WorldWideScience

Sample records for groundwater supply system

  1. Screening of sustainable groundwater sources for integration into a regional drought-prone water supply system

    Directory of Open Access Journals (Sweden)

    H. Lucas

    2009-07-01

    Full Text Available This paper reports on the qualitative and quantitative screening of groundwater sources for integration into the public water supply system of the Algarve, Portugal. The results are employed in a decision support system currently under development for an integrated water resources management scheme in the region. Such a scheme is crucial for several reasons, including the extreme seasonal and annual variations in rainfall, the effect of climate change on more frequent and long-lasting droughts, the continuously increasing water demand and the high risk of a single-source water supply policy. The latter was revealed during the severe drought of 2004 and 2005, when surface reservoirs were depleted and the regional water demand could not be met, despite the drilling of emergency wells.

    For screening and selection, quantitative criteria are based on aquifer properties and well yields, whereas qualitative criteria are defined by water quality indices. These reflect the well's degree of violation of drinking water standards for different sets of variables, including toxicity parameters, nitrate and chloride, iron and manganese and microbiological parameters. Results indicate the current availability of at least 1100 l s−1 of high quality groundwater (55% of the regional demand, requiring only disinfection (900 l s−1 or basic treatment, prior to human consumption. These groundwater withdrawals are sustainable when compared to mean annual recharge, considering that at least 40% is preserved for ecological demands. A more accurate and comprehensive analysis of sustainability is performed with the help of steady-state and transient groundwater flow simulations, which account for aquifer geometry, boundary conditions, recharge and discharge rates, pumping activity and seasonality. They permit an advanced analysis of present and future scenarios and show that increasing water demands and decreasing rainfall will make

  2. Screening of sustainable groundwater sources for integration into a regional drought-prone water supply system

    Directory of Open Access Journals (Sweden)

    T. Y. Stigter

    2009-01-01

    Full Text Available This paper reports on the qualitative and quantitative screening of groundwater sources for integration into the public water supply system of the Algarve, Portugal. The results are employed in a decision support system currently under development for an integrated water resources management scheme in the region. Such a scheme is crucial for several reasons, including the extreme seasonal and annual variations in rainfall, the effect of climate change on more frequent and long-lasting droughts, the continuously increasing water demand and the high risk of a single-source water supply policy. The latter was revealed during the severe drought of 2004 and 2005, when surface reservoirs were depleted and the regional water demand could not be met, despite the drilling of emergency wells.

    For screening and selection, quantitative criteria are based on aquifer properties and well yields, whereas qualitative criteria are defined by water quality indices. These reflect the well's degree of violation of drinking water standards for different sets of variables, including toxicity parameters, nitrate and chloride, iron and manganese and microbiological parameters. Results indicate the current availability of at least 1100 l s−1 of high quality groundwater (55% of the regional demand, requiring only disinfection (900 l s−1 or basic treatment, prior to human consumption. These groundwater withdrawals are sustainable when compared to mean annual recharge, considering that at least 40% is preserved for ecological demands. A more accurate and comprehensive analysis of sustainability is performed with the help of steady-state and transient groundwater flow simulations, which account for aquifer geometry, boundary conditions, recharge and discharge rates, pumping activity and seasonality. They permit an advanced analysis of present and future scenarios and show that increasing water demands and decreasing rainfall will make

  3. Screening of sustainable groundwater sources for integration into a regional drought-prone water supply system

    Science.gov (United States)

    Stigter, T. Y.; Monteiro, J. P.; Nunes, L. M.; Vieira, J.; Cunha, M. C.; Ribeiro, L.; Nascimento, J.; Lucas, H.

    2009-07-01

    This paper reports on the qualitative and quantitative screening of groundwater sources for integration into the public water supply system of the Algarve, Portugal. The results are employed in a decision support system currently under development for an integrated water resources management scheme in the region. Such a scheme is crucial for several reasons, including the extreme seasonal and annual variations in rainfall, the effect of climate change on more frequent and long-lasting droughts, the continuously increasing water demand and the high risk of a single-source water supply policy. The latter was revealed during the severe drought of 2004 and 2005, when surface reservoirs were depleted and the regional water demand could not be met, despite the drilling of emergency wells. For screening and selection, quantitative criteria are based on aquifer properties and well yields, whereas qualitative criteria are defined by water quality indices. These reflect the well's degree of violation of drinking water standards for different sets of variables, including toxicity parameters, nitrate and chloride, iron and manganese and microbiological parameters. Results indicate the current availability of at least 1100 l s-1 of high quality groundwater (55% of the regional demand), requiring only disinfection (900 l s-1) or basic treatment, prior to human consumption. These groundwater withdrawals are sustainable when compared to mean annual recharge, considering that at least 40% is preserved for ecological demands. A more accurate and comprehensive analysis of sustainability is performed with the help of steady-state and transient groundwater flow simulations, which account for aquifer geometry, boundary conditions, recharge and discharge rates, pumping activity and seasonality. They permit an advanced analysis of present and future scenarios and show that increasing water demands and decreasing rainfall will make the water supply system extremely vulnerable, with a high

  4. Food supply reliance on groundwater

    Science.gov (United States)

    Dalin, Carole; Puma, Michael; Wada, Yoshihide; Kastner, Thomas

    2016-04-01

    Water resources, essential to sustain human life, livelihoods and ecosystems, are under increasing pressure from population growth, socio-economic development and global climate change. As the largest freshwater resource on Earth, groundwater is key for human development and food security. Yet, excessive abstraction of groundwater for irrigation, driven by an increasing demand for food in recent decades, is leading to fast exhaustion of groundwater reserves in major agricultural areas of the world. Some of the highest depletion rates are observed in Pakistan, India, California Central Valley and the North China Plain aquifers. In addition, the growing economy and population of several countries, such as India and China, makes prospects of future available water and food worrisome. In this context, it is becoming particularly challenging to sustainably feed the world population, without exhausting our water resources. Besides, food production and consumption across the globe have become increasingly interconnected, with many areas' agricultural production destined to remote consumers. In this globalisation era, trade is crucial to the world's food system. As a transfer of water-intensive goods, across regions with varying levels of water productivity, food trade can save significant volumes of water resources globally. This situation makes it essential to address the issue of groundwater overuse for global food supply, accounting for international food trade. To do so, we quantify the current, global use of non-renewable groundwater for major crops, accounting for various water productivity and trade flows. This will highlight areas requiring quickest attention, exposing major exporters and importers of non-renewable groundwater, and thus help explore solutions to improve the sustainability of global food supply.

  5. Overview of groundwater sources and water-supply systems, and associated microbial pollution, in Finland, Norway and Iceland

    Science.gov (United States)

    Kløve, Bjørn; Kvitsand, Hanne Margrethe Lund; Pitkänen, Tarja; Gunnarsdottir, Maria J.; Gaut, Sylvi; Gardarsson, Sigurdur M.; Rossi, Pekka M.; Miettinen, Ilkka

    2017-06-01

    The characteristics of groundwater systems and groundwater contamination in Finland, Norway and Iceland are presented, as they relate to outbreaks of disease. Disparities among the Nordic countries in the approach to providing safe drinking water from groundwater are discussed, and recommendations are given for the future. Groundwater recharge is typically high in autumn or winter months or after snowmelt in the coldest regions. Most inland aquifers are unconfined and therefore vulnerable to pollution, but they are often without much anthropogenic influence and the water quality is good. In coastal zones, previously emplaced marine sediments may confine and protect aquifers to some extent. However, the water quality in these aquifers is highly variable, as the coastal regions are also most influenced by agriculture, sea-water intrusion and urban settlements resulting in challenging conditions for water abstraction and supply. Groundwater is typically extracted from Quaternary deposits for small and medium municipalities, from bedrock for single households, and from surface water for the largest cities, except for Iceland, which relies almost entirely on groundwater for public supply. Managed aquifer recharge, with or without prior water treatment, is widely used in Finland to extend present groundwater resources. Especially at small utilities, groundwater is often supplied without treatment. Despite generally good water quality, microbial contamination has occurred, principally by norovirus and Campylobacter, with larger outbreaks resulting from sewage contamination, cross-connections into drinking water supplies, heavy rainfall events, and ingress of polluted surface water to groundwater.

  6. Overview of groundwater sources and water-supply systems, and associated microbial pollution, in Finland, Norway and Iceland

    Science.gov (United States)

    Kløve, Bjørn; Kvitsand, Hanne Margrethe Lund; Pitkänen, Tarja; Gunnarsdottir, Maria J.; Gaut, Sylvi; Gardarsson, Sigurdur M.; Rossi, Pekka M.; Miettinen, Ilkka

    2017-03-01

    The characteristics of groundwater systems and groundwater contamination in Finland, Norway and Iceland are presented, as they relate to outbreaks of disease. Disparities among the Nordic countries in the approach to providing safe drinking water from groundwater are discussed, and recommendations are given for the future. Groundwater recharge is typically high in autumn or winter months or after snowmelt in the coldest regions. Most inland aquifers are unconfined and therefore vulnerable to pollution, but they are often without much anthropogenic influence and the water quality is good. In coastal zones, previously emplaced marine sediments may confine and protect aquifers to some extent. However, the water quality in these aquifers is highly variable, as the coastal regions are also most influenced by agriculture, sea-water intrusion and urban settlements resulting in challenging conditions for water abstraction and supply. Groundwater is typically extracted from Quaternary deposits for small and medium municipalities, from bedrock for single households, and from surface water for the largest cities, except for Iceland, which relies almost entirely on groundwater for public supply. Managed aquifer recharge, with or without prior water treatment, is widely used in Finland to extend present groundwater resources. Especially at small utilities, groundwater is often supplied without treatment. Despite generally good water quality, microbial contamination has occurred, principally by norovirus and Campylobacter, with larger outbreaks resulting from sewage contamination, cross-connections into drinking water supplies, heavy rainfall events, and ingress of polluted surface water to groundwater.

  7. Groundwater Characteristic and Fresh Water Supplying System of the East Slope Merapi Volcano

    Directory of Open Access Journals (Sweden)

    Yuli Priyana

    2004-01-01

    The result of the study shows that the quality of groundwater in every morphological unit is good enough, but in general the contents of element Ca, Mg, N03, CI, SO4, HCO3 shows that the lower the region is, the higher the content of the element . But if it is seen from the depth of its groundwater, so that the fluvial volcanic plain is the shallowest, then the fluvial volcanic foot plain and the last the volcanic foot area. Supplying system of fresh water, which derived from the dominant of well water, is especially used in morphological unit in fluvial "volcanic foot plain. The spring water is used by the population in the morphological unit in volcanic foot plain and then in morphological unit of fluvial volcanic foot plain. The population uses much rainwater in the morphological unit of volcanic foot plain.

  8. Initial characterization of the groundwater system near the Lower Colorado Water Supply Project, Imperial Valley, California

    Science.gov (United States)

    Coes, Alissa L.; Land, Michael; Densmore, Jill N.; Landrum, Michael T.; Beisner, Kimberly R.; Kennedy, Jeffrey R.; Macy, Jamie P.; Tillman, Fred D

    2015-01-01

    In 2009, the U.S. Geological Survey, in cooperation with the city of Needles, began a study of the hydrogeology along the All-American Canal, which conveys water from the Colorado River to the Imperial Valley. The focus of this study was to gain a better understanding of the effect of lining the All-American Canal, and other management actions, on future total dissolved solids concentrations in groundwater pumped by Lower Colorado Water Supply Project wells that is delivered to the All-American Canal. The study included the compilation and evaluation of previously published hydrogeologic and geochemical information, establishment of a groundwater-elevation and groundwater-quality monitoring network, results of monitoring groundwater elevations and groundwater quality from 2009 to 2011, site-specific hydrologic investigations of the Lower Colorado Water Supply Project area, examination of groundwater salinity by depth by using time-domain electromagnetic surveys, and monitoring of groundwater-storage change by using microgravity methods. 

  9. Fungi from a Groundwater-Fed Drinking Water Supply System in Brazil.

    Science.gov (United States)

    Oliveira, Helena M B; Santos, Cledir; Paterson, R Russell M; Gusmão, Norma B; Lima, Nelson

    2016-03-09

    Filamentous fungi in drinking water distribution systems are known to (a) block water pipes; (b) cause organoleptic biodeterioration; (c) act as pathogens or allergens and (d) cause mycotoxin contamination. Yeasts might also cause problems. This study describes the occurrence of several fungal species in a water distribution system supplied by groundwater in Recife-Pernambuco, Brazil. Water samples were collected from four sampling sites from which fungi were recovered by membrane filtration. The numbers in all sampling sites ranged from 5 to 207 colony forming units (CFU)/100 mL with a mean value of 53 CFU/100 mL. In total, 859 isolates were identified morphologically, with Aspergillus and Penicillium the most representative genera (37% and 25% respectively), followed by Trichoderma and Fusarium (9% each), Curvularia (5%) and finally the species Pestalotiopsis karstenii (2%). Ramichloridium and Leptodontium were isolated and are black yeasts, a group that include emergent pathogens. The drinking water system in Recife may play a role in fungal dissemination, including opportunistic pathogens.

  10. Groundwater protection of minimal water supply systems integrating simple hydrogeological information

    Science.gov (United States)

    Rodrigo-Ilarri, Javier; Rodrigo-Clavero, María Elena

    2016-04-01

    According to the current EU environmental legislation, groundwater protection is one of the key issues to be addressed when new industrial activities have to be authorised. This work shows a simple methodology that could be used by local and environmental authorities in order to analyse the potential risk caused by an industrial spill on a natural environment. The methodology leads to the determination of the protection area around an extraction well system using the information given by: i) a set of local piezometers, ii) the chemical nature of the industrial spill and iii) the hydrogeological parameters of the local aquifer. The exact location of the contaminant source is not needed for the analysis. The flow equation is afterwards solved using a finite-difference approximation scheme under stationary conditions. Finally, the capture zones for different times are computed by a simple upstream advective transport model. Results on the determination of the perimeter protection area definition of a water supply system in the municipality of L'Alcora (Castellón) in Spain are shown.

  11. Multi-objective analysis of the conjunctive use of surface water and groundwater in a multisource water supply system

    Science.gov (United States)

    Vieira, João; da Conceição Cunha, Maria

    2017-04-01

    A multi-objective decision model has been developed to identify the Pareto-optimal set of management alternatives for the conjunctive use of surface water and groundwater of a multisource urban water supply system. A multi-objective evolutionary algorithm, Borg MOEA, is used to solve the multi-objective decision model. The multiple solutions can be shown to stakeholders allowing them to choose their own solutions depending on their preferences. The multisource urban water supply system studied here is dependent on surface water and groundwater and located in the Algarve region, southernmost province of Portugal, with a typical warm Mediterranean climate. The rainfall is low, intermittent and concentrated in a short winter, followed by a long and dry period. A base population of 450 000 inhabitants and visits by more than 13 million tourists per year, mostly in summertime, turns water management critical and challenging. Previous studies on single objective optimization after aggregating multiple objectives together have already concluded that only an integrated and interannual water resources management perspective can be efficient for water resource allocation in this drought prone region. A simulation model of the multisource urban water supply system using mathematical functions to represent the water balance in the surface reservoirs, the groundwater flow in the aquifers, and the water transport in the distribution network with explicit representation of water quality is coupled with Borg MOEA. The multi-objective problem formulation includes five objectives. Two objective evaluate separately the water quantity and the water quality supplied for the urban use in a finite time horizon, one objective calculates the operating costs, and two objectives appraise the state of the two water sources - the storage in the surface reservoir and the piezometric levels in aquifer - at the end of the time horizon. The decision variables are the volume of withdrawals from

  12. Groundwater potential for water supply during droughts in Korea

    Science.gov (United States)

    Hyun, Y.; Cha, E.; Moon, H. J.

    2016-12-01

    Droughts have been receiving much attention in Korea because severe droughts occurred in recent years, causing significant social, economic and environmental damages in some regions. Residents in agricultural area, most of all, were most damaged by droughts with lack of available water supplies to meet crop water demands. In order to mitigate drought damages, we present a strategy to keep from agricultural droughts by using groundwater to meet water supply as a potential water resource in agricultural areas. In this study, we analyze drought severity and the groundwater potential to mitigate social and environmental damages caused by droughts in Korea. We evaluate drought severity by analyzing spatial and temporal meteorological and hydrological data such as rainfall, water supply and demand. For drought severity, we use effective drought index along with the standardized precipitation index (SPI) and standardized runoff index(SRI). Water deficit during the drought period is also quantified to consider social and environmental impact of droughts. Then we assess the feasibility of using groundwater as a potential source for groundwater impact mitigation. Results show that the agricultural areas are more vulnerable to droughts and use of groundwater as an emergency water resource is feasible in some regions. For a case study, we select Jeong-Sun area located in Kangwon providence having well-developed Karst aquifers and surrounded by mountains. For Jeong-Sun area, we quantify groundwater potential use, design the method of water supply by using groundwater, and assess its economic benefit. Results show that water supply system with groundwater abstraction can be a good strategy when droughts are severe for an emergency water supply in Jeong-Sun area, and groundwater can also be used not only for a dry season water supply resource, but for everyday water supply system. This case study results can further be applicable to some regions with no sufficient water

  13. Sustainability of groundwater supplies in the Northern Atlantic Coastal Plain aquifer system

    Science.gov (United States)

    Masterson, John P.; Pope, Jason P.

    2016-08-31

    Groundwater is the Nation’s principal reserve of freshwater. It provides about half our drinking water, is essential to food production, and facilitates business and industry in developing economic well-being. Groundwater is also an important source of water for sustaining the ecosystem health of rivers, wetlands, and estuaries throughout the country. The decreases in groundwater levels and other effects of pumping that result from large-scale development of groundwater resources have led to concerns about the future availability of groundwater to meet all our Nation’s needs. Assessments of groundwater availability provide the science and information needed by the public and decision makers to manage water resources and use them responsibly.

  14. Quantitative sustainability and qualitative concerns in an irrigations system using recycled water to supplement limited groundwater supply

    Science.gov (United States)

    Gowing, John; Alataway, Abed

    2013-04-01

    Sustainability of irrigation in a country facing water scarcity depends upon adoption of best management practices to deliver 'more crop per drop' together with use of recycled waste-water from urban sewage systems. Saudi Arabia is a country facing extreme water scarcity and in this paper we report on research conducted at an extensive irrigation system where a concerted effort over several years has been devoted to achieving a high level of water productivity. Al-Ahsa oasis is located about 60 km inland from the Persian Gulf and has been inhabited since prehistoric times, due to the abundance of water in an otherwise arid region. It is one of the largest oases in the world with 12,000 hectares of irrigated land and more than 2 million palm trees. Historically the oasis was watered by over 60 artesian springs, but water is now pumped from the aquifer. To supplement this groundwater source, treated waste-water reuse has been practiced since 1992 and now comprises 30% of total supply. In addition, a comparable amount of agricultural drainage water is collected and recycled, so that the 'first-use' water represents only 40% of total irrigation supply. While this re-use system permits sustained irrigation with greatly reduced groundwater abstraction, there is a potential down-side in that fertilizers and contaminants applied with irrigation water move through the soil and return to the irrigation supply enhancing the risk for human and animal health. We investigated this problem using E coli and helminth eggs as indicators of human health risk. We sampled each of the three sources which are delivered separately to the head of the main irrigation canal where they are blended. The groundwater was free from E coli and helminths and the treated wastewater source was generally within designated quality standards. The recycled drainage water was delivered untreated into the canal system and was found to be contaminated with both E coli and helminths above acceptable

  15. Improving fresh groundwater supply - problems and solutions

    NARCIS (Netherlands)

    Oude Essink, Gualbert

    2001-01-01

    Many coastal regions in the world experience an intensive salt water intrusion in aquifers due to natural and anthropogenic causes. The salinisation of these groundwater systems can lead to a severe deterioration of the quality of existing fresh groundwater resources. In this paper, the

  16. Human virus and microbial indicator occurrence in public-supply groundwater systems: meta-analysis of 12 international studies

    Science.gov (United States)

    Fout, G. Shay; Borchardt, Mark A.; Kieke, Burney A.; Karim, Mohammad R.

    2017-06-01

    Groundwater quality is often evaluated using microbial indicators. This study examines data from 12 international groundwater studies (conducted 1992-2013) of 718 public drinking-water systems located in a range of hydrogeological settings. Focus was on testing the value of indicator organisms for identifying virus-contaminated wells. One or more indicators and viruses were present in 37 and 15% of 2,273 samples and 44 and 27% of 746 wells, respectively. Escherichia coli ( E. coli) and somatic coliphage are 7-9 times more likely to be associated with culturable virus-positive samples when the indicator is present versus when it is absent, while F-specific and somatic coliphages are 8-9 times more likely to be associated with culturable virus-positive wells. However, single indicators are only marginally associated with viruses detected by molecular methods, and all microbial indicators have low sensitivity and positive predictive values for virus occurrence, whether by culturable or molecular assays, i.e., indicators are often absent when viruses are present and the indicators have a high false-positive rate. Wells were divided into three susceptibility subsets based on presence of (1) total coliform bacteria or (2) multiple indicators, or (3) location of wells in karst, fractured bedrock, or gravel/cobble settings. Better associations of some indicators with viruses were observed for (1) and (3). Findings indicate the best indicators are E. coli or somatic coliphage, although both indicators may underestimate virus occurrence. Repeat sampling for indicators improves evaluation of the potential for viral contamination in a well.

  17. Impacts of Groundwater Constraints on Saudi Arabia's Low-Carbon Electricity Supply Strategy.

    Science.gov (United States)

    Parkinson, Simon C; Djilali, Ned; Krey, Volker; Fricko, Oliver; Johnson, Nils; Khan, Zarrar; Sedraoui, Khaled; Almasoud, Abdulrahman H

    2016-02-16

    Balancing groundwater depletion, socioeconomic development and food security in Saudi Arabia will require policy that promotes expansion of unconventional freshwater supply options, such as wastewater recycling and desalination. As these processes consume more electricity than conventional freshwater supply technologies, Saudi Arabia's electricity system is vulnerable to groundwater conservation policy. This paper examines strategies for adapting to long-term groundwater constraints in Saudi Arabia's freshwater and electricity supply sectors with an integrated modeling framework. The approach combines electricity and freshwater supply planning models across provinces to provide an improved representation of coupled infrastructure systems. The tool is applied to study the interaction between policy aimed at a complete phase-out of nonrenewable groundwater extraction and concurrent policy aimed at achieving deep reductions in electricity sector carbon emissions. We find that transitioning away from nonrenewable groundwater use by the year 2050 could increase electricity demand by more than 40% relative to 2010 conditions, and require investments similar to strategies aimed at transitioning away from fossil fuels in the electricity sector. Higher electricity demands under groundwater constraints reduce flexibility of supply side options in the electricity sector to limit carbon emissions, making it more expensive to fulfill climate sustainability objectives. The results of this analysis underscore the importance of integrated long-term planning approaches for Saudi Arabia's electricity and freshwater supply systems.

  18. The key role of supply chain actors in groundwater irrigation development in North Africa

    Science.gov (United States)

    Lejars, Caroline; Daoudi, Ali; Amichi, Hichem

    2017-04-01

    The role played by supply chain actors in the rapid development of groundwater-based irrigated agriculture is analyzed. Agricultural groundwater use has increased tremendously in the past 50 years, leading to the decline of water tables. Groundwater use has enabled intensification of existing farming systems and ensured economic growth. This "groundwater economy" has been growing rapidly due to the initiative of farmers and the involvement of a wide range of supply chain actors, including suppliers of equipment, inputs retailers, and distributors of irrigated agricultural products. In North Africa, the actors in irrigated production chains often operate at the margin of public policies and are usually described as "informal", "unstructured", and as participating in "groundwater anarchy". This paper underlines the crucial role of supply chain actors in the development of groundwater irrigation, a role largely ignored by public policies and rarely studied. The analysis is based on three case studies in Morocco, Tunisia and Algeria, and focuses on the horticultural sub-sector, in particular on onions and tomatoes, which are irrigated high value crops. The study demonstrates that although supply chain actors are catalyzers of the expansion of groundwater irrigation, they could also become actors in adaptation to the declining water tables. Through their informal activities, they help reduce market risks, facilitate credit and access to subsidies, and disseminate innovation. The interest associated with making these actors visible to agricultural institutions is discussed, along with methods of getting them involved in the management of the resource on which they depend.

  19. The key role of supply chain actors in groundwater irrigation development in North Africa

    Science.gov (United States)

    Lejars, Caroline; Daoudi, Ali; Amichi, Hichem

    2017-09-01

    The role played by supply chain actors in the rapid development of groundwater-based irrigated agriculture is analyzed. Agricultural groundwater use has increased tremendously in the past 50 years, leading to the decline of water tables. Groundwater use has enabled intensification of existing farming systems and ensured economic growth. This "groundwater economy" has been growing rapidly due to the initiative of farmers and the involvement of a wide range of supply chain actors, including suppliers of equipment, inputs retailers, and distributors of irrigated agricultural products. In North Africa, the actors in irrigated production chains often operate at the margin of public policies and are usually described as "informal", "unstructured", and as participating in "groundwater anarchy". This paper underlines the crucial role of supply chain actors in the development of groundwater irrigation, a role largely ignored by public policies and rarely studied. The analysis is based on three case studies in Morocco, Tunisia and Algeria, and focuses on the horticultural sub-sector, in particular on onions and tomatoes, which are irrigated high value crops. The study demonstrates that although supply chain actors are catalyzers of the expansion of groundwater irrigation, they could also become actors in adaptation to the declining water tables. Through their informal activities, they help reduce market risks, facilitate credit and access to subsidies, and disseminate innovation. The interest associated with making these actors visible to agricultural institutions is discussed, along with methods of getting them involved in the management of the resource on which they depend.

  20. Ground-water supplies of the Ypsilanti area, Michigan

    Science.gov (United States)

    McGuinness, Charles L.; Poindexter, O.F.; Otton, E.G.

    1949-01-01

    . The average daily pumpage during periods of maximum production at the bomber plant has been 4.5 to 4.75 million gallons. On June 30, 1945, production of bombers was suspended, and the plant went on a. maintenance basis.The water supply of the bomber-plant well field is replenished by recharge from precipitation and from the Huron River. The evidence shows that recharge from the river is one of the principal sources of water and gives assurance both of the adequacy of the present supply and of the availability of additional water if needed. The safe yield of the three existing wells is estimated to be not less than 6 million gallons per day.The Ypsilanti public water supply is obtained from three tubular wells drilled in 1943, which replaced a number of suction-pumped tubular wells and one large dug well. All the wells penetrate sand and gravel in the bend of the Huron River in the southeastern part of Ypsilanti. The water is treated in a modern treatment plant completed in 1939. The average daily pumpage in million gallons was about 1.68 in 1942, 1.70 in 1943, and 1.66 in 1944. Considerable water was furnished to the Willow Run bomber plant from the Ypsilanti public-supply system during the period from August 1941 through March 1943.The available information indicates that the water pumped from the Ypsilanti well field is replenished by ground-water flow from adjacent stretches of the Huron Valley and from the upland areas outside the valley, from precipitation on the valley in the vicinity of the well field, and possibly from the Huron River. It is believed that sufficient water can be obtained from the well field to meet the expected demand for a considerable time. The safe yield of the present wells is estimated to be not less than 3 million gallons per day, and detailed pumping tests might show that still larger supplies could be safely developed.The water supply of the Willow Run Townsite is obtained from four wells in two well fields about 2 miles apart, one

  1. Brackish groundwater and its potential to augment freshwater supplies

    Science.gov (United States)

    Stanton, Jennifer S.; Dennehy, Kevin F.

    2017-07-18

    Secure, reliable, and sustainable water resources are fundamental to the Nation’s food production, energy independence, and ecological and human health and well-being. Indications are that at any given time, water resources are under stress in selected parts of the country. The large-scale development of groundwater resources has caused declines in the amount of groundwater in storage and declines in discharges to surface water bodies (Reilly and others, 2008). Water supply in some regions, particularly in arid and semiarid regions, is not adequate to meet demand, and severe drought intensifies the stresses affecting water resources (National Drought Mitigation Center, the U.S. Department of Agriculture, and the National Oceanic and Atmospheric Association, 2015). If these drought conditions continue, water shortages could adversely affect the human condition and threaten environmental flows necessary to maintain ecosystem health.In support of the national census of water resources, the U.S. Geological Survey (USGS) completed the national brackish groundwater assessment to provide updated information about brackish groundwater as a potential resource to augment or replace freshwater supplies (Stanton and others, 2017). Study objectives were to consolidate available data into a comprehensive database of brackish groundwater resources in the United States and to produce a summary report highlighting the distribution, physical and chemical characteristics, and use of brackish groundwater resources. This assessment was authorized by section 9507 of the Omnibus Public Land Management Act of 2009 (42 U.S.C. 10367), passed by Congress in March 2009. Before this assessment, the last national brackish groundwater compilation was completed in the mid-1960s (Feth, 1965). Since that time, substantially more hydrologic and geochemical data have been collected and now can be used to improve the understanding of the Nation’s brackish groundwater resources.

  2. Groundwater hydrology instructional system

    Science.gov (United States)

    Schmidt, Ronald G.

    Wright State University, Dayton, Ohio, is preparing for its third cycle of the Interactive Remote Instructional System (IRIS) in groundwater hydrology, beginning January 15, 1986. The first cycle finished with an impressive completion ratio for registered participants, and the second cycle has currently been underway since July. This comprehensive hydrogeology program was originally developed for the Soil Conservation Service (of the U.S. Department of Agriculture) to prepare their personnel for professional practice work. Since its evolution into IRIS, an 80% participant completion rate has been recorded for the first cycle, which is a significant departure from success rates traditionally recorded by correspondence courses. This excellent rate of success is the result of 2 years of refinement and demonstrates the progressive nature of the program. IRIS has met the needs of participants by developing a curriculum that reflects current trends in the groundwater industry and has provided a unique educational approach that ensures maximum interaction between the instructional staff and participants.

  3. The Economics of Groundwater Replenishment for Reliable Urban Water Supply

    OpenAIRE

    Lei Gao; Connor, Jeffery D.; Peter Dillon

    2014-01-01

    This paper explores the potential economic benefits of water banking in aquifers to meet drought and emergency supplies for cities where the population is growing and changing climate has reduced the availability of water. A simplified case study based on the city of Perth, Australia was used to estimate the savings that could be achieved by water banking. Scenarios for investment in seawater desalination plants and groundwater replenishment were considered over a 20 year period of growing de...

  4. Groundwater for urban water supplies in northern China - An overview

    Science.gov (United States)

    Zaisheng, Han

    Groundwater plays an important role for urban and industrial water supply in northern China. More than 1000 groundwater wellfields have been explored and installed. Groundwater provides about half the total quantity of the urban water supply. Complete regulations and methods for the exploration of groundwater have been established in the P.R. China. Substantial over-exploitation of groundwater has created environmental problems in some cities. Some safeguarding measures for groundwater-resource protection have been undertaken. Résumé Les eaux souterraines jouent un rôle important dans l'approvisionnement en eau des agglomérations et des industries du nord de la Chine. Les explorations ont conduit à mettre en place plus de 1000 champs de puits captant des eaux souterraines. Les eaux souterraines satisfont environ la moitié des besoins en eau des villes. Une réglementation complète et des méthodes d'exploration des eaux souterraines ont étéétablies en République Populaire de Chine. Une surexploitation très nette est à l'origine de problèmes environnementaux dans certaines villes. Des mesures ont été prises pour protéger la ressource en eau souterraine. Resumen El agua subterránea desempeña un papel importante en el suministro de agua para uso doméstico e industrial en la China septentrional. Se han explorado y puesto en marcha más de 1000 campos de explotación de aguas subterráneas, que proporcionan cerca de la mitad del total del suministro urbano. En la República Popular de China se han definido totalmente la legislación y la metodología para realizar estas explotaciones. La gran sobreexplotación en algunas ciudades ha creado algunos problemas medioambientales. Como consecuencia, se han llevado a cabo algunas medidas de protección de los recursos de aguas subterráneas.

  5. The Economics of Groundwater Replenishment for Reliable Urban Water Supply

    Directory of Open Access Journals (Sweden)

    Lei Gao

    2014-06-01

    Full Text Available This paper explores the potential economic benefits of water banking in aquifers to meet drought and emergency supplies for cities where the population is growing and changing climate has reduced the availability of water. A simplified case study based on the city of Perth, Australia was used to estimate the savings that could be achieved by water banking. Scenarios for investment in seawater desalination plants and groundwater replenishment were considered over a 20 year period of growing demand, using a Monte Carlo analysis that embedded the Markov model. An optimisation algorithm identified the minimum cost solutions that met specified criteria for supply reliability. The impact of depreciation of recharge credits was explored. The results revealed savings of more than A$1B (~US$1B or 37% to 33% of supply augmentation costs by including water banking in aquifers for 95% and 99.5% reliability of supply respectively. When the hypothetically assumed recharge credit depreciation rate was increased from 1% p.a. to 10% p.a. savings were still 33% to 31% for the same reliabilities. These preliminary results show that water banking in aquifers has potential to offer a highly attractive solution for efficiently increasing the security of urban water supplies where aquifers are suitable.

  6. Hydrogeology and groundwater quality at monitoring wells installed for the Tunnel and Reservoir Plan System and nearby water-supply wells, Cook County, Illinois, 1995–2013

    Science.gov (United States)

    Kay, Robert T.

    2016-04-04

    Groundwater-quality data collected from 1995 through 2013 from 106 monitoring wells open to the base of the Silurian aquifer surrounding the Tunnel and Reservoir Plan (TARP) System in Cook County, Illinois, were analyzed by the U.S. Geological Survey, in cooperation with the Metropolitan Water Reclamation District of Greater Chicago, to assess the efficacy of the monitoring network and the effects of water movement from the tunnel system to the surrounding aquifer. Groundwater from the Silurian aquifer typically drains to the tunnel system so that analyte concentrations in most of the samples from most of the monitoring wells primarily reflect the concentration of the analyte in the nearby Silurian aquifer. Water quality in the Silurian aquifer is spatially variable because of a variety of natural and non-TARP anthropogenic processes. Therefore, the trends in analyte values at a given well from 1995 through 2013 are primarily a reflection of the spatial variation in the value of the analyte in groundwater within that part of the Silurian aquifer draining to the tunnels. Intermittent drainage of combined sewer flow from the tunnel system to the Silurian aquifer when flow in the tunnel systemis greater than 80 million gallons per day may affect water quality in some nearby monitoring wells. Intermittent drainage of combined sewer flow from the tunnel system to the Silurian aquifer appears to affect the values of electrical conductivity, hardness, sulfate, chloride, dissolved organic carbon, ammonia, and fecal coliform in samples from many wells but typically during less than 5 percent of the sampling events. Drainage of combined sewer flow into the aquifer is most prevalent in the downstream parts of the tunnel systems because of the hydraulic pressures elevated above background values and long residence time of combined sewer flow in those areas. Elevated values of the analytes emplaced during intermittent migration of combined sewer flow into the Silurian aquifer

  7. Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources

    DEFF Research Database (Denmark)

    Hybel, Anne-Marie; Godskesen, Berit; Rygaard, Martin

    2015-01-01

    the highest uncertainty, as it requires estimations of non-measurable environmental water requirements. Hence, the development of a methodology to obtain more site-specific and relevant estimations of environmental water requirements should be prioritized. Finally, the demarcation of the groundwater resource......Indicators of the impact on freshwater resources are becoming increasingly important in the evaluation of urban water systems. To reveal the importance of spatial resolution, we investigated how the choice of catchment scale influenced the freshwater impact assessment. Two different indicators were...... used in this study: the Withdrawal-To-Availability ratio (WTA) and the Water Stress Index (WSI). Results were calculated for three groundwater based Danish urban water supplies (Esbjerg, Aarhus, and Copenhagen). The assessment was carried out at three spatial levels: (1) the groundwater body level, (2...

  8. Participatory Demand-supply Systems

    NARCIS (Netherlands)

    Rezaee, S.A.; Oey, M.A.; Nevejan, C.I.M.; Brazier, F.M.

    2015-01-01

    Introducing the notion of Participatory Demand-Supply (PDS) systems as socio-technical systems, this paper focuses on a new approach to coordinating demand and supply in dynamic environments. A participatory approach to demand and supply provides a new frame of reference for system design, for which

  9. Participatory Demand-supply Systems

    NARCIS (Netherlands)

    Rezaee, S.A.; Oey, M.A.; Nevejan, C.I.M.; Brazier, F.M.

    2015-01-01

    Introducing the notion of Participatory Demand-Supply (PDS) systems as socio-technical systems, this paper focuses on a new approach to coordinating demand and supply in dynamic environments. A participatory approach to demand and supply provides a new frame of reference for system design, for which

  10. Optics Supply Planning System

    Energy Technology Data Exchange (ETDEWEB)

    Gaylord, J

    2009-04-30

    The purpose of this study is to specify the design for an initial optics supply planning system for NIF, and to present quality assurance and test plans for the construction of the system as specified. The National Ignition Facility (NIF) is a large laser facility that is just starting operations. Thousands of specialized optics are required to operate the laser, and must be exchanged over time based on the laser shot plan and predictions of damage. Careful planning and tracking of optic exchanges is necessary because of the tight inventory of spare optics, and the long lead times for optics procurements and production changes. Automated inventory forecasting and production planning tools are required to replace existing manual processes. The optics groups members who are expected to use the supply planning system are the stakeholders for this project, and are divided into three groups. Each of these groups participated in a requirements specification that was used to develop this design. (1) Optics Management--These are the top level stakeholdersk, and the final decision makers. This group is the interface to shot operations, is ultimately responsible for optics supply, and decides which exchanges will be made. (2) Work Center Managers--This group manages the on site optics processing work centers. They schedule the daily work center operations, and are responsible for developing long term processing, equipment, and staffing plans. (3) Component Engineers--This group manages the vendor contracts for the manufacture of new optics and the off site rework of existing optics. They are responsible for sourcing vendors, negotiating contracts, and managing vendor processes. The scope of this analysis is to describe the structure and design details of a system that will meet all requirements that were described by stakeholders and documented in the analysis model for this project. The design specifies the architecture, components, interfaces, and data stores of the system

  11. Sustainable Biomass Supply Systems

    Energy Technology Data Exchange (ETDEWEB)

    Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

    2009-04-01

    The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOE’s ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

  12. Assessment of Groundwater Supply Impacts for a Mine Site in Western Turkey

    Science.gov (United States)

    Agartan, E.; Yazicigil, H.

    2010-12-01

    A nickel mine located in Turgutlu town in Western Turkey requires 135 L/s of water for the mining processes. The initial studies pointed out that part of the supply will be met by pumping water from the Turgutlu-Salihli aquifer system. The purpose of this study is to assess the impacts associated with meeting groundwater supply requirements for the mine. Scope of the study involved development of the groundwater flow model of the Turgutlu-Salihli aquifer system, determination of the alternative groundwater pumping scenarios, assessment of the impacts associated with each scenario and selection of the most feasible scenario in the aspect of environmental and technical factors. Turgutlu town is located in one of the most tectonically active areas in Turkey which is characterized by an E-W trending Gediz Graben formed as a result of N-S directed extension. Gediz River as a major surface water resource in the study area flows from east to west, passes through Gediz Graben and is connected to the Turgutlu-Salihli aquifer system. Quaternary deposits and Neogene rocks, showing better aquifer properties than the other formations of the Gediz Graben, form the Turgutlu-Salihli aquifer system. Quaternary deposits form the principal aquifer, and Neogene rocks form the secondary aquifer in the study area. Therefore, a two layered groundwater flow model of the Turgutlu-Salihli aquifer system was established using MODFLOW. The model was calibrated under steady state conditions assuming that the conditions in 1991 prior to the significant development represented a pseudo-steady state in the aquifer system. Calibration was carried out for hydraulic conductivity, recharge and boundary conditions. To get today’s groundwater levels, wells being drilled after 1991 were added to the model. In the scope of this study, two potential scenarios were considered, and their effects on the aquifer systems were evaluated. The locations of the scenario wells were determined so that they will

  13. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    Science.gov (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  14. Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources.

    Science.gov (United States)

    Hybel, A-M; Godskesen, B; Rygaard, M

    2015-09-01

    Indicators of the impact on freshwater resources are becoming increasingly important in the evaluation of urban water systems. To reveal the importance of spatial resolution, we investigated how the choice of catchment scale influenced the freshwater impact assessment. Two different indicators were used in this study: the Withdrawal-To-Availability ratio (WTA) and the Water Stress Index (WSI). Results were calculated for three groundwater based Danish urban water supplies (Esbjerg, Aarhus, and Copenhagen). The assessment was carried out at three spatial levels: (1) the groundwater body level, (2) the river basin level, and (3) the regional level. The assessments showed that Copenhagen's water supply had the highest impact on the freshwater resource per cubic meter of water abstracted, with a WSI of 1.75 at Level 1. The WSI values were 1.64 for Aarhus's and 0.81 for Esbjerg's water supply. Spatial resolution was identified as a major factor determining the outcome of the impact assessment. For the three case studies, WTA and WSI were 27%-583% higher at Level 1 than impacts calculated for the regional scale. The results highlight that freshwater impact assessments based on regional data, rather than sub-river basin data, may dramatically underestimate the actual impact on the water resource. Furthermore, this study discusses the strengths and shortcomings of the applied indicator approaches. A sensitivity analysis demonstrates that although WSI has the highest environmental relevance, it also has the highest uncertainty, as it requires estimations of non-measurable environmental water requirements. Hence, the development of a methodology to obtain more site-specific and relevant estimations of environmental water requirements should be prioritized. Finally, the demarcation of the groundwater resource in aquifers remains a challenge for establishing a consistent method for benchmarking freshwater impacts caused by groundwater abstraction.

  15. Evolving Groundwater Rights and Management in Metropolitan Los Angeles: Implications for Water Supply and Stormwater

    Science.gov (United States)

    Porse, E.; Pincetl, S.; Glickfeld, M.

    2015-12-01

    Groundwater supports many aspects of human life. In cities, groundwater can provide a cost-effective source of water for drinking and industrial uses, while groundwater basins provide storage. The role of groundwater in a city's water supply tends to change over time. In the Los Angeles metropolitan area, groundwater is critical. Over decades, users in the region's many basins allocated annual pumping rights to groundwater among users through adjudications. These rights were determined through collective processes over decades, which contributed to the complex array of public and private organizations involved in water management. The rights also continue to evolve. We analyzed changes in the distribution of groundwater rights over time for adjudicated basins in Southern Los Angeles County. Results indicate that groundwater rights are increasingly: 1) controlled or regulated by public institutions and municipalities, and 2) consolidated among larger users. Yet, both the percentage of total supplies provided by groundwater, as well as the distribution of groundwater rights, varies widely among cities and communities throughout Los Angeles. As metropolitan Los Angeles faces reduced water imports and emphasizes local water reliance, access to pumping rights and storage capacity in groundwater basins will become even more vital. We discuss implications of our results for future urban water management.

  16. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Southeastern States. Ground water is not completely 'self-renewing' because, where it is being mined, the reserve is being diminished and the reserve would be renewed only if pumping were stopped. Water is being mined at the rate of 5 million acre-feet per year in Arizona and 6 million in the High Plains of Texas. In contrast, water has been going into storage in the Snake River Plain of Idaho, where deep percolation from surface-water irrigation has added about 10 million acre-feet of storage since irrigation began. Situations in California illustrate problems of land subsidence resulting from pumping and use of water, and deterioration of ground-water reservoirs due to sea-water invasion. Much water development in the United States has been haphazard and rarely has there been integrated development of ground water and surface water. Competition is sharpening and new codes of water law are in the making. New laws, however, will not prevent the consequences of bad management. An important task for water management is to recognize the contingencies that may arise in the future and to prepare for them. The three most important tasks at hand are to make more efficient use of water, to develop improved quantitative evaluations of water supplies arid their quality, and to develop management practices which are based on scientific hydrology.

  17. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Southeastern States. Ground water is not completely 'self-renewing' because, where it is being mined, the reserve is being diminished and the reserve would be renewed only if pumping were stopped. Water is being mined at the rate of 5 million acre-feet per year in Arizona and 6 million in the High Plains of Texas. In contrast, water has been going into storage in the Snake River Plain of Idaho, where deep percolation from surface-water irrigation has added about 10 million acre-feet of storage since irrigation began. Situations in California illustrate problems of land subsidence resulting from pumping and use of water, and deterioration of ground-water reservoirs due to sea-water invasion. Much water development in the United States has been haphazard and rarely has there been integrated development of ground water and surface water. Competition is sharpening and new codes of water law are in the making. New laws, however, will not prevent the consequences of bad management. An important task for water management is to recognize the contingencies that may arise in the future and to prepare for them. The three most important tasks at hand are to make more efficient use of water, to develop improved quantitative evaluations of water supplies arid their quality, and to develop management practices which are based on scientific hydrology.

  18. Public Water Supply Systems (PWS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset includes boundaries for most public water supply systems (PWS) in Kansas (525 municipalities, 289 rural water districts and 13 public wholesale water...

  19. Impacts on groundwater recharge areas of megacity pumping: analysis of potential contamination of Kolkata, India, water supply

    Science.gov (United States)

    Sahu, Paulami; Michael, Holly A.; Voss, Clifford I.; Sikdar, Pradip K.

    2013-01-01

    Water supply to the world's megacities is a problem of quantity and quality that will be a priority in the coming decades. Heavy pumping of groundwater beneath these urban centres, particularly in regions with low natural topographic gradients, such as deltas and floodplains, can fundamentally alter the hydrological system. These changes affect recharge area locations, which may shift closer to the city centre than before development, thereby increasing the potential for contamination. Hydrogeological simulation analysis allows evaluation of the impact on past, present and future pumping for the region of Kolkata, India, on recharge area locations in an aquifer that supplies water to over 13 million people. Relocated recharge areas are compared with known surface contamination sources, with a focus on sustainable management of this urban groundwater resource. The study highlights the impacts of pumping on water sources for long-term development of stressed city aquifers and for future water supply in deltaic and floodplain regions of the world.

  20. WATER SUPPLY SYSTEMS OPERATIONAL PROGNOSIS

    Directory of Open Access Journals (Sweden)

    Bruno Santos Vieira

    2016-12-01

    Full Text Available The actions planning to minimize risks and ensure the effectiveness of water supply systems requires the use of appropriate forecasting models. In fact, forecasting the behavior and analysis of future scenarios can be supported with the use of techniques and simulation models. In this article, we propose a procedure to simulate the actions of decision-makers in planning the operation of this system type in order to obtain an operating and financial prognosis that consider dynamic influences. The applicability of the proposed procedure is demonstrated through an urban systems planning problem of water supply. As a result we obtained a system costs distribution odds, which improves decision making in the context of the analyzed system. Additionally, the proposed procedure is applicable to other types of complex systems subject to dynamic influences.

  1. Water Supply Infrastructure System Surety

    Energy Technology Data Exchange (ETDEWEB)

    EKMAN,MARK E.; ISBELL,DARYL

    2000-01-06

    The executive branch of the United States government has acknowledged and identified threats to the water supply infrastructure of the United States. These threats include contamination of the water supply, aging infrastructure components, and malicious attack. Government recognition of the importance of providing safe, secure, and reliable water supplies has a historical precedence in the water works of the ancient Romans, who recognized the same basic threats to their water supply infrastructure the United States acknowledges today. System surety is the philosophy of ''designing for threats, planning for failure, and managing for success'' in system design and implementation. System surety is an alternative to traditional compliance-based approaches to safety, security, and reliability. Four types of surety are recognized: reactive surety; proactive surety, preventative surety; and fundamental, inherent surety. The five steps of the system surety approach can be used to establish the type of surety needed for the water infrastructure and the methods used to realize a sure water infrastructure. The benefit to the water industry of using the system surety approach to infrastructure design and assessment is a proactive approach to safety, security, and reliability for water transmission, treatment, distribution, and wastewater collection and treatment.

  2. [Construction of groundwater contamination prevention mapping system].

    Science.gov (United States)

    Wang, Jun-Jie; He, Jiang-Tao; Lu, Yan; Liu, Li-Ya; Zhang, Xiao-Liang

    2012-09-01

    Groundwater contamination prevention mapping is an important component of groundwater contamination geological survey and assessment work, which could provide the basis for making and implementing groundwater contamination prevention planning. A groundwater contamination prevention mapping system was constructed in view of the synthetic consideration on nature perspective derived from groundwater contamination sources and aquifer itself, social-economic perspective, policy perspective derived from outside. During the system construction process, analytic hierarchy process and relevant overlaying principles were used to couple groundwater contamination risk assessment, groundwater value as well as wellhead protection area zoning. Data processing and visualization of mapping results were achieved in the GIS environment. The research on groundwater contamination prevention mapping in Beijing Plain indicated that the final groundwater prevention map was in accordance with the actual conditions and well reflected the priorities of groundwater prevention, which could play a guidance role in designing and implementing further practical prevention and supervision measures. Besides, because of the dynamical properties of the system components, it was suggested to analyze the update frequency of the mapping.

  3. Reliability of groundwater supply from a coastal aquifer in the context of climate and socio-economic changes

    Science.gov (United States)

    Eley, Malte; Schöniger, Hans Matthias; Gelleszun, Marlene; Wolf, Jens; Schneider, Anke; Wiederhold, Helga; Meon, Günter

    2017-04-01

    the geologic body. The interpolation of point information's from boreholes and geologic sections was calculated with the geologic modelling software SubsurfaceViewerMX. For implementation in the groundwater model, the layers were combined to hydrogeological similar units. With this sophisticated models it is possible to model the density-dependent complex groundwater systems at large spatial scales as well as contaminant transport. The modeling analysis is focused on water-budget components (groundwater recharge, submarine groundwater discharge, surface-groundwater interaction and water supply), salt- water intrusion and sea level rise under different climate and water-use scenarios. With our models we offer the capability to evaluate possible coastal aquifer management strategies of real-world applications.

  4. Groundwater Exploration for Rural Water Supply in an Arid Region of Southern Argentina

    Directory of Open Access Journals (Sweden)

    Adrian H. Gallardo

    2016-06-01

    Full Text Available Climate change has led to an increase in extreme weather events and desertification of vast areas of southern Argentina. Water shortages are a major concern, and this problem is expected to be exacerbated in the future. An exploration program was undertaken to investigate the groundwater occurrence in areas of the Chubut River basin in order to provide new supply options for pastoral farming. The investigation involved the drilling of exploration holes and construction of bores for long-term monitoring. Water quality and hydraulic test data were also collected. Findings from the study indicate that alluvial sediments extend to a maximum of 45 m below the surface, and are underlain by a sequence of clays and subordinated sands that exceed 100 m in thickness. The bulk of groundwater lies within the shallow sediments, which act as an unconfined aquifer. Hydraulic conductivities up to 10 m/day were estimated from pumping tests, although granulometric analyses indicate that higher values may occur. Chemical characterization indicates that waters are typically fresh, low in sodium, and largely suitable for stock-grazing or horticulture. Anomalous salinities at one of the sites are likely due to the effects of a nearby waste dump. Even though further work is required, the study contributes to a better understanding of the dynamics of the hydrogeological system in the basin under a warming climate, and provides useful information for the expansion of economic activities in remote communities of Argentina.

  5. 40 CFR 265.91 - Ground-water monitoring system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  6. Avian influenza virus RNA in groundwater wells supplying poultry farms affected by the 2015 influenza outbreak

    Science.gov (United States)

    Three poultry farms affected by the 2015 influenza outbreak had groundwater supplies test positive for the influenza matrix gene. One well was H5-positive, matching the outbreak virus HA gene. Virus transport to underlying aquifers was corroborated by finding poultry-specific parvovirus DNA in seven...

  7. Improved Sustainability of Water Supply Options in Areas with Arsenic-Impacted Groundwater

    Directory of Open Access Journals (Sweden)

    Edward A. McBean

    2013-11-01

    Full Text Available The supply of water for rural populations in developing countries continues to present enormous problems, particularly where there is arsenic contamination in the groundwater, as exists over significant parts of Bangladesh. In response, improvements in the sustainability of water supplies are feasible through the use of a combination of water sources wherein rainwater harvesting is employed for a portion of the year. This can potentially reduce the duration of the year during which arsenic-contaminated groundwater is utilized. As demonstrated, a rainwater cistern volume of 0.5 m3 in the Jessore district area of Bangladesh can provide rainwater for periods averaging 266 days of the year, which allows groundwater at 184 µg/L arsenic to be used as a water supply for the remainder of the year. This dual supply approach provides the body burden equivalent to the interim drinking water guideline of arsenic concentration of 50 µg/L for 365 days of the year (assuming the water consumption rate is 4 L/cap/day for a family of five with a rainwater collection area of 15 m2. If the water use rate is 20 L/cap/day, the same cistern can provide water for 150 days of the year; however, although this is insufficient to supply water to meet the body burden equivalent guideline of 50 µg/L. Results are provided also for different rooftop areas, sizes of cisterns and alternative arsenic guidelines [World Health Organization (WHO and Bangladeshi]. These findings provide useful guidelines on supply options to meet sustainability targets of water supply. However, they also demonstrate that the use of cisterns cannot assist the meeting of the 10 µg/L WHO target arsenic body burden, if the arsenic contamination in the groundwater is high (e.g., at 100 µg/L.

  8. Information system for the supply chain management

    OpenAIRE

    Delia Adriana Marincas

    2008-01-01

    Supply chain management SCM is the integration and management of supply chain organizations and activities through collaboration, effective business processes and high levels of information sharing. The supply chain concept has become a concern due to global competition and increasing customer demand for value. Thus, the information must be available in real time across the supply chain and this can not be achieved without an integrated software system for supply chain management. Supply chai...

  9. Propagation of drought through groundwater systems

    NARCIS (Netherlands)

    Peters, E.

    2003-01-01

    Index words: drought, groundwater, simulation, synthetic data, extreme events

    The transformation of droughts as a result of the propagation through groundwater systems is examined by comparing droughts in time

  10. Propagation of drought through groundwater systems

    NARCIS (Netherlands)

    Peters, E.

    2003-01-01

    Index words: drought, groundwater, simulation, synthetic data, extreme events

    The transformation of droughts as a result of the propagation through groundwater systems is examined by comparing droughts in time se

  11. Occurrence and concentrations of pharmaceutical compounds in deep groundwater used for public drinking-water supply in California

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Pharmaceutical compounds were detected at low concentrations in 2.3% of 1231 samples of groundwater (median depth to top of screened interval in wells = 61 m) used for public drinking-water supply in California. Samples were collected statewide for the California State Water Resources Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Program. Of 14 pharmaceutical compounds analyzed, 7 were detected at concentrations greater than or equal to method detection limits: acetaminophen (used as an analgesic, detection frequency 0.32%, maximum concentration 1.89 μg/L), caffeine (stimulant, 0.24%, 0.29 μg/L), carbamazepine (mood stabilizer, 1.5%, 0.42 μg/L), codeine (opioid analgesic, 0.16%, 0.214 μg/L), p-xanthine (caffeine metabolite, 0.08%, 0.12 μg/L), sulfamethoxazole (antibiotic, 0.41%, 0.17 μg/L), and trimethoprim (antibiotic, 0.08%, 0.018 μg/L). Detection frequencies of pesticides (33%), volatile organic compounds not including trihalomethanes (23%), and trihalomethanes (28%) in the same 1231 samples were significantly higher. Median detected concentration of pharmaceutical compounds was similar to those of volatile organic compounds, and higher than that of pesticides. Pharmaceutical compounds were detected in 3.3% of the 855 samples containing modern groundwater (tritium activity > 0.2 TU). Pharmaceutical detections were significantly positively correlated with detections of urban-use herbicides and insecticides, detections of volatile organic compounds, and percentage of urban land use around wells. Groundwater from the Los Angeles metropolitan area had higher detection frequencies of pharmaceuticals and other anthropogenic compounds than groundwater from other areas of the state with similar proportions of urban land use. The higher detection frequencies may reflect that groundwater flow systems in Los Angeles area basins are dominated by engineered recharge and intensive groundwater pumping.

  12. Weekly variations of discharge and groundwater quality caused by intermittent water supply in an urbanized karst catchment

    Science.gov (United States)

    Grimmeisen, Felix; Zemann, Moritz; Goeppert, Nadine; Goldscheider, Nico

    2016-06-01

    Leaky sewerage and water distribution networks are an enormous problem throughout the world, specifically in developing countries and regions with water scarcity. Especially in many arid and semi-arid regions, intermittent water supply (IWS) is common practice to cope with water shortage. This study investigates the combined influence of urban activities, IWS and water losses on groundwater quality and discusses the implications for water management. In the city of As-Salt (Jordan), local water supply is mostly based on groundwater from the karst aquifer that underlies the city. Water is delivered to different supply zones for 24, 48 or 60 h each week with drinking water losses of around 50-60%. Fecal contamination in groundwater, mostly originating from the likewise leaky sewer system is a severe challenge for the local water supplier. In order to improve understanding of the local water cycle and contamination dynamics in the aquifer beneath the city, a down gradient spring and an observation well were chosen to identify contaminant occurrence and loads. Nitrate, Escherichia coli, spring discharge and the well water level were monitored for 2 years. Autocorrelation analyses of time series recorded during the dry season revealed weekly periodicity of spring discharge (45 ± 3.9 L s-1) and NO3-N concentrations (11.4 ± 0.8 mg L-1) along with weekly varying E. coli levels partly exceeding 2.420 MPN 100 mL-1. Cross-correlation analyses demonstrate a significant and inverse correlation of nitrate and discharge variations which points to a periodic dilution of contaminated groundwater by freshwater from the leaking IWS being the principal cause of the observed fluctuations. Contaminant inputs from leaking sewers appear to be rather constant. The results reveal the distinct impact of leaking clean IWS on the local groundwater and subsequently on the local water supply and therefore demonstrate the need for action regarding the mitigation of groundwater contamination and

  13. Review of Risk Status of Groundwater Supply Wells by Tracing the Source of Coliform Contamination

    Directory of Open Access Journals (Sweden)

    Nara Somaratne

    2015-07-01

    Full Text Available Coliform source tracking was undertaken on 48 water sources of which 42 are potable in 26 water supply systems spread across South Australia. The water sources in the study vary from unprotected springs in creek beds to deep confined aquifers. The frequency analysis of historical coliform detections indicate that aquifer types, depth to water and casing depth are important considerations; whilst maintaining well integrity and the presence of low permeable clay layers above the production zone are the dominant parameters for minimizing coliform contamination of water supply wells. However, in karst and fractured rock aquifers, pathways for coliform transport exist, as evidenced in the >200 MPN/100 mL level of coliform detection. Data indicate that there is no compelling evidence to support the contention that the wells identified as low risk are contaminated through geological strata and clay barriers. However, data strongly supports the suggestion that coliform detection from sample taps and wellheads stem from the surrounding groundwater and soil-plant sources as a result of failed well integrity, or potentially from coliform bacteria that can persist within biofilms formed on well casings, screens, pump columns and pumps. Coliform sub-typing results show that most coliform bacteria detected in town water supply wells are associated with the soil-water-plant system and are ubiquitous in the environment: Citrobacter spp. (65%, Enterobacter spp. (63%, Pantoea spp. (17%, Serratia spp. (19%, Klebsiella spp. (34%, and Pseudomonas spp. (10%. Overall, 70% of wells harbor detectable thermotolerant coliforms (TTC with potentially 36% of species of animal origin, including Escherichia coli species found in 12% of wells.

  14. Spatio-temporal impact of climate change on the groundwater system

    Directory of Open Access Journals (Sweden)

    J. Dams

    2011-11-01

    Full Text Available Given the importance of groundwater for food production and drinking water supply, but also for the survival of groundwater dependent terrestrial ecosystems (GWDTEs it is essential to assess the impact of climate change on this freshwater resource. In this paper we study with high temporal and spatial resolution the impact of 28 climate change scenarios on the groundwater system of a lowland catchment in Belgium. Our results show for the scenario period 2070–2101 compared with the reference period 1960–1991, a change in annual groundwater recharge between −20% and +7%. On average annual groundwater recharge decreases 7%. Seasonally, in most scenarios the recharge increases during winter but decreases during summer. The altered recharge patterns cause the groundwater level to decrease significantly from September to January. On average the groundwater level decreases about 7 cm with a standard deviation between the scenarios of 5 cm. Groundwater levels in interfluves and upstream areas are more sensitive to climate change than groundwater levels in the river valley. Groundwater discharge to GWDTEs is expected to decrease during late summer and autumn as much as 10%, though the discharge remains at reference-period level during winter and early spring. As GWDTEs are strongly influenced by temporal dynamics of the groundwater system, close monitoring of groundwater and implementation of adaptive management measures are required to prevent ecological loss.

  15. Spatio-temporal impact of climate change on the groundwater system

    Directory of Open Access Journals (Sweden)

    J. Dams

    2012-05-01

    Full Text Available Given the importance of groundwater for food production and drinking water supply, but also for the survival of groundwater dependent terrestrial ecosystems (GWDTEs it is essential to assess the impact of climate change on this freshwater resource. In this paper we study with high temporal and spatial resolution the impact of 28 climate change scenarios on the groundwater system of a lowland catchment in Belgium. Our results show for the scenario period 2070–2101 compared with the reference period 1960–1991, a change in annual groundwater recharge between −20% and +7%. On average annual groundwater recharge decreases 7%. In most scenarios the recharge increases during winter but decreases during summer. The altered recharge patterns cause the groundwater level to decrease significantly from September to January. On average the groundwater level decreases about 7 cm with a standard deviation between the scenarios of 5 cm. Groundwater levels in interfluves and upstream areas are more sensitive to climate change than groundwater levels in the river valley. Groundwater discharge to GWDTEs is expected to decrease during late summer and autumn as much as 10%, though the discharge remains at reference-period level during winter and early spring. As GWDTEs are strongly influenced by temporal dynamics of the groundwater system, close monitoring of groundwater and implementation of adaptive management measures are required to prevent ecological loss.

  16. Groundwater withdrawal rates from the Ozark Plateaus aquifer system, 1900 to 2010

    Science.gov (United States)

    Knierim, Katherine J.; Nottmeier, Anna M.; Worland, Scott C.; Westerman, Drew A.; Clark, Brian R.

    2016-01-01

    Groundwater is an often overlooked freshwater resource compared to surface water, but groundwater is used widely across the United States, especially during periods of drought. If groundwater models can successfully simulate past conditions, they may be used to evaluate potential future pumping scenarios or climate conditions, thus providing a valuable planning tool for water-resource managers. Quantifying the groundwater-use component for a groundwater model is a vital but often challenging endeavor. This dataset includes groundwater withdrawal rates modeled for the Ozark Plateaus aquifer system (Ozark system) from 1900 to 2010 by groundwater model cell (2.6 square kilometers) for five water-use divisions—agriculture (including irrigation and aquaculture), livestock, public supply (including municipal and rural water districts), and non-agriculture (including thermoelectric power generation, mining, commercial, and industrial)—and by country for domestic (self-supplied) use. Two child items are included with the dataset: “Domestic groundwater withdrawal rates from the Ozark Plateaus aquifer system, 1900 to 2010” and “Public supply, non-agriculture, livestock, and agriculture groundwater withdrawal rates from the Ozark Plateaus aquifer system, 1900 to 2010”. The Ozark system is located in the central United States and is composed of interbedded Cambrian to Pennsylvanian clastic and carbonate lithologies. In stratigraphic order, the Ozark system includes the Basement confining unit, St. Francois aquifer, St. Francois confining unit, Ozark aquifer, Ozark confining unit, Springfield Plateau aquifer, and Western Interior Plains confining system. Generally, the lower portion of the Ozark aquifer is the primary source of groundwater across much of Missouri and the Springfield Plateau aquifer is used across northern Arkansas. A full description of the methods used to model groundwater withdrawal rates from the Ozark system are available in Knierim et al., IN

  17. Evolution of Unsteady Groundwater Flow Systems

    Science.gov (United States)

    Liang, Xing; Jin, Menggui; Niu, Hong

    2016-04-01

    Natural groundwater flow is usually transient, especially in long time scale. A theoretical approach on unsteady groundwater flow systems was adopted to highlight some of the knowledge gaps in the evolution of groundwater flow systems. The specific consideration was focused on evolution of groundwater flow systems from unsteady to steady under natural and mining conditions. Two analytical solutions were developed, using segregation variable method to calculate the hydraulic head under steady and unsteady flow conditions. The impact of anisotropy ratio, hydraulic conductivity (K) and specific yield (μs) on the flow patterns were analyzed. The results showed that the area of the equal velocity region increased and the penetrating depth of the flow system decreased while the anisotropy ratio (ɛ = °Kx-/Kz--) increased. Stagnant zones were found in the flow field where the directions of streamlines were opposite. These stagnant zones moved up when the horizontal hydraulic conductivity increased. The results of the study on transient flow indicated a positive impact on hydraulic head with an increase of hydraulic conductivity, while a negative effect on hydraulic head was observed when the specific yield was enhanced. An unsteady numerical model of groundwater flow systems with annual periodic recharge was developed using MODFLOW. It was observed that the transient groundwater flow patterns were different from that developed in the steady flow under the same recharge intensity. The water table fluctuated when the recharge intensity altered. The monitoring of hydraulic head and concentration migration revealed that the unsteady recharge affected the shallow local flow system more than the deep regional flow system. The groundwater flow systems fluctuated with the action of one or more pumping wells. The comparison of steady and unsteady groundwater flow observation indicated that the unsteady flow patterns cannot be simulated by the steady model when the condition

  18. Evaluation of Groundwater Pollution Nitrogen Fertilizer Using Expert System

    OpenAIRE

    Ta-oun, Mongkon; Daud, Mohamed; Bardaie, Mohd Zohadie

    2017-01-01

    An expert system was used to correlate the availability of nitrogen fertilizer with the vulnerability of groundwater to pollution in Peninsula Malaysia to identify potential groundwater quality problems. The expert system could predict the groundwater pollution potential under several conditions of agricultural activities and exiting environments. Four categories of groundwater pollution potential were identified base on an N-fertilizer groundwater pollution potential index. A groundwater pol...

  19. Visualisation for System Learning in Supply Chains

    Science.gov (United States)

    Lindskog, Magnus; Abrahamsson, Mats; Aronsson, Hakan

    2007-01-01

    Contemporary supply chains are vastly complex, and decisions made by actors have system-wide consequences that these might not be able to foresee. There are gaps between "best practice"-founded theory and actual practice in supply chains. To remedy this, we argue, the supply chain actors need to enhance systems knowledge. There is a need to…

  20. Managed groundwater development for water-supply security in Sub ...

    African Journals Online (AJOL)

    1Global Water Partnership, c/o Drottninggatan 33, SE-111-51 Stockholm, ... from the standpoint of the GW-MATE experience in some World Bank-supported projects in eastern ..... basic pit latrine) and around 10% have no sanitation system.

  1. Conjunctive management of multi-reservoir network system and groundwater system

    Science.gov (United States)

    Mani, A.; Tsai, F. T. C.

    2015-12-01

    This study develops a successive mixed-integer linear fractional programming (successive MILFP) method to conjunctively manage water resources provided by a multi-reservoir network system and a groundwater system. The conjunctive management objectives are to maximize groundwater withdrawals and maximize reservoir storages while satisfying water demands and raising groundwater level to a target level. The decision variables in the management problem are reservoir releases and spills, network flows and groundwater pumping rates. Using the fractional programming approach, the objective function is defined as a ratio of total groundwater withdraws to total reservoir storage deficits from the maximum storages. Maximizing this ratio function tends to maximizing groundwater use and minimizing surface water use. This study introduces a conditional constraint on groundwater head in order to sustain aquifers from overpumping: if current groundwater level is less than a target level, groundwater head at the next time period has to be raised; otherwise, it is allowed to decrease up to a certain extent. This conditional constraint is formulated into a set of mixed binary nonlinear constraints and results in a mixed-integer nonlinear fractional programming (MINLFP) problem. To solve the MINLFP problem, we first use the response matrix approach to linearize groundwater head with respect to pumping rate and reduce the problem to an MILFP problem. Using the Charnes-Cooper transformation, the MILFP is transformed to an equivalent mixed-integer linear programming (MILP). The solution of the MILP is successively updated by updating the response matrix in every iteration. The study uses IBM CPLEX to solve the MILP problem. The methodology is applied to water resources management in northern Louisiana. This conjunctive management approach aims to recover the declining groundwater level of the stressed Sparta aquifer by using surface water from a network of four reservoirs as an

  2. Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California

    Energy Technology Data Exchange (ETDEWEB)

    Fram, Miranda S., E-mail: mfram@usgs.gov [U.S. Geological Survey California Water Science Center, 6000 J Street, Placer Hall, Sacramento, CA 95819-6129 (United States); Belitz, Kenneth, E-mail: kbelitz@usgs.gov [U.S. Geological Survey California Water Science Center, 4165 Spruance Road, Suite 200, San Diego, CA 95101-0812 (United States)

    2011-08-15

    Pharmaceutical compounds were detected at low concentrations in 2.3% of 1231 samples of groundwater (median depth to top of screened interval in wells = 61 m) used for public drinking-water supply in California. Samples were collected statewide for the California State Water Resources Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Program. Of 14 pharmaceutical compounds analyzed, 7 were detected at concentrations greater than or equal to method detection limits: acetaminophen (used as an analgesic, detection frequency 0.32%, maximum concentration 1.89 {mu}g/L), caffeine (stimulant, 0.24%, 0.29 {mu}g/L), carbamazepine (mood stabilizer, 1.5%, 0.42 {mu}g/L), codeine (opioid analgesic, 0.16%, 0.214 {mu}g/L), p-xanthine (caffeine metabolite, 0.08%, 0.12 {mu}g/L), sulfamethoxazole (antibiotic, 0.41%, 0.17 {mu}g/L), and trimethoprim (antibiotic, 0.08%, 0.018 {mu}g/L). Detection frequencies of pesticides (33%), volatile organic compounds not including trihalomethanes (23%), and trihalomethanes (28%) in the same 1231 samples were significantly higher. Median detected concentration of pharmaceutical compounds was similar to those of volatile organic compounds, and higher than that of pesticides. Pharmaceutical compounds were detected in 3.3% of the 855 samples containing modern groundwater (tritium activity > 0.2 TU). Pharmaceutical detections were significantly positively correlated with detections of urban-use herbicides and insecticides, detections of volatile organic compounds, and percentage of urban land use around wells. Groundwater from the Los Angeles metropolitan area had higher detection frequencies of pharmaceuticals and other anthropogenic compounds than groundwater from other areas of State with similar proportions of urban land use. The higher detection frequencies may reflect that groundwater flow systems in Los Angeles area basins are dominated by engineered recharge and intensive groundwater pumping. - Highlights: {yields

  3. Drinking Water Quality and Occurrence of Giardia in Finnish Small Groundwater Supplies

    Directory of Open Access Journals (Sweden)

    Tarja Pitkänen

    2015-08-01

    Full Text Available The microbiological and chemical drinking water quality of 20 vulnerable Finnish small groundwater supplies was studied in relation to environmental risk factors associated with potential sources of contamination. The microbiological parameters analyzed included the following enteric pathogens: Giardia and Cryptosporidium, Campylobacter species, noroviruses, as well as indicator microbes (Escherichia coli, intestinal enterococci, coliform bacteria, Clostridium perfringens, Aeromonas spp. and heterotrophic bacteria. Chemical analyses included the determination of pH, conductivity, TOC, color, turbidity, and phosphorus, nitrate and nitrite nitrogen, iron, and manganese concentrations. Giardia intestinalis was detected from four of the water supplies, all of which had wastewater treatment activities in the neighborhood. Mesophilic Aeromonas salmonicida, coliform bacteria and E. coli were also detected. None of the samples were positive for both coliforms and Giardia. Low pH and high iron and manganese concentrations in some samples compromised the water quality. Giardia intestinalis was isolated for the first time in Finland in groundwater wells of public water works. In Europe, small water supplies are of great importance since they serve a significant sector of the population. In our study, the presence of fecal indicator bacteria, Aeromonas and Giardia revealed surface water access to the wells and health risks associated with small water supplies.

  4. The Maryland Coastal Plain Aquifer Information System: A GIS-based tool for assessing groundwater resources

    Science.gov (United States)

    Andreasen, David C.; Nardi, Mark R.; Staley, Andrew W.; Achmad, Grufron; Grace, John W.

    2016-01-01

    Groundwater is the source of drinking water for ∼1.4 million people in the Coastal Plain Province of Maryland (USA). In addition, groundwater is essential for commercial, industrial, and agricultural uses. Approximately 0.757 × 109 L d–1 (200 million gallons/d) were withdrawn in 2010. As a result of decades of withdrawals from the coastal plain confined aquifers, groundwater levels have declined by as much as 70 m (230 ft) from estimated prepumping levels. Other issues posing challenges to long-term groundwater sustainability include degraded water quality from both man-made and natural sources, reduced stream base flow, land subsidence, and changing recharge patterns (drought) caused by climate change. In Maryland, groundwater supply is managed primarily by the Maryland Department of the Environment, which seeks to balance reasonable use of the resource with long-term sustainability. The chief goal of groundwater management in Maryland is to ensure safe and adequate supplies for all current and future users through the implementation of appropriate usage, planning, and conservation policies. To assist in that effort, the geographic information system (GIS)–based Maryland Coastal Plain Aquifer Information System was developed as a tool to help water managers access and visualize groundwater data for use in the evaluation of groundwater allocation and use permits. The system, contained within an ESRI ArcMap desktop environment, includes both interpreted and basic data for 16 aquifers and 14 confining units. Data map layers include aquifer and ­confining unit layer surfaces, aquifer extents, borehole information, hydraulic properties, time-series groundwater-level data, well records, and geophysical and lithologic logs. The aquifer and confining unit layer surfaces were generated specifically for the GIS system. The system also contains select groundwater-quality data and map layers that quantify groundwater and surface-water withdrawals. The aquifer

  5. A new bipolar Qtrim power supply system

    Energy Technology Data Exchange (ETDEWEB)

    Mi, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Bruno, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Drozd, J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Nolan, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Orsatti, F. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Heppener, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Di Lieto, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Schultheiss, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Samms, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Zapasek, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Sandberg, J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    This year marks the 15th run of RHIC (Relativistic Heavy Ion Collider) operations. The reliability of superconducting magnet power supplies is one of the essential factors in the entire accelerator complex. Besides maintaining existing power supplies and their associated equipment, newly designed systems are also required based on the physicist’s latest requirements. A bipolar power supply was required for this year’s main quadruple trim power supply. This paper will explain the design, prototype, testing, installation and operation of this recently installed power supply system.

  6. Groundwater vulnerability mapping in Guadalajara aquifers system (Western Mexico)

    Science.gov (United States)

    Rizo-Decelis, L. David; Marín, Ana I.; Andreo, Bartolomé

    2016-04-01

    Groundwater vulnerability mapping is a practical tool to implement strategies for land-use planning and sustainable socioeconomic development coherent with groundwater protection. The objective of vulnerability mapping is to identify the most vulnerable zones of catchment areas and to provide criteria for protecting the groundwater used for drinking water supply. The delineation of protection zones in fractured aquifers is a challenging task due to the heterogeneity and anisotropy of hydraulic conductivities, which makes difficult prediction of groundwater flow organization and flow velocities. Different methods of intrinsic groundwater vulnerability mapping were applied in the Atemajac-Toluquilla groundwater body, an aquifers system that covers around 1300 km2. The aquifer supplies the 30% of urban water resources of the metropolitan area of Guadalajara (Mexico), where over 4.6 million people reside. Study area is located in a complex neotectonic active volcanic region in the Santiago River Basin (Western Mexico), which influences the aquifer system underneath the city. Previous works have defined the flow dynamics and identified the origin of recharge. In addition, the mixture of fresh groundwater with hydrothermal and polluted waters have been estimated. Two main aquifers compose the multilayer system. The upper aquifer is unconfined and consists of sediments and pyroclastic materials. Recharge of this aquifer comes from rainwater and ascending vertical fluids from the lower aquifer. The lower aquifer consists of fractured basalts of Pliocene age. Formerly, the main water source has been the upper unit, which is a porous and unconsolidated unit, which acts as a semi-isotropic aquifer. Intense groundwater usage has resulted in lowering the water table in the upper aquifer. Therefore, the current groundwater extraction is carried out from the deeper aquifer and underlying bedrock units, where fracture flow predominates. Pollution indicators have been reported in

  7. Groundwater system analysis of south Yishu geosyncline

    Institute of Scientific and Technical Information of China (English)

    DAI Chang-lei; CHI Bao-ming; YI Shu-ping; LI Zhi-jun

    2004-01-01

    South Yishu geosyncline is 50 km southeast of Changchun City of Jilin Province, where an aquifer is thick,surface runoff is abundant and it has potential to develop water resources preferably. By means of system analysis, the authors analyse the structural characteristics, I/O characteristics, function characteristics and boundary and environment characteristics of the groundwater system, so as to search for a way of optimizing water resources arrangement and enhancing water resources'bearing capacity. Based on the analysis results, the authors abstract conceptual model and mathematical model of the groundwater system. The simulation results certify and enrich the knowledge about south Yishu geosyncline.

  8. 40 CFR 257.22 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... operator. When physical obstacles preclude installation of ground-water monitoring wells at the relevant... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water......

  9. Groundwater Systems and Resources in the Ordos Basin, China

    Institute of Scientific and Technical Information of China (English)

    HOU Guangcai; LIANG Yongping; SU Xiaosi; ZHAO Zhenghong; TAO Zhengping; YIN Lihe; YANG Yuncheng; WANG Xiaoyong

    2008-01-01

    The Ordos Basin is.a large-scalesedimentary basin in northwestern China. The hydrostratigraphic units from bottom to top are pre-Cambrian metamorphic rocks, Lower Paleozoic carbonate rocks, Upper Paleozoic to Mesozoic clastic rocks and Cenozoic deposits. The total thickness is up to 6000 m. Three groundwater systems are present in the Ordos Basin, based on the geological settings, I.e. The karst groundwater system, the Cretaceous dastic groundwater system and the Quaternary groundwater system. This paper describes systematically the groundwater flow patterns of each system and overall assessment of groundwater resources.

  10. Methods Used to Assess the Susceptibility to Contamination of Transient, Non-Community Public Ground-Water Supplies in Indiana

    Science.gov (United States)

    Arihood, Leslie D.; Cohen, David A.

    2006-01-01

    The Safe Water Drinking Act of 1974 as amended in 1996 gave each State the responsibility of developing a Source-Water Assessment Plan (SWAP) that is designed to protect public-water supplies from contamination. Each SWAP must include three elements: (1) a delineation of the source-water protection area, (2) an inventory of potential sources of contaminants within the area, and (3) a determination of the susceptibility of the public-water supply to contamination from the inventoried sources. The Indiana Department of Environmental Management (IDEM) was responsible for preparing a SWAP for all public-water supplies in Indiana, including about 2,400 small public ground-water supplies that are designated transient, non-community (TNC) supplies. In cooperation with IDEM, the U.S. Geological Survey compiled information on conditions near the TNC supplies and helped IDEM complete source-water assessments for each TNC supply. The delineation of a source-water protection area (called the assessment area) for each TNC ground-water supply was defined by IDEM as a circular area enclosed by a 300-foot radius centered at the TNC supply well. Contaminants of concern (COCs) were defined by IDEM as any of the 90 contaminants for which the U.S. Environmental Protection Agency has established primary drinking-water standards. Two of these, nitrate as nitrogen and total coliform bacteria, are Indiana State-regulated contaminants for TNC water supplies. IDEM representatives identified potential point and nonpoint sources of COCs within the assessment area, and computer database retrievals were used to identify potential point sources of COCs in the area outside the assessment area. Two types of methods-subjective and subjective hybrid-were used in the SWAP to determine susceptibility to contamination. Subjective methods involve decisions based upon professional judgment, prior experience, and (or) the application of a fundamental understanding of processes without the collection and

  11. The role of groundwater chemistry in the transport of bacteria to water-supply wells

    Science.gov (United States)

    Harvey, R.W.; Metge, D.W.

    1999-01-01

    Static mini-columns and in situ injection and recovery tests were used to assess the effects of modest changes in groundwater chemistry upon the pH-dependence of bacterial attachment, a primary determinant of bacterial mobility in drinking water aquifers. In uncontaminated groundwater (surfactants can also substantively alter the attraction of groundwater bacteria for grain surfaces and, therefore can alter the transport of bacteria to water-supply wells. This phenomenon was pH-sensitive and dependent upon the nature of the surfactant. At pH 7.6, 200 mg l-1 of the non-ionic surfactant, Imbentin, caused a doubling of fractional bacterial attachment in aquifer-sediment columns, but had little effect under slightly acidic conditions (e.g. at pH 5.8). In contrast, 1 mg l-1 of linear alkylbenzene sulphonate (LAS) surfactant, a common sewage-derived contaminant, decreased the fractional bacterial attachment by more than 30% at pH 5.8, but had little effect at pH 7.3.Static mini-columns and in situ injection and recovery tests were used to assess the effects of modest changes in groundwater chemistry upon the pH-dependence of bacterial attachment, a primary determinant of bacterial mobility in drinking water aquifers. In uncontaminated groundwater (surfactants can also substantively alter the attraction of groundwater bacteria for grain surfaces and, therefore can alter the transport of bacteria to water-supply wells. This phenomenon was pH-sensitive and dependent upon the nature of the surfactant. At pH 7.6, 200 mg l-1 of the non-ionic surfactant, Imbentin, caused a doubling of fractional bacterial attachment in aquifer-sediment columns, but had little effect under slightly acidic conditions (e.g. at pH 5.8). In contrast, 1 mg l-1 of linear alkylbenzene sulphonate (LAS) surfactant, a common sewage-derived contaminant, decreased the fractional bacterial attachment by more than 30% at pH 5.8, but had little effect at pH 7.3.

  12. Progress of Power Supply System in 2003

    Institute of Scientific and Technical Information of China (English)

    GaoDaqing; ZhouZhongzu; WuRong; ChenYouxin

    2003-01-01

    CSR power supply system made a great progress in 2003. All power supplies for CSRm E-cooler have been accepted and put into operation since Feb. 2003. And we are preparing to test power supplies of CSRe cooler 31 sets pulsed convertor for CSRm quadruple magnet arrived in IMP. But their output current must be increased from 590 A to 700 A, because of higher beam energy. 12 of them can fit the new request, but the others have to be redesigned and reproduced. The dipole power supply was assembled in plant and by using the power supply was some experiment made. The first test results was excited. Now this device has been installed in IMP and connected with the dipole magnet. We invited a public bidding for RIBLL2 and CSRe power supplies last September. Two companies provided 128 power supplies, which will be delivered to IMP before June 2004.

  13. THE CONCEPT OF UNINTERRUPTED POWER SUPPLY SYSTEMS

    Directory of Open Access Journals (Sweden)

    Grigorash O. V.

    2016-05-01

    Full Text Available We have revealed the main reasons for interruptions in power supply to consumers of electricity. To improve the reliability and the efficiency of power supply for responsible consumers, we have proposed to develop energy efficient combined energy-saving systems for uninterrupted power supply with use of renewable energy sources. The article lists major principles of the development of such systems; it shows the necessity of constructing a generalized schema that contains the possible types and the sources of electric power converters. It also reveals the modern requirements to systems of uninterrupted energy supply. To improve the operational and technical characteristics of the uninterruptible power supply, it has been proposed to use a new circuitry that includes a contactless power generators, the direct frequency converters used to stabilize the voltage and frequency of the current generators of wind turbines, static converters made with the use of single-phase transformers with rotating magnetic field, universal static converters that can operate in the regimes of known types of converters. The article presents features of the modular construction of systems of uninterrupted energy supply and optimization of their structural decisions on key performance criteria. It shows the algorithm of synthesis of structural designs of combined systems of uninterrupted power supply. An important step for further research with the aim of improving operational and technical characteristics of the combination of uninterrupted power supply systems is the mathematical modeling of physical processes in power circuits of the system in both normal and emergency modes of operation

  14. Environmental impacts of open loop geothermal system on groundwater

    Science.gov (United States)

    Kwon, Koo-Sang; Park, Youngyun; Yun, Sang Woong; Lee, Jin-Yong

    2013-04-01

    Application of renewable energies such as sunlight, wind, rain, tides, waves and geothermal heat has gradually increased to reduce emission of CO2 which is supplied from combustion of fossil fuel. The geothermal energy of various renewable energies has benefit to be used to cooling and heating systems and has good energy efficiency compared with other renewable energies. However, open loop system of geothermal heat pump system has possibility that various environmental problems are induced because the system directly uses groundwater to exchange heat. This study was performed to collect data from many documents such as papers and reports and to summarize environmental impacts for application of open loop system. The environmental impacts are classified into change of hydrogeological factors such as water temperature, redox condition, EC, change of microbial species, well contamination and depletion of groundwater. The change of hydrogeological factors can induce new geological processes such as dissolution and precipitation of some minerals. For examples, increase of water temperature can change pH and Eh. These variations can change saturation index of some minerals. Therefore, dissolution and precipitation of some minerals such as quartz and carbonate species and compounds including Fe and Mn can induce a collapse and a clogging of well. The well contamination and depletion of groundwater can reduce available groundwater resources. These environmental impacts will be different in each region because hydrogeological properties and scale, operation period and kind of the system. Therefore, appropriate responses will be considered for each environmental impact. Also, sufficient study will be conducted to reduce the environmental impacts and to improve geothermal energy efficiency during the period that a open loop system is operated. This work was supported by the Energy Efficiency and Resources of the Korea Institute of Energy Technology Evaluation and Planning

  15. Simulations of groundwater flow, transport, and age in Albuquerque, New Mexico, for a study of transport of anthropogenic and natural contaminants (TANC) to public-supply wells

    Science.gov (United States)

    Heywood, Charles E.

    2013-01-01

    Vulnerability to contamination from manmade and natural sources can be characterized by the groundwater-age distribution measured in a supply well and the associated implications for the source depths of the withdrawn water. Coupled groundwater flow and transport models were developed to simulate the transport of the geochemical age-tracers carbon-14, tritium, and three chlorofluorocarbon species to public-supply wells in Albuquerque, New Mexico. A separate, regional-scale simulation of transport of carbon-14 that used the flow-field computed by a previously documented regional groundwater flow model was calibrated and used to specify the initial concentrations of carbon-14 in the local-scale transport model. Observations of the concentrations of each of the five chemical species, in addition to water-level observations and measurements of intra-borehole flow within a public-supply well, were used to calibrate parameters of the local-scale groundwater flow and transport models. The calibrated groundwater flow model simulates the mixing of “young” groundwater, which entered the groundwater flow system after 1950 as recharge at the water table, with older resident groundwater that is more likely associated with natural contaminants. Complexity of the aquifer system in the zone of transport between the water table and public-supply well screens was simulated with a geostatistically generated stratigraphic realization based upon observed lithologic transitions at borehole control locations. Because effective porosity was simulated as spatially uniform, the simulated age tracers are more efficiently transported through the portions of the simulated aquifer with relatively higher simulated hydraulic conductivity. Non-pumping groundwater wells with long screens that connect aquifer intervals having different hydraulic heads can provide alternate pathways for contaminant transport that are faster than the advective transport through the aquifer material. Simulation of

  16. Geochemical conditions and the occurrence of selected trace elements in groundwater basins used for public drinking-water supply, Desert and Basin and Range hydrogeologic provinces, 2006-11: California GAMA Priority Basin Project

    Science.gov (United States)

    Wright, Michael T.; Fram, Miranda S.; Belitz, Kenneth

    2015-01-01

    The geochemical conditions, occurrence of selected trace elements, and processes controlling the occurrence of selected trace elements in groundwater were investigated in groundwater basins of the Desert and Basin and Range (DBR) hydrogeologic provinces in southeastern California as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA PBP is designed to provide an assessment of the quality of untreated (raw) groundwater in the aquifer systems that are used for public drinking-water supply. The GAMA PBP is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory.

  17. Reconstruction of Low Pressure Gas Supply System

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2013-01-01

    Full Text Available The current reconstruction of residential areas in large cities especially with the developed heat-supply systems from thermal power stations and reduction of heat consumption for heating due to higher thermal resistance of building enclosing structures requires new technical solutions in respect of gas-supply problems. While making reconstruction of a gas-supply system of the modernized or new buildings in the operating zone of one gas-distribution plant it is necessary to change hot water-supply systems from gas direct-flow water heaters to centralized heat-supply and free gas volumes are to be used for other needs or gas-supply of new buildings with the current external gas distribution network.Selection of additional gas-line sections and points of gas-supply systems pertaining to new and reconstructed buildings for their connection to the current distribution system of gas-supply is to be executed in accordance with the presented methodology.

  18. Long-term climate sensitivity of an integrated water supply system: The role of irrigation.

    Science.gov (United States)

    Guyennon, Nicolas; Romano, Emanuele; Portoghese, Ivan

    2016-09-15

    The assessment of the impact of long-term climate variability on water supply systems depends not only on possible variations of the resources availability, but also on the variation of the demand. In this framework, a robust estimation of direct (climate induced) and indirect (anthropogenically induced) effects of climate change is mandatory to design mitigation measures, especially in those regions of the planet where the groundwater equilibrium is strongly perturbed by exploitations for irrigation purposes. The main goal of this contribution is to propose a comprehensive model that integrates distributed crop water requirements with surface and groundwater mass balance, able to consider management rules of the water supply system. The proposed overall model, implemented, calibrated and validated for the case study of the Fortore water supply system (Apulia region, South Italy), permits to simulate the conjunctive use of the water from a surface artificial reservoir and from groundwater. The relative contributions of groundwater recharges and withdrawals to the aquifer stress have been evaluated under different climate perturbations, with emphasis on irrigation practices. Results point out that irrigated agriculture primarily affects groundwater discharge, indicating that ecosystem services connected to river base flow are particularly exposed to climate variation in irrigated areas. Moreover, findings show that the recharge both to surface and to groundwater is mainly affected by drier climate conditions, while hotter conditions have a major impact on the water demand. The non-linearity arising from combined drier and hotter conditions may exacerbate the aquifer stress by exposing it to massive sea-water intrusion.

  19. Data fusion modeling for groundwater systems

    Science.gov (United States)

    Porter, David W.; Gibbs, Bruce P.; Jones, Walter F.; Huyakorn, Peter S.; Hamm, L. Larry; Flach, Gregory P.

    2000-03-01

    Engineering projects involving hydrogeology are faced with uncertainties because the earth is heterogeneous, and typical data sets are fragmented and disparate. In theory, predictions provided by computer simulations using calibrated models constrained by geological boundaries provide answers to support management decisions, and geostatistical methods quantify safety margins. In practice, current methods are limited by the data types and models that can be included, computational demands, or simplifying assumptions. Data Fusion Modeling (DFM) removes many of the limitations and is capable of providing data integration and model calibration with quantified uncertainty for a variety of hydrological, geological, and geophysical data types and models. The benefits of DFM for waste management, water supply, and geotechnical applications are savings in time and cost through the ability to produce visual models that fill in missing data and predictive numerical models to aid management optimization. DFM has the ability to update field-scale models in real time using PC or workstation systems and is ideally suited for parallel processing implementation. DFM is a spatial state estimation and system identification methodology that uses three sources of information: measured data, physical laws, and statistical models for uncertainty in spatial heterogeneities. What is new in DFM is the solution of the causality problem in the data assimilation Kalman filter methods to achieve computational practicality. The Kalman filter is generalized by introducing information filter methods due to Bierman coupled with a Markov random field representation for spatial variation. A Bayesian penalty function is implemented with Gauss-Newton methods. This leads to a computational problem similar to numerical simulation of the partial differential equations (PDEs) of groundwater. In fact, extensions of PDE solver ideas to break down computations over space form the computational heart of DFM

  20. Groundwater flow system in the valley of Toluca, Mexico: an assay of natural radionuclide specific activities.

    Science.gov (United States)

    Segovia, N; Tamez, E; Peña, P; Carrillo, J; Acosta, E; Armienta, M A; Iturbe, J L

    1999-03-01

    Natural radionuclides and physicochemical parameters have been evaluated in groundwater samples from boreholes belonging to the drinking water supply system of the Toluca City, Mexico. The results obtained for radon and radium, together with the physicochemical parameters of the studied samples, indicate a fast and efficient recharge pattern. The presence of a local and a regional groundwater flows was also observed. The local flow belongs to shallower water, recognized by its low radon content and dissolved ions, as compared with the regional, deeper groundwater flow with a longer residence time.

  1. Uso de água subterrânea em sistema de abastecimento público de comunidades na várzea da Amazônia central The use of groundwater in public water supply system of floodplain communities in the central Amazonia

    Directory of Open Access Journals (Sweden)

    Rainier Pedraça de Azevedo

    2006-01-01

    Full Text Available O paradoxo das águas marca as populações amazônicas que habitam as várzeas. Se na cheia as águas abundam, na seca escasseiam, chegando desfalcar os ribeirinhos seja pela insuficiência e/ou por condições impróprias para consumo. Esse trabalho descreve o aproveitamento do manancial subterrâneo para abastecimento público, através de poço tubular construído na comunidade de várzea de Santo Antônio, no município de Urucará, Estado do Amazonas. O estudo demonstrou a ocorrência de variações nas características físico-químicas da água do poço durante um ciclo das de superfície da região, principalmente a elevação do teor de ferro total no período de cheia máxima, sendo esse um indicativo de falha no processo construtivo do poço, uma vez que a água subterrânea local apresenta condições satisfatórias para o consumo humano. O aproveitamento do manancial subterrâneo em sistemas de abastecimento de água em comunidades de várzea na Amazônia é tecnicamente viável, entretanto, carece de obras de captação corretas, visando a conservação da qualidade da água desse rico ecossistema.The Amazonian populations that live in the floodplains are marked by a water paradox. If in the flood season water is plentiful, during the drought period water is scarce, either not having enough for the people's needs or it is inappropriate for human consumption. This paper describes the use of groundwater for public water supply system through a tubular well built in Santo Antonio floodplain community, in the district of Urucará, Amazonas State. The study has shown the occurrence of variations in the water quality of the well during the cycle of the superficial water, mainly an increase in the level of iron. This indicates a fault in the building process of the well, given that the local groundwater has good quality for consumption. The use of groundwater in public supply system in the floodplain communities in the Amazon is

  2. Understanding Supply Networks from Complex Adaptive Systems

    Directory of Open Access Journals (Sweden)

    Jamur Johnas Marchi

    2014-10-01

    Full Text Available This theoretical paper is based on complex adaptive systems (CAS that integrate dynamic and holistic elements, aiming to discuss supply networks as complex systems and their dynamic and co-evolutionary processes. The CAS approach can give clues to understand the dynamic nature and co-evolution of supply networks because it consists of an approach that incorporates systems and complexity. This paper’s overall contribution is to reinforce the theoretical discussion of studies that have addressed supply chain issues, such as CAS.

  3. Social Perception of Public Water Supply Network and Groundwater Quality in an Urban Setting Facing Saltwater Intrusion and Water Shortages.

    Science.gov (United States)

    Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem

    2017-04-01

    Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.

  4. Social Perception of Public Water Supply Network and Groundwater Quality in an Urban Setting Facing Saltwater Intrusion and Water Shortages

    Science.gov (United States)

    Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem

    2017-04-01

    Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.

  5. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  6. Coal slurry fuel supply and purge system

    Science.gov (United States)

    McDowell, Robert E.; Basic, Steven L.; Smith, Russel M.

    1994-01-01

    A coal slurry fuel supply and purge system for a locomotive engines is disclosed which includes a slurry recirculation path, a stand-by path for circulating slurry during idle or states of the engine when slurry fuel in not required by the engine, and an engine header fluid path connected to the stand-by path, for supplying and purging slurry fuel to and from fuel injectors. A controller controls the actuation of valves to facilitate supply and purge of slurry to and from the fuel injectors. A method for supplying and purging coal slurry in a compression ignition engine is disclosed which includes controlling fluid flow devices and valves in a plurality of fluid paths to facilitate continuous slurry recirculation and supply and purge of or slurry based on the operating state of the engine.

  7. Simulations of Groundwater Flow and Particle Tracking Analysis in the Area Contributing Recharge to a Public-Supply Well near Tampa, Florida, 2002-05

    Science.gov (United States)

    Crandall, Christy A.; Kauffman, Leon J.; Katz, Brian G.; Metz, Patricia A.; McBride, W. Scott; Berndt, Marian P.

    2009-01-01

    groundwater from the surficial aquifer system and lowest (less than the detection level of 0.06 milligram per liter) in the deeper Upper Floridan aquifer. Denitrification occurred near the interface of the surficial aquifer system and the underlying intermediate confining unit, within the intermediate confining unit, and within the Upper Floridan aquifer because of reducing conditions in this part of the flow system. However, simulations indicate that the rapid movement of water from the surficial aquifer system to the selected public-supply well through karst features (sinkholes) and conduit layers that bypass the denitrifying zones (short-circuits), coupled with high pumping rates, allow nitrate to reach the selected public-supply well in concentrations that resemble those of the overlying surficial aquifer system. Water from the surficial aquifer system with elevated concentrations of nitrate and low concentrations of some volatile organic compounds and pesticides is expected to continue moving into the selected public-supply well, because calculated flux-weighted concentrations indicate the proportion of young affected water contributing to the well is likely to remain relatively stable over time. The calculated nitrate concentration in the selected public-supply well indicates a lag of 1 to 10 years between peak concentrations of nonpoint source contaminants in recharge and appearance in the well.

  8. PFAS - A threat for groundwater and drinking water supply in Sweden?

    Science.gov (United States)

    Lewis, Jeffrey; Banzhaf, Stefan; Ahlkrona, Malva; Arnheimer, Berit; Barthel, Roland; Bergvall, Martin; Blomquist, Niklas; Jacks, Gunnar; Jansson, Cecilia; Lissel, Patrik; Marklund, Lars; Olofsson, Bo; Persson, Kenneth M.; Sjöström, Jan; Sparrenbom, Charlotte

    2015-04-01

    Perfluoroalkyl substances (PFAS) are a group of anthropogenic environmental pollutants that are widely distributed in the global environment. They have multiple industrial uses, including water repellents in clothing, paper coatings and firefighting foam. According to a study released by the Environmental Directorate of the OECD, they are persistent, bioaccumulative and toxic to mammalian species (OECD, 2002). In some municipal drinking water wells in Sweden, measured concentrations of PFAS found to be several hundred times higher than the allowed threshold values. This has created a huge public concern and has recently attracted much media attention in Sweden (e.g. Afzelius et al., 2014; Bergman et al., 2014; Lewis et al., 2014). PFAS findings raised questions such as "What can we do to solve the problem?" When it comes to drinking water, there are a number of techniques that can ensure that PFAS levels are reduced to acceptable levels. This may be a costly challenge, but from a technical point of view it is possible. To ensure the safety of drinking water from a public health perspective is obviously a top priority. However, international experience shows that the cost of cleaning up PFAS in groundwater may be significantly higher than continuously treat drinking water in water works. Approximately fifty percent of Sweden's drinking water comes from groundwater. As a result, there are several ongoing and planned PFAS-related environmental and drinking-water investigations in Sweden. Many aquifers that supply municipal water plants are located in areas of sand and gravel deposits. Such soils have relatively high permeabilities, which permits extraction of large volumes of water. However, the downside to high permeabilities is that they also allow dissolved contaminants as PFAS to spread over large areas. If one disregards the health risks linked to its presence in drinking water, PFAS have an impact on three of Sweden's national environmental quality objectives

  9. 40 CFR 258.51 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... preclude installation of ground-water monitoring wells at the relevant point of compliance at existing... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51...

  10. Design of ITER NBI power supply system

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kazuhiro; Ohara, Yoshihiro; Okumura, Yoshikazu [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Higa, Osamu; Kawashima, Syuichi; Ono, Youichi; Tanaka, Masanobu; Yasutomi, Sei

    1997-07-01

    Power supply system for the ITER neutral beam injector (NBI) whose total injection power is 1 MeV, 50 MW from three modules, has been designed. The power supply system consists of a source power supply for negative ion production/extraction and a DC 1 MV, 45 A power supply for negative ion acceleration. An inverter controlled multi-transformer/rectifier system has been adopted to the acceleration power supply. An inverter frequency of 150 Hz was selected to satisfy required specifications which are rise time of <100 ms, voltage ripple of <10% peak to peak and cut off speed of <200{mu}s. It was confirmed that the rise time, the ripple and the cut off speed is about 50 ms, 7% and <200{mu}s respectively by computation. It was also confirmed that a surge current and an energy input to the ion source at the breakdown can be suppressed lower than 3 kA and 10 J, which are considered to be lower than allowable values. A 1 MV transmission line has been designed from a view point of electric field on the inner conductors and grounded conductor. The results from the design study indicate that all the required specification to the power supply system can be satisfied and that R and D on the transmission line is one of the most important subjects. (author)

  11. Is groundwater age the main control for slow turnover of nitrate in a fractured groundwater system?

    Science.gov (United States)

    Osenbrück, Karsten; Schwientek, Marc; Rügner, Hermann; Grathwohl, Peter

    2015-04-01

    Slow transformation processes are known to control the chemical, isotopic, and redox evolution of large-scale aquifers (Edmunds et al., 1982; Katz et al., 1995). However, at the field scale some of the crucial biogeochemical processes governing pollutant turnover and their interrelations with hydrology are poorly understood. Particularly, only little is known about denitrification in fractured rock aquifers. Therefore, the main objective of the presented study is to assess where and how slow turnover of nitrate ans other pollutants in the deeper subsurface take place. The studied fractured and partly karstified aquifer consisting of Triassic black limestones and dolomites is located in the catchment of the Ammer river (ca. 350 km²) close to Tübingen in southern Germany. Near the recharge area, the aquifer is covered by loess allowing intensive agriculture. Further downgradient, the cover consist of a series of mudstones and sandstones of variable permeability. The aquifer is used for drinking water purposes by regional water suppliers. Land-use is dominated by agriculture with arable land covering nearly 50% of the catchment. Over the last years a variety of groundwater samples have been collected from the groundwater system including 6 water supply wells, 4 karstic springs, and 9 monitoring wells in the recharge area. This allowed to identify spatial and temporal patterns of water quality including concentrations of major ions, dissolved organic carbon (DOC), organic pollutants (e.g., pesticides), and environmental isotopes. Groundwater age distributions at most of these locations were derived from tritium, 3He, CFCs and SF6. Groundwaters in the recharge area show high concentrations of nutrients (e.g. 20-51 mg/L of nitrate and 0.2 to 0.05 µg/L of phosphate). Of special concern are disparate nitrate concentrations ranging from below 0.4 to 20 mg/L in water supply wells although screen depths of the production wells are similar. Concentrations of dissolved

  12. Salinity Impacts of the Indian Ocean Tsunami on Groundwater and Local Water Supply - Lessons Learned from Integrated Research and Support to Remediation

    Science.gov (United States)

    Villholth, K. G.; Vithanage, M.; Goswami, R. R.; Jeyakumar, P.; Manamperi, S.

    2008-05-01

    Huge devastation and human tragedy followed the Dec. 26, 2004 tsunami in the Indian Ocean. Sri Lanka was one of the hardest hit, with an estimated death toll of 31,000 people. Of immediate concern after the catastrophic event was the destruction of the traditional water supply system based on private shallow open wells in the rural and semi-urban areas of the coastal belt. Practically all wells within the reach of the flooding waves (up to a couple of km's inland) were inundated and filled with saltwater and contaminated with solid matter, pathogens, and other unknown chemicals, leaving the water unfit for drinking. It was estimated early on that the tsunami waves contaminated more than 50,000 wells in coastal Sri Lanka. This initial figure is highly underestimated, however, as the present research found that the total number of affected wells was more in the range of half a million. The total number of people affected by disruption in well water supply could have been in the range of 2.5 million. The present paper summarizes the outcomes and experiences gained from comprehensive research, collaboration and support work in eastern Sri Lanka related to the impact of the tsunami on groundwater, particularly with respect to salinity, and the destruction and rehabilitation of the local water supply systems. The area in focus was characterized by sandy, shallow, unconfined aquifers bounded by seawater and inland brackish lagoons and representative of the hydro-geological, climatic, demographic and land use setting on the east coast of Sri Lanka. Field monitoring investigations in shallow domestic wells showed that the salinity imprint of the tsunami on groundwater and water supply were detectable up to 1.5 years after the event. Field results also indicated that the well cleaning efforts which were quickly resorted to as part of the emergency and remediation activities were not efficient in terms of reducing salinity impacts. Rainfall was the most significant and

  13. Performance assessment techniques for groundwater recovery and treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, G.L. [Environmental Resources Management, Inc., Exton, PA (United States)

    1993-03-01

    Groundwater recovery and treatment (pump and treat systems) continue to be the most commonly selected remedial technology for groundwater restoration and protection programs at hazardous waste sites and RCRA facilities nationwide. Implementing a typical groundwater recovery and treatment system includes the initial assessment of groundwater quality, characterizing aquifer hydrodynamics, recovery system design, system installation, testing, permitting, and operation and maintenance. This paper focuses on methods used to assess the long-term efficiency of a pump and treat system. Regulatory agencies and industry alike are sensitive to the need for accurate assessment of the performance and success of groundwater recovery systems for contaminant plume abatement and aquifer restoration. Several assessment methods are available to measure the long-term performance of a groundwater recovery system. This paper presents six assessment techniques: degree of compliance with regulatory agency agreement (Consent Order of Record of Decision), hydraulic demonstration of system performance, contaminant mass recovery calculation, system design and performance comparison, statistical evaluation of groundwater quality and preferably, integration of the assessment methods. Applying specific recovery system assessment methods depends upon the type, amount, and quality of data available. Use of an integrated approach is encouraged to evaluate the success of a groundwater recovery and treatment system. The methods presented in this paper are for engineers and corporate management to use when discussing the effectiveness of groundwater remediation systems with their environmental consultant. In addition, an independent (third party) system evaluation is recommended to be sure that a recovery system operates efficiently and with minimum expense.

  14. Sustainable groundwater management system based on the regional hydrological cycle in the warm humid country, Japan

    Science.gov (United States)

    Shimada, J.; Crest Kumamoto Groundwater Team

    2011-12-01

    The increase of precipitation variability with the global warming and the rapid population growth lead to the shortage of water resources on a global scale. Groundwater bocome attracted as a relatively stable water resource because of its larger reservoir and a longer residence time. As our country belongs to a warm humid climate with much precipitation and a steep topography, the regional hydrological cycle is extremely active. Surface water could be taken easily and was often used to a water supply until now, but recently groundwater is taking the place of surface water because of the stability of water supply. While in our hydro-climatic condition, the sustainable use of groundwater is possible under the appropriative management, that is, groundwater pumping rate does not exceed the recharge rate in a basin. For the sustainable use of groundwater resources, this project aims to develop new technologies relating to the quantity and quality aspects of groundwater resources. For the precise understanding of groundwater flow system, new technologies will be developed, like frequency changeable electric resistivity exploration method to evaluate an aquifer structure. There are many problems about groundwater quality including nitrate-nitrogen contamination and toxic substances from the domestic and industrial waste disposals. It is necessary to understand the production mechanism to prevent groundwater contamination and the degradation process of nitrate-nitrogen contamination to improve the water quality. Therefore this project will develop new technologies including the reduction of NO3=N and natural toxic substances loads before groundwater recharge, the on-site removal of contaminants from aquifers, and simple and effective equipment to improve groundwater quality after pumping. Furthermore, this project will also develop a new biological monitoring technique for local groundwater users to notice the contamination at a glance; change colar fish by specific ion

  15. Conceptual model and numerical simulation of the groundwater-flow system of Bainbridge Island, Washington

    Science.gov (United States)

    Frans, Lonna M.; Bachmann, Matthew P.; Sumioka, Steve S.; Olsen, Theresa D.

    2011-01-01

    Groundwater is the sole source of drinking water for the population of Bainbridge Island. Increased use of groundwater supplies on Bainbridge Island as the population has grown over time has created concern about the quantity of water available and whether saltwater intrusion will occur as groundwater usage increases. A groundwater-flow model was developed to aid in the understanding of the groundwater system and the effects of groundwater development alternatives on the water resources of Bainbridge Island. Bainbridge Island is underlain by unconsolidated deposits of glacial and nonglacial origin. The surficial geologic units and the deposits at depth were differentiated into aquifers and confining units on the basis of areal extent and general water-bearing characteristics. Eleven principal hydrogeologic units are recognized in the study area and form the basis of the groundwater-flow model. A transient variable-density groundwater-flow model of Bainbridge Island and the surrounding area was developed to simulate current (2008) groundwater conditions. The model was calibrated to water levels measured during 2007 and 2008 using parameter estimation (PEST) to minimize the weighted differences or residuals between simulated and measured hydraulic head. The calibrated model was used to make some general observations of the groundwater system in 2008. Total flow through the groundwater system was about 31,000 acre-ft/ yr. The recharge to the groundwater system was from precipitation and septic-system returns. Groundwater flow to Bainbridge Island accounted for about 1,000 acre-ft/ yr or slightly more than 5 percent of the recharge amounts. Groundwater discharge was predominately to streams, lakes, springs, and seepage faces (16,000 acre-ft/yr) and directly to marine waters (10,000 acre-ft/yr). Total groundwater withdrawals in 2008 were slightly more than 6 percent (2,000 acre-ft/yr) of the total flow. The calibrated model was used to simulate predevelopment conditions

  16. Ground-water flow and contributing areas to public-supply wells in Kingsford and Iron Mountain, Michigan

    Science.gov (United States)

    Luukkonen, Carol L.; Westjohn, David B.

    2000-01-01

    The cities of Kingsford and Iron Mountain are in the southwestern part of Dickinson County in the Upper Peninsula of Michigan. Residents and businesses in these cites rely primarily on ground water from aquifers in glacial deposits. Glacial deposits generally consist of an upper terrace sand-and-gravel unit and a lower outwash sand-and-gravel unit, separated by lacustrine silt and clay and eolian silt layers. These units are not regionally continuous, and are absent in some areas. Glacial deposits overlie Precambrian bedrock units that are generally impermeable. Precambrian bedrock consists of metasedimentary (Michigamme Slate, Vulcan Iron Formation, and Randville Dolomite) and metavolcanic (Badwater Greenstone and Quinnesec Formation) rocks. Where glacial deposits are too thin to compose an aquifer usable for public or residential water supply, Precambrian bedrock is relied upon for water supply. Typically a few hundred feet of bedrock must be open to a wellbore to provide adequate water for domestic users. Ground-water flow in the glacial deposits is primarily toward the Menominee River and follows the direction of the regional topographic slope and the bedrock surface. To protect the quality of ground water, Kingsford and Iron Mountain are developing Wellhead Protection Plans to delineate areas that contribute water to public-supply wells. Because of the complexity of hydrogeology in this area and historical land-use practices, a steady-state ground-water-flow model was prepared to represent the ground-water-flow system and to delineate contributing areas to public-supply wells. Results of steady-state simulations indicate close agreement between simulated and observed water levels and between water flowing into and out of the model area. The 10-year contributing areas for Kingsford's public-supply wells encompass about 0.11 square miles and consist of elongated areas to the east of the well fields. The 10-year contributing areas for Iron Mountain's public-supply

  17. Recent developments in modeling groundwater systems

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, T.N.; Witherspoon, P.A.

    1977-05-20

    This paper reviews the developments in the mathematical modeling of groundwater systems over the past decde. The first part of the paper is devoted to a description of the physics of the different types of problems that are of interest in hydrogeology and a statement of the related initial-boundary-value problems. The various numerical techniques that have been employed to solve the governing equations are discussed in the second part. In the third section a few typical case histories are presented to illustrate the trend of progress that has occurred in the application of mathematical modeling to actual field problems.

  18. Combined consideration for decentralised non-potable water supply from local groundwater and nutrient load reduction in urban drainage.

    Science.gov (United States)

    Barron, O; Barr, A; Donn, M; Pollock, D

    2011-01-01

    Integrated analysis of land use change and its effect on catchment water balance allows the selection of appropriate water and land management options for new urban developments to minimise the environmental impacts of urbanisation. A process-based coupled surface water-groundwater model was developed for Southern River catchment (Perth, Western Australia) to investigate the effect of urban development on catchment water balance. It was shown that urbanisation of highly permeable flat catchments with shallow groundwater resulted in significant increase in net groundwater recharge. The increased recharge creates the opportunity to use local groundwater resources for non-potable water supply with the added advantage of reducing the total discharge from new urban developments. This minimises the environmental impacts of increased urbanisation, as higher discharge is often associated with greater nutrient loads to receiving environments. Through the used of water balance modelling it was demonstrated that there are both water and nutrient benefits from local groundwater use in terms of reduced nutrient exports to receiving waters and additional water resources for non-potable water supply.

  19. Groundwater quality from private domestic water-supply wells in the vicinity of petroleum production in southwestern Indiana

    Science.gov (United States)

    Risch, Martin R.; Silcox, Cheryl A.

    2016-06-02

    The U.S. Geological Survey provided technical support to the Agency for Toxic Substances and Disease Registry for site selection and sample collection and analysis in a 2012 investigation of groundwater quality from 29 private domestic water-supply wells in the vicinity of petroleum production in southwestern Indiana. Petroleum hydrocarbons, oil and grease, aromatic volatile organic compounds, methane concentrations greater than 8,800 micrograms per liter, chloride concentrations greater than 250 milligrams per liter, and gross alpha radioactivity greater than 15 picocuries per liter were reported in the analysis of groundwater samples from 11 wells.

  20. The role of enterprise systems in supply chain networks: a taxonomy of supply chain strategies

    DEFF Research Database (Denmark)

    Møller, Charles

    2006-01-01

    This paper proposes a taxonomy for supply chain integration strategies. The taxonomy is based on the contingencies of supply chain network coupling and the Extended Enterprise Systems (EES) architecture in the supply chain. The purpose of this model is to map the portfolio of relations...... in the supply chain and to choose the right supply chain strategy. The work is based on a comprehensive study of the Supply Chain Management (SCM) and Enterprise Resource Planning (ERP) literature and the study suggests that there is an emerging new research potential for Enterprise Systems (ES) in the supply...

  1. The role of enterprise systems in supply chain networks: a taxonomy of supply chain strategies

    DEFF Research Database (Denmark)

    Møller, Charles

    2006-01-01

    in the supply chain and to choose the right supply chain strategy. The work is based on a comprehensive study of the Supply Chain Management (SCM) and Enterprise Resource Planning (ERP) literature and the study suggests that there is an emerging new research potential for Enterprise Systems (ES) in the supply......This paper proposes a taxonomy for supply chain integration strategies. The taxonomy is based on the contingencies of supply chain network coupling and the Extended Enterprise Systems (EES) architecture in the supply chain. The purpose of this model is to map the portfolio of relations...

  2. ARN Supply Chain Management System for OCIE

    Science.gov (United States)

    2006-12-30

    Module (IRM), Clothing Initial Issue Point ( CIIP ); Supply Chain Management; Virtual Item Manager/Wholesale Local; Quality Logistics Management...DLA successfully assumed retail inventory at five Army Clothing Initial Issue Points ( CIIPs ), two United Stated Marine Corps Recruit Depots (MCRDs...system provides a “local” capability to manage wholesale inventory assets located at the CIIP including receipt and inventory adjustment processing

  3. Energy consumption in the food supply system

    DEFF Research Database (Denmark)

    Kamp, Andreas; Østergård, Hanne; Hauggaard-Nielsen, Henrik

    2016-01-01

    Historically, productivity gains have been possible by the application of energy intensive technologies. In the future, new technologies and practices based on energy from renewable resources are central for the development of our food supply system and they will contribute in two different ways....... As the energy sector increasingly bases energy supply on renewable sources, the energy requirements of the food sector will automatically substitute renewable energy for non-renewable energy in all stages of food supply. In principle, the food sector does not need to change if renewable energy is sufficient...... and available as the energy carriers that we are used to today. We may think of this as passive adaptation. A passive adaptation strategy may support a development towards the image ‘high input – high output’. The food sector, however, may also actively adapt to a future without fossil fuels and change...

  4. Groundwater dating for understanding nitrogen in groundwater systems - Time lag, fate, and detailed flow path ways

    Science.gov (United States)

    Morgenstern, Uwe; Hadfield, John; Stenger, Roland

    2014-05-01

    Nitrate contamination of groundwater is a problem world-wide. Nitrate from land use activities can leach out of the root zone of the crop into the deeper part of the unsaturated zone and ultimately contaminate the underlying groundwater resources. Nitrate travels with the groundwater and then discharges into surface water causing eutrophication of surface water bodies. To understand the source, fate, and future nitrogen loads to ground and surface water bodies, detailed knowledge of the groundwater flow dynamics is essential. Groundwater sampled at monitoring wells or discharges may not yet be in equilibrium with current land use intensity due to the time lag between leaching out of the root zone and arrival at the sampling location. Anoxic groundwater zones can act as nitrate sinks through microbial denitrification. However, the effect of denitrification on overall nitrate fluxes depends on the fraction of the groundwater flowing through such zones. We will show results from volcanic aquifers in the central North Island of New Zealand where age tracers clearly indicate that the groundwater discharges into large sensitive lakes like Lake Taupo and Lake Rotorua are not yet fully realising current land use intensity. The majority of the water discharging into these lakes is decades and up to over hundred years old. Therefore, increases in dairy farming over the last decades are not yet reflected in these old water discharges, but over time these increased nitrate inputs will eventually work their way through the large groundwater systems and increasing N loads to the lakes are to be expected. Anoxic zones are present in some of these aquifers, indicating some denitrification potential, however, age tracer results from nested piezo wells show young groundwater in oxic zones indicating active flow in these zones, while anoxic zones tend to have older water indicating poorer hydraulic conductivity in these zones. Consequently, to evaluate the effect of denitrification

  5. A Numerical Study on System Performance of Groundwater Heat Pumps

    Directory of Open Access Journals (Sweden)

    Jin Sang Kim

    2015-12-01

    Full Text Available Groundwater heat pumps have energy saving potential where the groundwater resources are sufficient. System Coefficients of Performance (COPs are measurements of performance of groundwater heat pump systems. In this study, the head and power of submersible pumps, heat pump units, piping, and heat exchangers are expressed as polynomial equations, and these equations are solved numerically to determine the system performance. Regression analysis is used to find the coefficients of the polynomial equations from a catalog of performance data. The cooling and heating capacities of water-to-water heat pumps are determined using Energy Plus. Results show that system performance drops as the water level drops, and the lowest flow rates generally achieve the highest system performance. The system COPs are used to compare the system performance of various system configurations. The groundwater pumping level and temperature provide the greatest effects on the system performance of groundwater heat pumps along with the submersible pumps and heat exchangers. The effects of groundwater pumping levels, groundwater temperatures, and the heat transfer coefficient in heat exchanger on the system performance are given and compared. This analysis needs to be included in the design process of groundwater heat pump systems, possibly with analysis tools that include a wide range of performance data.

  6. Simulations of Ground-Water Flow and Particle Pathline Analysis in the Zone of Contribution of a Public-Supply Well in Modesto, Eastern San Joaquin Valley, California

    Science.gov (United States)

    Burow, Karen R.; Jurgens, Bryant C.; Kauffman, Leon J.; Phillips, Steven P.; Dalgish, Barbara A.; Shelton, Jennifer L.

    2008-01-01

    because of the low nitrate concentrations in recharge beneath the urban area and the increasing proportion of urban-derived ground water reaching the well. The apparent lag time between peak input concentrations and peak concentrations in the well is about 20 to 30 years. Measured uranium concentrations were also highest (45 micrograms per liter) in shallow ground water, and decreased with depth to background concentrations of about 0.5 microgram per liter. Naturally-occurring uranium adsorbed to aquifer sediments is mobilized by oxygen-rich, high-alkalinity water. Alkalinity increased in shallow ground water in response to agricultural development. As ground-water pumping increased in the 1940s and 1950s, this alkaline water moved downward through the ground-water flow system, mobilizing the uranium adsorbed to aquifer sediments. Ground water with high alkalinity and high uranium concentrations is expected to continue to move deeper in the system, resulting in increased uranium concentrations with depth in ground water. Because alkalinity (and correspondingly uranium) concentrations were high in shallow ground water beneath both the urban and the agricultural land, long-term uranium concentrations in the public-supply well are expected to increase as the proportion of uranium-affected water contributed to the well increases. Assuming that the alkalinity near the water table remains the same, the simulation of long-term alkalinity in the public-supply well indicates that uranium concentrations in the public-supply well will likely approach the maximum contaminant level; however, the time to reach this level is more than 100 years because of the significant proportion of old, unaffected water at depth that is contributed to the public-supply well.

  7. Groundwater Capture Zones

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Source water protection areas are delineated for each groundwater-based public water supply system using available geologic and hydrogeologic information to...

  8. Evolution of Quaternary groundwater system in North China Plain

    Institute of Scientific and Technical Information of China (English)

    张宗祜; 施德鸿; 任福弘; 殷正宙; 孙继朝; 张翠云

    1997-01-01

    The Quaternary groundwater system in the North China Plain is formed mainly through the terrestrial water flow action on the united geological and tectonic backgrounds. The analysis of groundwater dynamic field, simulation of groundwater geochemistry, and the 14C dating and extraction of isotope information have provided more evidence for recognizing and assessing the evolution of groundwater circulation system and studying the past global changes. The exploitation and utilization of groundwater on a large scale and overexploitation have given rise to the decline of regional groundwater level, change of flow field, decrease of water resources and downward movement of saline water body. The water environment has entered a new evolution stage in which it is intensely disturbed by the mankind’s activities.

  9. Tree Seed and Seedling Supply Systems

    DEFF Research Database (Denmark)

    Nyoka, Betserai I.; Roshetko, James M.; Jamnadass, Ramni

    2015-01-01

    The paper reviews tree seed and seedling supply systems in sub-Saharan Africa, Asia and Latin America. Across these regions, the review found that some of the germplasm supply systems do not efficiently meet farmers’ demands and environmental expectations in terms of productivity, species...... and genetic diversity. In some countries, germplasm used is mostly sourced from undocumented sources and often untested. Germplasm quality control systems are only found in a few countries. Appreciation of the value of tree germplasm of high genetic quality is low. Non-government organisations (NGOs) in many...... out private entrepreneurs, although this is not substantiated by any evidence to suggest that the smallholder farmers are willing and able to pay for the germplasm. In some Latin American countries, private companies, government and NGOs provide farmers tree germplasm in a partnership in which farmers...

  10. Ground-water hydraulics, regional flow, and ground-water development of the Floridan aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama

    Science.gov (United States)

    Bush, Peter W.; Johnston, Richard H.

    1988-01-01

    The Floridan aquifer system is one of the major sources of groundwater supplies in the United States. This productive aquifer system underlies all of Florida, southeast Georgia, and small parts of adjoining Alabama and South Carolina, for a total area of about 100,000 square miles. About 3 billion gallons of water per day were withdrawn from the aquifer system in 1980, and in many areas the Floridan is the sole source of freshwater.

  11. Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5

    Science.gov (United States)

    Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.

    2014-01-01

    Groundwater resources from alluvial and bedrock aquifers of the Denver Basin are critical for municipal, domestic, and agricultural uses in Colorado along the eastern front of the Rocky Mountains. Rapid and widespread urban development, primarily along the western boundary of the Denver Basin, has approximately doubled the population since about 1970, and much of the population depends on groundwater for water supply. As part of the National Water-Quality Assessment Program, the U.S. Geological Survey conducted groundwater-quality studies during 2003–5 in the Denver Basin aquifer system to characterize water quality of shallow groundwater at the water table and of the bedrock aquifers, which are important drinking-water resources. For the Denver Basin, water-quality constituents of concern for human health or because they might otherwise limit use of water include total dissolved solids, fluoride, sulfate, nitrate, iron, manganese, selenium, radon, uranium, arsenic, pesticides, and volatile organic compounds. For the water-table studies, two monitoring-well networks were installed and sampled beneath agricultural (31 wells) and urban (29 wells) land uses at or just below the water table in either alluvial material or near-surface bedrock. For the bedrock-aquifer studies, domestic- and municipal-supply wells completed in the bedrock aquifers were sampled. The bedrock aquifers, stratigraphically from youngest (shallowest) to oldest (deepest), are the Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers. The extensive dataset collected from wells completed in the bedrock aquifers (79 samples) provides the opportunity to evaluate factors and processes affecting water quality and to establish a baseline that can be used to characterize future changes in groundwater quality. Groundwater samples were analyzed for inorganic, organic, isotopic, and age-dating constituents and tracers. This report discusses spatial and statistical distributions of chemical constituents

  12. Schedule Planning for Repairing Power Supply System

    OpenAIRE

    Kuo-Wei Lin; Chein-Jen Kang

    2012-01-01

    Problem statement: Taiwan is located in the tropical ocean areas. The strong typhoon in summer often causes the collapse of electric transmission towers and results in power outages that seriously affect peoples lives and industrial production. Approach: In light of this situation, this study aims to employ project management techniques of Theory of Constraints (TOC) to develop a practical TOC model to quickly repair the towers and restore power supplied system. Results: The actual applicatio...

  13. Designing an enhanced groundwater sample collection system

    Energy Technology Data Exchange (ETDEWEB)

    Schalla, R.

    1994-10-01

    As part of an ongoing technical support mission to achieve excellence and efficiency in environmental restoration activities at the Laboratory for Energy and Health-Related Research (LEHR), Pacific Northwest Laboratory (PNL) provided guidance on the design and construction of monitoring wells and identified the most suitable type of groundwater sampling pump and accessories for monitoring wells. The goal was to utilize a monitoring well design that would allow for hydrologic testing and reduce turbidity to minimize the impact of sampling. The sampling results of the newly designed monitoring wells were clearly superior to those of the previously installed monitoring wells. The new wells exhibited reduced turbidity, in addition to improved access for instrumentation and hydrologic testing. The variable frequency submersible pump was selected as the best choice for obtaining groundwater samples. The literature references are listed at the end of this report. Despite some initial difficulties, the actual performance of the variable frequency, submersible pump and its accessories was effective in reducing sampling time and labor costs, and its ease of use was preferred over the previously used bladder pumps. The surface seals system, called the Dedicator, proved to be useful accessory to prevent surface contamination while providing easy access for water-level measurements and for connecting the pump. Cost savings resulted from the use of the pre-production pumps (beta units) donated by the manufacturer for the demonstration. However, larger savings resulted from shortened field time due to the ease in using the submersible pumps and the surface seal access system. Proper deployment of the monitoring wells also resulted in cost savings and ensured representative samples.

  14. A New Geochemical Reaction Model for Groundwater Systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Through a survey of the literature on geology, hydrogeology and hydrogeochemistry, this paper presents a hydrogeochemical model for the groundwater system in a dross-dumping area of the Shandong Aluminium Plant. It is considered that the groundwater-bearing medium is a mineral aggregate and that the interactions between groundwater and the groundwater-bearing medium can be described as a series of geochemical reactions. On that basis, the principle of minimum energy and the equations of mass balance, electron balance and electric neutrality are applied to construct a linear programming mathematical model for the calculation of mass transfer between water and rock with the simplex method.

  15. Simulation of the Groundwater-Flow System in Pierce, Polk, and St. Croix Counties, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    Groundwater is the sole source of residential water supply in Pierce, Polk, and St. Croix Counties, Wisconsin. A regional three-dimensional groundwater-flow model and three associated demonstration inset models were developed to simulate the groundwater-flow systems in the three-county area. The models were developed by the U.S. Geological Survey in cooperation with the three county governments. The objectives of the regional model of Pierce, Polk, and St. Croix Counties were to improve understanding of the groundwaterflow system and to develop a tool suitable for evaluating the effects of potential water-management programs. The regional groundwater-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, groundwater/surface-water interactions, and groundwater withdrawals from high-capacity wells. Results from the regional model indicate that about 82 percent of groundwater in the three counties is from recharge within the counties; 15 percent is from surface-water sources, consisting primarily of recirculated groundwater seepage in areas with abrupt surface-water-level changes, such as near waterfalls, dams, and the downgradient side of reservoirs and lakes; and 4 percent is from inflow across the county boundaries. Groundwater flow out of the counties is to streams (85 percent), outflow across county boundaries (14 percent), and pumping wells (1 percent). These results demonstrate that the primary source of groundwater withdrawn by pumping wells is water that recharges within the counties and would otherwise discharge to local streams and lakes. Under current conditions, the St. Croix and Mississippi Rivers are groundwater discharge locations (gaining reaches) and appear to function as 'fully penetrating' hydraulic boundaries such that groundwater does not cross between Wisconsin and Minnesota beneath them. Being hydraulic boundaries, however, they can change in response to

  16. Understanding similarity of groundwater systems with empirical copulas

    Science.gov (United States)

    Haaf, Ezra; Kumar, Rohini; Samaniego, Luis; Barthel, Roland

    2016-04-01

    Within the classification framework for groundwater systems that aims for identifying similarity of hydrogeological systems and transferring information from a well-observed to an ungauged system (Haaf and Barthel, 2015; Haaf and Barthel, 2016), we propose a copula-based method for describing groundwater-systems similarity. Copulas are an emerging method in hydrological sciences that make it possible to model the dependence structure of two groundwater level time series, independently of the effects of their marginal distributions. This study is based on Samaniego et al. (2010), which described an approach calculating dissimilarity measures from bivariate empirical copula densities of streamflow time series. Subsequently, streamflow is predicted in ungauged basins by transferring properties from similar catchments. The proposed approach is innovative because copula-based similarity has not yet been applied to groundwater systems. Here we estimate the pairwise dependence structure of 600 wells in Southern Germany using 10 years of weekly groundwater level observations. Based on these empirical copulas, dissimilarity measures are estimated, such as the copula's lower- and upper corner cumulated probability, copula-based Spearman's rank correlation - as proposed by Samaniego et al. (2010). For the characterization of groundwater systems, copula-based metrics are compared with dissimilarities obtained from precipitation signals corresponding to the presumed area of influence of each groundwater well. This promising approach provides a new tool for advancing similarity-based classification of groundwater system dynamics. Haaf, E., Barthel, R., 2015. Methods for assessing hydrogeological similarity and for classification of groundwater systems on the regional scale, EGU General Assembly 2015, Vienna, Austria. Haaf, E., Barthel, R., 2016. An approach for classification of hydrogeological systems at the regional scale based on groundwater hydrographs EGU General Assembly

  17. Supply Chain Systems Architecture and Engineering Design: Green-field Supply Chain Integration

    OpenAIRE

    Radanliev, Petar

    2015-01-01

    This paper developed a new theory for supply chain architecture, and engineering design that enables integration of the business and supply chain strategies. The architecture starts with individual supply chain participants and derives insights into the complex and abstract concept of green-field integration design. The paper presented a conceptual system for depicting the interactions between business and supply chain strategy engineering. The system examines the decisions made when engineer...

  18. Supply Chain Systems Architecture and Engineering Design: Green-field Supply Chain Integration

    OpenAIRE

    Radanliev, Petar

    2015-01-01

    This paper developed a new theory for supply chain architecture, and engineering design that enables integration of the business and supply chain strategies. The architecture starts with individual supply chain participants and derives insights into the complex and abstract concept of green-field integration design. The paper presented a conceptual system for depicting the interactions between business and supply chain strategy engineering. The system examines the decisions made when engineer...

  19. Pumpage for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents ground-water discharged from the Death Valley regional ground-water flow system (DVRFS) through pumped wells. Pumping from wells in...

  20. 100 kBq m-3 Radon Activity Concentration in the Atmosphere of a Bathroom Supplied with Groundwater From A Gneissic Rock Area with Consanguineous Intrusions.

    Science.gov (United States)

    Søstrand, Per; Sverre, Langård; Danielsen, Tor Erik

    2016-12-01

    Inhalation of escaping radon from groundwater comprises the largest part of radiological hazard from groundwater radionuclides in the uranium and thorium series. Groundwater containing 1.5 mg dm uranium and 3 kBq dm radon activity concentration supplied an ordinary bathroom of 15 m in a home. Using the showerhead, atmospheric levels of radon activity in the bathroom exceeded 100 kBq m within a period of about 1 h.

  1. Radionuclides in groundwater flow system understanding

    Science.gov (United States)

    Erőss, Anita; Csondor, Katalin; Horváth, Ákos; Mádl-Szőnyi, Judit; Surbeck, Heinz

    2017-04-01

    Using radionuclides is a novel approach to characterize fluids of groundwater flow systems and understand their mixing. Particularly, in regional discharge areas, where different order flow systems convey waters with different temperature, composition and redox-state to the discharge zone. Radium and uranium are redox-sensitive parameters, which causes fractionation along groundwater flow paths. Discharging waters of regional flow systems are characterized by elevated total dissolved solid content (TDS), temperature and by reducing conditions, and therefore with negligible uranium content, whereas local flow systems have lower TDS and temperature and represent oxidizing environments, and therefore their radium content is low. Due to the short transit time, radon may appear in local systems' discharge, where its source is the soil zone. However, our studies revealed the importance of FeOOH precipitates as local radon sources throughout the adsorption of radium transported by the thermal waters of regional flow systems. These precipitates can form either by direct oxidizing of thermal waters at discharge, or by mixing of waters with different redox state. Therefore elevated radon content often occurs in regional discharge areas as well. This study compares the results of geochemical studies in three thermal karst areas in Hungary, focusing on radionuclides as natural tracers. In the Buda Thermal Karst, the waters of the distinct discharge areas are characterized by different temperature and chemical composition. In the central discharge area both lukewarm (20-35°C, 770-980 mg/l TDS) and thermal waters (40-65°C, 800-1350 mg/l TDS), in the South only thermal water discharge (33-43°C, 1450-1700 mg/l TDS) occur. Radionuclides helped to identify mixing of fluids and to infer the temperature and chemical composition of the end members for the central discharge area. For the southern discharge zone mixing components could not be identified, which suggests different cave

  2. The risk of supply of Surface/groundwater in the Laja River Basin in the State of Guanajuato, Mexico

    Science.gov (United States)

    Li, Yanmei; Knappett, Peter; Giardino, John Rick; Horacio Hernandez, Jesus; Aviles, Manuel; Rodriguez, Rodrigo Mauricio; Deng, Chao

    2016-04-01

    Water supply in Laja River Basin, located in an arid, semi-arid area of Central Mexico, is dependent primarily on groundwater. Although multiple users depend on this groundwater, the majority of the groundwater is used for commercial irrigation. The water table is swiftly being lowered, as the result of a rapidly growing population, expanding industries and increased commercial agriculture production in the State of Guanajuato. The average historic drawdown rate, measured in various wells across the aquifer, is ~1 m/yr; some wells approach 4 m/yr. Hydraulic heads are lower in wells in the central, low-lying areas of the basin, near the main branch of Laja River, than in wells located along the outer edges of the basin. The resulting water depth ranges from 70-130 m in most of the area. As wells are drilled deeper, at increased costs, to access the falling groundwater table, toxic levels of fluoride (F) and arsenic (As) are being reported for these wells. These increases in toxicity are possibly caused by induced upwelling of deeper groundwater. Based on analysis of the water, we suggest that the groundwater is fresh and suggest that the reservoir rock is not very reactive or the groundwater is young. Unfortunately, F and As were found to exceed Maximum Contaminant Levels (MCL) in several wells. Concentrations of F and As were correlated to Total Dissolved Solids (TDS) suggesting a mixing with older, deeper groundwater. Mapping of the watershed and channel geomorphology indicates that the Laja River tends to be gravel bedded in some locations and sand-bedded in other locations with highly erodible banks. At multiple sample locations, as many as four terraces were present, suggesting an actively down-cutting channel. Geophysical measurements suggest the river is well connected to the alluvial aquifer. Thus, prior to intensive pumping in the 1950's the Laja River may have been recharged by aquifers. Whereas the discharge in the Laja River is decreasing yearly, a

  3. In-situ remediation system for groundwater and soils

    Science.gov (United States)

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1991-01-01

    The present invention relates to a system for in-situ remediation of contaminated groundwater and soil. In particular the present invention relates to stabilizing toxic metals in groundwater and soil. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  4. Groundwater detection monitoring system design under conditions of uncertainty

    NARCIS (Netherlands)

    Yenigül, N.B.

    2006-01-01

    Landfills represent a wide-spread and significant threat to groundwater quality. In this thesis a methodology was developed for the design of optimal groundwater moni-toring system design at landfill sites under conditions of uncertainty. First a decision analysis approach was presented for optimal

  5. Climate impact on groundwater systems: the past is the key to the future

    Science.gov (United States)

    van der Ploeg, Martine; Cendón, Dioni; Haldorsen, Sylvi; Chen, Jinyao; Gurdak, Jason; Tujchneider, Ofelia; Vaikmäe, Rein; Purtschert, Roland; Chkir Ben Jemâa, Najiba

    2013-04-01

    Groundwater is a significant part of the global hydrological cycle and supplies fresh drinking water to almost half of the world's population. While groundwater supplies are buffered against short-term effects of climate variability, they can be impacted over longer time scales through changes in precipitation, ,evaporation, recharge rate, melting of glaciers or permafrost, vegetation, and land-use. Moreover, uncontrolled groundwater extraction has and will lead to irreversible depletion of fresh water resources in many areas. The impact of climate variability and groundwater extraction on the resilience of groundwater systems is still not fully understood (Green et al. 2011). Groundwater stores environmental and climatic information acquired during the recharge process, which integrates different signals, like recharge temperature, origin of precipitation, and dissolved constituents. This information can be used to estimate palaeo recharge temperatures, palaeo atmospheric dynamics and residence time of groundwater within the aquifer (Stute et al. 1995, Clark and Fritz 1997, Collon et al. 2000, Edmunds et al. 2003, Cartwright et al. 2007, Kreuzer et al. 2009, Currell et al. 2010, Raidla et al. 2012, Salem et al. 2012). The climatic signals incorporated by groundwater during recharge have the potential to provide a regionally integrated proxy of climatic variations at the time of recharge. Groundwater palaeoclimate information is affected by diffusion-dispersion processes (Davison and Airey, 1982) and/or water-rock interaction (Clark and Fritz, 1997), making palaeoclimate information deduced from groundwater inherently a low resolution record. While the signal resolution can be limited, recharge follows major climatic events, and more importantly, shows how those aquifers and their associated recharge varies under climatic forcing. While the characterization of groundwater resources, surface-groundwater interactions and their link to the global water cycle are an

  6. Estimation of groundwater recharge in sedimentary rock aquifer systems in the Oti basin of Gushiegu District, Northern Ghana

    Science.gov (United States)

    Afrifa, George Yamoah; Sakyi, Patrick Asamoah; Chegbeleh, Larry Pax

    2017-07-01

    Sustainable development and the management of groundwater resources for optimal socio-economic development constitutes one of the most effective strategies for mitigating the effects of climate change in rural areas where poverty is a critical cause of environmental damage. This research assessed groundwater recharge and its spatial and temporal variations in Gushiegu District in the Northern Region of Ghana, where groundwater is the main source of water supply for most uses. Isotopic data of precipitation and groundwater were used to infer the origin of groundwater and the possible relationship between groundwater and surface water in the partially metamorphosed sedimentary aquifer system in the study area. Though the data do not significantly establish strong relation between groundwater and surface water, the study suggests that groundwater in the area is of meteoric origin. However, the data also indicate significant enrichment of the heavy isotopes (18O and 2H) in groundwater relative to rainwater in the area. The Chloride Mass Balance (CMB) and Water Table Fluctuations (WTF) techniques were used to quantitatively estimate the groundwater recharge in the area. The results suggest groundwater recharge in a range of 13.9 mm/y - 218 mm/y, with an average of 89 mm/yr, representing about 1.4%-21.8% (average 8.9%) of the annual precipitation in the area. There is no clearly defined trend in the temporal variations of groundwater recharge in the area, but the spatial variations are discussed in relation to the underlying lithologies. The results suggest that the fraction of precipitation that reaches the saturated zone as groundwater recharge is largely controlled by the vertical hydraulic conductivities of the material of the unsaturated zone. The vertical hydraulic conductivity coupled with humidity variations in the area modulates the vertical infiltration and percolation of precipitation.

  7. Ultracapacitor-Based Uninterrupted Power Supply System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    The ultracapacitor-based uninterrupted power supply (UPS) system enhances system reliability; reduces life-of-system, maintenance, and downtime costs; and greatly reduces environmental impact when compared to conventional UPS energy storage systems. This design provides power when required and absorbs power when required to smooth the system load and also has excellent low-temperature performance. The UPS used during hardware tests at Glenn is an efficient, compact, maintenance-free, rack-mount, pure sine-wave inverter unit. The UPS provides a continuous output power up to 1,700 W with a surge rating of 1,870 W for up to one minute at a nominal output voltage of 115 VAC. The ultracapacitor energy storage system tested in conjunction with the UPS is rated at 5.8 F. This is a bank of ten symmetric ultracapacitor modules. Each module is actively balanced using a linear voltage balancing technique in which the cell-to-cell leakage is dependent upon the imbalance of the individual cells. The ultracapacitors are charged by a DC power supply, which can provide up to 300 VDC at 4 A. A constant-voltage, constant-current power supply was selected for this application. The long life of ultracapacitors greatly enhances system reliability, which is significant in critical applications such as medical power systems and space power systems. The energy storage system can usually last longer than the application, given its 20-year life span. This means that the ultracapacitors will probably never need to be replaced and disposed of, whereas batteries require frequent replacement and disposal. The charge-discharge efficiency of rechargeable batteries is approximately 50 percent, and after some hundreds of charges and discharges, they must be replaced. The charge-discharge efficiency of ultracapacitors exceeds 90 percent, and can accept more than a million charges and discharges. Thus, there is a significant energy savings through the efficiency improvement, and there is far less

  8. Hydrochemical characteristics of rural community groundwater supply in Blantyre, southern Malawi

    Science.gov (United States)

    Mapoma, Harold Wilson Tumwitike; Xie, Xianjun; Zhang, Liping; Nyirenda, Mathews Tananga; Maliro, Albert; Chimutu, Darlington

    2016-02-01

    The purpose of this research was to characterize the quality of groundwater for drinking and irrigation in Blantyre, Malawi as well as identify some geochemical processes governing mineralization of major and some minor elements. The aquifer studied is part of the extensive crystalline basement complex. The suitability and classification involved confirmatory analysis of the results with World Health Organization and Malawi Standards Board groundwater guideline values. The water samples were analyzed for major descriptors (pH, Temperature, turbidity, major ions, total dissolved solids and electrical conductivity (EC), using standard methods. Besides, arsenic, iron and fluoride were analyzed as well. Multivariate statistics (especially Hierarchical Cluster Analysis and Factor Analysis), hydrographical methods (i.e. Piper diagram) and geochemical modeling programs (AquaChem and PHREEQC) were used to characterize the quality and explain the sources and evolution of groundwater. Suitability of groundwater for irrigation was assessed using Wilcox method which identified BH01, BH16 and BH21 as high salinity areas. Incidentally, the three boreholes had relatively higher sulfate and nitrate concentrations than the rest. Nevertheless, the groundwater was found to be within acceptable limits for drinking quality except elevated concentrations of nitrate, fluoride and iron in some boreholes compared with WHO standards, despite meeting the national standards. Borehole BH01, BH02, BH07, BH13 and BH18 exhibited nitrate concentrations greater than national standards (45 mg/L) an indication of groundwater contamination. Furthermore, the groundwater is slightly acidic to slightly above neutral with total dissolved solids less than 500 mg/l. Generally, groundwater was undersaturated with respect to both calcite and dolomite while oversaturated with respect to halite, goethite and hematite. Silicate and carbonate weathering were identified as main mineral sources for major ions in

  9. Control of Groundwater Remediation Process as Distributed Parameter System

    Directory of Open Access Journals (Sweden)

    Mendel M.

    2014-12-01

    Full Text Available Pollution of groundwater requires the implementation of appropriate solutions which can be deployed for several years. The case of local groundwater contamination and its subsequent spread may result in contamination of drinking water sources or other disasters. This publication aims to design and demonstrate control of pumping wells for a model task of groundwater remediation. The task consists of appropriately spaced soil with input parameters, pumping wells and control system. Model of controlled system is made in the program MODFLOW using the finitedifference method as distributed parameter system. Control problem is solved by DPS Blockset for MATLAB & Simulink.

  10. Microbial degradation of chloroethenes in groundwater systems

    Science.gov (United States)

    Bradley, Paul M.

    The chloroethenes, tetrachloroethene (PCE) and trichloroethene (TCE) are among the most common contaminants detected in groundwater systems. As recently as 1980, the consensus was that chloroethene compounds were not significantly biodegradable in groundwater. Consequently, efforts to remediate chloroethene-contaminated groundwater were limited to largely unsuccessful pump-and-treat attempts. Subsequent investigation revealed that under reducing conditions, aquifer microorganisms can reductively dechlorinate PCE and TCE to the less chlorinated daughter products dichloroethene (DCE) and vinyl chloride (VC). Although recent laboratory studies conducted with halorespiring microorganisms suggest that complete reduction to ethene is possible, in the majority of groundwater systems reductive dechlorination apparently stops at DCE or VC. However, recent investigations conducted with aquifer and stream-bed sediments have demonstrated that microbial oxidation of these reduced daughter products can be significant under anaerobic redox conditions. The combination of reductive dechlorination of PCE and TCE under anaerobic conditions followed by anaerobic microbial oxidation of DCE and VC provides a possible microbial pathway for complete degradation of chloroethene contaminants in groundwater systems. Résumé Les chloroéthanes, tétrachloroéthane (PCE) et trichloroéthane (TCE) sont parmi les polluants les plus communs trouvés dans les aquifères. Depuis les années 1980, on considère que les chloroéthanes ne sont pas significativement biodégradables dans les aquifères. Par conséquent, les efforts pour dépolluer les nappes contaminées par des chloroéthanes se sont limités à des tentatives de pompage-traitement globalement sans succès. Des travaux ultérieurs ont montré que dans des conditions réductrices, des micro-organismes présents dans les aquifères peuvent, par réduction, dégrader les PCE et TCE en composés moins chlorés, comme le dichlor

  11. Detection of Septic System Waste in the Groundwaters of Southern California Using Emerging Contaminants and Isotopic Tracers

    Science.gov (United States)

    Huang, W.; Conkle, J.; Sickman, J. O.; Lucero, D.; Pang, F.; Gan, J.

    2011-12-01

    In California, groundwater supplies 30-40% of the State's water and in rapidly growing regions like the Inland Empire, groundwater makes up 80-90% of the municipal water supply. However, anthropogenic contamination could adversely affect groundwater quality and thereby reduce available supplies. