WorldWideScience

Sample records for group additional materials

  1. Laser additive manufacturing of high-performance materials

    CERN Document Server

    Gu, Dongdong

    2015-01-01

    This book entitled “Laser Additive Manufacturing of High-Performance Materials” covers the specific aspects of laser additive manufacturing of high-performance new materials components based on an unconventional materials incremental manufacturing philosophy, in terms of materials design and preparation, process control and optimization, and theories of physical and chemical metallurgy. This book describes the capabilities and characteristics of the development of new metallic materials components by laser additive manufacturing process, including nanostructured materials, in situ composite materials, particle reinforced metal matrix composites, etc. The topics presented in this book, similar as laser additive manufacturing technology itself, show a significant interdisciplinary feature, integrating laser technology, materials science, metallurgical engineering, and mechanical engineering. This is a book for researchers, students, practicing engineers, and manufacturing industry professionals interested i...

  2. Effect of fluoride addition on the properties of dental alginate impression materials.

    Science.gov (United States)

    Lee, Yong-Keun; Lim, Bum-Soon; Kim, Cheol-We

    2004-03-01

    Fluoride-containing dental alginate impression materials can exert a considerable reduction in enamel solubility. The objective was to evaluate the effects of fluoride addition in the alginate impression materials on the properties and subsequent release of fluoride. Four experimental alginate impression materials were studied. Materials were mixed with distilled water (control) or 100-ppm fluoride solution. One or two percent NaF, or 1% SnF2 was added to the materials, which were mixed with distilled water. Fluoride release, flexibility, recovery from deformation, setting time, compressive strength and elastic modulus were determined in accordance with the ISO 1563 and ANSI/ADA Spec. 18. Fluoride release increased after addition of fluoride, and the released amount was 0.762-14.761 ppm. Addition of NaF or SnF2 resulted in higher fluoride release than the control group (p alginate impression material may result in effective release of fluoride without deteriorating the properties of material itself.

  3. GroupsAdditive Notation

    OpenAIRE

    Coghetto Roland

    2015-01-01

    We translate the articles covering group theory already available in the Mizar Mathematical Library from multiplicative into additive notation. We adapt the works of Wojciech A. Trybulec [41, 42, 43] and Artur Korniłowicz [25].

  4. GroupsAdditive Notation

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2015-06-01

    Full Text Available We translate the articles covering group theory already available in the Mizar Mathematical Library from multiplicative into additive notation. We adapt the works of Wojciech A. Trybulec [41, 42, 43] and Artur Korniłowicz [25].

  5. Advanced Material Strategies for Next-Generation Additive Manufacturing.

    Science.gov (United States)

    Chang, Jinke; He, Jiankang; Mao, Mao; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen; Chua, Chee-Kai; Zhao, Xin

    2018-01-22

    Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing.

  6. Advanced Material Strategies for Next-Generation Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Jinke Chang

    2018-01-01

    Full Text Available Additive manufacturing (AM has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing.

  7. Advanced Material Strategies for Next-Generation Additive Manufacturing

    Science.gov (United States)

    Chang, Jinke; He, Jiankang; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen

    2018-01-01

    Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing. PMID:29361754

  8. Advances in High Temperature Materials for Additive Manufacturing

    Science.gov (United States)

    Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin

    2017-08-01

    In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.

  9. Additive Manufacturing: Unlocking the Evolution of Energy Materials.

    Science.gov (United States)

    Zhakeyev, Adilet; Wang, Panfeng; Zhang, Li; Shu, Wenmiao; Wang, Huizhi; Xuan, Jin

    2017-10-01

    The global energy infrastructure is undergoing a drastic transformation towards renewable energy, posing huge challenges on the energy materials research, development and manufacturing. Additive manufacturing has shown its promise to change the way how future energy system can be designed and delivered. It offers capability in manufacturing complex 3D structures, with near-complete design freedom and high sustainability due to minimal use of materials and toxic chemicals. Recent literatures have reported that additive manufacturing could unlock the evolution of energy materials and chemistries with unprecedented performance in the way that could never be achieved by conventional manufacturing techniques. This comprehensive review will fill the gap in communicating on recent breakthroughs in additive manufacturing for energy material and device applications. It will underpin the discoveries on what 3D functional energy structures can be created without design constraints, which bespoke energy materials could be additively manufactured with customised solutions, and how the additively manufactured devices could be integrated into energy systems. This review will also highlight emerging and important applications in energy additive manufacturing, including fuel cells, batteries, hydrogen, solar cell as well as carbon capture and storage.

  10. Functionalisation of mesoporous materials for application as additives in high temperature PEM fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Monir

    2012-03-06

    The presented thesis contains six original research articles dedicated to the preparation and characterization of organic-inorganic mesoporous materials as additives for polymer electroly1e membrane fuel cells (PEMFCs). The mesoporous materials Si-MCM-41 and benzene-PMO (periodic mesoporous organosilica) were chosen for the investigations. These materials were modified with functional groups for enhanced proton conductivity and water-keeping properties. In order to improve these materials Broenstedt acidic groups were introduced in the framework of mesoporous Si-MCM-41. Therefore, some silicium atoms in the framework were substituted by aluminium using different aluminium sources. Here NaAlO{sub 2} exhibits clearly the best results because the entire aluminium incorporated within the framework is tetragonally coordinated as observed by {sup 2}7AI MAS NMR. The increase of the proton conductivities results from an improved hydrophilicity, a decreased particle size, and newly introduced Broenstedt acidity in the mesoporous Al-MCM-41. However, mesoporous Si-MCM-41 materials functionalised by co-condensation with sulphonic acid groups exhibit the best results concerning proton conductivity, compared to those prepared by grafting. Hence, these materials where characterized in more detail by SANS and by MAS NMR measurements. The first one indicated that by co-condensation the entire inner pore surface is altered by functional groups which are, thus, distributed much more homogeneously than samples functionalised by grafting. This result explains the improved proton conductivities. Additionally, {sup 2}9Si NMR spectra proved that samples prepared by co-condensation lead to a successful and almost complete incorporation of mercaptopropyltrimethoxysilan (MPMS) into the mesoporous framework. Furthermore, it was shown by {sup 1}3C MAS NMR spectroscopy that the majority of the organic functional groups remained intact after H{sub 2}0{sub 2}-oxidation. However, proton

  11. Electrostatic Levitation for Studies of Additive Manufactured Materials

    Science.gov (United States)

    SanSoucie, Michael P.; Rogers, Jan R.; Tramel, Terri

    2014-01-01

    The electrostatic levitation (ESL) laboratory at NASA's Marshall Space Flight Center is a unique facility for investigators studying high temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified. Electrostatic levitation minimizes gravitational effects and allows materials to be studied without contact with a container or instrumentation. The lab also has a high temperature emissivity measurement system, which provides normal spectral and normal total emissivity measurements at use temperature. The ESL lab has been instrumental in many pioneering materials investigations of thermophysical properties, e.g., creep measurements, solidification, triggered nucleation, and emissivity at high temperatures. Research in the ESL lab has already led to the development of advanced high temperature materials for aerospace applications, coatings for rocket nozzles, improved medical and industrial optics, metallic glasses, ablatives for reentry vehicles, and materials with memory. Modeling of additive manufacturing materials processing is necessary for the study of their resulting materials properties. In addition, the modeling of the selective laser melting processes and its materials property predictions are also underway. Unfortunately, there is very little data for the properties of these materials, especially of the materials in the liquid state. Some method to measure thermophysical properties of additive manufacturing materials is necessary. The ESL lab is ideal for these studies. The lab can provide surface tension and viscosity of molten materials, density measurements, emissivity measurements, and even creep strength measurements. The ESL lab can also determine melting temperature, surface temperatures, and phase transition temperatures of additive manufactured materials. This presentation will provide background on the ESL lab and its capabilities, provide an approach to using the ESL

  12. Use of additive material to stabilize the soil swelling

    Science.gov (United States)

    Parsaee, B.; Estabragh, A. R.; Bordbar, A. T.; Eskandari, G. H.

    2009-04-01

    Change volume increasing of soil, because of increase in its humidity content causes appearing of swelling phenomenon in the soil. This phenomenon has created a lot of damages in the building which is constructed on this kind of soils. Usage the additive materials which stabilize the swelling, has been the subject of many researches. In this research the Potential expansibility of the expansive soils, which were stabilized by additive materials such as Lime, cement and coal ash, was investigated. To get this purpose, by preparing soil samples mixed with upper additive material, changes of potential swelling of stabilized soils were compared. The results revealed that usage of these stabilizing materials caused the decrease in destructive effects due to swelling of soils to some extent. Keywords: swelling, soil stabilizing, additive material, coal ash

  13. Direct Bandgap Group IV Materials

    Science.gov (United States)

    2016-01-21

    AFRL-AFOSR-JP-TR-2017-0049 Direct Bandgap group IV Materials Hung Hsiang Cheng NATIONAL TAIWAN UNIVERSITY Final Report 01/21/2016 DISTRIBUTION A...NAME(S) AND ADDRESS(ES) NATIONAL TAIWAN UNIVERSITY 1 ROOSEVELT RD. SEC. 4 TAIPEI CITY, 10617 TW 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...14. ABSTRACT Direct bandgap group IV materials have been long sought for in both academia and industry for the implementation of photonic devices

  14. Material Database for Additive Manufacturing Techniques

    Science.gov (United States)

    2017-12-01

    components in the field. II. BACKGROUND Additive manufacturing is a rapidly maturing process by which digital 3-D design data are used to build up...improves readiness by offering on-demand low-rate production [8, 9]. 3-D printing also enables rapid design iterations and complexity, which improve...abundant in additive manufacturing , allowing design freedom that is only limited by the material strength requirements. A set of eight conductive

  15. Additive Manufacturing of Composites and Complex Materials

    Science.gov (United States)

    Spowart, Jonathan E.; Gupta, Nikhil; Lehmhus, Dirk

    2018-03-01

    Advanced composite materials form an important class of high-performance industrial materials used in weight-sensitive applications such as aerospace structures, automotive structures and sports equipment. In many of these applications, parts are made in small production runs, are highly customized and involve long process development times. Developments in additive manufacturing (AM) methods have helped in overcoming many of these limitations. The special topic of Additive Manufacturing of Composites and Complex Materials captures the state of the art in this area by collecting nine papers that present much novel advancement in this field. The studies under this topic show advancement in the area of AM of carbon fiber and graphene-reinforced composites with high thermal and electrical conductivities, development of new hollow glass particle-filled syntactic foam filaments for printing lightweight structures and integration of sensors or actuators during AM of metallic parts. Some of the studies are focused on process optimization or modification to increase the manufacturing speed or tuning manufacturing techniques to enable AM of new materials.

  16. Additive Technology: Update on Current Materials and Applications in Dentistry.

    Science.gov (United States)

    Barazanchi, Abdullah; Li, Kai Chun; Al-Amleh, Basil; Lyons, Karl; Waddell, J Neil

    2017-02-01

    Additive manufacturing or 3D printing is becoming an alternative to subtractive manufacturing or milling in the area of computer-aided manufacturing. Research on material for use in additive manufacturing is ongoing, and a wide variety of materials are being used or developed for use in dentistry. Some materials, however, such as cobalt chromium, still lack sufficient research to allow definite conclusions about the suitability of their use in clinical dental practice. Despite this, due to the wide variety of machines that use additive manufacturing, there is much more flexibility in the build material and geometry when building structures compared with subtractive manufacturing. Overall additive manufacturing produces little material waste and is energy efficient when compared to subtractive manufacturing, due to passivity and the additive layering nature of the build process. Such features make the technique suitable to be used with fabricating structures out of hard to handle materials such as cobalt chromium. The main limitations of this technology include the appearance of steps due to layering of material and difficulty in fabricating certain material generally used in dentistry for use in 3D printing such as ceramics. The current pace of technological development, however, promises exciting possibilities. © 2016 by the American College of Prosthodontists.

  17. Evaluation and recommendations for work group integration within the Materials and Processes Lab

    Science.gov (United States)

    Farrington, Phillip A.

    1992-01-01

    The goal of this study was to evaluate and make recommendations for improving the level of integration of several work groups within the Materials and Processes Lab at the Marshall Space Flight Center. This evaluation has uncovered a variety of projects that could improve the efficiency and operation of the work groups as well as the overall integration of the system. In addition, this study provides the foundation for specification of a computer integrated manufacturing test bed environment in the Materials and Processes Lab.

  18. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    Science.gov (United States)

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory.

  19. Additively Manufactured Multi-Material Insert, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Parabilis Space Technologies is pleased to propose development of a novel additive manufacturing method which enables the use of multiple dissimilar materials in an...

  20. Review on Advances of Functional Material for Additive Manufacturing

    Science.gov (United States)

    Zulkifli, Nur Amalina Binti; Akmal Johar, Muhammad; Faizan Marwah, Omar Mohd; Irwan Ibrahim, Mohd Halim

    2017-08-01

    The attempt of finding and making new materials in improving products that are already in the market are widely done by researchers nowadays. This project is focusing on making new materials for functional material through additive manufacturing application. The idea of this project came from the ability limitation of capacitor in market nowadays in storing higher charges but smaller in size. Powder glass is the new material that could to be used as a dielectric material for capacitor with the help of palm kernel oil as the binder. This paper reviews on applications done through additive manufacturing method and also types of functional materials used in this method previously. Structure of a capacitor, dielectric properties and measurement techniques that are trying to be carried out are also explains in this paper. Last part of this paper brief on the material proposal and reasons those materials are chosen. New dielectric material for capacitor which are able to store more charges but still small in size are expected to be produced as the outcome of this research.

  1. Summary of the materials breakout group

    Energy Technology Data Exchange (ETDEWEB)

    Garner, F. [Pacific Northwest Laboratories, Richland, WA (United States); Sommer, W. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    This breakout group discussed the following topics and reached a number of recommendations summarized in this report. The topics of discussion included (1) a comparison of expected materials response at spallation sources to experience with fission reactors; (2) synergistic effects from high-energy particle radiation, corrosion, and cyclic stresses; (3) estimates, based on experience with materials developed for fission and fusion reactors, for -materials testing needs; - facilities for materials development, both available and needed; - candidate materials; - time frame for material qualification; and - expected program costs.

  2. Additive Manufacturing: Multi Material Processing and Part Quality Control

    DEFF Research Database (Denmark)

    Pedersen, David Bue

    This Ph.D dissertation,ffAdditive Manufacturing: Multi Material Processing and Part Quality Controlff, deal with Additive Manufacturing technologies which is a common name for a series of processes that are recognized by being computer controlled, highly automated, and manufacture objects...... by a layered deposition of material. Two areas of particular interest is addressed. They are rooted in two very different areas, yet is intended to fuel the same goal. To help Additive Manufacturing technologies one step closer to becoming the autonomous, digital manufacturing method of tomorrow. Vision...... systems A paradox exist in the field of Additive Manufacturing. The technologies allow for close-to unrestrained and integral geometrical freedom. Almost any geometry can be manufactured fast, e"ciently and cheap. Something that has been missing fundamental capability since the entering of the industrial...

  3. Usage of Vermiculite as Additive Material in Water-Based Drilling Muds

    Directory of Open Access Journals (Sweden)

    Onur Eser Kök

    2018-05-01

    Full Text Available Drilling mud is used in drilling operations to ensure well stability and to transport the cut-offs to the surface and is generally classified as; Spud, Lignosulfonate and Polymer types. Spud Mud is the simple mud and mostly used at the beginning of drilling operations. It is mainly composed of bentonite and water. With increasing depth, It is hard to keep well stability and to carry cuttings from the bottom of hole to the surface with the basic drilling fluid. Thus, some materials are used to maintain the rheological and filtration properties of the mud. One of them is vermiculite that is a general name of the hydrated ferromagnesian aluminium silicate group. It has expanded properties when heated. Like all clay minerals, the cation exchange capacity is very high and very similar to the montmorillonites in terms of high cation exchange capacity. In this study, the usage of vermiculite as an additive material in drilling muds was investigated. Spud muds containing vermiculite in different amounts were prepared. Then rheological and filtration analysis of the muds were done according to American Petroleum Institute (API RP-13B-1 Standard. When evaluated the results, AV reached 41cP, PV 27cP, YP 28lb/100ft2 , 10 sec. gel strength 17lb/100ft2 , 10 min. gel strength 26 lb/100ft2 and filtration 9cc. The results showed that the vermiculite can might be used as a viscosifier and fluid loss reducing additive material in the drilling mud.

  4. Leaching of additives from construction materials to urban storm water runoff.

    Science.gov (United States)

    Burkhardt, M; Zuleeg, S; Vonbank, R; Schmid, P; Hean, S; Lamani, X; Bester, K; Boller, M

    2011-01-01

    Urban water management requires further clarification about pollutants in storm water. Little is known about the release of organic additives used in construction materials and the impact of these compounds to storm water runoff. We investigated sources and pathways of additives used in construction materials, i.e., biocides in facades' render as well as root protection products in bitumen membranes for rooftops. Under wet-weather conditions, the concentrations of diuron, terbutryn, carbendazim, irgarol 1051 (all from facades) and mecoprop in storm water and receiving water exceeded the predicted no-effect concentrations values and the Swiss water quality standard of 0.1 microg/L. Under laboratory conditions maximum concentrations of additives were in the range of a few milligrams and a few hundred micrograms per litre in runoff of facades and bitumen membranes. Runoff from aged materials shows approximately one to two orders of magnitude lower concentrations. Concentrations decreased also during individual runoff events. In storm water and receiving water the occurrence of additives did not follow the typical first flush model. This can be explained by the release lasting over the time of rainfall and the complexity of the drainage network. Beside the amounts used, the impact of construction materials containing hazardous additives on water quality is related clearly to the age of the buildings and the separated sewer network. The development of improved products regarding release of hazardous additives is the most efficient way of reducing the pollutant load from construction materials in storm water runoff.

  5. Additive Manufacturing of Catalytically Active Living Materials.

    Science.gov (United States)

    Saha, Abhijit; Johnston, Trevor G; Shafranek, Ryan T; Goodman, Cassandra J; Zalatan, Jesse G; Storti, Duane W; Ganter, Mark A; Nelson, Alshakim

    2018-04-25

    Living materials, which are composites of living cells residing in a polymeric matrix, are designed to utilize the innate functionalities of the cells to address a broad range of applications such as fermentation and biosensing. Herein, we demonstrate the additive manufacturing of catalytically active living materials (AMCALM) for continuous fermentation. A multi-stimuli-responsive yeast-laden hydrogel ink, based on F127-dimethacrylate, was developed and printed using a direct-write 3D printer. The reversible stimuli-responsive behaviors of the polymer hydrogel inks to temperature and pressure are critical, as they enabled the facile incorporation of yeast cells and subsequent fabrication of 3D lattice constructs. Subsequent photo-cross-linking of the printed polymer hydrogel afforded a robust elastic material. These yeast-laden living materials were metabolically active in the fermentation of glucose into ethanol for 2 weeks in a continuous batch process without significant reduction in efficiency (∼90% yield of ethanol). This cell immobilization platform may potentially be applicable toward other genetically modified yeast strains to produce other high-value chemicals in a continuous biofermentation process.

  6. The space shuttle payload planning working groups: Volume 9: Materials processing and space manufacturing

    Science.gov (United States)

    1973-01-01

    The findings and recommendations of the Materials Processing and Space Manufacturing group of the space shuttle payload planning activity are presented. The effects of weightlessness on the levitation processes, mixture stability, and control over heat and mass transport in fluids are considered for investigation. The research and development projects include: (1) metallurgical processes, (2) electronic materials, (3) biological applications, and (4)nonmetallic materials and processes. Additional recommendations are provided concerning the allocation of payload space, acceptance of experiments for flight, flight qualification, and private use of the space shuttle.

  7. Laser Additive Manufacturing of Magnetic Materials

    Science.gov (United States)

    Mikler, C. V.; Chaudhary, V.; Borkar, T.; Soni, V.; Jaeger, D.; Chen, X.; Contieri, R.; Ramanujan, R. V.; Banerjee, R.

    2017-03-01

    While laser additive manufacturing is becoming increasingly important in the context of next-generation manufacturing technologies, most current research efforts focus on optimizing process parameters for the processing of mature alloys for structural applications (primarily stainless steels, titanium base, and nickel base alloys) from pre-alloyed powder feedstocks to achieve properties superior to conventionally processed counterparts. However, laser additive manufacturing or processing can also be applied to functional materials. This article focuses on the use of directed energy deposition-based additive manufacturing technologies, such as the laser engineered net shaping (LENS™) process, to deposit magnetic alloys. Three case studies are presented: Fe-30 at.%Ni, permalloys of the type Ni-Fe-V and Ni-Fe-Mo, and Fe-Si-B-Cu-Nb (derived from Finemet) alloys. All these alloys have been processed from a blend of elemental powders used as the feedstock, and their resultant microstructures, phase formation, and magnetic properties are discussed in this paper. Although these alloys were produced from a blend of elemental powders, they exhibited relatively uniform microstructures and comparable magnetic properties to those of their conventionally processed counterparts.

  8. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 08, Revision 4 (FGE.08Rev4): Aliphatic and alicyclic mono-, di-, tri-, and polysulphides with or without additional oxygenated functional groups from chemical

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 80 flavouring substances in the Flavouring Group Evaluation 08, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. Since the publi......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 80 flavouring substances in the Flavouring Group Evaluation 08, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. Since...... be estimated and accordingly the Panel concluded that the Procedure could not be applied to these four substances either. The remaining 71 substances were evaluated through a stepwise approach that integrates information on the structure-activity relationships, intake from current uses, toxicological threshold.......116, 12.120, 12.164, 12.167, 12.199, 15.007, 15.102 and 15.125 and 15.134], evaluated through the Procedure, no appropriate NOAEL was available and additional data are required. Besides the safety assessment of the flavouring substances, the specifications for the materials of commerce have also been...

  9. Perception Gaps on Food Additives among Various Groups in Korea: Food Experts, Teachers, Nutrition Teachers, Nongovernmental Organization Members, and General Consumers.

    Science.gov (United States)

    Kang, Hee-Jin; Kim, Suna; Lee, Gunyoung; Lim, Ho Soo; Yun, Sang Soon; Kim, Jeong-Weon

    2017-06-01

    The purpose of this study was to determine the perceptions and information needs of food experts, teachers, nutrition teachers, members of nongovernmental organizations, and general consumers concerning food additives. Questions in a survey format included perceptions, information needs, and preferred communication channels. The survey was conducted both off-line and on-line via e-mail and Google Drive in March 2015. The results indicated that most Korean consumers are concerned about the safety of using food additives in processed foods and do not recognize these additives as safe and useful materials as part of a modern diet. We also identified perception gaps among different groups regarding food additives. Nutrition teachers and members of nongovernmental organizations in Korea appeared to have a biased perception of food additives, which may cause general consumers to have a negative perception of food additives. The group of food experts did not have this bias. Governmental institutions must overcome the low confidence levels of various groups as an information provider about food additives. Based on the findings in this study, it will be possible to develop a strategy for risk communication about food additives for each group.

  10. Additivity of Feature-based and Symmetry-based Grouping Effects in Multiple Object Tracking

    Directory of Open Access Journals (Sweden)

    Chundi eWang

    2016-05-01

    Full Text Available Multiple object tracking (MOT is an attentional process wherein people track several moving targets among several distractors. Symmetry, an important indicator of regularity, is a general spatial pattern observed in natural and artificial scenes. According to the laws of perceptual organization proposed by Gestalt psychologists, regularity is a principle of perceptual grouping, such as similarity and closure. A great deal of research reported that feature-based similarity grouping (e.g., grouping based on color, size, or shape among targets in MOT tasks can improve tracking performance. However, no additive feature-based grouping effects have been reported where the tracking objects had two or more features. Additive effect refers to a greater grouping effect produced by grouping based on multiple cues instead of one cue. Can spatial symmetry produce a similar grouping effect similar to that of feature similarity in MOT tasks? Are the grouping effects based on symmetry and feature similarity additive? This study includes four experiments to address these questions. The results of Experiments 1 and 2 demonstrated the automatic symmetry-based grouping effects. More importantly, an additive grouping effect of symmetry and feature similarity was observed in Experiments 3 and 4. Our findings indicate that symmetry can produce an enhanced grouping effect in MOT and facilitate the grouping effect based on color or shape similarity. The where and what pathways might have played an important role in the additive grouping effect.

  11. The Development of High Temperature Thermoplastic Composite Materials for Additive Manufactured Autoclave Tooling

    Energy Technology Data Exchange (ETDEWEB)

    Kunc, Vlastimil [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lindahl, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hassen, Ahmed A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    In this work, ORNL and Techmer investigated and screened different high temperature thermoplastic reinforced materials to fabricate composite molds for autoclave processes using Additive Manufacturing (AM) techniques. This project directly led to the development and commercial release of two printable, high temperature composite materials available through Techmer PM. These new materials are targeted for high temperature tooling made via large scale additive manufacturing.

  12. Polishability and wear resistance of splint material for oral appliances produced with conventional, subtractive, and additive manufacturing.

    Science.gov (United States)

    Huettig, Fabian; Kustermann, Achim; Kuscu, Ebru; Geis-Gerstorfer, Jürgen; Spintzyk, Sebastian

    2017-11-01

    Occlusal splints to treat bruxism are commonly made from polymethylmethacrylate (PMMA) in a manual workflow (powder-liquid technique). Today digitalization allows a machine-based manufacturing in subtractive (milling) and additive (printing) means using industrial-made PMMA or comparable resins. An in-vitro study should assess the surface finish and screen the wear resistance of conventional and industrial materials. Therefore, a total of 30 specimens made from conventionally PMMA (group C; powder-liquid, Palapress), polycarbonate ingots (group S; innoBlanc splint plus), and light-curing resin (group A; VarseoWax splint) were polished to examine the surface roughness (Ra) by profilometry and further analyzed by SEM. The specimens were loaded with a steatite ball moving 5000 times along 1cm with 5N of surface pressure under constant wetting (artificial saliva). The total height of profile (Pt) was calculated by further profilometry of the specimens. All specimen showed initially comparable Ra values ranging between 0.06 and 0.05µm (SD = 0.01) after polishing. SEM investigations revealed no visual cues for scratches or irregularities in any group. After abrasion test, the comparison of the wear depths, revealed mean Pt values of 111.4µm (SD = 18.5) in C, 85.7µm (SD = 21.5) in S, and 99.1µm (SD = 21.5) in A, whereas the mean of S was statistically different from C (p = 0.025). No signs of abrasion were found on the steatite balls. All materials showed comparable polished surfaces and a similar scale of wear. It remains questionable if the detected statistical differences are of clinical relevance, but indicates the need for tests of novel materials, especially in additive manufacturing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Mechanical and Fatigue Properties of Additively Manufactured Metallic Materials

    Science.gov (United States)

    Yadollahi, Aref

    This study aims to investigate the mechanical and fatigue behavior of additively manufactured metallic materials. Several challenges associated with different metal additive manufacturing (AM) techniques (i.e. laser-powder bed fusion and direct laser deposition) have been addressed experimentally and numerically. Experiments have been carried out to study the effects of process inter-layer time interval--i.e. either building the samples one-at-a-time or multi-at-a-time (in-parallel)--on the microstructural features and mechanical properties of 316L stainless steel samples, fabricated via a direct laser deposition (DLD). Next, the effect of building orientation--i.e. the orientation in which AM parts are built--on microstructure, tensile, and fatigue behaviors of 17-4 PH stainless steel, fabricated via a laser-powder bed fusion (L-PBF) method was investigated. Afterwards, the effect of surface finishing--here, as-built versus machined--on uniaxial fatigue behavior and failure mechanisms of Inconel 718 fabricated via a laser-powder bed fusion technique was sought. The numerical studies, as part of this dissertation, aimed to model the mechanical behavior of AM materials, under monotonic and cyclic loading, based on the observations and findings from the experiments. Despite significant research efforts for optimizing process parameters, achieving a homogenous, defect-free AM product--immediately after fabrication--has not yet been fully demonstrated. Thus, one solution for ensuring the adoption of AM materials for application should center on predicting the variations in mechanical behavior of AM parts based on their resultant microstructure. In this regard, an internal state variable (ISV) plasticity-damage model was employed to quantify the damage evolution in DLD 316L SS, under tensile loading, using the microstructural features associated with the manufacturing process. Finally, fatigue behavior of AM parts has been modeled based on the crack-growth concept

  14. LDEF materials special investigation group's data bases

    Science.gov (United States)

    Strickland, John W.; Funk, Joan G.; Davis, John M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) was composed of and contained a wide array of materials, representing the largest collection of materials flown for space exposure and returned for ground-based analyses to date. The results and implications of the data from these materials are the foundation on which future space missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been tasked with establishing and developing data bases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the space user community in an easily accessed, user-friendly form. The format and content of the data bases developed or being developed to accomplish this task are discussed. The hardware and software requirements for each of the three data bases are discussed along with current availability of the data bases.

  15. Mechanical Behavior of Additive Manufactured Layered Materials, Part 2: Stainless Steels

    Science.gov (United States)

    2015-04-30

    materials. Elsevier, Oxford; 2007: 416 -420. [19] Deng, D., Chen, R., Sun, Q. and Li, X. Microstructural study of 17-4PH stainless steel after plasma...1 Mechanical Behavior of Additive Manufactured Layered Materials, Part 2: Stainless Steels * Todd M. Mower † and Michael J. Long M.I.T. Lincoln... stainless steel alloys produced with Direct Metal Laser Sintering (DMLS) was measured and is compared to that of similar conventional materials

  16. Design of material management system of mining group based on Hadoop

    Science.gov (United States)

    Xia, Zhiyuan; Tan, Zhuoying; Qi, Kuan; Li, Wen

    2018-01-01

    Under the background of persistent slowdown in mining market at present, improving the management level in mining group has become the key link to improve the economic benefit of the mine. According to the practical material management in mining group, three core components of Hadoop are applied: distributed file system HDFS, distributed computing framework Map/Reduce and distributed database HBase. Material management system of mining group based on Hadoop is constructed with the three core components of Hadoop and SSH framework technology. This system was found to strengthen collaboration between mining group and affiliated companies, and then the problems such as inefficient management, server pressure, hardware equipment performance deficiencies that exist in traditional mining material-management system are solved, and then mining group materials management is optimized, the cost of mining management is saved, the enterprise profit is increased.

  17. Survival of Listeria monocytogenes on a conveyor belt material with or without antimicrobial additives.

    Science.gov (United States)

    Chaitiemwong, N; Hazeleger, W C; Beumer, R R

    2010-08-15

    Survival of Listeria monocytogenes on a conveyor belt material with or without antimicrobial additives, in the absence or presence of food debris from meat, fish and vegetables and at temperatures of 10, 25 and 37 degrees C was investigated. The pathogen survived best at 10 degrees C, and better at 25 degrees C than at 37 degrees C on both conveyor belt materials. The reduction in the numbers of the pathogen on belt material with antimicrobial additives in the first 6h at 10 degrees C was 0.6 log unit, which was significantly higher (Padditives. Reductions were significantly less (Pfood residue. At 37 degrees C and 20% relative humidity, large decreases in the numbers of the pathogen on both conveyor belt materials during the first 6h were observed. Under these conditions, there was no obvious effect of the antimicrobial substances. However, at 25 degrees C and 10 degrees C and high humidity (60-75% rh), a rapid decrease in bacterial numbers on the belt material with antimicrobial substances was observed. Apparently the reduction in numbers of L. monocytogenes on belt material with antimicrobial additives was greater than on belt material without additives only when the surfaces were wet. Moreover, the presence of food debris neutralized the effect of the antimicrobials. The results suggest that the antimicrobial additives in conveyor belt material could help to reduce numbers of microorganisms on belts at low temperatures when food residues are absent and belts are not rapidly dried. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review.

    Science.gov (United States)

    Savio, Gianpaolo; Rosso, Stefano; Meneghello, Roberto; Concheri, Gianmaria

    2018-01-01

    Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed.

  19. Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review

    Directory of Open Access Journals (Sweden)

    Gianpaolo Savio

    2018-01-01

    Full Text Available Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed.

  20. Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review

    Science.gov (United States)

    Rosso, Stefano; Meneghello, Roberto; Concheri, Gianmaria

    2018-01-01

    Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed. PMID:29487626

  1. Oxidative Addition and Reductive Elimination at Main-Group Element Centers.

    Science.gov (United States)

    Chu, Terry; Nikonov, Georgii I

    2018-04-11

    Oxidative addition and reductive elimination are key steps in a wide variety of catalytic reactions mediated by transition-metal complexes. Historically, this reactivity has been considered to be the exclusive domain of d-block elements. However, this paradigm has changed in recent years with the demonstration of transition-metal-like reactivity by main-group compounds. This Review highlights the substantial progress achieved in the past decade for the activation of robust single bonds by main-group compounds and the more recently realized activation of multiple bonds by these elements. We also discuss the significant discovery of reversible activation of single bonds and distinct examples of reductive elimination at main-group element centers. The review consists of three major parts, starting with oxidative addition of single bonds, proceeding to cleavage of multiple bonds, and culminated by the discussion of reversible bond activation and reductive elimination. Within each subsection, the discussion is arranged according to the type of bond being cleaved or formed and considers elements from the left to the right of each period and down each group of the periodic table. The majority of results discussed in this Review come from the past decade; however, earlier reports are also included to ensure completeness.

  2. The additive technology for obtaining thermal storages based on nanomodified materials

    Directory of Open Access Journals (Sweden)

    Shchegolkov Alexander

    2017-01-01

    Full Text Available The approaches for the implementation of an additive technology for obtaining heat accumulators are considered. The implementation of the provided technology can be realized on the standard 3D printers, which are aimed to obtain plastic materials. However, the software of the printers has to include adjusting analytical expressions, which take into account thermophysical properties of the heat-retaining materials. The analytical expressions have been derived by solving a mathematical model. The mathematical model contains the main data on thermophysical and mechanical and physical properties of the nanomodified material. These properties of the nanomodified material are defined during the experimental studies.

  3. Selected properties of biodegradable material produced from thermoplastic starch with by-products of food industry addition

    Directory of Open Access Journals (Sweden)

    Zdybel Ewa

    2017-06-01

    Full Text Available In this work extrusion process were used to create thermoplastic starch and to mix obtained starch with linen, quince and apple pomace at the same time. Obtained starch beads were formed in shapes. In experimental material was determined thermal conductivity, water absorption and the solubility in water. It is possible to get the biodegradable material produced from thermoplastic starch with an addition of fruit pomace. Adding pomace and glycerine to the biodegradable material made from starch change of susceptibility on water action. In the case of materials containing pomace, glycerine addition decreases the susceptibility on water action compared to the material manufactured with pomace addition but without glycerine. In the material containing pomace, glycerine addition caused the increase of the thermal insulation time compared to the material with pomace but no glycerine in it.

  4. Fourth Collaborative Materials Exercise of the Nuclear Forensics International Technical Working Group

    International Nuclear Information System (INIS)

    Schwantes, J.M.; Reilly, D.; Marsden, O.

    2018-01-01

    The Nuclear Forensics International Technical Working Group is a community of nuclear forensic practitioners who respond to incidents involving nuclear and other radioactive material out of regulatory control. The Group is dedicated to advancing nuclear forensic science in part through periodic participation in materials exercises. The Group completed its fourth Collaborative Materials Exercise in 2015 in which laboratories from 15 countries and one multinational organization analyzed three samples of special nuclear material in support of a mock nuclear forensic investigation. This special section of the Journal for Radioanalytical and Nuclear Chemistry is devoted to summarizing highlights from this exercise. (author)

  5. Large-scale additive manufacturing with bioinspired cellulosic materials.

    Science.gov (United States)

    Sanandiya, Naresh D; Vijay, Yadunund; Dimopoulou, Marina; Dritsas, Stylianos; Fernandez, Javier G

    2018-06-05

    Cellulose is the most abundant and broadly distributed organic compound and industrial by-product on Earth. However, despite decades of extensive research, the bottom-up use of cellulose to fabricate 3D objects is still plagued with problems that restrict its practical applications: derivatives with vast polluting effects, use in combination with plastics, lack of scalability and high production cost. Here we demonstrate the general use of cellulose to manufacture large 3D objects. Our approach diverges from the common association of cellulose with green plants and it is inspired by the wall of the fungus-like oomycetes, which is reproduced introducing small amounts of chitin between cellulose fibers. The resulting fungal-like adhesive material(s) (FLAM) are strong, lightweight and inexpensive, and can be molded or processed using woodworking techniques. We believe this first large-scale additive manufacture with ubiquitous biological polymers will be the catalyst for the transition to environmentally benign and circular manufacturing models.

  6. Effect of radiation resistance additives for insulation materials

    International Nuclear Information System (INIS)

    Yamamoto, Yasuaki; Yagyu, Hideki; Seguchi, Tadao.

    1988-01-01

    For the electric wires and cables used in radiation environment such as nuclear power stations and fuel reprocessing facilities, the properties of excellent radiation resistance are required. For these insulators and sheath materials, ethylene propylene rubber, polyethylene and other polymers have been used, but it cannot be said that they always have good radiation resistance. However, it has been well known that radiation resistance can be improved with small amount of additives, and heat resistance and burning retarding property as well as radiation resistance are given to the insulators of wires and cables for nuclear facilities by mixing various additives. In this research, the measuring method for quantitatively determining the effect of Anti-rad (radiation resistant additive) was examined. Through the measurement of gel fraction, radical formation and decomposed gas generation, the effect of Anti-rad protecting polymers from radiation deterioration was examined from the viewpoint of chemical reaction. The experimental method and the results are reported. The radiation energy for cutting C-H coupling is polymers is dispersed by Anti-rad, and the probability of cutting is lowered. Anti-rad catches and extinguishes radicals that start oxidation reaction. (K.I.)

  7. Characterization of PCC Cement by Addition of Napa Soil from Subdistrict Sarilamak 50 Kota District as Alternative Additional Material for Semen Padang

    Science.gov (United States)

    Mawardi, M.; Deyundha, D.; Zainul, R.; Zalmi P, R.

    2018-04-01

    The study has been conducted to determine characteristics of the portland composite cement by the addition of napa soil from Sarilamak subdistrict, 50 Kota District as an alternative additional material at PT. Semen Padang. Napa soil is a natural material highly containing silica and alumina minerals so that it can be one of material in producing cement. This study aims to determine the effect of napa soil on the quality of portland composite cement. Napa soil used in the variation compositions 0%, 4%, 8%, 12% and 16%, for control of cement used 8 % of pozzolan and 0 % of napa soil. Determination of cement quality by testing cement characteristics include blaine test, sieving, lost of ignition or LOI, insoluble residue, normal consistency, setting time and compressive strength. Cement was characterized using XRF. Fineness of cement decreases with the addition of napa soil. Lost of Ignition of cement decreased, while the insoluble residue increased with the addition of napa soil. Normal consistency of cement increasing, so does initial setting time and final setting time of cement. While the resultant compressive strength decreases with the addition of napa soil on 28 days, 342, 325, 307, 306, and 300 kg / cm2.

  8. Leaching of additives from construction materials to urban storm water runoff

    DEFF Research Database (Denmark)

    Burkhardt, Mike; Zuleeg, S.; Boller, M.

    2011-01-01

    Urban water management requires further clarification about pollutants in storm water. Little is known about the release of organic additives used in construction materials and the impact of these compounds to storm water runoff. We investigated sources and pathways of additives used...... shows approximately one to two orders of magnitude lower concentrations. Concentrations decreased also during individual runoff events. In storm water and receiving water the occurrence of additives did not follow the typical first flush model. This can be explained by the release lasting over the time...

  9. Additive Manufacturing of Polyurethane Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kunc, Vlastimil [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lindahl, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Minneci, Robert P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pyzik, Alek [Dow Chemical Company, Saginaw, MI (United States); Gorin, Craig [Dow Chemical Company, Midland, MI (United States); Allen, Sharon [Dow Chemical Company, Midland, MI (United States); Wilson, Keith [Dow Chemical Company, Midland, MI (United States); Howard, Kevin [Dow Chemical Company, Midland, MI (United States)

    2017-08-10

    ORNL worked with The DOW Chemical Company to validate the feasibility of 3D printing DOW’s polyurethane (PU) materials using ORNL’s equipment and know-how. This led to the development of the first directly-3D-printable PU material.

  10. Boron carbide nanostructures: A prospective material as an additive in concrete

    Science.gov (United States)

    Singh, Paviter; Kaur, Gurpreet; Kumar, Rohit; Kumar, Umesh; Singh, Kulwinder; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Kumar, Akshay

    2018-05-01

    In recent decades, manufacture and ingestion of concrete have increased particularly in developing countries. Due to its low cost, safety and strength, concrete have become an economical choice for protection of radiation shielding material in nuclear reactors. As boron carbide has been known as a neutron absorber material makes it a great candidate as an additive in concrete for shielding radiation. This paper presents the synthesis of boron carbide nanostructures by using ball milling method. The X-ray diffraction pattern, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope analysis confirms the formation of boron carbide nanostructures. The effect of boron carbide nanostructures on the strength of concrete samples was demonstrated. The compressive strength tests of concrete cube B4C powder additives for 0 % and 5 % of total weight of cement was compared for different curing time period such as 7, 14, 21 and 28 days. The high compressive strength was observed when 5 wt % boron carbide nanostructures were used as an additive in concrete samples after 28 days curing time and showed significant improvement in strength.

  11. Survival of Listeria monocytogenes on a conveyor belt material with or without antimicrobial additives

    OpenAIRE

    Chaitiemwong, N.; Hazeleger, W.C.; Beumer, R.R.

    2010-01-01

    Survival of Listeria monocytogenes on a conveyor belt material with or without antimicrobial additives, in the absence or presence of food debris from meat, fish and vegetables and at temperatures of 10, 25 and 37 °C was investigated. The pathogen survived best at 10 °C, and better at 25 °C than at 37 °C on both conveyor belt materials. The reduction in the numbers of the pathogen on belt material with antimicrobial additives in the first 6 h at 10 °C was 0.6 log unit, which was significantly...

  12. 3D continuum phonon model for group-IV 2D materials

    DEFF Research Database (Denmark)

    Willatzen, Morten; Lew Yan Voon, Lok C.; Gandi, Appala Naidu

    2017-01-01

    . In this paper, we use the model to not only compare the phonon spectra among the group-IV materials but also to study whether these phonons differ from those of a compound material such as molybdenum disulfide. The origin of quadratic modes is clarified. Mode coupling for both graphene and silicene is obtained......, contrary to previous works. Our model allows us to predict the existence of confined optical phonon modes for the group-IV materials but not for molybdenum disulfide. A comparison of the long-wavelength modes to density-functional results is included....

  13. 3D continuum phonon model for group-IV 2D materials

    KAUST Repository

    Willatzen, Morten

    2017-06-30

    A general three-dimensional continuum model of phonons in two-dimensional materials is developed. Our first-principles derivation includes full consideration of the lattice anisotropy and flexural modes perpendicular to the layers and can thus be applied to any two-dimensional material. In this paper, we use the model to not only compare the phonon spectra among the group-IV materials but also to study whether these phonons differ from those of a compound material such as molybdenum disulfide. The origin of quadratic modes is clarified. Mode coupling for both graphene and silicene is obtained, contrary to previous works. Our model allows us to predict the existence of confined optical phonon modes for the group-IV materials but not for molybdenum disulfide. A comparison of the long-wavelength modes to density-functional results is included.

  14. SIMULASI GROUP TECHNOLOGY SYSTEM UNTUK MEMINIMALKAN BIAYA MATERIAL HANDLING DENGAN METODE HEURISTIC

    Directory of Open Access Journals (Sweden)

    Much. Djunaidi

    2006-04-01

    Full Text Available Group Technology System merupakan metode pengaturan fasilitas produksi (machine groups yang dibutuhkan untuk memproses suatu part family tertentu ke dalam sel-sel manufaktur. Pengaturan tata letak di CV. Sonytex yang berdasarkan process layout mengakibatkan perusahaan menghadapi permasalahan berupa tingginya kebutuhan material handling. Salah satu kriteria kinerja dalam pembentukan sel manufaktur pada GTS adalah meminimasi total jarak material handling, sehingga dapat mengurangi biaya material handling dan meningkatkan produktivitas. Dalam penelitian ini digunakan tiga metode, yaitu Bond Energy Algorithm (BEA, Rank Order Clustering (ROC dan Rank Order Clustering 2 (ROC2. Hasil dari penelitian ini adalah dengan menerapkan group technology systems diperoleh total pengurangan jarak material handling sebesar 70 m dan penghematan biaya material handling sebesar Rp 1.534.978,-. Berdasarkan model simulasi, relayout dengan metode BEA meningkatkan jumlah produksi sebesar 1 unit produk/hari dan penurunan waktu tunggu sebesar 0,575 menit.

  15. A study on the mechanical properties of additive manufactured polymer materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Bum; Lee, In Hwan; Cho, Hae Yong [Dept. of Mechanical Engineering, Chungbuk National University, Cheongju (Korea, Republic of)

    2015-08-15

    Traditionally, additive manufacturing (AM) technology has been used to fabricate prototypes in the early development phase of a product. This technology is being applied to release manufacturing of a product because of its low cost and fast fabrication. AM technology is a process of joining materials to fabricate a product from the 3D CAD data in a layer-by-layer manner. The orientation of a layer during manufacturing can affect the mechanical properties of the product because of its anisotropy. In this paper, tensile testing of polymer-based specimens were built with a typical AM process (FDM, PolyJet and SLA) to study the mechanical properties of the AM materials. The ASTM D 638 tensile testing standard was followed for building the specimens. The mechanical properties of the specimens were determined on the basis of stress-strain curves formed by tensile tests. In addition, the fracture surfaces of the specimens were observed by SEM to analyze the results.

  16. Laser-shocked energetic materials with metal additives: evaluation of detonation performance

    Science.gov (United States)

    Gottfried, Jennifer; Bukowski, Eric

    A focused, nanosecond-pulsed laser with sufficient energy to exceed the breakdown threshold of a material generates a laser-induced plasma with high peak temperatures, pressures, and shock velocities. Depending on the laser parameters and material properties, nanograms to micrograms of material is ablated, atomized, ionized and excited in the laser-induced plasma. The subsequent shock wave expansion into the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The estimated detonation velocities using LASEM agree well with published experimental values. A comparison of the measured shock velocities for various energetic materials including RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time participation of metal additives in detonation events. The LASEM results show that reducing the amount of hydrogen present in B formulations increases the resulting detonation velocities

  17. Effect of zirconium oxide nanoparticles addition on the optical and tensile properties of polymethyl methacrylate denture base material.

    Science.gov (United States)

    Gad, Mohammed M; Abualsaud, Reem; Rahoma, Ahmed; Al-Thobity, Ahmad M; Al-Abidi, Khalid S; Akhtar, Sultan

    2018-01-01

    Polymethyl methacrylate (PMMA) is widely used for the fabrication of removable prostheses. Recently, zirconium oxide nanoparticles (nano-ZrO 2 ) have been added to improve some properties of PMMA, but their effect on the optical properties and tensile strength are neglected. The aim of this study was to investigate the effect of nano-ZrO 2 addition on the translucency and tensile strength of the PMMA denture base material. Eighty specimens (40 dumbbell-shaped and 40 discs) were prepared out of heat-polymerized acrylic resin and divided into four groups per test (n=10). The control group for each test included unreinforced acrylic, while the test groups were reinforced with 2.5, 5, and 7.5 wt% nano-ZrO 2 . Acrylic resin was mixed according to manufacturer's instructions, packed, and processed by conventional method. After polymerization, all specimens were finished, polished, and stored in distilled water at 37°C for 48±2 hours. Tensile strength (MPa) was evaluated using the universal testing machine while the specimens' translucency was examined using a spectrophotometer. Statistical analysis was carried out by SPSS using the paired sample t -test ( p ≤0.05). A scanning electron microscope was used to analyze the morphological changes and topography of the fractured surfaces. This study showed that the mean tensile strength of the PMMA in the test groups of 2.5%NZ, 5%NZ, and 7.5%NZ was significantly higher than the control group. The tensile strength increased significantly after nano-ZrO 2 addition, and the maximum increase seen was in the 7.5%NZ group. The translucency values of the experimental groups were significantly lower than those of the control group. Within the reinforced groups, the 2.5%NZ group had significantly higher translucency values when compared to the 5%NZ and 7.5%NZ groups. The addition of nano-ZrO 2 increased the tensile strength of the denture base acrylic. The increase was directly proportional to the nano-ZrO 2 concentration. The

  18. Thermal modelling of extrusion based additive manufacturing of composite materials

    DEFF Research Database (Denmark)

    Jensen, Mathias Laustsen; Sonne, Mads Rostgaard; Hattel, Jesper Henri

    One of the hottest topics regarding manufacturing these years is additive manufacturing (AM). AM is a young branch of manufacturing techniques, which by nature is disruptive due to its completely different manufacturing approach, wherein material is added instead of removed. By adding material...... layer by layer, mould and customised tooling requirements from the conventional manufacturing are reduced or removed, which leads to increased customisation options and enables new part complexities without increasing the manufacturing cost. AM hence enables customised small volume productions...... of composite parts not feasible by conventional manufacturing techniques. This sets up new requirements to the part verification and validation, while conventional destructive tests become too expensive. This initial study aims to investigate alternative options to this destructive testing by increasing...

  19. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 21, Revision 3 (FGE.21Rev3): Thiazoles, thiophenes, thiazoline and thienyl derivatives from chemical groups 29 and 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 59 flavouring substances in the Flavouring Group Evaluation 21, including an additional three substances in this Revision 3, using the Procedure in Commiss......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 59 flavouring substances in the Flavouring Group Evaluation 21, including an additional three substances in this Revision 3, using the Procedure.......086, 15.090, 15.099, 15.114, 15.119 and 15.133] were considered to have genotoxic potential. The remaining 52 substances were evaluated through a stepwise approach (the Procedure) that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern.......092, 15.093, 15.094, 15.096, 15.097, 15.106, 15.107, 15.129 and 15.135] evaluated through the Procedure, no appropriate NOAEL was available and additional data are required. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been...

  20. Transferable tight-binding model for strained group IV and III-V materials and heterostructures

    Science.gov (United States)

    Tan, Yaohua; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy B.; Klimeck, Gerhard

    2016-07-01

    It is critical to capture the effect due to strain and material interface for device level transistor modeling. We introduce a transferable s p3d5s* tight-binding model with nearest-neighbor interactions for arbitrarily strained group IV and III-V materials. The tight-binding model is parametrized with respect to hybrid functional (HSE06) calculations for varieties of strained systems. The tight-binding calculations of ultrasmall superlattices formed by group IV and group III-V materials show good agreement with the corresponding HSE06 calculations. The application of the tight-binding model to superlattices demonstrates that the transferable tight-binding model with nearest-neighbor interactions can be obtained for group IV and III-V materials.

  1. Additive Manufacturing of Overhang Structures Using Moisture-Cured Silicone with Support Material

    Directory of Open Access Journals (Sweden)

    Mohan Muthusamy

    2018-04-01

    Full Text Available Additive manufacturing (AM of soft materials has a wide variety of applications, such as customized or wearable devices. Silicone is one popular material for these applications given its favorable material properties. However, AM of silicone parts with overhang structures remains challenging due to the soft nature of the material. Overhang structures are the areas where there is no underlying structure. Typically, a support material is used and built in the underlying space so that the overhang structures can be built upon it. Currently, there is no support structure that has been used for AM of silicone. The goal of this study is to develop an AM process to fabricate silicone parts with overhang structures. We first identified and confirmed poly-vinyl alcohol (PVA, a water-soluble material, as a suitable support material for silicone by evaluating the adhesion strength between silicone and PVA. Process parameters for the support material, including critical overhang angle and minimum infill density for the support material, are identified. However, overhang angle alone is not the only determining factor for support material. As silicone is a soft material, it deflects due to its own weight when the height of the overhang structure increases. A finite element model is developed to estimate the critical overhang height paired with different overhang angles to determine whether the use of support material is needed. Finally, parts with overhang structures are printed to demonstrate the capability of the developed process.

  2. Boundary lubrication of stainless steel and CoCrMo alloy materials based on three ester-based additives

    NARCIS (Netherlands)

    Yan, J.; Zeng, Xiangqiong; Ren, T.; van der Heide, Emile

    2014-01-01

    Material selection and lubricant additive development are two important aspects for engineering applications. This work explores the possibilities of three different ester-based additives (DBOP, ODOC and DOB) to generate boundary films on two corrosion and wear resistant materials, stainless steel

  3. Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials

    Science.gov (United States)

    Liou, Frank; Newkirk, Joseph; Fan, Zhiqiang; Sparks, Todd; Chen, Xueyang; Fletcher, Kenneth; Zhang, Jingwei; Zhang, Yunlu; Kumar, Kannan Suresh; Karnati, Sreekar

    2015-01-01

    The objective of this proposed project is to research and develop a prediction tool for advanced additive manufacturing (AAM) processes for advanced materials and develop experimental methods to provide fundamental properties and establish validation data. Aircraft structures and engines demand materials that are stronger, useable at much higher temperatures, provide less acoustic transmission, and enable more aeroelastic tailoring than those currently used. Significant improvements in properties can only be achieved by processing the materials under nonequilibrium conditions, such as AAM processes. AAM processes encompass a class of processes that use a focused heat source to create a melt pool on a substrate. Examples include Electron Beam Freeform Fabrication and Direct Metal Deposition. These types of additive processes enable fabrication of parts directly from CAD drawings. To achieve the desired material properties and geometries of the final structure, assessing the impact of process parameters and predicting optimized conditions with numerical modeling as an effective prediction tool is necessary. The targets for the processing are multiple and at different spatial scales, and the physical phenomena associated occur in multiphysics and multiscale. In this project, the research work has been developed to model AAM processes in a multiscale and multiphysics approach. A macroscale model was developed to investigate the residual stresses and distortion in AAM processes. A sequentially coupled, thermomechanical, finite element model was developed and validated experimentally. The results showed the temperature distribution, residual stress, and deformation within the formed deposits and substrates. A mesoscale model was developed to include heat transfer, phase change with mushy zone, incompressible free surface flow, solute redistribution, and surface tension. Because of excessive computing time needed, a parallel computing approach was also tested. In addition

  4. Fifty years of Brazilian Dental Materials Group: scientific contributions of dental materials field evaluated by systematic review

    Science.gov (United States)

    ROSA, Wellington Luiz de Oliveira; SILVA, Tiago Machado; LIMA, Giana da Silveira; SILVA, Adriana Fernandes; PIVA, Evandro

    2016-01-01

    ABSTRACT Objective A systematic review was conducted to analyze Brazilian scientific and technological production related to the dental materials field over the past 50 years. Material and Methods This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (Prisma) statement. Searches were performed until December 2014 in six databases: MedLine (PubMed), Scopus, LILACS, IBECS, BBO, and the Cochrane Library. Additionally, the Brazilian patent database (INPI - Instituto Nacional de Propriedade Industrial) was screened in order to get an overview of Brazilian technological development in the dental materials field. Two reviewers independently analyzed the documents. Only studies and patents related to dental materials were included in this review. Data regarding the material category, dental specialty, number of documents and patents, filiation countries, and the number of citations were tabulated and analyzed in Microsoft Office Excel (Microsoft Corporation, Redmond, Washington, United States). Results A total of 115,806 studies and 53 patents were related to dental materials and were included in this review. Brazil had 8% affiliation in studies related to dental materials, and the majority of the papers published were related to dental implants (1,137 papers), synthetic resins (681 papers), dental cements (440 papers), dental alloys (392 papers) and dental adhesives (361 papers). The Brazilian technological development with patented dental materials was smaller than the scientific production. The most patented type of material was dental alloys (11 patents), followed by dental implants (8 patents) and composite resins (7 patents). Conclusions Dental materials science has had a substantial number of records, demonstrating an important presence in scientific and technological development of dentistry. In addition, it is important to approximate the relationship between academia and industry to expand the technological development in

  5. Advanced Material Studies for Additive Manufacturing in terms of Future Gear Application

    Directory of Open Access Journals (Sweden)

    Jan Bräunig

    2014-06-01

    Full Text Available Additive manufacturing by laser beam melting is predestined for complex component geometry like integrated cooling channels without enormous posttreatment processing. To investigate the influence of build-up direction in terms of later tooth excitation of gear-wheels, first fundamental material analyses were accomplished in this publication. Therefore, additively produced specimens were used to determine the build-up direction dependent elastic properties of the material in all three spatial directions based on tensile and torsion tests. The anisotropies of elastic limits and breaking points of previous studies were confirmed in this paper. Furthermore, torsion values were also determined depending on build-up direction. Laser beam melted X3NiCoMoTi18-9-5 (hot-work tool steel was shown to exhibit extremely high performance under shear loading in comparison to conventionally processed steel. The influence of build-up direction on torsional strength was also shown.

  6. EFSA Panel on Food Contact Material, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 47, Revision 1: Bi- and tricyclic secondary, ketones and related esters from chemical groups 7 and 8

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate six flavouring substances in the Flavouring Group Evaluation 47, including an additional two substances in this Revision 1, using the Procedure in Commission...... of these flavouring substances, the specifications for the materials of commerce have also been considered. Adequate specifications including complete purity criteria and identity fo the materials of commerce have been provided for all six candidate substances....

  7. Measurement of fracture toughness of metallic materials produced by additive manufacturing

    Science.gov (United States)

    Quénard, O.; Dorival, O.; Guy, Ph.; Votié, A.; Brethome, K.

    2018-04-01

    This study focuses on the microstructure and mechanical properties of metallic materials produced by additive layer manufacturing (ALM), especially the laser beam melting process. The influence of the specimen orientation during the ALM process and that of two post-build thermal treatments were investigated. The identified metal powder is Ti-6Al-4V (titanium base). Metallographic analysis shows their effects on the microstructure of the metals. Mechanical experiments involving tensile tests as well as toughness tests were performed according to ASTM (American Society for Testing and Materials) norms. The results show that the main influence is that of the thermal treatments; however the manufacturing stacking direction may lead to some anisotropy in the mechanical properties.

  8. Development of Additive Construction Technologies for Application to Development of Lunar/Martian Surface Structures Using In-Situ Materials

    Science.gov (United States)

    Werkheiser, Niki J.; Fiske, Michael R.; Edmunson, Jennifer E.; Khoshnevis, Berokh

    2015-01-01

    For long-duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As human presence on these bodies expands, so must the breadth of the structures required to accommodate them including habitats, laboratories, berms, radiation shielding for natural radiation and surface reactors, garages, solar storm shelters, greenhouses, etc. Planetary surface structure manufacturing and assembly technologies that incorporate in situ resources provide options for autonomous, affordable, pre-positioned environments with radiation shielding features and protection from micrometeorites, exhaust plume debris, and other hazards. The ability to use in-situ materials to construct these structures will provide a benefit in the reduction of up-mass that would otherwise make long-term Moon or Mars structures cost prohibitive. The ability to fabricate structures in situ brings with it the ability to repair these structures, which allows for the self-sufficiency and sustainability necessary for long-duration habitation. Previously, under the auspices of the MSFC In-Situ Fabrication and Repair (ISFR) project and more recently, under the jointly-managed MSFC/KSC Additive Construction with Mobile Emplacement (ACME) project, the MSFC Surface Structures Group has been developing materials and construction technologies to support future planetary habitats with in-situ resources. One such additive construction technology is known as Contour Crafting. This paper presents the results to date of these efforts, including development of novel nozzle concepts for advanced layer deposition using this process. Conceived initially for rapid development of cementitious structures on Earth, it also lends itself exceptionally well to the automated fabrication of planetary surface structures using minimally processed regolith as aggregate, and binders developed from in situ materials as well. This process has been used successfully in the fabrication of

  9. Fifty years of Brazilian Dental Materials Group: scientific contributions of dental materials field evaluated by systematic review.

