariance with R Brodmann area (BA) 47, Broca's area, and L BA 21, Wernicke's area, and white matter volume in the left prefrontal lobe, but increased covariance with R BA 47 and left cerebellum. Graph theory analyses demonstrate that measures of network complexity are significantly less robust in PTs compared with term controls. Volumes in regions showing group differences are significantly correlated with phonological awareness, the fundamental basis for reading acquisition, for the PTs. These data suggest both long-lasting and clinically significant alterations in the covariance in the PTs at young adulthood. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Modeling Covariance Breakdowns in Multivariate GARCH
Jin, Xin; Maheu, John M
2014-01-01
This paper proposes a flexible way of modeling dynamic heterogeneous covariance breakdowns in multivariate GARCH (MGARCH) models. During periods of normal market activity, volatility dynamics are governed by an MGARCH specification. A covariance breakdown is any significant temporary deviation of the conditional covariance matrix from its implied MGARCH dynamics. This is captured through a flexible stochastic component that allows for changes in the conditional variances, covariances and impl...
Sparse Matrices in Frame Theory
DEFF Research Database (Denmark)
Lemvig, Jakob; Krahmer, Felix; Kutyniok, Gitta
2014-01-01
Frame theory is closely intertwined with signal processing through a canon of methodologies for the analysis of signals using (redundant) linear measurements. The canonical dual frame associated with a frame provides a means for reconstruction by a least squares approach, but other dual frames...... yield alternative reconstruction procedures. The novel paradigm of sparsity has recently entered the area of frame theory in various ways. Of those different sparsity perspectives, we will focus on the situations where frames and (not necessarily canonical) dual frames can be written as sparse matrices...
The Inverse of Banded Matrices
2013-01-01
indexed entries all zeros. In this paper, generalizing a method of Mallik (1999) [5], we give the LU factorization and the inverse of the matrix Br,n (if it...r ≤ i ≤ r, 1 ≤ j ≤ r, with the remaining un-indexed entries all zeros. In this paper generalizing a method of Mallik (1999) [5...matrices and applications to piecewise cubic approximation, J. Comput. Appl. Math. 8 (4) (1982) 285–288. [5] R.K. Mallik , The inverse of a lower
Transfer matrices for multilayer structures
International Nuclear Information System (INIS)
Baquero, R.
1988-08-01
We consider four of the transfer matrices defined to deal with multilayer structures. We deduce algorithms to calculate them numerically, in a simple and neat way. We illustrate their application to semi-infinite systems using SGFM formulae. These algorithms are of fast convergence and allow a calculation of bulk-, surface- and inner-layers band structure in good agreement with much more sophisticated calculations. Supermatrices, interfaces and multilayer structures can be calculated in this way with a small computational effort. (author). 10 refs
Orthogonal polynomials and random matrices
Deift, Percy
2000-01-01
This volume expands on a set of lectures held at the Courant Institute on Riemann-Hilbert problems, orthogonal polynomials, and random matrix theory. The goal of the course was to prove universality for a variety of statistical quantities arising in the theory of random matrix models. The central question was the following: Why do very general ensembles of random n {\\times} n matrices exhibit universal behavior as n {\\rightarrow} {\\infty}? The main ingredient in the proof is the steepest descent method for oscillatory Riemann-Hilbert problems.
Proofs of Contracted Length Non-covariance
International Nuclear Information System (INIS)
Strel'tsov, V.N.
1994-01-01
Different proofs of contracted length non covariance are discussed. The way based on the establishment of interval inconstancy (dependence on velocity) seems to be the most convincing one. It is stressed that the known non covariance of the electromagnetic field energy and momentum of a moving charge ('the problem 4/3') is a direct consequence of contracted length non covariance. 8 refs
Construction of covariance matrix for experimental data
International Nuclear Information System (INIS)
Liu Tingjin; Zhang Jianhua
1992-01-01
For evaluators and experimenters, the information is complete only in the case when the covariance matrix is given. The covariance matrix of the indirectly measured data has been constructed and discussed. As an example, the covariance matrix of 23 Na(n, 2n) cross section is constructed. A reasonable result is obtained
AFCI-2.0 Neutron Cross Section Covariance Library
Energy Technology Data Exchange (ETDEWEB)
Herman, M.; Herman, M; Oblozinsky, P.; Mattoon, C.M.; Pigni, M.; Hoblit, S.; Mughabghab, S.F.; Sonzogni, A.; Talou, P.; Chadwick, M.B.; Hale, G.M.; Kahler, A.C.; Kawano, T.; Little, R.C.; Yount, P.G.
2011-03-01
materials and fission products, and 20 actinides. Covariances are given in 33-energy groups, from 10?5 eV to 19.6 MeV, obtained by processing with LANL processing code NJOY using 1/E flux. In addition to these 110 files, the library contains 20 files with nu-bar covariances, 3 files with covariances of prompt fission neutron spectra (238,239,240-Pu), and 2 files with mu-bar covariances (23-Na, 56-Fe). Over the period of three years several working versions of the library have been released and tested by ANL and INL reactor analysts. Useful feedback has been collected allowing gradual improvements of the library. In addition, QA system was developed to check basic properties and features of the whole library, allowing visual inspection of uncertainty and correlations plots, inspection of uncertainties of integral quantities with independent databases, and dispersion of cross sections between major evaluated libraries. The COMMARA-2.0 beta version of the library was released to ANL and INL reactor analysts in October 2010. The final version, described in the present report, was released in March 2011.
AFCI-2.0 Neutron Cross Section Covariance Library
International Nuclear Information System (INIS)
Herman, M.; Oblozinsky, P.; Mattoon, C.M.; Pigni, M.; Hoblit, S.; Mughabghab, S.F.; Sonzogni, A.; Talou, P.; Chadwick, M.B.; Hale, G.M.; Kahler, A.C.; Kawano, T.; Little, R.C.; Yount, P.G.
2011-01-01
structural materials and fission products, and 20 actinides. Covariances are given in 33-energy groups, from 10?5 eV to 19.6 MeV, obtained by processing with LANL processing code NJOY using 1/E flux. In addition to these 110 files, the library contains 20 files with nu-bar covariances, 3 files with covariances of prompt fission neutron spectra (238,239,240-Pu), and 2 files with mu-bar covariances (23-Na, 56-Fe). Over the period of three years several working versions of the library have been released and tested by ANL and INL reactor analysts. Useful feedback has been collected allowing gradual improvements of the library. In addition, QA system was developed to check basic properties and features of the whole library, allowing visual inspection of uncertainty and correlations plots, inspection of uncertainties of integral quantities with independent databases, and dispersion of cross sections between major evaluated libraries. The COMMARA-2.0 beta version of the library was released to ANL and INL reactor analysts in October 2010. The final version, described in the present report, was released in March 2011.
Lorentz covariant theory of gravitation
International Nuclear Information System (INIS)
Fagundes, H.V.
1974-12-01
An alternative method for the calculation of second order effects, like the secular shift of Mercury's perihelium is developed. This method uses the basic ideas of thirring combined with the more mathematical approach of Feyman. In the case of a static source, the treatment used is greatly simplified. Besides, Einstein-Infeld-Hoffmann's Lagrangian for a system of two particles and spin-orbit and spin-spin interactions of two particles with classical spin, ie, internal angular momentum in Moller's sense, are obtained from the Lorentz covariant theory
Covariant gauges at finite temperature
Landshoff, Peter V
1992-01-01
A prescription is presented for real-time finite-temperature perturbation theory in covariant gauges, in which only the two physical degrees of freedom of the gauge-field propagator acquire thermal parts. The propagators for the unphysical degrees of freedom of the gauge field, and for the Faddeev-Popov ghost field, are independent of temperature. This prescription is applied to the calculation of the one-loop gluon self-energy and the two-loop interaction pressure, and is found to be simpler to use than the conventional one.
TRANSPOSABLE REGULARIZED COVARIANCE MODELS WITH AN APPLICATION TO MISSING DATA IMPUTATION.
Allen, Genevera I; Tibshirani, Robert
2010-06-01
Missing data estimation is an important challenge with high-dimensional data arranged in the form of a matrix. Typically this data matrix is transposable , meaning that either the rows, columns or both can be treated as features. To model transposable data, we present a modification of the matrix-variate normal, the mean-restricted matrix-variate normal , in which the rows and columns each have a separate mean vector and covariance matrix. By placing additive penalties on the inverse covariance matrices of the rows and columns, these so called transposable regularized covariance models allow for maximum likelihood estimation of the mean and non-singular covariance matrices. Using these models, we formulate EM-type algorithms for missing data imputation in both the multivariate and transposable frameworks. We present theoretical results exploiting the structure of our transposable models that allow these models and imputation methods to be applied to high-dimensional data. Simulations and results on microarray data and the Netflix data show that these imputation techniques often outperform existing methods and offer a greater degree of flexibility.
Evaluation of covariance data for chromium, iron and nickel contained in JENDL-3.2
International Nuclear Information System (INIS)
Oh, Soo-Youl; Shibata, Keiichi.
1998-01-01
An evaluation has been made for the covariances of neutron cross sections of 52 Cr, 56 Fe, 58 Ni and 60 Ni contained in JENDL-3.2. Reactions considered were the threshold reactions such as (n, 2n), (n, nα), (n, np), (n, p), (n, d), (n, t) and (n, α), the radiative capture reaction above the resonance region, and the inelastic scattering to discrete and continuum levels. Evaluation guidelines and procedures were established during the work. A generalized least-squares fitting code GMA was used in estimating covariances for reactions of which JENDL-3.2 cross sections had been evaluated by taking account of many measured data. For cross sections that had been evaluated by nuclear reaction model calculations, the KALMAN code, which yields covariances of cross sections and of associated model parameters on the basis of the Bayesian statistics, was used in conjunction with reaction model codes EGNASH and CASTHY. The evaluated uncertainties of a few percent to 30% in the cross sections look reasonable, and the correlation matrices show understandable trends. Even though there is no strict way to confirm the validity of the evaluated covariances, tools and procedures adopted in the present work are appropriate for producing covariance files based on JENDL-3.2. The covariances obtained will be compiled into JENDL in the near future. Meanwhile, new sets of optical model and level density parameters were proposed as one of byproducts obtained from the KALMAN calculations. (author)
On the regularity of the covariance matrix of a discretized scalar field on the sphere
Energy Technology Data Exchange (ETDEWEB)
Bilbao-Ahedo, J.D. [Departamento de Física Moderna, Universidad de Cantabria, Av. los Castros s/n, 39005 Santander (Spain); Barreiro, R.B.; Herranz, D.; Vielva, P.; Martínez-González, E., E-mail: bilbao@ifca.unican.es, E-mail: barreiro@ifca.unican.es, E-mail: herranz@ifca.unican.es, E-mail: vielva@ifca.unican.es, E-mail: martinez@ifca.unican.es [Instituto de Física de Cantabria (CSIC-UC), Av. los Castros s/n, 39005 Santander (Spain)
2017-02-01
We present a comprehensive study of the regularity of the covariance matrix of a discretized field on the sphere. In a particular situation, the rank of the matrix depends on the number of pixels, the number of spherical harmonics, the symmetries of the pixelization scheme and the presence of a mask. Taking into account the above mentioned components, we provide analytical expressions that constrain the rank of the matrix. They are obtained by expanding the determinant of the covariance matrix as a sum of determinants of matrices made up of spherical harmonics. We investigate these constraints for five different pixelizations that have been used in the context of Cosmic Microwave Background (CMB) data analysis: Cube, Icosahedron, Igloo, GLESP and HEALPix, finding that, at least in the considered cases, the HEALPix pixelization tends to provide a covariance matrix with a rank closer to the maximum expected theoretical value than the other pixelizations. The effect of the propagation of numerical errors in the regularity of the covariance matrix is also studied for different computational precisions, as well as the effect of adding a certain level of noise in order to regularize the matrix. In addition, we investigate the application of the previous results to a particular example that requires the inversion of the covariance matrix: the estimation of the CMB temperature power spectrum through the Quadratic Maximum Likelihood algorithm. Finally, some general considerations in order to achieve a regular covariance matrix are also presented.
Covariance Evaluation Methodology for Neutron Cross Sections
Energy Technology Data Exchange (ETDEWEB)
Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.
2008-09-01
We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.
Hierarchical multivariate covariance analysis of metabolic connectivity.
Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J
2014-12-01
Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI).
Hypercyclic Abelian Semigroups of Matrices on Cn
International Nuclear Information System (INIS)
Ayadi, Adlene; Marzougui, Habib
2010-07-01
We give a complete characterization of existence of dense orbit for any abelian semigroup of matrices on C n . For finitely generated semigroups, this characterization is explicit and is used to determine the minimal number of matrices in normal form over C which forms a hypercyclic abelian semigroup on C n . In particular, we show that no abelian semigroup generated by n matrices on C n can be hypercyclic. (author)
Lambda-matrices and vibrating systems
Lancaster, Peter; Stark, M; Kahane, J P
1966-01-01
Lambda-Matrices and Vibrating Systems presents aspects and solutions to problems concerned with linear vibrating systems with a finite degrees of freedom and the theory of matrices. The book discusses some parts of the theory of matrices that will account for the solutions of the problems. The text starts with an outline of matrix theory, and some theorems are proved. The Jordan canonical form is also applied to understand the structure of square matrices. Classical theorems are discussed further by applying the Jordan canonical form, the Rayleigh quotient, and simple matrix pencils with late
COVARIANCE ASSISTED SCREENING AND ESTIMATION.
Ke, By Tracy; Jin, Jiashun; Fan, Jianqing
2014-11-01
Consider a linear model Y = X β + z , where X = X n,p and z ~ N (0, I n ). The vector β is unknown and it is of interest to separate its nonzero coordinates from the zero ones (i.e., variable selection). Motivated by examples in long-memory time series (Fan and Yao, 2003) and the change-point problem (Bhattacharya, 1994), we are primarily interested in the case where the Gram matrix G = X ' X is non-sparse but sparsifiable by a finite order linear filter. We focus on the regime where signals are both rare and weak so that successful variable selection is very challenging but is still possible. We approach this problem by a new procedure called the Covariance Assisted Screening and Estimation (CASE). CASE first uses a linear filtering to reduce the original setting to a new regression model where the corresponding Gram (covariance) matrix is sparse. The new covariance matrix induces a sparse graph, which guides us to conduct multivariate screening without visiting all the submodels. By interacting with the signal sparsity, the graph enables us to decompose the original problem into many separated small-size subproblems (if only we know where they are!). Linear filtering also induces a so-called problem of information leakage , which can be overcome by the newly introduced patching technique. Together, these give rise to CASE, which is a two-stage Screen and Clean (Fan and Song, 2010; Wasserman and Roeder, 2009) procedure, where we first identify candidates of these submodels by patching and screening , and then re-examine each candidate to remove false positives. For any procedure β̂ for variable selection, we measure the performance by the minimax Hamming distance between the sign vectors of β̂ and β. We show that in a broad class of situations where the Gram matrix is non-sparse but sparsifiable, CASE achieves the optimal rate of convergence. The results are successfully applied to long-memory time series and the change-point model.
Pathological rate matrices: from primates to pathogens
Directory of Open Access Journals (Sweden)
Knight Rob
2008-12-01
Full Text Available Abstract Background Continuous-time Markov models allow flexible, parametrically succinct descriptions of sequence divergence. Non-reversible forms of these models are more biologically realistic but are challenging to develop. The instantaneous rate matrices defined for these models are typically transformed into substitution probability matrices using a matrix exponentiation algorithm that employs eigendecomposition, but this algorithm has characteristic vulnerabilities that lead to significant errors when a rate matrix possesses certain 'pathological' properties. Here we tested whether pathological rate matrices exist in nature, and consider the suitability of different algorithms to their computation. Results We used concatenated protein coding gene alignments from microbial genomes, primate genomes and independent intron alignments from primate genomes. The Taylor series expansion and eigendecomposition matrix exponentiation algorithms were compared to the less widely employed, but more robust, Padé with scaling and squaring algorithm for nucleotide, dinucleotide, codon and trinucleotide rate matrices. Pathological dinucleotide and trinucleotide matrices were evident in the microbial data set, affecting the eigendecomposition and Taylor algorithms respectively. Even using a conservative estimate of matrix error (occurrence of an invalid probability, both Taylor and eigendecomposition algorithms exhibited substantial error rates: ~100% of all exonic trinucleotide matrices were pathological to the Taylor algorithm while ~10% of codon positions 1 and 2 dinucleotide matrices and intronic trinucleotide matrices, and ~30% of codon matrices were pathological to eigendecomposition. The majority of Taylor algorithm errors derived from occurrence of multiple unobserved states. A small number of negative probabilities were detected from the Pad�� algorithm on trinucleotide matrices that were attributable to machine precision. Although the Pad
Non-Critical Covariant Superstrings
Grassi, P A
2005-01-01
We construct a covariant description of non-critical superstrings in even dimensions. We construct explicitly supersymmetric hybrid type variables in a linear dilaton background, and study an underlying N=2 twisted superconformal algebra structure. We find similarities between non-critical superstrings in 2n+2 dimensions and critical superstrings compactified on CY_(4-n) manifolds. We study the spectrum of the non-critical strings, and in particular the Ramond-Ramond massless fields. We use the supersymmetric variables to construct the non-critical superstrings sigma-model action in curved target space backgrounds with coupling to the Ramond-Ramond fields. We consider as an example non-critical type IIA strings on AdS_2 background with Ramond-Ramond 2-form flux.
A Small Guide to Generating Covariances of Experimental Data
International Nuclear Information System (INIS)
Mannhart, Wolf
2011-05-01
A complete description of the uncertainties of an experiment can only be realized by a detailed list of all the uncertainty components, their value and a specification of existing correlations between the data. Based on such information the covariance matrix can be generated, which is necessary for any further proceeding with the experimental data. It is not necessary, and not recommended, that an experimenter evaluates this covariance matrix. The reason for this is that a incorrectly evaluated final covariance matrix can never be corrected if the details are not given. (Such obviously wrong covariance matrices have recently occasionally been found in the literature). Hence quotation of a covariance matrix is an additional step which should not occur without quoting a detailed list of the various uncertainty components and their correlations as well. It must be hoped that editors of journals will understand these necessary requirements. The generalized least squares procedure shown permits an easy way of interchanging data D 0 with parameter estimates P. This means new data can easily be combined with an earlier evaluation. However, it must be mentioned that this is only valid as long as the new data have no correlation with any of the older data of the prior evaluation. Otherwise the old data which show correlation with new data have to be extracted from the evaluation and then, together with the new data and taking account of the correlation, have again to be added to the reduced evaluation. In most cases this step cannot be performed and the evaluation has to be completely redone. A partial way out is given if the evaluation is performed step by step and the results of each step are stored. Then the evaluation need only be repeated from the step which contains correlated data for the first time while all earlier steps remain unchanged. Finally it should be noted that the addition of a small set of new data to a prior evaluation consisting of a large number of
A reduced covariant string model for the extrinsic string
International Nuclear Information System (INIS)
Botelho, L.C.L.
1989-01-01
It is studied a reduced covariant string model for the extrinsic string by using Polyakov's path integral formalism. On the basis of this reduced model it is suggested that the extrinsic string has its critical dimension given by 13. Additionally, it is calculated in a simple way Poliakov's renormalization group law for the string rigidity coupling constants. (A.C.A.S.) [pt
Ziyatdinov, Andrey; Vázquez-Santiago, Miquel; Brunel, Helena; Martinez-Perez, Angel; Aschard, Hugues; Soria, Jose Manuel
2018-02-27
Quantitative trait locus (QTL) mapping in genetic data often involves analysis of correlated observations, which need to be accounted for to avoid false association signals. This is commonly performed by modeling such correlations as random effects in linear mixed models (LMMs). The R package lme4 is a well-established tool that implements major LMM features using sparse matrix methods; however, it is not fully adapted for QTL mapping association and linkage studies. In particular, two LMM features are lacking in the base version of lme4: the definition of random effects by custom covariance matrices; and parameter constraints, which are essential in advanced QTL models. Apart from applications in linkage studies of related individuals, such functionalities are of high interest for association studies in situations where multiple covariance matrices need to be modeled, a scenario not covered by many genome-wide association study (GWAS) software. To address the aforementioned limitations, we developed a new R package lme4qtl as an extension of lme4. First, lme4qtl contributes new models for genetic studies within a single tool integrated with lme4 and its companion packages. Second, lme4qtl offers a flexible framework for scenarios with multiple levels of relatedness and becomes efficient when covariance matrices are sparse. We showed the value of our package using real family-based data in the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT2) project. Our software lme4qtl enables QTL mapping models with a versatile structure of random effects and efficient computation for sparse covariances. lme4qtl is available at https://github.com/variani/lme4qtl .
SAR matrices: automated extraction of information-rich SAR tables from large compound data sets.
Wassermann, Anne Mai; Haebel, Peter; Weskamp, Nils; Bajorath, Jürgen
2012-07-23
We introduce the SAR matrix data structure that is designed to elucidate SAR patterns produced by groups of structurally related active compounds, which are extracted from large data sets. SAR matrices are systematically generated and sorted on the basis of SAR information content. Matrix generation is computationally efficient and enables processing of large compound sets. The matrix format is reminiscent of SAR tables, and SAR patterns revealed by different categories of matrices are easily interpretable. The structural organization underlying matrix formation is more flexible than standard R-group decomposition schemes. Hence, the resulting matrices capture SAR information in a comprehensive manner.
Altered structural covariance of the striatum in functional dyspepsia patients.
Liu, P; Zeng, F; Yang, F; Wang, J; Liu, X; Wang, Q; Zhou, G; Zhang, D; Zhu, M; Zhao, R; Wang, A; Gong, Q; Liang, F
2014-08-01
Functional dyspepsia (FD) is thought to be involved in dysregulation within the brain-gut axis. Recently, altered striatum activation has been reported in patients with FD. However, the gray matter (GM) volumes in the striatum and structural covariance patterns of this area are rarely explored. The purpose of this study was to examine the GM volumes and structural covariance patterns of the striatum between FD patients and healthy controls (HCs). T1-weighted magnetic resonance images were obtained from 44 FD patients and 39 HCs. Voxel-based morphometry (VBM) analysis was adopted to examine the GM volumes in the two groups. The caudate- or putamen-related regions identified from VBM analysis were then used as seeds to map the whole brain voxel-wise structural covariance patterns. Finally, a correlation analysis was used to investigate the effects of FD symptoms on the striatum. The results showed increased GM volumes in the bilateral putamen and right caudate. Compared with the structural covariance patterns of the HCs, the FD-related differences were mainly located in the amygdala, hippocampus/parahippocampus (HIPP/paraHIPP), thalamus, lingual gyrus, and cerebellum. And significant positive correlations were found between the volumes in the striatum and the FD duration in the patients. These findings provided preliminary evidence for GM changes in the striatum and different structural covariance patterns in patients with FD. The current results might expand our understanding of the pathophysiology of FD. © 2014 John Wiley & Sons Ltd.
Covariance and correlation estimation in electron-density maps.
Altomare, Angela; Cuocci, Corrado; Giacovazzo, Carmelo; Moliterni, Anna; Rizzi, Rosanna
2012-03-01
Quite recently two papers have been published [Giacovazzo & Mazzone (2011). Acta Cryst. A67, 210-218; Giacovazzo et al. (2011). Acta Cryst. A67, 368-382] which calculate the variance in any point of an electron-density map at any stage of the phasing process. The main aim of the papers was to associate a standard deviation to each pixel of the map, in order to obtain a better estimate of the map reliability. This paper deals with the covariance estimate between points of an electron-density map in any space group, centrosymmetric or non-centrosymmetric, no matter the correlation between the model and target structures. The aim is as follows: to verify if the electron density in one point of the map is amplified or depressed as an effect of the electron density in one or more other points of the map. High values of the covariances are usually connected with undesired features of the map. The phases are the primitive random variables of our probabilistic model; the covariance changes with the quality of the model and therefore with the quality of the phases. The conclusive formulas show that the covariance is also influenced by the Patterson map. Uncertainty on measurements may influence the covariance, particularly in the final stages of the structure refinement; a general formula is obtained taking into account both phase and measurement uncertainty, valid at any stage of the crystal structure solution.
Quantum Hilbert matrices and orthogonal polynomials
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Berg, Christian
2009-01-01
Using the notion of quantum integers associated with a complex number q≠0 , we define the quantum Hilbert matrix and various extensions. They are Hankel matrices corresponding to certain little q -Jacobi polynomials when |q|<1 , and for the special value they are closely related to Hankel matrice...
The construction of factorized S-matrices
International Nuclear Information System (INIS)
Chudnovsky, D.V.
1981-01-01
We study the relationships between factorized S-matrices given as representations of the Zamolodchikov algebra and exactly solvable models constructed using the Baxter method. Several new examples of symmetric and non-symmetric factorized S-matrices are proposed. (orig.)
Skew-adjacency matrices of graphs
Cavers, M.; Cioaba, S.M.; Fallat, S.; Gregory, D.A.; Haemers, W.H.; Kirkland, S.J.; McDonald, J.J.; Tsatsomeros, M.
2012-01-01
The spectra of the skew-adjacency matrices of a graph are considered as a possible way to distinguish adjacency cospectral graphs. This leads to the following topics: graphs whose skew-adjacency matrices are all cospectral; relations between the matchings polynomial of a graph and the characteristic
On Investigating GMRES Convergence using Unitary Matrices
Czech Academy of Sciences Publication Activity Database
Duintjer Tebbens, Jurjen; Meurant, G.; Sadok, H.; Strakoš, Z.
2014-01-01
Roč. 450, 1 June (2014), s. 83-107 ISSN 0024-3795 Grant - others:GA AV ČR(CZ) M100301201; GA MŠk(CZ) LL1202 Institutional support: RVO:67985807 Keywords : GMRES convergence * unitary matrices * unitary spectra * normal matrices * Krylov residual subspace * Schur parameters Subject RIV: BA - General Mathematics Impact factor: 0.939, year: 2014
Congedo, Marco; Barachant, Alexandre
2015-01-01
Currently the Riemannian geometry of symmetric positive definite (SPD) matrices is gaining momentum as a powerful tool in a wide range of engineering applications such as image, radar and biomedical data signal processing. If the data is not natively represented in the form of SPD matrices, typically we may summarize them in such form by estimating covariance matrices of the data. However once we manipulate such covariance matrices on the Riemannian manifold we lose the representation in the original data space. For instance, we can evaluate the geometric mean of a set of covariance matrices, but not the geometric mean of the data generating the covariance matrices, the space of interest in which the geometric mean can be interpreted. As a consequence, Riemannian information geometry is often perceived by non-experts as a "black-box" tool and this perception prevents a wider adoption in the scientific community. Hereby we show that we can overcome this limitation by constructing a special form of SPD matrix embedding both the covariance structure of the data and the data itself. Incidentally, whenever the original data can be represented in the form of a generic data matrix (not even square), this special SPD matrix enables an exhaustive and unique description of the data up to second-order statistics. This is achieved embedding the covariance structure of both the rows and columns of the data matrix, allowing naturally a wide range of possible applications and bringing us over and above just an interpretability issue. We demonstrate the method by manipulating satellite images (pansharpening) and event-related potentials (ERPs) of an electroencephalography brain-computer interface (BCI) study. The first example illustrates the effect of moving along geodesics in the original data space and the second provides a novel estimation of ERP average (geometric mean), showing that, in contrast to the usual arithmetic mean, this estimation is robust to outliers. In
A covariant canonical description of Liouville field theory
International Nuclear Information System (INIS)
Papadopoulos, G.; Spence, B.
1993-03-01
This paper presents a new parametrisation of the space of solutions of Liouville field theory on a cylinder. In this parametrisation, the solutions are well-defined and manifestly real functions over all space-time and all of parameter space. It is shown that the resulting covariant phase space of the Liouville theory is diffeomorphic to the Hamiltonian one, and to the space of initial data of the theory. The Poisson brackets are derived and shown to be those of the co-tangent bundle of the loop group of the real line. Using Hamiltonian reduction, it is shown that this covariant phase space formulation of Liouville theory may also be obtained from the covariant phase space formulation of the Wess-Zumino-Witten model. 19 refs
Delahaie, B; Charmantier, A; Chantepie, S; Garant, D; Porlier, M; Teplitsky, C
2017-08-01
The genetic variance-covariance matrix (G-matrix) summarizes the genetic architecture of multiple traits. It has a central role in the understanding of phenotypic divergence and the quantification of the evolutionary potential of populations. Laboratory experiments have shown that G-matrices can vary rapidly under divergent selective pressures. However, because of the demanding nature of G-matrix estimation and comparison in wild populations, the extent of its spatial variability remains largely unknown. In this study, we investigate spatial variation in G-matrices for morphological and life-history traits using long-term data sets from one continental and three island populations of blue tit (Cyanistes caeruleus) that have experienced contrasting population history and selective environment. We found no evidence for differences in G-matrices among populations. Interestingly, the phenotypic variance-covariance matrices (P) were divergent across populations, suggesting that using P as a substitute for G may be inadequate. These analyses also provide the first evidence in wild populations for additive genetic variation in the incubation period (that is, the period between last egg laid and hatching) in all four populations. Altogether, our results suggest that G-matrices may be stable across populations inhabiting contrasted environments, therefore challenging the results of previous simulation studies and laboratory experiments.
Exact Inverse Matrices of Fermat and Mersenne Circulant Matrix
Directory of Open Access Journals (Sweden)
Yanpeng Zheng
2015-01-01
Full Text Available The well known circulant matrices are applied to solve networked systems. In this paper, circulant and left circulant matrices with the Fermat and Mersenne numbers are considered. The nonsingularity of these special matrices is discussed. Meanwhile, the exact determinants and inverse matrices of these special matrices are presented.
ISSUES IN NEUTRON CROSS SECTION COVARIANCES
Energy Technology Data Exchange (ETDEWEB)
Mattoon, C.M.; Oblozinsky,P.
2010-04-30
We review neutron cross section covariances in both the resonance and fast neutron regions with the goal to identify existing issues in evaluation methods and their impact on covariances. We also outline ideas for suitable covariance quality assurance procedures.We show that the topic of covariance data remains controversial, the evaluation methodologies are not fully established and covariances produced by different approaches have unacceptable spread. The main controversy is in very low uncertainties generated by rigorous evaluation methods and much larger uncertainties based on simple estimates from experimental data. Since the evaluators tend to trust the former, while the users tend to trust the latter, this controversy has considerable practical implications. Dedicated effort is needed to arrive at covariance evaluation methods that would resolve this issue and produce results accepted internationally both by evaluators and users.
Covariant diagrams for one-loop matching
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhengkang [Michigan Center for Theoretical Physics (MCTP), University of Michigan,450 Church Street, Ann Arbor, MI 48109 (United States); Deutsches Elektronen-Synchrotron (DESY),Notkestraße 85, 22607 Hamburg (Germany)
2017-05-30
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed “covariant diagrams.” The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
Covariant diagrams for one-loop matching
International Nuclear Information System (INIS)
Zhang, Zhengkang
2017-01-01
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed “covariant diagrams.” The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
Improvement of covariance data for fast reactors
International Nuclear Information System (INIS)
Shibata, Keiichi; Hasegawa, Akira
2000-02-01
We estimated covariances of the JENDL-3.2 data on the nuclides and reactions needed to analyze fast-reactor cores for the past three years, and produced covariance files. The present work was undertaken to re-examine the covariance files and to make some improvements. The covariances improved are the ones for the inelastic scattering cross section of 16 O, the total cross section of 23 Na, the fission cross section of 235 U, the capture cross section of 238 U, and the resolved resonance parameters for 238 U. Moreover, the covariances of 233 U data were newly estimated by the present work. The covariances obtained were compiled in the ENDF-6 format. (author)
Study on vulnerability matrices of masonry buildings of mainland China
Sun, Baitao; Zhang, Guixin
2018-04-01
The degree and distribution of damage to buildings subjected to earthquakes is a concern of the Chinese Government and the public. Seismic damage data indicates that seismic capacities of different types of building structures in various regions throughout mainland China are different. Furthermore, the seismic capacities of the same type of structure in different regions may vary. The contributions of this research are summarized as follows: 1) Vulnerability matrices and earthquake damage matrices of masonry structures in mainland China were chosen as research samples. The aim was to analyze the differences in seismic capacities of sample matrices and to present general rules for categorizing seismic resistance. 2) Curves relating the percentage of damaged masonry structures with different seismic resistances subjected to seismic demand in different regions of seismic intensity (VI to X) have been developed. 3) A method has been proposed to build vulnerability matrices of masonry structures. The damage ratio for masonry structures under high-intensity events such as the Ms 6.1 Panzhihua earthquake in Sichuan province on 30 August 2008, was calculated to verify the applicability of this method. This research offers a significant theoretical basis for predicting seismic damage and direct loss assessment of groups of buildings, as well as for earthquake disaster insurance.
Modifications of Sp(2) covariant superfield quantization
Energy Technology Data Exchange (ETDEWEB)
Gitman, D.M.; Moshin, P.Yu
2003-12-04
We propose a modification of the Sp(2) covariant superfield quantization to realize a superalgebra of generating operators isomorphic to the massless limit of the corresponding superalgebra of the osp(1,2) covariant formalism. The modified scheme ensures the compatibility of the superalgebra of generating operators with extended BRST symmetry without imposing restrictions eliminating superfield components from the quantum action. The formalism coincides with the Sp(2) covariant superfield scheme and with the massless limit of the osp(1,2) covariant quantization in particular cases of gauge-fixing and solutions of the quantum master equations.
Competing risks and time-dependent covariates
DEFF Research Database (Denmark)
Cortese, Giuliana; Andersen, Per K
2010-01-01
Time-dependent covariates are frequently encountered in regression analysis for event history data and competing risks. They are often essential predictors, which cannot be substituted by time-fixed covariates. This study briefly recalls the different types of time-dependent covariates......, as classified by Kalbfleisch and Prentice [The Statistical Analysis of Failure Time Data, Wiley, New York, 2002] with the intent of clarifying their role and emphasizing the limitations in standard survival models and in the competing risks setting. If random (internal) time-dependent covariates...
Extended covariance data formats for the ENDF/B-VI differential data evaluation
International Nuclear Information System (INIS)
Peelle, R.W.; Muir, D.W.
1988-01-01
The ENDF/B-V included cross section covariance data, but covariances could not be encoded for all the important data types. New ENDF-6 covariance formats are outlined including those for cross-file (MF) covariances, resonance parameters over the whole range, and secondary energy and angle distributions. One ''late entry'' format encodes covariance data for cross sections that are output from model or fitting codes in terms of the model parameter covariance matrix and the tabulated derivatives of cross sections with respect to the model parameters. Another new format yields multigroup cross section variances that increase as the group width decreases. When evaluators use the new formats, the files can be processed and used for improved uncertainty propagation and data combination. 22 refs
A method to construct covariance files in ENDF/B format for criticality safety applications
International Nuclear Information System (INIS)
Naberejnev, D.G.; Smith, D.L.
1999-01-01
Argonne National Laboratory is providing support for a criticality safety analysis project that is being performed at Oak Ridge National Laboratory. The ANL role is to provide the covariance information needed by ORNL for this project. The ENDF/B-V evaluation is being used for this particular criticality analysis. In this evaluation, covariance information for several isotopes or elements of interest to this analysis is either not given or needs to be reconsidered. For some required materials, covariance information does not exist in ENDF/B-V: 233 U, 236 U, Zr, Mg, Gd, and Hf. For others, existing covariance information may need to be re-examined in light of the newer ENDF/B-V evaluation and recent experimental data. In this category are the following materials: 235 U, 238 U, 239 Pu, 240 Pu, 241 Pu, Fe, H, C, N, O, Al, Si, and B. A reasonable estimation of the fractional errors for various evaluated neutron cross sections from ENDF/B-V can be based on the comparisons between the major more recent evaluations including ENDF/B-VI, JENDL3.2, BROND2.2, and JEF2.2, as well as a careful examination of experimental data. A reasonable method to construct correlation matrices is proposed here. Coupling both of these considerations suggests a method to construct covariances files in ENDF/B format that can be used to express uncertainties for specific ENDF/B-V cross sections
General covariance and quantum theory
International Nuclear Information System (INIS)
Mashhoon, B.
1986-01-01
The extension of the principle of relativity to general coordinate systems is based on the hypothesis that an accelerated observer is locally equivalent to a hypothetical inertial observer with the same velocity as the noninertial observer. This hypothesis of locality is expected to be valid for classical particle phenomena as well as for classical wave phenomena but only in the short-wavelength approximation. The generally covariant theory is therefore expected to be in conflict with the quantum theory which is based on wave-particle duality. This is explicitly demonstrated for the frequency of electromagnetic radiation measured by a uniformly rotating observer. The standard Doppler formula is shown to be valid only in the geometric optics approximation. A new definition for the frequency is proposed, and the resulting formula for the frequency measured by the rotating observer is shown to be consistent with expectations based on the classical theory of electrons. A tentative quantum theory is developed on the basis of the generalization of the Bohr frequency condition to include accelerated observers. The description of the causal sequence of events is assumed to be independent of the motion of the observer. Furthermore, the quantum hypothesis is supposed to be valid for all observers. The implications of this theory are critically examined. The new formula for frequency, which is still based on the hypothesis of locality, leads to the observation of negative energy quanta by the rotating observer and is therefore in conflict with the quantum theory
Dolan, C.V.; Molenaar, P.C.M.; Boomsma, D.I.
1991-01-01
D. Soerbom's (1974, 1976) simplex model approach to simultaneous analysis of means and covariance structure was applied to analysis of means observed in a single group. The present approach to the simultaneous biometric analysis of covariance and mean structure is based on the testable assumption
A Concise Method for Storing and Communicating the Data Covariance Matrix
Energy Technology Data Exchange (ETDEWEB)
Larson, Nancy M [ORNL
2008-10-01
The covariance matrix associated with experimental cross section or transmission data consists of several components. Statistical uncertainties on the measured quantity (counts) provide a diagonal contribution. Off-diagonal components arise from uncertainties on the parameters (such as normalization or background) that figure into the data reduction process; these are denoted systematic or common uncertainties, since they affect all data points. The full off-diagonal data covariance matrix (DCM) can be extremely large, since the size is the square of the number of data points. Fortunately, it is not necessary to explicitly calculate, store, or invert the DCM. Likewise, it is not necessary to explicitly calculate, store, or use the inverse of the DCM. Instead, it is more efficient to accomplish the same results using only the various component matrices that appear in the definition of the DCM. Those component matrices are either diagonal or small (the number of data points times the number of data-reduction parameters); hence, this implicit data covariance method requires far less array storage and far fewer computations while producing more accurate results.
The application of sparse estimation of covariance matrix to quadratic discriminant analysis.
Sun, Jiehuan; Zhao, Hongyu
2015-02-18
Although Linear Discriminant Analysis (LDA) is commonly used for classification, it may not be directly applied in genomics studies due to the large p, small n problem in these studies. Different versions of sparse LDA have been proposed to address this significant challenge. One implicit assumption of various LDA-based methods is that the covariance matrices are the same across different classes. However, rewiring of genetic networks (therefore different covariance matrices) across different diseases has been observed in many genomics studies, which suggests that LDA and its variations may be suboptimal for disease classifications. However, it is not clear whether considering differing genetic networks across diseases can improve classification in genomics studies. We propose a sparse version of Quadratic Discriminant Analysis (SQDA) to explicitly consider the differences of the genetic networks across diseases. Both simulation and real data analysis are performed to compare the performance of SQDA with six commonly used classification methods. SQDA provides more accurate classification results than other methods for both simulated and real data. Our method should prove useful for classification in genomics studies and other research settings, where covariances differ among classes.
Parameters of the covariance function of galaxies
International Nuclear Information System (INIS)
Fesenko, B.I.; Onuchina, E.V.
1988-01-01
The two-point angular covariance functions for two samples of galaxies are considered using quick methods of analysis. It is concluded that in the previous investigations the amplitude of the covariance function in the Lick counts was overestimated and the rate of decrease of the function underestimated
Covariance Function for Nearshore Wave Assimilation Systems
2018-01-30
which is applicable for any spectral wave model. The four dimensional variational (4DVar) assimilation methods are based on the mathematical ...covariance can be modeled by a parameterized Gaussian function, for nearshore wave assimilation applications , the covariance function depends primarily on...SPECTRAL ACTION DENSITY, RESPECTIVELY. ............................ 5 FIGURE 2. TOP ROW: STATISTICAL ANALYSIS OF THE WAVE-FIELD PROPERTIES AT THE
Treatment Effects with Many Covariates and Heteroskedasticity
DEFF Research Database (Denmark)
Cattaneo, Matias D.; Jansson, Michael; Newey, Whitney K.
The linear regression model is widely used in empirical work in Economics. Researchers often include many covariates in their linear model specification in an attempt to control for confounders. We give inference methods that allow for many covariates and heteroskedasticity. Our results...
Covariance and sensitivity data generation at ORNL
International Nuclear Information System (INIS)
Leal, L. C.; Derrien, H.; Larson, N. M.; Alpan, A.
2005-01-01
Covariance data are required to assess uncertainties in design parameters in several nuclear applications. The error estimation of calculated quantities relies on the nuclear data uncertainty information available in the basic nuclear data libraries, such as the US Evaluated Nuclear Data Library, ENDF/B. The uncertainty files in the ENDF/B library are obtained from the analysis of experimental data and are stored as variance and covariance data. In this paper we address the generation of covariance data in the resonance region done with the computer code SAMMY. SAMMY is used in the evaluation of the experimental data in the resolved and unresolved resonance energy regions. The data fitting of cross sections is based on the generalised least-squares formalism (Bayesian theory) together with the resonance formalism described by R-matrix theory. Two approaches are used in SAMMY for the generation of resonance parameter covariance data. In the evaluation process SAMMY generates a set of resonance parameters that fit the data, and, it provides the resonance parameter covariances. For resonance parameter evaluations where there are no resonance parameter covariance data available, the alternative is to use an approach called the 'retroactive' resonance parameter covariance generation. In this paper, we describe the application of the retroactive covariance generation approach for the gadolinium isotopes. (authors)
The Antitriangular Factorization of Saddle Point Matrices
Pestana, J.
2014-01-01
Mastronardi and Van Dooren [SIAM J. Matrix Anal. Appl., 34 (2013), pp. 173-196] recently introduced the block antitriangular ("Batman") decomposition for symmetric indefinite matrices. Here we show the simplification of this factorization for saddle point matrices and demonstrate how it represents the common nullspace method. We show that rank-1 updates to the saddle point matrix can be easily incorporated into the factorization and give bounds on the eigenvalues of matrices important in saddle point theory. We show the relation of this factorization to constraint preconditioning and how it transforms but preserves the structure of block diagonal and block triangular preconditioners. © 2014 Society for Industrial and Applied Mathematics.
Polynomial sequences generated by infinite Hessenberg matrices
Directory of Open Access Journals (Sweden)
Verde-Star Luis
2017-01-01
Full Text Available We show that an infinite lower Hessenberg matrix generates polynomial sequences that correspond to the rows of infinite lower triangular invertible matrices. Orthogonal polynomial sequences are obtained when the Hessenberg matrix is tridiagonal. We study properties of the polynomial sequences and their corresponding matrices which are related to recurrence relations, companion matrices, matrix similarity, construction algorithms, and generating functions. When the Hessenberg matrix is also Toeplitz the polynomial sequences turn out to be of interpolatory type and we obtain additional results. For example, we show that every nonderogative finite square matrix is similar to a unique Toeplitz-Hessenberg matrix.
On the algebraic structure of covariant anomalies and covariant Schwinger terms
International Nuclear Information System (INIS)
Kelnhofer, G.
1992-01-01
A cohomological characterization of covariant anomalies and covariant Schwinger terms in an anomalous Yang-Mills theory is formulated and w ill be geometrically interpreted. The BRS and anti-BRS transformations are defined as purely differential geometric objects. Finally the covariant descent equations are formulated within this context. (author)
Covariant diagrams for one-loop matching
International Nuclear Information System (INIS)
Zhang, Zhengkang
2016-10-01
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gaugecovariant quantities and are thus dubbed ''covariant diagrams.'' The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
Covariant diagrams for one-loop matching
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhengkang [Michigan Univ., Ann Arbor, MI (United States). Michigan Center for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2016-10-15
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gaugecovariant quantities and are thus dubbed ''covariant diagrams.'' The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
Covariance descriptor fusion for target detection
Cukur, Huseyin; Binol, Hamidullah; Bal, Abdullah; Yavuz, Fatih
2016-05-01
Target detection is one of the most important topics for military or civilian applications. In order to address such detection tasks, hyperspectral imaging sensors provide useful images data containing both spatial and spectral information. Target detection has various challenging scenarios for hyperspectral images. To overcome these challenges, covariance descriptor presents many advantages. Detection capability of the conventional covariance descriptor technique can be improved by fusion methods. In this paper, hyperspectral bands are clustered according to inter-bands correlation. Target detection is then realized by fusion of covariance descriptor results based on the band clusters. The proposed combination technique is denoted Covariance Descriptor Fusion (CDF). The efficiency of the CDF is evaluated by applying to hyperspectral imagery to detect man-made objects. The obtained results show that the CDF presents better performance than the conventional covariance descriptor.
Missing continuous outcomes under covariate dependent missingness in cluster randomised trials.
Hossain, Anower; Diaz-Ordaz, Karla; Bartlett, Jonathan W
2017-06-01
Attrition is a common occurrence in cluster randomised trials which leads to missing outcome data. Two approaches for analysing such trials are cluster-level analysis and individual-level analysis. This paper compares the performance of unadjusted cluster-level analysis, baseline covariate adjusted cluster-level analysis and linear mixed model analysis, under baseline covariate dependent missingness in continuous outcomes, in terms of bias, average estimated standard error and coverage probability. The methods of complete records analysis and multiple imputation are used to handle the missing outcome data. We considered four scenarios, with the missingness mechanism and baseline covariate effect on outcome either the same or different between intervention groups. We show that both unadjusted cluster-level analysis and baseline covariate adjusted cluster-level analysis give unbiased estimates of the intervention effect only if both intervention groups have the same missingness mechanisms and there is no interaction between baseline covariate and intervention group. Linear mixed model and multiple imputation give unbiased estimates under all four considered scenarios, provided that an interaction of intervention and baseline covariate is included in the model when appropriate. Cluster mean imputation has been proposed as a valid approach for handling missing outcomes in cluster randomised trials. We show that cluster mean imputation only gives unbiased estimates when missingness mechanism is the same between the intervention groups and there is no interaction between baseline covariate and intervention group. Multiple imputation shows overcoverage for small number of clusters in each intervention group.
Synchronous correlation matrices and Connes’ embedding conjecture
Energy Technology Data Exchange (ETDEWEB)
Dykema, Kenneth J., E-mail: kdykema@math.tamu.edu [Department of Mathematics, Texas A& M University, College Station, Texas 77843-3368 (United States); Paulsen, Vern, E-mail: vern@math.uh.edu [Department of Mathematics, University of Houston, Houston, Texas 77204 (United States)
2016-01-15
In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes’ embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove that if Connes’ embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.
The Antitriangular Factorization of Saddle Point Matrices
Pestana, J.; Wathen, A. J.
2014-01-01
Mastronardi and Van Dooren [SIAM J. Matrix Anal. Appl., 34 (2013), pp. 173-196] recently introduced the block antitriangular ("Batman") decomposition for symmetric indefinite matrices. Here we show the simplification of this factorization for saddle
Flux Jacobian Matrices For Equilibrium Real Gases
Vinokur, Marcel
1990-01-01
Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.
Supercritical fluid extraction behaviour of polymer matrices
International Nuclear Information System (INIS)
Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.
2007-01-01
Organic compounds present in polymeric matrices such as neoprene, surgical gloves and PVC were co-extracted during the removal of uranium using supercritical fluid extraction (SFE) technique. Hence SFE studies of these matrices were carried out to establish the extracted species using HPLC, IR and mass spectrometry techniques. The initial study indicated that uranium present in the extract could be purified from the co-extracted organic species. (author)
Substituted amylose matrices for oral drug delivery
International Nuclear Information System (INIS)
Moghadam, S H; Wang, H W; El-Leithy, E Saddar; Chebli, C; Cartilier, L
2007-01-01
High amylose corn starch was used to obtain substituted amylose (SA) polymers by chemically modifying hydroxyl groups by an etherification process using 1,2-epoxypropanol. Tablets for drug-controlled release were prepared by direct compression and their release properties assessed by an in vitro dissolution test (USP XXIII no 2). The polymer swelling was characterized by measuring gravimetrically the water uptake ability of polymer tablets. SA hydrophilic matrix tablets present sequentially a burst effect, typical of hydrophilic matrices, and a near constant release, typical of reservoir systems. After the burst effect, surface pores disappear progressively by molecular association of amylose chains; this allows the creation of a polymer layer acting as a diffusion barrier and explains the peculiar behaviour of SA polymers. Several formulation parameters such as compression force, drug loading, tablet weight and insoluble diluent concentration were investigated. On the other hand, tablet thickness, scanning electron microscope analysis and mercury intrusion porosimetry showed that the high crushing strength values observed for SA tablets were due to an unusual melting process occurring during tabletting although the tablet external layer went only through densification, deformation and partial melting. In contrast, HPMC tablets did not show any traces of a melting process
Fabrication of chemically cross-linked porous gelatin matrices.
Bozzini, Sabrina; Petrini, Paola; Altomare, Lina; Tanzi, Maria Cristina
2009-01-01
The aim of this study was to chemically cross-link gelatin, by reacting its free amino groups with an aliphatic diisocyanate. To produce hydrogels with controllable properties, the number of reacting amino groups was carefully determined. Porosity was introduced into the gelatin-based hydrogels through the lyophilization process. Porous and non-porous matrices were characterized with respect to their chemical structure, morphology, water uptake and mechanical properties. The physical, chemical and mechanical properties of the porous matrices are related to the extent of their cross-linking, showing that they can be controlled by varying the reaction parameters. Water uptake values (24 hours) vary between 160% and 200% as the degree of cross-linking increases. The flexibility of the samples also decreases by changing the extent of cross-linking. Young's modulus shows values between 0.188 KPa, for the highest degree, and 0.142 KPa for the lowest degree. The matrices are potential candidates for use as tissue-engineering scaffolds by modulating their physical chemical properties according to the specific application.
Quark mass matrices in left-right symmetric gauge theories
International Nuclear Information System (INIS)
Ecker, G.; Grimus, W.; Konetschny, W.
1981-01-01
The most general left-right symmetry for SU(2)sub(L) x SU(2)sub(R) x U(1) gauge theories with any number of flavours and with at most two scalar multiplets transforming as anti qq bilinears is analyzed. In order to get additional constraints on the structure of quark mass matrices all possible horizontal groups (continuous or discrete) are investigated. A complete classification of physically inequivalent quark mass matrices is given for four and six flavours. It is argued that the methods and results are also applicable in the case of dynamical symmetry breaking. Parity invariance and horizontal symmetry are shown to imply CP conservation on the Lagrangian level. For all non-trivial three-generation models there is spontaneous CP violation which in most cases turns out to be naturally small. (Auth.)
Covariant quantizations in plane and curved spaces
International Nuclear Information System (INIS)
Assirati, J.L.M.; Gitman, D.M.
2017-01-01
We present covariant quantization rules for nonsingular finite-dimensional classical theories with flat and curved configuration spaces. In the beginning, we construct a family of covariant quantizations in flat spaces and Cartesian coordinates. This family is parametrized by a function ω(θ), θ element of (1,0), which describes an ambiguity of the quantization. We generalize this construction presenting covariant quantizations of theories with flat configuration spaces but already with arbitrary curvilinear coordinates. Then we construct a so-called minimal family of covariant quantizations for theories with curved configuration spaces. This family of quantizations is parametrized by the same function ω(θ). Finally, we describe a more wide family of covariant quantizations in curved spaces. This family is already parametrized by two functions, the previous one ω(θ) and by an additional function Θ(x,ξ). The above mentioned minimal family is a part at Θ = 1 of the wide family of quantizations. We study constructed quantizations in detail, proving their consistency and covariance. As a physical application, we consider a quantization of a non-relativistic particle moving in a curved space, discussing the problem of a quantum potential. Applying the covariant quantizations in flat spaces to an old problem of constructing quantum Hamiltonian in polar coordinates, we directly obtain a correct result. (orig.)
Covariant quantizations in plane and curved spaces
Energy Technology Data Exchange (ETDEWEB)
Assirati, J.L.M. [University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); P.N. Lebedev Physical Institute, Moscow (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil)
2017-07-15
We present covariant quantization rules for nonsingular finite-dimensional classical theories with flat and curved configuration spaces. In the beginning, we construct a family of covariant quantizations in flat spaces and Cartesian coordinates. This family is parametrized by a function ω(θ), θ element of (1,0), which describes an ambiguity of the quantization. We generalize this construction presenting covariant quantizations of theories with flat configuration spaces but already with arbitrary curvilinear coordinates. Then we construct a so-called minimal family of covariant quantizations for theories with curved configuration spaces. This family of quantizations is parametrized by the same function ω(θ). Finally, we describe a more wide family of covariant quantizations in curved spaces. This family is already parametrized by two functions, the previous one ω(θ) and by an additional function Θ(x,ξ). The above mentioned minimal family is a part at Θ = 1 of the wide family of quantizations. We study constructed quantizations in detail, proving their consistency and covariance. As a physical application, we consider a quantization of a non-relativistic particle moving in a curved space, discussing the problem of a quantum potential. Applying the covariant quantizations in flat spaces to an old problem of constructing quantum Hamiltonian in polar coordinates, we directly obtain a correct result. (orig.)
Weyl groups, supercurrents and covariant lattices. Pt. 2
International Nuclear Information System (INIS)
Schellekens, A.N.; Warner, N.P.
1989-01-01
A recent construction of bosonic realization of world-sheet supersymmetry is applied to a class of string theories with left and right world-sheet supersymmetries (1, 1) theories). A simple formula for the number of generations is asymmetric (1, 1) lattice theories is derived. For the subclass of lattices that can be obtained by single shifts, we enumerate all (1, 1) theories and obtain their complete massless spectra. We show how every realization of world-sheet supersymmetry implies a θ-function identity, and give some of these identities. (orig.)
Fluctuations of Wigner-type random matrices associated with symmetric spaces of class DIII and CI
Stolz, Michael
2018-02-01
Wigner-type randomizations of the tangent spaces of classical symmetric spaces can be thought of as ordinary Wigner matrices on which additional symmetries have been imposed. In particular, they fall within the scope of a framework, due to Schenker and Schulz-Baldes, for the study of fluctuations of Wigner matrices with additional dependencies among their entries. In this contribution, we complement the results of these authors by explicit calculations of the asymptotic covariances for symmetry classes DIII and CI and thus obtain explicit CLTs for these classes. On the technical level, the present work is an exercise in controlling the cumulative effect of systematically occurring sign factors in an involved sum of products by setting up a suitable combinatorial model for the summands. This aspect may be of independent interest. Research supported by Deutsche Forschungsgemeinschaft (DFG) via SFB 878.
Altered Cerebral Blood Flow Covariance Network in Schizophrenia.
Liu, Feng; Zhuo, Chuanjun; Yu, Chunshui
2016-01-01
Many studies have shown abnormal cerebral blood flow (CBF) in schizophrenia; however, it remains unclear how topological properties of CBF network are altered in this disorder. Here, arterial spin labeling (ASL) MRI was employed to measure resting-state CBF in 96 schizophrenia patients and 91 healthy controls. CBF covariance network of each group was constructed by calculating across-subject CBF covariance between 90 brain regions. Graph theory was used to compare intergroup differences in global and nodal topological measures of the network. Both schizophrenia patients and healthy controls had small-world topology in CBF covariance networks, implying an optimal balance between functional segregation and integration. Compared with healthy controls, schizophrenia patients showed reduced small-worldness, normalized clustering coefficient and local efficiency of the network, suggesting a shift toward randomized network topology in schizophrenia. Furthermore, schizophrenia patients exhibited altered nodal centrality in the perceptual-, affective-, language-, and spatial-related regions, indicating functional disturbance of these systems in schizophrenia. This study demonstrated for the first time that schizophrenia patients have disrupted topological properties in CBF covariance network, which provides a new perspective (efficiency of blood flow distribution between brain regions) for understanding neural mechanisms of schizophrenia.
International Nuclear Information System (INIS)
Wei Yi; Fyodorov, Yan V
2008-01-01
Given any fixed N x N positive semi-definite diagonal matrix G ≥ 0 we derive the explicit formula for the density of complex eigenvalues for random matrices A of the form A=U√G where the random unitary matrices U are distributed on the group U(N) according to the Haar measure. (fast track communication)
International Nuclear Information System (INIS)
Neves Bettencourt da Silva, Ricardo Jorge; Gomes Ferreira Crujo Camoes, Maria Filomena
2010-01-01
Testing safety of foodstuffs of plant origin involves the analysis of hundreds of pesticide residues. This control is only cost-effective through the use of methods validated for the analysis of many thousands of analyte/matrix combinations. Several documents propose representative matrices of groups of matrices from which the validity of the analytical method can be extrapolated to the represented matrices after summarised experimental check of within group method performance homogeneity. Those groups are based on an evolved expert consensus based on the empirical knowledge on the current analytical procedures; they are not exhaustive, they are not objectively defined and they propose a large list of representative matrices which makes their application difficult. This work proposes grouping 240 matrices, based on the nutritional composition pattern equivalence of the analytical portion right after hydration and before solvent extraction, aiming at defining groups that observe method performance homogeneity. This grouping was based on the combined outcome of three multivariate tools, namely: Principal Component Analysis, Hierarchical Cluster Analysis and K-Mean Cluster Analysis. These tools allowed the selection of eight groups for which representative matrices with average characteristics and objective criteria to test inclusion of new matrices were established. The proposed matrices groups are homogeneous to nutritional data not considered in their definition but correlated with the studied multivariate nutritional pattern. The developed grouping that must be checked with experimental test before use was tested against small deviations in food composition and for the integration of new matrices.
Protein matrices for wound dressings =
Vasconcelos, Andreia Joana Costa
Fibrous proteins such as silk fibroin (SF), keratin (K) and elastin (EL) are able to mimic the extracellular matrix (ECM) that allows their recognition under physiological conditions. The impressive mechanical properties, the environmental stability, in combination with their biocompatibility and control of morphology, provide an important basis to use these proteins in biomedical applications like protein-based wound dressings. Along time the concept of wound dressings has changed from the traditional dressings such as honey or natural fibres, used just to protect the wound from external factors, to the interactive dressings of the present. Wounds can be classified in acute that heal in the expected time frame, and chronic, which fail to heal because the orderly sequence of events is disrupted at one or more stages of the healing process. Moreover, chronic wound exudates contain high levels of tissue destructive proteolytic enzymes such as human neutrophil elastase (HNE) that need to be controlled for a proper healing. The aim of this work is to exploit the self-assemble properties of silk fibroin, keratin and elastin for the development of new protein materials to be used as wound dressings: i) evaluation of the blending effect on the physical and chemical properties of the materials; ii) development of materials with different morphologies; iii) assessment of the cytocompatibility of the protein matrices; iv) ultimately, study the ability of the developed protein matrices as wound dressings through the use of human chronic wound exudate; v) use of innovative short peptide sequences that allow to target the control of high levels of HNE found on chronic wounds. Chapter III reports the preparation of silk fibroin/keratin (SF/K) blend films by solvent casting evaporation. Two solvent systems, aqueous and acidic, were used for the preparation of films from fibroin and keratin extracted from the respective silk and wool fibres. The effect of solvent system used was
Estimated 55Mn and 90Zr cross section covariances in the fast neutron energy region
International Nuclear Information System (INIS)
Pigni, M.T.; Herman, M.; Oblozinsky, P.
2008-01-01
We completed estimates of neutron cross section covariances for 55 Mn and 90 Zr, from keV range to 25 MeV, considering the most important reaction channels, total, elastic, inelastic, capture, and (n,2n). The nuclear reaction model code EMPIRE was used to calculate sensitivity to model parameters by perturbation of parameters that define the optical model potential, nuclear level densities and strength of the pre-equilibrium emission. The sensitivity analysis was performed with the set of parameters which reproduces the ENDF/B-VII.0 cross sections. The experimental data were analyzed and both statistical and systematic uncertainties were extracted from almost 30 selected experiments. Then, the Bayesian code KALMAN was used to combine the sensitivity analysis and the experiments to obtain the evaluated covariance matrices
Estimated 55Mn and 90Zr cross section covariances in the fast neutron energy region
Energy Technology Data Exchange (ETDEWEB)
Pigni,M.T.; Herman, M.; Oblozinsky, P.
2008-06-24
We completed estimates of neutron cross section covariances for {sup 55}Mn and {sup 90}Zr, from keV range to 25 MeV, considering the most important reaction channels, total, elastic, inelastic, capture, and (n,2n). The nuclear reaction model code EMPIRE was used to calculate sensitivity to model parameters by perturbation of parameters that define the optical model potential, nuclear level densities and strength of the pre-equilibrium emission. The sensitivity analysis was performed with the set of parameters which reproduces the ENDF/B-VII.0 cross sections. The experimental data were analyzed and both statistical and systematic uncertainties were extracted from almost 30 selected experiments. Then, the Bayesian code KALMAN was used to combine the sensitivity analysis and the experiments to obtain the evaluated covariance matrices.
MERSENNE AND HADAMARD MATRICES CALCULATION BY SCARPIS METHOD
Directory of Open Access Journals (Sweden)
N. A. Balonin
2014-05-01
Full Text Available Purpose. The paper deals with the problem of basic generalizations of Hadamard matrices associated with maximum determinant matrices or not optimal by determinant matrices with orthogonal columns (weighing matrices, Mersenne and Euler matrices, ets.; calculation methods for the quasi-orthogonal local maximum determinant Mersenne matrices are not studied enough sufficiently. The goal of this paper is to develop the theory of Mersenne and Hadamard matrices on the base of generalized Scarpis method research. Methods. Extreme solutions are found in general by minimization of maximum for absolute values of the elements of studied matrices followed by their subsequent classification according to the quantity of levels and their values depending on orders. Less universal but more effective methods are based on structural invariants of quasi-orthogonal matrices (Silvester, Paley, Scarpis methods, ets.. Results. Generalizations of Hadamard and Belevitch matrices as a family of quasi-orthogonal matrices of odd orders are observed; they include, in particular, two-level Mersenne matrices. Definitions of section and layer on the set of generalized matrices are proposed. Calculation algorithms for matrices of adjacent layers and sections by matrices of lower orders are described. Approximation examples of the Belevitch matrix structures up to 22-nd critical order by Mersenne matrix of the third order are given. New formulation of the modified Scarpis method to approximate Hadamard matrices of high orders by lower order Mersenne matrices is proposed. Williamson method is described by example of one modular level matrices approximation by matrices with a small number of levels. Practical relevance. The efficiency of developing direction for the band-pass filters creation is justified. Algorithms for Mersenne matrices design by Scarpis method are used in developing software of the research program complex. Mersenne filters are based on the suboptimal by
A Brief Historical Introduction to Matrices and Their Applications
Debnath, L.
2014-01-01
This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…
Covariant path integrals on hyperbolic surfaces
Schaefer, Joe
1997-11-01
DeWitt's covariant formulation of path integration [B. De Witt, "Dynamical theory in curved spaces. I. A review of the classical and quantum action principles," Rev. Mod. Phys. 29, 377-397 (1957)] has two practical advantages over the traditional methods of "lattice approximations;" there is no ordering problem, and classical symmetries are manifestly preserved at the quantum level. Applying the spectral theorem for unbounded self-adjoint operators, we provide a rigorous proof of the convergence of certain path integrals on Riemann surfaces of constant curvature -1. The Pauli-DeWitt curvature correction term arises, as in DeWitt's work. Introducing a Fuchsian group Γ of the first kind, and a continuous, bounded, Γ-automorphic potential V, we obtain a Feynman-Kac formula for the automorphic Schrödinger equation on the Riemann surface ΓH. We analyze the Wick rotation and prove the strong convergence of the so-called Feynman maps [K. D. Elworthy, Path Integration on Manifolds, Mathematical Aspects of Superspace, edited by Seifert, Clarke, and Rosenblum (Reidel, Boston, 1983), pp. 47-90] on a dense set of states. Finally, we give a new proof of some results in C. Grosche and F. Steiner, "The path integral on the Poincare upper half plane and for Liouville quantum mechanics," Phys. Lett. A 123, 319-328 (1987).
Students’ Covariational Reasoning in Solving Integrals’ Problems
Harini, N. V.; Fuad, Y.; Ekawati, R.
2018-01-01
Covariational reasoning plays an important role to indicate quantities vary in learning calculus. This study investigates students’ covariational reasoning during their studies concerning two covarying quantities in integral problem. Six undergraduate students were chosen to solve problems that involved interpreting and representing how quantities change in tandem. Interviews were conducted to reveal the students’ reasoning while solving covariational problems. The result emphasizes that undergraduate students were able to construct the relation of dependent variables that changes in tandem with the independent variable. However, students faced difficulty in forming images of continuously changing rates and could not accurately apply the concept of integrals. These findings suggest that learning calculus should be increased emphasis on coordinating images of two quantities changing in tandem about instantaneously rate of change and to promote conceptual knowledge in integral techniques.
Covariant Quantization with Extended BRST Symmetry
Geyer, B.; Gitman, D. M.; Lavrov, P. M.
1999-01-01
A short rewiev of covariant quantization methods based on BRST-antiBRST symmetry is given. In particular problems of correct definition of Sp(2) symmetric quantization scheme known as triplectic quantization are considered.
Covariant extensions and the nonsymmetric unified field
International Nuclear Information System (INIS)
Borchsenius, K.
1976-01-01
The problem of generally covariant extension of Lorentz invariant field equations, by means of covariant derivatives extracted from the nonsymmetric unified field, is considered. It is shown that the contracted curvature tensor can be expressed in terms of a covariant gauge derivative which contains the gauge derivative corresponding to minimal coupling, if the universal constant p, characterizing the nonsymmetric theory, is fixed in terms of Planck's constant and the elementary quantum of charge. By this choice the spinor representation of the linear connection becomes closely related to the spinor affinity used by Infeld and Van Der Waerden (Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl.; 9:380 (1933)) in their generally covariant formulation of Dirac's equation. (author)
Covariance Spectroscopy for Fissile Material Detection
International Nuclear Information System (INIS)
Trainham, Rusty; Tinsley, Jim; Hurley, Paul; Keegan, Ray
2009-01-01
Nuclear fission produces multiple prompt neutrons and gammas at each fission event. The resulting daughter nuclei continue to emit delayed radiation as neutrons boil off, beta decay occurs, etc. All of the radiations are causally connected, and therefore correlated. The correlations are generally positive, but when different decay channels compete, so that some radiations tend to exclude others, negative correlations could also be observed. A similar problem of reduced complexity is that of cascades radiation, whereby a simple radioactive decay produces two or more correlated gamma rays at each decay. Covariance is the usual means for measuring correlation, and techniques of covariance mapping may be useful to produce distinct signatures of special nuclear materials (SNM). A covariance measurement can also be used to filter data streams because uncorrelated signals are largely rejected. The technique is generally more effective than a coincidence measurement. In this poster, we concentrate on cascades and the covariance filtering problem
Covariant amplitudes in Polyakov string theory
International Nuclear Information System (INIS)
Aoyama, H.; Dhar, A.; Namazie, M.A.
1986-01-01
A manifestly Lorentz-covariant and reparametrization-invariant procedure for computing string amplitudes using Polyakov's formulation is described. Both bosonic and superstring theories are dealt with. The computation of string amplitudes is greatly facilitated by this formalism. (orig.)
Covariance upperbound controllers for networked control systems
International Nuclear Information System (INIS)
Ko, Sang Ho
2012-01-01
This paper deals with designing covariance upperbound controllers for a linear system that can be used in a networked control environment in which control laws are calculated in a remote controller and transmitted through a shared communication link to the plant. In order to compensate for possible packet losses during the transmission, two different techniques are often employed: the zero-input and the hold-input strategy. These use zero input and the latest control input, respectively, when a packet is lost. For each strategy, we synthesize a class of output covariance upperbound controllers for a given covariance upperbound and a packet loss probability. Existence conditions of the covariance upperbound controller are also provided for each strategy. Through numerical examples, performance of the two strategies is compared in terms of feasibility of implementing the controllers
Covariance data evaluation for experimental data
International Nuclear Information System (INIS)
Liu Tingjin
1993-01-01
Some methods and codes have been developed and utilized for covariance data evaluation of experimental data, including parameter analysis, physical analysis, Spline fitting etc.. These methods and codes can be used in many different cases
Laser Covariance Vibrometry for Unsymmetrical Mode Detection
National Research Council Canada - National Science Library
Kobold, Michael C
2006-01-01
Simulated cross - spectral covariance (CSC) from optical return from simulated surface vibration indicates CW phase modulation may be an appropriate phenomenology for adequate classification of vehicles by structural mode...
Error Covariance Estimation of Mesoscale Data Assimilation
National Research Council Canada - National Science Library
Xu, Qin
2005-01-01
The goal of this project is to explore and develop new methods of error covariance estimation that will provide necessary statistical descriptions of prediction and observation errors for mesoscale data assimilation...
Heteroscedasticity resistant robust covariance matrix estimator
Czech Academy of Sciences Publication Activity Database
Víšek, Jan Ámos
2010-01-01
Roč. 17, č. 27 (2010), s. 33-49 ISSN 1212-074X Grant - others:GA UK(CZ) GA402/09/0557 Institutional research plan: CEZ:AV0Z10750506 Keywords : Regression * Covariance matrix * Heteroscedasticity * Resistant Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2011/SI/visek-heteroscedasticity resistant robust covariance matrix estimator.pdf
Phase-covariant quantum cloning of qudits
International Nuclear Information System (INIS)
Fan Heng; Imai, Hiroshi; Matsumoto, Keiji; Wang, Xiang-Bin
2003-01-01
We study the phase-covariant quantum cloning machine for qudits, i.e., the input states in a d-level quantum system have complex coefficients with arbitrary phase but constant module. A cloning unitary transformation is proposed. After optimizing the fidelity between input state and single qudit reduced density operator of output state, we obtain the optimal fidelity for 1 to 2 phase-covariant quantum cloning of qudits and the corresponding cloning transformation
Noncommutative Gauge Theory with Covariant Star Product
International Nuclear Information System (INIS)
Zet, G.
2010-01-01
We present a noncommutative gauge theory with covariant star product on a space-time with torsion. In order to obtain the covariant star product one imposes some restrictions on the connection of the space-time. Then, a noncommutative gauge theory is developed applying this product to the case of differential forms. Some comments on the advantages of using a space-time with torsion to describe the gravitational field are also given.
Covariate analysis of bivariate survival data
Energy Technology Data Exchange (ETDEWEB)
Bennett, L.E.
1992-01-01
The methods developed are used to analyze the effects of covariates on bivariate survival data when censoring and ties are present. The proposed method provides models for bivariate survival data that include differential covariate effects and censored observations. The proposed models are based on an extension of the univariate Buckley-James estimators which replace censored data points by their expected values, conditional on the censoring time and the covariates. For the bivariate situation, it is necessary to determine the expectation of the failure times for one component conditional on the failure or censoring time of the other component. Two different methods have been developed to estimate these expectations. In the semiparametric approach these expectations are determined from a modification of Burke's estimate of the bivariate empirical survival function. In the parametric approach censored data points are also replaced by their conditional expected values where the expected values are determined from a specified parametric distribution. The model estimation will be based on the revised data set, comprised of uncensored components and expected values for the censored components. The variance-covariance matrix for the estimated covariate parameters has also been derived for both the semiparametric and parametric methods. Data from the Demographic and Health Survey was analyzed by these methods. The two outcome variables are post-partum amenorrhea and breastfeeding; education and parity were used as the covariates. Both the covariate parameter estimates and the variance-covariance estimates for the semiparametric and parametric models will be compared. In addition, a multivariate test statistic was used in the semiparametric model to examine contrasts. The significance of the statistic was determined from a bootstrap distribution of the test statistic.
Covariant perturbations of Schwarzschild black holes
International Nuclear Information System (INIS)
Clarkson, Chris A; Barrett, Richard K
2003-01-01
We present a new covariant and gauge-invariant perturbation formalism for dealing with spacetimes having spherical symmetry (or some preferred spatial direction) in the background, and apply it to the case of gravitational wave propagation in a Schwarzschild black-hole spacetime. The 1 + 3 covariant approach is extended to a '1 + 1 + 2 covariant sheet' formalism by introducing a radial unit vector in addition to the timelike congruence, and decomposing all covariant quantities with respect to this. The background Schwarzschild solution is discussed and a covariant characterization is given. We give the full first-order system of linearized 1 + 1 + 2 covariant equations, and we show how, by introducing (time and spherical) harmonic functions, these may be reduced to a system of first-order ordinary differential equations and algebraic constraints for the 1 + 1 + 2 variables which may be solved straightforwardly. We show how both odd- and even-parity perturbations may be unified by the discovery of a covariant, frame- and gauge-invariant, transverse-traceless tensor describing gravitational waves, which satisfies a covariant wave equation equivalent to the Regge-Wheeler equation for both even- and odd-parity perturbations. We show how the Zerilli equation may be derived from this tensor, and derive a similar transverse-traceless tensor equation equivalent to this equation. The so-called special quasinormal modes with purely imaginary frequency emerge naturally. The significance of the degrees of freedom in the choice of the two frame vectors is discussed, and we demonstrate that, for a certain frame choice, the underlying dynamics is governed purely by the Regge-Wheeler tensor. The two transverse-traceless Weyl tensors which carry the curvature of gravitational waves are discussed, and we give the closed system of four first-order ordinary differential equations describing their propagation. Finally, we consider the extension of this work to the study of
PSI collapse and relativistic covariance
International Nuclear Information System (INIS)
Costa de Beauregard, Olivier
1980-01-01
We call macrorelativistic a theory invariant under the orthochronous Lorentz group and obeying the 'factlike' principle of retarded causality, and microrelativistic a theory invariant under the full Lorentz group and CPT symmetric. The Einstein correlations either direct (non-separability of measurements issuing from a common preparation) or reversed (non-separability of preparations producing a common measurement) are incompatible with the macro-, but compatible with the microrelativity. We assume that fundamental physics is fully Lorentz and CPT invariant (the transition to macrophysics introducing a 'factlike asymmetry) and consequently define the collapse-and-retrocollapse concept [fr
Bayesian Nonparametric Clustering for Positive Definite Matrices.
Cherian, Anoop; Morellas, Vassilios; Papanikolopoulos, Nikolaos
2016-05-01
Symmetric Positive Definite (SPD) matrices emerge as data descriptors in several applications of computer vision such as object tracking, texture recognition, and diffusion tensor imaging. Clustering these data matrices forms an integral part of these applications, for which soft-clustering algorithms (K-Means, expectation maximization, etc.) are generally used. As is well-known, these algorithms need the number of clusters to be specified, which is difficult when the dataset scales. To address this issue, we resort to the classical nonparametric Bayesian framework by modeling the data as a mixture model using the Dirichlet process (DP) prior. Since these matrices do not conform to the Euclidean geometry, rather belongs to a curved Riemannian manifold,existing DP models cannot be directly applied. Thus, in this paper, we propose a novel DP mixture model framework for SPD matrices. Using the log-determinant divergence as the underlying dissimilarity measure to compare these matrices, and further using the connection between this measure and the Wishart distribution, we derive a novel DPM model based on the Wishart-Inverse-Wishart conjugate pair. We apply this model to several applications in computer vision. Our experiments demonstrate that our model is scalable to the dataset size and at the same time achieves superior accuracy compared to several state-of-the-art parametric and nonparametric clustering algorithms.
Differential calculus on deformed E(2) group
International Nuclear Information System (INIS)
Giller, S.; Gonera, C.; Kosinski, P.; Maslanka, P.
1997-01-01
Four dimensional bi-covariant differential *-calculus on quantum E(2) group is constructed. The relevant Lie algebra is obtained and covariant differential calculus on quantum plane is found. (author)
Ole E. Barndorff-Nielsen; Neil Shephard
2002-01-01
This paper analyses multivariate high frequency financial data using realised covariation. We provide a new asymptotic distribution theory for standard methods such as regression, correlation analysis and covariance. It will be based on a fixed interval of time (e.g. a day or week), allowing the number of high frequency returns during this period to go to infinity. Our analysis allows us to study how high frequency correlations, regressions and covariances change through time. In particular w...
Structural covariance networks across the life span, from 6 to 94 years of age.
DuPre, Elizabeth; Spreng, R Nathan
2017-10-01
Structural covariance examines covariation of gray matter morphology between brain regions and across individuals. Despite significant interest in the influence of age on structural covariance patterns, no study to date has provided a complete life span perspective-bridging childhood with early, middle, and late adulthood-on the development of structural covariance networks. Here, we investigate the life span trajectories of structural covariance in six canonical neurocognitive networks: default, dorsal attention, frontoparietal control, somatomotor, ventral attention, and visual. By combining data from five open-access data sources, we examine the structural covariance trajectories of these networks from 6 to 94 years of age in a sample of 1,580 participants. Using partial least squares, we show that structural covariance patterns across the life span exhibit two significant, age-dependent trends. The first trend is a stable pattern whose integrity declines over the life span. The second trend is an inverted-U that differentiates young adulthood from other age groups. Hub regions, including posterior cingulate cortex and anterior insula, appear particularly influential in the expression of this second age-dependent trend. Overall, our results suggest that structural covariance provides a reliable definition of neurocognitive networks across the life span and reveal both shared and network-specific trajectories.
Fitting direct covariance structures by the MSTRUCT modeling language of the CALIS procedure.
Yung, Yiu-Fai; Browne, Michael W; Zhang, Wei
2015-02-01
This paper demonstrates the usefulness and flexibility of the general structural equation modelling (SEM) approach to fitting direct covariance patterns or structures (as opposed to fitting implied covariance structures from functional relationships among variables). In particular, the MSTRUCT modelling language (or syntax) of the CALIS procedure (SAS/STAT version 9.22 or later: SAS Institute, 2010) is used to illustrate the SEM approach. The MSTRUCT modelling language supports a direct covariance pattern specification of each covariance element. It also supports the input of additional independent and dependent parameters. Model tests, fit statistics, estimates, and their standard errors are then produced under the general SEM framework. By using numerical and computational examples, the following tests of basic covariance patterns are illustrated: sphericity, compound symmetry, and multiple-group covariance patterns. Specification and testing of two complex correlation structures, the circumplex pattern and the composite direct product models with or without composite errors and scales, are also illustrated by the MSTRUCT syntax. It is concluded that the SEM approach offers a general and flexible modelling of direct covariance and correlation patterns. In conjunction with the use of SAS macros, the MSTRUCT syntax provides an easy-to-use interface for specifying and fitting complex covariance and correlation structures, even when the number of variables or parameters becomes large. © 2014 The British Psychological Society.
A special covariance structure for random coefficient models with both between and within covariates
International Nuclear Information System (INIS)
Riedel, K.S.
1990-07-01
We review random coefficient (RC) models in linear regression and propose a bias correction to the maximum likelihood (ML) estimator. Asymmptotic expansion of the ML equations are given when the between individual variance is much larger or smaller than the variance from within individual fluctuations. The standard model assumes all but one covariate varies within each individual, (we denote the within covariates by vector χ 1 ). We consider random coefficient models where some of the covariates do not vary in any single individual (we denote the between covariates by vector χ 0 ). The regression coefficients, vector β k , can only be estimated in the subspace X k of X. Thus the number of individuals necessary to estimate vector β and the covariance matrix Δ of vector β increases significantly in the presence of more than one between covariate. When the number of individuals is sufficient to estimate vector β but not the entire matrix Δ , additional assumptions must be imposed on the structure of Δ. A simple reduced model is that the between component of vector β is fixed and only the within component varies randomly. This model fails because it is not invariant under linear coordinate transformations and it can significantly overestimate the variance of new observations. We propose a covariance structure for Δ without these difficulties by first projecting the within covariates onto the space perpendicular to be between covariates. (orig.)
Are your covariates under control? How normalization can re-introduce covariate effects.
Pain, Oliver; Dudbridge, Frank; Ronald, Angelica
2018-04-30
Many statistical tests rely on the assumption that the residuals of a model are normally distributed. Rank-based inverse normal transformation (INT) of the dependent variable is one of the most popular approaches to satisfy the normality assumption. When covariates are included in the analysis, a common approach is to first adjust for the covariates and then normalize the residuals. This study investigated the effect of regressing covariates against the dependent variable and then applying rank-based INT to the residuals. The correlation between the dependent variable and covariates at each stage of processing was assessed. An alternative approach was tested in which rank-based INT was applied to the dependent variable before regressing covariates. Analyses based on both simulated and real data examples demonstrated that applying rank-based INT to the dependent variable residuals after regressing out covariates re-introduces a linear correlation between the dependent variable and covariates, increasing type-I errors and reducing power. On the other hand, when rank-based INT was applied prior to controlling for covariate effects, residuals were normally distributed and linearly uncorrelated with covariates. This latter approach is therefore recommended in situations were normality of the dependent variable is required.
Random matrices and random difference equations
International Nuclear Information System (INIS)
Uppuluri, V.R.R.
1975-01-01
Mathematical models leading to products of random matrices and random difference equations are discussed. A one-compartment model with random behavior is introduced, and it is shown how the average concentration in the discrete time model converges to the exponential function. This is of relevance to understanding how radioactivity gets trapped in bone structure in blood--bone systems. The ideas are then generalized to two-compartment models and mammillary systems, where products of random matrices appear in a natural way. The appearance of products of random matrices in applications in demography and control theory is considered. Then random sequences motivated from the following problems are studied: constant pulsing and random decay models, random pulsing and constant decay models, and random pulsing and random decay models
Quantum Entanglement and Reduced Density Matrices
Purwanto, Agus; Sukamto, Heru; Yuwana, Lila
2018-05-01
We investigate entanglement and separability criteria of multipartite (n-partite) state by examining ranks of its reduced density matrices. Firstly, we construct the general formula to determine the criterion. A rank of origin density matrix always equals one, meanwhile ranks of reduced matrices have various ranks. Next, separability and entanglement criterion of multipartite is determined by calculating ranks of reduced density matrices. In this article we diversify multipartite state criteria into completely entangled state, completely separable state, and compound state, i.e. sub-entangled state and sub-entangledseparable state. Furthermore, we also shorten the calculation proposed by the previous research to determine separability of multipartite state and expand the methods to be able to differ multipartite state based on criteria above.
Advanced incomplete factorization algorithms for Stiltijes matrices
Energy Technology Data Exchange (ETDEWEB)
Il`in, V.P. [Siberian Division RAS, Novosibirsk (Russian Federation)
1996-12-31
The modern numerical methods for solving the linear algebraic systems Au = f with high order sparse matrices A, which arise in grid approximations of multidimensional boundary value problems, are based mainly on accelerated iterative processes with easily invertible preconditioning matrices presented in the form of approximate (incomplete) factorization of the original matrix A. We consider some recent algorithmic approaches, theoretical foundations, experimental data and open questions for incomplete factorization of Stiltijes matrices which are {open_quotes}the best{close_quotes} ones in the sense that they have the most advanced results. Special attention is given to solving the elliptic differential equations with strongly variable coefficients, singular perturbated diffusion-convection and parabolic equations.
Approximate joint diagonalization and geometric mean of symmetric positive definite matrices.
Directory of Open Access Journals (Sweden)
Marco Congedo
Full Text Available We explore the connection between two problems that have arisen independently in the signal processing and related fields: the estimation of the geometric mean of a set of symmetric positive definite (SPD matrices and their approximate joint diagonalization (AJD. Today there is a considerable interest in estimating the geometric mean of a SPD matrix set in the manifold of SPD matrices endowed with the Fisher information metric. The resulting mean has several important invariance properties and has proven very useful in diverse engineering applications such as biomedical and image data processing. While for two SPD matrices the mean has an algebraic closed form solution, for a set of more than two SPD matrices it can only be estimated by iterative algorithms. However, none of the existing iterative algorithms feature at the same time fast convergence, low computational complexity per iteration and guarantee of convergence. For this reason, recently other definitions of geometric mean based on symmetric divergence measures, such as the Bhattacharyya divergence, have been considered. The resulting means, although possibly useful in practice, do not satisfy all desirable invariance properties. In this paper we consider geometric means of covariance matrices estimated on high-dimensional time-series, assuming that the data is generated according to an instantaneous mixing model, which is very common in signal processing. We show that in these circumstances we can approximate the Fisher information geometric mean by employing an efficient AJD algorithm. Our approximation is in general much closer to the Fisher information geometric mean as compared to its competitors and verifies many invariance properties. Furthermore, convergence is guaranteed, the computational complexity is low and the convergence rate is quadratic. The accuracy of this new geometric mean approximation is demonstrated by means of simulations.
Approximate joint diagonalization and geometric mean of symmetric positive definite matrices.
Congedo, Marco; Afsari, Bijan; Barachant, Alexandre; Moakher, Maher
2014-01-01
We explore the connection between two problems that have arisen independently in the signal processing and related fields: the estimation of the geometric mean of a set of symmetric positive definite (SPD) matrices and their approximate joint diagonalization (AJD). Today there is a considerable interest in estimating the geometric mean of a SPD matrix set in the manifold of SPD matrices endowed with the Fisher information metric. The resulting mean has several important invariance properties and has proven very useful in diverse engineering applications such as biomedical and image data processing. While for two SPD matrices the mean has an algebraic closed form solution, for a set of more than two SPD matrices it can only be estimated by iterative algorithms. However, none of the existing iterative algorithms feature at the same time fast convergence, low computational complexity per iteration and guarantee of convergence. For this reason, recently other definitions of geometric mean based on symmetric divergence measures, such as the Bhattacharyya divergence, have been considered. The resulting means, although possibly useful in practice, do not satisfy all desirable invariance properties. In this paper we consider geometric means of covariance matrices estimated on high-dimensional time-series, assuming that the data is generated according to an instantaneous mixing model, which is very common in signal processing. We show that in these circumstances we can approximate the Fisher information geometric mean by employing an efficient AJD algorithm. Our approximation is in general much closer to the Fisher information geometric mean as compared to its competitors and verifies many invariance properties. Furthermore, convergence is guaranteed, the computational complexity is low and the convergence rate is quadratic. The accuracy of this new geometric mean approximation is demonstrated by means of simulations.
Wishart and anti-Wishart random matrices
International Nuclear Information System (INIS)
Janik, Romuald A; Nowak, Maciej A
2003-01-01
We provide a compact exact representation for the distribution of the matrix elements of the Wishart-type random matrices A † A, for any finite number of rows and columns of A, without any large N approximations. In particular, we treat the case when the Wishart-type random matrix contains redundant, non-random information, which is a new result. This representation is of interest for a procedure for reconstructing the redundant information hidden in Wishart matrices, with potential applications to numerous models based on biological, social and artificial intelligence networks
Topological expansion of the chain of matrices
International Nuclear Information System (INIS)
Eynard, B.; Ferrer, A. Prats
2009-01-01
We solve the loop equations to all orders in 1/N 2 , for the Chain of Matrices matrix model (with possibly an external field coupled to the last matrix of the chain). We show that the topological expansion of the free energy, is, like for the 1 and 2-matrix model, given by the symplectic invariants of [19]. As a consequence, we find the double scaling limit explicitly, and we discuss modular properties, large N asymptotics. We also briefly discuss the limit of an infinite chain of matrices (matrix quantum mechanics).
Partitioning sparse rectangular matrices for parallel processing
Energy Technology Data Exchange (ETDEWEB)
Kolda, T.G.
1998-05-01
The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.
Soubestre, Jean; Shapiro, Nikolai M.; Seydoux, Léonard; de Rosny, Julien; Droznin, Dmitry V.; Droznina, Svetlana Ya.; Senyukov, Sergey L.; Gordeev, Evgeniy I.
2018-01-01
We develop a network-based method for detecting and classifying seismovolcanic tremors. The proposed approach exploits the coherence of tremor signals across the network that is estimated from the array covariance matrix. The method is applied to four and a half years of continuous seismic data recorded by 19 permanent seismic stations in the vicinity of the Klyuchevskoy volcanic group in Kamchatka (Russia), where five volcanoes were erupting during the considered time period. We compute and analyze daily covariance matrices together with their eigenvalues and eigenvectors. As a first step, most coherent signals corresponding to dominating tremor sources are detected based on the width of the covariance matrix eigenvalues distribution. Thus, volcanic tremors of the two volcanoes known as most active during the considered period, Klyuchevskoy and Tolbachik, are efficiently detected. As a next step, we consider the daily array covariance matrix's first eigenvector. Our main hypothesis is that these eigenvectors represent the principal components of the daily seismic wavefield and, for days with tremor activity, characterize dominant tremor sources. Those daily first eigenvectors, which can be used as network-based fingerprints of tremor sources, are then grouped into clusters using correlation coefficient as a measure of the vector similarity. As a result, we identify seven clusters associated with different periods of activity of four volcanoes: Tolbachik, Klyuchevskoy, Shiveluch, and Kizimen. The developed method does not require a priori knowledge and is fully automatic; and the database of the network-based tremor fingerprints can be continuously enriched with newly available data.
Nuclear data covariances in the Indian context
International Nuclear Information System (INIS)
Ganesan, S.
2014-01-01
The topic of covariances is recognized as an important part of several ongoing nuclear data science activities, since 2007, in the Nuclear Data Physics Centre of India (NDPCI). A Phase-1 project in collaboration with the Statistics department in Manipal University, Karnataka (Prof. K.M. Prasad and Prof. S. Nair) on nuclear data covariances was executed successfully during 2007-2011 period. In Phase-I, the NDPCI has conducted three national Theme meetings sponsored by the DAE-BRNS in 2008, 2010 and 2013 on nuclear data covariances. In Phase-1, the emphasis was on a thorough basic understanding of the concept of covariances including assigning uncertainties to experimental data in terms of partial errors and micro correlations, through a study and a detailed discussion of open literature. Towards the end of Phase-1, measurements and a first time covariance analysis of cross-sections for 58 Ni (n, p) 58 Co reaction measured in Mumbai Pelletron accelerator using 7 Li (p,n) reactions as neutron source in the MeV energy region were performed under a PhD programme on nuclear data covariances in which enrolled are two students, Shri B.S. Shivashankar and Ms. Shanti Sheela. India is also successfully evolving a team of young researchers to code nuclear data of uncertainties, with the perspectives on covariances, in the IAEA-EXFOR format. A Phase-II DAE-BRNS-NDPCI proposal of project at Manipal has been submitted and the proposal is undergoing a peer-review at this time. In Phase-2, modern nuclear data evaluation techniques that including covariances will be further studied as a research and development effort, as a first time effort. These efforts include the use of techniques such as that of the Kalman filter. Presently, a 48 hours lecture series on treatment of errors and their propagation is being formulated under auspices of the Homi Bhabha National Institute. The talk describes the progress achieved thus far in the learning curve of the above-mentioned and exciting
Cross-covariance functions for multivariate geostatistics
Genton, Marc G.
2015-05-01
Continuously indexed datasets with multiple variables have become ubiquitous in the geophysical, ecological, environmental and climate sciences, and pose substantial analysis challenges to scientists and statisticians. For many years, scientists developed models that aimed at capturing the spatial behavior for an individual process; only within the last few decades has it become commonplace to model multiple processes jointly. The key difficulty is in specifying the cross-covariance function, that is, the function responsible for the relationship between distinct variables. Indeed, these cross-covariance functions must be chosen to be consistent with marginal covariance functions in such a way that the second-order structure always yields a nonnegative definite covariance matrix. We review the main approaches to building cross-covariance models, including the linear model of coregionalization, convolution methods, the multivariate Matérn and nonstationary and space-time extensions of these among others. We additionally cover specialized constructions, including those designed for asymmetry, compact support and spherical domains, with a review of physics-constrained models. We illustrate select models on a bivariate regional climate model output example for temperature and pressure, along with a bivariate minimum and maximum temperature observational dataset; we compare models by likelihood value as well as via cross-validation co-kriging studies. The article closes with a discussion of unsolved problems. © Institute of Mathematical Statistics, 2015.
Schroedinger covariance states in anisotropic waveguides
International Nuclear Information System (INIS)
Angelow, A.; Trifonov, D.
1995-03-01
In this paper Squeezed and Covariance States based on Schroedinger inequality and their connection with other nonclassical states are considered for particular case of anisotropic waveguide in LiNiO 3 . Here, the problem of photon creation and generation of squeezed and Schroedinger covariance states in optical waveguides is solved in two steps: 1. Quantization of electromagnetic field is provided in the presence of dielectric waveguide using normal-mode expansion. The photon creation and annihilation operators are introduced, expanding the solution A-vector(r-vector,t) in a series in terms of the Sturm - Liouville mode-functions. 2. In terms of these operators the Hamiltonian of the field in a nonlinear waveguide is derived. For such Hamiltonian we construct the covariance states as stable (with nonzero covariance), which minimize the Schroedinger uncertainty relation. The evolutions of the three second momenta of q-circumflex j and p-circumflex j are calculated. For this Hamiltonian all three momenta are expressed in terms of one real parameters s only. It is found out how covariance, via this parameter s, depends on the waveguide profile n(x,y), on the mode-distributions u-vector j (x,y), and on the waveguide phase mismatching Δβ. (author). 37 refs
Form of the manifestly covariant Lagrangian
Johns, Oliver Davis
1985-10-01
The preferred form for the manifestly covariant Lagrangian function of a single, charged particle in a given electromagnetic field is the subject of some disagreement in the textbooks. Some authors use a ``homogeneous'' Lagrangian and others use a ``modified'' form in which the covariant Hamiltonian function is made to be nonzero. We argue in favor of the ``homogeneous'' form. We show that the covariant Lagrangian theories can be understood only if one is careful to distinguish quantities evaluated on the varied (in the sense of the calculus of variations) world lines from quantities evaluated on the unvaried world lines. By making this distinction, we are able to derive the Hamilton-Jacobi and Klein-Gordon equations from the ``homogeneous'' Lagrangian, even though the covariant Hamiltonian function is identically zero on all world lines. The derivation of the Klein-Gordon equation in particular gives Lagrangian theoretical support to the derivations found in standard quantum texts, and is also shown to be consistent with the Feynman path-integral method. We conclude that the ``homogeneous'' Lagrangian is a completely adequate basis for covariant Lagrangian theory both in classical and quantum mechanics. The article also explores the analogy with the Fermat theorem of optics, and illustrates a simple invariant notation for the Lagrangian and other four-vector equations.
Cross-covariance functions for multivariate geostatistics
Genton, Marc G.; Kleiber, William
2015-01-01
Continuously indexed datasets with multiple variables have become ubiquitous in the geophysical, ecological, environmental and climate sciences, and pose substantial analysis challenges to scientists and statisticians. For many years, scientists developed models that aimed at capturing the spatial behavior for an individual process; only within the last few decades has it become commonplace to model multiple processes jointly. The key difficulty is in specifying the cross-covariance function, that is, the function responsible for the relationship between distinct variables. Indeed, these cross-covariance functions must be chosen to be consistent with marginal covariance functions in such a way that the second-order structure always yields a nonnegative definite covariance matrix. We review the main approaches to building cross-covariance models, including the linear model of coregionalization, convolution methods, the multivariate Matérn and nonstationary and space-time extensions of these among others. We additionally cover specialized constructions, including those designed for asymmetry, compact support and spherical domains, with a review of physics-constrained models. We illustrate select models on a bivariate regional climate model output example for temperature and pressure, along with a bivariate minimum and maximum temperature observational dataset; we compare models by likelihood value as well as via cross-validation co-kriging studies. The article closes with a discussion of unsolved problems. © Institute of Mathematical Statistics, 2015.
Structural covariance networks in the mouse brain.
Pagani, Marco; Bifone, Angelo; Gozzi, Alessandro
2016-04-01
The presence of networks of correlation between regional gray matter volume as measured across subjects in a group of individuals has been consistently described in several human studies, an approach termed structural covariance MRI (scMRI). Complementary to prevalent brain mapping modalities like functional and diffusion-weighted imaging, the approach can provide precious insights into the mutual influence of trophic and plastic processes in health and pathological states. To investigate whether analogous scMRI networks are present in lower mammal species amenable to genetic and experimental manipulation such as the laboratory mouse, we employed high resolution morphoanatomical MRI in a large cohort of genetically-homogeneous wild-type mice (C57Bl6/J) and mapped scMRI networks using a seed-based approach. We show that the mouse brain exhibits robust homotopic scMRI networks in both primary and associative cortices, a finding corroborated by independent component analyses of cortical volumes. Subcortical structures also showed highly symmetric inter-hemispheric correlations, with evidence of distributed antero-posterior networks in diencephalic regions of the thalamus and hypothalamus. Hierarchical cluster analysis revealed six identifiable clusters of cortical and sub-cortical regions corresponding to previously described neuroanatomical systems. Our work documents the presence of homotopic cortical and subcortical scMRI networks in the mouse brain, thus supporting the use of this species to investigate the elusive biological and neuroanatomical underpinnings of scMRI network development and its derangement in neuropathological states. The identification of scMRI networks in genetically homogeneous inbred mice is consistent with the emerging view of a key role of environmental factors in shaping these correlational networks. Copyright © 2016 Elsevier Inc. All rights reserved.
Covariant path integrals on hyperbolic surfaces
International Nuclear Information System (INIS)
Schaefer, J.
1997-01-01
DeWitt close-quote s covariant formulation of path integration [B. De Witt, open-quotes Dynamical theory in curved spaces. I. A review of the classical and quantum action principles,close quotes Rev. Mod. Phys. 29, 377 endash 397 (1957)] has two practical advantages over the traditional methods of open-quotes lattice approximations;close quotes there is no ordering problem, and classical symmetries are manifestly preserved at the quantum level. Applying the spectral theorem for unbounded self-adjoint operators, we provide a rigorous proof of the convergence of certain path integrals on Riemann surfaces of constant curvature -1. The Pauli endash DeWitt curvature correction term arises, as in DeWitt close-quote s work. Introducing a Fuchsian group Γ of the first kind, and a continuous, bounded, Γ-automorphic potential V, we obtain a Feynman endash Kac formula for the automorphic Schroedinger equation on the Riemann surface Γ backslash H. We analyze the Wick rotation and prove the strong convergence of the so-called Feynman maps [K. D. Elworthy, Path Integration on Manifolds, Mathematical Aspects of Superspace, edited by Seifert, Clarke, and Rosenblum (Reidel, Boston, 1983), pp. 47 endash 90] on a dense set of states. Finally, we give a new proof of some results in C. Grosche and F. Steiner, open-quotes The path integral on the Poincare upper half plane and for Liouville quantum mechanics,close quotes Phys. Lett. A 123, 319 endash 328 (1987). copyright 1997 American Institute of Physics
Mean-Lagrangian formalism and covariance of fluid turbulence.
Ariki, Taketo
2017-05-01
Mean-field-based Lagrangian framework is developed for the fluid turbulence theory, which enables physically objective discussions, especially, of the history effect. Mean flow serves as a purely geometrical object of Lie group theory, providing useful operations to measure the objective rate and history integration of the general tensor field. The proposed framework is applied, on the one hand, to one-point closure model, yielding an objective expression of the turbulence viscoelastic effect. Application to two-point closure, on the other hand, is also discussed, where natural extension of known Lagrangian correlation is discovered on the basis of an extended covariance group.
International Nuclear Information System (INIS)
Samanta, Archana; Takkar, Sonam; Kulshreshtha, Ritu; Nandan, Bhanu; Srivastava, Rajiv K.
2016-01-01
The production of composite electrospun matrices of poly(ε-caprolactone) (PCL) using an emulsifier-free emulsion, made with minimal organic solvent, as precursor is reported. Pickering emulsions of PCL were prepared using modified montmorillonite (MMT) clay as the stabilizer. Hydrophobic tallow group of the modified MMT clay resulted in analogous interaction of clay with oil and aqueous phase and its adsorption at the interface to provide stability to the resultant emulsion. Composite fibrous matrices of PCL and MMT were produced using electrospinning under controlled conditions. The fiber fineness was found to alter with PCL concentration and volume fraction of the aqueous and oil phases. A higher tensile strength and modulus was obtained with inclusion of MMT in PCL electrospun matrix in comparison to a matrix made using neat PCL. The presence of clay in the fibrous matrix did not change the cell proliferation efficiency in comparison to neat PCL matrix. Composite fibrous matrices of PCL/MMT bearing enhanced tensile properties may find applications in areas other than tissue engineering for example food packaging and filtration. - Highlights: • Tenside free, clay stabilized Pickering emulsion of PCL is made with minimal organic solvent. • Organic–inorganic composite fibrous matrices were produced via emulsion electrospinning. • Fiber fineness was efficiently controlled by variation in emulsion formulation. • Fibrous matrices of high tensile strength and modulus were obtained in comparison to neat PCL matrix. • PCL/clay matrices showed effective cell proliferation as a neat PCL matrix.
Energy Technology Data Exchange (ETDEWEB)
Samanta, Archana [Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Takkar, Sonam; Kulshreshtha, Ritu [Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Nandan, Bhanu [Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Srivastava, Rajiv K., E-mail: rajiv@textile.iitd.ac.in [Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)
2016-12-01
The production of composite electrospun matrices of poly(ε-caprolactone) (PCL) using an emulsifier-free emulsion, made with minimal organic solvent, as precursor is reported. Pickering emulsions of PCL were prepared using modified montmorillonite (MMT) clay as the stabilizer. Hydrophobic tallow group of the modified MMT clay resulted in analogous interaction of clay with oil and aqueous phase and its adsorption at the interface to provide stability to the resultant emulsion. Composite fibrous matrices of PCL and MMT were produced using electrospinning under controlled conditions. The fiber fineness was found to alter with PCL concentration and volume fraction of the aqueous and oil phases. A higher tensile strength and modulus was obtained with inclusion of MMT in PCL electrospun matrix in comparison to a matrix made using neat PCL. The presence of clay in the fibrous matrix did not change the cell proliferation efficiency in comparison to neat PCL matrix. Composite fibrous matrices of PCL/MMT bearing enhanced tensile properties may find applications in areas other than tissue engineering for example food packaging and filtration. - Highlights: • Tenside free, clay stabilized Pickering emulsion of PCL is made with minimal organic solvent. • Organic–inorganic composite fibrous matrices were produced via emulsion electrospinning. • Fiber fineness was efficiently controlled by variation in emulsion formulation. • Fibrous matrices of high tensile strength and modulus were obtained in comparison to neat PCL matrix. • PCL/clay matrices showed effective cell proliferation as a neat PCL matrix.
Conversed, gauge-covariant colour charge in Su(n)QCD
International Nuclear Information System (INIS)
Selikhov, A.V.
1988-01-01
The definition of the integral of the group tensor and the gauge-covariant differential with respect to a distant point are given in the work. A conserved covariant charge dependence on family of paths has been contracted with the help of these notions. It has been shown that the same family of paths fixes a gauge in which the covariant and noncovariant conserved currents coicide. The gauge is characterized by representation of the vector potential via field strength tensor. The possibility of connecting the choice of the family of paths with the measurement procedure is discussed. 13 refs.; 2 figs
Voxel-wise comparisons of the morphology of diffusion tensors across groups of experimental subjects
DEFF Research Database (Denmark)
Bansal, Ravi; Staib, Lawrence H; Plessen, Kerstin J
2007-01-01
method to compute their approximate covariance matrices. Our results show that the theoretically computed mean tensor (MT) eigenvectors and eigenvalues match well with their respective true values. Furthermore, a comparison of synthetically generated groups of DTs highlights the limitations of using FA...... to detect group differences. Finally, analyses of in vivo DT data using our method reveal significant between-group differences in diffusivity along fiber tracts within white matter, whereas analyses based on FA values failed to detect some of these differences....... neuropsychiatric illnesses. Comparisons of tensor morphology across groups have typically been performed on scalar measures of diffusivity, such as Fractional Anisotropy (FA) rather than directly on the complex 3D morphologies of DTs. Scalar measures, however, are related in nonlinear ways to the eigenvalues...
Theoretical origin of quark mass matrices
International Nuclear Information System (INIS)
Mohapatra, R.N.
1987-01-01
This paper presents the theoretical origin of specific quark mass matrices in the grand unified theories. The author discusses the first natural derivation of the Stech-type mass matrix in unified gauge theories. A solution to the strong CP-problem is provided
Malware Analysis Using Visualized Image Matrices
Directory of Open Access Journals (Sweden)
KyoungSoo Han
2014-01-01
Full Text Available This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively.
Moment matrices, border bases and radical computation
B. Mourrain; J.B. Lasserre; M. Laurent (Monique); P. Rostalski; P. Trebuchet (Philippe)
2013-01-01
htmlabstractIn this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming it complex (resp. real) variety is nte. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and
Moment matrices, border bases and radical computation
Lasserre, J.B.; Laurent, M.; Mourrain, B.; Rostalski, P.; Trébuchet, P.
2013-01-01
In this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming its complex (resp. real) variety is finite. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and semi-definite
Moment matrices, border bases and radical computation
B. Mourrain; J.B. Lasserre; M. Laurent (Monique); P. Rostalski; P. Trebuchet (Philippe)
2011-01-01
htmlabstractIn this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming it complex (resp. real) variety is nte. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and
Malware analysis using visualized image matrices.
Han, KyoungSoo; Kang, BooJoong; Im, Eul Gyu
2014-01-01
This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively.
Generation speed in Raven's Progressive Matrices Test
Verguts, T.; Boeck, P. De; Maris, E.G.G.
1999-01-01
In this paper, we investigate the role of response fluency on a well-known intelligence test, Raven's (1962) Advanced Progressive Matrices (APM) test. Critical in solving this test is finding rules that govern the items. Response fluency is conceptualized as generation speed or the speed at which a
Inversion of General Cyclic Heptadiagonal Matrices
Directory of Open Access Journals (Sweden)
A. A. Karawia
2013-01-01
Full Text Available We describe a reliable symbolic computational algorithm for inverting general cyclic heptadiagonal matrices by using parallel computing along with recursion. The computational cost of it is operations. The algorithm is implementable to the Computer Algebra System (CAS such as MAPLE, MATLAB, and MATHEMATICA. Two examples are presented for the sake of illustration.
The covariant entropy bound in gravitational collapse
International Nuclear Information System (INIS)
Gao, Sijie; Lemos, Jose P. S.
2004-01-01
We study the covariant entropy bound in the context of gravitational collapse. First, we discuss critically the heuristic arguments advanced by Bousso. Then we solve the problem through an exact model: a Tolman-Bondi dust shell collapsing into a Schwarzschild black hole. After the collapse, a new black hole with a larger mass is formed. The horizon, L, of the old black hole then terminates at the singularity. We show that the entropy crossing L does not exceed a quarter of the area of the old horizon. Therefore, the covariant entropy bound is satisfied in this process. (author)
Modular invariance and covariant loop calculus
International Nuclear Information System (INIS)
Petersen, J.L.; Roland, K.O.; Sidenius, J.R.
1988-01-01
The covariant loop calculus provides and efficient technique for computing explicit expressions for the density on moduli space corresponding to arbitrary (bosonic string) loop diagrams. Since modular invariance is not manifest, however, we carry out a detailed comparison with known explicit 2- and 3- loop results derived using analytic geometry (1 loop is known to be ok). We establish identity to 'high' order in some moduli and exactly in others. Agreement is found as a result of various non-trivial cancellations, in part related to number theory. We feel our results provide very strong support for the correctness of the covariant loop calculus approach. (orig.)
Remarks on Bousso's covariant entropy bound
Mayo, A E
2002-01-01
Bousso's covariant entropy bound is put to the test in the context of a non-singular cosmological solution of general relativity found by Bekenstein. Although the model complies with every assumption made in Bousso's original conjecture, the entropy bound is violated due to the occurrence of negative energy density associated with the interaction of some the matter components in the model. We demonstrate how this property allows for the test model to 'elude' a proof of Bousso's conjecture which was given recently by Flanagan, Marolf and Wald. This corroborates the view that the covariant entropy bound should be applied only to stable systems for which every matter component carries positive energy density.
Modular invariance and covariant loop calculus
International Nuclear Information System (INIS)
Petersen, J.L.; Roland, K.O.; Sidenius, J.R.
1988-01-01
The covariant loop calculus provides an efficient technique for computing explicit expressions for the density on moduli space corresponding to arbitrary (bosonic string) loop diagrams. Since modular invariance is not manifest, however, we carry out a detailed comparison with known explicit two- and three-loop results derived using analytic geometry (one loop is known to be okay). We establish identity to 'high' order in some moduli and exactly in others. Agreement is found as a result of various nontrivial cancellations, in part related to number theory. We feel our results provide very strong support for the correctness of the covariant loop calculus approach. (orig.)
Parametric number covariance in quantum chaotic spectra.
Vinayak; Kumar, Sandeep; Pandey, Akhilesh
2016-03-01
We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated.
Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J.
2017-07-01
This paper studies the distributed fusion estimation problem from multisensor measured outputs perturbed by correlated noises and uncertainties modelled by random parameter matrices. Each sensor transmits its outputs to a local processor over a packet-erasure channel and, consequently, random losses may occur during transmission. Different white sequences of Bernoulli variables are introduced to model the transmission losses. For the estimation, each lost output is replaced by its estimator based on the information received previously, and only the covariances of the processes involved are used, without requiring the signal evolution model. First, a recursive algorithm for the local least-squares filters is derived by using an innovation approach. Then, the cross-correlation matrices between any two local filters is obtained. Finally, the distributed fusion filter weighted by matrices is obtained from the local filters by applying the least-squares criterion. The performance of the estimators and the influence of both sensor uncertainties and transmission losses on the estimation accuracy are analysed in a numerical example.
Activities on covariance estimation in Japanese Nuclear Data Committee
Energy Technology Data Exchange (ETDEWEB)
Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-03-01
Described are activities on covariance estimation in the Japanese Nuclear Data Committee. Covariances are obtained from measurements by using the least-squares methods. A simultaneous evaluation was performed to deduce covariances of fission cross sections of U and Pu isotopes. A code system, KALMAN, is used to estimate covariances of nuclear model calculations from uncertainties in model parameters. (author)
Structural covariance networks across healthy young adults and their consistency.
Guo, Xiaojuan; Wang, Yan; Guo, Taomei; Chen, Kewei; Zhang, Jiacai; Li, Ke; Jin, Zhen; Yao, Li
2015-08-01
To investigate structural covariance networks (SCNs) as measured by regional gray matter volumes with structural magnetic resonance imaging (MRI) from healthy young adults, and to examine their consistency and stability. Two independent cohorts were included in this study: Group 1 (82 healthy subjects aged 18-28 years) and Group 2 (109 healthy subjects aged 20-28 years). Structural MRI data were acquired at 3.0T and 1.5T using a magnetization prepared rapid-acquisition gradient echo sequence for these two groups, respectively. We applied independent component analysis (ICA) to construct SCNs and further applied the spatial overlap ratio and correlation coefficient to evaluate the spatial consistency of the SCNs between these two datasets. Seven and six independent components were identified for Group 1 and Group 2, respectively. Moreover, six SCNs including the posterior default mode network, the visual and auditory networks consistently existed across the two datasets. The overlap ratios and correlation coefficients of the visual network reached the maximums of 72% and 0.71. This study demonstrates the existence of consistent SCNs corresponding to general functional networks. These structural covariance findings may provide insight into the underlying organizational principles of brain anatomy. © 2014 Wiley Periodicals, Inc.
Abnormalities in Structural Covariance of Cortical Gyrification in Parkinson's Disease.
Xu, Jinping; Zhang, Jiuquan; Zhang, Jinlei; Wang, Yue; Zhang, Yanling; Wang, Jian; Li, Guanglin; Hu, Qingmao; Zhang, Yuanchao
2017-01-01
Although abnormal cortical morphology and connectivity between brain regions (structural covariance) have been reported in Parkinson's disease (PD), the topological organizations of large-scale structural brain networks are still poorly understood. In this study, we investigated large-scale structural brain networks in a sample of 37 PD patients and 34 healthy controls (HC) by assessing the structural covariance of cortical gyrification with local gyrification index (lGI). We demonstrated prominent small-world properties of the structural brain networks for both groups. Compared with the HC group, PD patients showed significantly increased integrated characteristic path length and integrated clustering coefficient, as well as decreased integrated global efficiency in structural brain networks. Distinct distributions of hub regions were identified between the two groups, showing more hub regions in the frontal cortex in PD patients. Moreover, the modular analyses revealed significantly decreased integrated regional efficiency in lateral Fronto-Insula-Temporal module, and increased integrated regional efficiency in Parieto-Temporal module in the PD group as compared to the HC group. In summary, our study demonstrated altered topological properties of structural networks at a global, regional and modular level in PD patients. These findings suggests that the structural networks of PD patients have a suboptimal topological organization, resulting in less effective integration of information between brain regions.
Covariant canonical quantization of fields and Bohmian mechanics
International Nuclear Information System (INIS)
Nikolic, H.
2005-01-01
We propose a manifestly covariant canonical method of field quantization based on the classical De Donder-Weyl covariant canonical formulation of field theory. Owing to covariance, the space and time arguments of fields are treated on an equal footing. To achieve both covariance and consistency with standard non-covariant canonical quantization of fields in Minkowski spacetime, it is necessary to adopt a covariant Bohmian formulation of quantum field theory. A preferred foliation of spacetime emerges dynamically owing to a purely quantum effect. The application to a simple time-reparametrization invariant system and quantum gravity is discussed and compared with the conventional non-covariant Wheeler-DeWitt approach. (orig.)
Nordin, Kristin; Persson, Jonas; Stening, Eva; Herlitz, Agneta; Larsson, Elna-Marie; Söderlund, Hedvig
2018-02-01
The hippocampus (HC) interacts with distributed brain regions to support memory and shows significant volume reductions in aging, but little is known about age effects on hippocampal whole-brain structural covariance. It is also unclear whether the anterior and posterior HC show similar or distinct patterns of whole-brain covariance and to what extent these are related to memory functions organized along the hippocampal longitudinal axis. Using the multivariate approach partial least squares, we assessed structural whole-brain covariance of the HC in addition to regional volume, in young, middle-aged and older adults (n = 221), and assessed associations with episodic and spatial memory. Based on findings of sex differences in both memory and brain aging, we further considered sex as a potential modulating factor of age effects. There were two main covariance patterns: one capturing common anterior and posterior covariance, and one differentiating the two regions by capturing anterior-specific covariance only. These patterns were differentially related to associative memory while unrelated to measures of single-item memory and spatial memory. Although patterns were qualitatively comparable across age groups, participants' expression of both patterns decreased with age, independently of sex. The results suggest that the organization of hippocampal structural whole-brain covariance remains stable across age, but that the integrity of these networks decreases as the brain undergoes age-related alterations. © 2017 Wiley Periodicals, Inc.
Zero curvature conditions and conformal covariance
International Nuclear Information System (INIS)
Akemann, G.; Grimm, R.
1992-05-01
Two-dimensional zero curvature conditions were investigated in detail, with special emphasis on conformal properties, and the appearance of covariant higher order differential operators constructed in terms of a projective connection was elucidated. The analysis is based on the Kostant decomposition of simple Lie algebras in terms of representations with respect to their 'principal' SL(2) subalgebra. (author) 27 refs
On superfield covariant quantization in general coordinates
International Nuclear Information System (INIS)
Gitman, D.M.; Moshin, P. Yu.; Tomazelli, J.L.
2005-01-01
We propose a natural extension of the BRST-antiBRST superfield covariant scheme in general coordinates. Thus, the coordinate dependence of the basic tensor fields and scalar density of the formalism is extended from the base supermanifold to the complete set of superfield variables. (orig.)
On superfield covariant quantization in general coordinates
Energy Technology Data Exchange (ETDEWEB)
Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, S.P (Brazil); Moshin, P. Yu. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, S.P (Brazil); Tomsk State Pedagogical University, Tomsk (Russian Federation); Tomazelli, J.L. [UNESP, Departamento de Fisica e Quimica, Campus de Guaratingueta (Brazil)
2005-12-01
We propose a natural extension of the BRST-antiBRST superfield covariant scheme in general coordinates. Thus, the coordinate dependence of the basic tensor fields and scalar density of the formalism is extended from the base supermanifold to the complete set of superfield variables. (orig.)
Covariant field theory of closed superstrings
International Nuclear Information System (INIS)
Siopsis, G.
1989-01-01
The authors construct covariant field theories of both type-II and heterotic strings. Toroidal compactification is also considered. The interaction vertices are based on Witten's vertex representing three strings interacting at the mid-point. For closed strings, the authors thus obtain a bilocal interaction
Soft covariant gauges on the lattice
Energy Technology Data Exchange (ETDEWEB)
Henty, D.S.; Oliveira, O.; Parrinello, C.; Ryan, S. [Department of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (UKQCD Collaboration)
1996-12-01
We present an exploratory study of a one-parameter family of covariant, nonperturbative lattice gauge-fixing conditions that can be implemented through a simple Monte Carlo algorithm. We demonstrate that at the numerical level the procedure is feasible, and as a first application we examine the gauge dependence of the gluon propagator. {copyright} {ital 1996 The American Physical Society.}
Covariant single-hole optical potential
International Nuclear Information System (INIS)
Kam, J. de
1982-01-01
In this investigation a covariant optical potential model is constructed for scattering processes of mesons from nuclei in which the meson interacts repeatedly with one of the target nucleons. The nuclear binding interactions in the intermediate scattering state are consistently taken into account. In particular for pions and K - projectiles this is important in view of the strong energy dependence of the elementary projectile-nucleon amplitude. Furthermore, this optical potential satisfies unitarity and relativistic covariance. The starting point in our discussion is the three-body model for the optical potential. To obtain a practical covariant theory I formulate the three-body model as a relativistic quasi two-body problem. Expressions for the transition interactions and propagators in the quasi two-body equations are found by imposing the correct s-channel unitarity relations and by using dispersion integrals. This is done in such a way that the correct non-relativistic limit is obtained, avoiding clustering problems. Corrections to the quasi two-body treatment from the Pauli principle and the required ground-state exclusion are taken into account. The covariant equations that we arrive at are amenable to practical calculations. (orig.)
Covariant quantum mechanics on a null plane
International Nuclear Information System (INIS)
Leutwyler, H.; Stern, J.
1977-03-01
Lorentz invariance implies that the null plane wave functions factorize into a kinematical part describing the motion of the system as a whole and an inner wave function that involves the specific dynamical properties of the system - in complete correspondence with the non-relativistic situation. Covariance is equivalent to an angular condition which admits non-trivial solutions
Approximate methods for derivation of covariance data
International Nuclear Information System (INIS)
Tagesen, S.
1992-01-01
Several approaches for the derivation of covariance information for evaluated nuclear data files (EFF2 and ENDF/B-VI) have been developed and used at IRK and ORNL respectively. Considerations, governing the choice of a distinct method depending on the quantity and quality of available data are presented, advantages/disadvantages are discussed and examples of results are given
Optimal covariate designs theory and applications
Das, Premadhis; Mandal, Nripes Kumar; Sinha, Bikas Kumar
2015-01-01
This book primarily addresses the optimality aspects of covariate designs. A covariate model is a combination of ANOVA and regression models. Optimal estimation of the parameters of the model using a suitable choice of designs is of great importance; as such choices allow experimenters to extract maximum information for the unknown model parameters. The main emphasis of this monograph is to start with an assumed covariate model in combination with some standard ANOVA set-ups such as CRD, RBD, BIBD, GDD, BTIBD, BPEBD, cross-over, multi-factor, split-plot and strip-plot designs, treatment control designs, etc. and discuss the nature and availability of optimal covariate designs. In some situations, optimal estimations of both ANOVA and the regression parameters are provided. Global optimality and D-optimality criteria are mainly used in selecting the design. The standard optimality results of both discrete and continuous set-ups have been adapted, and several novel combinatorial techniques have been applied for...
Asymptotics for the minimum covariance determinant estimator
Butler, R.W.; Davies, P.L.; Jhun, M.
1993-01-01
Consistency is shown for the minimum covariance determinant (MCD) estimators of multivariate location and scale and asymptotic normality is shown for the former. The proofs are made possible by showing a separating ellipsoid property for the MCD subset of observations. An analogous property is shown