    Science.gov (United States)

    Rosa, Wellington Luiz de Oliveira; Silva, Tiago Machado; Lima, Giana da Silveira; Silva, Adriana Fernandes; Piva, Evandro

    2016-01-01

    A systematic review was conducted to analyze Brazilian scientific and technological production related to the dental materials field over the past 50 years. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (Prisma) statement. Searches were performed until December 2014 in six databases: MedLine (PubMed), Scopus, LILACS, IBECS, BBO, and the Cochrane Library. Additionally, the Brazilian patent database (INPI - Instituto Nacional de Propriedade Industrial) was screened in order to get an overview of Brazilian technological development in the dental materials field. Two reviewers independently analyzed the documents. Only studies and patents related to dental materials were included in this review. Data regarding the material category, dental specialty, number of documents and patents, filiation countries, and the number of citations were tabulated and analyzed in Microsoft Office Excel (Microsoft Corporation, Redmond, Washington, United States). A total of 115,806 studies and 53 patents were related to dental materials and were included in this review. Brazil had 8% affiliation in studies related to dental materials, and the majority of the papers published were related to dental implants (1,137 papers), synthetic resins (681 papers), dental cements (440 papers), dental alloys (392 papers) and dental adhesives (361 papers). The Brazilian technological development with patented dental materials was smaller than the scientific production. The most patented type of material was dental alloys (11 patents), followed by dental implants (8 patents) and composite resins (7 patents). Dental materials science has had a substantial number of records, demonstrating an important presence in scientific and technological development of dentistry. In addition, it is important to approximate the relationship between academia and industry to expand the technological development in countries such as Brazil.

  10. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 300 (FGE.300): One cyclo-aliphatic amide from chemical group 33

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate a flavouring substance in the Flavouring Group Evaluation 300 using the Procedure in Commission Regulation (EC) No 1565/2000. The substance was not conside......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate a flavouring substance in the Flavouring Group Evaluation 300 using the Procedure in Commission Regulation (EC) No 1565/2000. The substance...... was not considered to have genotoxic potential. The substance was evaluated through a stepwise approach (the Procedure) that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The Panel concluded...... that for the substance [FL-no: 16.115] evaluated through the Procedure, no appropriate NOAEL was available and additional data are required. Besides the safety assessment of this flavouring substance, the specifications for the materials of commerce have also been considered. The composition of the stereoisomeric...

  11. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    Science.gov (United States)

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  12. JSD1000: multi-group cross section sets for shielding materials

    International Nuclear Information System (INIS)

    Yamano, Naoki

    1984-03-01

    A multi-group cross section library for shielding safety analysis has been produced by using ENDF/B-IV. The library consists of ultra-fine group cross sections, fine-group cross sections, secondary gamma-ray production cross sections and effective macroscopic cross sections for typical shielding materials. Temperature dependent data at 300, 560 and 900 K have been also provided. Angular distributions of the group to group transfer cross section are defined by a new method of ''Direct Angular Representation'' (DAR) instead of the method of finite Legendre expansion. The library designated JSD1000 are stored in a direct access data base named DATA-POOL and data manipulations are available by using the DATA-POOL access package. The 3824 neutron group data of the ultra-fine group cross sections and the 100 neutron, 20 photon group cross sections are applicable to shielding safety analyses of nuclear facilities. This report provides detailed specifications and the access method for the JSD1000 library. (author)

  13. Structural integrity of additive materials: Microstructure, fatigue behavior, and surface processing

    Science.gov (United States)

    Book, Todd A.

    Although Additive Manufacturing (AM) offers numerous performance advantages over existing methods, AM structures are not being utilized for critical aerospace and mechanical applications due to uncertainties in their structural integrity as a result of the microstructural variations and defects arising from the AM process itself. Two of these uncertainties are the observed scatter in tensile strength and fatigue lives of direct metal laser sintering (DMLS) parts. With strain localization a precursor for material failure, this research seeks to explore the impact of microstructural variations in DMLS produced materials on strain localization. The first part of this research explores the role of the microstructure in strain localization of DMLS produced IN718 and Ti6Al4V specimens (as-built and post-processed) through the characterization of the linkage between microstructural variations, and the accumulation of plastic strain during monotonic and low cycle fatigue loading. The second part of this research explores the feasibility for the application of select surface processing techniques in-situ during the DMLS build process to alter the microstructure in AlSi10Mg to reduce strain localization and improve material cohesion. This study is based on utilizing experimental observations through the employment of advanced material characterization techniques such as digital image correlation to illustrate the impacts of DMLS microstructural variation.

  14. Measurement of electromagnetic properties of powder and solid metal materials for additive manufacturing

    Science.gov (United States)

    Todorov, Evgueni Iordanov

    2017-04-01

    The lack of validated nondestructive evaluation (NDE) techniques for examination during and after additive manufacturing (AM) component fabrication is one of the obstacles in the way of broadening use of AM for critical applications. Knowledge of electromagnetic properties of powder (e.g. feedstock) and solid AM metal components is necessary to evaluate and deploy electromagnetic NDE modalities for examination of AM components. The objective of this research study was to develop and implement techniques for measurement of powder and solid metal electromagnetic properties. Three materials were selected - Inconel 625, duplex stainless steel 2205, and carbon steel 4140. The powder properties were measured with alternate current (AC) model based eddy current technique and direct current (DC) resistivity measurements. The solid metal properties were measured with DC resistivity measurements, DC magnetic techniques, and AC model based eddy current technique. Initial magnetic permeability and electrical conductivity were acquired for both powder and solid metal. Additional magnetic properties such as maximum permeability, coercivity, retentivity, and others were acquired for 2205 and 4140. Two groups of specimens were tested along the build length and width respectively to investigate for possible anisotropy. There was no significant difference or anisotropy when comparing measurements acquired along build length to those along the width. A trend in AC measurements might be associated with build geometry. Powder electrical conductivity was very low and difficult to estimate reliably with techniques used in the study. The agreement between various techniques was very good where adequate comparison was possible.

  15. Development of cement material using inorganic additives

    International Nuclear Information System (INIS)

    Toyohara, Masumitsu; Satou, Tatsuaki; Wada, Mikio; Ishii, Tomoharu; Matsuo, Kazuaki.

    1997-01-01

    Inorganic admixtures to enhance the fluidity of cement material was developed. These admixtures turned into easy to immobilize the miscellaneous radioactive waste using cement material. It was found that the ζ potential of cement particles was directly proportional to the content of the inorganic admixtures in cement paste and the particles of cement were dispersed at the high ζ potential. The condensed sodium phosphate, which was the main component of the inorganic admixtures, retarded the dissolution of Ca 2+ ion from the cement, and generated the colloids by incorporating dissolved Ca 2+ ion. The cement material containing the inorganic admixtures was found to have the same mechanical strength and adsorption potential of radionuclides in comparison to normal cement materials. It was confirmed that the cement material containing the inorganic admixture was effectively filled gaps of miscellaneous radioactive waste. (author)

  16. 36 CFR 1206.86 - What additional materials must I submit with the final narrative report?

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false What additional materials must I submit with the final narrative report? 1206.86 Section 1206.86 Parks, Forests, and Public... narrative report? You must submit the materials determined by the Commission as found in the NHPRC grant...

  17. Finite element simulation and experimental verification of ultrasonic non-destructive inspection of defects in additively manufactured materials

    Science.gov (United States)

    Taheri, H.; Koester, L.; Bigelow, T.; Bond, L. J.

    2018-04-01

    Industrial applications of additively manufactured components are increasing quickly. Adequate quality control of the parts is necessary in ensuring safety when using these materials. Base material properties, surface conditions, as well as location and size of defects are some of the main targets for nondestructive evaluation of additively manufactured parts, and the problem of adequate characterization is compounded given the challenges of complex part geometry. Numerical modeling can allow the interplay of the various factors to be studied, which can lead to improved measurement design. This paper presents a finite element simulation verified by experimental results of ultrasonic waves scattering from flat bottom holes (FBH) in additive manufacturing materials. A focused beam immersion ultrasound transducer was used for both the modeling and simulations in the additive manufactured samples. The samples were SS17 4 PH steel samples made by laser sintering in a powder bed.

  18. Synthesis, characterization and catalytic activity of acid-base bifunctional materials through protection of amino groups

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yanqiu [College of Chemistry, Jilin University, Changchun 130023 (China); College of Chemistry, Mudanjiang Normal University, Mudanjiang 157012 (China); Liu, Heng; Yu, Xiaofang [College of Chemistry, Jilin University, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China); Kan, Qiubin, E-mail: qkan@mail.jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China)

    2012-03-15

    Graphical abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. Highlights: Black-Right-Pointing-Pointer The acid-base bifunctional material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized through protection of amino groups. Black-Right-Pointing-Pointer The obtained bifunctional material was tested for aldol condensation. Black-Right-Pointing-Pointer The SO{sub 3}H-SBA-15-NH{sub 2} catalyst containing amine and sulfonic acid groups exhibited excellent acid-basic properties. -- Abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. X-ray diffraction (XRD), N{sub 2} adsorption-desorption, transmission electron micrographs (TEM), back titration, {sup 13}C magic-angle spinning (MAS) NMR and {sup 29}Si magic-angle spinning (MAS) NMR were employed to characterize the synthesized materials. The obtained bifunctional material was tested for aldol condensation reaction between acetone and 4-nitrobenzaldehyde. Compared with monofunctional catalysts of SO{sub 3}H-SBA-15 and SBA-15-NH{sub 2}, the bifunctional sample of SO{sub 3}H-SBA-15-NH{sub 2} containing amine and sulfonic acid groups exhibited excellent acid-basic properties, which make it possess high activity for the aldol condensation.

  19. Emissivity Measurements of Additively Manufactured Materials

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Robert Vaughn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reid, Robert Stowers [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baker, Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lucero, Briana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bernardin, John David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-25

    The emissivity of common 3D printing materials such as ABS and PLA were measured using a reflectivity meter and have the measured value of approximately 0.92. Adding a conductive material to the filament appears to cause a decrease in the emissivity of the surface. The angular dependence of the emissivity and the apparent temperature was measured using a FLIR infrared camera showing that the emissivity does not change much for shallow angles less than 40 angular degrees, and drops off dramatically after 70 angular degrees.

  20. Addition of alternative materials to ceramic slabs

    OpenAIRE

    Nara,E. O. B.; Moraes,J. A. R.; Freitas,A. M. V. de; Rediske,G.; Benitez,G. B.

    2014-01-01

    The construction market is very growing, leading to the emergence of new technologies and materials, and a growing need for sustainable products for the construction process, and the call for quality of life we present the description of a new option alternative materials for environments that require careful with the acoustics. The research covers the development and incorporation of new material in construction, with the potential acoustic, from tests and measurements with calibrated decibe...

  1. Method of treating organic material. [addition of formate, heating under pressure, and distilling the mass

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, H O.V.; Cederquist, K N

    1932-02-08

    A method is given of treating organic material such as wood, peat, shale, etc. It is characterized by the addition of formate to the material, before, during, or after heating it under pressure with alkalis, earth alkalis, et cetera, and by the mass thus produced undergoing dry distillation. The patent has three more claims.

  2. [Influence of autoclave sterilization on dimensional stability and detail reproduction of 5 additional silicone impression materials].

    Science.gov (United States)

    Xu, Tong-kai; Sun, Zhi-hui; Jiang, Yong

    2012-03-01

    To evaluate the dimensional stability and detail reproduction of five additional silicone impression materials after autoclave sterilization. Impressions were made on the ISO 4823 standard mold containing several marking lines, in five kinds of additional silicone. All the impressions were sterilized by high temperature and pressure (135 °C, 212.8 kPa) for 25 min. Linear measurements of pre-sterilization and post-sterilization were made with a measuring microscope. Statistical analysis utilized single-factor analysis with pair-wise comparison of mean values when appropriate. Hypothesis testing was conducted at alpha = 0.05. No significant difference was found between the pre-sterilization and post-sterilization conditions for all locations, and all the absolute valuse of linear rate of change less than 8%. All the sterilization by the autoclave did not affect the surfuce detail reproduction of the 5 impression materials. The dimensional stability and detail reproduction of the five additional silicone impression materials in the study was unaffected by autoclave sterilization.

  3. Report of the Working Group on novel concepts and materials

    International Nuclear Information System (INIS)

    Crawford, R.K.; Brun, T.O.

    1997-09-01

    The working group meeting was chaired by Carpenter and Brun. This session was intended as a session to present ideas that had not yet been fully explored, as well as a place for discussion of topics that did not readily fit in any of the other workshop sessions. The first part of the session focused on moderator materials. During the course of the discussions of some novel potential moderator materials it became clear that there was not even agreement on what makes a good moderator for cold neutrons at short-pulse sources. There were two competing diametrically-opposed schools of thought.

  4. MPA-11: Materials Synthesis and Integrated Devices; Overview of an Applied Energy Group

    Energy Technology Data Exchange (ETDEWEB)

    Dattelbaum, Andrew Martin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-16

    Our mission is to provide innovative and creative chemical synthesis and materials science solutions to solve materials problems across the LANL missions. Our group conducts basic and applied research in areas related to energy security as well as problems relevant to the Weapons Program.

  5. Evaluation of critical materials in five additional advance design photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.A.; Watts, R.L.; Martin, P.; Gurwell, W.E.

    1981-02-01

    The objective of this study is to identify potential material supply constraints due to the large-scale deployment of five advanced photovoltaic (PV) cell designs, and to suggest strategies to reduce the impacts of these production capacity limitations and potential future material shortages. The Critical Materials Assessment Program (CMAP) screens the designs and their supply chains and identifies potential shortages which might preclude large-scale use of the technologies. The results of the screening of five advanced PV cell designs are presented: (1) indium phosphide/cadmium sulfide, (2) zinc phosphide, (3) cadmium telluride/cadmium sulfide, (4) copper indium selenium, and (5) cadmium selenide photoelectrochemical. Each of these five cells is screened individually assuming that they first come online in 1991, and that 25 Gwe of peak capacity is online by the year 2000. A second computer screening assumes that each cell first comes online in 1991 and that each cell has a 5 GWe of peak capacity by the year 2000, so that the total online capacity for the five cells is 25 GWe. Based on a review of the preliminary baseline screening results, suggestions were made for varying such parameters as the layer thickness, cell production processes, etc. The resulting PV cell characterizations were then screened again by the CMAP computer code. The CMAP methodology used to identify critical materials is described; and detailed characterizations of the advanced photovoltaic cell designs under investigation, descriptions of additional cell production processes, and the results are presented. (WHK)

  6. Systematic prediction of new ferroelectric inorganic materials in point group 6

    International Nuclear Information System (INIS)

    Abrahams, S.C.

    1990-01-01

    A total of seven new families and sixteen structurally different inorganic materials with point group 6 are shown to satisfy the criteria presented previously by the present author for predicting ferroelectricity. In case each prediction is experimentally verified, the 183 individual entries for point group 6 listed in the Inorganic Crystal Structure Database will result in over 80 new ferroelectrics, of which about 30 are rare-earth isomorphs. The total number of 'pure'

  7. 21 CFR 570.13 - Indirect food additives resulting from packaging materials prior sanctioned for animal feed and...

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Indirect food additives resulting from packaging... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.13 Indirect food additives resulting from packaging materials...

  8. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 08, Revision 5 (FGE.08Rev5): Aliphatic and alicyclic mono-, di-, tri-, and polysulphides with or without additional oxygenated functional groups from chemical

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 80 flavouring substances in the Flavouring Group Evaluation 08, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. Since the publi......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 80 flavouring substances in the Flavouring Group Evaluation 08, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. Since...... approach that integrates information on the structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The Panel concluded that 59 substances do not give rise to safety concerns at their levels of dietary intake, estimated...... substances, the specifications for the materials of commerce have also been considered and for three substances, evaluated through the Procedure, information on the specifications is lacking....

  9. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 8, Revision 3 (FGE.08Rev3): Aliphatic and alicyclic mono-, di-, tri-, and polysulphides with or without additional oxygenated functional groups from chemical

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 70 flavouring substances in the Flavouring Group Evaluation 08, Revision 3, using the Procedure in Commission Regulation (EC) No 1565/2000. For the substan......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 70 flavouring substances in the Flavouring Group Evaluation 08, Revision 3, using the Procedure in Commission Regulation (EC) No 1565......-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The Panel concluded that 48 substances do not give rise to safety concerns at their levels of dietary intake, estimated on the basis of the MSDI approach. For the remaining fourteen......, the specifications for the materials of commerce have also been considered and for eightteen substances information on specifications is lacking....

  10. Fast Photo-detection in Phototransistors based on Group III-VI Layered Materials.

    Science.gov (United States)

    Patil, Prasanna; Ghosh, Sujoy; Wasala, Milinda; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel; Talapatra, Saikat

    Response time of a photo detector is one of the crucial aspect of photo-detection. Recently it has been shown that direct band gap of few layered group III-VI materials helps in increased absorption of light thereby enhancing the photo responsive properties of these materials. Ternary system of Copper Indium Selenide has been extensively used in optoelectronics industry and it is expected that 2D layered structure of Copper Indium Selenide will be a key component of future optoelectronics devices based on 2D materials. Here we report fast photo detection in few layers of Copper Indium Selenide (CuIn7Se11) phototransistor. Few-layers of CuIn7Se11 flakes were exfoliated from crystals grown using chemical vapor transport technique. Our photo response characterization indicates responsivity of 104 mA/W with external quantum efficiency exceeding 103. We have found response time of few μs which is one of the fastest response among photodetectors based on 2D materials. We also found specific detectivity of 1012 Jones which is an order higher than conventional photodetectors. A comparison between response times of various layered group III-VI materials will be presented and discussed. This work is supported by the U.S. Army Research Office through a MURI Grant # W911NF-11-1-0362.

  11. Design of novel materials for additive manufacturing - Isotropic microstructure and high defect tolerance.

    Science.gov (United States)

    Günther, J; Brenne, F; Droste, M; Wendler, M; Volkova, O; Biermann, H; Niendorf, T

    2018-01-22

    Electron Beam Melting (EBM) is a powder-bed additive manufacturing technology enabling the production of complex metallic parts with generally good mechanical properties. However, the performance of powder-bed based additively manufactured materials is governed by multiple factors that are difficult to control. Alloys that solidify in cubic crystal structures are usually affected by strong anisotropy due to the formation of columnar grains of preferred orientation. Moreover, processing induced defects and porosity detrimentally influence static and cyclic mechanical properties. The current study presents results on processing of a metastable austenitic CrMnNi steel by EBM. Due to multiple phase transformations induced by intrinsic heat-treatment in the layer-wise EBM process the material develops a fine-grained microstructure almost without a preferred crystallographic grain orientation. The deformation-induced phase transformation yields high damage tolerance and, thus, excellent mechanical properties less sensitive to process-induced inhomogeneities. Various scan strategies were applied to evaluate the width of an appropriate process window in terms of microstructure evolution, porosity and change of chemical composition.

  12. 21 CFR 570.14 - Indirect food additives resulting from packaging materials for animal feed and pet food.

    Science.gov (United States)

    2010-04-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.14 Indirect food additives resulting from packaging materials for animal feed and... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Indirect food additives resulting from packaging...

  13. Radiological aspects of the usability of red mud as building material additive

    International Nuclear Information System (INIS)

    Somlai, Janos; Jobbagy, Viktor; Kovacs, Jozsef; Tarjan, Sandor; Kovacs, Tibor

    2008-01-01

    Several researchers have examined and achieved favourable results in connection with the building industry's use of red mud extracted in large quantities from the processing of bauxite. These days more and more precedence is being given to limiting the radiological dose to the population. In this study carried out in Hungary, the use of red mud, bauxite, and clay additives recommended for the production of special cements, were examined from a radiological aspect. 226 Ra and 232 Th activity concentrations measured in Hungarian bauxite, red mud and clay samples were significantly similar with the levels for such raw materials mentioned in international literature. Taking radiation protection aspects into consideration, none of these products can be directly used for building construction. Taking Hungarian and international values into consideration, a small amount of red mud, not exceeding 15% could be used for brick production, for example as a colouring material. However, beyond this amount the standards for building materials would not be met. For the production of cements an even stricter limit needs to be determined when both bauxite and red mud are used

  14. ANALYSIS OF MPC ACCESS REQUIREMENTS FOR ADDITION OF FILLER MATERIALS

    International Nuclear Information System (INIS)

    W. Wallin

    1996-01-01

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) in response to a request received via a QAP-3-12 Design Input Data Request (Ref. 5.1) from WAST Design (formerly MRSMPC Design). The request is to provide: Specific MPC access requirements for the addition of filler materials at the MGDS (i.e., location and size of access required). The objective of this analysis is to provide a response to the foregoing request. The purpose of this analysis is to provide a documented record of the basis for the response. The response is stated in Section 8 herein. The response is based upon requirements from an MGDS perspective

  15. NASA's Additive Manufacturing Development Materials Science to Technology Infusion - Connecting the Digital Dots

    Science.gov (United States)

    Vickers, John

    2017-01-01

    At NASA, the first steps of the Journey to Mars are well underway with the development of NASA's next generation launch system and investments in research and technologies that should increase the affordability, capability, and safety of exploration activities. Additive Manufacturing presents a disruptive opportunity for NASA to design and manufacture hardware with new materials at dramatically reduced cost and schedule. Opportunities to incorporate additive manufacturing align very well with NASA missions and with most NASA programs related to space, science, and aeronautics. The Agency also relies on many partnerships with other government agencies, industry and academia.

  16. The Influence Of The Way Of Alumina Addition On Properties Improvement Of 3YSZ Material

    Directory of Open Access Journals (Sweden)

    Drożdż E.

    2015-06-01

    Full Text Available Yttria-stabilized zirconia (YSZ is the best known ceramic-oxide material employed as a component of either solid electrolyte or anode cermet material for intermediate solid oxide fuel cell (IT - SOFC. The properties of traditionally produced (by mechanical mixing of oxides Al2O3/3YSZ composite with the same composition materials obtained by citrate and impregnation methods and with properties of pure tetragonal zirconia (3YSZ were compared. The materials were characterised by X-ray diffraction, SEM observations with EDX analysis, density and impedance spectroscopy measurements. The results shown that Al2O3/3YSZ composites reveals higher conductivity than pure 3YSZ and that addition of alumina (regardless of methods improve electric properties of resulting materials. Taking into account application of this materials as anode in IT-SOFC the determined values of energy activation of conductivity and microstructural properties of composites show that materials obtained by citric method are the most promising.

  17. Seminar Cum Meeting Report: Codata Task Group for Exchangeable Material Data Representation to Support Research and Education

    Directory of Open Access Journals (Sweden)

    T Ashino

    2008-11-01

    Full Text Available On March 4-5, 2008, the CODATA Task Group for Exchangeable Material Data Representation to Support Research and Education held a two day seminar cum meeting at the National Physical Laboratory (NPL, New Delhi, India, with NPL materials researchers and task group members representing material activities and databases from seven countries: European Union (The Czech Republic, France, and the Netherlands, India, Korea, Japan, and the United States. The NPL seminar included presentations about the researchers' work. The Task Group meeting included presentations about current data related activities of the members. Joint discussions between NPL researchers and CODATA task group members began an exchange of viewpoints among materials data producers, users, and databases developers. The seminar cum meeting included plans to continue and expand Task Group activities at the 2008 CODATA 21st Meeting in Kyiv, Ukraine.

  18. Development of new addition-type composite resins

    Science.gov (United States)

    Kray, R. J.

    1981-01-01

    The most promising of a number of new addition type polyimides and polyaromatic melamine (NCNS) resins for use in high performance composite materials. Three different cure temperature ranges were of interest: 530-560 K (500-550 F), 475-530 K (400-500 F), and 450 K (350 F). Examined were a wide variety of polyimide precursors terminated with 5 norbornene groups and addition polymerized at 560 K similar to PMR-15 and LARC-160 polyimides. In addition, a number of lower curing cinnamal end capped polyimides and a bismaleimide were investigated but were not found promising. A group of NCNS resins were investigated and some were found to be superior to current epoxy resins in moisture resistance, oxidative aging and flame and smoke properties.

  19. TRANSITION METAL OXIDES AS MATERIALS FOR ADDITIVE LASER MARKING ON STAINLESS STEEL

    Directory of Open Access Journals (Sweden)

    Mihail Stoyanov Mihalev

    2017-09-01

    Full Text Available The product information plays an important role in the improvement of the manufacturing, allowing the tracking of the part through the full life cycle. Laser marking is one of the most versatile techniques for this purpose. In this paper, a modification of the powder bed selective laser melting for additive laser marking of stainless steel parts is presented. This modification is based on the use of only one transition metal oxide chemically bonded to the stainless steel substrate, without using any additional materials and cleaning substances. The resulting additive coatings, produced from initial MoO3 and WO3 powders, show strong adhesion, high hardness, long durability and a high optical contrast. For estimation of the chemical and structural properties, the Raman and X-Ray Diffraction (XRD spectroscopy have been implemented. A computer model of the process of the laser melting and re-solidification has been developed as well. A comparative analysis of the properties of both (MoO3 and WO3 additive coatings has been performed. An attempt for a qualitative explanation of the thermo-chemical phenomena during the marking process has been undertaken.

  20. Influence of Microencapsulated Phase Change Material (PCM) Addition on (Micro) Mechanical Properties of Cement Paste

    Science.gov (United States)

    Schlangen, Erik

    2017-01-01

    Excessive cracking can be a serious durability problem for reinforced concrete structures. In recent years, addition of microencapsulated phase change materials (PCMs) to concrete has been proposed as a possible solution to crack formation related to temperature gradients. However, the addition of PCM microcapsules to cementitious materials can have some drawbacks, mainly related to strength reduction. In this work, a range of experimental techniques has been used to characterize the microcapsules and their effect on properties of composite cement pastes. On the capsule level, it was shown that they are spherical, enabling good distribution in the material during the mixing process. Force needed to break the microcapsules was shown to depend on the capsule diameter and the temperature, i.e., whether it is below or above the phase change temperature. On the cement paste level, a marked drop of compressive strength with increasing PCM inclusion level was observed. The indentation modulus has also shown to decrease, probably due to the capsules themselves, and to a lesser extent due to changes in porosity caused by their inclusion. Finally, a novel micro-cube splitting technique was used to characterize the tensile strength of the material on the micro-meter length scale. It was shown that the strength decreases with increasing PCM inclusion percentage, but this is accompanied by a decrease in measurement variability. This study will contribute to future developments of cementitious composites incorporating phase change materials for a variety of applications. PMID:28773225

  1. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 13, Revision 2 (FGE.13 Rev2) Furfuryl and furan derivatives with and without additional side-chain substituents and heteroatoms from chemical group 14

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 27 flavouring substances in the Flavouring Group Evaluation 13, Revision 2, using the Procedure in Commission Regulation (EC) No 1565/2000. Three...... of commerce have also been considered. Adequate specifications including complete purity criteria and identity for the materials of commerce have been provided for all 24 flavouring substances evaluated through the Procedure....

  2. Structure and magnetism in novel group IV element-based magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Frank [Univ. of North Carolina, Chapel Hill, NC (United States)

    2013-08-14

    The project is to investigate structure, magnetism and spin dependent states of novel group IV element-based magnetic thin films and heterostructures as a function of composition and epitaxial constraints. The materials systems of interest are Si-compatible epitaxial films and heterostructures of Si/Ge-based magnetic ternary alloys grown by non-equilibrium molecular beam epitaxy (MBE) techniques, specifically doped magnetic semiconductors (DMS) and half-metallic Heusler alloys. Systematic structural, chemical, magnetic, and electrical measurements are carried out, using x-ray microbeam techniques, magnetotunneling spectroscopy and microscopy, and magnetotransport. The work is aimed at elucidating the nature and interplay between structure, chemical order, magnetism, and spin-dependent states in these novel materials, at developing materials and techniques to realize and control fully spin polarized states, and at exploring fundamental processes that stabilize the epitaxial magnetic nanostructures and control the electronic and magnetic states in these complex materials. Combinatorial approach provides the means for the systematic studies, and the complex nature of the work necessitates this approach.

  3. Utilization of Additive Manufacturing in Evaluating the Performance of Internally Defected Materials

    Science.gov (United States)

    Mourad, A.-H. I.; Ghazal, A. M.; Syam, M. M.; Qadi, O. D. Al; Jassmi, H. Al

    2018-05-01

    The elimination of internal defects in a material present in the raw material or generated during the manufacturing or service is difficult. The inclusions of the defects have an adverse effect on the load bearing capacity. The presence of the cracks subjected to a specific orientation in materials or machinery can cause devastating unexpected failure during operation. Analysis of the failure in the components with cracks is more confined to analytical and numerical evaluation. The experimental evaluation has been tedious due to the complexity of replicating the actual defected component. The potential of additive manufacturing in developing user-defined components with cracks for the experimental evaluation is explored in this research. The present research investigated the effect of the internal elliptical cracks aligned at different orientations on the mechanical performance of polylactic acid (Green filament). The Fusion Deposition Method was utilized for the development of the standard tensile specimens with internal elliptical crack oriented at 0°, 45° and 90° using UltiMaker 2. The results proved that there is a considerable reduction in the load bearing capacity due to the presence of the cracks. The maximum load bearing capacity decreased by 15.01% for the specimen with crack inclined at 0° to the lateral axis compared to crack- free specimen. The nature of the fracture and the stress-strain graph evidently showcase the brittle nature of the material. The SEM image of the fractured region proved the phenomenal characteristics such as strong adhesion between the layers and the proper material flow. In the light of the results of this work, it can be concluded that the 3-D printing methodology is effective for evaluating the mechanical performance of the internally defected material.

  4. Four-Dimensional (4D) Printing: Applying Soft Adaptive Materials to Additive Manufacturing

    Science.gov (United States)

    Li, Zibiao; Loh, Xian Jun

    Four-dimensional (4D) printing is an up-and-coming technology for the creation of dynamic devices which have shape changing capabilities or on-demand capabilities over time. Through the printing of adaptive 3D structures, the concept of 4D printing can be realized. Modern manufacturing primarily utilizes direct assembly techniques, limiting the possibility of error correction or instant modification of a structure. Self-building, programmable physical materials are interesting for the automatic and remote construction of structures. Adaptive materials are programmable physical or biological materials which possess shape changing properties or can be made to have simple logic responses. There is immense potential in having disorganized fragments form an ordered construct through physical interactions. However, these are currently limited to only self-assembly at the smallest scale, typically at the nanoscale. The answer to customizable macro-structures is in additive manufacturing, or 3D printing. 3D printing is a 30 years old technology which is beginning to be widely used by consumers. However, the main gripes about this technology are that it is too inefficient, inaccessible, and slow. Cost is also a significant factor in the adoption of this technology. 3D printing has the potential to transform and disrupt the manufacturing landscape as well as our lives. 4D printing seeks to use multi-functional materials in 3D printing so that the printed structure has multiple response capabilities and able to self-assemble on the macroscale. In this paper, we will analyze the early promise of this technology as well as to highlight potential challenges that adopters could face. The primary focus will be to have a look at the application of materials to 3D printing and to show how these materials can be tailored to create responsive customized 4D structures.

  5. Aluminium content of some processed foods, raw materials and food additives in China by inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Deng, Gui-Fang; Li, Ke; Ma, Jing; Liu, Fen; Dai, Jing-Jing; Li, Hua-Bin

    2011-01-01

    The level of aluminium in 178 processed food samples from Shenzhen city in China was evaluated using inductively coupled plasma-mass spectrometry. Some processed foods contained a concentration of up to 1226 mg/kg, which is about 12 times the Chinese food standard. To establish the main source in these foods, Al levels in the raw materials were determined. However, aluminium concentrations in raw materials were low (0.10-451.5 mg/kg). Therefore, aluminium levels in food additives used in these foods was determined and it was found that some food additives contained a high concentration of aluminium (0.005-57.4 g/kg). The results suggested that, in the interest of public health, food additives containing high concentrations of aluminium should be replaced by those containing less. This study has provided new information on aluminium levels in Chinese processed foods, raw materials and a selection of food additives.

  6. Composite materials for thermal energy storage

    Science.gov (United States)

    Benson, D. K.; Burrows, R. W.; Shinton, Y. D.

    1985-01-01

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations are discussed. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  7. Composite materials for thermal energy storage

    Science.gov (United States)

    Benson, D.K.; Burrows, R.W.; Shinton, Y.D.

    1985-01-04

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  8. Estimating the Uncertainty of Tensile Strength Measurement for A Photocured Material Produced by Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Adamczak Stanisław

    2014-08-01

    Full Text Available The aim of this study was to estimate the measurement uncertainty for a material produced by additive manufacturing. The material investigated was FullCure 720 photocured resin, which was applied to fabricate tensile specimens with a Connex 350 3D printer based on PolyJet technology. The tensile strength of the specimens established through static tensile testing was used to determine the measurement uncertainty. There is a need for extensive research into the performance of model materials obtained via 3D printing as they have not been studied sufficiently like metal alloys or plastics, the most common structural materials. In this analysis, the measurement uncertainty was estimated using a larger number of samples than usual, i.e., thirty instead of typical ten. The results can be very useful to engineers who design models and finished products using this material. The investigations also show how wide the scatter of results is.

  9. Report on the joint meeting of the Division of Development and Technology Plasma Wall Interaction and High Heat Flux Materials and Components task groups

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1992-04-01

    The Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups typically hold a joint meeting each year to provide a forum for discussion of technical issues of current interest as well as an opportunity for program reviews by the Department of Energy (DOE). At the meeting in September 1990, reported here, research programs in support of the International Thermonuclear Experimental Reactor (ITER) were highlighted. The first part of the meeting was devoted to research and development (R ampersand D) for ITER on plasma facing components plus introductory presentations on some current projects and design studies. The balance of the meeting was devoted to program reviews, which included presentations by most of the participants in the Small Business Innovative Research (SBIR) Programs with activities related to plasma wall interactions. The Task Groups on Plasma/Wall Interaction and on High Heat Flux Materials and Components were chartered as continuing working groups by the Division of Development and Technology in DOE's Magnetic Fusion Program. This report is an addition to the series of ''blue cover'' reports on the Joint Meetings of the Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups. Among several preceding meetings were those in October 1989 and January 1988

  10. Mechanical Properties of a Newly Additive Manufactured Implant Material Based on Ti-42Nb.

    Science.gov (United States)

    Schulze, Christian; Weinmann, Markus; Schweigel, Christoph; Keßler, Olaf; Bader, Rainer

    2018-01-13

    The application of Ti-6Al-4V alloy or commercially pure titanium for additive manufacturing enables the fabrication of complex structural implants and patient-specific implant geometries. However, the difference in Young's modulus of α + β-phase Ti alloys compared to the human bone promotes stress-shielding effects in the implant-bone interphase. The aim of the present study is the mechanical characterization of a new pre-alloyed β-phase Ti-42Nb alloy for application in additive manufacturing. The present investigation focuses on the mechanical properties of SLM-printed Ti-42Nb alloy in tensile and compression tests. In addition, the raw Ti-42Nb powder, the microstructure of the specimens prior to and after compression tests, as well as the fracture occurring in tensile tests are characterized by means of the SEM/EDX analysis. The Ti-42Nb raw powder exhibits a dendrite-like Ti-structure, which is melted layer-by-layer into a microstructure with a very homogeneous distribution of Nb and Ti during the SLM process. Tensile tests display Young's modulus of 60.51 ± 3.92 GPa and an ultimate tensile strength of 683.17 ± 16.67 MPa, whereas, under a compressive load, a compressive strength of 1330.74 ± 53.45 MPa is observed. The combination of high mechanical strength and low elastic modulus makes Ti-42Nb an interesting material for orthopedic and dental implants. The spherical shape of the pre-alloyed material additionally allows for application in metal 3D printing, enabling the fabrication of patient-specific structural implants.

  11. Survival of Listeria monocytogenes on a conveyor belt material with or without antimicrobial additives

    NARCIS (Netherlands)

    Chaitiemwong, N.; Hazeleger, W.C.; Beumer, R.R.

    2010-01-01

    Survival of Listeria monocytogenes on a conveyor belt material with or without antimicrobial additives, in the absence or presence of food debris from meat, fish and vegetables and at temperatures of 10, 25 and 37 °C was investigated. The pathogen survived best at 10 °C, and better at 25 °C than at

  12. ZZ CAD, 51 Neutron-Group, 25 Gamma-Group Albedo Data for 4 Materials from DOT Flux

    International Nuclear Information System (INIS)

    1992-01-01

    A - Description of problem or function: Format: BREESE tape-writing program, MORSE; Number of groups: 51 neutron, 25 gamma-ray group albedo data. Nuclides: 1) 12 inches of water. 2) 12 inches of ordinary concrete. 3) 9 inches of carbon steel (SA508). 4) 1/2 inches of steel over 12 inches of concrete. (O, Ca, Al, C, Si, H, K, Mg, Fe, Na, Mn); Origin: DOT angular flux tape. CAD is a set of 51 neutron, 25 gamma-ray group albedo data for the following four materials: 1) 12 inches of water. 2) 12 inches of ordinary concrete. 3) 9 inches of carbon steel (SA508). 4) 1/2 inches of steel over 12 inches of concrete. The differential angular albedos are a function of the five incident polar directions and 30 reflected directions. B - Method of solution: The data has been generated from a DOT angular flux tape using the code CARP (abstract PSR-0131). C - Restrictions on the complexity of the problem: Since the amount of data is so large, it is necessary to run CARP, using the group reduction option, in order to run a problem on most computers

  13. An additive approach to low temperature zero pressure sintering of bismuth antimony telluride thermoelectric materials

    Science.gov (United States)

    Catlin, Glenn C.; Tripathi, Rajesh; Nunes, Geoffrey; Lynch, Philip B.; Jones, Howard D.; Schmitt, Devin C.

    2017-03-01

    This paper presents an additive-based approach to the formulation of thermoelectric materials suitable for screen printing. Such printing processes are a likely route to such thermoelectric applications as micro-generators for wireless sensor networks and medical devices, but require the development of materials that can be sintered at ambient pressure and low temperatures. Using a rapid screening process, we identify the eutectic combination of antimony and tellurium as an additive for bismuth-antimony-telluride that enables good thermoelectric performance without a high pressure step. An optimized composite of 15 weight percent Sb7.5Te92.5 in Bi0.5Sb1.5Te3 is scaled up and formulated into a screen-printable paste. Samples fabricated from this paste achieve a thermoelectric figure of merit (ZT) of 0.74 using a maximum processing temperature of 748 K and a total thermal processing budget of 12 K-hours.

  14. The impact of framework organic functional groups on the hydrophobicity and overall stability of mesoporous silica materials

    International Nuclear Information System (INIS)

    Smeulders, Geert; Meynen, Vera; Silvestre-Albero, Ana; Houthoofd, Kristof; Mertens, Myrjam; Silvestre-Albero, Joaquin; Martens, Johan A.; Cool, Pegie

    2012-01-01

    Graphical abstract: The stability (hydrothermal, mechanical and chemical) of PMOs is studied in a systematic way and ranks them between classic and other hybrid mesoporous silica materials. Highlights: ► The stability (hydrothermal, mechanical and chemical) of PMOs is studied. ► Compared stability of PMOs with classic and other hybrid mesoporous silica materials. ► Immersion calorimetry to study the effect of hydrophobicity. ► PMOs show superior stability. - Abstract: The hydrothermal, mechanical and chemical stability of various mesoporous materials have been studied in detail, using X-ray diffraction and nitrogen sorption. Pure siliceous nanoporous powders (MCM-41 and SBA-15) are evaluated against their hybrid counterparts; namely 2 types of periodic mesoporous organosilicas (benzene and ethane bridged PMOs) and an organosilane grafted MCM-41 material. In primary tests, the stability of the hybrid materials is found to be superior compared to that of the pure siliceous ones. The stability of the materials was correlated to their hydrophobicity via immersion calorimetry, applied for the first time in this context. Based on these results, a clear correlation between the hydrophobicity of a material and its stability has been revealed. In addition, with 29 Si-MAS-NMR and vacuum experiments, the mechanism of the structural deterioration in the three different stability treatments could be unambiguously identified as the hydrolyzation of the siloxane bonds. The homogeneity of the hydrophobic groups throughout the entire network was found to be of great importance, irrespective of the hydrophobic nature at the surface as determined by calorimetric measurements. The results reveal that the most stable material can withstand (a) a pressure of 740 MPa during 5 min, (b) a 2 h stirring in a 2 M NaOH solution and (c) a 3 day steaming treatment at 393 K.

  15. The impact of framework organic functional groups on the hydrophobicity and overall stability of mesoporous silica materials

    Energy Technology Data Exchange (ETDEWEB)

    Smeulders, Geert, E-mail: geert.smeulders@ua.ac.be [University of Antwerpen (Ukraine), Laboratory of Adsorption and Catalysis, Universiteitsplein 1, 2610 Wilrijk (Belgium); Meynen, Vera [University of Antwerpen (Ukraine), Laboratory of Adsorption and Catalysis, Universiteitsplein 1, 2610 Wilrijk (Belgium); Silvestre-Albero, Ana [Universidad de Alicante, Laboratorio de Materiales Avanzados, Apartado 99, 03080 Alicante (Spain); Houthoofd, Kristof [KULeuven, Centre for Surface Chemistry and Catalysis, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium); Mertens, Myrjam [Flemish Institute for Technological Research (VITO N.V.), Boeretang 200, 2400 Mol (Belgium); Silvestre-Albero, Joaquin [Universidad de Alicante, Laboratorio de Materiales Avanzados, Apartado 99, 03080 Alicante (Spain); Martens, Johan A. [KULeuven, Centre for Surface Chemistry and Catalysis, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium); Cool, Pegie [University of Antwerpen (Ukraine), Laboratory of Adsorption and Catalysis, Universiteitsplein 1, 2610 Wilrijk (Belgium)

    2012-02-15

    Graphical abstract: The stability (hydrothermal, mechanical and chemical) of PMOs is studied in a systematic way and ranks them between classic and other hybrid mesoporous silica materials. Highlights: Black-Right-Pointing-Pointer The stability (hydrothermal, mechanical and chemical) of PMOs is studied. Black-Right-Pointing-Pointer Compared stability of PMOs with classic and other hybrid mesoporous silica materials. Black-Right-Pointing-Pointer Immersion calorimetry to study the effect of hydrophobicity. Black-Right-Pointing-Pointer PMOs show superior stability. - Abstract: The hydrothermal, mechanical and chemical stability of various mesoporous materials have been studied in detail, using X-ray diffraction and nitrogen sorption. Pure siliceous nanoporous powders (MCM-41 and SBA-15) are evaluated against their hybrid counterparts; namely 2 types of periodic mesoporous organosilicas (benzene and ethane bridged PMOs) and an organosilane grafted MCM-41 material. In primary tests, the stability of the hybrid materials is found to be superior compared to that of the pure siliceous ones. The stability of the materials was correlated to their hydrophobicity via immersion calorimetry, applied for the first time in this context. Based on these results, a clear correlation between the hydrophobicity of a material and its stability has been revealed. In addition, with {sup 29}Si-MAS-NMR and vacuum experiments, the mechanism of the structural deterioration in the three different stability treatments could be unambiguously identified as the hydrolyzation of the siloxane bonds. The homogeneity of the hydrophobic groups throughout the entire network was found to be of great importance, irrespective of the hydrophobic nature at the surface as determined by calorimetric measurements. The results reveal that the most stable material can withstand (a) a pressure of 740 MPa during 5 min, (b) a 2 h stirring in a 2 M NaOH solution and (c) a 3 day steaming treatment at 393 K.

  16. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 17, Revision 3 (FGE.17Rev3): Pyrazine derivatives from chemical group 24

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 28 flavouring substances in the Flavouring Group Evaluation 17, including seven additional substances considered in this Revision 3, using the Procedure......-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The Panel concluded that 24 substances [FL-no: 14.057, 14.081, 14.083, 14.084, 14.086, 14.087, 14.091, 14.097, 14.099, 14.101, 14.102, 14.108, 14.109, 14.111, 14.112, 14.113, 14.122, 14...... substances, the specifications for the materials of commerce have also been considered and for one substance [FL-no: 14.102], the composition of mixture has not been specified sufficiently....

  17. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 17, Revision 2 (FEG.17Rev2): Pyrazine derivatives from chemical group 24

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 21 flavouring substances in the Flavouring Group Evaluation 17, Revision 2, using the Procedure in Commission Regulation (EC) No 1565/2000. From the in vitro...... substance [FL-no: 14.051] no intake data are available preventing it from being evaluated through the Procedure. The remaining 18 substances were evaluated through a stepwise approach that integrates information on structure-activity relationships, intake from current uses, toxicological threshold...... intake, estimated on the basis of the MSDI approach. For the remaining substance [FL-no: 14.052] additional toxicity data are required. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered and for two substances...

  18. Additive Manufacturing (3D Printing) Aircraft Parts and Tooling at the Maintenance Group Level

    Science.gov (United States)

    The purpose of this research was to evaluate the effectiveness of additive manufacturing (AM) or 3D printing for the Air Force aircraft maintenance...case study of the 552d MXGs 3D printing operation explores their use of a Fused Deposition Modeling (FDM) thermoplastic material to manufacture parts...by applying the case study’s analysis toward a proof of concept, producing a C-130J Aft Cargo Door Rub Strip for 3D printing . The study concluded by

  19. Novel Polymeric Dielectric Materials for the Additive Manufacturing of Microwave Devices

    Science.gov (United States)

    O'Keefe, Shamus E.

    The past decade has seen a rapid increase in the deployment of additive manufacturing (AM) due to the perceived benefits of lower cost, higher quality, and a smaller environmental footprint. And while the hardware behind most of AM processes is mature, the study and development of material feedstock(s) are in their infancy, particularly so for niche areas. In this dissertation, we look at novel polymeric materials to support AM for microwave devices. Chapter 1 provides an overview of the benefits of AM, followed by the specific motivation for this work, and finally a scope defining the core objectives. Chapter 2 delves into a higher-level background of dielectric theory and includes a brief overview of the two common dielectric spectroscopy techniques used in this work. The remaining chapters, summarized below, describe experiments in which novel polymeric materials were developed and their microwave dielectric properties measured. Chapter 3 describes the successful synthesis of polytetrafluroethylene (PTFE)/polyacrylate (PA) core-shell nanoparticles and their measured microwave dielectric properties. PTFE/PA core-shell nanoparticles with spherical morphology were successfully made by aerosol deposition followed by a brief annealing. The annealing temperature is closely controlled to exceed the glass transition (Tg) of the PA shell yet not exceed the Tg of the PTFE core. Furthermore, the annealing promotes coalescence amongst the PA shells of neighboring nanoparticles and results in the formation of a contiguous PA matrix that has excellent dispersion of PTFE cores. The measured dielectric properties agree well with theoretical predictions and suggest the potential of this material as a feedstock for AM microwave devices. Chapter 4 delves into the exploration of various polyimide systems with the aim of replacing the PA in the previously studied PTFE/PA core-shell nanoparticles. Fundamental relationships between polymer attributes (flexibility/rigidity and

  20. Effects of an additional small group discussion to cognitive achievement and retention in basic principles of bioethics teaching methods

    Directory of Open Access Journals (Sweden)

    Dedi Afandi

    2009-03-01

    Full Text Available Aim The place of ethics in undergraduate medical curricula is essential but the methods of teaching medical ethics did not show substantial changes. “Basic principles of bioethics” is the best knowledge to develop student’s reasoning analysis in medical ethics In this study, we investigate the effects of an additional small group discussion in basic principles of bioethics conventional lecture methods to cognitive achievement and retention. This study was a randomized controlled trial with parallel design. Cognitive scores of the basic principles of bioethics as a parameter was measured using basic principles of bioethics (Kaidah Dasar Bioetika, KDB test. Both groups were attending conventional lectures, then the intervention group got an additional small group discussion.Result Conventional lectures with or without small group discussion significantly increased cognitive achievement of basic principles of bioethics (P= 0.001 and P= 0.000, respectively, and there were significant differences in cognitive achievement and retention between the 2 groups (P= 0.000 and P= 0.000, respectively.Conclusion Additional small group discussion method improved cognitive achievement and retention of basic principles of bioethics. (Med J Indones 2009; 18: 48-52Keywords: lecture, specification checklist, multiple choice questions

  1. Mechanical Properties of a Newly Additive Manufactured Implant Material Based on Ti-42Nb

    Directory of Open Access Journals (Sweden)

    Christian Schulze

    2018-01-01

    Full Text Available The application of Ti-6Al-4V alloy or commercially pure titanium for additive manufacturing enables the fabrication of complex structural implants and patient-specific implant geometries. However, the difference in Young’s modulus of α + β-phase Ti alloys compared to the human bone promotes stress-shielding effects in the implant–bone interphase. The aim of the present study is the mechanical characterization of a new pre-alloyed β-phase Ti-42Nb alloy for application in additive manufacturing. The present investigation focuses on the mechanical properties of SLM-printed Ti-42Nb alloy in tensile and compression tests. In addition, the raw Ti-42Nb powder, the microstructure of the specimens prior to and after compression tests, as well as the fracture occurring in tensile tests are characterized by means of the SEM/EDX analysis. The Ti-42Nb raw powder exhibits a dendrite-like Ti-structure, which is melted layer-by-layer into a microstructure with a very homogeneous distribution of Nb and Ti during the SLM process. Tensile tests display Young’s modulus of 60.51 ± 3.92 GPa and an ultimate tensile strength of 683.17 ± 16.67 MPa, whereas, under a compressive load, a compressive strength of 1330.74 ± 53.45 MPa is observed. The combination of high mechanical strength and low elastic modulus makes Ti-42Nb an interesting material for orthopedic and dental implants. The spherical shape of the pre-alloyed material additionally allows for application in metal 3D printing, enabling the fabrication of patient-specific structural implants.

  2. Influence of agglomeration of a recycled cement additive on the hydration and microstructure development of cement based materials

    NARCIS (Netherlands)

    Yu, R.; Shui, Z.H.

    2013-01-01

    This paper presents a study, including experimental and mechanism analysis, on investigating the effect of agglomeration of a recycled cement additive on the hydration and microstructure development of cement based materials. The recycled additive is firstly produced form waste hardened cement paste

  3. Improved Gasifier Availability with Bed Material and Additives

    Energy Technology Data Exchange (ETDEWEB)

    Grootjes, A.J.; Van der Meijden, C.M.; Visser, H.J.M.; Van der Drift, A. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-07-15

    In order to valorize several feedstock, gasification is one of the technologies developed over the past decades. ECN developed the MILENA gasifier. In order for MILENA to become a commercial success, the gasifier needs to be feedstock flexible, robust and economically sound, operating with high availability. One of the characteristics of MILENA is high efficiency but with a higher tar content, compared to some other Dual Fluidized Bed (DFB) gasifiers. In order to reduce the issues that are associated with high tar levels in the product gas, the effect of a number of primary measures was studied. This paper presents results obtained in the last two years, focused on improving the gasifier availability by conducting experiments in a 25 kWth lab scale MILENA gasifier. Amongst others, gas composition, tar content and calorific value of the product gas were compared. Scanning Electron Microscope analysis was used to investigate bed material changes. Results show that Austrian olivine can be activated by Fuel B as well as by Additive A and B. The water-gas shift reaction is enhanced and the tar content is reduced significantly, especially the heavy tars that dominate the tar dew point. Activated olivine has a calcium-rich layer. The results show that with MILENA, we are able to lower and control the tar dew point, which will possibly increase the availability of a MILENA gasifier.

  4. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive

    Energy Technology Data Exchange (ETDEWEB)

    Nochaiya, Thanongsak [Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); Sekine, Yoshika [Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Choopun, Supab [Applied Physics Research Laboratory, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Chaipanich, Arnon, E-mail: arnon.chaipanich@cmu.ac.th [Advanced Cement-Based Materials Research Unit, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-05-05

    Highlights: • Nano zinc oxide was used as an additive material. • Microstructure and phase characterization of pastes were characterized using SEM and XRD. • TGA and FTIR were also used to determine the hydration reaction. • Compressive strength of ZnO mixes was found to increase at 28 days. - Abstract: Zinc oxide nanoparticles as a nanophotocatalyst has great potential for self-cleaning applications in concrete structures, its effects on the cement hydration, setting time and compressive strength are also important when using it in practice. This paper reports the effects of zinc oxide nanoparticles, as an additive material, on properties of cement-based materials. Setting time, compressive strength and porosity of mortars were investigated. Microstructure and morphology of pastes were characterized using scanning electron microscope and X-ray diffraction (XRD), respectively. Moreover, thermal gravimetric analysis (TGA) and Fourier-transform infrared spectrometer (FTIR) were also used to determine the hydration reaction. The results show that Portland cement paste with additional ZnO was found to slightly increase the water requirement while the setting time presented prolongation period than the control mix. However, compressive strength of ZnO mixes was found to be higher than that of PC mix up to 15% (at 28 days) via filler effect. Microstructure, XRD and TGA results of ZnO pastes show less hydration products before 28 days but similar at 28 days. In addition, FTIR results confirmed the retardation when ZnO was partially added in Portland cement pastes.

  5. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive

    International Nuclear Information System (INIS)

    Nochaiya, Thanongsak; Sekine, Yoshika; Choopun, Supab; Chaipanich, Arnon

    2015-01-01

    Highlights: • Nano zinc oxide was used as an additive material. • Microstructure and phase characterization of pastes were characterized using SEM and XRD. • TGA and FTIR were also used to determine the hydration reaction. • Compressive strength of ZnO mixes was found to increase at 28 days. - Abstract: Zinc oxide nanoparticles as a nanophotocatalyst has great potential for self-cleaning applications in concrete structures, its effects on the cement hydration, setting time and compressive strength are also important when using it in practice. This paper reports the effects of zinc oxide nanoparticles, as an additive material, on properties of cement-based materials. Setting time, compressive strength and porosity of mortars were investigated. Microstructure and morphology of pastes were characterized using scanning electron microscope and X-ray diffraction (XRD), respectively. Moreover, thermal gravimetric analysis (TGA) and Fourier-transform infrared spectrometer (FTIR) were also used to determine the hydration reaction. The results show that Portland cement paste with additional ZnO was found to slightly increase the water requirement while the setting time presented prolongation period than the control mix. However, compressive strength of ZnO mixes was found to be higher than that of PC mix up to 15% (at 28 days) via filler effect. Microstructure, XRD and TGA results of ZnO pastes show less hydration products before 28 days but similar at 28 days. In addition, FTIR results confirmed the retardation when ZnO was partially added in Portland cement pastes

  6. Additive manufacturing of metals the technology, materials, design and production

    CERN Document Server

    Yang, Li; Baughman, Brian; Godfrey, Donald; Medina, Francisco; Menon, Mamballykalathil; Wiener, Soeren

    2017-01-01

    This book offers a unique guide to the three-dimensional (3D) printing of metals. It covers various aspects of additive, subtractive, and joining processes used to form three-dimensional parts with applications ranging from prototyping to production. Examining a variety of manufacturing technologies and their ability to produce both prototypes and functional production-quality parts, the individual chapters address metal components and discuss some of the important research challenges associated with the use of these technologies. As well as exploring the latest technologies currently under development, the book features unique sections on electron beam melting technology, material lifting, and the importance this science has in the engineering context. Presenting unique real-life case studies from industry, this book is also the first to offer the perspective of engineers who work in the field of aerospace and transportation systems, and who design components and manufacturing networks. Written by the leadin...

  7. Exploring the mechanical strength of additively manufactured metal structures with embedded electrical materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, J., E-mail: J.Li5@lboro.ac.uk; Monaghan, T.; Masurtschak, S.; Bournias-Varotsis, A.; Friel, R.J.; Harris, R.A.

    2015-07-15

    Ultrasonic Additive Manufacturing (UAM) enables the integration of a wide variety of components into solid metal matrices due to the process induced high degree of metal matrix plastic flow at low bulk temperatures. Exploitation of this phenomenon allows the fabrication of previously unobtainable novel engineered metal matrix components. The feasibility of directly embedding electrical materials within UAM metal matrices was investigated in this work. Three different dielectric materials were embedded into UAM fabricated aluminium metal-matrices with, research derived, optimal processing parameters. The effect of the dielectric material hardness on the final metal matrix mechanical strength after UAM processing was investigated systematically via mechanical peel testing and microscopy. It was found that when the Knoop hardness of the dielectric film was increased from 12.1 HK/0.01 kg to 27.3 HK/0.01 kg, the mechanical peel testing and linear weld density of the bond interface were enhanced by 15% and 16%, respectively, at UAM parameters of 1600 N weld force, 25 µm sonotrode amplitude, and 20 mm/s welding speed. This work uniquely identified that the mechanical strength of dielectric containing UAM metal matrices improved with increasing dielectric material hardness. It was therefore concluded that any UAM metal matrix mechanical strength degradation due to dielectric embedding could be restricted by employing a dielectric material with a suitable hardness (larger than 20 HK/0.01 kg). This result is of great interest and a vital step for realising electronic containing multifunctional smart metal composites for future industrial applications.

  8. Some Studies of the Effects of Additives on Cigarette Mainstream Smoke Properties. II. Casing Materials and Humectants

    Directory of Open Access Journals (Sweden)

    Rodgman A

    2014-12-01

    Full Text Available Examination of extensive laboratory data collected during the past four decades, particularly those unpublished data generated in the 1950s and 1960s, indicates that none of the materials used as casing materials (sugars, licorice, cocoa and humectants (glycerol, propylene glycol, other glycols on smoking tobacco products, particularly cigarettes, imparts any significant adverse chemical or biological properties to the mainstream smoke (MSS from cased and humectant-treated tobacco, a conclusion reached by Doull et al. (1 in their assessment of available information on nearly 600 flavorant, casing material, and humectant ingredients variously used as cigarette tobacco additives in the U.S. Tobacco Industry. Addition of casing materials and humectants to the cigarette tobacco blend produced no significant increase in the cigarette MSS of either the total polycyclic aromatic hydrocarbon (PAH or the benzo[a]pyrene (B[a]P content, MSS components that have been of considerable interest for many years. Examination of the transfer of humectants from the humectant-treated tobacco to cigarette MSS indicates that the humectants act as significant diluents to the remaining MSS particulate-phase components generated from the tobacco during the smoking process. This dilution decreases the effects observed in several bioassays, e.g., mutagenicity determined in the Ames Salmonella typhimurium test.

  9. Additive subgroups of topological vector spaces

    CERN Document Server

    Banaszczyk, Wojciech

    1991-01-01

    The Pontryagin-van Kampen duality theorem and the Bochner theorem on positive-definite functions are known to be true for certain abelian topological groups that are not locally compact. The book sets out to present in a systematic way the existing material. It is based on the original notion of a nuclear group, which includes LCA groups and nuclear locally convex spaces together with their additive subgroups, quotient groups and products. For (metrizable, complete) nuclear groups one obtains analogues of the Pontryagin duality theorem, of the Bochner theorem and of the Lévy-Steinitz theorem on rearrangement of series (an answer to an old question of S. Ulam). The book is written in the language of functional analysis. The methods used are taken mainly from geometry of numbers, geometry of Banach spaces and topological algebra. The reader is expected only to know the basics of functional analysis and abstract harmonic analysis.

  10. Study of parameters of heat treatment in obtaining glass ceramic materials with addition of the industrial waste

    International Nuclear Information System (INIS)

    Kniess, C.T.; Prates, P.B.; Martins, G.J.M.; Riella, H.G.; Matsinhe, Jonas; Kuhnen, N.C.

    2012-01-01

    The production of materials from crystallization of glass, called glass ceramic, have proved interesting by the possibility of development of different microstructures, with reduced grain size and the presence of residual amorphous phase in different quantities. The method that uses the differential thermal analysis (DTA) provides research on the material properties over a wide temperature range, it's widely applied to crystallization processes of glass ceramic materials. Within this context, this paper aims to study the kinetics of nucleation and crystal growth in glass ceramic materials in the system SiO 2 - Al 2 O 3 -Li 2 O, obtained with the addition of mineral coal bottom ash as source of aluminosilicates, through the technique of differential thermal analysis. (author)

  11. Influence of disinfection with peracetic acid and hypochlorite in dimensional alterations of casts obtained from addition silicone and polyether impressions.

    Science.gov (United States)

    Queiroz, Daher Antonio; Peçanha, Marcelo Massaroni; Neves, Ana Christina Claro; Frizzera, Fausto; Tonetto, Mateus Rodrigues; Silva-Concílio, Laís Regiane

    2013-11-01

    Dental impressions disinfection is important to reduce the risk of cross contamination but this process may produce dimensional distortions. Peracetic acid is a disinfectant agent with several favorable characteristics yet underutilized in Dentistry. The aim of this paper is to compare the dimensional stability of casts obtained from addition silicone and polyether impressions that were immersed for 10 minutes in a solution of 0.2% peracetic acid or 1% sodium hypochlorite. Sixty samples in type IV gypsum were produced after a master cast that simulated a full crown preparation of a maxillary premolar. Samples were divided in 6 groups (n = 10) according to the impression material and disinfection agent: Group AC--addition silicone control (without disinfectant); Group APA--addition silicone + 0.2% peracetic acid; Group AH--addition silicone + 1% sodium hypochlorite; Group PC--polyether control (without disinfectant); Group PPA--polyether + 0.2% peracetic acid; Group PH--polyether + 1% sodium hypochlorite. Cast height, base and top diameter were measured and a mean value was obtained for each sample and group all data was statistically analyzed (ANOVA, p polyether impressions regardless of the disinfectant materials. It can be concluded that disinfection with the proposed agents did not produce significant alterations of the impressions and the peracetic acid could be considered a reliable material to disinfect dental molds.

  12. Safeguards agreement and additional protocol - IAEA instruments for control of nuclear materials distribution and their application in Tajikistan

    International Nuclear Information System (INIS)

    Nasrulloev, Kh.; Mirsaidov, U.

    2010-01-01

    Full text: It is known that IAEA plays an important role in facilitation of nuclear non-proliferation as international authority which carries out nuclear inspections. Republic of Tajikistan in 1997 signed nuclear weapon non-proliferation treaty. Then in 2004 Safeguards agreement, additional protocol and small quantity protocol were signed. During 5 years Republic of Tajikistan submits information on its nuclear activity as declarations, foreseen in article 2.3 of Additional protocol to Safeguards agreement. Currently 66 declarations are submitted. Information required in accordance with Safeguards agreement and Additional Protocol is figured on that IAEA could compile more detailed and exact conception about nuclear activity in Tajikistan and it has the following purpose: information will lead to more transparency, and make it possible to IAEA to ensure with high extent of confidence that in the framework of declared program, any unstated nuclear activity is concealed; the more exact and comprehensive information, the rare is questions and discrepancies are originating; required information is the basis for effective planning and IAEA activity realization, related not only with safeguards implementation in regard to declared nuclear material but also ensuring of confidence in absence of undeclared nuclear activity in Tajikistan. IAEA inspection mission consisting of Messrs. N.Lazarev and F. Coillou visited Dushanbe in 2008 for verification of republic’s declarations on account for and control of nuclear materials under Additional protocol and Small quantity protocol, as well as consultations were provided on correct declaration completing and providing information on all nuclear materials. Besides, in 2006, the training course was conducted in Chkalovsk with participation of Commonwealth of Independent States countries on Safeguards agreement and Additional protocol. These visits and events will facilitate to strengthening of weapons of mass destruction non

  13. On The Development of Additive Construction Technologies for Application to Development of Lunar/Martian Surface Structures Using In-Situ Materials

    Science.gov (United States)

    Werkheiser, Niki; Fiske, Michael; Edmunson, Jennifer; Khoshnevis, Behrokh

    2015-01-01

    For long-duration missions on other planetary bodies, the use of in-situ materials will become increasingly critical. As man's presence on these bodies expands, so must the breadth of the structures required to accommodate them including habitats, laboratories, berms, radiation shielding for natural radiation and surface reactors, garages, solar storm shelters, greenhouses, etc. Planetary surface structure manufacturing and assembly technologies that incorporate in-situ resources provide options for autonomous, affordable, pre-positioned environments with radiation shielding features and protection from micrometeorites, exhaust plume debris, and other hazards. This is important because gamma and particle radiation constitute a serious but reducible threat to long-term survival of human beings, electronics, and other materials in space environments. Also, it is anticipated that surface structures will constitute the primary mass element of lunar or Martian launch requirements. The ability to use in-situ materials to construct these structures will provide a benefit in the reduction of up-mass that would otherwise make long-term Moon or Mars structures cost prohibitive. The ability to fabricate structures in situ brings with it the ability to repair these structures, which allows for self-sufficiency necessary for long-duration habitation. Previously, under the auspices of the MSFC In Situ Fabrication and Repair (ISFR) project and more recently, under the joint MSFC/KSC Additive Construction with Mobile Emplacement (ACME) project, the MSFC Surface Structures Group has been developing materials and construction technologies to support future planetary habitats with in situ resources. One such technology, known as Contour Crafting (additive construction), is shown in Figure 1, along with a typical structure fabricated using this technology. This paper will present the results to date of these efforts, including development of novel nozzle concepts for advanced layer

  14. Optimized thermoelectric performance of the n-type half-Heusler material TiNiSn by substitution and addition of Mn

    Directory of Open Access Journals (Sweden)

    Enkhtaivan Lkhagvasuren

    2017-04-01

    Full Text Available Alloys based on the half-Heusler compound TiNiSn with the addition of Mn or with a substitution of Ti by Mn are investigated as high-temperature thermoelectric materials. In both materials an intrinsic phase separation is observed, similar to TiNiSn where Ti has been partially substituted by Hf, with increasing Mn concentration the phase separation drastically reduces the lattice thermal conductivity while the power factor is increased. The thermoelectric performance of the n-type conducting alloy can be optimized both by substitution of Ti by Mn as well as the addition of Mn.

  15. Additive Construction with Mobile Emplacement (ACME) / Automated Construction of Expeditionary Structures (ACES) Materials Delivery System (MDS)

    Science.gov (United States)

    Mueller, R. P.; Townsend, I. I.; Tamasy, G. J.; Evers, C. J.; Sibille, L. J.; Edmunson, J. E.; Fiske, M. R.; Fikes, J. C.; Case, M.

    2018-01-01

    The purpose of the Automated Construction of Expeditionary Structures, Phase 3 (ACES 3) project is to incorporate the Liquid Goods Delivery System (LGDS) into the Dry Goods Delivery System (DGDS) structure to create an integrated and automated Materials Delivery System (MDS) for 3D printing structures with ordinary Portland cement (OPC) concrete. ACES 3 is a prototype for 3-D printing barracks for soldiers in forward bases, here on Earth. The LGDS supports ACES 3 by storing liquid materials, mixing recipe batches of liquid materials, and working with the Dry Goods Feed System (DGFS) previously developed for ACES 2, combining the materials that are eventually extruded out of the print nozzle. Automated Construction of Expeditionary Structures, Phase 3 (ACES 3) is a project led by the US Army Corps of Engineers (USACE) and supported by NASA. The equivalent 3D printing system for construction in space is designated Additive Construction with Mobile Emplacement (ACME) by NASA.

  16. Removal of PCB from indoor air and surface materials by introduction of additional sorbing materials

    DEFF Research Database (Denmark)

    Gunnarsen, Lars Bo; Lyng, Nadja; Kolarik, Barbara

    2017-01-01

    Alleviation of indoor PCB contamination is extremely expensive because PCB from old primary sources has redistributed to most other surfaces over time. This study investigates the introduction of new removable sorbing materials as a method instantly lowering the concentration of PCB in indoor air...... and slowly decontaminating old surface materials. In three bedrooms of a contaminated apartment respectively new painted gypsum boards, sheets of flexible polyurethane foam and activated carbon fabric were introduced. The PCB concentrations in room air were monitored before the intervention and several times...... during the following 10 months. The PCB concentrations in the old surface materials as well as the new materials were also measured. An immediate reduction of PCB concentration in indoor air, a gradual increase of PCB in new material and as well a gradual reduction in old surface materials were...

  17. Effect of borax additive on the dielectric response of polypyrrole

    Indian Academy of Sciences (India)

    2018-03-29

    Mar 29, 2018 ... fore, borax additive is effective on the properties of composite material. 2.5 Particle size of .... of a very mobile group of electric dipoles in PPy–50 wt% ..... [9] Cavdar A D, Mengelo˘glu F and Karakus K 2015 Measurement. 60 6.

  18. EXPERIMENTAL DEVELOPMENT OF BIO-BASED POLYMER MATRIX BUILDING MATERIAL AND FISH BONE DIAGRAM FOR MATERIAL EFFECT ON QUALITY

    Directory of Open Access Journals (Sweden)

    Asmamaw Tegegne

    2014-06-01

    Full Text Available These days cost of building materials are continuously increasing and the conventional construction materials for this particular purpose become low and low. The weight of conventional construction materials particularly building block is heavy and costly due to particularly cement. Thus, the objective of this paper is to develop an alternative light weight, high strength and relatively cost effective building material that satisfy the quality standard used in the country. A bio-based polymer matrix composite material for residential construction was experimentally developed. Sugar cane bagasse, thermoplastics (polyethylene g roup sand and red ash were used as materials alternatively. Mixing of the additives,melting of the hermoplastics, molding and curing (dryingwere the common methods used on the forming process of the samples. Mechanical behavior evaluation (testing of the product was carried out. Totally 45 specimens were produced and three replicate tests were performed per each test type. Quality analysis was carried out for group B material using Ishikawa diagram. The tensile strength of group A specimen was approximately 3 times greater than that of group B specimens. The compression strength of group A specimens were nearly 2 times greater than group B. Comparing to the conventional building materials(concert block and agrostoneproduced in the country, which the compression strength is 7Mpa and 16Mpa respectively, the newly produced materials show much better results in which Group A is 25.66 Mpa and group B is 16.66 Mpa. energy absorption capacity of group A specimens was approximately 3 times better than that of group B. Water absorption test was carried out for both groups and both showed excellent resistivity. Group A composite material specimens, showed better results in all parameters.

  19. Emollient bath additives for the treatment of childhood eczema (BATHE): multicentre pragmatic parallel group randomised controlled trial of clinical and cost effectiveness.

    Science.gov (United States)

    Santer, Miriam; Ridd, Matthew J; Francis, Nick A; Stuart, Beth; Rumsby, Kate; Chorozoglou, Maria; Becque, Taeko; Roberts, Amanda; Liddiard, Lyn; Nollett, Claire; Hooper, Julie; Prude, Martina; Wood, Wendy; Thomas, Kim S; Thomas-Jones, Emma; Williams, Hywel C; Little, Paul

    2018-05-03

    To determine the clinical effectiveness and cost effectiveness of including emollient bath additives in the management of eczema in children. Pragmatic randomised open label superiority trial with two parallel groups. 96 general practices in Wales and western and southern England. 483 children aged 1 to 11 years, fulfilling UK diagnostic criteria for atopic dermatitis. Children with very mild eczema and children who bathed less than once weekly were excluded. Participants in the intervention group were prescribed emollient bath additives by their usual clinical team to be used regularly for 12 months. The control group were asked to use no bath additives for 12 months. Both groups continued with standard eczema management, including leave-on emollients, and caregivers were given standardised advice on how to wash participants. The primary outcome was eczema control measured by the patient oriented eczema measure (POEM, scores 0-7 mild, 8-16 moderate, 17-28 severe) weekly for 16 weeks. Secondary outcomes were eczema severity over one year (monthly POEM score from baseline to 52 weeks), number of eczema exacerbations resulting in primary healthcare consultation, disease specific quality of life (dermatitis family impact), generic quality of life (child health utility-9D), utilisation of resources, and type and quantity of topical corticosteroid or topical calcineurin inhibitors prescribed. 483 children were randomised and one child was withdrawn, leaving 482 children in the trial: 51% were girls (244/482), 84% were of white ethnicity (447/470), and the mean age was 5 years. 96% (461/482) of participants completed at least one post-baseline POEM, so were included in the analysis, and 77% (370/482) completed questionnaires for more than 80% of the time points for the primary outcome (12/16 weekly questionnaires to 16 weeks). The mean baseline POEM score was 9.5 (SD 5.7) in the bath additives group and 10.1 (SD 5.8) in the no bath additives group. The mean POEM score

  20. Synthesis of organic EL materials with cyano group and evaluation of emission characteristics in organic EL devices

    International Nuclear Information System (INIS)

    Kim, Dong Uk

    1999-01-01

    Nobel electroluminescent materials, polymer material, PU-BCN and low molar mass material, D-BCN with the same chromophores were designed and synthesized. A molecular structure of chromophore was composed of bisstyrylbenzene derivative with cyano groups as electron injection and transport and phenylamine groups as hole injection and transport. Device structures with PU-BCN and D-BCN as an emission layer were fabricated, which were a single-layer device(SL), Indium-tin oxide(ITO)/emission layer/MgAg, and two kinds of double-layer devices which were composed of ITO/emission layer/oxadiazole derivative/MgAg as a DL-E device and ITO/triphenylamine derivative/emission layer/MgAg as a DL-H device. The two emission materials, PU-BCN and D-BCN with the same emission-chromophore were evaluated as having excellent performance of charge injection and transport and revealed almost the same emission characteristics in high current density. EL emission maximum peaks of two material were detected at about 640 nm wavelength of red emission region

  1. Influences of poly[(styrene){sub x}-stat-(chloromethylstyrene){sub y}]s additives on dewetting behaviors of polystyrene thin films: effects of polar group ratio and film thickness

    Energy Technology Data Exchange (ETDEWEB)

    Sangjan, Suntree [Research Unit of Advanced Ceramics, Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Traiphol, Nisanart, E-mail: Nisanart.T@chula.ac.th [Research Unit of Advanced Ceramics, Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Center for Petroleum, Petrochemical, and Advanced Materials, Chulalongkorn University, Bangkok 10330 (Thailand); Traiphol, Rakchart, E-mail: Rakchartt@nu.ac.th [Laboratory of Advanced Polymers and Nanomaterials, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); NANOTEC Center of Excellence at Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400 (Thailand)

    2012-05-31

    This contribution investigates the addition of poly(styrene-stat-chloromethylstyrene (ClMS))s as dewetting inhibitors of polystyrene (PS) thin films with thicknesses ranging from 12 to 38 nm. The ClMS ratios in the copolymers are 5, 25 and 45 mol%. Atomic force microscopy and optical microscopy are utilized to follow morphological changes of blended PS/copolymer films upon annealing above their glass transition temperatures. We have found that thermal stability of the PS films is greatly improved when a small amount of the copolymers is added into the system. The polar ClMS groups provide anchoring sites with the polar SiO{sub x}/Si substrate while the styrene segments favorably interact with the PS matrix. The effectiveness of the copolymers as dewetting inhibitors is also found to increase with mole ratio of ClMS group. While the stability of PS films is systematically improved upon addition of the highly substituted copolymers, using the copolymer with relatively low ratio of ClMS group could lead to the opposite result. This class of copolymers can be utilized for improving thermal stability of ultrathin PS films. The fundamental knowledge from this study is also important for designing or selecting structure of additives used to improve the stability of polymeric thin films. - Highlights: Black-Right-Pointing-Pointer Efficient method for improving stability of polystyrene (PS) thin films. Black-Right-Pointing-Pointer Poly(styrene-stat-chloromethylstyrene)s are used as dewetting inhibitors. Black-Right-Pointing-Pointer Thermal stability of blended PS/copolymers greatly improved. Black-Right-Pointing-Pointer Effectiveness of the copolymers increases with mole ratio of chloromethylstyrene group. Black-Right-Pointing-Pointer Important results for designing materials in coating application.

  2. Isolation of Bacillus cereus Group from the Fecal Material of Endangered Wood Turtles.

    Science.gov (United States)

    Nfor, Nancy Ngvumbo; Lapin, Carly N; McLaughlin, Richard William

    2015-10-01

    Members of the Bacillus cereus group are opportunistic human pathogens. They can be found in a broad range of foods. Diarrheal food poisoning and/or emetic type syndromes can result from eating contaminated food. In this study, seven B. cereus group members were isolated from the fecal material of Wood Turtles (Glyptemys insculpta). The isolates were then assessed for the presence of enterotoxin genes (nheA, entFM, hblC, and cytK) using PCR. The most prevalent is the nonhemolytic enterotoxin gene which was found in all seven isolates.

  3. Feasibility Study on 3-D Printing of Metallic Structural Materials with Robotized Laser-Based Metal Additive Manufacturing

    Science.gov (United States)

    Ding, Yaoyu; Kovacevic, Radovan

    2016-07-01

    Metallic structural materials continue to open new avenues in achieving exotic mechanical properties that are naturally unavailable. They hold great potential in developing novel products in diverse industries such as the automotive, aerospace, biomedical, oil and gas, and defense. Currently, the use of metallic structural materials in industry is still limited because of difficulties in their manufacturing. This article studied the feasibility of printing metallic structural materials with robotized laser-based metal additive manufacturing (RLMAM). In this study, two metallic structural materials characterized by an enlarged positive Poisson's ratio and a negative Poisson's ratio were designed and simulated, respectively. An RLMAM system developed at the Research Center for Advanced Manufacturing of Southern Methodist University was used to print them. The results of the tensile tests indicated that the printed samples successfully achieved the corresponding mechanical properties.

  4. Cellulose nanomaterials as additives for cementitious materials

    Science.gov (United States)

    Tengfei Fu; Robert J. Moon; Pablo Zavatierri; Jeffrey Youngblood; William Jason Weiss

    2017-01-01

    Cementitious materials cover a very broad area of industries/products (buildings, streets and highways, water and waste management, and many others; see Fig. 20.1). Annual production of cements is on the order of 4 billion metric tons [2]. In general these industries want stronger, cheaper, more durable concrete, with faster setting times, faster rates of strength gain...

  5. Group additivity calculations of the thermodynamic properties of unfolded proteins in aqueous solution: a critical comparison of peptide-based and HKF models.

    Science.gov (United States)

    Hakin, A W; Hedwig, G R

    2001-02-15

    A recent paper in this journal [Amend and Helgeson, Biophys. Chem. 84 (2000) 105] presented a new group additivity model to calculate various thermodynamic properties of unfolded proteins in aqueous solution. The parameters given for the revised Helgeson-Kirkham-Flowers (HKF) equations of state for all the constituent groups of unfolded proteins can be used, in principle, to calculate the partial molar heat capacity, C(o)p.2, and volume, V2(0), at infinite dilution of any polypeptide. Calculations of the values of C(o)p.2 and V2(0) for several polypeptides have been carried out to test the predictive utility of the HKF group additivity model. The results obtained are in very poor agreement with experimental data, and also with results calculated using a peptide-based group additivity model. A critical assessment of these two additivity models is presented.

  6. Functionalization of group-14 two-dimensional materials

    Science.gov (United States)

    Krawiec, Mariusz

    2018-06-01

    The great success of graphene has boosted intensive search for other single-layer thick materials, mainly composed of group-14 atoms arranged in a honeycomb lattice. This new class of two-dimensional (2D) crystals, known as 2D-Xenes, has become an emerging field of intensive research due to their remarkable electronic properties and the promise for a future generation of nanoelectronics. In contrast to graphene, Xenes are not completely planar, and feature a low buckled geometry with two sublattices displaced vertically as a result of the interplay between sp2 and sp3 orbital hybridization. In spite of the buckling, the outstanding electronic properties of graphene governed by Dirac physics are preserved in Xenes too. The buckled structure also has several advantages over graphene. Together with the spin–orbit (SO) interaction it may lead to the emergence of various experimentally accessible topological phases, like the quantum spin Hall effect. This in turn would lead to designing and building new electronic and spintronic devices, like topological field effect transistors. In this regard an important issue concerns the electron energy gap, which for Xenes naturally exists owing to the buckling and SO interaction. The electronic properties, including the magnitude of the energy gap, can further be tuned and controlled by external means. Xenes can easily be functionalized by substrate, chemical adsorption, defects, charge doping, external electric field, periodic potential, in-plane uniaxial and biaxial stress, and out-of-plane long-range structural deformation, to name a few. This topical review explores structural, electronic and magnetic properties of Xenes and addresses the question of their functionalization in various ways, including external factors acting simultaneously. It also points to future directions to be explored in functionalization of Xenes. The results of experimental and theoretical studies obtained so far have many promising features making

  7. Seismic Material Properties of Reinforced Concrete and Steel Casing Composite Concrete in Elevated Pile-Group Foundation

    Directory of Open Access Journals (Sweden)

    Zhou Mi

    2015-09-01

    Full Text Available The paper focuses on the material mechanics properties of reinforced concrete and steel casing composite concrete under pseudo-static loads and their application in structure. Although elevated pile-group foundation is widely used in bridge, port and ocean engineering, the seismic performance of this type of foundation still need further study. Four scale-specimens of the elevated pile-group foundation were manufactured by these two kinds of concrete and seismic performance characteristic of each specimen were compared. Meanwhile, the special soil box was designed and built to consider soil-pile-superstructure interaction. According to the test result, the peak strength of strengthening specimens is about 1.77 times of the others and the ultimate displacement is 1.66 times of the RC specimens. Additionally, the dissipated hysteric energy capability of strengthening specimens is more than 2.15 times of the others as the equivalent viscous damping ratio is reduced by 50%. The pinching effect of first two specimens is more obvious than latter two specimens and the hysteretic loops of reinforced specimens are more plumpness. The pseudo-static tests also provided the data to quantitatively assessment the positive effect of steel casing composite concrete in aseismatic design of bridge.

  8. effects of sulphur addition on addition on and mechanical properties

    African Journals Online (AJOL)

    User

    234-8034714355. 8034714355. 1. EFFECTS OF SULPHUR ADDITION ON. ADDITION ON. 2. AND MECHANICAL PROPERTIES O. 3. 4. C. W. Onyia. 5. 1DEPT. OF METALLURGICAL AND MATERIALS. 6. 2, 4DEPT. OF METALLURGICAL ...

  9. Division of Development and Technology Plasma/Materials Interaction and High Heat Flux Materials and Components Task Groups: Report on the joint meeting, July 9, 1986

    International Nuclear Information System (INIS)

    Watson, R.D.

    1986-09-01

    This paper contains a collection of viewgraphs from a joint meeting of the Division of Development and Technology Plasma/Materials Interaction and High Heat Flux Materials and Components Task Groups. A list of contributing topics is: PPPL update, ATF update, Los Alamos RFP program update, status of DIII-D, PMI graphite studies at ORNL, PMI studies for low atomic number materials, high heat flux materials issues, high heat flux testing program, particle confinement in tokamaks, helium self pumping, self-regenerating coatings technical planning activity and international collaboration update

  10. Reversible hydrogen storage materials

    Science.gov (United States)

    Ritter, James A [Lexington, SC; Wang, Tao [Columbia, SC; Ebner, Armin D [Lexington, SC; Holland, Charles E [Cayce, SC

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  11. Application of Clustering Algorithm CLOPE to the Query Grouping Problem in the Field of Materialized View Maintenance

    Directory of Open Access Journals (Sweden)

    Kateryna Novokhatska

    2016-03-01

    Full Text Available In recent years, materialized views (MVs are widely used to enhance the database performance by storing pre-calculated results of resource-intensive queries in the physical memory. In order to identify which queries may be potentially materialized, database transaction log for a long period of time should be analyzed. The goal of analysis is to distinguish resource-intensive and frequently used queries collected from database log, and optimize these queries by implementation of MVs. In order to achieve greater efficiency of MVs, they were used not only for the optimization of single queries, but also for entire groups of queries that are similar in syntax and execution results. Thus, the problem stated in this article is the development of approach that will allow forming groups of queries with similar syntax around the most resource-intensive queries in order to identify the list of potential candidates for materialization. For solving this problem, we have applied the algorithm of categorical data clustering to the query grouping problem on the step of database log analysis and searching candidates for materialization. In the current work CLOPE algorithm was modified to cover the introduced problem. Statistical and timing indicators were taken into account in order to form the clusters around the most resource intensive queries. Application of modified algorithm CLOPE allowed to decrease calculable complexity of clustering and to enhance the quality of formed groups.

  12. Improved moulding material for addition to nuclear fuel particles to produce nuclear fuel elements

    International Nuclear Information System (INIS)

    Miertschin, G.N.; Leary, D.F.

    1976-01-01

    A suggestion is made to improve the moulding materials used to produce carbon-contained nuclear fuel particles by a coke-reducing added substance. The nuclear fuel particles are meant for the formation of fuel elements for gas-cooled high-temperature nuclear reactors. The moulding materials are above all for the formation of coated particles which are burnt in situ in nuclear fuel element chambers out of 'green' nuclear fuel bodies. The added substance improves the shape stability of the particles forming and prevents a stiding or bridge formation between the particles or with the surrounding walls. The following are named as added substances: 1) Polystyrene and styrene-butadiene-Co polymers (mol. wt. between 5oo and 1,000,000), 2) aromatic compounds (mol. wt. 75 to 300), 3) saturated hydrocarbon polymers (mol. wt. 5,000 to 1,000,000). Additional release agents further improve the properties in the same direction (e.g. alcohols, fatty acids, amines). (orig.) [de

  13. New possibilities using additive manufacturing with materials that are difficult to process and with complex structures

    Science.gov (United States)

    Olsson, Anders; Hellsing, Maja S.; Rennie, Adrian R.

    2017-05-01

    Additive manufacturing (or 3D printing) opens the possibility of creating new designs and manufacturing objects with new materials rapidly and economically. Particularly for use with polymers and polymer composites, simple printers can make high quality products, and these can be produced easily in offices, schools and in workshops and laboratories. This technology has opened a route for many to test ideas or to make custom devices. It is possible to easily manufacture complex geometries that would be difficult or even impossible to create with traditional methods. Naturally this technology has attracted attention in many fields that include the production of medical devices and prostheses, mechanical engineering as well as basic sciences. Materials that are highly problematic to machine can be used. We illustrate process developments with an account of the production of printer parts to cope with polymer fillers that are hard and abrasive; new nozzles with ruby inserts designed for such materials are durable and can be used to print boron carbide composites. As with other materials, complex parts can be printed using boron carbide composites with fine structures, such as screw threads and labels to identify materials. General ideas about design for this new era of manufacturing customised parts are presented.

  14. New possibilities using additive manufacturing with materials that are difficult to process and with complex structures

    International Nuclear Information System (INIS)

    Olsson, Anders; Hellsing, Maja S; Rennie, Adrian R

    2017-01-01

    Additive manufacturing (or 3D printing) opens the possibility of creating new designs and manufacturing objects with new materials rapidly and economically. Particularly for use with polymers and polymer composites, simple printers can make high quality products, and these can be produced easily in offices, schools and in workshops and laboratories. This technology has opened a route for many to test ideas or to make custom devices. It is possible to easily manufacture complex geometries that would be difficult or even impossible to create with traditional methods. Naturally this technology has attracted attention in many fields that include the production of medical devices and prostheses, mechanical engineering as well as basic sciences. Materials that are highly problematic to machine can be used. We illustrate process developments with an account of the production of printer parts to cope with polymer fillers that are hard and abrasive; new nozzles with ruby inserts designed for such materials are durable and can be used to print boron carbide composites. As with other materials, complex parts can be printed using boron carbide composites with fine structures, such as screw threads and labels to identify materials. General ideas about design for this new era of manufacturing customised parts are presented. (invited comment)

  15. Edible packaging materials.

    Science.gov (United States)

    Janjarasskul, Theeranun; Krochta, John M

    2010-01-01

    Research groups and the food and pharmaceutical industries recognize edible packaging as a useful alternative or addition to conventional packaging to reduce waste and to create novel applications for improving product stability, quality, safety, variety, and convenience for consumers. Recent studies have explored the ability of biopolymer-based food packaging materials to carry and control-release active compounds. As diverse edible packaging materials derived from various by-products or waste from food industry are being developed, the dry thermoplastic process is advancing rapidly as a feasible commercial edible packaging manufacturing process. The employment of nanocomposite concepts to edible packaging materials promises to improve barrier and mechanical properties and facilitate effective incorporation of bioactive ingredients and other designed functions. In addition to the need for a more fundamental understanding to enable design to desired specifications, edible packaging has to overcome challenges such as regulatory requirements, consumer acceptance, and scaling-up research concepts to commercial applications.

  16. Synthesis and properties of a spirobifluorene-based hole-transporting material containingtert-butyl group

    Directory of Open Access Journals (Sweden)

    DING Ning

    2016-12-01

    Full Text Available A spirobifluorene-based compound SPF-BMO was developed as hole transporters for green phosphorescent organic light-emitting diodes(PhOLEDs.The synthesized material showed sufficient HOMO/LUMO bandgap and triplet energy for green emitting bis[2-(2-pyridinyl-Nphenyl-C] (acetylacetonato iridium(III [Ir (ppy2(acac].The addition of a thin layer of 4,4′,4″-tri(N-carbazolyltriphenylamine (TCTAwith a high triplet energy as an exciton-blockinglayer at hole transporter/emitter interface seems to be unnecessary.SPF-BMO showed high thermal stability due to its spiro-annulated structure.Compared with the standard green PhOLEDs,organic light-emitting diodes with SPF-BMO as the hole-transport material have improved performances such as enhanced device power efficiency andlonger stability.These results clearly demonstrate that SPF-BMO is among the best hole-transporting materials reported for green PhOLEDs and utilizing anappropriate hole transporter to construct a simplified device is a promising method to enhance the power efficiency of PhOLEDs.

  17. USE OF SPONGE, Callyspongia basilana EXTRACT AS ADDITIVE MATERIAL ON TIGER SHRIMP CULTURE

    Directory of Open Access Journals (Sweden)

    Rosmiati Rosmiati

    2010-06-01

    Full Text Available Blue shrimp disease is one of the main problems in tiger shrimp culture. It reduces shrimp quality which eventually will decrease its market price. Blue shrimp is caused by deficiency of nutrition and additive materials such as carotene and other nutrient which function as vitamin source for important metabolic processes and formation of color profile in shrimp and fish. The aims of this study were to study the application effect of carotenoid extract of sponge Callyspongia basilana, as an additive material on the ability of shrimp to get back to normal state after suffering blue shrimp disease and survival rate of shrimp and to find out the optimal concentration of sponge carotenoid extract to cure the diseased shrimp. This study was consisted of two steps namely; (1. Extraction of sponge carotenoid by maseration and fractionation using acetone and petroleum ether solvents and (2, the application of carotenoid extract on the diseased shrimp. The research was arranged in a complete randomized design with four experiments consisted of (A. Control (without carotenoid extract; (B,(C, and (D carotetoid extract addition of 3 mg/L, 6 mg/L, and 9 mg/L respectively with three replication each. The test animal used were blue diseased tiger shrimp with the density of 15 ind./container having 7.5–9.5 cm in size and the average weight of 5.5–10.0 g. The study showed that Callyspongia basilana carotenoid extract was able to change blue diseased shrimp to be normal within six days at the concentration of 9 mg/L. The highest survival rate was found in the experiment D (93.3%. Meanwhile, the lowest was obtained by the control population (13.3% and the other two treatments were 80.0%(C and 73.3% (B. The average of water quality parameters such as temperature, dissolved oxygen, pH, salinity, nitrite, and ammonia were in the suitable range for the growth and survival rate of tiger shrimp.

  18. Comparison of Subcuticular Suture Materials in Cesarean Skin Closure

    Directory of Open Access Journals (Sweden)

    Pınar Solmaz Hasdemir

    2015-01-01

    Full Text Available Aim. Comparison of the rate of wound complications, pain, and patient satisfaction based on used subcuticular suture material. Methods. A total of 250 consecutive women undergoing primary and repeat cesarean section with low transverse incision were prospectively included. The primary outcome was wound complication rate including infection, dehiscence, hematoma, and hypertrophic scar formation within a 6-week period after operation. Secondary outcomes were skin closure time, the need for use of additional analgesic agent, pain score on numeric rating scale, cosmetic score, and patient scar satisfaction scale. Results. Absorbable polyglactin was used in 108 patients and nonabsorbable polypropylene was used in 142 patients. Wound complication rates were similar in primary and repeat cesarean groups based on the type of suture material. Skin closure time is longer in nonabsorbable suture material group in both primary and repeat cesarean groups. There was no difference between groups in terms of postoperative pain, need for additional analgesic use, late phase pain, and itching at the scar. Although the cosmetic results tended to be better in the nonabsorbable group in primary surgery patients, there was no significant difference in the visual satisfaction of the patients. Conclusions. Absorbable and nonabsorbable suture materials are comparable in cesarean section operation skin closure.

  19. Nanoporous ceramic hybrid materials synthesized by organically modified ceramic precursor with terminal amine group

    Energy Technology Data Exchange (ETDEWEB)

    Velikova, Nina E.; Vueva, Yuliya E.; Abdallah, Mohammed E.; Ivanova, Yordanka Y.; Dimitriev, Yanko B. [Department of Silicate Technology, University of Chemical Technology and Metallurgy, Sofia (Bulgaria); Salvado, Isabel M.; Fernandes, Maria H. [Ceramic and Glass Engineering Department CICECO, University of Aveiro, Aveiro, (Portugal)

    2013-07-01

    Nanoporous ceramic materials was functionalized by co-condensation of tetraethyl orthosilicate (TEOS) and different 3-aminopropyltriethoxysilane (APTES) amounts in the presence of amphiphilic triblock copolymer poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (EO{sub 20}PO{sub 70}EO{sub 20} ), who was previously dissolved in acid solution with different acid concentrations. Pluronic P123 was used as structure-directing agent and xylene as a swelling agent. Inorganic salt was introduced in order to improve structure ordering and to tailor framework porosity. The synthesized materials were characterized by scanning electron microscopy (SEM), X-ray diffraction, nuclear magnetic resonance ( {sup 29}Si MAS NMR and {sup 13}C CP MAS NMR), Fourier –transform infrared spectroscopy (FT-IR) and elemental analysis. The results from NMR and FT-IR show that the organic functional group is successfuly incorporated in the silica framework and P123 was successfully extracted. The results from all analyzes prove that the acid concentration has significant influence on the materials morphology and properties. Kay words: sol-gel, mesoporous materials, hybrid materials, as structure-directing agent.

  20. Fine-mapping additive and dominant SNP effects using group-LASSO and Fractional Resample Model Averaging

    Science.gov (United States)

    Sabourin, Jeremy; Nobel, Andrew B.; Valdar, William

    2014-01-01

    Genomewide association studies sometimes identify loci at which both the number and identities of the underlying causal variants are ambiguous. In such cases, statistical methods that model effects of multiple SNPs simultaneously can help disentangle the observed patterns of association and provide information about how those SNPs could be prioritized for follow-up studies. Current multi-SNP methods, however, tend to assume that SNP effects are well captured by additive genetics; yet when genetic dominance is present, this assumption translates to reduced power and faulty prioritizations. We describe a statistical procedure for prioritizing SNPs at GWAS loci that efficiently models both additive and dominance effects. Our method, LLARRMA-dawg, combines a group LASSO procedure for sparse modeling of multiple SNP effects with a resampling procedure based on fractional observation weights; it estimates for each SNP the robustness of association with the phenotype both to sampling variation and to competing explanations from other SNPs. In producing a SNP prioritization that best identifies underlying true signals, we show that: our method easily outperforms a single marker analysis; when additive-only signals are present, our joint model for additive and dominance is equivalent to or only slightly less powerful than modeling additive-only effects; and, when dominance signals are present, even in combination with substantial additive effects, our joint model is unequivocally more powerful than a model assuming additivity. We also describe how performance can be improved through calibrated randomized penalization, and discuss how dominance in ungenotyped SNPs can be incorporated through either heterozygote dosage or multiple imputation. PMID:25417853

  1. Photoactive devices including porphyrinoids with coordinating additives

    Science.gov (United States)

    Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K; Thompson, Mark E; Trinh, Cong; Whited, Matthew; Diev, Vlacheslav

    2015-05-12

    Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.

  2. Determination of migration of phosphorus-based additives from food packaging material into food-simulating solvents by neutron activation/Cerenkov counting

    International Nuclear Information System (INIS)

    Lickly, T.D.; Quinn, T.; Blanchard, F.A.; Murphy, P.G.

    1988-01-01

    Samples of food-simulating solvents exposed to food-packaging materials that contain phosphorus-based additives have been examined for migration of phosphorus-containing compounds from the packaging material, using neutron activation/Cerenkov counting. This method has the advantage that commercially produced packaging materials can be used (no elaborate sample preparation as with other radiotracer methods) and no elaborate sample processing techniques are needed to reach the desired levels (low ng/mL) as is usual with most chromatographic or spectroscopic techniques. (author)

  3. Defect Characterization for Material Assurance in Metal Additive Manufacturing (FY15-0664)

    Energy Technology Data Exchange (ETDEWEB)

    Salzbrenner, Bradley; Boyce, Brad; Jared, Bradley Howell; Rodelas, Jeffrey; Laing, John Robert

    2016-02-01

    No industry-wide standards yet exist for minimum properties in additively manufactured (AM) metals. While AM alloys such as 17-4 precipitation hardened stainless steel have been shown to have average properties that can be comparable to wrought or cast product, they suffer from inconsistent performance. Variability in the feedstock powder, feature sizes, thermal history, and laser performance can lead to unpredictable surface finish, chemistry, phase content, and defects. To address this issue, rapid, efficient, high-throughput mechanical testing and data analysis was developed, providing profound statistical insight into the stochastic variability in properties. With this new approach, 1000’s of comprehensive tensile tests can be performed for the cost of 10’s of conventional tests. This new high-throughput approach provides a material qualification pathway that is commensurate with the quick turn-around benefit of AM.

  4. Smokers' unprompted comments on cigarette additives during conversations about the genetic basis for nicotine addiction: a focus group study.

    Science.gov (United States)

    Philpott, Sydney E; Gehlert, Sarah; Waters, Erika A

    2018-04-13

    Research designed to elicit smokers' cognitive and affective reactions to information about chemicals that tobacco companies add to cigarettes ("additives") found that knowledge is limited. However, little is known about smokers' unprompted thoughts and feelings about additives. Such information could be used to shape future communication efforts. We explored the content and possible functions of spontaneous statements about cigarette additives made by smokers during a study examining reactions to learning about the genetic link to nicotine addiction. Adult smokers (N = 84) were recruited from a medium-sized Midwestern city. Focus groups (N = 13) were conducted between April-September 2012. Data were analyzed by 2 coders using thematic analysis. Comments about cigarette additives arose without prompting by the focus group moderator. Three main themes were identified: (1) discussing additives helped participants navigate the conceptual link between smoking and genetics, (2) additives were discussed as an alternative mechanism for addiction to cigarettes, and (3) additives provided an alternative mechanism by which cigarette smoking exacerbates physical harm. Notably, discussion of additives contained a pervasive tone of mistrust illustrated by words like "they" and "them," by statements of uncertainty such as "you don't know what they're putting into cigarettes," and by negative affective verbalizations such as "nasty" and "disgusting". Participants had distinct beliefs about cigarette additives, each of which seemed to serve a purpose. Although mistrust may complicate communication about the health risks of tobacco use, health communication experts could use smokers' existing beliefs and feelings to better design more effective anti-smoking messages.

  5. Lectures on Chevalley groups

    CERN Document Server

    Steinberg, Robert

    2016-01-01

    Robert Steinberg's Lectures on Chevalley Groups were delivered and written during the author's sabbatical visit to Yale University in the 1967-1968 academic year. The work presents the status of the theory of Chevalley groups as it was in the mid-1960s. Much of this material was instrumental in many areas of mathematics, in particular in the theory of algebraic groups and in the subsequent classification of finite groups. This posthumous edition incorporates additions and corrections prepared by the author during his retirement, including a new introductory chapter. A bibliography and editorial notes have also been added. This is a great unsurpassed introduction to the subject of Chevalley groups that influenced generations of mathematicians. I would recommend it to anybody whose interests include group theory. -Efim Zelmanov, University of California, San Diego Robert Steinberg's lectures on Chevalley groups were given at Yale University in 1967. The notes for the lectures contain a wonderful exposition of ...

  6. Hydroxyapatite formation on titania-based materials in a solution mimicking body fluid: Effects of manganese and iron addition in anatase.

    Science.gov (United States)

    Shin, Euisup; Kim, Ill Yong; Cho, Sung Baek; Ohtsuki, Chikara

    2015-03-01

    Hydroxyapatite formation on the surfaces of implanted materials plays an important role in osteoconduction of bone substitutes in bone tissues. Titania hydrogels are known to instigate hydroxyapatite formation in a solution mimicking human blood plasma. To date, the relationship between the surface characteristics of titania and hydroxyapatite formation on its surface remains unclear. In this study, titania powders with varying surface characteristics were prepared by addition of manganese or iron to examine hydroxyapatite formation in a type of simulated body fluid (Kokubo solution). Hydroxyapatite formation was monitored by observation of deposited particles with scale-like morphology on the prepared titania powders. The effect of the titania surface characteristics, i.e., crystal structure, zeta potential, hydroxy group content, and specific surface area, on hydroxyapatite formation was examined. Hydroxyapatite formation was observed on the surface of titania powders that were primarily anatase, and featured a negative zeta potential and low specific surface areas irrespective of the hydroxy group content. High specific surface areas inhibited the formation of hydroxyapatite because calcium and phosphate ions were mostly consumed by adsorption on the titania surface. Thus, these surface characteristics of titania determine its osteoconductivity following exposure to body fluid. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Matt waste from glass separated collection: an eco-sustainable addition for new building materials.

    Science.gov (United States)

    Bignozzi, M C; Saccani, A; Sandrolini, F

    2009-01-01

    Matt waste (MW), a by-product of purification processes of cullet derived from separated glass waste collection, has been studied as filler for self-compacting concrete and as an addition for newly blended cement. Properties of self-compacting concrete compared to reference samples are reported. They include characteristics at the fresh and hardened states, and the compressive strength and porosity of mortar samples that were formulated with increasing amounts of MW to be used as cement replacement (up to 50wt.%). The effects of matt waste are discussed with respect to the mechanical and microstructural characteristics of the resulting new materials.

  8. Development of a relational database for nuclear material (NM) accounting in RC and I Group

    International Nuclear Information System (INIS)

    Yadav, M.B.; Ramakumar, K.L.; Venugopal, V.

    2011-01-01

    A relational database for the nuclear material accounting in RC and I Group has been developed with MYSQL for Back-End and JAVA for Front-End development. Back-End has been developed to avoid any data redundancy, to provide random access of the data and to retrieve the required information from database easily. JAVA Applet and Java Swing components of JAVA programming have been used in the Front-End development. Front-End has been developed to provide data security, data integrity, to generate inventory status report at the end of accounting period, and also to have a quick look of some required information on computer screen. The database has been tested for the data of three quarters of the year 2009. It has been implemented from 1st January, 2010 for the accounting of nuclear material in RC and I Group. (author)

  9. Development of a relational database for nuclear material (NM) accounting in RC and I Group

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, M B; Ramakumar, K L; Venugopal, V [Radioanalytical Chemistry Division, Radiochemistry and Isotope Group, Bhabha Atomic Research Centre, Mumbai (India)

    2011-07-01

    A relational database for the nuclear material accounting in RC and I Group has been developed with MYSQL for Back-End and JAVA for Front-End development. Back-End has been developed to avoid any data redundancy, to provide random access of the data and to retrieve the required information from database easily. JAVA Applet and Java Swing components of JAVA programming have been used in the Front-End development. Front-End has been developed to provide data security, data integrity, to generate inventory status report at the end of accounting period, and also to have a quick look of some required information on computer screen. The database has been tested for the data of three quarters of the year 2009. It has been implemented from 1st January, 2010 for the accounting of nuclear material in RC and I Group. (author)

  10. Additional materials for welding of the EP99 heat resisting alloy with the EI868 alloy and 12Kh18N9T steel

    International Nuclear Information System (INIS)

    Sorokin, L.I.; Filippova, S.P.; Petrova, L.A.

    1978-01-01

    Presented are the results of the studies aimed at selecting an additive material for argon-arc welding process involving heat-resistant nickel EP99 alloy to be welded to the EI868 alloy and 12Kh18N9T steel. As the additive material use was made of wire made of nickel-chromium alloys and covered electrodes made of the EP367 alloy with additions of tungsten. It has been established that in order to improve the resistance of metal to hot-crack formation during argon arc welding of the EP99 alloy with the EI868 alloy, it is advisable to use an additive material of the EP533 alloy, and while welding the same alloy with the 12Kh18N9T steel, filler wire of the EP367 alloy is recommended

  11. Assessment of advanced materials development in the European Fusion long-term Technology Programme. Report to the FTSC-P by the Advanced Materials Working Group

    International Nuclear Information System (INIS)

    Van der Schaaf, B.

    1998-08-01

    In view of the transition to the next, fifth, framework program, and the resources available, the European Commission (EC) requested to launch an assessment for the Advanced Materials area, as part of the European Fusion Technology Programme. A working group chaired by the Materials Field Coordinator assessed the current status of the programme with the view to prepare its future focusing on one class of materials, as expressed by the FTSC-P. Two classes of materials: SiC/SiC ceramic composites and low activation alloys on the basis of V, Ti and Cr are presently in the Advanced Materials area. They are all in very early stages of development with a view to their application in fusion power reactors. All have adverse properties that could exclude their use. SiC/SiC ceramic composites have by far the highest potential operating temperature, contributing greatly to the efficiency of fusion power reactors. At the same time it is also the development with the highest development loss risk. This class of materials needs an integrated approach of design, manufacturing and materials development different from alloy development. The alloys with vanadium and titanium as base element have limited application windows due to their inherent properties. If the development of RAFM steels continues as foreseen, the development of V and Ti alloys is not justifiable in the frame of the advanced materials programme. The oxide dispersion strengthened variant of RAFM steels might reach similar temperature limits: about 900K. Chromium based alloys hold the promise of higher operating temperatures, but the knowledge and experience in fusion applications is limited. Investigating the potential of chromium alloys is considered worthwhile. The alloys have comparable activation hazards and early recycling potential, with properly controlled compositions. Recycling of the SiC/SiC class of materials needs further investigation. The working group concludes that at this stage no contender can be

  12. Mechanical strength of welding zones produced by material extrusion additive manufacturing.

    Science.gov (United States)

    Davis, Chelsea S; Hillgartner, Kaitlyn E; Han, Seung Hoon; Seppala, Jonathan E

    2017-08-01

    As more manufacturing processes and research institutions adopt customized manufacturing as a key element in their design strategies and finished products, the resulting mechanical properties of parts produced through additive manufacturing (AM) must be characterized and understood. In material extrusion (MatEx), the most recently extruded polymer filament must bond to the previously extruded filament via polymer diffusion to form a "weld". The strength of the weld limits the performance of the manufactured part and is controlled through processing conditions. Under-standing the role of processing conditions, specifically extruder velocity and extruder temperature, on the overall strength of the weld will allow optimization of MatEx-AM parts. Here, the fracture toughness of a single weld is determined through a facile "trouser tear" Mode III fracture experiment. The actual weld thickness is observed directly by optical microscopy characterization of cross sections of MatEx-AM samples. Representative data of weld strength as a function of printing parameters on a commercial 3D printer demonstrates the robustness of the method.

  13. Characteristics of phase-change materials containing oxide nano-additives for thermal storage.

    Science.gov (United States)

    Teng, Tun-Ping; Yu, Chao-Chieh

    2012-11-06

    In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin.

  14. Colloidal-based additive manufacturing of bio-inspired composites

    Science.gov (United States)

    Studart, Andre R.

    Composite materials in nature exhibit heterogeneous architectures that are tuned to fulfill the functional demands of the surrounding environment. Examples range from the cellulose-based organic structure of plants to highly mineralized collagen-based skeletal parts like bone and teeth. Because they are often utilized to combine opposing properties such as strength and low-density or stiffness and wear resistance, the heterogeneous architecture of natural materials can potentially address several of the technical limitations of artificial homogeneous composites. However, current man-made manufacturing technologies do not allow for the level of composition and fiber orientation control found in natural heterogeneous systems. In this talk, I will present two additive manufacturing technologies recently developed in our group to build composites with exquisite architectures only rivaled by structures made by living organisms in nature. Since the proposed techniques utilize colloidal suspensions as feedstock, understanding the physics underlying the stability, assembly and rheology of the printing inks is key to predict and control the architecture of manufactured parts. Our results will show that additive manufacturing routes offer a new exciting pathway for the fabrication of biologically-inspired composite materials with unprecedented architectures and functionalities.

  15. Group IV Materials for High Performance Methane Sensing in Novel Slot Optical Waveguides at 2.883 μm and 3.39 μm

    Directory of Open Access Journals (Sweden)

    Vittorio M. N. PASSARO

    2012-03-01

    Full Text Available In this paper a detailed investigation of novel photonic sensors based on slot waveguides has been carried out. Appropriate alloys of group IV materials, such as germanium (Ge, silicon (Si, carbon (C and tin (Sn, are applied in silicon-on-insulator (SOI technology for homogeneous optical sensing at 2.883 µm and 3.39 μm. Electronic and optical properties of group IV alloys have been investigated. In addition, we have designed novel group IV vertical slot waveguides in order to achieve ultra-high sensitivities, as well as good fabrication tolerances. All these features have been compared with well-known SOI slot waveguides for optical label-free homogeneous sensing at 1.55 µm. In conclusion, theoretical investigation of ring resonators based on these novel slot waveguides has revealed very good results in terms of ultra high sensing performance of methane gas, i.e., limit of detection ~ 3.6×10-5 RIU and wavelength sensitivity > 2×103 nm/RIU.

  16. Formic acid as additive for the preparation of high-performance FePO4 materials by spray drying method

    CSIR Research Space (South Africa)

    Yanga, F

    2017-12-01

    Full Text Available International, vol. 43(18): 16652-16658 Formic acid as additive for the preparation of high-performance FePO4 materials by spray drying method Yanga F Zhang H Shao Y Song H Liao S Ren J ABSTRACT: High-performance ferric phosphate (FePO4...

  17. Production of urethane group containing coatings by curing with ionizing radiation

    International Nuclear Information System (INIS)

    Spoor, H.; Demmler, K.

    1975-01-01

    A process is described for the manufacture of coatings by applying ionizing radiation to a composition which contains olefinically unsaturated polymeric materials having urethane groups and which has been applied to a substrate. The polymeric materials may be used in combination with olefinically unsaturated monomeric compounds and conventional additives. (U.S.)

  18. Grain Structure Control of Additively Manufactured Metallic Materials

    Directory of Open Access Journals (Sweden)

    Fuyao Yan

    2017-11-01

    Full Text Available Grain structure control is challenging for metal additive manufacturing (AM. Grain structure optimization requires the control of grain morphology with grain size refinement, which can improve the mechanical properties of additive manufactured components. This work summarizes methods to promote fine equiaxed grains in both the additive manufacturing process and subsequent heat treatment. Influences of temperature gradient, solidification velocity and alloy composition on grain morphology are discussed. Equiaxed solidification is greatly promoted by introducing a high density of heterogeneous nucleation sites via powder rate control in the direct energy deposition (DED technique or powder surface treatment for powder-bed techniques. Grain growth/coarsening during post-processing heat treatment can be restricted by presence of nano-scale oxide particles formed in-situ during AM. Grain refinement of martensitic steels can also be achieved by cyclic austenitizing in post-processing heat treatment. Evidently, new alloy powder design is another sustainable method enhancing the capability of AM for high-performance components with desirable microstructures.

  19. State system of accounting for and control of nuclear materials and Protocol Additional in the Slovak Republic

    International Nuclear Information System (INIS)

    Bencova, A.

    2001-01-01

    proposed procedures at the facility for nuclear materials accountancy and control with special reference to material balance areas and key measurement points, measurements of flow and procedures for physical inventory taking. This document is prepared by the IAEA using the Design Information Questionnaire supplied by the facility operator. The Nuclear Regulatory Authority of the Slovak Republic uses computerised system for SSAC - Code ZARUKY 3.00. This code should be able to communicate with the database of operators, which are allowed to handle nuclear material and it should reflect all limitations specified in theirs permissions. It is created on a system with fully satisfactory safety, strictly defined confidentiality and in a system, which allows the access of several users in parallel. As a new component of the code the system for reporting in accordance with the requirements of the Additional Protocol will be incorporated. Starting after political changes in the Central Europe in the beginning of nineties the Slovak Republic is facing a new type of crime illicit trafficking of nuclear and radioactive materials. Direct economical losses in this case are not comparable with the impact on proliferation and radiation safety risk. The government of the Slovak Republic is aware of the situation and has prepared some measures, which may help us to cope with this problem. These measures were mostly concentrated on detection on the state border as well as inside the state. However, the most important is a state system of measures how to prevent removal of material into illegal use. The Protocol Additional was signed by the government of the Slovak Republic in September 1999. However, The Protocol cannot be ratified, as the laws now in effect in the Slovak Republic do not make it possible to meet all requirements resulting from the Protocol. To enable the ratification of the Protocol Additional, first of all it is necessary to amend the Atomic Law and associated regulations

  20. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 06, Revision 3 (FGE.06Rev3): Straight- and branched-chain aliphatic unsaturated primary alcohols, aldehydes, carboxylic acids, and esters from chemical groups 1

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 50 flavouring substances in the Flavouring Group Evaluation 6, Revision 3, using the Procedure in Commission Regulation (EC) No 1565/2000. None of the subs......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 50 flavouring substances in the Flavouring Group Evaluation 6, Revision 3, using the Procedure in Commission Regulation (EC) No 1565/2000. None...... of the substances were considered to have genotoxic potential. The substances were evaluated through a stepwise approach (the Procedure) that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity...... of these flavouring substances, the specifications for the materials of commerce have also been considered. For one substance [FL-no: 09.938] an identity test is missing and for two substances [FL-no: 05.226 and 09.950] the range of the specific gravity is too wide. Additional, the stereoisomeric mixture has not been...

  1. Surface characterization of an energetic material, pentaerythritoltetranitrate (PETN), having a thin coating achieved through a starved addition microencapsulation technique

    Energy Technology Data Exchange (ETDEWEB)

    Worley, C.M.

    1986-05-07

    The objective of this research was to: (1) determine the nature of a thin coating on an explosive material which was applied using a starved addition microencapsulation technique, (2) understand the coating/crystal bond, and (3) investigate the wettability/adhesion of plastic/solvent combinations using the coating process. The coating used in this work was a Firestone Plastic Company copolymer (FPC-461) of vinylchloride/trifluorochloroethylene in a 1.5/1.0 weight ratio. The energetic explosive examined was pentaerythritoltetranitrate (PETN). The coating process used was starved addition followed by a solvent evaporation technique. Surface analytical studies, completed for characterization of the coating process, show (1) evidence that the polymer coating is present, but not continuous, over the surface of PETN; (2) the average thickness of the polymer coating is between 16-32 A and greater than 44 A, respectively, for 0.5 and 20 wt % coated PETN; (3) no changes in surface chemistry of the polymer or the explosive material following microencapsulation; and (4) the presence of explosive material on the surface of 0.5 wt % FPC-461 coated explosives. 5 refs., 15 figs., 6 tabs.

  2. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    Science.gov (United States)

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubenchik, A. M.

    2015-12-01

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this paper, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  3. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    Energy Technology Data Exchange (ETDEWEB)

    King, W. E., E-mail: weking@llnl.gov [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Khairallah, S. A. [Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Kamath, C. [Computation Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Rubenchik, A. M. [NIF and Photon Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-12-15

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this paper, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  4. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    International Nuclear Information System (INIS)

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Khairallah, S. A.; Kamath, C.; Rubenchik, A. M.

    2015-01-01

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this paper, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process

  5. Rate of Decomposition of Organic Matter in Soil as Influenced by Repeated Air Drying-Rewetting and Repeated Additions of Organic Material

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1974-01-01

    Repeated air drying and rewetting of three soils followed by incubation at 20°C resulted in an increase in the rate of decomposition of a fraction of 14C labeled organic matter in the soils. The labeled organic matter originated from labeled glucose, cellulose and straw, respectively, metabolized...... of the treatment was least in the soil which had been incubated with the labeled material for the longest time. Additions of unlabeled, decomposable organic material also increased the rate of decomposition of the labeled organic matter. The evolution of labeled CO2 during the 1st month of incubation after...... addition was in some cases 4–10 times larger than the evolution from the controls. During the continued incubation the evolution decreased almost to the level of the controls, indicating that the effect was related to the increased biological activity in the soils during decomposition of the added material...

  6. Hypervelocity Impact Testing of Materials for Additive Construction: Applications on Earth, the Moon, and Mars

    Science.gov (United States)

    Ordonez, Erick; Edmunson, Jennifer; Fiske, Michael; Christiansen, Eric; Miller, Josh; Davis, Bruce Alan; Read, Jon; Johnston, Mallory; Fikes, John

    2017-01-01

    Additive Construction is the process of building infrastructure such as habitats, garages, roads, berms, etcetera layer by layer (3D printing). The National Aeronautics and Space Administration (NASA) and the United States Army Corps of Engineers (USACE) are pursuing additive construction to build structures using resources available in-situ. Using materials available in-situ reduces the cost of planetary missions and operations in theater. The NASA team is investigating multiple binders that can be produced on planetary surfaces, including the magnesium oxide-based Sorel cement; the components required to make Ordinary Portland Cement (OPC), the common cement used on Earth, have been found on Mars. The availability of OPC-based concrete on Earth drove the USACE to pursue additive construction for base housing and barriers for military operations. Planetary and military base structures must be capable of resisting micrometeoroid impacts with velocities ranging from 11 to 72km/s for particle sizes 200 micrometers or more (depending on protection requirements) as well as bullets and shrapnel with a velocity of 1.036km/s with projectiles 5.66mm diameter and 57.40mm in length, respectively.

  7. Multicomponent Synthesis of Isoindolinone Frameworks via RhIII -Catalysed in situ Directing Group-Assisted Tandem Oxidative Olefination/Michael Addition.

    Science.gov (United States)

    Wang, Liang; Liu, Xi; Liu, Jian-Biao; Shen, Jun; Chen, Qun; He, Ming-Yang

    2018-04-04

    A Rh III -catalysed three-component synthesis of isoindolinone frameworks via direct assembly of benzoyl chlorides, o-aminophenols and activated alkenes has been developed. The process involves in situ generation of o-aminophenol (OAP)-based bidentate directing group (DG), Rh III -catalysed tandem ortho C-H olefination and subsequent cyclization via aza-Michael addition. This protocol exhibits good chemoselectivity and functional group tolerance. Computational studies showed that the presence of hydroxyl group on the N-aryl ring could enhance the chemoselectivity of the reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Building materials. Stichwort Baustoff

    Energy Technology Data Exchange (ETDEWEB)

    Rohwer, W

    1981-01-01

    To handle building materials properly, one must know about their characteristics. This pocket book will be of help: structured like a glossary, it gives brief descriptions of the most common building materials. It is small and handy enough to be a constant companion to resident engineers, foremen, gangers, building tradesmen, and construction workers and an aid in their training. The following groups of building materials are discussed: Natural stone; units for brick walls, floors, and roofs; mortar and concrete (definitions, binders, aggregates, additives, admixtures, mixing water); special types of plaster and rendering; light-weight building boards and wood wool basis; multilayer light-weight building boards; gypsum plasterboards; chimney construction; sewers; thermal insulation and sound section; structural steels; plastics.

  9. First principles calculation of material properties of group IV elements and III-V compounds

    Science.gov (United States)

    Malone, Brad Dean

    This thesis presents first principles calculations on the properties of group IV elements and group III-V compounds. It includes investigations into what structure a material is likely to form in, and given that structure, what are its electronic, optical, and lattice dynamical properties as well as what are the properties of defects that might be introduced into the sample. The thesis is divided as follows: • Chapter 1 contains some of the conceptual foundations used in the present work. These involve the major approximations which allow us to approach the problem of systems with huge numbers of interacting electrons and atomic cores. • Then, in Chapter 2, we discuss one of the major limitations to the DFT formalism introduced in Chapter 1, namely its inability to predict the quasiparticle spectra of materials and in particular the band gap of a semiconductor. We introduce a Green's function approach to the electron self-energy Sigma known as the GW approximation and use it to compute the quasiparticle band structures of a number of group IV and III-V semiconductors. • In Chapter 3 we present a first-principles study of a number of high-pressure metastable phases of Si with tetrahedral bonding. The phases studied include all experimentally determined phases that result from decompression from the metallic beta-Sn phase, specifically the BC8 (Si-III), hexagonal diamond (Si-IV), and R8 (Si-XII). In addition to these, we also study the hypothetical ST12 structure found upon decompression from beta-Sn in germanium. • Our attention is then turned to the first principles calculations of optical properties in Chapter 4. The Bethe-Salpeter equation is then solved to obtain the optical spectrum of this material including electron-hole interactions. The calculated optical spectrum is compared with experimental data for other forms of silicon commonly used in photovoltaic devices, namely the cubic, polycrystalline, and amorphous forms. • In Chapter 5 we present

  10. Determination of platinum-group elements in the geological standard reference materials by isotope dilution-ICPMS

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Hu; Hongliao, He [National Research Center for Geoanalysis, Beijing (China)

    2005-10-15

    Platinum group elements (PGEs) includes platinum, palladium, iridium, osmium, rhodium and ruthenium. It has very high economic and scientific value in the field of geoscience and environmental science. But the analysis data referred by the different lab are very disperse because of the difficulty of the determination of PGEs. It makes very difficult to fix the value of the PGEs in the standard reference materials. In the article, the values of the PGEs in the standard reference materials of ocean sediment are determined by isotope dilution technique and dependable values of these elements are provided. (authors)

  11. Determination of platinum-group elements in the geological standard reference materials by isotope dilution-ICPMS

    International Nuclear Information System (INIS)

    Hu Mingyue; He Hongliao

    2005-01-01

    Platinum group elements (PGEs) includes platinum, palladium, iridium, osmium, rhodium and ruthenium. It has very high economic and scientific value in the field of geoscience and environmental science. But the analysis data referred by the different lab are very disperse because of the difficulty of the determination of PGEs. It makes very difficult to fix the value of the PGEs in the standard reference materials. In the article, the values of the PGEs in the standard reference materials of ocean sediment are determined by isotope dilution technique and dependable values of these elements are provided. (authors)

  12. IAEA advisory group meeting on: Critical assessment of tritium retention in fusion reactor materials. Summary report

    International Nuclear Information System (INIS)

    Janev, R.K.; Federici, G.; Roth, J.

    1999-07-01

    The proceedings, conclusions and recommendations of the IAEA Advisory Group Meeting on 'Critical Assessment of Tritium Retention in Fusion Reactor Materials', held on June 7-8, 1999 at the IAEA Headquarters in Vienna, Austria, are briefly described. The report contains a summary of the presentations of meeting participants, a review of the data status (availability and needs) for the fusion most relevant bulk and mixed materials, and recommendations to the IAEA regarding its future activity in this data area. (author)

  13. The use of plasticizing additives based on recycled raw materials in the petrochemical rubber mixtures

    Directory of Open Access Journals (Sweden)

    Z. S. Shashok

    2016-01-01

    Full Text Available At present, the development of alternative products for elastomers based on recycling petrochemical raw materials is a new trend of the rubber industry progress. Petrochemical raw materials include spent lubricants and motor oils are among such recycling products. In this context, the influence of the products of recycling waste engine oil (DVCH and RA in comparison with industrial oil (I-20 on the technological properties of filled elastomeric compositions was investigated. The elastomeric compositions were based on poly isoprene and divinyl rubbers. The plasticizing components were manufactured by IOOO “DVCH-Menedzhment”. They are mixture of hydro-carbons, C16–C20 and differ from each other in the content of linear and branched paraffin. Plastic-elastic properties of rubber compounds on the shear disk viscometer MV2000 in accordance with GOST 10722–76 was carried out. Kinetics of vulcanization on the rheometer ODR2000 according to GOST 12535–84 was defined. It is shown that the introduction of RA test plasticizing component provides a significant effect on Mooney viscosity, as compared to elastomeric compositions containing a plasticizer and I-20 and plasticizing additive DVCH. It revealed that the administration of all components in the studied plasticizing elastomer compositions based on a combination poly isoprene and divinyl rubbers has no significant effect on the rate of relaxation of stress of rubber compounds. It is found that elastomeric compositions containing as additives investigated processing waste oil products (DVCH and RA are characterized by a slightly smaller value of time to reach an optimal degree of vulcanization.

  14. Comparison of the reactivity of the materials having two different kinds of functional groups by applying hydrogen-isotope exchange reaction

    International Nuclear Information System (INIS)

    Imaizumi, H.; Yumoto, Y.

    1995-01-01

    The hydrogen-isotope exchange reaction between m- (or p-) aminobenzoic acid and HTO vapor has been observed in order to estimate the scale of the reactivity of the material. Each rate constant has been obtained by the A''-McKay plot method. Comparing the rate constants, the following three items have been confirmed: (1) the reactivity of both COOH and NH 2 groups increases with temperature; (2) the degree of the effect of the COOH (or NH 2 ) group on the reactivity in m-aminobenzoic acid is larger than that in p-aminobenzoic acid; (3) the A''-McKay plot method is useful in studying the reactivity of the materials not only with one (or the same kinds of) functional group(s), but also with two different kinds of functional groups. (orig.)

  15. Organogermanium Chemistry: Germacyclobutanes and digermane Additions to Acetylenes

    Energy Technology Data Exchange (ETDEWEB)

    Chubb, Andrew Michael [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    This dissertation comprises two main research projects. The first project, presented in Chapter 1, involves the synthesis and thermochemistry of germacyclobutanes (germetanes). Four new germetanes (spirodigermetane, diallylgermetane, dichlorogermetane, and germacyclobutane) have been synthesized using a modified di-Grignard synthesis. Diallylgermetane is shown to be a useful starting material for obtaining other germetanes, particularly the parent germetane, germacyclobutane. The gas-phase thermochemistries of spirodigermetane, diallylgermetane and germacyclobutane have been explored via pulsed stirred-flow reactor (SFR) studies, showing remarkable differences in decomposition, depending on the substitution at the germanium atom. The second project investigates the thermochemical, photochemical, and catalytic additions of several digermanes to acetylenes. The first examples of thermo- and photochemical additions of Ge-Ge bonds to C{triple_bond}C are demonstrated. Mechanistic investigations are described and comparisons are made to analogous disilane addition reactions, previously studied in their group.

  16. Advisory group meeting on safeguards related to final disposal of nuclear material in waste and spent fuel (AGM-660)

    International Nuclear Information System (INIS)

    1988-12-01

    The Advisory Group was asked to advise the Agency on the circumstances under which the Agency might logically implement Section 11 of INFCIRC/153, or the comparable Section 26c of INFCIRC/66/rev2, which provides for a determination that nuclear material is 'practicably irrecoverable', and that therefore safeguards could be terminated. This advice was sought, and in the paragraphs that follow is given, in two areas. One relates to 'waste', which the Group understands as referring to material which contains nuclear material that the State/facility operator believes has no economically recoverable value and for which no further use is foreseen. The other relates to spent fuel, which in some cases may be placed in geological 'permanent repositories'

  17. Deposition of additives onto surface of carbon materials by blending method--general conception

    International Nuclear Information System (INIS)

    Przepiorski, Jacek

    2005-01-01

    Carbon fibers loaded with potassium carbonate and with metallic copper were prepared by applying a blending method. Raw isotropic coal pitch was blended with KOH or CuBr 2 and obtained mixtures were subjected to spinning. In this way KOH and copper salt-blended fiber with uniform distribution of potassium and copper were spun. The raw fibers were exposed to stabilization with a mixture of CO 2 and air or air only through heating to 330 deg. C and next to treatment with carbon dioxide or hydrogen at higher temperatures. Electron probe micro-analysis (EPMA) analyses showed presence of potassium carbonate or metallic copper predominantly in peripheral regions of the obtained fibers. Basing on the mechanisms of potassium and copper diffusion over the carbon volume, generalized method for the deposition of additives onto surface of carbon materials is proposed

  18. EFSA EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 304 (FGE.304): Five carboxamides from chemical group 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate five flavouring substances in the Flavouring Group Evaluation 304, using the Procedure in Commission Regulation (EC) No 1565/2000. None of the substances...... data are required. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered. Specifications including complete purity criteria and identity for the materials of commerce have been provided for all five candidate substances....

  19. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 76, Revision 1 (FGE.76Rev1)

    OpenAIRE

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz; Lund, Pia; Nørby, Karin Kristiane

    2013-01-01

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (JECFA), and to decide whether further evaluation is necessary, as laid down in Commission Regulation (EC) No 1565/2000. The present opinion concerns a group of 26 sulphur-containing heterocyclic compounds evaluated by the JECFA at the 59th m...

  20. Additive manufacturing of metals

    International Nuclear Information System (INIS)

    Herzog, Dirk; Seyda, Vanessa; Wycisk, Eric; Emmelmann, Claus

    2016-01-01

    Additive Manufacturing (AM), the layer-by layer build-up of parts, has lately become an option for serial production. Today, several metallic materials including the important engineering materials steel, aluminium and titanium may be processed to full dense parts with outstanding properties. In this context, the present overview article describes the complex relationship between AM processes, microstructure and resulting properties for metals. It explains the fundamentals of Laser Beam Melting, Electron Beam Melting and Laser Metal Deposition, and introduces the commercially available materials for the different processes. Thereafter, typical microstructures for additively manufactured steel, aluminium and titanium are presented. Special attention is paid to AM specific grain structures, resulting from the complex thermal cycle and high cooling rates. The properties evolving as a consequence of the microstructure are elaborated under static and dynamic loading. According to these properties, typical applications are presented for the materials and methods for conclusion.

  1. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) ; Scientific Opinion on Flavouring Group Evaluation 305 (FGE.305): L - Methionylglycine of chemical group 34

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    use in foods that are not heated or intended to be heated. Besides the safety assessment of the flavouring substance, the specifications for the material of commerce have also been considered. Adequate specifications including complete purity criteria and identity for the material of commerce have......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate one flavouring substance, the dipeptide L-methionylglycine [FL-no: 17.037], in the Flavouring Group Evaluation 305, using the Procedure in Commission...... been provided for the candidate substance. © European Food Safety Authority, 2013...

  2. Ceramic-Based 4D Components: Additive Manufacturing (AM) of Ceramic-Based Functionally Graded Materials (FGM) by Thermoplastic 3D Printing (T3DP).

    Science.gov (United States)

    Scheithauer, Uwe; Weingarten, Steven; Johne, Robert; Schwarzer, Eric; Abel, Johannes; Richter, Hans-Jürgen; Moritz, Tassilo; Michaelis, Alexander

    2017-11-28

    In our study, we investigated the additive manufacturing (AM) of ceramic-based functionally graded materials (FGM) by the direct AM technology thermoplastic 3D printing (T3DP). Zirconia components with varying microstructures were additively manufactured by using thermoplastic suspensions with different contents of pore-forming agents (PFA), which were co-sintered defect-free. Different materials were investigated concerning their suitability as PFA for the T3DP process. Diverse zirconia-based suspensions were prepared and used for the AM of single- and multi-material test components. All of the samples were sintered defect-free, and in the end, we could realize a brick wall-like component consisting of dense (<1% porosity) and porous (approx. 5% porosity) zirconia areas to combine different properties in one component. T3DP opens the door to the AM of further ceramic-based 4D components, such as multi-color, multi-material, or especially, multi-functional components.

  3. Impact of Defects in Powder Feedstock Materials on Microstructure of 304L and 316L Stainless Steel Produced by Additive Manufacturing

    Science.gov (United States)

    Morrow, Benjamin M.; Lienert, Thomas J.; Knapp, Cameron M.; Sutton, Jacob O.; Brand, Michael J.; Pacheco, Robin M.; Livescu, Veronica; Carpenter, John S.; Gray, George T.

    2018-05-01

    Recent work in both 304L and 316L stainless steel produced by additive manufacturing (AM) has shown that in addition to the unique, characteristic microstructures formed during the process, a fine dispersion of sub-micron particles, with a chemistry different from either the powder feedstock or the expected final material, are evident in the final microstructure. Such fine-scale features can only be resolved using transmission electron microscopy (TEM) or similar techniques. The present work uses electron microscopy to study both the initial powder feedstock and microstructures in final AM parts. Special attention is paid to the chemistry and origin of these nanoscale particles in several different metal alloys, and their impact on the final build. Comparisons to traditional, wrought material will be made.

  4. Bibliography of the technical literature of the Materials Joining Group, Metals and Ceramics Division, 1951 through June 1987

    International Nuclear Information System (INIS)

    David, S.A.; Goodwin, G.M.; Gardner, K.

    1987-08-01

    This document contains a listing of the written scientific information originating in the Materials Joining Group (formerly the Welding and Brazing Group), Metals and Ceramics Division, Oak Ridge National Laboratory during 1951 through June 1987. It is a registry of about 400 documents as nearly as possible in the order in which they were issued

  5. Carboxylate and amino group coated silver nanoparticles as joining materials for copper-to-copper silver joints.

    Science.gov (United States)

    Oestreicher, A; Röhrich, T; Lerch, M

    2012-12-01

    Organic silver complexes are introduced where silver is linked either with a carboxyl group or with an amino group. Upon heating, nanoparticles are generated if the respective ligands are long enough to act as stabilizing agents in the nanoparticulate regime. With decomposition and volatilization of the organic material, the sintering of silver occurs. The thermal characteristics of the carboxylates silver-n-octanoate, silver-n-decanoate, and AgOOC(CH2OCH2)2CH2OCH3 are compared with silver-n-alkylamines (n = 8, 9, and 12), and their thermal behavior is discussed based on thermogravimetry (TG) measurements. The consecutive stages of a metallization process are addressed based on the properties of AgOOC(CH2OCH2)2CH2OCH3, and the usable effects of the individual phases of this metal organic compound are analyzed by cross-sectional scanning electron microscope (SEM) images of silver joints. Selection criteria are addressed based on the thermal behavior. A mechanism for the joining process is proposed, considering formation and sintering of the nanoparticles. It was found that the bulk material can be used for low-temperature joining processes. Strong adherence to copper as a basic material can be achieved.

  6. An introduction to tensors and group theory for physicists

    CERN Document Server

    Jeevanjee, Nadir

    2015-01-01

    The second edition of this highly praised textbook provides an introduction to tensors, group theory, and their applications in classical and quantum physics.  Both intuitive and rigorous, it aims to demystify tensors by giving the slightly more abstract but conceptually much clearer definition found in the math literature, and then connects this formulation to the component formalism of physics calculations.  New pedagogical features, such as new illustrations, tables, and boxed sections, as well as additional “invitation” sections that provide accessible introductions to new material, offer increased visual engagement, clarity, and motivation for students.   Part I begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to physics through the use of tensor products. Part II introduces group theory, including abstract groups and Lie groups and their associated Lie algebras, then intertwines this material with that of Part...

  7. Rational molecular dynamics scheme for predicting optimum concentration loading of nano-additive in phase change materials

    Directory of Open Access Journals (Sweden)

    Monisha Rastogi

    2015-10-01

    Full Text Available The present study deals with the diffusion and phase transition behaviour of paraffin reinforced with carbon nano-additives namely graphene oxide (GO and surface functionalized single walled carbon nanotubes (SWCNT. Bulk disordered systems of paraffin hydrocarbons impregnated with carbon nano-additives have been generated in realistic equilibrium conformations for potential application as latent heat storage systems. Ab initio molecular dynamics(MD in conjugation with COMPASS forcefield has been implemented using periodic boundary conditions. The proposed scheme allows determination of optimum nano-additive loading for improving thermo-physical properties through analysis of mass, thermal and transport properties; and assists in determination of composite behaviour and related performance from microscopic point of view. It was observed that nanocomposites containing 7.8 % surface functionalised SWCNT and 55% GO loading corresponds to best latent heat storage system. The propounded methodology could serve as a by-pass route for economically taxing and iterative experimental procedures required to attain the optimum composition for best performance. The results also hint at the large unexplored potential of ab-initio classical MD techniques for predicting performance of new nanocomposites for potential phase change material applications.

  8. Rational molecular dynamics scheme for predicting optimum concentration loading of nano-additive in phase change materials

    Science.gov (United States)

    Rastogi, Monisha; Vaish, Rahul; Madhar, Niyaz Ahamad; Shaikh, Hamid; Al-Zahrani, S. M.

    2015-10-01

    The present study deals with the diffusion and phase transition behaviour of paraffin reinforced with carbon nano-additives namely graphene oxide (GO) and surface functionalized single walled carbon nanotubes (SWCNT). Bulk disordered systems of paraffin hydrocarbons impregnated with carbon nano-additives have been generated in realistic equilibrium conformations for potential application as latent heat storage systems. Ab initio molecular dynamics(MD) in conjugation with COMPASS forcefield has been implemented using periodic boundary conditions. The proposed scheme allows determination of optimum nano-additive loading for improving thermo-physical properties through analysis of mass, thermal and transport properties; and assists in determination of composite behaviour and related performance from microscopic point of view. It was observed that nanocomposites containing 7.8 % surface functionalised SWCNT and 55% GO loading corresponds to best latent heat storage system. The propounded methodology could serve as a by-pass route for economically taxing and iterative experimental procedures required to attain the optimum composition for best performance. The results also hint at the large unexplored potential of ab-initio classical MD techniques for predicting performance of new nanocomposites for potential phase change material applications.

  9. Isolated and modulated effects of topology and material type on the mechanical properties of additively manufactured porous biomaterials.

    Science.gov (United States)

    Hedayati, R; Ahmadi, S M; Lietaert, K; Pouran, B; Li, Y; Weinans, H; Rans, C D; Zadpoor, A A

    2018-03-01

    In this study, we tried to quantify the isolated and modulated effects of topological design and material type on the mechanical properties of AM porous biomaterials. Towards this aim, we assembled a large dataset comprising the mechanical properties of AM porous biomaterials with different topological designs (i.e. different unit cell types and relative densities) and material types. Porous structures were additively manufactured from Co-Cr using a selective laser melting (SLM) machine and tested under quasi-static compression. The normalized mechanical properties obtained from those structures were compared with mechanical properties available from our previous studies for porous structures made from Ti-6Al-4V and pure titanium as well as with analytical solutions. The normalized values of elastic modulus and yield stress were found to be relatively close to each other as well as in agreement with analytical solutions regardless of material type. However, the material type was found to systematically affect the mechanical properties of AM porous biomaterials in general and the post-elastic/post-yield range (plateau stress and energy absorption capacity) in particular. To put this in perspective, topological design could cause up to 10-fold difference in the mechanical properties of AM porous biomaterials while up to 2-fold difference was observed as a consequence of changing the material type. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The capric and lauric acid mixture with chemical additives as latent heat storage materials for cooling application

    Energy Technology Data Exchange (ETDEWEB)

    Roxas-Dimaano, M.N. [University of Santo Tomas, Manila (Philippines). Research Center for the Natural Sciences; Watanabe, T. [Tokyo Institute of Technology (Japan). Research Laboratory for Nuclear Reactors

    2002-09-01

    The mixture of capric acid and lauric acid (C-L acid), with the respective mole composition of 65% and 35%, is a potential phase change material (PCM). Its melting point of 18.0{sup o}C, however, is considered high for cooling application of thermal energy storage. The thermophysical and heat transfer characteristics of the C-L acid with some organic additives are investigated. Compatibility of C-L acid combinations with additives in different proportions and their melting characteristics are analyzed using the differential scanning calorimeter (DSC). Among the chemical additives, methyl salicylate, eugenol, and cineole presented the relevant melting characteristics. The individual heat transfer behavior and thermal storage performance of 0.1 mole fraction of these additives in the C-L acid mixture are evaluated. The radial and axial temperature distribution during charging and discharging at different concentrations of selected PCM combinations are experimentally determined employing a vertical cylindrical shell and tube heat exchanger. The methyl salicylate in the C-L acid provided the most effective additive in the C-L acid. It demonstrated the least melting band width aimed at lowering the melting point of the C-L acid with the highest heat of fusion value with relatively comparable rate of heat transfer. Furthermore, the thermal performance based on the total amount of transferred energy and their rates, established the PCM's latent heat storage capability. (author)

  11. Investigation of Effect Additive Phase Change Materials on the Thermal Conductivity

    Science.gov (United States)

    Nakielska, Magdalena; Chalamoński, Mariusz; Pawłowski, Krzysztof

    2017-10-01

    The aim of worldwide policy is to reduce the amount of consumed energy and conventional fuels. An important branch of the economy that affects the energy balance of the country is construction industry. In Poland, since January 1st, 2017 new limit values have been valid regarding energy saving and thermal insulation of buildings. To meet the requirements of more and more stringent technical and environmental standards, new technological solutions are currently being looked for. When it comes to the use of new materials, phase-change materials are being widely introduced into construction industry. Thanks to phase-change materials, we can increase the amount of heat storage. Great thermal inertia of the building provides more stable conditions inside the rooms and allows the use of unconventional sources of energy such as solar energy. A way to reduce the energy consumption of the object is the use of modern solutions for ventilation systems. An example is the solar chimney, which supports natural ventilation in order to improve internal comfort of the rooms. Numerous studies are being carried out in order to determine the optimal construction of solar chimneys in terms of materials and construction parameters. One of the elements of solar chimneys is an absorption plate, which affects the amount of accumulated heat in the construction. In order to carry out the research on the thermal capacity of the absorption plate, the first research work has been already planned. The work presents the research results of a heat-transfer coefficient of the absorption plates samples made of cement, aggregate, water, and phase-change material in different volume percentage. The work also presents methodology and the research process of phase-change material samples.

  12. Effects of Bonding Types and Functional Groups on CO 2 Capture using Novel Multiphase Systems of Liquid-like Nanoparticle Organic Hybrid Materials

    KAUST Repository

    Lin, Kun-Yi Andrew

    2011-08-01

    Novel liquid-like nanoparticle organic hybrid materials (NOHMs) which possess unique features including negligible vapor pressure and a high degree of tunability were synthesized and their physical and chemical properties as well as CO 2 capture capacities were investigated. NOHMs can be classified based on the synthesis methods involving different bonding types, the existence of linkers, and the addition of task-specific functional groups including amines for CO 2 capture. As a canopy of polymeric chains was grafted onto the nanoparticle cores, the thermal stability of the resulting NOHMs was improved. In order to isolate the entropy effect during CO 2 capture, NOHMs were first prepared using polymers that do not contain functional groups with strong chemical affinity toward CO 2. However, it was found that even ether groups on the polymeric canopy contributed to CO 2 capture in NOHMs via Lewis acid-base interactions, although this effect was insignificant compared to the effect of task-specific functional groups such as amine. In all cases, a higher partial pressure of CO 2 was more favorable for CO 2 capture, while a higher temperature caused an adverse effect. Multicyclic CO 2 capture tests confirmed superior recyclability of NOHMs and NOHMs also showed a higher selectivity toward CO 2 over N 2O, O 2 and N 2. © 2011 American Chemical Society.

  13. Process for optimizing titanium and zirconium additions to aluminum welding consumables

    International Nuclear Information System (INIS)

    Dvornak, M.J.; Frost, R.H.

    1992-01-01

    This patent describes a process for manufacturing an aluminum welding consumable. It comprises: creating an aluminum melt; adding to the aluminum melt solid pieces of a master alloy, comprising aluminum and a weld-enhancing additive to form a mixture, wherein the weld-enhancing additive being a material selected from the group consisting of titanium and zirconium, so that the weld-enhancing additive exists in the alloy prior to addition to the melt in the form of intermetallic particles relatively large in size and small in number, and after addition to the melt the weld-enhancing additive exists in the form of fractured intermetallic particles of refined size having dissolved fractured interfaces, casting the mixture into a chill mold to form an ingot; reducing the ingot to rods of rough wire dimension by cold rolling; annealing the reduced rods; and drawing the rods into wire

  14. Additive Manufacturing Materials Study for Gaseous Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Steer, C.A.; Durose, A.; Boakes, J. [AWE Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom)

    2015-07-01

    Additive manufacturing (AM) techniques may lead to improvements in many areas of radiation detector construction; notably the rapid manufacturing time allows for a reduced time between prototype iterations. The additive nature of the technique results in a granular microstructure which may be permeable to ingress by atmospheric gases and make it unsuitable for gaseous radiation detector development. In this study we consider the application of AM to the construction of enclosures and frames for wire-based gaseous radiation tracking detectors. We have focussed on oxygen impurity ingress as a measure of the permeability of the enclosure, and the gas charging and discharging curves of several simplistic enclosure shapes are reported. A prototype wire-frame is also presented to examine structural strength and positional accuracy of an AM produced frame. We lastly discuss the implications of this study for AM based radiation detection technology as a diagnostic tool for incident response scenarios, such as the interrogation of a suspect radiation-emitting package. (authors)

  15. Additive Manufacturing Materials Study for Gaseous Radiation Detection

    International Nuclear Information System (INIS)

    Steer, C.A.; Durose, A.; Boakes, J.

    2015-01-01

    Additive manufacturing (AM) techniques may lead to improvements in many areas of radiation detector construction; notably the rapid manufacturing time allows for a reduced time between prototype iterations. The additive nature of the technique results in a granular microstructure which may be permeable to ingress by atmospheric gases and make it unsuitable for gaseous radiation detector development. In this study we consider the application of AM to the construction of enclosures and frames for wire-based gaseous radiation tracking detectors. We have focussed on oxygen impurity ingress as a measure of the permeability of the enclosure, and the gas charging and discharging curves of several simplistic enclosure shapes are reported. A prototype wire-frame is also presented to examine structural strength and positional accuracy of an AM produced frame. We lastly discuss the implications of this study for AM based radiation detection technology as a diagnostic tool for incident response scenarios, such as the interrogation of a suspect radiation-emitting package. (authors)

  16. Machinability studies of infrared window materials and metals

    International Nuclear Information System (INIS)

    Arnold, J.B.; Morris, T.O.; Sladky, R.E.; Steger, P.J.

    1976-01-01

    Diamond machining of materials for optical applications is becoming an important fabrication process. Development work in material-removal technology to better understand the mechanics of the diamond-turning process, its limitations, and applications is described. The technique is presently limited to a select group of metals, most of which are of a face-center-cubic crystal structure. Machinability studies were done which were designed to better understand diamond compatibility and thus expand the range of applicable materials. Nonconventional methods such as ultrasonic tool stimulation were investigated. Work done to determine the machinability of infrared window materials indicates that this is a viable fabrication technique for many materials, although additional effort is needed to optimize the process for particular materials

  17. Hydrogen-bond Specific Materials Modification in Group IV Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tolk, Norman H. [Vanderbilt Univ., Nashville, TN (United States); Feldman, L. C. [Vanderbilt Univ., Nashville, TN (United States); Luepke, G. [College of William and Mary, Williamsburg, VA (United States)

    2015-09-14

    impurity states under transient compression. This research focused on the characterization of photon and ion stimulated hydrogen related defect and impurity reactions and migration in solid state matter, which requires a detailed understanding of the rates and pathways of vibrational energy flow, of the transfer channels and of the coupling mechanisms between local vibrational modes (LVMs) and phonon bath as well as the electronic system of the host material. It should be stressed that researchers at Vanderbilt and William and Mary represented a unique group with a research focus and capabilities for low temperature creation and investigation of such material systems. Later in the program, we carried out a vigorous research effort addressing the roles of defects, interfaces, and dopants on the optical and electronic characteristics of semiconductor crystals, using phonon generation by means of ultrafast coherent acoustic phonon (CAP) spectroscopy, nonlinear characterization using second harmonic generation (SHG), and ultrafast pump-and-probe reflectivity and absorption measurements. This program featured research efforts from hydrogen defects in silicon alone to other forms of defects such as interfaces and dopant layers, as well as other important semiconducting systems. Even so, the emphasis remains on phenomena and processes far from equilibrium, such as hot electron effects and travelling localized phonon waves. This program relates directly to the mission of the Department of Energy. Knowledge of the rates and pathways of vibrational energy flow in condensed matter is critical for understanding dynamical processes in solids including electronically, optically and thermally stimulated defect and impurity reactions and migration. The ability to directly probe these pathways and rates allows tests of theory and scaling laws at new levels of precision. Hydrogen embedded in model crystalline semiconductors and metal oxides is of particular interest, since the associated

  18. Synthesis of Polythiophene–Fullerene Hybrid Additives as Potential Compatibilizers of BHJ Active Layers

    Directory of Open Access Journals (Sweden)

    Sofia Kakogianni

    2016-12-01

    Full Text Available Perfluorophenyl functionalities have been introduced as side chain substituents onto regioregular poly(3-hexyl thiophene (rr-P3HT, under various percentages. These functional groups were then converted to azides which were used to create polymeric hybrid materials with fullerene species, either C60 or C70. The P3HT–fullerene hybrids thus formed were thereafter evaluated as potential compatibilizers of BHJ active layers comprising P3HT and fullerene based acceptors. Therefore, a systematic investigation of the optical and morphological properties of the purified polymer–fullerene hybrid materials was performed, via different complementary techniques. Additionally, P3HT:PC70BM blends containing various percentages of the herein synthesized hybrid material comprising rr-P3HT and C70 were investigated via Transmission Electron Microscopy (TEM in an effort to understand the effect of the hybrids as additives on the morphology and nanophase separation of this typically used active layer blend for OPVs.

  19. Composite materials for protection against electromagnetic microwave radiation

    International Nuclear Information System (INIS)

    Senyk, IV; Barsukov, VZ; Savchenko, BM; Shevchenko, KL; Plavan, VP; Shpak, Yu V; Kruykova, OA

    2016-01-01

    A fairly wide range of carbon-polymer composite materials was synthesized and studied in terms of their potential to protect people and electronic equipment from exposure to electromagnetic radiation (EMR). The materials studied included three main groups: (1) PVC polymer composites filled with various carbon-containing fillers (colloidal graphite, thermally expanded graphite, acetylene black, graphitized carbon black, carbon nanotubes, graphene) at concentrations ranging from 5 to 20%; (2) carbon cloth - commercial and modified with nanometal additives (e.g., nanoparticles of Cu, TiN, etc.); (3) highly-filled polymer-carbon composites in the form of paint. The transmission rate a of electromagnetic radiation was investigated for such materials in the frequency range of 10 GHz as well as their electrical conductivity. The results showed that the shielding ability of the materials of group (2) is significantly higher than that of the materials of group (1), which is probably due to the presence of strong internal skeleton of conductivity. Nevertheless, some highly-filled mixed polymer-carbon composites in the form of paint demonstrate even more shielding ability than carbon cloth and could be used for the defense against EMR. (paper)

  20. Expansion in finite simple groups of Lie type

    CERN Document Server

    Tao, Terence

    2015-01-01

    Expander graphs are an important tool in theoretical computer science, geometric group theory, probability, and number theory. Furthermore, the techniques used to rigorously establish the expansion property of a graph draw from such diverse areas of mathematics as representation theory, algebraic geometry, and arithmetic combinatorics. This text focuses on the latter topic in the important case of Cayley graphs on finite groups of Lie type, developing tools such as Kazhdan's property (T), quasirandomness, product estimates, escape from subvarieties, and the Balog-Szemerédi-Gowers lemma. Applications to the affine sieve of Bourgain, Gamburd, and Sarnak are also given. The material is largely self-contained, with additional sections on the general theory of expanders, spectral theory, Lie theory, and the Lang-Weil bound, as well as numerous exercises and other optional material.

  1. [On the Way to Culture-Sensitive Patient Information Materials: Results of a Focus Group Study].

    Science.gov (United States)

    Ries, Zivile; Frank, Fabian; Bermejo, Isaac; Kalaitsidou, Chariklia; Zill, Jördis; Dirmaier, Jörg; Härter, Martin; Bengel, Jürgen; Hölzel, Lars

    2018-06-01

    This study was part of a double-blind randomised controlled trial aimed to evaluate the effects of culture-sensitive patient information materials (PIM) compared with standard translated material. The study aimed to obtain the data for the development of culture sensitive PIM about unipolar depression for the 4 largest migrant groups in Germany (Turkish, Polish, Russian and Italian migration background). A qualitative study using 4 manual-based focus groups (FG), one for each migrant group, with 29 participants (9 with a Turkish (TüG), 8 with a Polish (PoG), 5 with a Russian (RuG) and 7 with an Italian (ItG) migration background) was conducted. The discussions were recorded, transcribed and analyzed using qualitative content analysis. 7 categories were identified. For the (1.) development of a good culture-sensitive PIM an easy language, a clear structure, an assessable extent of information and the avoidance of stereotypes were highlighted cross-culturally in all four FG. RuG and PoG had the largest (2.) lack of information about the German health care system. Concerning the (3.) illness perception RuG named problems with recognizing and understanding depression. PoG, RuG and TüG thematized (4.) feared consequences of the illness and of professional helpseeking. ItG, PoG, RuG had fears concerning (5.) psychotropic drugs as a result from insufficient knowledge about medication. For (6.) doctor-patient relationship cultural specifics were identified in RuG and TüG and for (7.) migration or culture specific reasons for depression in RuG, ItG and TüG. Although the identified categories were relevant for all or for the majority of migrant groups, for most categories specific cultural aspects were discovered. These findings show the importance of a culture sensitive adaptation of PIM. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Metal Additive Manufacturing: A Review of Mechanical Properties

    Science.gov (United States)

    Lewandowski, John J.; Seifi, Mohsen

    2016-07-01

    This article reviews published data on the mechanical properties of additively manufactured metallic materials. The additive manufacturing techniques utilized to generate samples covered in this review include powder bed fusion (e.g., EBM, SLM, DMLS) and directed energy deposition (e.g., LENS, EBF3). Although only a limited number of metallic alloy systems are currently available for additive manufacturing (e.g., Ti-6Al-4V, TiAl, stainless steel, Inconel 625/718, and Al-Si-10Mg), the bulk of the published mechanical properties information has been generated on Ti-6Al-4V. However, summary tables for published mechanical properties and/or key figures are included for each of the alloys listed above, grouped by the additive technique used to generate the data. Published values for mechanical properties obtained from hardness, tension/compression, fracture toughness, fatigue crack growth, and high cycle fatigue are included for as-built, heat-treated, and/or HIP conditions, when available. The effects of test orientation/build direction on properties, when available, are also provided, along with discussion of the potential source(s) (e.g., texture, microstructure changes, defects) of anisotropy in properties. Recommendations for additional work are also provided.

  3. FOREWORD: Materials metrology Materials metrology

    Science.gov (United States)

    Bennett, Seton; Valdés, Joaquin

    2010-04-01

    calibration of the various instruments and standards used but also the reliable application of an accepted measurement procedure. Nowhere is this more evident than in the use of hardness scales, which are not directly traceable to the SI. This special issue of Metrologia includes a summary of the findings and conclusions of the Working Group and a further 14 papers covering the full range of properties of interest in science, engineering and standards making. It includes papers by authors at eight national measurement institutes and four other research centres. In addition to mechanical properties, there are papers addressing issues associated with the measurement of electromagnetic, acoustic and optical properties as well as those arising from the specific structural features of many new materials. As guest editors, we are extremely grateful to all the authors who have contributed to this special issue on the measurement of the properties of materials. We hope it will contribute to a wider appreciation of many of the associated issues and foster a growing understanding of the importance of ensuring that all such measurements are performed in accordance with accepted standards and procedures, with proper attention to the need to establish the traceability of the results. Only in this way can the performance, safety and fitness for purpose of products be guaranteed.

  4. Recent trend in construction materials field. Kenzai bun[prime]ya ni okeru saikin no doko

    Energy Technology Data Exchange (ETDEWEB)

    Tominaga, M [Kawasaki Steel Corp., Tokyo (Japan)

    1992-09-01

    The Japanese construction industry, the construction market and the technical trend of construction materials made by Kawasaki Steel Group were described. The roles of the steel industry in the construction material market are to increase the ratio of steel used in construction, to manufacture steel products of high value added and to develop new applications. Appearance and good design are required to provide for the construction materials made of processed steel in addition to the necessary functions. In the construction material market, qualitative changes in needs are taking place, such as labor saving shortening of construction period and simplification of construction management. Kawasaki Steel Group intends to expand the integrated business such as system building, external wall materials for buildings made of metals, highly corrosion resistant stainless steel for metallic roof field, and roof materials of the heat insulation, good appearance and horizontally covering type based on the overall business strategy. In addition, Kawasaki Steel Group is expanding the Kawasaki Design Steel Plaza and its construction material research laboratory to cope with the trend of diversified functions and design of construction goods and of making kinds of construction material much more and to develop more rational construction techniques. 1 ref., 8 figs.

  5. Integrated Computational Material Engineering Technologies for Additive Manufacturing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — QuesTek Innovations, a pioneer in Integrated Computational Materials Engineering (ICME) and a Tibbetts Award recipient, is teaming with University of Pittsburgh,...

  6. BFR Electrolyte Additive Safety and Flammability Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Allcorn, Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-13

    Lithium-ion battery safety is a critical issue in the adoption of the chemistry to larger scale applications such as transportation and stationary storage. One of the critical components impacting the safety of lithium-ion batteries is their use of highly flammable organic electrolytes. In this work, brominated flame retardants (BFR’s) – an existing class of flame retardant materials – are incorporated as additives to lithium-ion battery electrolytes with the intention to reduce the electrolyte flammability and thereby improve safety. There are a few critical needs for a successful electrolyte additive: solubility in the electrolyte, electrochemical stability over the range of battery operation, and minimal detrimental effects on battery performance. Those detrimental effects can take the form of electrolyte specific impacts, such as a reduction in conductivity, or electrode impacts, such as SEI-layer modification or chemical instability to the active material. In addition to these needs, the electrolyte additive also needs to achieve its intended purpose, which in this case is to reduce the flammability of the electrolyte. For the work conducted as part of this SPP agreement three separate BFR materials were provided by Albemarle to be tested by Sandia as additives in a traditional lithium-ion battery electrolyte. The provided BFR materials were tribromo-neopentyl alcohol, tetrabromo bisphenol A, and tribromoethylene. These materials were incorporated as separate 4 wt.% additives into a traditional lithium-ion battery electrolyte and compared to said traditional electrolyte, designated Gen2.

  7. Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study

    Directory of Open Access Journals (Sweden)

    Junhe Cui

    2016-01-01

    Full Text Available Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we constructed atomistic models of chitin with varied acetylation degree and analyzed the hydrogen bonding pattern, fracture, and stress-strain behavior of these models. We notice that the acetyl group can contribute to the formation of hydrogen bonds that can stabilize the crystalline structure. In addition, it is found that the specimen with a higher acetylation degree presents a greater resistance against fracture. This study describes the role of the functional group, acetyl groups, in crystalline chitin. Such information could provide preliminary understanding of nanomaterials when similar functional groups are encountered.

  8. effects of sulphur addition on addition on and mechanical properties

    African Journals Online (AJOL)

    User

    on the microstructure and mechanical properties of sand cast been investigated ... owed that the addition of sulphur to Al-12wt%Si alloy. 12wt%Si alloy .... 28 materials. 29. Element. Aluminum. Silicon. Al. Si. Ca. Fe. Cu. Zn. Mn. Mg. Cr. B. 99.71.

  9. Designing small molecule polyaromatic p- and n-type semiconductor materials for organic electronics

    KAUST Repository

    Collis, Gavin E.

    2015-01-01

    of the functional groups, we can tune the physical properties of the material making them amenable to solution and vacuum deposition. In addition to solubility, we observe that the functional group can influence the thin film molecular packing. By developing

  10. New group III precursors for the MOVPE of GaAs and InP based material

    International Nuclear Information System (INIS)

    Hostaler, M.; Pohl, L.; Brauers, A.; Balk, P.; Frese, V.; Hovel, R.; Regel, G.K.; Hardtdegen, H.

    1989-01-01

    This paper presents proposals for the synthesis of several group III metal organics (In, Ga, Al compounds) and preliminary results on their use in the MOVPE (metal organic vapor phase epitaxy) of III-V semiconductors. The common feature of all these precursors is that they are saturated by inter- or intramolecular coordination. They are even non-pyrophoric and air resistant which is an interesting aspect with respect to safe handling. In addition, the compounds are liquid at room temperature with a low but sufficient vapor pressure for MOVPE without additional heating of the source

  11. Multifunctional materials and composites

    Science.gov (United States)

    Seo, Dong-Kyun; Jeon, Ki-Wan

    2017-08-22

    Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.

  12. Topology Optimization for Additive Manufacturing

    DEFF Research Database (Denmark)

    Clausen, Anders

    This PhD thesis deals with the combination of topology optimization and additive man-ufacturing (AM, also known as 3D-printing). In addition to my own works, the thesis contains a broader review and assessment of the literature within the field. The thesis first presents a classification...... of the various AM technologies, a review of relevant manufacturing materials, the properties of these materials in the additively manufactured part, as well as manufacturing constraints with a potential for design optimization. Subsequently, specific topology optimization formulations relevant for the most im...... for scalable manufacturing. In relation to interface problems it is shown how a flexible void area may be included into a standard minimum compliance problem by employing an additional design variable field and a sensitivity filter. Furthermore, it is shown how the design of coated structures may be modeled...

  13. Additives in yoghurt production

    Directory of Open Access Journals (Sweden)

    Milna Tudor

    2008-02-01

    Full Text Available In yoghurt production, mainly because of sensory characteristics, different types of additives are used. Each group, and also each substance from the same group has different characteristics and properties. For that reason, for improvement of yoghurt sensory characteristics apart from addition selection, the quantity of the additive is very important. The same substance added in optimal amount improves yoghurt sensory attributes, but too small or too big addition can reduce yoghurt sensory attributes. In this paper, characteristics and properties of mostly used additives in yoghurt production are described; skimmed milk powder, whey powder, concentrated whey powder, sugars and artificial sweeteners, fruits, stabilizers, casein powder, inulin and vitamins. Also the impact of each additive on sensory and physical properties of yoghurt, syneresis and viscosity, are described, depending on used amount added in yoghurt production.

  14. Synthesis and Electroluminescent Properties of Julolidine-π-Juloidine Type Materials with the Bulky Adamantane Groups

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kum Hee; Yoon, Seung Soo [Sungkyunkwan Univ., Suwon (Korea, Republic of); Lee, Seok Jae; Kim, Young Kwan [Hongik Univ., Seoul (Korea, Republic of)

    2012-11-15

    A main problem of red emitting material, which contributes to their low EL performances, is the concentration quenching due to the effective self aggregation and the consequent formation of excimers. To avoid this drawback and thus improve the EL properties of red fluorescent OLED devices, many synthetic efforts have been conducted to develop new emitting materials with the structural motifs to suppress self-aggregation by the weakening intermolecular attractive interactions. Particularly, the introduction of bulky moieties in the emitters would provide the steric hindrance between emitting materials in solid state devices and thus reduce the self-aggregation. Nevertheless, EL performances of red materials still need to be improved for the practical applications. In conclusion, we designed and synthesized three julolidine-π-juloidine type emitting materials (1-3) with the bulky adamantane groups. To study their electroluminescent properties, the multilayered OLED devices with the structure of ITO/NPB (40 nm)/ADN : 1-3 (x%) (20 nm)/Alq{sub 3} (40 nm)/Liq (2 nm)/Al were fabricated. All devices using emitters 1-3 showed the efficient emissions, in which their EL performances depend on the structure of emitters sensitively. Particularly, a device using emitter 3 exhibited the efficient orange-red emission with the luminous and power efficiencies of 4.79 cd/A and 1.76 lm/W at 20 mA/cm{sup 2}, respectively. The CIE coordinates of this device was (0.57, 0.42) at 7.0 V.

  15. In vitro cytotoxicity and surface topography evaluation of additive manufacturing titanium implant materials.

    Science.gov (United States)

    Tuomi, Jukka T; Björkstrand, Roy V; Pernu, Mikael L; Salmi, Mika V J; Huotilainen, Eero I; Wolff, Jan E H; Vallittu, Pekka K; Mäkitie, Antti A

    2017-03-01

    Custom-designed patient-specific implants and reconstruction plates are to date commonly manufactured using two different additive manufacturing (AM) technologies: direct metal laser sintering (DMLS) and electron beam melting (EBM). The purpose of this investigation was to characterize the surface structure and to assess the cytotoxicity of titanium alloys processed using DMLS and EBM technologies as the existing information on these issues is scarce. "Processed" and "polished" DMLS and EBM disks were assessed. Microscopic examination revealed titanium alloy particles and surface flaws on the processed materials. These surface flaws were subsequently removed by polishing. Surface roughness of EBM processed titanium was higher than that of DMLS processed. The cytotoxicity results of the DMLS and EBM discs were compared with a "gold standard" commercially available titanium mandible reconstruction plate. The mean cell viability for all discs was 82.6% (range, 77.4 to 89.7) and 83.3% for the control reconstruction plate. The DMLS and EBM manufactured titanium plates were non-cytotoxic both in "processed" and in "polished" forms.

  16. Influence of an alloy addition on the physical and clinical behaviour of glass ionomer cement

    Science.gov (United States)

    Abour, Mohamed Abour Bashir

    These in vitro studies compared the various properties of an experimental high powder liquid content glass ionomer cement (EXPT) with those of a metal addition GIC (Hi-Dense) and disperse phase amalgam (Dispersalloy). Bi-axial, four point flexural and compressive tests were used to evaluate strength. Six groups of ten specimens were constructed for each test for each material and allowed to set in an oven at 37°C for 60 minutes. Specimens were stored in distilled water at 37°C until testing at one day, one week, one, three, six months and year. It was found that the strength of Hi-Dense increased and then maintained over extended time, whereas the strength of EXPT showed a declined at 3 months. The bond strengths of the materials to both enamel and dentine were also evaluated. Ten groups of ten teeth, five for each surface for each glass ionomer materials, were prepared. Teeth were aligned leaving the enamel and dentine surfaces exposed. The mixed material was condensed into a cylinder placed on the appropriate surface. These specimens were also stored in distilled water at 37°C. It was found that Hi-Dense had a higher bond strength to enamel that increased with time. The bond strength to dentine was maintained over the test period. The erosion rate of the materials was evaluated using the lactic acid erosion test. Three groups of six specimens for each material were constructed and tested after one hour, one day and at six months. Each specimen was subjected to an impinging jet of lactic acid solution. The erosion rate was determined by weight loss and dimensional change. It was found that Hi-Dense had a high erosion resistance which was slightly better than the experimental material. The microleakage, around restorations prepared, using the glass ionomer materials, was evaluated after cyclical loading the restoration-tooth complex. It was found that there was less leakage around Hi-Dense than EXPT at both the cervical and occlusal margins. In a clinical

  17. Applications of Fiber-Reinforced Polymers in Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    Additive manufacturing technologies are these years entering the market of functional final parts. Initial research has been performed targeting the integration of fibers into additive manufactured plastic composites. Major advantages, among others, are for example increased tensile strength...... and Young's modulus. Key challenges in the field, as of now, are proper fiber placement, fiber seizing, an increased knowledge in the used materials and how they are applied into engineering solutions through proper control of the additive manufacturing process. The aim of this research is the improved...... understanding of fiber-reinforcement in additive manufacturing in terms of production and application. Vat polymerization and material extrusion techniques for composite additive manufacturing were investigated with respect of increasing adhesion between the matrix material and the fibers. Process optimization...

  18. Magnetic properties of FeNi-based thin film materials with different additives

    KAUST Repository

    Liang, C.; Gooneratne, C.P.; Wang, Q.X.; Liu, Y.; Gianchandani, Y.; Kosel, Jü rgen

    2014-01-01

    This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials

  19. Innovative Additive for Bitumen Based on Processed Fats

    Science.gov (United States)

    Babiak, Michał; Kosno, Jacek; Ratajczak, Maria; Zieliński, Krzysztof

    2017-10-01

    Various additives, admixtures and modifiers are used to improve technical properties and strength characteristics of building materials. Manufacturers of waterproofing materials, concrete, ceramics and bitumen have to use innovative, increasingly complex and costly additives, admixtures or modifiers. As a result, simple and inexpensive substances have been replaced by complex, long chain polymers, multi component resins or plastics. For economic and ecological reasons waste materials are more frequently used as additives, admixtures and modifiers. Nowadays the most commonly used physical modifiers of bitumen belong to the group of polymers - large molecular organic compounds of natural origin or being the result of planned chemical synthesis. Polymers are substances that do not chemically react with bitumen, they act as fillers or create a spatial network within bitumen (the so called physical cross-linking). The development of organic chemistry has allowed the synthesis of a number of substances chemically modifying bitumen. The most promising are heterocyclic organic compounds belonging to the group of imidazolines. The aim of the study presented in this paper was to demonstrate the suitability of processed natural and post-refining fat waste (diamidoamine dehydrate) as bitumen modifier. This paper discusses the impact of adding technical imidazoline on selected bitumen characteristics. Samples of bitumen 160/220, which is most commonly used for the production of waterproofing products, were analysed. For base bitumen and bitumen modified with technical imidazoline the following measurements were taken: measurement of the softening point by Ball and Ring method, determination of the breaking point by Fraass method and needle penetration measurement at 25°C. Later the samples were aged using TFOT laboratory method and the basic characteristics were determined again. The results showed that a small amount of imidazoline improved bitumen thermoplastic parameters at

  20. Effect of nano-ZrO2 addition on microstructure, mechanical property and thermal shock behaviour of dense chromic oxide refractory material

    International Nuclear Information System (INIS)

    Lu, Lixia; Ding, Chunhui; Zhanga, Chi; Yanga, De'an; Di, Lizhi

    2015-01-01

    To obtain a good performance hot-face lining material in gasifier, nano-ZrO 2 , up to 5 wt %, was added into chromic oxide powder with 3 wt % TiO 2 followed by sintering at 1500°C for 2.5 h. The effect of nano-ZrO 2 addition on microstructure, mechanical property and thermal shock behaviour was studied. ZrO 2 promoted densification at contents higher than 1 wt %. Microcracks and phase transformation toughened the dense chromic oxide refractory material. The main reason for decrease of strength was the existence microcracks in specimens and weakening of intergranular fracture. Dense chromic oxide refractory material with 2∼3 wt % nano-ZrO 2 possessed good densification, uniform microstructure, normal mechanical property and proper thermal shock resistance. The rupture strength retention ratio was nearly twice than that of chromic oxide material without ZrO 2 after three cycles of quenching test from 950°C to cold water. (author)

  1. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 7, Revision 4 (FGE.07Rev4): Saturated and unsaturated aliphatic secondary alcohols, ketones and esters of secondary alcohols and saturated linear or branched

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 49 flavouring substances in the Flavouring Group Evaluation 07, including additional five substances in this Revision 4, using the Procedure in Commission ...

  2. Slow and stopped light in active gain composite materials of metal nanoparticles. Ultralarge group index-bandwidth product predicted

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang-Hyon; Choe, Song-Hyok [Institute of Lasers, State Academy of Sciences, Unjong District, Pyongyang (Korea, Democratic People' s Republic of)

    2017-08-15

    Chip-compatible slow light devices with large group index-bandwidth products and low losses are of great interest in the community of modern photonics. In this work, active gain materials containing metal nanoparticles are proposed as the slow and stopped light materials. Gain-assisted high field enhancement in metal nanoparticles and the resultant strong dispersion lead to such phenomena. From the Maxwell-Garnett model, it is revealed that the metal nanocomposite exhibits the infinitely large group index when the gain of the host medium and the filling factor of metal nanoparticles satisfy a critical condition. For the gain of the host above the critical value, one can observe slowing down effect with amplification of light pulses. Significantly large group index-bandwidth products, which vary from a few to several thousand or even infinity depending on the gain value of the host medium, have been numerically predicted in active silica glasses containing spheroidal metal nanoparticles, as examples. The proposed scheme inherently provides the widely varying operating spectral range by changing the aspect ratio of metal nanoparticles and chip-compatibility with low cost. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Computational screening of functional groups for capture of toxic industrial chemicals in porous materials.

    Science.gov (United States)

    Kim, Ki Chul; Fairen-Jimenez, David; Snurr, Randall Q

    2017-12-06

    A thermodynamic analysis using quantum chemical methods was carried out to identify optimal functional group candidates that can be included in metal-organic frameworks and activated carbons for the selective capture of toxic industrial chemicals (TICs) in humid air. We calculated the binding energies of 14 critical TICs plus water with a series of 10 functional groups attached to a naphthalene ring model. Using vibrational calculations, the free energies of adsorption were calculated in addition to the binding energies. Our results show that, in these systems, the binding energies and free energies follow similar trends. We identified copper(i) carboxylate as the optimal functional group (among those studied) for the selective binding of the majority of the TICs in humid air, and this functional group exhibits especially strong binding for sulfuric acid. Further thermodynamic analysis shows that the presence of water weakens the binding strength of sulfuric acid with the copper carboxylate group. Our calculations predict that functionalization of aromatic rings would be detrimental to selective capture of COCl 2 , CO 2 , and Cl 2 under humid conditions. Finally, we found that forming an ionic complex, H 3 O + HSO 4 - , between H 2 SO 4 and H 2 O via proton transfer is not favorable on copper carboxylate.

  4. Linear algebra and group theory for physicists

    CERN Document Server

    Rao, K N Srinivasa

    2006-01-01

    Professor Srinivasa Rao's text on Linear Algebra and Group Theory is directed to undergraduate and graduate students who wish to acquire a solid theoretical foundation in these mathematical topics which find extensive use in physics. Based on courses delivered during Professor Srinivasa Rao's long career at the University of Mysore, this text is remarkable for its clear exposition of the subject. Advanced students will find a range of topics such as the Representation theory of Linear Associative Algebras, a complete analysis of Dirac and Kemmer algebras, Representations of the Symmetric group via Young Tableaux, a systematic derivation of the Crystallographic point groups, a comprehensive and unified discussion of the Rotation and Lorentz groups and their representations, and an introduction to Dynkin diagrams in the classification of Lie groups. In addition, the first few chapters on Elementary Group Theory and Vector Spaces also provide useful instructional material even at an introductory level. An author...

  5. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 12, Revision 4 (FGE.12Rev4): primary saturated or unsaturated alicyclic alcohols, aldehydes, acids and esters from chemical groups 1 and 7

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 12 flavouring substances in Flavouring Group Evaluation 12, Revision 4 (FGE.12Rev4), including two additional substances, using the Procedure in Commission...... (the Procedure) that integrates information on structure–activity relationships, intake from current uses and the toxicological threshold of concern and available data on metabolism and toxicity. The Panel concluded that none of the 12 substances [FL-nos: 02.134, 02.186, 02.216, 02.217, 05.157, 05.......182, 05.183, 05.198, 08.135, 09.342, 09.670 and 09.829] gives rise to safety concerns at their levels of dietary intake, estimated on the basis of the maximised survey-derived daily intake approach. Besides the safety assessment of these flavouring substances, the specifications for the materials...

  6. Impregnated Fibrous Materials. Report of a Study Group on Impregnated Fibrous Materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-10-15

    There has recently been renewed interest in the use of radiation from radioisotopes or particle accelerators to initiate and sustain chemical reactions. Particular attention is being paid to the production of wood-plastic composites, a process which is now a commercial reality with radiation competing against chemical methods to enhance the properties of wood. It has been reported that water repellancy, hardness, weathering, insect and chemical resistance, compressive, bending and shear strength can be significantly improved by the process, but so far there has been a limited commercial outlet for the product. Papers on this subject were presented at the International Atomic Energy Agency's Symposium on Industrial Uses of Large Radiation Sources, Salzburg, May 1963, and since then the Agency has been aware of the interest of developing countries in conducting research on wood and other fibrous materials as a means of further exploiting natural resources. It was felt that some attempt should be made to co-ordinate, on a regional basis, the work being done in this field and at the same time review the world status, including the associated technology in such areas as monomer-polymer chemistry and impregnation techniques where they are directly related to this work. Because of the wide range of fibrous materials being studied there, Asia and the Far East was chosen as the most representative area and 39 participants from 13 countries, and from international organizations, met in Bangkok from 20 to 24 November 1967 to assess the potential of impregnated fibrous materials. This report is a record of the meeting and is based not only on work performed both inside and outside the region but also on details of the resources and industries in the area.

  7. Effect of bismuth addition to the triple therapy of Helicobacter pylori eradication

    Directory of Open Access Journals (Sweden)

    Ezel Taşdemir

    2012-03-01

    Full Text Available Objective: Success rates of amoxicillin, clarithromycin, and proton-pump inhibitor therapy in the Helicobacter pylori (Hp eradication have been decreasing. The aim of this study was to investigate the impact of bismuth subcitrate addition to triple therapy.Materials and methods: 148 patients diagnosed Hp infection with both histology and Hp stool antigen (HpSA tests were examined retrospectively. The patients were divided into 3 groups according to the eradication therapy. The first group received triple therapy with claritromycine 2x 500 mg, amoxicilline 2x1 g and PPI 2x1 for 14 days (n=40. The second group had bismuth subcitrate 4x120 mg with triple therapy for 14 days (n=73. The third group received 14 days pretreatment with bismuth subcitrate 4x1 together with PPI 2x1 then had triple therapy for 14 days (n=35. (14C urea breath and HpSA tests were used to detect posttreatment H.pylori status.Results: There were no statistical difference between the groups in terms of gender and age (p > 0.05. In group one 12 patients, in group two 20 patients and in group three 10 patients were identified as Hp positive after treatment. Eradication rates were 70% for group one, 72.6% for group two and 71.4% for group three respectively. There was no statistical difference between the groups in terms of eradication rates of treatment (p > 0.05.Conclusions: The addition of bismuth to conventional triple therapy did not affect treatment success rates.

  8. Evaluation of Advanced Polymers for Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carter, William G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kutchko, Cindy [PPG Industries, Pittsburgh, PA (United States); Fenn, David [PPG Industries, Pittsburgh, PA (United States); Olson, Kurt [PPG Industries, Pittsburgh, PA (United States)

    2017-09-08

    The goal of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Oak Ridge National Laboratory (ORNL) and PPG Industries, Inc. (PPG) was to evaluate the feasibility of using conventional coatings chemistry and technology to build up material layer-by-layer. The PPG-ORNL study successfully demonstrated that polymeric coatings formulations may overcome many limitations of common thermoplastics used in additive manufacturing (AM), allow lightweight nozzle design for material deposition, and increase build rate. The materials effort focused on layer-by-layer deposition of coatings with each layer fusing together. The combination of materials and deposition results in an additively manufactured build that has sufficient mechanical properties to bear the load of additional layers, yet is capable of bonding across the z-layers to improve build direction strength. The formulation properties were tuned to enable a novel, high-throughput deposition method that is highly scalable, compatible with high loading of reinforcing fillers, and inherently low-cost.

  9. Synthesis of a stationary phase based on silica modified with branched octadecyl groups by Michael addition and photoinduced thiol-yne click chemistry for the separation of basic compounds.

    Science.gov (United States)

    Huang, Guang; Ou, Junjie; Wang, Hongwei; Ji, Yongsheng; Wan, Hao; Zhang, Zhang; Peng, Xiaojun; Zou, Hanfa

    2016-04-01

    A novel silica-based stationary phase with branched octadecyl groups was prepared by the sequential employment of the Michael addition reaction and photoinduced thiol-yne click chemistry with 3-aminopropyl-functionalized silica microspheres as the initial material. The resulting stationary phase denoted as SiO2 -N(C18)4 was characterized by elemental analysis, FTIR spectroscopy and Raman spectroscopy, demonstrating the existence of branched octadecyl groups in silica microspheres. The separations of benzene homologous compounds, acid compounds and amine analogues were conducted, demonstrating mixed-mode separation mechanism on SiO2 -N(C18)4 . Baseline separation of basic drugs mixture was acquired with the mobile phase of acetonitrile/H2 O (5%, v/v). SiO2 -N(C18)4 was further applied to separate Corydalis yanhusuo Wang water extracts, and more baseline separation peaks were obtained for SiO2 -N(C18)4 than those on Atlantis dC18 column. It can be expected that this new silica-based stationary phase will exhibit great potential in the analysis of basic compounds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Communication received from the permanent mission of Austria regarding the provision of certain additional information on production, inventories and international transfers of nuclear material and on exports of certain relevant equipment and non-nuclear material

    International Nuclear Information System (INIS)

    1996-01-01

    The Director General received a note verbale of 13 June 1996 from Permanent Mission of Austria regarding the provision of certain additional information on production, inventories and international transfers of nuclear material and on exports of certain relevant equipment and non-nuclear material. In the light of the request expressed at the end of the note verbale, the text of the note verbale is being circulated

  11. Communication received from the permanent mission of Finland regarding the provision of certain additional information on production, inventories and international transfers of nuclear material and on exports of certain relevant equipment and non-nuclear material

    International Nuclear Information System (INIS)

    1996-01-01

    The Director General received a note verbale of 8 February 1996 from Permanent Mission of Finland regarding the provision of certain additional information on production, inventories and international transfers of nuclear material and on exports of certain relevant equipment and non-nuclear material. In the light of the request expressed at the and of the note verbale, the text of the note verbale is being circulated

  12. Effect of additional materials on the properties of glass-ceramic produced from incinerator fly ashes.

    Science.gov (United States)

    Cheng, T W

    2004-07-01

    There are 21 Metro-waste incinerators in Taiwan under construction and are expected to be finished at year 2003. It is estimated that these incinerators will produce about two million tons of incinerator ash. In order to reduce the volume and eliminate contamination problems, high temperature molten technology studies have been conducted. The purpose of this research was that of trying to control the chemical composition of the glass-ceramic produced from incinerator fly ash, in order to improve the characteristics of the glass-ceramic. The experimental results showed that the additional materials, Mg(OH)2 and waste glass cullet, can change glass-ceramic phases from gehlenite to augite, pigeonite, and diopside. The physical, mechanical and chemical resistance properties of the glass-ceramic also showed much better characteristics than prepared glass-ceramic using incinerator fly ash alone.

  13. IR-laser assisted additive freeform optics manufacturing.

    Science.gov (United States)

    Hong, Zhihan; Liang, Rongguang

    2017-08-02

    Computer-controlled additive manufacturing (AM) processes, also known as three-dimensional (3D) printing, create 3D objects by the successive adding of a material or materials. While there have been tremendous developments in AM, the 3D printing of optics is lagging due to the limits in materials and tight requirements for optical applicaitons. We propose a new precision additive freeform optics manufacturing (AFOM) method using an pulsed infrared (IR) laser. Compared to ultraviolet (UV) curable materials, thermally curable optical silicones have a number of advantages, such as strong UV stability, non-yellowing, and high transmission, making it particularly suitable for optical applications. Pulsed IR laser radiation offers a distinct advantage in processing optical silicones, as the high peak intensity achieved in the focal region allows for curing the material quickly, while the brief duration of the laser-material interaction creates a negligible heat-affected zone.

  14. Group additivity values for enthalpies of formation (298 K), entropies (298 K), and molar heat capacities (300 K < T < 1500 K) of gaseous fluorocarbons

    International Nuclear Information System (INIS)

    Van Otterloo, Maren K.; Girshick, Steven L.; Roberts, Jeffrey T.

    2007-01-01

    A group additivity method was developed to estimate standard enthalpies of formation and standard entropies at 298 K of linear radical and closed-shell, gaseous fluorocarbon neutrals containing four or more carbon atoms. The method can also be used to estimate constant pressure molar heat capacities of the same compounds over the temperature range 300 K to 1500 K. Seventeen groups and seven fluorine-fluorine interaction terms were defined from 12 fluorocarbon molecules. Interaction term values from Yamada and Bozzelli [T. Yamada, J.W. Bozzelli, J. Phys. Chem. A 103 (1999) 7373-7379] were utilized. The enthalpy of formation group values were derived from G3MP2 calculations by Bauschlicher and Ricca [C.W. Bauschlicher, A. Ricca, J. Phys. Chem. A 104 (2000) 4581-4585]. Standard entropy and molar heat capacity group values were estimated from ab initio geometry optimization and frequency calculations at the Hartree-Fock level using the 6-31G(d) basis set. Enthalpies of formation for larger fluorocarbons estimated from the group additivity method compare well to enthalpies of formation found in the literature

  15. Identifying the material of original and restored parts of a 14^{th} century alabaster annunciation group through stable isotopes

    Science.gov (United States)

    Kloppmann, Wolfram; Leroux, Lise; Le Pogam, Pierre-Yves; Bromblet, Philippe

    2017-04-01

    The origin of raw materials for sculpture is often obscure before the 17th century due to the scarcity of written sources. Identifying this origin provides hints to economic exchanges but also, potentially, allows for attributing sculptures to a specific context of creation (regional workshops, artists). Another challenge for art historians is the identification of restorations and their potential chronology. We present an example of a 14th century group of two statues, made of gypsum alabaster, representing an annunciation group, with the Virgin Mary and the angel Gabriel. Their original position was a near Troyes in the eastern Paris Basin, they are now separated being conserved at the Louvre Museum (Virgin Mary) and the Cleveland Museum of Art (Gabriel). Our multi-isotope study revealed the common origin of the material used for both sculptures, their isotope fingerprints being identical within the analytical error. These fingerprints are highly specific and point to an origin in a historical gypsum and alabaster quarry in the northern part of Provence, France, first mentioned at the end of the 13th century. We were also able to identify an unknown restoration of lower part of the Virgin Mary statue with an optically undistinguishable material, using Tuscan alabaster, most likely in the 19th century. This underlines the potential and usefulness of independent geochemical evidence to underpin stylistic hypotheses on grouping of individual artworks, historical economic relationships between regions and on past restoration activities.

  16. Ocean Dredged Material Disposal Site (ODMDS) Authorization and Short-Term FATE (STFATE) Model Analysis: 2014-2015 Working Group Findings Report

    Science.gov (United States)

    2016-03-01

    fractions A grain size or sieve analysis typically yields the mass fraction of each particle size class after dispersing all of the material. However...ER D C TR -1 6- 2 Ocean Dredged Material Disposal Site (ODMDS) Authorization and Short-Term FATE (STFATE) Model Analysis 2014 – 2015...Term FATE (STFATE) Model Analysis 2014 – 2015 Working Group Findings Report Jase D. Ousley Coastal and Hydraulics Laboratory U.S. Army Engineer

  17. Nuclear Forensics: Report of the AAAS/APS Working Group

    Science.gov (United States)

    Tannenbaum, Benn

    2008-04-01

    This report was produced by a Working Group of the American Physical Society's Program on Public Affairs in conjunction with the American Association for the Advancement of Science Center for Science, Technology and Security Policy. The primary purpose of this report is to provide the Congress, U.S. government agencies and other institutions involved in nuclear forensics with a clear unclassified statement of the state of the art of nuclear forensics; an assessment of its potential for preventing and identifying unattributed nuclear attacks; and identification of the policies, resources and human talent to fulfill that potential. In the course of its work, the Working Group observed that nuclear forensics was an essential part of the overall nuclear attribution process, which aims at identifying the origin of unidentified nuclear weapon material and, in the event, an unidentified nuclear explosion. A credible nuclear attribution capability and in particular nuclear forensics capability could deter essential participants in the chain of actors needed to smuggle nuclear weapon material or carry out a nuclear terrorist act and could also encourage states to better secure such materials and weapons. The Working Group also noted that nuclear forensics result would take some time to obtain and that neither internal coordination, nor international arrangements, nor the state of qualified personnel and needed equipment were currently enough to minimize the time needed to reach reliable results in an emergency such as would be caused by a nuclear detonation or the intercept of a weapon-size quantity of material. The Working Group assesses international cooperation to be crucial for forensics to work, since the material would likely come from inadequately documented foreign sources. In addition, international participation, if properly managed, could enhance the credibility of the deterrent effect of attribution. Finally the Working Group notes that the U.S. forensics

  18. Time limited psychodynamic group therapy: Predictors of patients seeking additional treatment

    DEFF Research Database (Denmark)

    Jensen, Hans Henrik; Mortensen, Erik Lykke; Lotz, Martin

    2010-01-01

    for psychological or psychiatric problems; the percentage was 41.6 when further treatment was defined as participating in more than 5 sessions. The majority (94.8 was treated within the public health services. Participation in additional treatment was predicted by improvement on the MCMI Antisocial personality...... disorder scale and a higher SCL-90-R Somatization end-state score. When additional treatment was defined as receiving more than 5 sessions, lack of paid work before treatment (odds ratio 8.0), lack of social network support (odds ratio 2.9), and the Antisocial pre-post difference score (odds ratio 1...

  19. Optimization studies of carbon additives to negative active material for the purpose of extending the life of VRLA batteries in high-rate partial-state-of-charge operation

    Energy Technology Data Exchange (ETDEWEB)

    Boden, D.P.; Loosemore, D.V.; Spence, M.A.; Wojcinski, T.D. [Hammond Expanders Division, Hammond Group, Inc., 6544 Osborn Avenue, Hammond, IN 46320 (United States)

    2010-07-15

    The negative plates of lead-acid batteries subjected to partial-state-of-charge (PSOC) operation fail because of the development of an electrically inert film of lead sulfate on their surfaces. It has been found that carbon additives to the negative active material can significantly increase their cycle life in this type of operation. In this paper we show that various types of carbon, including graphite, carbon black eliminate the surface development of lead sulfate and that, in their presence, the lead sulfate becomes homogeneously distributed throughout the active material. Examination of active material by energy dispersive spectroscopy after extensive cycling shows that lead formed during charge of lead sulfate preferentially deposits on the carbon particles that have been embedded in the active material. Electrochemical studies have been carried out on a number of types of carbon additives having a wide range of properties. These included flake, expanded and synthetic graphite, isotropically graphitized carbon, carbon black and activated carbon. We have investigated their effect on the resistivity and surface areas of the negative active material and also on such electrochemical properties as active material utilization and cycle life. Most of the carbon additives increase the utilization of the active material and impressive increases in cycle life have been obtained with over 6000 capacity turnovers having been achieved. However, at this time, we have not been able to correlate either the type or the properties of the carbon with capacity or cycle life. Further work is needed in this area. The increases that have been achieved in cycle life provide evidence that the lead-acid battery is a viable low cost option for hybrid-electric vehicle use. (author)

  20. Electrochemically Smart Bimetallic Materials Featuring Group 11 Metals: In-situ Conductive Network Generation and Its Impact on Cell Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Esther [Stony Brook Univ., NY (United States)

    2016-11-30

    Our results for this program “Electrochemically smart bimetallic materials featuring Group 11 metals: in-situ conductive matrix generation and its impact on battery capacity, power and reversibility” have been highly successful: 1) we demonstrated material structures which generated in-situ conductive networks through electrochemical activation with increases in conductivity up to 10,000 fold, 2) we pioneered in situ analytical methodology to map the cathodes at several stages of discharge through the use of Energy Dispersive X-ray Diffraction (EDXRD) to elucidate the kinetic dependence of the conductive network formation, and 3) we successfully designed synthetic methodology for direct control of material properties including crystallite size and surface area which showed significant impact on electrochemical behavior.

  1. Physically Functional Materials

    DEFF Research Database (Denmark)

    2002-01-01

    acids or peptides having azobenzenes or other physicially functional groups, e.g., photoresponsive groups, as side chains. These compounds may be synthesized using solid phase peptide synthesis techniques. Materials, e.g., thin films, comprising such compounds may be used for optical storage...... of information (holographic data storage), nonlinear optics (NLO), as photoconductors, photonic band-gap materials, electrically conducting materials, electroluminescent materials, piezo-electric materials, pyroelectric materials, magnetic materials, ferromagnetic materials, ferroelectric materials......, photorefractive materials, or materials in which light-induced conformational changes can be produced. Optical anisotropy may reversibly be generated with polarized laser light whereby a hologram is formed. First order diffraction efficiencies of up to around 80% have been obtained....

  2. Low-cost route for synthesis of mesoporous silica materials with high silanol groups and their application for Cu(II) removal

    International Nuclear Information System (INIS)

    Wang Yangang; Huang Sujun; Kang Shifei; Zhang Chengli; Li Xi

    2012-01-01

    Graphical abstract: A simple and low-cost route to synthesize mesoporous silica materials with high silanol groups has been demonstrated by means of a sol–gel process using citric acid as the template and acid catalyst, further studies on the adsorption of Cu(II) onto the representative amine-functionalized mesoporous silica showed that it had a high Cu(II) removal efficiency. Highlights: ► A low-cost route to synthesize mesoporous silica with high silanol groups was demonstrated. ► Citric acid as the template and acid catalyst for the reaction of tetraethylorthosilicate. ► Water extraction method was an effective technique to remove template which can be recycled. ► The mesoporous silica with high silanol groups was easily modified by functional groups. ► A high Cu(II) removal efficiency on the amine-functionalized mesoporous silica. - Abstract: We report a simple and low-cost route for the synthesis of mesoporous silica materials with high silanol groups by means of a sol–gel process using citric acid as the template, tetraethylorthosilicate (TEOS) as the silica source under aqueous solution system. The citric acid can directly work as an acid catalyst for the hydrolysis of TEOS besides the function as a pore-forming agent in the synthesis. It was found that by using a water extraction method the citric acid template in as-prepared mesoporous silica composite can be easily removed and a high degree of silanol groups were retained in the mesopores, moreover, the citric acid template in the filtrate can be recycled after being dried. The structural properties of the obtained mesoporous silica materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and nitrogen adsorption–desorption analysis. Furthermore, an adsorption of Cu(II) from aqueous solution on the representative amine-functionalized mesoporous silica was investigated

  3. Additives for cement compositions based on modified peat

    Energy Technology Data Exchange (ETDEWEB)

    Kopanitsa, Natalya, E-mail: kopanitsa@mail.ru; Sarkisov, Yurij, E-mail: sarkisov@tsuab.ru; Gorshkova, Aleksandra, E-mail: kasatkina.alexandra@gmail.com; Demyanenko, Olga, E-mail: angel-n@sibmail.com [Tomsk State University of Architecture and Building, 2, Solyanaya sq., Tomsk, 634003 (Russian Federation)

    2016-01-15

    High quality competitive dry building mixes require modifying additives for various purposes to be included in their composition. There is insufficient amount of quality additives having stable properties for controlling the properties of cement compositions produced in Russia. Using of foreign modifying additives leads to significant increasing of the final cost of the product. The cost of imported modifiers in the composition of the dry building mixes can be up to 90% of the material cost, depending on the composition complexity. Thus, the problem of import substitution becomes relevant, especially in recent years, due to difficult economic situation. The article discusses the possibility of using local raw materials as a basis for obtaining dry building mixtures components. The properties of organo-mineral additives for cement compositions based on thermally modified peat raw materials are studied. Studies of the structure and composition of the additives are carried out by physicochemical research methods: electron microscopy and X-ray analysis. Results of experimental research showed that the peat additives contribute to improving of cement-sand mortar strength and hydrophysical properties.

  4. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2015. Scientific Opinion on Flavouring Group Evaluation 303, Revision 1 (FGE.303Rev1): Spilanthol from chemical group 30

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Nørby, Karin Kristiane

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate the flavouring substance spilanthol [FL-no: 16.121] in Flavouring Group Evaluation 303, Revision 1, using the Procedure according to Commission Regulation...... (MSDI) approach. Besides the safety assessment of the flavouring substance, the specifications for the material of commerce have also been considered. Adequate specifications including complete purity criteria and identity for the material of commerce have been provided for the candidate substance....

  5. Sorption behavior of charged and neutral polar organic compounds on solid phase extraction materials: which functional group governs sorption?

    NARCIS (Netherlands)

    Bäuerlein, P.S.; Mansell, J.E.; ter Laak, T.L.; de Voogt, P.

    2012-01-01

    Numerous polar anthropogenic organic chemicals have been found in the aqueous environment. Solid phase extraction (SPE) has been applied for the isolation of these from aqueous matrices, employing various materials. Nevertheless, little is known about the influence of functional groups on the

  6. Communication received from the Permanent Mission of Sweden regarding the provision of certain additional information on production, inventories and international transfers of nuclear material and on exports of certain relevant equipment and non-nuclear material

    International Nuclear Information System (INIS)

    1996-01-01

    The document reproduces the text of a note verbale dated 28 June 1996 received by the Director General of IAEA from the Permanent Mission of Sweden through which the Government of Sweden provides, on a voluntary basis, certain additional information on production, inventories and international transfers of nuclear material and on exports of certain relevant equipment and non-nuclear material, in order to assist the Agency in the discharge of its safeguards responsibilities

  7. Additive Construction with Mobile Emplacement (ACME)

    Science.gov (United States)

    Vickers, John

    2015-01-01

    The Additive Construction with Mobile Emplacement (ACME) project is developing technology to build structures on planetary surfaces using in-situ resources. The project focuses on the construction of both 2D (landing pads, roads, and structure foundations) and 3D (habitats, garages, radiation shelters, and other structures) infrastructure needs for planetary surface missions. The ACME project seeks to raise the Technology Readiness Level (TRL) of two components needed for planetary surface habitation and exploration: 3D additive construction (e.g., contour crafting), and excavation and handling technologies (to effectively and continuously produce in-situ feedstock). Additionally, the ACME project supports the research and development of new materials for planetary surface construction, with the goal of reducing the amount of material to be launched from Earth.

  8. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives.

    Science.gov (United States)

    Gonzalez-Gutierrez, Joamin; Cano, Santiago; Schuschnigg, Stephan; Kukla, Christian; Sapkota, Janak; Holzer, Clemens

    2018-05-18

    Additive manufacturing (AM) is the fabrication of real three-dimensional objects from metals, ceramics, or plastics by adding material, usually as layers. There are several variants of AM; among them material extrusion (ME) is one of the most versatile and widely used. In MEAM, molten or viscous materials are pushed through an orifice and are selectively deposited as strands to form stacked layers and subsequently a three-dimensional object. The commonly used materials for MEAM are thermoplastic polymers and particulate composites; however, recently innovative formulations of highly-filled polymers (HP) with metals or ceramics have also been made available. MEAM with HP is an indirect process, which uses sacrificial polymeric binders to shape metallic and ceramic components. After removing the binder, the powder particles are fused together in a conventional sintering step. In this review the different types of MEAM techniques and relevant industrial approaches for the fabrication of metallic and ceramic components are described. The composition of certain HP binder systems and powders are presented; the methods of compounding and filament making HP are explained; the stages of shaping, debinding, and sintering are discussed; and finally a comparison of the parts produced via MEAM-HP with those produced via other manufacturing techniques is presented.

  9. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives

    Science.gov (United States)

    Cano, Santiago

    2018-01-01

    Additive manufacturing (AM) is the fabrication of real three-dimensional objects from metals, ceramics, or plastics by adding material, usually as layers. There are several variants of AM; among them material extrusion (ME) is one of the most versatile and widely used. In MEAM, molten or viscous materials are pushed through an orifice and are selectively deposited as strands to form stacked layers and subsequently a three-dimensional object. The commonly used materials for MEAM are thermoplastic polymers and particulate composites; however, recently innovative formulations of highly-filled polymers (HP) with metals or ceramics have also been made available. MEAM with HP is an indirect process, which uses sacrificial polymeric binders to shape metallic and ceramic components. After removing the binder, the powder particles are fused together in a conventional sintering step. In this review the different types of MEAM techniques and relevant industrial approaches for the fabrication of metallic and ceramic components are described. The composition of certain HP binder systems and powders are presented; the methods of compounding and filament making HP are explained; the stages of shaping, debinding, and sintering are discussed; and finally a comparison of the parts produced via MEAM-HP with those produced via other manufacturing techniques is presented. PMID:29783705

  10. 3D metal droplet printing development and advanced materials additive manufacturing

    Directory of Open Access Journals (Sweden)

    Lawrence E. Murr

    2017-01-01

    Full Text Available While commercial additive manufacturing processes involving direct metal wire or powder deposition along with powder bed fusion technologies using laser and electron beam melting have proliferated over the past decade, inkjet printing using molten metal droplets for direct, 3D printing has been elusive. In this paper we review the more than three decades of development of metal droplet generation for precision additive manufacturing applications utilizing advanced, high-temperature metals and alloys. Issues concerning process optimization, including product structure and properties affected by oxidation are discussed and some comparisons of related additive manufactured microstructures are presented.

  11. Additive property of separative power

    International Nuclear Information System (INIS)

    Yamamoto, Ichiro; Kanagawa, Akira

    1980-01-01

    A separative power of a separating element, whose heads and tails separation factors are α and β, is expressed by phi sub(b)(α, β) = [α(β - 1)1n α - (α - 1)1n β]/(αβ - 1) for the unit flow of the desired material and phi sub(a)(α, β) (= phi sub(b)(β, α)) for that of undesired material. The additive properties of the functions phi sub(b) and phi sub(a) were demonstrated by calculations of various types of ideal cascades, but the origin of the property is not obvious. The present study has furnished the mathematical basis of the additivity based on the special functional equation. First, for symmetric processes (α = β), the functional equation which describes the function representing the quality of separation f(α, α) concerning the desired material was obtained and solved to give the functional form of f(α, α). The result was extented to the function f(α, β) representing the quality of asymmetric separation (α not equal β). The derived function f(α, β) was demonstrated to be equal to phi sub(b)(α, β), and it was verified that functions phi sub(b)(α, β) and phi sub(a)(α, β) have the additive property in themselves. (author)

  12. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 25, Revision 2 (FGE.25Rev2): Aliphatic and aromatic hydrocarbons from chemical group 31

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 37 flavouring substances in the Flavouring Group Evaluation 25, Revision 2, using the Procedure in Commission Regulation (EC) No 1565/2000. None of the sub......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 37 flavouring substances in the Flavouring Group Evaluation 25, Revision 2, using the Procedure in Commission Regulation (EC) No 1565/2000. None...... of the substances were considered to have genotoxic potential. The substances were evaluated through a stepwise approach (the Procedure) that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity...... assessment of these flavouring substances, the specifications for the materials of commerce have also been considered. For five substances, the composition of the stereoisomeric mixture has to be specified further....

  13. Further karyosystematic studies of the Boreonectesgriseostriatus (De Geer) group of sibling species (Coleoptera, Dytiscidae)-characterisation of B.emmerichi (Falkenström, 1936) and additional European data.

    Science.gov (United States)

    Angus, Robert B; Angus, Elizabeth M; Jia, Fenglong; Chen, Zhen-Ning; Zhang, Ying

    2015-01-01

    A lectotype is designated for the Tibetan species Deronectesemmerichi Falkenström, 1936 (Currently Boreonectesemmerichi (Falkenström)), and its habitus, as well as the median lobe and parameres of its aedeagus, are figured along with additional comparative material. Material of Boreonectesemmerichi from Sikkim (BMNH) represents the first record of a Boreonectes Angus, 2010 species from India. The karyotype of Boreonectesemmerichi is described as having 26 pairs of autosomes plus sex chromosomes which are X0 (♂), XX (♀). The karyotype is most like that of Boreonectesmacedonicus (Géuorguiev, 1959), but with slight differences. Additional chromosomal information is given for Boreonectesgriseostriatusgriseostriatus (De Geer, 1774) in the French Alps, Boreonectesgriseostriatusstrandi (Brinck, 1943) on the Kola Peninsula, Boreonectesmultilineatus (Falkenström, 1922) in the Pyrenees and Boreonectesibericus (Dutton & Angus, 2007) in the Spanish Picos de Europa.

  14. Substituted polynorbornenes as promising materials for gas separation membranes

    International Nuclear Information System (INIS)

    Finkelshtein, Evgenii Sh; Bermeshev, Maksim V; Gringolts, Mariya L; Starannikova, L E; Yampolskii, Yu P

    2011-01-01

    Published results concerning the synthesis and study of the transport characteristics of polynorbornenes are considered and analyzed. Conclusions are drawn regarding the effect of the backbone rigidity and the nature of side groups on the gas permeability level. The prospects of using addition organosilicon polynorbornenes as gas separating membrane materials are discussed.

  15. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on Flavouring Group Evaluation 210, Revision 1 (FGE.210Rev1): Consideration of genotoxic potential for α,β-unsaturated alicyclic ketones and precursors from chemical subgroup 2

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Lund, Pia

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate the genotoxic potential of 13 flavouring substances in Flavouring Group Evaluation 210 (FGE.210) and one additional substance [FL-no: 07.225] in this revis...

  16. Reports from the Combined Performance Working Groups

    CERN Multimedia

    S. Haywood

    The main goal of the Combined Performance Groups is to study the detector performance for physics, as well as to monitor the effect of changes to the detector layout and the evolution of the software. The groups combine the expertise available in several different subdetectors. In addition, they are responsible for developing combined reconstruction algorithms and are involved in the calibration of energy scales and optimising resolutions. For the Workshop, the four groups made a real effort to compare the reconstruction in Athena (the "New" C++ software framework) and Atrecon (the "Old" software used for the TDR studies). b-tagging Working Group: Over the last few months, the description of the Inner Detector in the simulation has become more realistic, following the evolution of the detector design. This has caused the amount of material in the simulation to increase and the Pixel B-layer has been moved to a larger radius to allow for a wider beam-pipe. Nevertheless, the good performance of the b-tagging (...

  17. Long-term addition of fertilizer, labile carbon, and fungicide alters the biomass of plant functional groups in a subarctic-alpine community

    DEFF Research Database (Denmark)

    Haugwitz-Hardenberg-Reventlow, M S; Michelsen, A.

    2011-01-01

    experiment on a subarctic-alpine fellfield dominated by woody evergreen shrubs, bryophytes, and lichens. To manipulate nutrient availability additions of NPK fertilizer, labile C, and fungicide (benomyl) were done in a fully factorial design, replicated in six blocks. The treatments were run for 10 years...... vascular plant groups. Also, limitation of soil nutrient availability caused by labile C addition decreased the relative proportion of green shoots in evergreen shrubs, although these were expected to cope better with the nutrient limitation than the opportunistic graminoids, which, by contrast, were...... unaffected. Reduced fungal biomass due to benomyl addition was accompanied by increased evergreen shrub and clubmoss biomass. Taken together, the effects of treatments were most pronounced 16 years after initiation of the experiment, but despite changes in biomass the overall plant community composition...

  18. Finite element modeling of deposition of ceramic material during SLM additive manufacturing

    Directory of Open Access Journals (Sweden)

    Chen Qiang

    2016-01-01

    Full Text Available A three dimensional model for material deposition in Selective Laser Melting (SLM with application to Al2O3-ZrO2 eutectic ceramic is presented. As the material is transparent to laser, dopants are added to increase the heat absorption efficiency. Based on Beer-Lambert law, a volumetric heat source model taking into account the material absorption is derived. The Level Set method with multiphase homogenization is used to track the shape of deposed bead and the thermodynamic is coupled to calculate the melting-solidification path. The shrinkage during consolidation from powder to compact medium is modeled by a compressible Newtonian constitutive law. A semi-implicit formulation of surface tension is used, which permits a stable resolution to capture the gas-liquid interface. The formation of droplets is obtained and slight waves of melt pool are observed. The influence of different process parameters on temperature distribution, melt pool profiles and bead shapes is discussed.

  19. 27 CFR 19.318 - Addition of caramel to rum or brandy and addition of oak chips to spirits.

    Science.gov (United States)

    2010-04-01

    ... or brandy and addition of oak chips to spirits. 19.318 Section 19.318 Alcohol, Tobacco Products and... PLANTS Production § 19.318 Addition of caramel to rum or brandy and addition of oak chips to spirits. Caramel possessing no material sweetening properties may be added to rum or brandy on bonded premises...

  20. Characterization of Metal Powders Used for Additive Manufacturing.

    Science.gov (United States)

    Slotwinski, J A; Garboczi, E J; Stutzman, P E; Ferraris, C F; Watson, S S; Peltz, M A

    2014-01-01

    Additive manufacturing (AM) techniques can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process.

  1. Characterization of Metal Powders Used for Additive Manufacturing

    Science.gov (United States)

    Slotwinski, JA; Garboczi, EJ; Stutzman, PE; Ferraris, CF; Watson, SS; Peltz, MA

    2014-01-01

    Additive manufacturing (AM) techniques1 can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process. PMID:26601040

  2. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on Flavouring Group Evaluation 304, Revision 1 (FGE.304Rev1): Four carboxamides from Chemical Groups 30

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate four flavouring substances in the Flavouring Group Evaluation 304, Revision 1 (FGE.304Rev1) using the Procedure in Commission Regulation (EC) No 1565...... criteria and identity for the materials of commerce have been provided for all four candidate substances....

  3. Analysis of waste coal from the enterprises of Kemerovo region as raw materials for production of ceramic materials

    Science.gov (United States)

    Stolboushkin, A. Yu; Akst, D. V.; Fomina, O. A.; Ivanov, A. I.; Syromyasov, V. A.

    2017-09-01

    The analysis of waste coal from mining enterprises of Kemerovo region as raw materials for production of building ceramics is given. The results of studies of material, chemical and mineralogical compositions of waste coal from Abashevskaya processing plant (Novokuznetsk) are presented. It was established that the chemical composition of waste coal refers to aluminosilicate raw materials with a high content of alumina and coloring oxides, the residual carbon content in the wastes is 12-25 %. According to the granulometric composition the waste coal is basically a sandy-dusty fraction with a small amount of clay particles (1-3 %). Additional grinding of coal waste and the introduction of a clay additive in an amount of up to 30 % are recommended. The results of the study of the mineral composition of waste coal are presented. Clay minerals are represented in the descending order by hydromuscovite, montmorillonite and kaolinite, minerals-impurities consist of quartz, feldspar fine-dispersed carbonates. The results of the investigation of ceramic-technological properties of waste coal, which belong to the group of moderately plastic low-melting raw materials, are given. As a result of a comprehensive study it was been established that with chemical, granulometric and mineralogical compositions waste coal with the reduced residual carbon can be used in the production of ceramic bricks.

  4. Evaluation and additional recommendations for preparing a whole blood control material

    Directory of Open Access Journals (Sweden)

    Nilda E. Fink

    1998-04-01

    Full Text Available OBJECTIVE: The assessment of an easy to prepare and low cost control material for Hematology, available for manual and automated methods. MATERIAL AND METHOD: Aliquots of stabilized whole blood were prepared by partial fixation with aldehydes; the stability at different temperatures (4. 20 and 37 °C during periods of up to 8-9 weeks and aliquot variability with both methods were controlled. RESULTS: Aliquot variability with automated methods at day 1, expressed as CV% (coefficient of variation was: white blood cells (WBC 2.7, red blood cells (RBC 0.7, hemoglobin (Hb 0.6, hematocrit (Hct 0.7, mean cell volume (MCV 0.3, mean cell hemoglobin (MCH 0.6, mean cell hemoglobin concentration (MCHC 0.7, and platelets (PLT 4.6. The CV (coefficient of variation percentages obtained with manual methods in one of the batches were: WBC 23, Hct 2.8, Hb 4.5, MCHC 5.9, PLT 41. Samples stored at 4ºC and 20ºC showed good stability, only a very low initial hemolysis being observed, whereas those stored at 37ºC deteriobed a rapidly (metahemoglobin formation, aggregation of WBC and platelets, as well as alteration of erythrocyte indexes. CONCLUSIONS: It was confirmed that, as long as there is no exposure to high temperatures during distribution, this material is stable, allowing assessment, both esternal and internal, for control purposes, with acceptable reproductivity, both for manual and auttomatic methods.

  5. 27 CFR 19.343 - Addition of oak chips to spirits and addition of caramel to brandy and rum.

    Science.gov (United States)

    2010-04-01

    ... spirits and addition of caramel to brandy and rum. 19.343 Section 19.343 Alcohol, Tobacco Products and... PLANTS Storage § 19.343 Addition of oak chips to spirits and addition of caramel to brandy and rum. Oak... records. Caramel possessing no material sweetening properties may be added to rum or brandy in packages or...

  6. Technological foundations of processing tomato pomace in feed additives

    Directory of Open Access Journals (Sweden)

    B. Yegorov

    2015-05-01

    Full Text Available Introduction. Search for new types of alternative raw material for the efficient development of poultry industry and problem of waste disposal of canning industry made it necessary to develop a method of processing tomato pomace in feed additives. Materials and methods. Sampling, preparation and testing were carried out by general and specific organ oleptic and physical-technological methods of assessment and analysis of the properties of raw materials and finished products. Results. Incorporation of tomato pomace in the feed additive reduces the cost of raw materials and expenses associated with moistening of the mixture before extrusion and incorporation of chalk feed will solve the problem of calcium imbalance of laying hens. It was found that extrusion process has improved the physical properties of feed additive and showed the possibility of its use as a feed component: moisture content decreased by 34.5 %, the angle of repose increased by 11.4 %, flowability decreased by 39.7 % and bulk density decreased by 32.3 %. Conclusions. The resulting feed additive will solve the problem of diversification of raw materials, waste, calcium imbalance of laying hens and reduce expenses on compound animal feedstuff production.

  7. Aminopropyl groups of the functionalized Mobil Crystalline Material 41 as a carrier for controlled diclofenac sodium and piroxicam delivery.

    Science.gov (United States)

    Khodaverdi, Elham; Ahmadi, Mina; Kamali, Hossein; Hadizadeh, Farzin

    2017-01-01

    Synthetic Mobil Crystalline Material 41 (MCM-41) as a mesoporous material and functionalized MCM-41 using aminopropyl groups were studied in order to investigate their ability to encapsulate and to control the release of diclofenac sodium and piroxicam. MCM-41 was synthesized through sol-gel procedure and functionalized with aminopropyl groups. The physicochemical properties of MCM-41 were studied through particle size analysis, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and carbon-hydrogen-nitrogen analysis. Diclofenac sodium and piroxicam were loaded into the MCM-41 matrix using the filtration and solvent evaporation methods. The drug-loading capacity was determined by ultraviolet, Fourier transform infrared, X-ray diffraction, and Brunauer-Emmett-Teller analysis. According to the results for pure drug release, >57% was released in the 1 st h, but when these drugs were loaded into pure Mobil Crystalline Material 41 (MCM-41) and functionalized MCM-41, the release into the simulated gastrointestinal medium was less, continuous, and slower. The release of piroxicam from functionalized MCM-41 was slower than that from MCM-41 in the simulated intestinal medium because of the formation of electrostatic bonds between piroxicam and the aminopropyl groups of the functionalized MCM-41. However, in the case of diclofenac sodium, there was no significant difference between pure MCM-41 and functionalized MCM-41. The difference between piroxicam and diclofenac sodium was due to the high solubility of diclofenac sodium in the intestinal medium (pH 6.8), which caused more rapid release from the matrixes than for piroxicam. Our findings indicate that, after functionalization of MCM-41, it could offer a good means of delivering controlled diclofenac sodium and piroxicam.

  8. Wide and High Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Roschli, Alex C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    The goal of this project is to develop and demonstrate the enabling technologies for Wide and High Additive Manufacturing (WHAM). WHAM will open up new areas of U.S. manufacturing for very large tooling in support of the transportation and energy industries, significantly reducing cost and lead time. As with Big Area Additive Manufacturing (BAAM), the initial focus is on the deposition of composite materials.

  9. Effects of organic additives with oxygen- and nitrogen-containing functional groups on the negative electrolyte of vanadium redox flow battery

    International Nuclear Information System (INIS)

    Liu, Jianlei; Liu, Suqin; He, Zhangxing; Han, Huiguo; Chen, Yong

    2014-01-01

    DL-malic acid and L-aspartic acid are investigated as additives for the negative electrolyte of vanadium redox flow battery (VFRB) to improve its stability and electrochemical performance. The stability experiments indicate that the addition of L-aspartic acid into the 2 M V(III) electrolyte can stabilize the electrolyte by delaying its precipitation. The results of cyclic voltammetry and electrochemical impedance spectroscopy show that the V(III) electrolyte with both additives demonstrates enhanced electrochemical activity and reversibility. The introduction of DL-malic acid and L-aspartic acid can increase the diffusion coefficient of V(III) species and facilitate the charge transfer of V(III)/V(II) redox reaction. Between the two additives, the effect of L-aspartic acid is more remarkable. Moreover, the VFRB cell employing negative electrolyte with L-aspartic acid exhibits excellent cycling stability and achieves higher average energy efficiency (76.4%) compared to the pristine cell (73.8%). The comparison results with the cell employing L-aspartic acid pre-treated electrode confirm that L-aspartic acid in the electrolyte can modify the electrode by constantly providing oxygen- and nitrogen-containing groups, leading to the enhancement of electrochemical performance

  10. Geometrical accuracy of metallic objects produced with additive or subtractive manufacturing: A comparative in vitro study.

    Science.gov (United States)

    Braian, Michael; Jönsson, David; Kevci, Mir; Wennerberg, Ann

    2018-04-06

    To evaluate the accuracy and precision of objects produced by additive manufacturing systems (AM) for use in dentistry and to compare with subtractive manufacturing systems (SM). Ten specimens of two geometrical objects were produced by five different AM machines and one SM machine. Object A mimics an inlay-shaped object, while object B imitates a four-unit bridge model. All the objects were sorted into different measurement dimensions (x, y, z), linear distances, angles and corner radius. None of the additive manufacturing or subtractive manufacturing groups presented a perfect match to the CAD file with regard to all parameters included in the present study. Considering linear measurements, the precision for subtractive manufacturing group was consistent in all axes for object A, presenting results of additive manufacturing groups had consistent precision in the x-axis and y-axis but not in the z-axis. With regard to corner radius measurements, the SM group had the best overall accuracy and precision for both objects A and B when compared to the AM groups. Within the limitations of this in vitro study, the conclusion can be made that subtractive manufacturing presented overall precision on all measurements below 0.050mm. The AM machines also presented fairly good precision, additive techniques are now being implemented. Thus all these production techniques need to be tested, compared and validated. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  11. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2015. Scientific Opinion on Flavouring Group Evaluation 25, Revision 3 (FGE.25Rev3): Aliphatic hydrocarbons from chemical group 31

    DEFF Research Database (Denmark)

    Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 14 flavouring substances in the Flavouring Group Evaluation 25, Revision 3, using the Procedure in Commission Regulation (EC) No 1565/2000. None...... on the basis of the MSDI approach. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered. Adequate specifications including complete purity and identity criteria for the materials of commerce have been provided for all 14...

  12. Radiation Effects on Thermoluminescence Characteristics of HDPE Containing Additives

    International Nuclear Information System (INIS)

    Kim, Ki Yup; Lee, Chung; Ryu, Boo Hyung

    2005-01-01

    Polymeric materials are widely used for electrical insulation in a broad range of applications that cover the power supply industry to inner and outer space. However, the electrical performance of these materials could be compromised by their working environment and one of the most deleterious is that where a nuclear radiation is present. Radiation effects on polymers can be interpreted by two main reactions, a cross-linking reaction and degradation reactions or a main-chain scission process. There are no absolute rules for determining whether or not any given polymer will cross-link or degrade upon an irradiation. But, the polymers can be divided empirically into two groups; polymers which are crosslinked by radiation (especially by the incorporation of chemical cross-linking promoters) and polymers which degrade by radiation into a product of lower molecular weight due to random main-chain scission process. These polymers become very hard and brittle with a high dose of radiation. Most polymeric materials contain some stabilizers such as flame retardant and antioxidant to prevent combustion and oxidation. Because of these additives, degradation mechanism of the polymer became complicated. Many of the novel properties of the insulating materials used in nuclear power plants are important for radiation degradation. Therefore we have used the thermal methods such as thermoluminescence (TL) detection for irradiated high density polyethylene containing flame retardant and antioxidant

  13. Additive manufacturing in production: challenges and opportunities

    Science.gov (United States)

    Ahuja, Bhrigu; Karg, Michael; Schmidt, Michael

    2015-03-01

    Additive manufacturing, characterized by its inherent layer by layer fabrication methodology has been coined by many as the latest revolution in the manufacturing industry. Due to its diversification of Materials, processes, system technology and applications, Additive Manufacturing has been synonymized with terminology such as Rapid prototyping, 3D printing, free-form fabrication, Additive Layer Manufacturing, etc. A huge media and public interest in the technology has led to an innovative attempt of exploring the technology for applications beyond the scope of the traditional engineering industry. Nevertheless, it is believed that a critical factor for the long-term success of Additive Manufacturing would be its ability to fulfill the requirements defined by the traditional manufacturing industry. A parallel development in market trends and product requirements has also lead to a wider scope of opportunities for Additive Manufacturing. The presented paper discusses some of the key challenges which are critical to ensure that Additive Manufacturing is truly accepted as a mainstream production technology in the industry. These challenges would highlight on various aspects of production such as product requirements, process management, data management, intellectual property, work flow management, quality assurance, resource planning, etc. In Addition, changing market trends such as product life cycle, mass customization, sustainability, environmental impact and localized production will form the foundation for the follow up discussion on the current limitations and the corresponding research opportunities. A discussion on ongoing research to address these challenges would include topics like process monitoring, design complexity, process standardization, multi-material and hybrid fabrication, new material development, etc.

  14. Critical and strategic materials proceedings of the laboratory study group meeting

    International Nuclear Information System (INIS)

    1983-06-01

    These Proceedings serve to identify the appropriate role for the DOE-BES-DMS Laboratory program concerning critical and strategic materials, identify and articulate high priority DOE-BES-DMS target areas so as to maximize programmatic responsiveness to national needs concerning critical and strategic materials, and identify research, expertise, and resources (including Collaborative Research Centers) that are relevant to critical and strategic materials that is either underway or in place under the DOE-BES-DMS Laboratory program. Laboratory statements of collaborative research are given

  15. Group typicality, group loyalty and cognitive development.

    Science.gov (United States)

    Patterson, Meagan M

    2014-09-01

    Over the course of childhood, children's thinking about social groups changes in a variety of ways. Developmental Subjective Group Dynamics (DSGD) theory emphasizes children's understanding of the importance of conforming to group norms. Abrams et al.'s study, which uses DSGD theory as a framework, demonstrates the social cognitive skills underlying young elementary school children's thinking about group norms. Future research on children's thinking about groups and group norms should explore additional elements of this topic, including aspects of typicality beyond loyalty. © 2014 The British Psychological Society.

  16. Polyphosphazine-based polymer materials

    Science.gov (United States)

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  17. Safe transport of radioactive material. Second edition

    International Nuclear Information System (INIS)

    1991-01-01

    The transport of radioactive material embraces the carriage of radioisotopes for industrial, medical and research uses, and the movement of waste, in addition to consignments of nuclear fuel cycle material. It has been estimated that between eighteen and thirty-eight million package shipments take place each year. On the recommendation of the Standing Advisory Group on the Safe Transport of Radioactive Material (SAGSTRAM), which enjoys wide representations from the Agency's Member States and international organizations, the Secretariat is preparing a training kit comprising this training manual and complementary visual aids. The kit is intended to be the basis for an extensive course on the subject and can be used in whole or in part for inter-regional, regional and even national training purposes. Member States can thus benefit from the material either through training courses sponsored by the Agency, or, alternatively, organized by themselves. As a step towards achieving that goal, the current training manual was compiled using material from the first Inter-Regional Training Course on the Safe Transport of Radioactive material that was held in co-operation with the Nuclear Power Training Centre of the then Central Electricity Generating Board at Bristol, United Kingdom. This Manual was initially published in 1990. On the recommendation of the Agency's Standing Advisory Group on the Safe Transport of Radioactive Material (SAGSTRAM), the Manual has since been expanded and updated in time for the second Inter-Regional Training Course, that will in 1991 similarly be held in Bristol. Refs, figs, tabs

  18. Biopolymer-based hydrogels as injectable materials for tissue repair scaffolds

    International Nuclear Information System (INIS)

    Fiejdasz, Sylwia; Szczubiałka, Krzysztof; Lewandowska-Łańcucka, Joanna; Nowakowska, Maria; Osyczka, Anna M

    2013-01-01

    The progress in tissue regeneration is strongly dependent on the development of biocompatible materials with properties resembling those of a native tissue. Also, the application of noninvasive methods of delivering the scaffold into the tissue defect is of great importance. In this study we present a group of biopolymer-based materials as potential injectable scaffolds. In contrast to other studies involving collagen neutralization or additional incubation of gel in genipin solution, we propose collagen and collagen–chitosan gels crosslinked in situ with genipin. Since some parameters of the cells should be considered in the microscale, the steady-state fluorescence anisotropy was applied to study the microenvironment of the gels. To our knowledge we are the first to report on microrheological properties, such as gel time and microviscosity, for this group of hydrogels. Rapid gelation at physiological temperatures found makes these materials of special interest in applications requiring gel injectability. Physico-chemical investigation showed the influence of the crosslinking agent concentration and chitosan addition on the crosslinking degree, swelling ratio, gel microviscosity, and the degradation rate. Strong correlation was revealed between the surface wettability and the viability of cultured mesenchymal stem cells. Cytotoxicity studies indicated that the collagen–chitosan hydrogels showed the best biocompatibility. (paper)

  19. Multi trace element analysis of dry biological materials by neutron activation analysis including a chemical group separation

    International Nuclear Information System (INIS)

    Weers, C.A.

    1980-01-01

    The principles of activation analysis and the practical aspects of neutron activation analysis are outlined. The limits which are set to accuracy and precision are defined. The description of the evaporation process is summarised in terms of the half-volume. This quantity is then used to define the resolving power. The formulation is checked by radiotracer experiments. Dried animal blood is used as the testing material. The pretreatment of the samples and (the development of) the destruction-evaporation apparatus is described. Four successive devices were built and tested. The development of the successive adsorption steps with active charcoal, Al 2 O 3 and coprecipitation with Fe(OH) 3 is presented. Seven groups of about 25 elements in total can be determined this way. The results obtained for standard reference materials are summarized and compared with literature data. (Auth.)

  20. The Use of Nominal Group Technique to Determine Additional Support Needs for a Group of Victorian TAFE Managers and Senior Educators

    Science.gov (United States)

    Bailey, Anthony

    2013-01-01

    The nominal group technique (NGT) is a structured process to gather information from a group. The technique was first described in 1975 and has since become a widely-used standard to facilitate working groups. The NGT is effective for generating large numbers of creative new ideas and for group priority setting. This paper describes the process of…

  1. Synthesis and Properties of Group IV Graphane Analogues

    Science.gov (United States)

    Goldberger, Joshua

    Similar to how carbon networks can be sculpted into low-dimensional allotropes such as fullerenes, nanotubes, and graphene with fundamentally different properties, it is possible to create similar ligand terminated sp3-hybridized honeycomb graphane derivatives containing Ge or Sn that feature unique and tunable properties. Here, we will describe our recent success in the creation of hydrogen and organic-terminated group IV graphane analogues, from the topochemical deintercalation of precursor Zintl phases, such as CaGe2. We will discuss how the optical, electronic, and thermal properties of these materials can be systematically controlled by substituting either the surface ligand or via alloying with other Group IV elements. Additionally, we have also developed an epitopotaxial approach for integrating precise thicknesses of germanane layers onto Ge wafers that combines the epitaxial deposition of CaGe2 precursor phases with the topotactic interconversion into the 2D material. Finally, we will describe our recent efforts on the synthesis and crystal structures of Sn-containing graphane alloys in order to access novel topological phenomena predicted to occur in these graphanes.

  2. [Effect of biochar addition on soil evaporation.

    Science.gov (United States)

    Xu, Jian; Niu, Wen Quan; Zhang, Ming Zhi; Li, Yuan; Lyu, Wang; Li, Kang-Yong; Zou, Xiao-Yang; Liang, Bo-Hui

    2016-11-18

    In order to determine the rational amount of biochar application and its effect on soil hydrological processes in arid area, soil column experiments were conducted in the laboratory using three biochar additions (5%, 10% and 15%) and four different biochar types (devaporation. The results showed that the addition of biochar could change the phreatic water recharge, soil water-holding capacity, capillary water upward movement and soil evaporation obviously. But the effects were different depending on the type of biochar raw material and the size of particle. The phreatic water recharge increased with the increasing amount of biochar addition. The addition of biochar could obviously enlarge the soil water-holding capacity and promote the capillary water upward movement rate. This effect was greater when using the material of bamboo charcoal compared with using wood charcoal, while biochar with small particle size had greater impact than that with big particle size. The biochar could effectively restrain the soil evaporation at a low addition amount (5%). But it definitely promoted the soil evaporation if the addition amount was very high. In arid area, biochar addition in appropriate amount could improve soil water retention capacity.

  3. Design and fabrication of a cryostat for low temperature mechanical testing for the Mechanical and Materials Engineering group at CERN

    CERN Document Server

    Aviles Santillana, I; Gerardin, A; Guinchard, M; Langeslag, S A E; Sgobba, S

    2015-01-01

    Mechanical testing of materials at low temperatures is one of the cornerstones of the Mechanical and Materials Engineering (MME) group at CERN. A long tradition of more than 20 years and a unique know - how of such tests has been developed with an 18 kN double-walled cryostat. Large campaigns of material qualification have been carried out and the mechanical behaviour of materials at 4 K has been vastly studied in sub - size samples for projects like LEP, LHC and its experiments. With the aim of assessing the mechanical properties of materials of higher strength and/or issued from heavy gauge products for which testing standardized specimens of larger cross section might be more adapted, a new 100 kN cryostat capable of hosting different shapes of normalized samples has been carefully designed and fabricated inhouse together with the associated tooling and measurement instrumentation. It has been conceived to be able to adapt to different test frames both dynamic and static, which will be of paramount importa...

  4. Postpolymerization Modifications of Alkene-Functional Polycarbonates for the Development of Advanced Materials Biomaterials.

    Science.gov (United States)

    Thomas, Anthony W; Dove, Andrew P

    2016-12-01

    Functional aliphatic polycarbonates have attracted significant attention as materials for use as biomedical polymers in recent years. The incorporation of pendent functionality offers a facile method of modifying materials postpolymerization, thus enabling functionalities not compatible with ring-opening polymerization (ROP) to be introduced into the polymer. In particular, polycarbonates bearing alkene-terminated functional groups have generated considerable interest as a result of their ease of synthesis, and the wide range of materials that can be obtained by performing simple postpolymerization modifications on this functionality, for example, through radical thiol-ene addition, Michael addition, and epoxidation reactions. This review presents an in-depth appraisal of the methods used to modify alkene-functional polycarbonates postpolymerization, and the diversity of practical applications for which these materials and their derivatives have been used. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Material properties that predict preservative uptake for silicone hydrogel contact lenses.

    Science.gov (United States)

    Green, J Angelo; Phillips, K Scott; Hitchins, Victoria M; Lucas, Anne D; Shoff, Megan E; Hutter, Joseph C; Rorer, Eva M; Eydelman, Malvina B

    2012-11-01

    To assess material properties that affect preservative uptake by silicone hydrogel lenses. We evaluated the water content (using differential scanning calorimetry), effective pore size (using probe penetration), and preservative uptake (using high-performance liquid chromatography with spectrophotometric detection) of silicone and conventional hydrogel soft contact lenses. Lenses grouped similarly based on freezable water content as they did based on total water content. Evaluation of the effective pore size highlighted potential differences between the surface-treated and non-surface-treated materials. The water content of the lens materials and ionic charge are associated with the degree of preservative uptake. The current grouping system for testing contact lens-solution interactions separates all silicone hydrogels from conventional hydrogel contact lenses. However, not all silicone hydrogel lenses interact similarly with the same contact lens solution. Based upon the results of our research, we propose that the same material characteristics used to group conventional hydrogel lenses, water content and ionic charge, can also be used to predict uptake of hydrophilic preservatives for silicone hydrogel lenses. In addition, the hydrophobicity of silicone hydrogel contact lenses, although not investigated here, is a unique contact lens material property that should be evaluated for the uptake of relatively hydrophobic preservatives and tear components.

  6. Advisory group meeting on design and performance of reactor and subcritical blanket systems with lead and lead-bismuth as coolant and/or target material. Working material

    International Nuclear Information System (INIS)

    2001-01-01

    The purpose of the IAEA Advisory Group Meeting (AGM) on Design and Performance of Reactor and Sub-critical Blanket Systems with Lead and Lead-Bismuth as Coolant and/or Target Material was to provide a forum for international information exchange on all the topics relevant to Pb and Pb/Bi cooled critical and sub-critical reactors. In addition, the AGM aimed at: (1) finding ways and means to improve international co-ordination efforts in this area; (2) obtaining advice from the Member States with regard to the activities to be implemented in this area by the IAEA, in order to best meet their needs; and (3) laying out the plans for an effective co-ordination and support of the R and D activities in this area. The AGM stressed that nuclear energy is a realistic solution to satisfy the energy demand, considering the limited resources of fossil fuel, its uneven distribution in the world and the impact of its use on the planet, and taking into account the expected doubling of the world population in the 21st century and tripling of the electricity demand (especially in the developing countries). However, the AGM concluded that the development of an innovative nuclear technology meeting the following requirements must be pursued: (a) deterministic exclusion of any severe accident; (b) proliferation resistance; (c) cost competitiveness with alternative energy sources; (d) sustainable fuel supply; and (e) solution of the radioactive waste management problem

  7. Effect of the addition of expanded vermiculite in the technological properties of ceramic materials of clay base

    International Nuclear Information System (INIS)

    Lins, R.R.F.; Peixoto, R.S. Dutra; Macedo, D.A.; Nascimento, R.M.; Oliveira, G.V.M.; Universidade Federal da Paraiba

    2016-01-01

    This paper discusses the effects of adding expanded vermiculite ceramic block made from two different types of clay and analysis of the properties for three compositions at different sintering temperatures. Samples pressed at 40 MPa were sintered between 800 and 1100 ° C. The technological properties were determined according to the sintering temperature. The evaluation of the crystalline phases and microstructure was carried out by X-ray diffraction results indicated that with the addition of expanded vermiculite in the specimens there was an increase in porosity of the blocks together with the water absorption, therefore a reduction in apparent density, as well as the breakdown voltage of the three-point bending. This study demonstrates the possibility of formulating ceramic blocs order to improve the insulating properties of these materials. (author)

  8. FUNCTION FEED ADDITIVE OF CAROTE-NOID VEGETABLE RAW MATERIALS FOR POULTRY

    OpenAIRE

    Koshchayev A. G.; Kalyuzhniy S. A.; Koshchaeva O. V.; Gavrilenko D. V.; Eliseev M. A.

    2013-01-01

    The article is concerned with the use of functional feed additives from pumpkin fruits and alfalfa juice for the poultry industry. In the study of laying hen it has been found that the use of a feed additive in-creased pumpkin paste content in serum and egg yolk carotenoids is more than two times, and the concentration of vitamin A in these tissues increased slightly, not exceeding 20%. Livability and productivity of poultry increased and average expendable fodder per head per day decreased. ...

  9. Designing small molecule polyaromatic p- and n-type semiconductor materials for organic electronics

    KAUST Repository

    Collis, Gavin E.

    2015-12-22

    By combining computational aided design with synthetic chemistry, we are able to identify core 2D polyaromatic small molecule templates with the necessary optoelectronic properties for p- and n-type materials. By judicious selection of the functional groups, we can tune the physical properties of the material making them amenable to solution and vacuum deposition. In addition to solubility, we observe that the functional group can influence the thin film molecular packing. By developing structure-property relationships (SPRs) for these families of compounds we observe that some compounds are better suited for use in organic solar cells, while others, varying only slightly in structure, are favoured in organic field effect transistor devices. We also find that the processing conditions can have a dramatic impact on molecular packing (i.e. 1D vs 2D polymorphism) and charge mobility; this has implications for material and device long term stability. We have developed small molecule p- and n-type materials for organic solar cells with efficiencies exceeding 2%. Subtle variations in the functional groups of these materials produces p- and ntype materials with mobilities higher than 0.3 cm2/Vs. We are also interested in using our SPR approach to develop materials for sensor and bioelectronic applications.

  10. Additive manufacturing: state-of-the-art and application framework

    DEFF Research Database (Denmark)

    Rodrigues, Vinicius Picanco; de Senzi Zancul, Eduardo; Gonçalves Mançanares, Cauê

    2017-01-01

    Additive manufacturing encompasses a class of production processes with increasing applications indifferent areas and supply chains. Due to its flexibility for production in small batches and the versatilityof materials and geometries, this technology is recognized as being capable...... of revolutionizing theproduction processes as well as changing production strategies that are currently employed. However,there are different technologies under the generic label of additive manufacturing, materials and applicationareas with different requirements. Given the growing importance of additive...... manufacturingas a production process, and also considering the need to have a better insight into the potential applicationsfor driving research and development efforts, this article presents a proposal of organizationfor additive manufacturing applications in seven areas. Additionally, the article provides...

  11. Functional conjugated pyridines via main-group element tuning.

    Science.gov (United States)

    Stolar, Monika; Baumgartner, Thomas

    2018-03-29

    Pyridine-based materials have seen widespread attention for the development of n-type organic materials. In recent years, the incorporation of main-group elements has also explored significant advantages for the development and tunability of organic conjugated materials. The unique chemical and electronic structure of main-group elements has led to several enhancements in conventional organic materials. This Feature article highlights recent main-group based pyridine materials by discussing property enhancements and application in organic electronics.

  12. Effectiveness of ProTaper, D-RaCe, and Mtwo retreatment files with and without supplementary instruments in the removal of root canal filling material.

    Science.gov (United States)

    Marques da Silva, B; Baratto-Filho, F; Leonardi, D P; Henrique Borges, A; Volpato, L; Branco Barletta, F

    2012-10-01

    To assess the efficacy of different retreatment rotary files in removing gutta-percha and endodontic sealer from canals. Ninety straight single-rooted premolars were prepared up to a size 30 and filled with gutta-percha and sealer and then randomly assigned to six retreatment groups (n = 15). Groups I, III, and V were retreated using rotary systems ProTaper Universal Retreatment (PTUR), D-RaCe, and Mtwo Retreatment, respectively. Groups II, IV, and VI were retreated using the additional instruments F4, size 40, .04 taper RaCe, and size 40, .04 taper Mtwo, respectively. The roots were split vertically, and images of the halves were obtained using a high-resolution scanner and evaluated with AutoCAD software to calculate the percentage of residual material. Data were analyzed with Kruskal-Wallis and Student-Newman-Keuls tests using a 5% significance cutoff (P 0.05) between groups when additional instruments were used. The percentage of residual material was lowest in the PTUR group and was statistically significant only when compared to the D-RaCe system (P = 0.0038). All root canals had residual filling material after retreatment even when additional instruments were used. © 2012 International Endodontic Journal.

  13. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping).

    Science.gov (United States)

    Arts, Josje H E; Hadi, Mackenzie; Irfan, Muhammad-Adeel; Keene, Athena M; Kreiling, Reinhard; Lyon, Delina; Maier, Monika; Michel, Karin; Petry, Thomas; Sauer, Ursula G; Warheit, David; Wiench, Karin; Wohlleben, Wendel; Landsiedel, Robert

    2015-03-15

    The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) 'Nano Task Force' proposes a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) that consists of 3 tiers to assign nanomaterials to 4 main groups, to perform sub-grouping within the main groups and to determine and refine specific information needs. The DF4nanoGrouping covers all relevant aspects of a nanomaterial's life cycle and biological pathways, i.e. intrinsic material and system-dependent properties, biopersistence, uptake and biodistribution, cellular and apical toxic effects. Use (including manufacture), release and route of exposure are applied as 'qualifiers' within the DF4nanoGrouping to determine if, e.g. nanomaterials cannot be released from a product matrix, which may justify the waiving of testing. The four main groups encompass (1) soluble nanomaterials, (2) biopersistent high aspect ratio nanomaterials, (3) passive nanomaterials, and (4) active nanomaterials. The DF4nanoGrouping aims to group nanomaterials by their specific mode-of-action that results in an apical toxic effect. This is eventually directed by a nanomaterial's intrinsic properties. However, since the exact correlation of intrinsic material properties and apical toxic effect is not yet established, the DF4nanoGrouping uses the 'functionality' of nanomaterials for grouping rather than relying on intrinsic material properties alone. Such functionalities include system-dependent material properties (such as dissolution rate in biologically relevant media), bio-physical interactions, in vitro effects and release and exposure. The DF4nanoGrouping is a hazard and risk assessment tool that applies modern toxicology and contributes to the sustainable development of nanotechnological products. It ensures that no studies are performed that do not provide crucial data and therefore saves animals and resources. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights

  14. An introduction to tensors and group theory for physicists

    CERN Document Server

    Jeevanjee, Nadir

    2011-01-01

    An Introduction to Tensors and Group Theory for Physicists provides both an intuitive and rigorous approach to tensors and groups and their role in theoretical physics and applied mathematics. A particular aim is to demystify tensors and provide a unified framework for understanding them in the context of classical and quantum physics. Connecting the component formalism prevalent in physics calculations with the abstract but more conceptual formulation found in many mathematical texts, the work will be a welcome addition to the literature on tensors and group theory. Part I of the text begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to classical and quantum physics through the use of tensor products. Part II introduces abstract groups along with matrix Lie groups and Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Exercises and examples are provided throughout for go...

  15. Selection of Additive Manufacturing (AM) Equipment

    Science.gov (United States)

    2017-04-01

    FOLLOW THE PROCEDURES IN DoD 5200.22-M, INDUSTRIAL SECURITY MANUAL, SECTION II-19 OR DoD 5200.1-R, INFORMATION SECURITY PROGRAM REGULATION...axis subtractive machining center. The hybrid approach is gaining interest in the traditionally subtractive machine tool industry as the additive...systems typically consists of a build vat, feedstock hoppers , a material spreading device, and an energy source. The material spreading device

  16. Faculty and student perceptions of effective study strategies and materials.

    Science.gov (United States)

    Suda, Katie J; Bell, Gillian C; Franks, Andrea S

    2011-12-15

    To evaluate faculty members' and students' perceptions of study strategies and materials. Focus groups were conducted with course directors and first- and second-year students to generate ideas relating to use of course materials, technology, class attendance, and study strategies for mastering class concepts. Students and faculty members differed in their opinions about the utility of textbooks and supplemental resources. The main learning method recommended by students and faculty members was repeated review of course material. Students recommended viewing classroom lectures again online, if possible. Course directors reported believing that class attendance is important, but students based their opinions regarding the importance of attendance on their perceptions of lecture and handout quality. Results did not differ by campus or by student group (first-year vs. second-year students). Students and faculty members have differing opinions on the process that could influence learning and course design. Faculty members should understand the strategies students are using to learn course material and consider additional or alternative course design and delivery techniques based on student feedback.

  17. Sensitization to Food Additives in Patients with Allergy: A Study Based on Skin Test and Open Oral Challenge.

    Science.gov (United States)

    Moghtaderi, Mozhgan; Hejrati, Zinatosadat; Dehghani, Zahra; Dehghani, Faranak; Kolahi, Niloofar

    2016-06-01

    There has been a great increase in the consumption of various food additives in recent years. The purpose of this study was to identify the incidence of sensitization to food additives by using skin prick test in patients with allergy and to determine the concordance rate between positive skin tests and oral challenge in hypersensitivity to additives. This cross-sectional study included 125 (female 71, male 54) patients aged 2-76 years with allergy and 100 healthy individuals. Skin tests were performed in both patient and control groups with 25 fresh food additives. Among patients with allergy, 22.4% showed positive skin test at least to one of the applied materials. Skin test was negative to all tested food additives in control group. Oral food challenge was done in 28 patients with positive skin test, in whom 9 patients showed reaction to culprit (Concordance rate=32.1%). The present study suggested that about one-third of allergic patients with positive reaction to food additives showed positive oral challenge; it may be considered the potential utility of skin test to identify the role of food additives in patients with allergy.

  18. Comparative study of conventional therapy and additional yogasanas for knee rehabilitation after total knee arthroplasty

    Directory of Open Access Journals (Sweden)

    Nilima Bedekar

    2012-01-01

    Full Text Available Background: Amongst various modalities of post operative rehabilitation in a total knee replacement (TKR surgery, this study focuses on evaluating the effect of additional yoga therapy on functional outcome of TKR patients. Materials and Methods: A comparative study was done to compare the effects of conventional physiotherapy and additional yoga asanas, on 56 patients undergoing total knee arthroplasty due to osteoarthritis. After obtaining written informed consent, the patients were alternately assigned to two groups: Conventional and experimental. Baseline WOMAC scores for pain and stiffness were taken on third post operative day. The subjects in conventional group received physiotherapy rehabilitation program of Sancheti Institute where the study was conducted, the experimental group received additional modified yoga asanas once daily by the therapist. After discharge from the hospital, patients were provided with written instructions and photographs of the asanas, two sets of WOMAC questionnaire with stamped and addressed envelopes and were instructed to perform yoga asanas 3 days/week. Subjects filled the questionnaire after 6 weeks and 3 months from the day of surgery and mailed back. The primary outcome measure was WOMAC questionnaire which consists of 24 questions, each corresponding to a visual analog scale, designed to measure patient′s perception of pain, stiffness and function. Results: The results suggest that there was a significant change (P<0.05 for all the groups for pain, stiffness and function subscales of WOMAC scale. The pain and stiffness was found to be less in experimental group receiving additional yoga therapy than in conventional group on 3 rd post operative day, 6 weeks and 3 months after the surgery. Conclusion: A combination of physiotherapy and yoga asana protocol works better than only physiotherapy protocol. Larger and blinded study is needed.

  19. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    Science.gov (United States)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  20. 78 FR 12295 - Procurement List; Additions

    Science.gov (United States)

    2013-02-22

    ... published notices of proposed additions to the Procurement List. After consideration of the material..., 508 Compliant, 12 Digit, Portable, Desktop, Battery Operated NPA: MidWest Enterprises for the Blind...

  1. 75 FR 17145 - Food Additives; Bisphenol A; Availability

    Science.gov (United States)

    2010-04-05

    ...] Food Additives; Bisphenol A; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice... contact materials. Uses of BPA were approved by FDA under its food additive regulations in the early 1960s..., Division of 2009 Food Contact Notifications, Office of Food Additive Safety, Center for Food Safety and...

  2. Back to the Future? History, Material Culture and New Materialism

    Directory of Open Access Journals (Sweden)

    Hans Schouwenburg

    2015-04-01

    Full Text Available The study of history currently witnesses two markedly different material turns. Some historians are using material artefacts as alternatives to textual sources. Others draw on ‘new materialism’, a new tradition in thought that originated in the field of gender studies. Both groups are trying to move beyond the cultural turn, which has dominated the study of history since the 1980s. However, the first group merely extends the programme of the cultural turn into new domains without rejecting its methods or epistemological foundations. The latter group, on the other hand, provides a new cultural theory. This article demonstrates that the ‘new’ in new materialism is not so much an increased engagement with the material world, but rather a new conceptualization of developing theory and reading texts, which cuts through established dichotomies between matter and meaning or culture and the social. In doing so, a new materialist history can solve some of the problems associated with the cultural turn and the turn to material artefacts.

  3. Separation of Trace Amount Zn (II Using Additional Carbonyl and Carboxyl Groups Functionalized-Nano Graphene

    Directory of Open Access Journals (Sweden)

    A. Moghimi

    2013-01-01

    Full Text Available A novel and selective method for the fast determination of trace amounts of Zn(IIions in water samples has been developed.  The first additional carbonyl and carboxyl functionalized-nano graphene (SPFNano graphene. The presence of additional carbonyl and carboxyl groups located at the edge of the sheets makes GO sheets strongly hydrophilic, allowing them to readily swell and disperse in water. Based on these oxygen functionalities, different model structures of GO were used as absorbent for extraction of Zn (II   ions by solid phase extraction method. The complexes were eluted with HNO3 (2M10% V.V-1 methanol in acetone and determined the analyte by flame atomic absorption spectrometry.  The procedure is based on the selective formation of Zn (II at optimum pH by elution with organic eluents and determination by flame atomic absorption spectrometry. The method is based on complex formation on the surface of the ENVI-18 DISKTM disks modified carbonyl and carboxyl functionalized-nano graphene oxide molecules covalently bonded together followed by stripping of the retained species by minimum amounts of appropriate organic solvents. The elution is efficient and quantitative. The effect of potential interfering ions, pH, SPFNano graphene, amount, stripping solvent, and sample flow rate were also investigated. Under the optimal experimental conditions, the break-through volume was found to about 1000mL providing a preconcentration factor of 500. The maximum capacity of the disks was found to be 456± 3 µg for Zn2+.The limit of detection of the proposed method is 5ng per 1000mL.The method was applied to the extraction and recovery of Zn in different water samples.

  4. Bacterial biodegradation of melamine-contaminated aged soil: influence of different pre-culture media or addition of activation material.

    Science.gov (United States)

    Hatakeyama, Takashi; Takagi, Kazuhiro

    2016-08-01

    This study aimed to investigate the biodegrading potential of Arthrobacter sp. MCO, Arthrobacter sp. CSP, and Nocardioides sp. ATD6 in melamine-contaminated upland soil (melamine: approx. 10.5 mg/kg dry weight) after 30 days of incubation. The soil sample used in this study had undergone annual treatment of lime nitrogen, which included melamine; it was aged for more than 10 years in field. When R2A broth was used as the pre-culture medium, Arthrobacter sp. MCO could degrade 55 % of melamine after 30 days of incubation, but the other strains could hardly degrade melamine (approximately 25 %). The addition of trimethylglycine (betaine) in soil as an activation material enhanced the degradation rate of melamine by each strain; more than 50 % of melamine was degraded by all strains after 30 days of incubation. In particular, strain MCO could degrade 72 % of melamine. When the strains were pre-cultured in R2A broth containing melamine, the degradation rate of melamine in soil increased remarkably. The highest (72 %) melamine degradation rate was noted when strain MCO was used with betaine addition.

  5. Behavioral and hormonal responses to the availability of forage material in Western lowland gorillas (Gorilla gorilla gorilla).

    Science.gov (United States)

    Fuller, Grace; Murray, Anna; Thueme, Melissa; McGuire, Molly; Vonk, Jennifer; Allard, Stephanie

    2018-01-01

    We investigated how forage material affects indicators of welfare in three male Western lowland gorillas (Gorilla gorilla gorilla) at the Detroit Zoo. In addition to their maintenance diet and enrichment foods, the gorillas generally received forage material four times a week. From this baseline, we systematically manipulated how much forage material the group received on a weekly basis, with either daily or bi (twice)-weekly presentation of browse (mulberry, Morus sp.) or alfalfa hay. We collected behavioral data (60 hr per gorilla) and measured fecal glucocorticoid metabolites (FGM). Mixed models indicated that the presence of forage material significantly increased time feeding (F 2,351  = 9.58, p gorillas, compared to a disproportionately greater amount of time spent feeding by the dominant individual when forage material was absent. Providing forage material in addition to the regular diet likely created more opportunities for equitable feeding for the subordinate gorillas. FGM concentrations did not vary based on the presence or type of forage material available and, instead, likely reflected group social dynamics. In general, alfalfa and mulberry had similar impacts on behavior, indicating that alfalfa can be an adequate behavioral substitute during times when browse is less readily available for gorillas housed in seasonally variable climates. © 2017 Wiley Periodicals, Inc.

  6. The Impact of Latino Values and Cultural Beliefs on Brain Donation: Results of a Pilot Study to Develop Culturally Appropriate Materials and Methods to Increase Rates of Brain Donation in this Under-Studied Patient Group.

    Science.gov (United States)

    Bilbrey, Ann Choryan; Humber, Marika B; Plowey, Edward D; Garcia, Iliana; Chennapragada, Lakshmi; Desai, Kanchi; Rosen, Allyson; Askari, Nusha; Gallagher-Thompson, Dolores

    2018-01-01

    Increasing the number of Latino persons with dementia who consent to brain donation (BD) upon death is an important public health goal that has not yet been realized. This study identified the need for culturally sensitive materials to answer questions and support the decision-making process for the family. Information about existing rates of BD was obtained from the Alzheimer's Disease Centers. Several methods of data collection (query NACC database, contacting Centers, focus groups, online survey, assessing current protocol and materials) were used to give the needed background to create culturally appropriate BD materials. A decision was made that a brochure for undecided enrollees would be beneficial to discuss BD with family members. For those needing further details, a step-by-step handout would provide additional information. Through team collaboration and engagement of others in the community who work with Latinos with dementia, we believe this process allowed us to successfully create culturally appropriate informational materials that address a sensitive topic for Hispanic/Latino families. Brain tissue is needed to further knowledge about underlying biological mechanism of neurodegenerative diseases, however it is a sensitive topic. Materials assist with family discussion and facilitate the family's follow-through with BD.

  7. Determination of Sr, Ba, Rb, and Cs in biological reference materials using a radiochemical NAA group separation procedure

    International Nuclear Information System (INIS)

    Mizera, J.; Randa, Z.

    2008-01-01

    Strontium, barium, rubidium, and cesium in selected, predominantly biological, reference materials (NIST 1515, 1547, 1549, 1566a, 1571, 1577b, 2704, CTA-OTL-1, and Bowen's Kale) were determined using neutron activation analysis (NAA) in two different analytical modes - instrumental NAA with epithermal neutrons (ENAA), and NAA with radiochemical group separation of Sr-Ba and Rb-Cs (RNAA). The ENAA mode was based on long-term (5 h) irradiation of samples in a Cd shielding. The RNAA procedure was based on long-term (20 h) irradiation of samples, their decomposition / dissolution by alkaline-oxidative fusion, and precipitation of Sr and Ba sulfates, and sorption of Rb and Cs onto ammonium phosphomolybdate (APM). Both methods provided element contents in the analyzed reference materials consistent with certified and/or literature values. (author)

  8. Photoreversible Covalent Hydrogels for Soft-Matter Additive Manufacturing.

    Science.gov (United States)

    Kabb, Christopher P; O'Bryan, Christopher S; Deng, Christopher C; Angelini, Thomas E; Sumerlin, Brent S

    2018-05-16

    Reversible covalent chemistry provides access to robust materials with the ability to be degraded and reformed upon exposure to an appropriate stimulus. Photoresponsive units are attractive for this purpose, as the spatial and temporal application of light is easily controlled. Coumarin derivatives undergo a [2 + 2] cycloaddition upon exposure to long-wave UV irradiation (365 nm), and this process can be reversed using short-wave UV light (254 nm). Therefore, polymers cross-linked by coumarin groups are excellent candidates as reversible covalent gels. In this work, copolymerization of coumarin-containing monomers with the hydrophilic comonomer N, N-dimethylacrylamide yielded water-soluble, linear polymers that could be cured with long-wave UV light into free-standing hydrogels, even in the absence of a photoinitiator. Importantly, the gels were reverted back to soluble copolymers upon short-wave UV irradiation. This process could be cycled, allowing for recycling and remolding of the hydrogel into additional shapes. Further, this hydrogel can be imprinted with patterns through a mask-based, post-gelation photoetching method. Traditional limitations of this technique, such as the requirement for uniform etching in one direction, have been overcome by combining these materials with a soft-matter additive manufacturing methodology. In a representative application of this approach, we printed solid structures in which the interior coumarin-cross-linked gel is surrounded by a nondegradable gel. Upon exposure to short-wave UV irradiation, the coumarin-cross-linked gel was reverted to soluble prepolymers that were washed away to yield hollow hydrogel objects.

  9. Additional safety assessment of ITER - Addition safety investigation of the INB ITER

    International Nuclear Information System (INIS)

    2012-01-01

    This assessment aims at re-assessing safety margins in the light of events which occurred in Fukushima Daiichi, i.e. extreme natural events challenging the safety of installations. After a presentation of some characteristics of the ITER installation (location, activities, buildings, premise detritiation systems, electric supply, handling means, radioactive materials, chemical products, nuclear risks, specific risks), the report addresses the installation robustness by identifying cliff-edge effect risks which can be related to a loss of confinement of radioactive materials, explosions, a significant increase of exposure level, a possible effect on water sheets, and so on. The next part addresses the various aspects related to a seismic risk: installation sizing (assessment methodology, seismic risk characterization in Cadarache), sizing protection measures, installation compliance, and margin assessment. External flooding is the next addressed risk: installation sizing with respect to this specific risk, protection measures, installation compliance, margin assessment, and studied additional measures. Other extreme natural phenomena are considered (meteorological conditions, earthquake and flood) which may have effects on other installations (dam, canal). Then, the report addresses technical risks like the loss of electric supplies and cooling systems, the way a crisis is managed in terms of technical and human means and organization in different typical accidental cases. Subcontracting practices are also discussed. A synthesis proposes an overview of this additional safety assessment and discusses the impact which could have additional measures which could be implemented

  10. Extrusion-mixing compared with hand-mixing of polyether impression materials?

    Science.gov (United States)

    McMahon, Caroline; Kinsella, Daniel; Fleming, Garry J P

    2010-12-01

    The hypotheses tested were two-fold (a) whether altering the base:catalyst ratio influences working time, elastic recovery and strain in compression properties of a hand-mixed polyether impression material and (b) whether an extrusion-mixed polyether impression material would have a significant advantage over a hand-mixed polyether impression material mixed to the optimum base:catalyst ratio. The polyether was hand-mixed at the optimum (manufacturers recommended) base:catalyst ratios (7:1) and further groups were made by increasing or decreasing the catalyst length by 25%. Additionally specimens were also made from an extrusion-mixed polyether impression material and compared with the optimum hand-mixed base:catalyst ratio. A penetrometer assembly was used to measure the working time (n=5). Five cylindrical specimens for each hand-mixed and extrusion mixed group investigated were employed for elastic recovery and strain in compression testing. Hand-mixing polyether impression materials with 25% more catalyst than that recommended significantly decreased the working time while hand-mixing with 25% less catalyst than that recommended significantly increased the strain in compression. The extrusion-mixed polyether impression material provided similar working time, elastic recovery and strain in compression to the hand-mixed polyether mixed at the optimum base:catalyst ratio.

  11. Illicit diversion of nuclear materials

    International Nuclear Information System (INIS)

    Bett, F.L.

    1975-08-01

    This paper discusses the means of preventing illegal use of nuclear material by terrorists or other sub-national groups and by governments. With respect to sub-national groups, it concludes that the preventive measures of national safeguards systems, when taken together with the practical difficulties of using nuclear material, would make the diversion and illegal use of nuclear material unattractive in comparison with other avenues open to these groups to attain their ends. It notes that there are only certain areas in the nuclear fuel cycle, e.g. production of some types of nuclear fuel embodying highly enriched uranium and shipment of strategically significant nuclear material, which contain material potentially useful to these groups. It also discusses the difficult practical problems, e.g. coping with radiation, which would face the groups in making use of the materials for terrorist purposes. Concerning illegal use by Governments, the paper describes the role of international safeguards, as applied by the International Atomic Energy Agency, and the real deterrent effect of these safeguards which is achieved through the requirements to maintain comprehensive operating records of the use of nuclear material and by regular inspections to verify these records. The paper makes the point that Australia would not consider supplying nuclear material unless it were subject to international safeguards. (author)

  12. Workshop Report on Additive Manufacturing for Large-Scale Metal Components - Development and Deployment of Metal Big-Area-Additive-Manufacturing (Large-Scale Metals AM) System

    Energy Technology Data Exchange (ETDEWEB)

    Babu, Sudarsanam Suresh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Manufacturing Demonstration Facility; Love, Lonnie J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Manufacturing Demonstration Facility; Peter, William H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Manufacturing Demonstration Facility; Dehoff, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Manufacturing Demonstration Facility

    2016-05-01

    Additive manufacturing (AM) is considered an emerging technology that is expected to transform the way industry can make low-volume, high value complex structures. This disruptive technology promises to replace legacy manufacturing methods for the fabrication of existing components in addition to bringing new innovation for new components with increased functional and mechanical properties. This report outlines the outcome of a workshop on large-scale metal additive manufacturing held at Oak Ridge National Laboratory (ORNL) on March 11, 2016. The charter for the workshop was outlined by the Department of Energy (DOE) Advanced Manufacturing Office program manager. The status and impact of the Big Area Additive Manufacturing (BAAM) for polymer matrix composites was presented as the background motivation for the workshop. Following, the extension of underlying technology to low-cost metals was proposed with the following goals: (i) High deposition rates (approaching 100 lbs/h); (ii) Low cost (<$10/lbs) for steel, iron, aluminum, nickel, as well as, higher cost titanium, (iii) large components (major axis greater than 6 ft) and (iv) compliance of property requirements. The above concept was discussed in depth by representatives from different industrial sectors including welding, metal fabrication machinery, energy, construction, aerospace and heavy manufacturing. In addition, DOE’s newly launched High Performance Computing for Manufacturing (HPC4MFG) program was reviewed. This program will apply thermo-mechanical models to elucidate deeper understanding of the interactions between design, process, and materials during additive manufacturing. Following these presentations, all the attendees took part in a brainstorming session where everyone identified the top 10 challenges in large-scale metal AM from their own perspective. The feedback was analyzed and grouped in different categories including, (i) CAD to PART software, (ii) selection of energy source, (iii

  13. Further karyosystematic studies of the Boreonectes griseostriatus (De Geer group of sibling species (Coleoptera, Dytiscidae–characterisation of B. emmerichi (Falkenström, 1936 and additional European data

    Directory of Open Access Journals (Sweden)

    Robert B. Angus

    2015-03-01

    Full Text Available A lectotype is designated for the Tibetan species Deronectes emmerichi Falkenström, 1936 (Currently Boreonectes emmerichi (Falkenström, and its habitus, as well as the median lobe and parameres of its aedeagus, are figured along with additional comparative material. Material of B. emmerichi from Sikkim (BMNH represents the first record of a Boreonectes Angus, 2010 species from India. The karyotype of B. emmerichi is described as having 26 pairs of autosomes plus sex chromosomes which are X0 (♂, XX (♀. The karyotype is most like that of B. macedonicus (Géuorguiev, 1959, but with slight differences. Additional chromosomal information is given for B. griseostriatus griseostriatus (De Geer, 1774 in the French Alps, B. g. strandi (Brinck, 1943 on the Kola Peninsula, B. multilineatus (Falkenström, 1922 in the Pyrenees and B. ibericus (Dutton & Angus, 2007 in the Spanish Picos de Europa.

  14. Role of point defects and additives in kinetics of hydrogen storage materials

    Science.gov (United States)

    van de Walle, Chris

    2010-03-01

    First-principles computational studies of hydrogen interactions with storage materials can provide direct insight into the processes of H uptake and release, and may help in developing guidelines for designing storage media with improved storage capacity and kinetics. One important conclusion is that the defects involved in kinetics of semiconducting or insulating H-storage materials are charged, and hence their formation energy is Fermi-level dependent and can be affected by the presence of impurities that change the Fermi level [1,2]. This provides an explanation for the role played by transition-metal impurities in the kinetics of NaAlH4 and related materials. Desorption of H and decomposition of NaAlH4 requires not only mass transport of H but also of Al and/or Na. This process is mediated by native defects. We have investigated the structure, stability, and migration enthalpy of native defects based on density functional theory. The results allow us to estimate diffusion activation energies for the defects that may be involved in mass transport. Most of the relevant defects exist in charge states other than neutral, and consideration of these charge states is essential for a proper description of kinetics. We propose specific new mechanisms to explain the observed activation energies and their dependence on the presence of impurities. We have also expanded our studies to materials other than NaAlH4. In the case of LiBH4 and Li4BN3H10 we have found that the calculations have predictive power in terms of identifying which impurities will actually enhance kinetics. Other complex hydrides that we are currently investigating include Li2NH and LiNH2. [4pt] [1] A. Peles and C. G. Van de Walle, Phys. Rev. B 76, 214101 (2007). [0pt] [2] C. G. Van de Walle, A. Peles, A. Janotti, and G. B. Wilson-Short, Physica B 404, 793 (2009).

  15. Report on the joint meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups

    International Nuclear Information System (INIS)

    Wilson, K.L.

    1985-10-01

    This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well

  16. Miscellaneous radioactive materials detected during uranium mill tailings surveys

    International Nuclear Information System (INIS)

    Wilson, M.J.

    1993-10-01

    The Department of Energy's (DOE) Office of Environmental Restoration and Waste Management directed the Oak Ridge National Laboratory Pollutant Assessments Group in the conduct of radiological surveys on properties in Monticello, Utah, associated with the Mendaciously millsite National Priority List site. During these surveys, various radioactive materials were detected that were unrelated to the Monticello millsite. The existence and descriptions of these materials were recorded in survey reports and are condensed in this report. The radioactive materials detected are either naturally occurring radioactive material, such as rock and mineral collections, uranium ore, and radioactive coal or manmade radioactive material consisting of tailings from other millsites, mining equipment, radium dials, mill building scraps, building materials, such as brick and cinderblock, and other miscellaneous sources. Awareness of the miscellaneous and naturally occurring material is essential to allow DOE to forecast the additional costs and schedule changes associated with remediation activities. Also, material that may pose a health hazard to the public should be revealed to other regulatory agencies for consideration

  17. The effect of various pozzolanic additives on the concrete strength index

    Science.gov (United States)

    Vitola, L.; Sahmenko, G.; Erdmane, D.; Bumanis, G.; Bajare, D.

    2017-10-01

    The concrete industry is searching continuously for new effective mineral additives to improve the concrete properties. Replacing cement with the pozzolanic additives in most cases has resulted not only in positive impact on the environment but also has improved strength and durability of the concrete. Effective pozzolanic additives can be obtained from natural resources such as volcanic ashes, kaolin and other sediments as well as from different production industries that create various by-products with high pozzolanic reactivity. Current research deals with effectiveness evaluation of various mineral additives/wastes, such as coal combustion bottom ash, barley bottom ash, waste glass and metakaolin containing waste as well as calcined illite clays as supplementary cementitious materials, to be used in concrete production as partial cement replacement. Most of the examined materials are used as waste stream materials with potential reactive effect on the concrete. Milling time and fineness of the tested supplementary material has been evaluated and effectiveness was detected. Results indicate that fineness of the tested materials has crucial effect on the concrete compressive strength index. Not in all cases the prolonged milling time can increase fineness and reactivity of the supplementary materials; however the optimal milling time and fineness of the pozolanic additives increased the strength index of concrete up to 1.16 comparing to reference, even in cases when cement was substituted by 20 w%.

  18. Multi-orifice deposition nozzle for additive manufacturing

    Science.gov (United States)

    Lind, Randall F.; Post, Brian K.; Cini, Colin L.

    2017-11-21

    An additive manufacturing extrusion head includes a nozzle for accepting and depositing a heated material onto a work surface and/or part. The nozzle includes a valve body and an internal poppet body moveable between positions to permit deposition of at least two bead sizes of heated material onto a work surface and/or part.

  19. The effect of CHA-doped Sr addition to the mechanical strength of metakaolin dental implant geopolymer composite

    Science.gov (United States)

    Sunendar, Bambang; Fathina, Afiya; Harmaji, Andrie; Mardhian, Deby Fajar; Asri, Lia; Widodo, Haris Budi

    2017-09-01

    The prospective material for implant plate required sufficient mechanical properties to maintain fracture fixation and resist physiological stress until bone healing process finished. Various problem implant plate based on metal and polymer materials when used as fixation for bone defect case induced developmental of bioceramic for implant plate materials. Materials that now has been attract a lot of attention is carbonate apatite and strontium as doping which known to have good biocompability along with biointegrity and mechanical charateristics. Other materials that have been known to have good mechanical properties are metakaolin and use of chitosan as coupling agent. Metakaolin and carbonate apatite can be produced by sol-gel methode which simpler, economical and energy-saving procedure furthermore use of chitosan which is widely found in the nature of Indonesia can be used to encourage the utilization of natural resources. The aim fo this paper is to investigated effect of CHA-doped Sr 5 (%) mol addition to the mechanical strength of metakaolin dental implant geoploymer composite. In this paper metakaolin is used as geopolymerization precursors. The test results have shown that addition of filler of apatite carbonate doped 5% mol strontium can be said to increase the value of mechnical properties but high concentration of calcium in the nanocomposite also can complicate the equilibrium of the geopolymerization process and induce alkali aggregate reactivity (AAR). The sample group of nanocomposite of metakaolin and carbonate apatite-doped 5% mol strontium (2: 1% wt) with 2% chitosan as a coupling agent based on geopolymerization for implant plate application has the best mechanical properties among all sample groups but does not qualify as an implant plate on cortical bone but can be used for the application of the implant plate on the trabecular bone specifically and potentially as a bone initiator.

  20. Group Work: How to Use Groups Effectively

    Science.gov (United States)

    Burke, Alison

    2011-01-01

    Many students cringe and groan when told that they will need to work in a group. However, group work has been found to be good for students and good for teachers. Employers want college graduates to have developed teamwork skills. Additionally, students who participate in collaborative learning get better grades, are more satisfied with their…

  1. Development of the CANDU 66-group SN transport library

    International Nuclear Information System (INIS)

    Tsang, K.T.

    2001-01-01

    The design of the shield configuration around a nuclear reactor is strongly dependent on the neutron and photon spatial and energy distributions. The nuclear heat deposition and material damage in and surrounding the reactor core are also a function of the neutron and photon distributions. Therefore, to ensure a suitable configuration of materials for shielding or heat transfer, an accurate calculation of the particle fluxes in the reactor systems is essential. The CANDU 66-group library was developed to update the cross sections that are needed to assess the performance of CANDU bulk shields. Since about 1980, shielding analysts at Atomic Energy of Canada Limited (AECL) and Ontario Power Generation Inc. (OPGI) have been using a 38-group CANDU-specific library to perform S N transport calculations. In 1994, a new CANDU 67-group cross-section library was developed. The 67-group cross-section library was developed to provide radiation-physics analysts with up-to-date nuclear data to correct deficiencies with documentation of the old library. Although there were improvements over the 38-group library, initial use showed there were some deficiencies in the 67-group library. To correct these deficiencies, the CANDU 66-group S N transport cross-section library was developed. The 66-group library is based on the 241-group cross-section library VITAMIN-B6. Collapsing and weighting of the 241-group cross sections into 66 groups were performed using the modular code system SCALE 4.4. This paper describes how the modules in the SCALE system were applied to generate the 66-group library. The CANDU 66-group library includes both core-weighted and lattice-weighted cross sections of 235 U, 238 U, and 239 Pu with, and without, delayed fission-product photons. In addition, the 66-group library contains more response functions than did the 67-group library. Finally, the CANDU 66-group library has been validated against one-dimensional benchmark problems. The results generated with

  2. Evaluation of accuracy of multiple dental implant impressions using various splinting materials.

    Science.gov (United States)

    Hariharan, Rasasubramanian; Shankar, Chitra; Rajan, Manoj; Baig, Mirza Rustum; Azhagarasan, N S

    2010-01-01

    The aim of the present study was to compare the accuracy of casts obtained from nonsplinted and splinted direct impression techniques employing various splinting materials for multiple dental implants. A reference model with four Nobel Replace Select implant replicas in the anterior mandible was fabricated with denture base heat-curing acrylic resin. Impressions of the reference model were made using polyether impression material by direct nonsplinted and splinted techniques. Impressions were divided into four groups: group A: nonsplinted technique; group B: acrylic resin-splinted technique; group C: bite registration addition silicone-splinted technique; and group D: bite registration polyether-splinted technique. Four impressions were made for each group and casts were poured in type IV dental stone. Linear differences in interimplant distances in the x-, y-, and z-axes and differences in interimplant angulations in the z-axis were measured on the casts using a coordinate measuring machine. The interimplant distance D1y showed significant variations in all four test groups (P = .043), while D3x values varied significantly between the acrylic resin-splinted and silicone-splinted groups. Casts obtained from the polyether-splinted group were the closest to the reference model in the x- and y-axes. In the z-axis, D2z values varied significantly among the three test groups (P = .009). Casts from the acrylic resin-splinted group were the closest to the reference model in the z-axis. Also, one of the three angles measured (angle 2) showed significant differences within three test groups (P = .009). Casts from the nonsplinted group exhibited the smallest angular differences. Casts obtained from all four impression techniques exhibited differences from the reference model. Casts obtained using the bite registration polyether-splinted technique were the most accurate versus the reference model, followed by those obtained via the acrylic resin-splinted, nonsplinted, and

  3. Sol-gel Process in Preparation of Organic-inorganic Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Macan, J

    2008-07-01

    Full Text Available Organic-inorganic hybrid materials are a sort of nanostructured material in which the organic and inorganic phases are mixed at molecular level. The inorganic phase in hybrid materials is formed by the sol-gel process, which consists of reactions of hydrolysis and condensation of metal (usually silicon alkoxides. Flexibility of sol-gel process enables creation of hybrid materials with varying organic and inorganic phases in different ratios, and consequently fine-tuning of their properties. In order to obtain true hybrid materials, contact between the phases should be at molecular level, so phase separation between thermodynamically incompatible organic and inorganic phases has to be prevented. Phase interaction can be improved by formation of hydrogen or covalent bonds between them during preparation of hybrid materials. Covalent bond can be introduced by organically modified silicon alkoxides containing a reactive organic group (substituent capable of reacting with the organic phase. In order to obtain hybrid materials with desired structures, a detailed knowledge of hydrolysis and condensation mechanism is necessary. The choice of catalyst, whether acid or base, has the most significant influence on the structure of the inorganic phase. Other important parameters are alkoxide concentration, water: alkoxide ratio, type of alkoxide groups, solvent used, temperature, purity of chemicals used, etc. Hydrolysis and condensation of organically modified silicon alkoxides are additionally influenced by nature and size of the organic supstituent.

  4. Group Leader Development: Effects of Personal Growth and Psychoeducational Groups

    Science.gov (United States)

    Ohrt, Jonathan H.; Robinson, E. H., III; Hagedorn, W. Bryce

    2013-01-01

    The purpose of this quasi-experimental study was to compare the effects of personal growth groups and psychoeducational groups on counselor education students' (n = 74) empathy and group leader self-efficacy. Additionally, we compared the degree to which participants in each group valued: (a) cohesion, (b) catharsis, and (c) insight. There were no…

  5. IAEA AQCS catalogue for reference materials and intercomparison exercises 1998/1999

    International Nuclear Information System (INIS)

    1999-01-01

    Fore more than thirty years the International Atomic Energy Agency (IAEA), through its Analytical Quality Control Services (AQCS) programme, has been assisting Member States' laboratories to maintain and improve the reliability of their analyses by organizing intercomparison exercises and by preparing and distributing biological, environmental and marine reference materials. The catalogue consists principally of two parts: The list of all available IAEA reference materials grouped into five categories: reference materials for radionuclides; reference materials for trace, minor and major elements, including oxides; reference materials for stable isotopes; reference materials for organic contaminants and methyl mercury containing materials. Lists of all available IAEA reference materials sorted by analytes. In addition information on recommended half-life data and suppliers of radioactive sources is provided. Planned intercomparisons are advertised and request forms for participation in intercomparisons are included. Forms for ordering reference materials, quality control spectra for gamma-spectrometry on diskettes and AQCS related publications are also provided

  6. Electronic Interactions of n-Doped Perylene Diimide Groups Appended to Polynorbornene Chains: Implications for Electron Transport in Organic Electronics.

    Science.gov (United States)

    Nguyen, Minh T; Biberdorf, Joshua D; Holliday, Bradley J; Jones, Richard A

    2017-11-01

    A polymer consisting of a polynorbornene backbone with perylene diimide (PDI) pendant groups on each monomeric unit is synthesized via ring opening metathesis polymerization. The PDI pendant groups along the polymer backbone, studied by UV-vis absorption, fluorescence emission, and electron paramagnetic resonance spectroscopy in addition to electrochemical methods, show evidence of molecular aggregation and corresponding electronic coupling with neighboring groups, which forms pathways for efficient electron transport from one group to another in a specific reduced form. When n-doped, the title polymer shows redox conductivity of 5.4 × 10 -3 S cm -1 , comparable with crystalline PDI materials, and is therefore a promising material for use in organic electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Age-related incidence of pulmonary embolism and additional pathologic findings detected by computed tomography pulmonary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Groth, M., E-mail: groth.michael@googlemail.com [Center for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Henes, F.O., E-mail: f.henes@uke.uni-hamburg.de [Center for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Mayer, U., E-mail: mayer@uke.uni-hamburg.de [Emergency Department, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Regier, M., E-mail: m.regier@uke.uni-hamburg.de [Center for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Adam, G., E-mail: g.adam@uke.uni-hamburg.de [Center for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Begemann, P.G.C., E-mail: p.begemann@me.com [Center for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany)

    2012-08-15

    Objective: To compare the incidence of pulmonary embolism (PE) and additional pathologic findings (APF) detected by computed tomography pulmonary angiography (CTPA) according to different age-groups. Materials and methods: 1353 consecutive CTPA cases for suspected PE were retrospectively reviewed. Patients were divided into seven age groups: {<=}29, 30-39, 40-49, 50-59, 60-69, 70-79 and {>=}80 years. Differences between the groups were tested using Fisher's exact or chi-square test. A p-value < 0.0024 indicated statistical significance when Bonferroni correction was used. Results: Incidence rates of PE ranged from 11.4% to 25.4% in different age groups. The three main APF were pleural effusion, pneumonia and pulmonary nodules. No significant difference was found between the incidences of PE in different age groups. Furthermore, APF in different age groups revealed no significant differences (all p-values > 0.0024). Conclusion: The incidences of PE and APF detected by CTPA reveal no significant differences between various age groups.

  8. Mechanical properties of sheet metal components with local reinforcement produced by additive manufacturing

    Science.gov (United States)

    Ünsal, Ismail; Hama-Saleh, R.; Sviridov, Alexander; Bambach, Markus; Weisheit, A.; Schleifenbaum, J. H.

    2018-05-01

    New technological challenges like electro-mobility pose an increasing demand for cost-efficient processes for the production of product variants. This demand opens the possibility to combine established die-based manufacturing methods and innovative, dieless technologies like additive manufacturing [1, 2]. In this context, additive manufacturing technologies allow for the weight-efficient local reinforcement of parts before and after forming, enabling manufacturers to produce product variants from series parts [3]. Previous work by the authors shows that the optimal shape of the reinforcing structure can be determined using sizing optimization. Sheet metal parts can then be reinforced using laser metal deposition. The material used is a pearlite-reduced, micro-alloyed steel (ZE 630). The aim of this paper is to determine the effect of the additive manufacturing process on the material behavior and the mechanical properties of the base material and the resulting composite material. The parameters of the AM process are optimized to reach similar material properties in the base material and the build-up volume. A metallographic analysis of the parts is presented, where the additive layers, the base material and also the bonding between the additive layers and the base material are analyzed. The paper shows the feasibility of the approach and details the resulting mechanical properties and performance.

  9. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on Flavouring Group Evaluation 11, Revision 3 (FGE.11Rev3): Aliphatic dialcohols, diketones, and hydroxyketones from chemical groups 8 and 10

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Frandsen, Henrik Lauritz; Nørby, Karin Kristiane

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 11 flavouring substances in the Flavouring Group Evaluation 11, Revision 3, using the Procedure in Commission Regulation (EC) No 1565/2000. The substances......, the specifications for the materials of commerce have also been considered. Specifications including complete purity criteria and identity for the materials of commerce have been provided for all candidate substances....

  10. Additive manufacturing of polymer-derived ceramics

    Science.gov (United States)

    Eckel, Zak C.; Zhou, Chaoyin; Martin, John H.; Jacobsen, Alan J.; Carter, William B.; Schaedler, Tobias A.

    2016-01-01

    The extremely high melting point of many ceramics adds challenges to additive manufacturing as compared with metals and polymers. Because ceramics cannot be cast or machined easily, three-dimensional (3D) printing enables a big leap in geometrical flexibility. We report preceramic monomers that are cured with ultraviolet light in a stereolithography 3D printer or through a patterned mask, forming 3D polymer structures that can have complex shape and cellular architecture. These polymer structures can be pyrolyzed to a ceramic with uniform shrinkage and virtually no porosity. Silicon oxycarbide microlattice and honeycomb cellular materials fabricated with this approach exhibit higher strength than ceramic foams of similar density. Additive manufacturing of such materials is of interest for propulsion components, thermal protection systems, porous burners, microelectromechanical systems, and electronic device packaging.

  11. Cooperative catalysis by silica-supported organic functional groups

    OpenAIRE

    Margelefsky, Eric L.; Zeidan, Ryan K.; Davis, Mark E.

    2008-01-01

    Hybrid inorganic–organic materials comprising organic functional groups tethered from silica surfaces are versatile, heterogeneous catalysts. Recent advances have led to the preparation of silica materials containing multiple, different functional groups that can show cooperative catalysis; that is, these functional groups can act together to provide catalytic activity and selectivity superior to what can be obtained from either monofunctional materials or homogeneous catalysts. This tutorial...

  12. Magnetic Properties of FeNi-Based Thin Film Materials with Different Additives

    Directory of Open Access Journals (Sweden)

    Cai Liang

    2014-07-01

    Full Text Available This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials attractive for sensor applications. Our findings show that FeNi deposited with Mo or Al yields magnetically soft materials and that depositing with B further increases the softness. The out-of-plane magnetic anisotropy of FeNi thin films is reduced by depositing with Al and completely removed by depositing with B. The effect of depositing with Mo is dependent on the Mo concentration. The coercivity of FeNiMo and FeNiAl is reduced to less than a half of that of FeNi, and a value as low as 40 A/m is obtained for FeNiB. The surfaces of the obtained FeNiMo, FeNiAl and FeNiB thin films reveal very different morphologies. The surface of FeNiMo shows nano-cracks, while the FeNiAl films show large clusters and fewer nano-cracks. When FeNi is deposited with B, a very smooth morphology is obtained. The crystal structure of FeNiMo strongly depends on the depositant concentration and changes into an amorphous structure at a higher Mo level. FeNiAl thin films remain polycrystalline, even at a very high concentration of Al, and FeNiB films are amorphous, even at a very low concentration of B.

  13. Magnetic properties of FeNi-based thin film materials with different additives

    KAUST Repository

    Liang, C.

    2014-07-04

    This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials attractive for sensor applications. Our findings show that FeNi deposited with Mo or Al yields magnetically soft materials and that depositing with B further increases the softness. The out-of-plane magnetic anisotropy of FeNi thin films is reduced by depositing with Al and completely removed by depositing with B. The effect of depositing with Mo is dependent on the Mo concentration. The coercivity of FeNiMo and FeNiAl is reduced to less than a half of that of FeNi, and a value as low as 40 A/m is obtained for FeNiB. The surfaces of the obtained FeNiMo, FeNiAl and FeNiB thin films reveal very different morphologies. The surface of FeNiMo shows nano-cracks, while the FeNiAl films show large clusters and fewer nano-cracks. When FeNi is deposited with B, a very smooth morphology is obtained. The crystal structure of FeNiMo strongly depends on the depositant concentration and changes into an amorphous structure at a higher Mo level. FeNiAl thin films remain polycrystalline, even at a very high concentration of Al, and FeNiB films are amorphous, even at a very low concentration of B. 2014 by the authors.

  14. Molding method of buffer material for underground disposal of radiation-contaminated material, and molded buffer material

    International Nuclear Information System (INIS)

    Akasaka, Hidenari; Shimura, Satoshi; Kawakami, Susumu; Ninomiya, Nobuo; Yamagata, Junji; Asano, Eiichi

    1995-01-01

    Upon molding of a buffer material to be used upon burying a vessel containing radiation-contaminated materials in a sealed state, a powdery buffer material to be molded such as bentonite is disposed at the periphery of a mandrel having a cylindrical portion somewhat larger than contaminate container to be subjected to underground disposal. In addition, it is subjected to integration-molding such as cold isotropic press with a plastic film being disposed therearound, to form a molding product at high density. The molding product is released and taken out with the plastic film being disposed thereon. Releasability from an elastic mold is improved by the presence of the plastic film. In addition, if it is stored or transported while having the plastic film being disposed thereon, swelling of the buffer material due to water absorption or moisture absorption can be suppressed. (T.M.)

  15. Free Vibrations of Uniform Pipes Made From Composite Materials at an Internal Flow Under Effect of Additional Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Nawal H. Al – Raheimy

    2016-09-01

    Full Text Available In this paper the approximate method of Raleigh method can be used to study the effect of additional boundary conditions (clamped – free & clamped – clamped on the free transverse vibrations of uniform pipes which have length, L (1m , inner radius, "Ri" (1cm & thickness, "t" (1mm made from composite materials, where the resin of unsaturated polyester represented the matrix material reinforced by aligned (E-fibers glass in the first case and used aligned fiber (Kevlar-49 in the second case. The length of fibers is in the two types, the first type is long fibers (continuous and the second is short fibers (discontinuous for different length all at volume fraction of fibers, "f" (0.15 & 0.25. At any construction of the pipe in composite material the natural frequency decreased when the velocity of flow increased from zero to critical velocity also can be observed the pipe at clamped – clamped boundary conditions predicts natural frequency & critical velocity greater than that pipe at clamped – free. The natural frequency and critical velocity increase with increasing volume fraction and length of discontinuous fiber. The value of natural frequency for pipes which have continuous fibers is constant at certain velocity of flow while are variable in pipes which have discontinuous fibers according to ratio between length of short fiber to critical length of discontinuous fiber whereas the natural frequency increase with increasing this ratio. Finally the pipes with Kevlar fiber have high critical velocity and natural frequency compare with pipes for fiber glass.

  16. Effect of lime addition during sewage sludge treatment on characteristics of resulting SSA when it is used in cementitious materials.

    Science.gov (United States)

    Vouk, D; Nakic, D; Štirmer, N; Baricevic, A

    2017-02-01

    Final disposal of sewage sludge is important not only in terms of satisfying the regulations, but the aspect of choosing the optimal wastewater treatment technology, including the sludge treatment. In most EU countries, significant amounts of stabilized and dewatered sludge are incinerated, and sewage sludge ash (SSA) is generated as a by product. At the same time, lime is one of the commonly used additives in the sewage sludge treatment primarily to stabilize the sludge. In doing so, the question arose how desirable is such addition of lime if the sludge is subsequently incinerated, and the generated ash is further used in the production of cementitious materials. A series of mortars were prepared where 10-20% of the cement fraction was replaced by SSA. Since all three types of analyzed SSA (without lime, with lime added during sludge stabilization and with extra lime added during sludge incineration) yielded nearly same results, it can be concluded that if sludge incineration is accepted solution, lime addition during sludge treatment is unnecessary even from the standpoint of preserving the pozzolanic properties of the resulting SSA. Results of the research carried out on cement mortars point to the great possibilities of using SSA in concrete industry.

  17. Environmental impacts of the transportation of radioactive materials in urban areas

    International Nuclear Information System (INIS)

    Finley, N.C.; Taylor, J.M.; Daniel, S.L.; Ericson, D.M. Jr.

    1980-01-01

    Radioactive material transport in urban areas is investigated and the specific urban features which influence environmental impacts are addressed. These features include the geographic and demographic make-up, and vehicular population and transportation patterns in the area. Previous efforts have not identified a most important population exposure pathway or group. This assessment examines several pathways and a number of urban specific population groups to evaluate their relative significance. In addition, because different causative events contribute to the overall environmental impacts, this assessment addresses four of these: incident free transport, vehicular accidents, human errors, and sabotage or malevolent acts. Not only does radioactive material transport produce radiological and economic consequences but also it can have social impacts. The objective of this study is to examine both the quantitative environmental impacts of radioactive material transport in urban areas and the more subjective social effects of this process. The social impacts assessment was performed by Battelle Human Affairs Research Centers, Seattle, Washington and their conclusions are only summarized here

  18. An Investigation into the Accuracy of Two Currently Available Dental Impression Materials in the Construction of Cobalt-Chromium Frameworks for Removable Partial Dentures.

    Science.gov (United States)

    Dubal, Rajesh Kumar; Friel, Tim; Taylor, Philip D

    2015-03-01

    This study investigated the suitability of irreversible hydrocolloid as an impression material for cobalt-chromium framework construction. Scans of casts derived from (1) alginate and (2) addition-cured polyvinylsiloxane impressions were superposed on to a control. The differences within and between groups were compared at fixed landmarks. The investigation revealed a high degree of scan coincidence within and between groups. However, certain features, such as undercuts, resulted in a lower degree of scan coincidence. Irreversible hydrocolloid appears to be a viable alternative to addition-cured polyvinyl-siloxane as an impression material for cobalt-chromium framework construction.

  19. Functional groups grafted nonwoven fabrics for blood filtration-The effects of functional groups and wettability on the adhesion of leukocyte and platelet

    Energy Technology Data Exchange (ETDEWEB)

    Yang Chao [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Cao Ye [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610081 (China); Sun Kang, E-mail: ksun@sjtu.edu.cn [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Liu Jiaxin; Wang Hong [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610081 (China)

    2011-01-15

    In this work, the effects of grafted functional groups and surface wettability on the adhesion of leukocyte and platelet were investigated by the method of blood filtration. The filter materials, poly(butylene terephthalate) nonwoven fabrics bearing different functional groups including hydroxyl (OH), carboxyl (COOH), sulfonic acid group (SO{sub 3}H) and zwitterionic sulfobetaine group ({sup +}N((CH{sub 3}){sub 2})(CH{sub 2}){sub 3}SO{sub 3}{sup Circled-Minus }) with controllable wettability were prepared by UV radiation grafting vinyl monomers with these functional groups. Our results emphasized that both surface functional groups and surface wettability had significant effects on the adhesion of leukocyte and platelet. In the case of filter materials with the same wettability, leukocytes adhering to filter materials decreased in the order: the surface bearing OH only > the surface bearing both OH and COOH > the surface bearing sulfobetaine group > the surface bearing SO{sub 3}H, while platelets adhering to filter materials decreased as the following order: the surface bearing SO{sub 3}H > the surface bearing both OH and COOH > the surface bearing OH only > the surface bearing sulfobetaine group. As the wettability of filter materials increased, both leukocyte and platelet adhesion to filter materials declined, except that leukocyte adhesion to the surface bearing OH only remained unchanged.

  20. Status of development of a code for predicting the migration of ground additions - MOGRA

    International Nuclear Information System (INIS)

    Amano, Hikaru; Uchida, Shigeo; Matsuoka, Syungo; Ikeda, Hiroshi; Hayashi, Hiroko; Kurosawa, Naohiro

    2003-01-01

    MOGRA (Migration Of GRound Additions) is a migration prediction code for toxic ground additions including radioactive materials in a terrestrial environment. MOGRA consists of computational codes that are applicable to various evaluation target systems, and can be used on personal computers. The computational code has the dynamic compartment analysis block at its core, the graphical user interface (GUI) for computation parameter settings and results displays, data bases and so on. The compartments are obtained by classifying various natural environments into groups that exhibit similar properties. These codes are able to create or delete compartments and set the migration of environmental-load substances between compartments by a simple mouse operation. The system features universality and excellent expandability in the application of computations to various nuclides. (author)

  1. Sustained impact of a short small group course with systematic feedback in addition to regular clinical clerkship activities on musculoskeletal examination skills--a controlled study.

    Science.gov (United States)

    Perrig, Martin; Berendonk, Christoph; Rogausch, Anja; Beyeler, Christine

    2016-01-28

    The discrepancy between the extensive impact of musculoskeletal complaints and the common deficiencies in musculoskeletal examination skills lead to increased emphasis on structured teaching and assessment. However, studies of single interventions are scarce and little is known about the time-dependent effect of assisted learning in addition to a standard curriculum. We therefore evaluated the immediate and long-term impact of a small group course on musculoskeletal examination skills. All 48 Year 4 medical students of a 6 year curriculum, attending their 8 week clerkship of internal medicine at one University department in Berne, participated in this controlled study. Twenty-seven students were assigned to the intervention of a 6×1 h practical course (4-7 students, interactive hands-on examination of real patients; systematic, detailed feedback to each student by teacher, peers and patients). Twenty-one students took part in the regular clerkship activities only and served as controls. In all students clinical skills (CS, 9 items) were assessed in an Objective Structured Clinical Examination (OSCE) station, including specific musculoskeletal examination skills (MSES, 7 items) and interpersonal skills (IPS, 2 items). Two raters assessed the skills on a 4-point Likert scale at the beginning (T0), the end (T1) and 4-12 months after (T2) the clerkship. Statistical analyses included Friedman test, Wilcoxon rank sum test and Mann-Whitney U test. At T0 there were no significant differences between the intervention and control group. At T1 and T2 the control group showed no significant changes of CS, MSES and IPS compared to T0. In contrast, the intervention group significantly improved CS, MSES and IPS at T1 (p skills during regular clinical clerkship activities. However, an additional small group, interactive clinical skills course with feedback from various sources, improved these essential examination skills immediately after the teaching and several months later

  2. Further karyosystematic studies of the Boreonectes griseostriatus (De Geer) group of sibling species (Coleoptera, Dytiscidae)–characterisation of B. emmerichi (Falkenström, 1936) and additional European data

    Science.gov (United States)

    Angus, Robert B.; Angus, Elizabeth M.; Jia, Fenglong; Chen, Zhen-ning; Zhang, Ying

    2015-01-01

    Abstract A lectotype is designated for the Tibetan species Deronectes emmerichi Falkenström, 1936 (Currently Boreonectes emmerichi (Falkenström)), and its habitus, as well as the median lobe and parameres of its aedeagus, are figured along with additional comparative material. Material of Boreonectes emmerichi from Sikkim (BMNH) represents the first record of a Boreonectes Angus, 2010 species from India. The karyotype of Boreonectes emmerichi is described as having 26 pairs of autosomes plus sex chromosomes which are X0 (♂), XX (♀). The karyotype is most like that of Boreonectes macedonicus (Géuorguiev, 1959), but with slight differences. Additional chromosomal information is given for Boreonectes griseostriatus griseostriatus (De Geer, 1774) in the French Alps, Boreonectes griseostriatus strandi (Brinck, 1943) on the Kola Peninsula, Boreonectes multilineatus (Falkenström, 1922) in the Pyrenees and Boreonectes ibericus (Dutton & Angus, 2007) in the Spanish Picos de Europa. PMID:25893080

  3. Additive manufacturing: state-of-the-art and application framework

    Directory of Open Access Journals (Sweden)

    Vinícius Picanço Rodrigues

    2017-09-01

    Full Text Available Additive manufacturing encompasses a class of production processes with increasing applications in different areas and supply chains. Due to its flexibility for production in small batches and the versatility of materials and geometries, this technology is recognized as being capable of revolutionizing the production processes as well as changing production strategies that are currently employed. However, there are different technologies under the generic label of additive manufacturing, materials and application areas with different requirements. Given the growing importance of additive manufacturing as a production process, and also considering the need to have a better insight into the potential applications for driving research and development efforts, this article presents a proposal of organization for additive manufacturing applications in seven areas. Additionally, the article provides a panorama of the current development stage of this technology, with a review of its major technological variants. The results presented aim to serve as a basis to support driving initiatives in additive manufacturing in companies, development agencies and research institutions.

  4. Multi-detector row CT of the head and neck: comparison of different volumes of contrast material with and without a saline chaser

    International Nuclear Information System (INIS)

    Yoon, Dae Young; You, Su Yeon; Choi, Chul Soon; Chang, Suk Ki; Yun, Eun Joo; Seo, Young Lan; Park, Sang Joon; Lee, Yu-Jin; Moon, Jeung Hee; Rho, Young-Soo; Kim, Jin-Hwan

    2006-01-01

    The aim of this study was to determine the effect of different volumes of contrast material with and without a saline chaser on tissue enhancement in multidetector row CT (MDCT) of the head and neck. In a blind prospective fashion, 120 patients were randomized into the following four groups: group 1, 80 ml contrast material administered at a flow rate of 2.0 ml/s; group 2, 80 ml followed by 40 ml saline at 2.0 ml/s; group 3, 60 ml at 1.5 ml/s; and group 4, 60 ml followed by 30 ml saline at 1.5 ml/s. The attenuation values of the carotid artery, internal jugular vein, and muscle were measured at an interval of 1.5 s in each patient. The degree of perivenous artifacts was subjectively assessed. Mean attenuation values in the carotid artery and internal jugular vein were significantly higher in groups 1 and 2 than in groups 3 and 4. The width of the diagnostic window (both carotid and jugular enhancement >150 HU) were significantly longer in groups 1 and 2 than in groups 3 and 4. The addition of a saline chaser did not result in improved vascular enhancement or a wider diagnostic window, but reduced perivenous artifacts, compared with using contrast material alone. Reduction of contrast material from 80 to 60 ml results in insufficient enhancement of neck vessels. In addition, the benefit of a saline chaser technique is not obvious except for its ability to reduce perivenous artifacts. (orig.)

  5. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific O pinion Flavouring Group Evaluation 23, Revision 4 (FGE.23Rev4): Aliphatic, alicyclic and aromatic ethers including anisole derivatives from chemical groups 15, 16, 22, 26 and 30

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 21 flavouring substances in the Flavouring Group Evaluation 23, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. This revision i...... also been considered. Specifications including complete purity criteria and identity for the materials of commerce have been provided for all 21 candidate substances. © European Food Safety Authority, 2013......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 21 flavouring substances in the Flavouring Group Evaluation 23, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. This revision...

  6. Minor Actinides Burnup Enhancement in the European Sodium Fast Reactor through Moderator Material Addition

    International Nuclear Information System (INIS)

    Ramos, R.L.; Buiron, L.

    2013-01-01

    Conclusions: • ZrH 2 was the best moderator material, followed by MgO and MgAl 2 O 4 ; • When the number of moderator pins is increased: – the percentage of minor actinides consumed increases; – the total mass consumed of minor actinides decreases; – the decay heat generated decreases; – the neutron flux in the reactor varies very little. Perspectives: • For future studies it would be possible to evaluate the use of other materials with resonances in the scattering cross section in the fast range that would improve the results obtained with Mg. • It would be necessary to consider how to add moderator material without changing the initial mass of minor actinides. E.g., adding the moderator at the periphery of the minor actinide elements

  7. Radiation curable Michael addition compounds

    International Nuclear Information System (INIS)

    Gruber, G.W.; Friedlander, C.B.; McDonald, W.H.; Dowbenko, R.

    1979-01-01

    Radiation polymerizable acrylyloxy-containing reaction products are provided from Michael addition reaction of an amide containing at least two acrylate groups with a primary or secondary amine. The resulting amine adducts of the amide, which contain at least one acrylate group per molecule, possesses high cure rates in air and are useful in compositions for forming coatings. (author)

  8. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 21, Revision 2 (FGE.21Rev2): Thiazoles, thiophene, thiazoline and thienyl derivatives from chemical group 29. Miscellaneous substances from chemical group 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 56 flavouring substances in the Flavouring Group Evaluation 21, Revision 2, using the Procedure in Commission Regulation (EC) No 1565/2000. Seven...... of commerce have also been considered. For two substances are an identity test lacking and for one has the stereoisomeric composition to be specified....

  9. to Aliphatic and Alicyclic Mono-, Di-, Tri-, and Polysulphides with or without Additional Oxygenated Functional Groups from Chemical Group 20 evaluated by EFSA in FGE.08Rev1 (2009)

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The European Food Safety Authority (EFSA) asked the Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (the Panel) to provide scientific advice to the Commission on the implications for human health of chemically defined flavouring substances used in or on foodstuffs...... provided by the Industry. For the remaining 17 substances use levels must be provided. These are needed to calculate the mTAMDIs in order to identify those flavouring substances that need more refined exposure assessment and to finalise the evaluation. In order to determine whether the conclusion......, and/or information on specifications). For two substances [FL-no: 12.169 and 12.241] the Procedure should not be applied until adequate genotoxicity data become available and for eight substances [FL-no: 12.009, 12.013, 12.020, 12.023, 12.045, 12.074, 12.155 and 12.280] additional toxicity data...

  10. Proton transport in additives to the polymer electrolyte membrane for fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Toelle, Pia

    2011-03-21

    The enhancement of proton transport in polymer electrolyte membranes is an important issue for the development of fuel cell technology. The objective is a material providing proton transport at a temperature range of 350 K to 450 K independent from a purely water based mechanism. To enhance the PEM properties of standard polymer materials, a class of additives is studied by means of atomistic simulations consisting of functionalised mesoporous silicon dioxide particles. The functional molecules are imidazole or sulphonic acid, covalently bound to the surface via a carbon chain with a surface density of about 1.0 nm{sup -2} groups. At first, the proton transport mechanism is explored in a system of functional molecules in vacuum. The molecules are constrained by the terminal carbon groups according to the geometric arrangement in the porous silicon dioxide. The proton transport mechanism is characterised by structural properties obtained from classical molecular dynamics simulations and consists of the aggregation of two or more functional groups, a barrier free proton transport between these groups followed by the separation of the groups and formation of new aggregates due to fluctuations in the hydrogen bond network and movement of the carbon chain. For the different proton conducting groups, i.e. methyl imidazole, methyl sulphonic acid and water, the barrier free proton transport and the formation of protonated bimolecular complexes were addressed by potential energy calculations of the density functional based tight binding method (DFTB). For sulphonic acid even at a temperature of 450 K, relatively stable aggregates are formed, while most imidazole groups are isolated and the hydrogen bond fluctuations are high. However, high density of groups and elevated temperatures enhance the proton transport in both systems. Besides the anchorage and the density of the groups, the influence of the chemical environment on the proton transport was studied. Therefore, the

  11. Corrosion resistance improvement of ferritic steels through hydrogen additions to the BWR coolant

    International Nuclear Information System (INIS)

    Gordon, B.M.; Jewett, C.W.; Pickett, A.E.; Indig, M.E.

    1984-01-01

    Motivated by the success of oxygen suppression for mitigation of intergranular stress corrosion cracking (IGSCC) in weld sensitized austenitic materials used in Boiling Water Reactors (BWRs), oxygen suppression, through hydrogen additions to the feedwater was investigated to determine its affect on the corrosion resistance of ferritic and martensitic BWR structural materials. The results of these investigations are presented in this paper, where particular emphasis is placed on the corrosion performance of BWR pressure vessel low alloy steels, carbon steel piping materials and martensitic pump materials. It is important to note that the corrosion resistance of these materials in the BWR environment is excellent. Consequently this investigation was also motivated to determine whether there were any detrimental effects of hydrogen additions, as well as to identify any additional margin in ferritic/martensitic materials corrosion performance

  12. Nutritional intake of various groups of Flemish vegetarians

    Science.gov (United States)

    2011-01-01

    Background The most recent national nutritional survey (2004) indicates that 1.2% of the Flemish population follows a vegetarian diet. Information on nutritional intake in vegetarians in this population is scarce. Objective The aim of the present study is to describe the nutritional intake and dietary adequacy of various groups of Flemish vegetarians. Materials and methods Nutritional intake was assessed in various vegetarian groups from different study designs: young children (aged 1 to 10 y; n = 27) (Group 1), adolescents and adults (aged 11 to 32 y; n = 50) (Group 2), college students (aged 18 to 24 y; n= 24) (Group 3), life-long vegetarians (aged 14 to 71 y; n = 36) (Group 4) and adults (aged 20 to 98; n= 106) (Group 5). Additionally, blood samples were collected and analysed in groups 3 and 4. Comparisons were made with standard references or with omnivores (Group 3). Results Nutritional intake was found to be close to the Belgian RDA. However, all groups showed a number of outliers with an intake of some nutrients above or below the RDAs. Blood biochemistry showed low cholesterol, iron and vitamin B12 levels in vegetarians when comparing respectively with omnivores pairs (Group 3) and with reference values (Group 4). Conclusions Data collected in Flemish vegetarians indicate that a vegetarian diet may be adequate. However, the outliers in all groups show that proper dietary planning is advisable.

  13. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 10, Revision 3 (FGE.10Rev3): Aliphatic primary and secondary saturated and unsaturated alcohols, aldehydes, acetals, carboxylic acids and esters containing

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 63 flavouring substances in the Flavouring Group Evaluation 10, including additional two substances in this Revision 3, using the Procedure in Commission...... threshold of concern, and available data on metabolism and toxicity. The Panel concluded that the 62 substances do not give rise to safety concerns at their levels of dietary intake, estimated on the basis of the MSDI approach. Besides the safety assessment of these flavouring substances, the specifications...... for the materials of commerce have also been considered. For four substances evaluated through the Procedure, the stereoisomeric composition has not been specified sufficiently....

  14. Post-synthetic modification of porphyrin-encapsulating metal-organic materials by cooperative addition of inorganic salts to enhance CO 2/CH 4 selectivity

    KAUST Repository

    Zhang, ZhenJie

    2012-08-21

    Keeping MOM: Reaction of biphenyl-3,4\\',5-tricarboxylate and Cd(NO 3) 2 in the presence of meso-tetra(N-methyl-4-pyridyl) porphine tetratosylate afforded porph@MOM-11, a microporous metal-organic material (MOM) that encapsulates cationic porphyrins and solvent in alternating open channels. Porph@MOM-11 has cation and anion binding sites that facilitate cooperative addition of inorganic salts (such as M +Cl -) in a stoichiometric fashion. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Post-synthetic modification of porphyrin-encapsulating metal-organic materials by cooperative addition of inorganic salts to enhance CO 2/CH 4 selectivity

    KAUST Repository

    Zhang, ZhenJie; Gao, Wenyang; Wojtas, Łukasz; Ma, Shengqian; Eddaoudi, Mohamed; Zaworotko, Michael J.

    2012-01-01

    Keeping MOM: Reaction of biphenyl-3,4',5-tricarboxylate and Cd(NO 3) 2 in the presence of meso-tetra(N-methyl-4-pyridyl) porphine tetratosylate afforded porph@MOM-11, a microporous metal-organic material (MOM) that encapsulates cationic porphyrins and solvent in alternating open channels. Porph@MOM-11 has cation and anion binding sites that facilitate cooperative addition of inorganic salts (such as M +Cl -) in a stoichiometric fashion. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Bioinspired dopamine-conjugated polyaspartamide as a novel and versatile adhesive material

    Directory of Open Access Journals (Sweden)

    B. Wang

    2017-08-01

    Full Text Available Biomimetic dopamine-conjugated polyaspartamides as novel adhesive materials were synthesized and characterized. These modified polyaspartamides contain three different groups combined with dopamine (DOPA, i.e., γ-amino butyric acid (GABA, ethanolamine (EA and octylamine (OA, which are referred to as PolyAspAm (DOPA/GABA, PolyAspAm(DOPA/EA and PolyAspAm(DOPA/OA, respectively. These three water-swollen polymer glues show good adhesion (0.1~0.4 MPa with various daily-life materials (aluminum foil, glass and paper as well as some plastic substrates (PET and PMMA. Compared to the polymers with more hydrophilic groups (GABA and EA, the polymer glue with the hydrophobic alkyl group (OA exhibited higher adhesive strength values on most substrates. In addition, when applied to biological porcine skin, these glues demonstrated adhesion of values of 15~20 kPa with EA- and OA-conjugated polymers. These results suggest the great potential of dopamine-modified polyaspartamides as versatile and efficient polymeric glues for industrial and biomedical applications.

  17. Thermoelectric materials having porosity

    Science.gov (United States)

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  18. Cell-specific CO2 fixation rates of two distinct groups of plastidic protists in the Atlantic Ocean remain unchanged after nutrient addition.

    Science.gov (United States)

    Grob, Carolina; Jardillier, Ludwig; Hartmann, Manuela; Ostrowski, Martin; Zubkov, Mikhail V; Scanlan, David J

    2015-04-01

    To assess the role of open-ocean ecosystems in global CO2 fixation, we investigated how picophytoplankton, which dominate primary production, responded to episodic increases in nutrient availability. Previous experiments have shown nitrogen alone, or in combination with phosphorus or iron, to be the proximate limiting nutrient(s) for total phytoplankton grown over several days. Much less is known about how nutrient upshift affects picophytoplankton CO2 fixation over the duration of the light period. To address this issue, we performed a series of small volume (8-60 ml) - short term (10-11 h) nutrient addition experiments in different regions of the Atlantic Ocean using NH4 Cl, FeCl3 , K medium, dust and nutrient-rich water from 300 m depth. We found no significant nutrient stimulation of group-specific CO2 fixation rates of two taxonomically and size-distinct groups of plastidic protists. The above was true regardless of the region sampled or nutrient added, suggesting that this is a generic phenomenon. Our findings show that at least in the short term (i.e. daylight period), nutrient availability does not limit CO2 fixation by the smallest plastidic protists, while their taxonomic composition does not determine their response to nutrient addition. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. The addition of disilanes to cumulenes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yiyuan [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    The syntheses of silicon-containing compounds and the studies of their rearrangements have been active research areas in the Barton research group. Previously, the addition of disilanes to acetylenes was studied in the group and an intramolecular 2S + 2A mechanism has been proposed. In this thesis, the work is focused on the addition of disilanes to cumulenes. The syntheses of the precursors are discussed and the possible mechanisms for their thermal, photochemical and catalytic rearrangements are proposed. Conjugated organic polymers have been studied in the group since 1985 because of their potential for exhibiting high electroconductivity, photoconductivity, strong non-linear optical response and intense fluorescence. In the second section of this dissertation, the synthesis and property studies of poly(phenylene vinylene) analogues are discussed.

  20. Nanoscale thermoelectric materials

    International Nuclear Information System (INIS)

    Failamani, F.

    2015-01-01

    Thermoelectric (TE) materials directly convert thermal energy to electrical energy when subjected to a temperature gradient, whereas if electricity is applied to thermoelectric materials, a temperature gradient is formed. The performance of thermoelectric materials is characterized by a dimensionless figure of merit (ZT = S2T/ρλ), which consists of three parameters, Seebeck coefficient (S), electrical resistivity (ρ) and thermal conductivity (λ). To achieve good performance of thermoelectric power generation and cooling, ZT's of thermoelectric materials must be as high as possible, preferably above unity. This thesis comprises three main parts, which are distributed into six chapters: (i) nanostructuring to improve TE performance of trivalent rare earth-filled skutterudites (chapter 1 and 2), (ii) interactions of skutterudite thermolectrics with group V metals as potential electrode or diffusion barrier for TE devices (chapter 3 and 4), and (iii) search for new materials for TE application (chapter 5 and 6). Addition of secondary phases, especially nano sized phases can cause additional reduction of the thermal conductivity of a filled skutterudite which improves the figure of merit (ZT) of thermoelectric materials. In chapter 1 we investigated the effect of various types of secondary phases (silicides, borides, etc.) on the TE properties of trivalent rare earth filled Sb-based skutterudites as commercially potential TE materials. In this context the possibilty to introduce borides as nano-particles (via ball-milling in terms of a skutterudite/boride composite) is also elucidated in chapter 2. As a preliminary study, crystal structure of novel high temperature FeB-type phases found in the ternary Ta-{Ti,Zr,Hf,}-B systems were investigated. In case of Ti and Hf this phase is the high temperature stabilization of binary group IV metal monoborides, whereas single crystal study of (Ta,Zr)B proves that it is a true ternary phase as no stable monoboride exist in the

  1. Production and characterization of alien chromosome additions in shallot (Allium cepa L. Aggregatum group) carrying extra chromosome(s) of Japanese bunching onion (A. fistulosum L.)

    OpenAIRE

    Hang, Tran Thi Minh; Shigyo, Masayoshi; Yamauchi, Naoki; Tashiro, Yosuke

    2004-01-01

    First and second backcrosses of amphidiploid hybrids (2n = 4x = 32, genomes AAFF) between shallot (Allium cepa Aggregatum group) and A. fistulosum were conducted to produce A. cepa - A. fistulosum alien addition lines. When shallot (A. cepa Aggregatum group) was used as a pollinator, the amphidiploids and allotriploids set germinable BC1 and BC2 seeds, respectively. The 237 BC1 plants mainly consisted of 170 allotriploids (2n = 3x = 24, AAF) and 42 hypo-allotriploids possessing 23 chromosomes...

  2. Modelling the Transfer of Radionuclides from Naturally Occurring Radioactive Material (NORM). Report of the NORM Working Group of EMRAS Theme 2

    International Nuclear Information System (INIS)

    2012-01-01

    This working group was established to improve the modelling of the transfer of radionuclides from residues containing naturally occurring radioactive material (NORM) for the purposes of radiological assessment. Almost all naturally occurring materials contain radionuclides from the primordial decay chains (for example, uranium-238, uranium-235, thorium-232 and their daughter products radium-226 and radium-228), plus some individual long-lived radionuclides such as potassium-40. Extraction and/or processing of minerals containing these materials results waste containing such radionuclides. Often the processing can enhance the concentration of the NORM in the waste as compared with the original material. The extraction and processing of minerals usually involves large volumes of material and the resulting waste is also present in large volumes which are usually left on the earth's surface. Human exposure to radionuclides from such waste piles can occur as a result of gaseous emanation from the waste (radon-222) or as a result of the leaching by rainfall of radionuclides from the waste into water courses and, possibly, food chains. There are a variety of situations involving NORM that require potential radiation doses to be assessed, they include: (1) surface storage of residues from the extraction and processing of minerals; (2) remediation of NORM-containing waste piles; and (3) the use of NORM-containing waste for backfilling, building materials, road construction etc. In all of these situations there is a need to understand the present and future behaviour of the radionuclides which may be released from NORM so that steps can be taken to ensure that humans are adequately protected from exposure to radiation. Because of the long-lived nature of many of the radionuclides, the assessments must be carried out over long times into the future. This is the first time that the modelling of NORM-containing radionuclides has been examined in this IAEA format and the working

  3. Enhanced performance of starter lighting ignition type lead-acid batteries with carbon nanotubes as an additive to the active mass

    Science.gov (United States)

    Marom, Rotem; Ziv, Baruch; Banerjee, Anjan; Cahana, Beni; Luski, Shalom; Aurbach, Doron

    2015-11-01

    Addition of various carbon materials into lead-acid battery electrodes was studied and examined in order to enhance the power density, improve cycle life and stability of both negative and positive electrodes in lead acid batteries. High electrical-conductivity, high-aspect ratio, good mechanical properties and chemical stability of multi-wall carbon nanotubes (MWCNT, unmodified and mofified with carboxylic groups) position them as viable additives to enhance the electrodes' electrical conductivity, to mitigate the well-known sulfation failure mechanism and improve the physical integration of the electrodes. In this study, we investigated the incorporation-effect of carbon nanotubes (CNT) to the positive and the negative active materials in lead-acid battery prototypes in a configuration of flooded cells, as well as gelled cells. The cells were tested at 25% and 30% depth-of-discharge (DOD). The positive effect of the carbon nanotubes (CNT) utilization as additives to both positive and negative electrodes of lead-acid batteries was clearly demonstrated and is explained herein based on microscopic studies.

  4. Taxonomy of the poorly known Quedius mutilatus group of wingless montane species from Middle Asia (Coleoptera: Staphylinidae: Staphylinini

    Directory of Open Access Journals (Sweden)

    Maria Salnitska

    2018-02-01

    Full Text Available The Quedius mutilatus group, a very poorly known presumably monophyletic complex of wingless, possibly hypogean species confined to the Tien-Shan Mountains, is characterized as such for the first time. Newly available material clarified the identity of Q. mutilatus Eppelsheim, 1888 and Q. kalabi Smetana, 1995, each hitherto known from a handful of non-conspecific and vaguely georeferenced specimens only. Additional material is reported for Q. equus Smetana, 2014 and one species, Quedius kungeicus sp. nov., is described. All available data on the taxonomy, distribution and bionomics for all these four species of the group are summarized.

  5. Evaluation of the photocatalytic ability of a sol-gel-derived MgO-ZrO2 oxide material

    Directory of Open Access Journals (Sweden)

    Ciesielczyk Filip

    2017-02-01

    Full Text Available This paper deals with the synthesis and characterization of a novel group of potential photocatalysts, based on sol-gel-derived MgO-ZrO2 oxide material. The material was synthesized in a typical sol-gel system using organic precursors of magnesia and zirconia, ammonia as a promoter of hydrolysis and methanol as a solvent. All materials were thoroughly analyzed, including morphology and particle sizes, chemical composition, identification of characteristic functional groups, porous structure parameters and crystalline structure. The proposed methodology of synthesis resulted in obtaining pure MgO-ZrO2 oxide material with micrometric-sized particles and a relatively high surface area. The samples underwent an additional calcination process which led to the crystalline phase of zirconia being formed. The key element of the study was the evaluation of the effectiveness of decomposition of C.I. Basic Blue 9 dye. It was shown that the calcined materials exhibit both satisfactory adsorption and photocatalytic activity with respect to the decomposition of a selected model organic impurity. Total dye removal varied in the range of 50-70%, and was strongly dependent on process parameters such as quantity of photocatalyst, time of irradiation, and the addition of promoters.

  6. Materials Testing and Cost Modeling for Composite Parts Through Additive Manufacturing

    Science.gov (United States)

    2016-04-30

    FDM include plastic jet printing (PJP), fused filament modeling ( FFM ), and fused filament fabrication (FFF). FFF was coined by the RepRap project to...additive manufacturing processes? • Fused deposition modeling (FDM) trademarked by Stratasys • Fused filament modeling ( FFM ) and fused filament

  7. Zeolite-catalyzed additions of aromatic compounds to oleic acid

    Science.gov (United States)

    There is significant research interest in developing new materials from vegetable oils and animal fats. Biobased materials can be more environmentally friendly because they tend to have good biodegradability and are derived from renewable resources. In this talk, efficient approaches for the addit...

  8. Brazing of special metallic materials and material combinations using a special material

    International Nuclear Information System (INIS)

    Lison, R.

    1981-01-01

    The special materials include metals of groups IVa, Va and VIa of the periodic tables and their alloys. Their particular properties have won them applications in many highly specialized industries. For these materials to be used, mastery of thermal joining methods appropriate to their characteristics is necessary. High-temperature brazing is one such method for joining special materials. This paper presents variants of this technique suitable for each individual special material. Compatibility tests between various brazing metals and various special materials have been carried out by simulating the temperature/time cycle involved in brazing procedures. Special materials are relatively expensive, and their special properties are not required at every point in a structure: elsewhere they can be replaced by a different special material or by other metals or alloys. This means that joints must be made between two special materials or between a special material and a conventional material. When certain conditions are fulfilled, such joins can be made by high-temperature brazing. This paper also shows the extent to which the geometry of the join determines the choice of process. Example of applications are also given. (orig.)

  9. MICROBIOLOGY OF RAW MATERIALS USED FOR CONFECTIONARY PRODUCTION

    Directory of Open Access Journals (Sweden)

    Jana Petrová

    2015-02-01

    Full Text Available The aim of our study was to evaluate the microbiological quality of raw materials used for preparation of confectionery products. For microbiological evaluation total count of bacteria, mesophilic aerobic bacteria, coliform bacteria, yeast and microscopic filamentous fungi in samples of raw materials used in the manufacture and creams of confectionery products were detected. In addition to these groups of microorganisms the presence of pathogenic microorganisms Salmonella spp. and Staphylococcus aureus in creams was monitored. Products are assessed according to the limit values of the number of microorganisms defined in the Codex Alimentary of the Slovak Republic. For microbiological analysis of confectionery products, sampling of components of confectionary products and cream was carried out according to current health regulations and altogether 65 samples of components and creams were collected: 10 samples of raw materials sugar, 10 samples of flour, 10 samples of butter and 10 samples of eggs, 5 samples of butter yolk from cream-filled disposable bag without rum addition, 5 samples of butter yolk from cream-filled disposable bag with rum addition, 5 samples of cream-filled multiple use paid bag, 5 samples of cream-filled newly purchased paid bag, 5 samples of Venček corpus and 5 samples of the French cubes corpus. From raw material the highest TBC (2.65log CFU was in flour, but the lowest in sugar (1.35 log CFU, the highest years counts was found on flour (2.42, but lowest in butter (1.18, while wasn’t in egg. In samples of creams and corpus were increased occurrence of yeast, coliform bacteria. Salmonella spp. and Staphylococcus aureus weren’t isolated from any tested sample.

  10. Different Effect of the Additional Electron-Withdrawing Cyano Group in Different Conjugation Bridge: The Adjusted Molecular Energy Levels and Largely Improved Photovoltaic Performance.

    Science.gov (United States)

    Li, Huiyang; Fang, Manman; Hou, Yingqin; Tang, Runli; Yang, Yizhou; Zhong, Cheng; Li, Qianqian; Li, Zhen

    2016-05-18

    Four organic sensitizers (LI-68-LI-71) bearing various conjugated bridges were designed and synthesized, in which the only difference between LI-68 and LI-69 (or LI-70 and LI-71) was the absence/presence of the CN group as the auxiliary electron acceptor. Interestingly, compared to the reference dye of LI-68, LI-69 bearing the additional CN group exhibited the bad performance with the decreased Jsc and Voc values. However, once one thiophene moiety near the anchor group was replaced by pyrrole with the electron-rich property, the resultant LI-71 exhibited a photoelectric conversion efficiency increase by about 3 folds from 2.75% (LI-69) to 7.95% (LI-71), displaying the synergistic effect of the two moieties (CN and pyrrole). Computational analysis disclosed that pyrrole as the auxiliary electron donor (D') in the conjugated bridge can compensate for the lower negative charge in the electron acceptor, which was caused by the CN group as the electron trap, leading to the more efficient electron injection and better photovoltaic performance.

  11. Mechanical meta-materials

    NARCIS (Netherlands)

    Zadpoor, A.A.

    2016-01-01

    The emerging concept of mechanical meta-materials has received increasing attention during the last few years partially due to the advances in additive manufacturing techniques that have enabled fabricating materials with arbitrarily complex micro/nano-architectures. The rationally designed

  12. Support Groups for Children of Divorce.

    Science.gov (United States)

    Farmer, Sherry; Galaris, Diana

    1993-01-01

    Describes model for support groups for children of divorce developed at Marriage Council of Philadelphia. Gives details about group organization, illustrative case material, and typical concerns that group members work with throughout group sessions. Summarizes reported effects of support group involvement and considers ways of intervening in…

  13. Functionalized SBA-15 materials for bilirubin adsorption

    Science.gov (United States)

    Tang, Tao; Zhao, Yanling; Xu, Yao; Wu, Dong; Xu, Jun; Deng, Feng

    2011-05-01

    To investigate the driving force for bilirubin adsorption on mesoporous materials, a comparative study was carried out between pure siliceous SBA-15 and three functionalized SBA-15 mesoporous materials: CH 3-SBA-15 (MS), NH 2-SBA-15 (AS), and CH 3/NH 2-SBA-15 (AMS) that were synthesized by one-pot method. The obtained materials exhibited large surface areas (553-810 m 2/g) and pore size (6.6-7.1 nm) demonstrated by XRD and N 2-ad/desorption analysis. The SEM images showed that the materials had similar fiberlike morphology. The functionalization extent was calculated according to 29Si MAS NMR spectra and it was close to the designed value (10%). The synthesized mesoporous materials were used as bilirubin adsorbents and showed higher bilirubin adsorption capacities than the commercial active carbon. The adsorption capacities of amine functionalized samples AMS and AS were larger than those of pure siliceous SBA-15 and MS, indicating that electrostatic interaction was the dominant driving force for bilirubin adsorption on mesoporous materials. Increasing the ionic strength of bilirubin solution by adding NaCl would decrease the bilirubin adsorption capacity of mesoporous material, which further demonstrated that the electrostatic interaction was the dominant driving force for bilirubin adsorption. In addition, the hydrophobic interaction provided by methyl groups could promote the bilirubin adsorption.

  14. Challenges in Additive Manufacturing of Alumina

    OpenAIRE

    Gonzalez, Hugo

    2016-01-01

    Additive manufacturing is seen by many as the holy grail of manufacturing, the ability to produce parts nearly autonomously. Adding material rather than removing it would eliminate the need for expensive resources and machining. The recent expiration of key 3D printing patents has led to many advances in the field and has dramatically lowered the prices of 3D printers, making them accessible to the average individual. The one area where additive manufacturing is still in its infancy is in cer...

  15. Additive Manufacturing for Low Volume Bearings

    Energy Technology Data Exchange (ETDEWEB)

    Tate, John G. [Schaeffler Group USA, Spartanburg, SC (United States); Richardson, Bradley S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Love, Lonnie J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    ORNL worked with the Schaeffler Group USA to explore additive manufacturing techniques that might be appropriate for prototyping of bearing cages. Multiple additive manufacturing techniques were investigated, including e-beam, binder jet and multiple laser based processes. The binder jet process worked best for the thin, detailed cages printed.

  16. PENERAPAN MODEL PEMBELAJARAN GROUP INVESTIGATION DAN LECTURING UNTUK MENINGKATKAN PEMAHAMAN MAHASISWA TERHADAP MATERI ENGLISH TEACHING AND LEARNING THEORIES (ELT

    Directory of Open Access Journals (Sweden)

    Eva Nikmatul Rabbiyanti

    2016-06-01

    Full Text Available Merging two Methods between lecturing and Group Investigation are expected not only to develop active participation of students in the lecturing process but also to develop the ability of creative thinking, collaboration and presenting themselves in public, but the writer keep maintaining the use of lecturing methods to give control to the  delivery of the key points of the materials. The research was conducted on students of D class of the 4th semester, TBI Programs of STAIN Pamekasan at 2013/2014 year, totaling 34 students. The method used was classroom action research by using two cycles, in each cycle consists of Planning, Implementation, and the reflection. The results of this study indicate that, the ability of students' understanding of the course material ELT tends to increase in each cycle, with the average value of pre-cycle test was 45.29, and in the first cycle was 73.09, while in the second cycle was 79.00. with the percentage of completeness in cycle 1 was 85.29% while in the second cycle was 88.23%. Besides, the collaboration of this two models were also able to improve students analytical skills, the ability to express ideas and opinions in English, and also the ability to work together and present themselves in public. Based on the results of the study finally concluded, successful mechanism developed in this study consists of eleven stages, namely 1 the preparation phase, 2 the learning objective delivery, 3 aperseption delivery, 4 the new material delivery, 5 brain storming, 6 topics identification and grouping, 7 distribution of job decriptions, 8 conducting the investigation, 9 preparation of the final report, 10 Present the final report, 11 Evaluation of the achievement

  17. State-of-the-art of fiber-reinforced polymers in additive manufacturing technologies

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    Additive manufacturing technologies have received a lot of attention in recent years for their use in multiple materials such as metals, ceramics, and polymers. The aim of this review article is to analyze the technology of fiber-reinforced polymers and its implementation with additive...... manufacturing. This article reviews recent developments, ideas, and state-of-the-art technologies in this field. Moreover, it gives an overview of the materials currently available for fiber-reinforced material technology....

  18. Establishment of a series of alien monosomic addition lines of Japanese bunching onion (Allium fistulosum L.) with extra chromosomes from shallot (A. cepa L. Aggregatum group)

    OpenAIRE

    Shigyo, Masayoshi; Tashiro, Yosuke; Isshiki, Shiro; Miyazaki, Sadami

    1996-01-01

    Forty one plants of alien monosomic addition lines of Allium fistulosum L. with extra chromosomes from A. cepa L. Aggregatum group (FF + nA) were produced through the second backcross of amphidiploids between these two species to A. fistulosum. Identification of the extra chromosomes in the 16 plants by elaborate karyotype analyses indicate that a complete series (eight different types) of the alien monosomic addition lines was established in Allium for the first time in this study. Chromosom...

  19. Top-level categories of constitutively organized material entities--suggestions for a formal top-level ontology.

    Directory of Open Access Journals (Sweden)

    Lars Vogt

    2011-04-01

    Full Text Available Application oriented ontologies are important for reliably communicating and managing data in databases. Unfortunately, they often differ in the definitions they use and thus do not live up to their potential. This problem can be reduced when using a standardized and ontologically consistent template for the top-level categories from a top-level formal foundational ontology. This would support ontological consistency within application oriented ontologies and compatibility between them. The Basic Formal Ontology (BFO is such a foundational ontology for the biomedical domain that has been developed following the single inheritance policy. It provides the top-level template within the Open Biological and Biomedical Ontologies Foundry. If it wants to live up to its expected role, its three top-level categories of material entity (i.e., 'object', 'fiat object part', 'object aggregate' must be exhaustive, i.e. every concrete material entity must instantiate exactly one of them.By systematically evaluating all possible basic configurations of material building blocks we show that BFO's top-level categories of material entity are not exhaustive. We provide examples from biology and everyday life that demonstrate the necessity for two additional categories: 'fiat object part aggregate' and 'object with fiat object part aggregate'. By distinguishing topological coherence, topological adherence, and metric proximity we furthermore provide a differentiation of clusters and groups as two distinct subcategories for each of the three categories of material entity aggregates, resulting in six additional subcategories of material entity.We suggest extending BFO to incorporate two additional categories of material entity as well as two subcategories for each of the three categories of material entity aggregates. With these additions, BFO would exhaustively cover all top-level types of material entity that application oriented ontologies may use as templates. Our

  20. Cementitious Materials in Safety Cases for Geological Repositories for Radioactive Waste: Role, Evolution and Interactions. A Workshop organised by the OECD/NEA Integration Group for the Safety Case and hosted by ONDRAF/NIRAS. Cementitious materials in safety cases for radioactive waste: role, evolution and interactions

    International Nuclear Information System (INIS)

    2012-01-01

    The OECD Nuclear Energy Agency (NEA) Integration Group for the Safety Case (IGSC) organised a workshop to assess current understanding on the use of cementitious materials in radioactive waste disposal. The workshop was hosted by the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (Ondraf/Niras), in Brussels, Belgium on 17-19 November 2009. The workshop brought together a wide range of people involved in supporting safety case development and having an interest in cementitious materials: namely, cement and concrete experts, repository designers, scientists, safety assessors, disposal programme managers and regulators. The workshop was designed primarily to consider issues relevant to the post-closure safety of radioactive waste disposal, but also addressed some related operational issues, such as cementitious barrier emplacement. Where relevant, information on cementitious materials from analogous natural and anthropogenic systems was also considered. This report provides a synthesis of the workshop, and summarises its main results and findings. The structure of this report follows the workshop agenda: - Section 2 summarises plenary and working group discussions on the uses, functions and evolution of cementitious materials in geological disposal, and highlights key aspects and discussions points. - Section 3 summarises plenary and working group discussions on interactions of cementitious materials with other disposal system components, and highlights key aspects and discussions points. - Section 4 summarises the workshop session on the integration of issues related to cementitious materials using the safety case. - Section 5 presents the main conclusions from the workshop. - Section 6 contains a list of references. - Appendix A presents the workshop agenda. - Appendix B contains the abstracts and, where provided, technical papers supporting oral presentations at the workshop. - Appendix C contains the abstracts and, where provided, technical

  1. Thermal fatigue. Materials modelling

    International Nuclear Information System (INIS)

    Siegele, D.; Fingerhuth, J.; Mrovec, M.

    2012-01-01

    In the framework of the ongoing joint research project 'Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behavior under transient thermal-mechanical stress conditions (high cycle fatigue V HCF and low cycle fatigue - LCF) are carried out. The primary objective of the research is the further development of simulation methods applied in safety evaluations of nuclear power plant components. In this context the modeling of crack initiation and growth inside the material structure induced by varying thermal loads are of particular interest. Therefore, three scientific working groups organized in three sub-projects of the joint research project are dealing with numerical modeling and simulation at different levels ranging from atomistic to micromechanics and continuum mechanics, and in addition corresponding experimental data for the validation of the numerical results and identification of the parameters of the associated material models are provided. The present contribution is focused on the development and experimental validation of material models and methods to characterize the damage evolution and the life cycle assessment as a result of thermal cyclic loading. The individual purposes of the subprojects are as following: - Material characterization, Influence of temperature and surface roughness on fatigue endurances, biaxial thermo-mechanical behavior, experiments on structural behavior of cruciform specimens and scatter band analysis (IfW Darmstadt) - Life cycle assessment with micromechanical material models (MPA Stuttgart) - Life cycle assessment with atomistic and damage-mechanical material models associated with material tests under thermal fatigue (Fraunhofer IWM, Freiburg) - Simulation of fatigue crack growth, opening and closure of a short crack under

  2. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    Science.gov (United States)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; hide

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  3. Present situation, current problems and countermeasures to solve them by the material technology group in chemical companies; Kagaku shakai ni okeru sochi zairyo gijutsu no genjo to kadai oyobi sore eno taio

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Masao. [Asahi Chemical Industry Corp., Tokyo (Japan). Production Technology Center

    1999-05-15

    A questionnaire investigation about the present situation, current problems and countermeasure to be discussed with by material technology groups in the eight chemical companies was carried out. It has become clear from the analysis of answers obtained that the roll of material group has been changing under the diminishing construction of new plant and the increased needs of stable and sustainable plant operation. The present major subjects of material groups, which are pointed out in the answers, are such new technological problems as the plant life estimation, the dissemination and handing down of material technology and the upbringing of technology successors. The countermeasures to meet those requirements made clear are such technology developments as a new monitoring system, preparation of database on material technology and closer cooperation with relatied associations. It is hoped for that the findings of this study would lead to further and more detailed indentification of common problems to be solved and development of practical countermeasures therefor. (author)

  4. Communication received from the Member States of the European Community regarding the provision of certain additional information on production, inventories and international transfers of nuclear material and on exports of certain relevant equipment and non-nuclear material

    International Nuclear Information System (INIS)

    1992-12-01

    The document reproduces the text of the note verbale received by the Director General on 30 November 1992 from the Permanent Missions to the Agency of Belgium, Denmark, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain and the United Kingdom of Great Britain and Northern Ireland, relating to the provision of certain additional information on production, inventories and international transfer of nuclear material and on exports of certain relevant equipment and non-nuclear material. The note verbale dated 23 November 1992, received by the Director General from the Commission of the European Communities and relating to the same subject, is reproduced as well

  5. Model Additional Protocol

    International Nuclear Information System (INIS)

    Rockwood, Laura

    2001-01-01

    Since the end of the cold war a series of events has changed the circumstances and requirements of the safeguards system. The discovery of a clandestine nuclear weapons program in Iraq, the continuing difficulty in verifying the initial report of Democratic People's Republic of Korea upon entry into force of their safeguards agreement, and the decision of the South African Government to give up its nuclear weapons program and join the Treaty on the Non-Proliferation of Nuclear Weapons have all played a role in an ambitious effort by IAEA Member States and the Secretariat to strengthen the safeguards system. A major milestone in this effort was reached in May 1997 when the IAEA Board of Governors approved a Model Protocol Additional to Safeguards Agreements. The Model Additional Protocol was negotiated over a period of less than a year by an open-ended committee of the Board involving some 70 Member States and two regional inspectorates. The IAEA is now in the process of negotiating additional protocols, State by State, and implementing them. These additional protocols will provide the IAEA with rights of access to information about all activities related to the use of nuclear material in States with comprehensive safeguards agreements and greatly expanded physical access for IAEA inspectors to confirm or verify this information. In conjunction with this, the IAEA is working on the integration of these measures with those provided for in comprehensive safeguards agreements, with a view to maximizing the effectiveness and efficiency, within available resources, the implementation of safeguards. Details concerning the Model Additional Protocol are given. (author)

  6. No detectable fertility benefit from a single additional mating in wild stalk-eyed flies.

    Directory of Open Access Journals (Sweden)

    Elisabeth Harley

    2010-12-01

    Full Text Available Multiple mating by female insects is widespread, and the explanation(s for repeated mating by females has been the subject of much discussion. Females may profit from mating multiply through direct material benefits that increase their own reproductive output, or indirect genetic benefits that increase offspring fitness. One particular direct benefit that has attracted significant attention is that of fertility assurance, as females often need to mate multiply to achieve high fertility. This hypothesis has never been tested in a wild insect population.Female Malaysian stalk-eyed flies (Teleopsis dalmanni mate repeatedly during their lifetime, and have been shown to be sperm limited under both laboratory and field conditions. Here we ask whether receiving an additional mating alleviates sperm limitation in wild females. In our experiment one group of females received a single additional mating, while a control group received an interrupted, and therefore unsuccessful, mating. Females that received an additional mating did not lay more fertilised eggs in total, nor did they lay proportionately more fertilised eggs. Female fertility declined significantly through time, demonstrating that females were sperm limited. However, receipt of an additional mating did not significantly alter the rate of this decline.Our data suggest that the fertility consequences of a single additional mating were small. We discuss this effect (or lack thereof, and suggest that it is likely to be attributed to small ejaculate size, a high proportion of failed copulations, and the presence of X-linked meiotic drive in this species.

  7. Special purpose materials: an assessment of needs and the role of these materials in the national program

    International Nuclear Information System (INIS)

    Gold, R.E.; Clinard, F.W. Jr.; Davis, J.W.

    1978-01-01

    The scope of activities of the Task Group on Special Purpose Materials includes those materials requirements not specifically addressed by the other OFE materials task groups. These materials can be organized according to seven broad materials applications or functions which appear to be generic to all magnetically confined fusion reactor concepts. These are breeding materials, coolants, materials for tritium service, graphite and silicon carbide, electrical insulators and ceramics, heat-sink materials, and magnet materials. The present paper describes the importance of each of these areas of materials technology, outlines major problems or areas of uncertainty, and reviews past and current contributions to our state of understanding as it may relate to fusion power applications

  8. International target values 2000 for measurement uncertainties in safeguarding nuclear materials

    International Nuclear Information System (INIS)

    Aigner, H.; Binner, R.; Kuhn, E.

    2001-01-01

    The IAEA has prepared a revised and updated version of International Target Values (ITVs) for uncertainty components in measurements of nuclear material. The ITVs represent uncertainties to be considered in judging the reliability of analytical techniques applied to industrial nuclear and fissile material subject to safeguards verification. The tabulated values represent estimates of the 'state of the practice' which ought to be achievable under routine conditions by adequately equipped, experienced laboratories. The ITVs 2000 are intended to be used by plant operators and safeguards organizations as a reference of the quality of measurements achievable in nuclear material accountancy, and for planning purposes. The IAEA prepared a draft of a technical report presenting the proposed ITVs 2000, and in April 2000 the chairmen or officers of the panels or organizations listed below were invited to co- author the report and to submit the draft to a discussion by their panels and organizations. Euratom Safeguards Inspectorate, ESAKDA Working Group on Destructive Analysis, ESARDA Working Group on Non Destructive Analysis, Institute of Nuclear Material Management, Japanese Expert Group on ITV-2000, ISO Working Group on Analyses in Spent Fuel Reprocessing, ISO Working Group on Analyses in Uranium Fuel Fabrication, ISO Working Group on Analyses in MOX Fuel Fabrication, Agencia Brasileno-Argentina de Contabilidad y Control de Materiales Nucleares (ABACC). Comments from the above groups were received and incorporated into the final version of the document, completed in April 2001. The ITVs 2000 represent target standard uncertainties, expressing the precision achievable under stipulated conditions. These conditions typically fall in one of the two following categories: 'repeatability conditions' normally encountered during the measurements done within one inspection period; or 'reproducibility conditions' involving additional sources of measurement variability such as

  9. Working Group Report: Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Artuso, M.; et al.,

    2013-10-18

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  10. Ultrasonic assessment of additive manufactured Ti-6Al-4V

    Science.gov (United States)

    Schehl, Norman; Kramb, Vicki; Dierken, Josiah; Aldrin, John; Schwalbach, Edwin; John, Reji

    2018-04-01

    Additive Manufacturing (AM) processes offer the potential for manufacturing cost savings and rapid insertion into service through production of near net shape components for complicated structures. Use of these parts in high reliability applications such as those in the aerospace industry will require nondestructive characterization methods to ensure post-process material quality in as-built condition. Ultrasonic methods can be used for this quality verification. Depending on the application, the service life of AM components can be sensitive to the part surface condition. The surface roughness and layered structure inherent to the electron-beam powder-bed fusion process necessitates new approaches to evaluate subsurface material integrity in its presence. Experimental methods and data analytics may improve the evaluation of as-built additively manufactured materials. This paper discusses the assessment of additively manufactured EBM Ti-6Al-4V panels using ultrasonic methods and the data analytics applied to evaluate material integrity. The assessment was done as an exploratory study as the discontinuities of interest in these test samples were not known when the measurements were performed. Water immersion ultrasonic techniques, including pulse-echo and through transmission with 10 MHz focused transducers, were used to explore the material integrity of as-built plates. Subsequent destructive mechanical tests of specimens extracted from the plates provided fracture locations indicating critical flaws. To further understand the effect of surface-roughness, an evaluation of ultrasonic response in the presence of as-built surfaces and with the surface removed was performed. The assessment of additive manufactured EBM Ti-6Al-4V panels with ultrasonic techniques indicated that ultrasonic energy was attenuated by the as-built surface roughness. In addition, feature detection was shown to be sensitive to experimental ultrasonic parameters and flaw morphology.

  11. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 309 (FGE.309): Sodium Diacetate

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate sodium diacetate [FL-no: 16.073] in the Flavouring Group Evaluation 309, using the Procedure in Commission Regulation (EC) No 1565/2000. However, although...

  12. Porous composite with negative thermal expansion obtained by photopolymer additive manufacturing

    OpenAIRE

    Akihiro Takezawa; Makoto Kobashi; Mitsuru Kitamura

    2015-01-01

    Additive manufacturing (AM) could be a novel method of fabricating composite and porous materials having various effective performances based on mechanisms of their internal geometries. Materials fabricated by AM could rapidly be used in industrial application since they could easily be embedded in the target part employing the same AM process used for the bulk material. Furthermore, multi-material AM has greater potential than usual single-material AM in producing materials with effective pr...

  13. Recycling cycle of materials applied to acrylonitrile-butadiene-styrene/policarbonate blends with styrene-butadiene-styrene copolymer addition

    Science.gov (United States)

    Cândido, L. H. A.; Ferreira, D. B.; Júnior, W. Kindlein; Demori, R.; Mauler, R. S.

    2014-05-01

    The scope of this research is the recycling of polymers from mobile phones hulls discarded and the performance evaluation when they are submitted to the Recycling Cycle of Materials (RCM). The studied material was the ABS/PC blend in a 70/30 proportion. Different compositions were evaluated adding virgin material, recycled material and using the copolymer SBS as impact modifier. In order to evaluate the properties of material's composition, the samples were characterized by TGA, FTIR, SEM, IZOD impact strength and tensile strength tests. At the first stage, the presented results suggest the composition containing 25% of recycled material and 5% of SBS combines good mechanical performance to the higher content of recycled material and lower content of impact modifier providing major benefits to recycling plans. Five cycles (RCM) were applied in the second stage; they evidenced a decrease trend considering the impact strength. At first and second cycle the impact strength was higher than reference material (ABS/PC blend) and from the fourth cycle it was lower. The superiority impact strength in the first and second cycles can be attributed to impact modifier effect. The thermal tests and the spectrometry didn't show the presence of degradation process in the material and the TGA curves demonstrated the process stability. The impact surface of each sample was observed at SEM. The microstructures are not homogeneous presenting voids and lamellar appearance, although the outer surface presents no defects, demonstrating good moldability. The present work aims to assess the life cycle of the material from the successive recycling processes.

  14. Plasma dye coating as straightforward and widely applicable procedure for dye immobilization on polymeric materials.

    Science.gov (United States)

    De Smet, Lieselot; Vancoillie, Gertjan; Minshall, Peter; Lava, Kathleen; Steyaert, Iline; Schoolaert, Ella; Van De Walle, Elke; Dubruel, Peter; De Clerck, Karen; Hoogenboom, Richard

    2018-03-16

    Here, we introduce a novel concept for the fabrication of colored materials with significantly reduced dye leaching through covalent immobilization of the desired dye using plasma-generated surface radicals. This plasma dye coating (PDC) procedure immobilizes a pre-adsorbed layer of a dye functionalized with a radical sensitive group on the surface through radical addition caused by a short plasma treatment. The non-specific nature of the plasma-generated surface radicals allows for a wide variety of dyes including azobenzenes and sulfonphthaleins, functionalized with radical sensitive groups to avoid significant dye degradation, to be combined with various materials including PP, PE, PA6, cellulose, and PTFE. The wide applicability, low consumption of dye, relatively short procedure time, and the possibility of continuous PDC using an atmospheric plasma reactor make this procedure economically interesting for various applications ranging from simple coloring of a material to the fabrication of chromic sensor fabrics as demonstrated by preparing a range of halochromic materials.

  15. Chemicals in material cycles

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Eriksson, Eva; Astrup, Thomas Fruergaard

    2015-01-01

    Material recycling has been found beneficial in terms of resource and energy performance and is greatly promoted throughout the world. A variety of chemicals is used in materials as additives and data on their presence is sparse. The present work dealt with paper as recyclable material and diisob...

  16. GRUCAL, a computer program for calculating macroscopic group constants

    International Nuclear Information System (INIS)

    Woll, D.

    1975-06-01

    Nuclear reactor calculations require material- and composition-dependent, energy averaged nuclear data to describe the interaction of neutrons with individual isotopes in material compositions of reactor zones. The code GRUCAL calculates these macroscopic group constants for given compositions from the material-dependent data of the group constant library GRUBA. The instructions for calculating group constants are not fixed in the program, but will be read at the actual execution time from a separate instruction file. This allows to accomodate GRUCAL to various problems or different group constant concepts. (orig.) [de

  17. Composite materials based on high-modulus compounds for additive technology

    Science.gov (United States)

    Grigoriev, M.; Kotelnikov, N.; Buyakova, S.; Kulkov, S.

    2016-07-01

    The effect of adding nanocrystalline ZrO2 and submicron TiC to ultrafine Al2O3 on mechanical properties and the microstructure of the composites developed by hot pressing was investigated. It was shown that by means of hot pressing in argon atmosphere at the sintering temperature of 1500 °C one can obtain the composites of Al2O3-ZrO2-TiC with a fine structure and minimal porosity. It was shown that in the material a multi-scale hierarchical structure is formed, which possesses high physical and mechanical properties: the hardness and fracture toughness was 22 GPa and 5.2 MPa*m1/2, respectively. It has been shown that mechanical properties of the composite are better than those of commercial composites based on aluminum oxide (Al2O3, ZTA, Al2O3-TiC) and are comparable to those of silicon nitride.

  18. Fabrication of Turbine Disk Materials by Additive Manufacturing

    Science.gov (United States)

    Sudbrack, Chantal; Bean, Quincy A.; Cooper, Ken; Carter, Robert; Semiatin, S. Lee; Gabb, Tim

    2014-01-01

    Precipitation-strengthened, nickel-based superalloys are widely used in the aerospace and energy industries due to their excellent environmental resistance and outstanding mechanical properties under extreme conditions. Powder-bed additive manufacturing (AM) technologies offer the potential to revolutionize the processing of superalloy turbine components by eliminating the need for extensive inventory or expensive legacy tooling. Like selective laser melting (SLM), electron beam melting (EBM) constructs three-dimensional dense components layer-by-layer by melting and solidification of atomized, pre-alloyed powder feedstock within 50-200 micron layers. While SLM has been more widely used for AM of nickel alloys like 718, EBM offers several distinct advantages, such as less retained residual stress, lower risk of contamination, and faster build rates with multiple-electron-beam configurations. These advantages are particularly attractive for turbine disks, for which excessive residual stress and contamination can shorten disk life during high-temperature operation. In this presentation, we will discuss the feasibility of fabricating disk superalloy components using EBM AM. Originally developed using powder metallurgy forging processing, disk superalloys contain a higher refractory content and precipitate volume fraction than alloy 718, thus making them more prone to thermal cracking during AM. This and other challenges to produce homogeneous builds with desired properties will be presented. In particular, the quality of lab-scale samples fabricated via a design of experiments, in which the beam current, build temperature, and beam velocity were varied, will be summarized. The relationship between processing parameters, microstructure, grain orientation, and mechanical response will be discussed.

  19. Nuclear materials management storage study

    International Nuclear Information System (INIS)

    Becker, G.W. Jr.

    1994-02-01

    The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs' Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites

  20. Radiation Vulcanization of Polymeric Blends Based on Ethylene Propylene Diene Monomer Rubber/ Waste Materials in Presence of Different Additives

    International Nuclear Information System (INIS)

    MOHAMED, R.M.

    2015-01-01

    In this investigation, the mechanical blending technique was applied for preparation of elastomeric blend of ethylene propylene diene monomer rubber (EPDM)and nitrile butadiene rubber (NBR) having a fixed ratio of (50/50) by weight. The prepared blend of EPDM/NBR (50/50) was used as a rubber matrix to be loaded with waste materials, namely rice husk (RH) as a natural waste filler and then with ground tire rubber (GTR) as an artificial one. The degree of loading varied from 5 p hr to 20 p hr. Ionizing radiation, namely ,gamma rays were applied for inducing vulcanization of prepared and loaded rubber blends, in the range from 5 kGy to 250 kGy. Different properties of prepared composites were followed up as a function of degree of loading with the waste material and dose of irradiation. The mechanical properties, namely tensile strength and elongation at break percent of the composites slightly decreased as the filler loading increased over the whole range of irradiation .Tensile modulus and hardness, on the other hand, showed an opposite trend, i.e. the increased. Other properties, namely physical, thermal and morphological confirmed the mechanical ones. Obtained results were affiliated with lack of interface adhesion between the waste materials and the rubber matrix elastomers. The lack of interface adhesion was improved by filling the composite with a limited content, up to 7 p hr, of the compatibilizer, namely, maleic anhydride (MAH). Measurements of different properties was carried out for composite loaded with 10 p hr of waste material. It has been found that the tensile properties were significantly improved with addition of the compatibilizing agent Further and significant improvement was attained in properties of prepared later composite by its loading with 40 p hr of either HAF- carbon black or Hisil as reinforcing fillers that participates in chemical as well as physical bonding. Similarly and lastly 8 p hr of N, N- methylene di acrylamide (MDA) were loaded

  1. Performance Values for Non-Destructive Assay (NDA) Technique Applied to Wastes: Evaluation by the ESARDA NDA Working Group

    International Nuclear Information System (INIS)

    Rackham, Jamie; Weber, Anne-Laure; Chard, Patrick

    2012-01-01

    The first evaluation of NDA performance values was undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques and was published in 1993. Almost ten years later in 2002 the Working Group reviewed those values and reported on improvements in performance values and new measurement techniques that had emerged since the original assessment. The 2002 evaluation of NDA performance values did not include waste measurements (although these had been incorporated into the 1993 exercise), because although the same measurement techniques are generally applied, the performance is significantly different compared to the assay of conventional Safeguarded special nuclear material. It was therefore considered more appropriate to perform a separate evaluation of performance values for waste assay. Waste assay is becoming increasingly important within the Safeguards community, particularly since the implementation of the Additional Protocol, which calls for declaration of plutonium and HEU bearing waste in addition to information on existing declared material or facilities. Improvements in the measurement performance in recent years, in particular the accuracy, mean that special nuclear materials can now be accounted for in wastes with greater certainty. This paper presents an evaluation of performance values for the NDA techniques in common usage for the assay of waste containing special nuclear material. The main topics covered by the document are: 1- Techniques for plutonium bearing solid wastes 2- Techniques for uranium bearing solid wastes 3 - Techniques for assay of fissile material in spent fuel wastes. Originally it was intended to include performance values for measurements of uranium and plutonium in liquid wastes; however, as no performance data for liquid waste measurements was obtained it was decided to exclude liquid wastes from this report. This issue of the performance values for waste assay has been evaluated and discussed by the ESARDA

  2. Performance Values for Non-Destructive Assay (NDA) Technique Applied to Wastes: Evaluation by the ESARDA NDA Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Rackham, Jamie [Babcock International Group, Sellafield, Seascale, Cumbria, (United Kingdom); Weber, Anne-Laure [Institut de Radioprotection et de Surete Nucleaire Fontenay-Aux-Roses (France); Chard, Patrick [Canberra, Forss Business and Technology park, Thurso, Caithness (United Kingdom)

    2012-12-15

    The first evaluation of NDA performance values was undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques and was published in 1993. Almost ten years later in 2002 the Working Group reviewed those values and reported on improvements in performance values and new measurement techniques that had emerged since the original assessment. The 2002 evaluation of NDA performance values did not include waste measurements (although these had been incorporated into the 1993 exercise), because although the same measurement techniques are generally applied, the performance is significantly different compared to the assay of conventional Safeguarded special nuclear material. It was therefore considered more appropriate to perform a separate evaluation of performance values for waste assay. Waste assay is becoming increasingly important within the Safeguards community, particularly since the implementation of the Additional Protocol, which calls for declaration of plutonium and HEU bearing waste in addition to information on existing declared material or facilities. Improvements in the measurement performance in recent years, in particular the accuracy, mean that special nuclear materials can now be accounted for in wastes with greater certainty. This paper presents an evaluation of performance values for the NDA techniques in common usage for the assay of waste containing special nuclear material. The main topics covered by the document are: 1- Techniques for plutonium bearing solid wastes 2- Techniques for uranium bearing solid wastes 3 - Techniques for assay of fissile material in spent fuel wastes. Originally it was intended to include performance values for measurements of uranium and plutonium in liquid wastes; however, as no performance data for liquid waste measurements was obtained it was decided to exclude liquid wastes from this report. This issue of the performance values for waste assay has been evaluated and discussed by the ESARDA

  3. Additive lattice kirigami.

    Science.gov (United States)

    Castle, Toen; Sussman, Daniel M; Tanis, Michael; Kamien, Randall D

    2016-09-01

    Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes.

  4. Trends in Materials Science for Ligament Reconstruction.

    Science.gov (United States)

    Sava, Oana Roxana; Sava, Daniel Florin; Radulescu, Marius; Albu, Madalina Georgiana; Ficai, Denisa; Veloz-Castillo, Maria Fernanda; Mendez-Rojas, Miguel Angel; Ficai, Anton

    2017-01-01

    The number of ligament injuries increases every year and concomitantly the need for materials or systems that can reconstruct the ligament. Limitations imposed by autografts and allografts in ligament reconstruction together with the advances in materials science and biology have attracted a lot of interest for developing systems and materials for ligament replacement or reconstruction. This review intends to synthesize the major steps taken in the development of polymer-based materials for anterior cruciate ligament, their advantages and drawbacks and the results of different in vitro and in vivo tests. Until present, there is no successful polymer system for ligament reconstruction implanted in humans. The developing field of synthetic polymers for ligament reconstruction still has a lot of potential. In addition, several nano-structured materials, made of nanofibers or in the form of ceramic/polymeric nanocomposites, are attracting the interest of several groups due to their potential use as engineered scaffolds that mimic the native environment of cells, increasing the chances for tissue regeneration. Here, we review the last 15 years of literature in order to obtain a better understanding on the state-of-the-art that includes the usage of nano- and poly-meric materials for ligament reconstruction, and to draw perspectives on the future development of the field. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Biological evaluation of a new pulp capping material developed from Portland cement.

    Science.gov (United States)

    Negm, Ahmed M; Hassanien, Ehab E; Abu-Seida, Ashraf M; Nagy, Mohamed M

    2017-03-02

    This study evaluates the biological properties of a new pulp capping material developed from Portland cement. This study was conducted on 48 teeth in 4 dogs (12 teeth/dog). The dogs were classified into two equal groups (n=24 teeth) according to the evaluation period including: group A (3 weeks) and group B (3 months). Each group was further subdivided into three equal subgroups (n=8 teeth) according to the capping material including: subgroup 1: mineral trioxide aggregate (MTA), subgroup2: Portland cement+10% calcium hydroxide+20% bismuth oxide (Port Cal) and subgroup 3: Portland cement+bismuth oxide. After general anesthesia, a class V buccal cavity was prepared coronal to the gingival margin. After pulp exposure and hemostasis,the capping materials and glass ionomer filling were placed on the exposure sites. All histopathological findings, inflammatory cell count and dentin bridge formation were recorded. Data were analyzed statistically. After 3 months, the histopathological picture of the pulp in subgroup 1 showed normal pulp, continuous odontoblastic layer and complete dentin bridge formation while subgroup 2 showed partial and complete dentin bridge over a normal and necrotic pulps. Subgroup 3 showed loss of normal architecture, areas of necrosis, complete, or incomplete dentin bridge formation, attached and detached pulp stones and fatty degeneration in group B. For group A, MTA subgroup showed the least number of inflammatory cell infiltrate followed by Port Cal subgroup. While subgroup 3 showed the highest number of inflammatory cell infiltrate. For group B, the mean inflammatory cell count increased with the three tested materials with no statistical difference. Regarding dentin bridge formation at group A, no significant differences was found between subgroups, while at group B, MTA subgroup exhibited significantly higher scores than other subgroups. In conclusion, addition of calcium hydroxide to Portland cement improves the dentin bridge formation

  6. Microwavable thermal energy storage material

    Science.gov (United States)

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  7. Chemical Absorption Materials

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    2011-01-01

    Chemical absorption materials that potentially can be used for post combustion carbon dioxide capture are discussed. They fall into five groups, alkanolamines, alkali carbonates, ammonia, amino acid salts, and ionic liquids. The chemistry of the materials is discussed and advantages and drawbacks...

  8. Audiovisual materials are effective for enhancing the correction of articulation disorders in children with cleft palate.

    Science.gov (United States)

    Pamplona, María Del Carmen; Ysunza, Pablo Antonio; Morales, Santiago

    2017-02-01

    Children with cleft palate frequently show speech disorders known as compensatory articulation. Compensatory articulation requires a prolonged period of speech intervention that should include reinforcement at home. However, frequently relatives do not know how to work with their children at home. To study whether the use of audiovisual materials especially designed for complementing speech pathology treatment in children with compensatory articulation can be effective for stimulating articulation practice at home and consequently enhancing speech normalization in children with cleft palate. Eighty-two patients with compensatory articulation were studied. Patients were randomly divided into two groups. Both groups received speech pathology treatment aimed to correct articulation placement. In addition, patients from the active group received a set of audiovisual materials to be used at home. Parents were instructed about strategies and ideas about how to use the materials with their children. Severity of compensatory articulation was compared at the onset and at the end of the speech intervention. After the speech therapy period, the group of patients using audiovisual materials at home demonstrated significantly greater improvement in articulation, as compared with the patients receiving speech pathology treatment on - site without audiovisual supporting materials. The results of this study suggest that audiovisual materials especially designed for practicing adequate articulation placement at home can be effective for reinforcing and enhancing speech pathology treatment of patients with cleft palate and compensatory articulation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. The nuclear reaction analysis (NRA) as a means for detecting carbon in GaAs and in source materials and additives

    International Nuclear Information System (INIS)

    Bethge, K.; Mader, A.; Michelmann, R.; Krauskopf, J.; Thee, P.; Meyer, J.D.

    1991-01-01

    The nuclear reaction ananlysis (NRA) on the basis of the reaction 12 C (d,p) 13 C is a method allowing the detection and description of both lateral and depth profiles of the presence of carbon in GaAs and in the source materials and additives. The NRA is an absolute method with a detection limit for C of approx. 4x10 15 cm 3 . The achievable detection range in depth under the experimental conditions goes from the surface down to 6 μm. Combined with channeling measurements, NRA is capable of identifying the position of carbon in the GaAs crystal lattice, and thus permits to examine the mobility of C in GaAs. (BBR) With 11 refs [de

  10. Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar: Experimental characterization and thermodynamic calculations

    International Nuclear Information System (INIS)

    Bobbio, Lourdes D.; Otis, Richard A.; Borgonia, John Paul; Dillon, R. Peter; Shapiro, Andrew A.; Liu, Zi-Kui; Beese, Allison M.

    2017-01-01

    In functionally graded materials (FGMs), the elemental composition, or structure, within a component varies gradually as a function of position, allowing for the gradual transition from one alloy to another, and the local tailoring of properties. One method for fabricating FGMs with varying elemental composition is through layer-by-layer directed energy deposition additive manufacturing. This work combines experimental characterization and computational analysis to investigate a material graded from Ti-6Al-4V to Invar 36 (64 wt% Fe, 36 wt% Ni). The microstructure, composition, phases, and microhardness were determined as a function of position within the FGM. During the fabrication process, detrimental phases associated with the compositional blending of the Ti-6Al-4V and Invar formed, leading to cracking in the final deposited part. Intermetallic phases (FeTi, Fe_2Ti, Ni_3Ti, and NiTi_2) were experimentally identified to occur throughout the gradient region, and were considered as the reason that the FGM cracked during fabrication. CALPHAD (CALculation of PHase Diagrams) thermodynamic calculations were used concurrently to predict phases that would form during the manufacturing process and were compared to the experimental results. The experimental-computational approach described herein for characterizing FGMs can be used to improve the understanding and design of other FGMs.

  11. Additives in crude oil. A new attempt to prevent boilover; Additive im Rohoel. Ein neuer Ansatz zur Vermeidung eines Boilover

    Energy Technology Data Exchange (ETDEWEB)

    Gosewinkel, Martin; Dworschak, Rene [INBUREX Consulting GmbH, Hamm (Germany)

    2011-03-15

    Boilover of tanks is a rare cause of serious fires in crude oil storage. The greatest danger is the spill of burning material from the tank. In the research project presented here, a method to prevent boilover and/or reduce its effects was to be developed. One approach is the addition of additives that modify the hetero-azeotropic boiling characteristics of crude oil components in case of fire. Even minimum concentrations of the additive will delay the time until boilover and also reduce its intensity.

  12. Structure - materials - production

    DEFF Research Database (Denmark)

    Gammelgaard Nielsen, Anders; Gammel, Peder; Busch, Jens

    2002-01-01

    For the last six years th Aarhus School of Architecture has introduced the first year students (there are about 200 students admitted each year) to structure, materials, design and production through a five week course in collaboration with a group of local companies.......For the last six years th Aarhus School of Architecture has introduced the first year students (there are about 200 students admitted each year) to structure, materials, design and production through a five week course in collaboration with a group of local companies....

  13. Overview of standards subcommittee 8, fissionable materials outside reactors

    International Nuclear Information System (INIS)

    McLaughlin, T.P.

    1996-01-01

    The American Nuclear Society's Standards Subcommittee 8, titled open-quotes Fissionable Materials Outside Reactors,close quotes has worked for the past 35 yr to prepare and promote standards on nuclear criticality safety for the handling, processing, storing, and transportation of fissionable materials outside reactors. The reader is referred to the Transactions of the American Nuclear Society, Vols. 39 (1981) and 64 (1991), for previous papers associated with ANS-8 poster sessions. In addition to discussions on the then-current standards, the reader will find articles on working group efforts that never materialized into standards, such as proposed 8.13, open-quotes Use of the Solid-Angle Method in Nuclear Criticality Safety,close quotes and on applications and critiques of current standards. The paper by McLendon in Vol. 39 is particularly interesting as an overview of the early history of ANS-8 and its standards

  14. A study on strengthening measures of non-proliferation regime through the export control system of sensitive materials, equipment and technology related to nuclear activities

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro; Kurosawa, Mitsuru; Komizo, Yasuyoshi

    2004-01-01

    The strengthened safeguards caused from safeguards experiences to Iraq and DPRK leads to the expansion of the IAEA's activities for verification of all nuclear activities as well as verification of nuclear material in the States. The purpose of the activities, of course, includes detection of undeclared exports and imports of specified equipment and non-nuclear material. The Additional Protocol to the agreements between States and the IAEA for the application of safeguards requires to the States to declare the exports and imports information regarding specified equipment and non-nuclear material corresponding to the export control list that is established by the nuclear suppliers group. The Additional Protocol also insists the IAEA's right to access to the location identified by the State to resolve a question related to the declarations. Recently, the IAEA detected the black market group of the sensitive materials, equipment and technologies relevant to the nuclear proliferation through the safeguards activities to Iran and Libya. International community stated deeply concerns to the indecent facts. This paper would discuss and propose the supplemental strengthening measures of non-proliferation regime by effective combination of the safeguards activities under additional protocol and the export control regime. (author)

  15. An introduction to algebraic geometry and algebraic groups

    CERN Document Server

    Geck, Meinolf

    2003-01-01

    An accessible text introducing algebraic geometries and algebraic groups at advanced undergraduate and early graduate level, this book develops the language of algebraic geometry from scratch and uses it to set up the theory of affine algebraic groups from first principles.Building on the background material from algebraic geometry and algebraic groups, the text provides an introduction to more advanced and specialised material. An example is the representation theory of finite groups of Lie type.The text covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups

  16. Topology Optimization for Reducing Additive Manufacturing Processing Distortions

    Science.gov (United States)

    2017-12-01

    distribution is unlimited. 1. Introduction Additive manufacturing (AM) is a production method that involves gradual, layer- by-layer building of material... design space—allowing the production of pre- viously unmanufacturable topologically optimized structures—constraints remain. One constraint, for...ARL-TR-8242•DEC 2017 US Army Research Laboratory Topology Optimization for ReducingAdditive Manufacturing ProcessingDistortions by Raymond A Wildman

  17. What Is a Group? Young Children's Perceptions of Different Types of Groups and Group Entitativity.

    Directory of Open Access Journals (Sweden)

    Maria Plötner

    Full Text Available To date, developmental research on groups has focused mainly on in-group biases and intergroup relations. However, little is known about children's general understanding of social groups and their perceptions of different forms of group. In this study, 5- to 6-year-old children were asked to evaluate prototypes of four key types of groups: an intimacy group (friends, a task group (people who are collaborating, a social category (people who look alike, and a loose association (people who coincidently meet at a tram stop. In line with previous work with adults, the vast majority of children perceived the intimacy group, task group, and social category, but not the loose association, to possess entitativity, that is, to be a 'real group.' In addition, children evaluated group member properties, social relations, and social obligations differently in each type of group, demonstrating that young children are able to distinguish between different types of in-group relations. The origins of the general group typology used by adults thus appear early in development. These findings contribute to our knowledge about children's intuitive understanding of groups and group members' behavior.

  18. Additives in food and their properties

    OpenAIRE

    TYLOVÁ, Kristýna

    2013-01-01

    The aim of this work is to deepen the knowledge about additives in foods, the importance of technological additives in foods, their properties and effects on human health. The aim of this work is a study of technical and scientific literature on the topic: "additives in foods and their properties" and review of the literature. Also in the practical part, implementation and evaluation of a questionnaire survey of the experimental group related to the topic: "Validation and comparison of knowle...

  19. THE STUDY OF DEFORMATION CHARACTERISTICS OF SOIL MATERIALS WITH THE USAGE OF WASTES

    Directory of Open Access Journals (Sweden)

    L. V. Trykoz

    2017-04-01

    Full Text Available Purpose. More often the qualified building materials are replaced by the industrial wastes for environmental improvement. This refers to both metallurgical slags and biological solids of water treatment plants. In order to understand the possibilities of their usage it needs studying deformation properties of composite soil materials with industrial wastes addition. Methodology. The soil of real buildings and structures foundation is in the complicated conditions and the stress-strained state. While studying this state the total deformation modulus Е0 is used as the deformation characteristic. This one is determined according to the results of sample soil testing in the compression instrument (odometer. This instrument prevents the possibility of lateral expansion of sample soil under the vertical load. Findings. As a result of the testing the compression curves are plotted as the dependence of the porosity coefficient on pressure. These data allow determining the compressibility coefficient and the strain modulus. It is found that a biological solids addition increases the compressibility coefficient four times compared to the clay. The two types of samples are compared. The first type contains 50% of biological solids. The second type contains 50% of biological solids and 50% of slag. The comparison shows that the second type is compressed twelve times less. An addition into the clay of biological solids increases the strain modulus from 7.8 to 20.3 MPa. The slag increases the strain modulus to 52.7 MPa. Originality. While making the composition based clay materials the functional groups of biological solids interact with hydroxyl groups which are placed on the surface of clay particles and form a spatial structure. Besides an addition of biological solids contributes to peptization, soil aggregates destroy themselves, and form contacts between separate particles. It causes the decrease of soil compressibility due to the total porosity

  20. Bridged graphite oxide materials

    Science.gov (United States)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  1. An Automated Anion-Exchange Method forthe Selective Sorption of five Groups ofTrace Elements in Neutron-IrradiatedBiological Material

    International Nuclear Information System (INIS)

    Samsahl, K.

    1966-02-01

    An anion-exchange method based on fast selective sorption steps from mixtures of sulfuric, hydrobromic, and hydrochloric acid solutions has been developed for the separation of five different groups of radioactive trace elements in neutron-irradiated biological material. The separations are performed automatically with a simple proportioning pump apparatus. The apparatus allows the exact adjustment of influent solutions to the series of ion-exchange columns. The practical application of the method is described in detail. The successful use of the method is practically independent on the level of Na activity present in the sample

  2. ISS Multi-Material Fabrication Laboratory using Ultrasonic Additive Manufacturing Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this program is to demonstrate the use of Ultrasonic Additive Manufacturing (UAM) solid state metal 3D printing to provide in-space, on-demand...

  3. The Voroshilov Lectures. Materials from the Soviet General Staff Academy. Volume 1. Issues of Soviet Military Strategy,

    Science.gov (United States)

    1989-06-01

    army defensive operation, this was the companion course to the material presented in the third semester on front offensive operations. In addition, a...center and supporting elements. Glossary 359 KOSMICHESKAIA SISTEMA Space system: A grouping of space and ground-based forces and means assigned to

  4. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2015. Scientific Opinion on Flavouring Group Evaluation 21, Revision 5 (FGE.21Rev5): Thiazoles, thiophenes, thiazoline and thienyl derivatives from chemical groups 29 and 30

    DEFF Research Database (Denmark)

    Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 41 flavouring substances in Flavouring Group Evaluation 21, Revision 5, using the Procedure in Commission Regulation (EC) No 1565/2000. This revision...... have also been considered. Adequate specifications, including complete purity criteria and identity for the materials of commerce, have been provided for all 41 candidate substances....

  5. Cerus process modified with glass addition (Vitrocerus)

    International Nuclear Information System (INIS)

    Arboleda, P.A.; Rodriguez, D.S.; Prado, M.O.

    2009-01-01

    A processing method for spent fuels type Mtr from research reactors has developed in Nuclear Materials Division of Bariloche Atomic Center, this process involved the creation of ceramic matrix containing fuel and natural uranium in an isotopic solution, this project has named CERUS (Spanish acronym of 'Ceramización de Elementos Radioactivos en Uranio Sinterizado': Ceramming of radioactive elements with sintered uranium ). This process works with reduced volumes than a conventional vitrification, however because of some issues on the material resistance; we propose the addition of small amounts of glass with the idea to enhance the lixiviation properties of the final material. In this process is not considered the reprocessing possibility of the spent fuel. (author)

  6. Collaborative Russian-US work in nuclear material protection, control and accounting at the Institute of Physics and Power Engineering. II. extension to additional facilities

    International Nuclear Information System (INIS)

    Kuzin, V.V.; Pshakin, G.M.; Belov, A.P.

    1996-01-01

    During 1995, collaborative Russian-US nuclear material protection, control and accounting (MPC ampersand A) tasks at the Institute of Physics and Power Engineering (IPPE) in Obninsk, Russia focused on improving the protection of nuclear materials at the BFS Fast Critical Facility. BFS has thousands of fuel disks containing highly enriched uranium and weapons-grade plutonium that are used to simulate the core configurations of experimental reactors in two critical assemblies. Completed tasks culminated in demonstrations of newly implemented equipment and methods that enhanced the MPC ampersand A at BFS through computerized accounting, nondestructive inventory verification measurements, personnel identification and assess control, physical inventory taking, physical protection, and video surveillance. The collaborative work is now being extended. The additional tasks encompass communications and tamper-indicating devices; new storage alternatives; and systemization of the MPC ampersand A elements that are being implemented

  7. Algebra in action a course in groups, rings, and fields

    CERN Document Server

    Shahriari, Shahriar

    2017-01-01

    This text-based on the author's popular courses at Pomona College-provides a readable, student-friendly, and somewhat sophisticated introduction to abstract algebra. It is aimed at sophomore or junior undergraduates who are seeing the material for the first time. In addition to the usual definitions and theorems, there is ample discussion to help students build intuition and learn how to think about the abstract concepts. The book has over 1300 exercises and mini-projects of varying degrees of difficulty, and, to facilitate active learning and self-study, hints and short answers for many of the problems are provided. There are full solutions to over 100 problems in order to augment the text and to model the writing of solutions. Lattice diagrams are used throughout to visually demonstrate results and proof techniques. The book covers groups, rings, and fields. In group theory, group actions are the unifying theme and are introduced early. Ring theory is motivated by what is needed for solving Diophantine equa...

  8. Functionally graded materials

    CERN Document Server

    Mahamood, Rasheedat Modupe

    2017-01-01

    This book presents the concept of functionally graded materials as well as their use and different fabrication processes. The authors describe the use of additive manufacturing technology for the production of very complex parts directly from the three dimension computer aided design of the part by adding material layer after layer. A case study is also presented in the book on the experimental analysis of functionally graded material using laser metal deposition process.

  9. Environmental consequences of the Chernobyl accident and their remediation: Twenty years of experience. Report of the UN Chernobyl Forum Expert Group 'Environment' (EGE). Working material

    International Nuclear Information System (INIS)

    2005-08-01

    remediation and special health-care programmes, and to suggest areas where further research is required; and to accept the following Terms of Reference (TOR) of the Forum. The objectives of the Chernobyl Forum were defined as follows: To explore and refine the current scientific assessments on the long-term health and environmental consequences of the Chernobyl accident, with a view to producing authoritative consensus statements focusing on: the health effects attributable to radiation exposure caused by the accident, the environmental consequences induced by the radioactive materials released due to the accident, e.g., contamination of foodstuffs, and additionally to address the consequences attributable to the accident although not directly related to the radiation exposure or radioactive contamination; To identify gaps in scientific research relevant to the radiation-induced or radioactive contamination-induced health and environmental impacts of the accident, and suggest areas where further work is required based on an assessment of the work done in the past, and bearing in mind ongoing work and projects; To provide advice on, and to facilitate implementation of scientifically sound programmes on mitigation of the accident consequences, including possible joint actions of the organizations participating in the Forum, such as: agricultural, economic and social life under safe conditions, special health care of the affected population, monitoring of the long-term human exposure to radiation, and addressing the environmental issues pertaining to the decommissioning of the Shelter and management of radioactive waste originating from the Chernobyl accident. The Chernobyl Forum itself continued as a high-level organisation of senior officials from UN agencies and the three more affected countries. The actual work has been accomplished by two expert groups: Expert Group -Environment - (EGE) and Expert Group 'Health' (EGH). Members of each of these two groups consisted of

  10. Environmental consequences of the Chernobyl accident and their remediation: Twenty years of experience. Report of the UN Chernobyl Forum Expert Group 'Environment' (EGE). Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-08-01

    remediation and special health-care programmes, and to suggest areas where further research is required; and to accept the following Terms of Reference (TOR) of the Forum. The objectives of the Chernobyl Forum were defined as follows: To explore and refine the current scientific assessments on the long-term health and environmental consequences of the Chernobyl accident, with a view to producing authoritative consensus statements focusing on: the health effects attributable to radiation exposure caused by the accident, the environmental consequences induced by the radioactive materials released due to the accident, e.g., contamination of foodstuffs, and additionally to address the consequences attributable to the accident although not directly related to the radiation exposure or radioactive contamination; To identify gaps in scientific research relevant to the radiation-induced or radioactive contamination-induced health and environmental impacts of the accident, and suggest areas where further work is required based on an assessment of the work done in the past, and bearing in mind ongoing work and projects; To provide advice on, and to facilitate implementation of scientifically sound programmes on mitigation of the accident consequences, including possible joint actions of the organizations participating in the Forum, such as: agricultural, economic and social life under safe conditions, special health care of the affected population, monitoring of the long-term human exposure to radiation, and addressing the environmental issues pertaining to the decommissioning of the Shelter and management of radioactive waste originating from the Chernobyl accident. The Chernobyl Forum itself continued as a high-level organisation of senior officials from UN agencies and the three more affected countries. The actual work has been accomplished by two expert groups: Expert Group -Environment - (EGE) and Expert Group 'Health' (EGH). Members of each of these two groups consisted of

  11. Characterization of plastic and boron carbide additive manufactured neutron collimators

    Science.gov (United States)

    Stone, M. B.; Siddel, D. H.; Elliott, A. M.; Anderson, D.; Abernathy, D. L.

    2017-12-01

    Additive manufacturing techniques allow for the production of materials with complicated geometries with reduced costs and production time over traditional methods. We have applied this technique to the production of neutron collimators for use in thermal and cold neutron scattering instrumentation directly out of boron carbide. We discuss the design and generation of these collimators. We also provide measurements at neutron scattering beamlines which serve to characterize the performance of these collimators. Additive manufacturing of parts using neutron absorbing material may also find applications in radiography and neutron moderation.

  12. TIBER II/ETR: Nuclear Performance Analysis Group Report

    International Nuclear Information System (INIS)

    1987-09-01

    A Nuclear Performance Analysis Group was formed to develop the nuclear technology mission of TIBER-II under the leadership of Argonne National Laboratory reporting to LLNL with major participation by the University of California - Los Angeles (test requirements, R and D needs, water-cooled test modules, neutronic tests). Additional key support was provided by GA Technologies (helium-cooled test modules), Hanford Engineering Development Laboratory (material-irradiation tests), Sandia National Laboratory - Albuquerque (high-heat-flux component tests), and the Idaho National Engineering Laboratory (safety tests). Support also was provided by Rennselaer Polytechnic Institute, Grumman Aerospace Corporation, and the Canadian Fusion Fuels Technology Program. This report discusses these areas and provides a schedule for their completion

  13. CLASSIFICATION OF CRIMINAL GROUPS

    OpenAIRE

    Natalia Romanova

    2013-01-01

    New types of criminal groups are emerging in modern society.  These types have their special criminal subculture. The research objective is to develop new parameters of classification of modern criminal groups, create a new typology of criminal groups and identify some features of their subculture. Research methodology is based on the system approach that includes using the method of analysis of documentary sources (materials of a criminal case), method of conversations with themembers of the...

  14. Various Effects of Sandblasting of Dental Restorative Materials.

    Directory of Open Access Journals (Sweden)

    Goro Nishigawa

    Full Text Available Sandblasting particles which remain on the surfaces of dental restorations are removed prior to cementation. It is probable that adhesive strength between luting material and sandblasting particle remnants might exceed that with restorative material. If that being the case, blasting particles adhere to sandblasted material surface could be instrumental to increasing adhesive strength like underlying bonding mechanism between luting material and silanized particles of tribochemical silica coating-treated surface. We hypothesize that ultrasonic cleaning of bonding surfaces, which were pretreated with sandblasting, may affect adhesive strength of a resin luting material to dental restorative materials.We therefore observed adhesive strength of resin luting material to aluminum oxide was greater than those to zirconia ceramic and cobalt-chromium alloy beforehand. To measure the shear bond strengths of resin luting material to zirconia ceramic and cobalt-chromium alloy, forty specimens of each restorative material were prepared. Bonding surfaces were polished with silicon abrasive paper and then treated with sandblasting. For each restorative material, 40 sandblasted specimens were equally divided into two groups: ultrasonic cleaning (USC group and non-ultrasonic cleaning (NUSC group. After resin luting material was polymerized on bonding surface, shear test was performed to evaluate effect of ultrasonic cleaning of bonding surfaces pretreated with sandblasting on bond strength.For both zirconia ceramic and cobalt-chromium alloy, NUSC group showed significantly higher shear bond strength than USC group.Ultrasonic cleaning of dental restorations after sandblasting should be avoided to retain improved bonding between these materials.

  15. 3D continuum phonon model for group-IV 2D materials

    KAUST Repository

    Willatzen, Morten; Lew Yan Voon, Lok C; Gandi, Appala; Schwingenschlö gl, Udo

    2017-01-01

    A general three-dimensional continuum model of phonons in two-dimensional materials is developed. Our first-principles derivation includes full consideration of the lattice anisotropy and flexural modes perpendicular to the layers and can thus

  16. EFFECT OF THE Si POWDER ADDITIONS ON THE PROPERTIES OF SiC COMPOSITES

    Directory of Open Access Journals (Sweden)

    GUOGANG XU

    2012-09-01

    Full Text Available By means of transient plastic phase process, the SiC silicon carbide kiln furniture materials were produced through adding Si powder to SiC materials. At the condition of the same additions of SiO2 powder, the effect of the Si powder additions on properties of silicon carbide materials after sintered at 1450°C for 3 h in air atmosphere was studied by means of SEM and other analysis methods. The results showed that silicon powder contributes to both sintering by liquid state and plastic phase combination to improve the strength of samples. When the Si powder additions is lower than 3.5 %, the density and strength of samples increase and porosity decrease with increasing Si powder additions. However when the Si powder additions is higher than 3.5 %, the density and strength of samples decrease and porosity increase with increasing Si powder additions. With increasing of Si additions, the residual strength of sample after thermal shocked increased and linear change rate decreased, and get to boundary value when Si additions is 4.5 %. The results also indicated that at the same sintering temperature, the sample with 3.5 % silicon powder has maximum strength.

  17. Characterization of Redox properties of humic materials

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1995-01-01

    An important aspect of humic materials is the presence of stable free radicals as shown by the width of 1 H-NMR lines of humic acid in solution as well as ESR spectra of solid samples. Presumably, these are due to quinohdrone functional groups in the humic structure. These free radicals are assumed to be a source of the redox effects of humics in metal cations. Phenolic groups have also been proposed as a source of reduction potential in these substances. The reduction potential of humic material is 0.5-0.7 V (vs. the normal hydrogen electrode). In addition to this inherent redox property, humics undergo photolysis by sunlight in surface waters which results in the production of hydrogen peroxide. The latter can also result in redox reactions with metal cations. Such direct and indirect redox capability can have significant effects on the migration of reducible cations. Studies of the reduction of hexavalent actinide cations by humic acid showed the reactions Np O 2 2+ -> Np O 2 + (E 1/2 0 = 1.47 V) and Pu O 2 2+ -> Pu +4 (E 1/2 0 = 1.04 V) while U O 2 2+ was not reduced. The reduction of plutonium in sea water by humics is discussed. Evidence of the effects of redox by humic material on metal cations in natural waters and sediments are also reviewed. (authors). 16 refs., 2 figs., 1 tab

  18. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 2, Working Group Assessment Team reports; Vulnerability development forms; Working group documents

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Secretary of Energy`s memorandum of August 19, 1993, established an initiative for a Department-wide assessment of the vulnerabilities of stored spent nuclear fuel and other reactor irradiated nuclear materials. A Project Plan to accomplish this study was issued on September 20, 1993 by US Department of Energy, Office of Environment, Health and Safety (EH) which established responsibilities for personnel essential to the study. The DOE Spent Fuel Working Group, which was formed for this purpose and produced the Project Plan, will manage the assessment and produce a report for the Secretary by November 20, 1993. This report was prepared by the Working Group Assessment Team assigned to the Hanford Site facilities. Results contained in this report will be reviewed, along with similar reports from all other selected DOE storage sites, by a working group review panel which will assemble the final summary report to the Secretary on spent nuclear fuel storage inventory and vulnerability.

  19. Phase transformations, stability, and materials interactions

    International Nuclear Information System (INIS)

    Morris, J.W. Jr.; Brewer, L.; Cost, J.R.; Shewmon, P.

    1977-07-01

    The proceedings of the Materials Sciences Workshop on Phase Transformations, Stability, and Materials Interactions are divided into sections according to the following topics: (I) workshop scope and priorities; (II) study group reports--ERDA mission needs; (III) study group reports--technical area research priorities

  20. Computational screening of organic materials towards improved photovoltaic properties

    Science.gov (United States)

    Dai, Shuo; Olivares-Amaya, Roberto; Amador-Bedolla, Carlos; Aspuru-Guzik, Alan; Borunda, Mario

    2015-03-01

    The world today faces an energy crisis that is an obstruction to the development of the human civilization. One of the most promising solutions is solar energy harvested by economical solar cells. Being the third generation of solar cell materials, organic photovoltaic (OPV) materials is now under active development from both theoretical and experimental points of view. In this study, we constructed a parameter to select the desired molecules based on their optical spectra performance. We applied it to investigate a large collection of potential OPV materials, which were from the CEPDB database set up by the Harvard Clean Energy Project. Time dependent density functional theory (TD-DFT) modeling was used to calculate the absorption spectra of the molecules. Then based on the parameter, we screened out the top performing molecules for their potential OPV usage and suggested experimental efforts toward their synthesis. In addition, from those molecules, we summarized the functional groups that provided molecules certain spectrum capability. It is hoped that useful information could be mined out to provide hints to molecular design of OPV materials.

  1. Group IV all-semiconductor spintronics. Materials aspects and optical spin selection rules

    Energy Technology Data Exchange (ETDEWEB)

    Sircar, Narayan

    2012-04-03

    In the scope of the present thesis various aspects for the realization of spintronic applications based on group IV semiconductors are discussed. This work comprises a refined material characterization of the magnetic semiconductor GeMn. We furthermore present efforts to utilize this material as spin injector for a Si-based optical spintronic device. Applying transmission electron microscopy and atom probe tomography, we are able to resolve a vertical anisotropy in the self-assembly, leading to the stacking of well-defined clusters in the growth direction. Three-dimensional atom distribution maps confirm that clusters are built from a nonstoichiometric GeMn alloy and exhibit a high-Mn-concentration core with a decreasing Mn concentration toward a shell. An amorphous nature of the cluster cores as well as the crystallinity of the shells, coherent with the surrounding Ge lattice, are revealed in scanning transmission electron microscopy. We localize a strain field surrounding each GeMn cluster by scanning transmission electron microscopy. The importance of strain to the stacking phenomenon of the clusters becomes clear in studies of Ge/GeMn superlattice structures, where a vertical spatial correlation of clusters over 30 nm-thick Ge spacer layers is observed. We present evidence that electrical transport properties of the p-type GeMn thin films fabricated on high-resistivity Ge substrates are severely influenced by parallel conduction through the substrate. It is shown that substrate conduction persists also for wellconducting degenerate p-type reference thin films, giving rise to an effective two-layer conduction scheme. GeMn thin films fabricated on these substrates exhibit only a negligible magnetoresistance effect. Before integrating GeMn in an optical spintronic device, some key aspects important for an understanding of the optical injection and detection of carrier spins in Si and Si-based heterostructures are clarified in the second part of this thesis. In

  2. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 23, Revision 3 (FGE.23Rev3): Aliphatic, alicyclic and aromatic ethers including anisole derivatives from chemical groups 15, 16, 22, 26 and 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 20 flavouring substances in the Flavouring Group Evaluation 23, Revision 3, using the Procedure in Commission Regulation (EC) No 1565/2000. None...... of the MSDI approach. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered. Specifications including complete purity criteria and identity for the materials of commerce have been provided for all 20 candidate substances....

  3. GLASS FORMATION AND PROPERTIES OF CORDIERITE COMPOSITIONS FROM TALC-BASED NATURAL RAW MATERIALS WITH BORON OXIDE ADDITION

    Directory of Open Access Journals (Sweden)

    Esin GÜNAY

    2010-12-01

    Full Text Available In this study, the glass forming behaviour of cordierite compositions in MAS (MgO-Al2O3-SiO2 system with added B2O3 content up to 3% were studied by melting the natural raw materials such as; talc, kaolin, alumina and boric acid as the source of MgO, SiO2, Al2O3 and B2O3 respectively. XRD analysis revealed the glass formation. Optical properties of the glasses were measured using UV-VIS spectrophotometer and structural changes were monitored by using FT-IR spectrometer. Physical properties such as density, colour, thermal expansion coefficients and hardness were measured according to the standard test methods. Glasses with a green colour were produced and this was attributed to the Fe content in the glass up to 0.5% coming from talc and kaolin. The addition of B2O3 to the glasses increased the glass transition temperatures (Tg values and reduced the thermal expansion coefficient values of the glasses from 5.2226 to 5.0072ºCx10-6, for MAS-T-0 and MAS-T-3, respectively.

  4. Microbial analyses of cement and grouting additives

    International Nuclear Information System (INIS)

    Hallbeck, L.; Jaegevall, S.; Paeaejaervi, A.; Rabe, L.; Edlund, J.; Eriksson, S.

    2012-01-01

    During sampling in the ONKALO tunnel in 2006, heavy growth of a slimy material was observed in connection with grouting. It was suggested to be microbial growth on organic additives leaching from the grout. Two sampling campaigns resulted in the isolation of several aerobic bacterial strains. Some of these strains were used in biodegradation studies of three solid cement powders, eight liquid grout additives, and six plastic drainage materials. Degradation was also studied using ONKALO groundwaters as inoculums. The isolated strains were most closely related to hydrocarbon-degrading microorganisms. The biodegradation of seven of the products was tested using microorganisms isolated from the ONKALO slime in 2006; none of these strains could degrade the tested products. When ONKALO drillhole groundwaters were used as inoculums in the degradation studies, it was demonstrated that Structuro 111X, Mighty 150, and Super-Parmix supported growth of the groundwater microorganisms. Structuro 111X is a polycarboxylate condensate while Mighty 150 and Super-Parmix are condensates with formaldehyde and naphthalene. Some of the isolated microorganisms belonged to the genus Pseudomonas, many strains of which can degrade organic molecules. None of the plastic drainage materials supported growth during the degradation studies. Microorganisms were present in two of the liquid products when delivered, GroutAid and Super-Parmix. The potential of the organic compounds in grout additives to be degraded by microorganisms, increasing the risk of biofilm formation and complexing compound production, must be considered. Microbial growth will also increase the possibility of hydrogen sulphide formation. (orig.)

  5. Presentations of groups

    CERN Document Server

    Johnson, D L

    1997-01-01

    The aim of this book is to provide an introduction to combinatorial group theory. Any reader who has completed first courses in linear algebra, group theory and ring theory will find this book accessible. The emphasis is on computational techniques but rigorous proofs of all theorems are supplied. This new edition has been revised throughout, including new exercises and an additional chapter on proving that certain groups are infinite.

  6. Magneto-Sensitive Adsorbents Modified by Functional Nitrogen-Containing Groups

    Science.gov (United States)

    Melnyk, Inna V.; Gdula, Karolina; Dąbrowski, Andrzej; Zub, Yuriy L.

    2016-02-01

    In order to obtain amino-functionalized silica materials with magnetic core, one-step synthesis was carried out. Several materials, differ in number and structure of amino groups, were synthesized on the basis of sol-gel method. The synthesized materials were examined by several analytical techniques. The presence and content of amino groups were measured by using Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy and acid-base titration, respectively. Specific surface areas were measured by nitrogen/adsorption desorption isotherms. It was proved that sol-gel approach leads to obtain materials with high content of amino groups built into their surfaces (in the range 1.6-2.7 mmol/g). As-obtained materials were tested as potential adsorbents for copper(II) ions. The received maximum adsorption capacities were in the range 0.4-0.7 mmol/g.

  7. Macrocyclic fragrance materials

    DEFF Research Database (Denmark)

    Salvito, Daniel; Lapczynski, Aurelia; Sachse-Vasquez, Christen

    2011-01-01

    A screening-level aquatic environmental risk assessment for macrocyclic fragrance materials using a “group approach” is presented using data for 30 macrocyclic fragrance ingredients. In this group approach, conservative estimates of environmental exposure and ecotoxicological effects thresholds....../L and for macrocyclic lactones/lactides is 2.7 μg/L. The results of this screening-level aquatic ecological risk assessment indicate that at their current tonnage, often referred to as volumes of use, macrocyclic fragrance materials in Europe and North America, pose a negligible risk to aquatic biota; with no PEC...... for compounds within two subgroups (15 macrocyclic ketones and 15 macrocyclic lactones/lactides) were used to estimate the aquatic ecological risk potential for these subgroups. It is reasonable to separate these fragrance materials into the two subgroups based on the likely metabolic pathway required...

  8. Replacing Phosphorus-Containing Food Additives With Foods Without Additives Reduces Phosphatemia in End-Stage Renal Disease Patients: A Randomized Clinical Trial.

    Science.gov (United States)

    de Fornasari, Margareth Lage Leite; Dos Santos Sens, Yvoty Alves

    2017-03-01

    The purpose of the study was to verify the effects of replacing phosphorus-containing food additives with foods without additives on phosphatemia in end-stage renal disease (ESRD) patients. Randomized clinical trial. Adult patients on hemodialysis for ≥6 months at a single center. A total of 134 patients with phosphorus levels of >5.5 mg/dL were included and were randomized into an intervention group (n = 67) and a control group (n = 67). The IG received individual orientation to replace processed foods that have phosphorus additives with foods of similar nutritional value without these additives. The CG received only the nutritional orientation given before the study. Clinical laboratory data, nutritional status, energy and protein intake, and normalized protein nitrogen appearance (nPNA) were evaluated at the beginning of the study and after 90 days. There was no initial difference between the groups in terms of serum phosphorus levels, nutritional status, and energy intake. After 3 months, there was a decline in phosphorus levels in the IG (from 7.2 ± 1.4 to 5.0 ± 1.3 mg/dL, P food additives with foods without additives reduced serum phosphorus without interfering in the nutritional status of ESRD patients. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  9. Adsorption of molecular additive onto lead halide perovskite surfaces: A computational study on Lewis base thiophene additive passivation

    Science.gov (United States)

    Zhang, Lei; Yu, Fengxi; Chen, Lihong; Li, Jingfa

    2018-06-01

    Organic additives, such as the Lewis base thiophene, have been successfully applied to passivate halide perovskite surfaces, improving the stability and properties of perovskite devices based on CH3NH3PbI3. Yet, the detailed nanostructure of the perovskite surface passivated by additives and the mechanisms of such passivation are not well understood. This study presents a nanoscopic view on the interfacial structure of an additive/perovskite interface, consisting of a Lewis base thiophene molecular additive and a lead halide perovskite surface substrate, providing insights on the mechanisms that molecular additives can passivate the halide perovskite surfaces and enhance the perovskite-based device performance. Molecular dynamics study on the interactions between water molecules and the perovskite surfaces passivated by the investigated additive reveal the effectiveness of employing the molecular additives to improve the stability of the halide perovskite materials. The additive/perovskite surface system is further probed via molecular engineering the perovskite surfaces. This study reveals the nanoscopic structure-property relationships of the halide perovskite surface passivated by molecular additives, which helps the fundamental understanding of the surface/interface engineering strategies for the development of halide perovskite based devices.

  10. Building Materials in Arctic Climate

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2005-01-01

    Building in the artic requires special attention on the appropriateness of building materials. The harsh climate makes execution difficult and sets unusual requirements for the pure material properties. In addition, there is a lack of choice of good, natural building materials in the arctic...

  11. Graphite and Hybrid Nanomaterials as Lubricant Additives

    Directory of Open Access Journals (Sweden)

    Zhenyu J. Zhang

    2014-04-01

    Full Text Available Lubricant additives, based on inorganic nanoparticles coated with organic outer layer, can reduce wear and increase load-carrying capacity of base oil remarkably, indicating the great potential of hybrid nanoparticles as anti-wear and extreme-pressure additives with excellent levels of performance. The organic part in the hybrid materials improves their flexibility and stability, while the inorganic part is responsible for hardness. The relationship between the design parameters of the organic coatings, such as molecular architecture and the lubrication performance, however, remains to be fully elucidated. A survey of current understanding of hybrid nanoparticles as lubricant additives is presented in this review.

  12. Spectroscopic Parameters of Lumbar Intervertebral Disc Material

    Science.gov (United States)

    Terbetas, G.; Kozlovskaja, A.; Varanius, D.; Graziene, V.; Vaitkus, J.; Vaitkuviene, A.

    2009-06-01

    There are numerous methods of investigating intervertebral disc. Visualization methods are widely used in clinical practice. Histological, imunohistochemical and biochemical methods are more used in scientific research. We propose that a new spectroscopic investigation would be useful in determining intervertebral disc material, especially when no histological specimens are available. Purpose: to determine spectroscopic parameters of intervertebral disc material; to determine emission spectra common for all intervertebral discs; to create a background for further spectroscopic investigation where no histological specimen will be available. Material and Methods: 20 patients, 68 frozen sections of 20 μm thickness from operatively removed intervertebral disc hernia were excited by Nd:YAG microlaser STA-01-TH third harmonic 355 nm light throw 0, 1 mm fiber. Spectrophotometer OceanOptics USB2000 was used for spectra collection. Mathematical analysis of spectra was performed by ORIGIN multiple Gaussian peaks analysis. Results: In each specimen of disc hernia were found distinct maximal spectral peaks of 4 types supporting the histological evaluation of mixture content of the hernia. Fluorescence in the spectral regions 370-700 nm was detected in the disc hernias. The main spectral component was at 494 nm and the contribution of the components with the peak wavelength values at 388 nm, 412 nm and 435±5 nm were varying in the different groups of samples. In comparison to average spectrum of all cases, there are 4 groups of different spectral signatures in the region 400-500 nm in the patient groups, supporting a clinical data on different clinical features of the patients. Discussion and Conclusion: besides the classical open discectomy, new minimally invasive techniques of treating intervertebral disc emerge (PLDD). Intervertebral disc in these techniques is assessed by needle, no histological specimen is taken. Spectroscopic investigation via fiber optics through the

  13. Powder Characterization and Optimization for Additive Manufacturing

    NARCIS (Netherlands)

    Cordova, Laura; Campos, Mónica; Tinga, Tiedo

    2017-01-01

    Achieving the optimal quality for Additive Manufactured (AM) parts does not only depend on setting the right process parameters. Material feedstock also plays an important role when aiming for high performance products. The metal AM processes that are most applicable to industry, Powder Bed Fusion

  14. Structural control in the synthesis of inorganic porous materials

    Science.gov (United States)

    Holland, Brian Thomas

    Mesoporous (2.0--50.0 nm pore diameter) and macroporous (50.0 nm on up) materials have been the basis of my studies. These materials, for many years, possessed large pore size distributions. Recently, however, it has been possible to synthesize both mesoporous and macroporous materials that possess highly ordered uniform pores throughout the material. Workers at Mobil Corporation in 1992 discovered a hexagonally arrayed mesoporous material, designated MCM-41, which exhibited uniform pores ranging from 2.0--10.0 nm in diameter. In my work MCM-41 was used as a host for the incorporation of meso-tetrakis(5-trimethylammoniumpentyl)porphyrin (TMAP-Cl) and as a model for the synthesis of mesoporous alumino- and galloaluminophosphates which were created using cluster precursors of the type MO4Al 12(OH)24(H2O)12 7+, M = Al or Ga. Macroporous materials with uniform pore sizes have been synthesized by our group with frameworks consisting of a variety of metal oxides, metals, organosilanes, aluminophosphates and bimodal pores. These materials are synthesized from the addition of metal precursors to preordered polystyrene spheres. Removal of the spheres results in the formation of macropores with highly uniform pores extending microns in length. Porous materials with uniform and adjustable pore sizes in the mesoporous and macroporous size regimes offer distinct advantages over non-ordered materials for numerous reasons. First, catalysis reactions that are based on the ability of the porous materials to impose size and shape restrictions on the substrate are of considerable interest in the petroleum and petrochemical industries. As pore diameters increase larger molecules can be incorporated into the pores, i.e., biological molecules, dyes, etc. For the macroporous materials synthesized by our group it has been envisioned that these structures may not only be used for catalysis because of increased efficiencies of flow but for more advanced applications, e.g., photonic crystals

  15. What Is a Group? Young Children’s Perceptions of Different Types of Groups and Group Entitativity

    Science.gov (United States)

    Plötner, Maria; Over, Harriet; Carpenter, Malinda; Tomasello, Michael

    2016-01-01

    To date, developmental research on groups has focused mainly on in-group biases and intergroup relations. However, little is known about children’s general understanding of social groups and their perceptions of different forms of group. In this study, 5- to 6-year-old children were asked to evaluate prototypes of four key types of groups: an intimacy group (friends), a task group (people who are collaborating), a social category (people who look alike), and a loose association (people who coincidently meet at a tram stop). In line with previous work with adults, the vast majority of children perceived the intimacy group, task group, and social category, but not the loose association, to possess entitativity, that is, to be a ‘real group.’ In addition, children evaluated group member properties, social relations, and social obligations differently in each type of group, demonstrating that young children are able to distinguish between different types of in-group relations. The origins of the general group typology used by adults thus appear early in development. These findings contribute to our knowledge about children's intuitive understanding of groups and group members' behavior. PMID:27010484

  16. 39 CFR 3050.41 - Treatment of additional financial reports.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Treatment of additional financial reports. 3050.41... Treatment of additional financial reports. (a) For purposes of the reports required by § 3050.40(a)(2), the... § 3050.40(c) is fairly stated in all material respects, either in relation to the basic financial...

  17. Thermodynamic estimation: Ionic materials

    International Nuclear Information System (INIS)

    Glasser, Leslie

    2013-01-01

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy

  18. Plasma-material interactions

    International Nuclear Information System (INIS)

    Wilson, K.L.

    1984-01-01

    Plasma-interactive components must be resistant to erosion processes, efficient in heat removal, and effective in minimizing tritium inventory and permeation. As long as plasma edge temperatures are 50 eV, no one material can satisfy the diverse requirements imposed by these plasma materials interactions. The only solution is the design of duplex, or even more complicated, structures. The material that faces the plasma should be low atomic number, with acceptable erosion and evaporation characteristics. The substrate material must have high thermal conductivity for heat removal. Finally, materials must be selected judiciously for tritium compatibility. In conclusion, materials play a critical role in the achievement of safe and economical magnetic fusion energy. Improvements in materials have already led to many advances in present day device operation, but additional innovative materials solutions are required for the critical plasma materials interaction issues in future power reactors

  19. The Frontiers of Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-03

    Additive manufacturing, more commonly known as 3-D printing, has become a ubiquitous tool in science for its precise control over mechanical design. For additive manufacturing to work, a 3-D structure is split into thin 2D slices, and then different physical properties, such as photo-polymerization or melting, are used to grow the sequential layers. The level of control allows not only for devices to be made with a variety of materials: e.g. plastics, metals, and quantum dots, but to also have finely controlled structures leading to other novel properties. While 3-D printing is widely used by hobbyists for making models, it also has industrial applications in structural engineering, biological tissue scaffolding, customized electric circuitry, fuel cells, security, and more.

  20. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 21, Revision 4 (FGE.21Rev4)

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 59 flavouring substances in the Flavouring Group Evaluation 21, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. This revision...... of these flavouring substances, the specifications for the materials of commerce have also been considered. Adequate specifications including complete purity criteria and identity for the materials of commerce have been provided for all 41 candidate substances...

  1. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 24, Revision 2 (FGE.24Rev2)

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 24 flavouring substances in the Flavouring Group Evaluation 24, Revision 2, using the Procedure in Commission Regulation (EC) No 1565/2000. This revision...... the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered. Adequate specifications including complete purity criteria and identity for the materials of commerce have been provided for all 24 candidate substances....

  2. Nano-Magnets and Additive Manufacturing for Electric Motors

    Science.gov (United States)

    Misra, Ajay K.

    2014-01-01

    High power density is required for application of electric motors in hybrid electric propulsion. Potential path to achieve high power density in electric motors include advanced materials, lightweight thermal management, lightweight structural concepts, high power density power electronics, and advanced manufacturing. This presentation will focus on two key technologies for achieving high power density, advanced magnets and additive manufacturing. The maximum energy product in current magnets is reaching their theoretical limits as a result of material and process improvements. Future improvements in the maximum energy product for magnets can be achieved through development of nanocomposite magnets combining the hard magnetic phase and soft magnetic phase at the nanoscale level. The presentation will provide an overview of the current state of development for nanocomposite magnets and the future path for doubling the maximum energy product. The other part of the presentation will focus on the role of additive manufacturing in fabrication of high power density electric motors. The presentation will highlight the potential opportunities for applying additive manufacturing to fabricate electric motors.

  3. Additions to the barnacle (Crustacea: Cirripedia) fauna of South Africa

    African Journals Online (AJOL)

    The purpose of this paper is to document recent additions to the South African barnacle (Cirripedia) fauna. New species records were obtained by examining accumulated collections of unidentified material in the Iziko South African Museum, as well as via material collected directly by the authors. Fourteen species, none of ...

  4. Improving students’ creative thinking skill through local material-based experiment (LMBE) on protein qualitative test

    Science.gov (United States)

    Supriyanti, F. M. T.; Halimatul, H. S.

    2018-05-01

    This study aims to enhance chemistry students’ creative thinking skills using material from local resources on protein qualitative test experiment (LMBE). In this study, a quasi experiment method using one group pretest-postest non-equivalen control group design was carried out on the effectiveness of local material-based experiment approach. The data was collected using the test consists of five assay test and student work sheet (LKM). The effectiveness of the local material-based experiment was tested by means of percentage of normalized gain and score percentage of students’ worksheet. Comparison of creative thinking skills pretest and postest scores showed that the implementation of local material- based experiment (LMBE) enhanced students’s creative thinking skills in experiment class with the value of normalized gain (=0,77) at high category, while in control class reached to =0,44 at medium category. In addition, the LKM shown the enhancements of all aspect of creative thinking skills, including fluency, flexibility, and elaboration skills with the score of in experiment class are 0.79; 0.75; and 0.87 at high category, respectively. In contrast, the only the elaboration skill of control group was improved at high category (=0.76), while fluency and flexibility indicators enhanced at medium category (=0.48 and 0.56, respectively).

  5. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy [Aiken, SC; Ritter, James A [Lexington, SC; Ebner, Armin D [Lexington, SC; Wang, Jun [Columbia, SC; Holland, Charles E [Cayce, SC

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  6. Gas condensate--raw material for producing liquid paraffin hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Aliyeva, R.B.; Alikishi-Zade, G.Yu.; Kuliyev, A.M.; Leonidov, A.N.; Pereverzev, A.N.

    1980-01-01

    The problem of efficient utilization of gas condensates as raw material for removal of a valuable product, liquid paraffins, is examined. A classification of gas condensates is given which is used as raw material for removing these hydrocarbons: gas condensate with high content of n-alkanes (25-40 mass percent), with average content (18-25 mass percent), with low content (12-18 mass percent), light weight fractions compositions, which do not contain fractions up to 200/sup 0/, and also, content ofless than 12% n-alkanes. Gas condensate I-III groups are 30% of the total reserve of gas condensate. Liquid paraffins hydrocarbons, produced from fractions of diesel fuel, which has been removed from Shatlyk gas condensate under conditions which simulate virtual processes of caramide deparaffinization meet all requirements without additional refining.

  7. The Attractiveness of Materials in Advanced Nuclear Fuel Cycles for Various Proliferation and Theft Scenarios

    International Nuclear Information System (INIS)

    Bathke, C.G.; Wallace, R.K.; Ireland, J.R.; Johnson, M.W.; Hase, Kevin R.; Jarvinen, G.D.; Ebbinghaus, B.B.; Sleaford, Brad W.; Bradley, Keith S.; Collins, Brian A.; Smith, Brian W.; Prichard, Andrew W.

    2010-01-01

    This paper is an extension to earlier studies that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, COEX, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant state and sub-national group capabilities. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a state and provided the highest levels of physical protection to prevent theft by sub-national groups; no 'silver bullet' has been found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities. The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.

  8. The attractiveness of materials in advanced nuclear fuel cycles for various proliferation and theft scenarios

    International Nuclear Information System (INIS)

    Bathke, Charles G.; Wallace, Richard K.; Ireland, John R.; Johnson, M.W.; Hase, Kevin R.; Jarvinen, Gordon D.; Ebbinghaus, Bartley B.; Sleaford, Brad A.; Bradley, Keith S.; Collins, Brian W.; Smith, Brian W.; Prichard, Andrew W.

    2009-01-01

    This paper is an extension to earlier studies that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, COEX, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant state and sub-national group capabilities. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a state and provided the highest levels of physical protection to prevent theft by sub-national groups; no 'silver bullet' has been found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities. The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.

  9. Additive Manufacturing of Multifunctional Components Using High Density Carbon Nanotube Yarn Filaments

    Science.gov (United States)

    Gardner, John M.; Sauti, Godfrey; Kim, Jae-Woo; Cano, Roberto J.; Wincheski, Russell A.; Stelter, Christopher J.; Grimsley, Brian W.; Working, Dennis C.; Siochi, Emilie J.

    2016-01-01

    Additive manufacturing allows for design freedom and part complexity not currently attainable using traditional manufacturing technologies. Fused Filament Fabrication (FFF), for example, can yield novel component geometries and functionalities because the method provides a high level of control over material placement and processing conditions. This is achievable by extrusion of a preprocessed filament feedstock material along a predetermined path. However if fabrication of a multifunctional part relies only on conventional filament materials, it will require a different material for each unique functionality printed into the part. Carbon nanotubes (CNTs) are an attractive material for many applications due to their high specific strength as well as good electrical and thermal conductivity. The presence of this set of properties in a single material presents an opportunity to use one material to achieve multifunctionality in an additively manufactured part. This paper describes a recently developed method for processing continuous CNT yarn filaments into three-dimensional articles, and summarizes the mechanical, electrical, and sensing performance of the components fabricated in this way.

  10. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids ), 2014. Scientific Opinion on Flavouring Group Evaluation 200 (FGE.200): 74 α , β -unsaturated aldehydes and precursors from subgroup 1.1.1 of FGE.19

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate the genotoxic potential of 74 flavouring substances from subgroup 1.1.1 of FGE.19 in the Flavouring Group Evaluation 200 (FGE.200). The Flavour Industry has...... provided additional genotoxicity studies for one representative substance in FGE.200, namely hex-2(trans)-enal [FL-no 05.073], and for other two substances in the same subgroup, namely 2-dodecenal [05.037] and 2-nonenal [05.171]. The Panel has evaluated these data and concluded that the concern still...

  11. In Vitro Implant Impression Accuracy Using a New Photopolymerizing SDR Splinting Material.

    Science.gov (United States)

    Di Fiore, Adolfo; Meneghello, Roberto; Savio, Gianpaolo; Sivolella, Stefano; Katsoulis, Joannis; Stellini, Edoardo

    2015-10-01

    The study aims to evaluate three-dimensionally (3D) the accuracy of implant impressions using a new resin splinting material, "Smart Dentin Replacement" (SDR). A titanium model of an edentulous mandible with six implant analogues was used as a master model and its dimensions measured with a coordinate measuring machine. Before the total 60 impressions were taken (open tray, screw-retained abutments, vinyl polysiloxane), they were divided in four groups: A (test): copings pick-up splinted with dental floss and fotopolymerizing SDR; B (test): see A, additionally sectioned and splinted again with SDR; C (control): copings pick-up splinted with dental floss and autopolymerizing Duralay® (Reliance Dental Mfg. Co., Alsip, IL, USA) acrylic resin; and D (control): see C, additionally sectioned and splinted again with Duralay. The impressions were measured directly with an optomechanical coordinate measuring machine and analyzed with a computer-aided design (CAD) geometric modeling software. The Wilcoxon matched-pair signed-rank test was used to compare groups. While there was no difference (p = .430) between the mean 3D deviations of the test groups A (17.5 μm) and B (17.4 μm), they both showed statistically significant differences (p impression techniques for edentulous jaws with multiple implants are highly accurate using the new fotopolymerizing splinting material SDR. Sectioning and rejoining of the SDR splinting had no impact on the impression accuracy. © 2015 Wiley Periodicals, Inc.

  12. Zaire program expands to cover high-risk groups in two cities.

    Science.gov (United States)

    1989-01-01

    This article announces the expansion of Zaire's social marketing program for condoms to high-risk groups in the cities of Goma and Matadi. The program will use proven marketing techniques from Kinshasha, printed materials, and direct marketing to retail outlets, emphasizing hotels, bars, and other areas frequented by prostitutes, migrants, and other travelers. In addition to retail outlets such as pharmacies, 50 taxis will be tested as additional retail sources for Prudence condoms. Once under way, this effort could reach as many as 96,000 people/day. 5 new AIDS information spots are being televised, and an anti-AIDS song and jingle are on the air. Condom social marketing representatives report a 357% increase in condom sales through March, 1989, over 1988, and that products are now available in 85% of Kinshasha pharmacies. Medical center coverage has increased to 14 from 9 zones, while products reach 11 additional cities and 5 interior provinces.

  13. An Interactive Signed Distance Approach for Multiple Criteria Group Decision-Making Based on Simple Additive Weighting Method with Incomplete Preference Information Defined by Interval Type-2 Fuzzy Sets

    OpenAIRE

    Ting-Yu Chen

    2014-01-01

    Interval type-2 fuzzy sets (T2FSs) with interval membership grades are suitable for dealing with imprecision or uncertainties in many real-world problems. In the Interval type-2 fuzzy context, the aim of this paper is to develop an interactive signed distance-based simple additive weighting (SAW) method for solving multiple criteria group decision-making problems with linguistic ratings and incomplete preference information. This paper first formulates a group decision-making problem with unc...

  14. CFCC working group meeting: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This report is a compilation of the vugraphs presented at this meeting. Presentations covered are: CFCC Working Group; Overview of study on applications for advanced ceramics in industries for the future; Design codes and data bases: The CFCC program and its involvement in ASTM, ISO, ASME, and military handbook 17 activities; CFCC Working Group meeting (McDermott Technology); CFCC Working Group meeting (Textron); CFCC program for DMO materials; Developments in PIP-derived CFCCs; Toughened Silcomp (SiC-Si) composites for gas turbine engine applications; CFCC program for CVI materials; Self-lubricating CFCCs for diesel engine applications; Overview of the CFCC program`s supporting technologies task; Life prediction methodologies for CFCC components; Environmental testing of CFCCs in combustion gas environments; High-temperature particle filtration ORNL/DCC CRADA; HSCT CMC combustor; and Case study -- CFCC shroud for industrial gas turbines.

  15. The vast thin plane of M31 corotating dwarfs: an additional fossil signature of the M31 merger and of its considerable impact in the whole Local Group

    Science.gov (United States)

    Hammer, François; Yang, Yanbin; Fouquet, Sylvain; Pawlowski, Marcel S.; Kroupa, Pavel; Puech, Mathieu; Flores, Hector; Wang, Jianling

    2013-06-01

    The recent discovery by Ibata et al. of a vast thin disc of satellites (VTDS) around M31 offers a new challenge for the understanding of the Local Group properties. This comes in addition to the unexpected proximity of the Magellanic Clouds (MCs) to the Milky Way (MW), and to another vast polar structure (VPOS), which is almost perpendicular to our Galaxy disc. We find that the VTDS plane is coinciding with several stellar, tidally induced streams in the outskirts of M31, and, that its velocity distribution is consistent with that of the giant stream (GS). This is suggestive of a common physical mechanism, likely linked to merger tidal interactions, knowing that a similar argument may apply to the VPOS at the MW location. Furthermore, the VTDS is pointing towards the MW, being almost perpendicular to the MW disc, as the VPOS is. We compare these properties to the modelling of M31 as an ancient, gas-rich major merger, which has been successfully used to predict the M31 substructures and the GS origin. We find that without fine tuning, the induced tidal tails are lying in the VTDS plane, providing a single and common origin for many stellar streams and for the vast stellar structures surrounding both the MW and M31. The model also reproduces quite accurately positions and velocities of the VTDS spheroidal dwarfs. Our conjecture leads to a novel interpretation of the Local Group past history, as a gigantic tidal tail due to the M31 ancient merger is expected to send material towards the MW, including the MCs. Such a link between M31 and the MW is expected to be quite exceptional, though it may be in qualitative agreement with the reported rareness of MW-MCs systems in nearby galaxies.

  16. Influence of tribological additives on friction and impact performance of injection moulded polyacetal

    DEFF Research Database (Denmark)

    Laursen, Jens Lolle; Sivebæk, Ion Marius; Christoffersen, L.W.

    2009-01-01

    Tribological additives are used to improve frictional properties of injection moulded thermoplastics. The additives might however also affect the mechanical properties of the material. The influence of processing conditions on both frictional and mechanical properties is highly relevant in the de......Tribological additives are used to improve frictional properties of injection moulded thermoplastics. The additives might however also affect the mechanical properties of the material. The influence of processing conditions on both frictional and mechanical properties is highly relevant...... in the development of tribologically modified grades. In the present study we investigate how two commonly used tribological additives, polydimethylsiloxane and polytetrafluoroethylene, affect friction and impact properties of polyacetal (polyoxymethylene). A new injection mould provides test specimens for both...

  17. A tailored biocatalyst achieved by the rational anchoring of imidazole groups on a natural polymer: furnishing a potential artificial nuclease by sustainable materials engineering.

    Science.gov (United States)

    Ferreira, José G L; Grein-Iankovski, Aline; Oliveira, Marco A S; Simas-Tosin, Fernanda F; Riegel-Vidotti, Izabel C; Orth, Elisa S

    2015-04-11

    Foreseeing the development of artificial enzymes by sustainable materials engineering, we rationally anchored reactive imidazole groups on gum arabic, a natural biocompatible polymer. The tailored biocatalyst GAIMZ demonstrated catalytic activity (>10(5)-fold) in dephosphorylation reactions with recyclable features and was effective in cleaving plasmid DNA, comprising a potential artificial nuclease.

  18. Electron beam processing of PVC insulating material in presence of additives

    International Nuclear Information System (INIS)

    Sharma, V.K.; Bhattacharyya, P.K.

    1994-01-01

    Using electron beam radiation flexible PVC (polyvinyl chloride) was cross linked in the dose range up to 15 Mrad. The effect of sensitizers and other additives on the cross linking and other physical properties like tensile strength have been investigated. It has been found that tri functional sensitizer like TMPTM (tri methyl propane tri methacrylate) is better sensitizer for PVC. In presence of TMPTM the physical properties related to crosslinking are found to be better than some of the other sensitizers used. The results are discussed. (author). 2 refs., 2 figs

  19. Review of Shape Deviation Modeling for Additive Manufacturing

    OpenAIRE

    Zhu , Zuowei; Keimasi , Safa; ANWER , Nabil; Mathieu , Luc; Qiao , Lihong

    2016-01-01

    International audience; Additive Manufacturing (AM) is becoming a promising technology capable of building complex customized parts with internal geometries and graded material by stacking up thin individual layers. However, a comprehensive geometric model for Additive Manufacturing is not mature yet. Dimensional and form accuracy and surface finish are still a bottleneck for AM regarding quality control. In this paper, an up-to-date review is drawn on methods and approaches that have been de...

  20. Material Programming

    DEFF Research Database (Denmark)

    Vallgårda, Anna; Boer, Laurens; Tsaknaki, Vasiliki

    2017-01-01

    . Consequently we ask what the practice of programming and giving form to such materials would be like? How would we be able to familiarize ourselves with the dynamics of these materials and their different combinations of cause and effect? Which tools would we need and what would they look like? Will we program......, and color, but additionally being capable of sensing, actuating, and computing. Indeed, computers will not be things in and by themselves, but embedded into the materials that make up our surroundings. This also means that the way we interact with computers and the way we program them, will change...... these computational composites through external computers and then transfer the code them, or will the programming happen closer to the materials? In this feature we outline a new research program that floats between imagined futures and the development of a material programming practice....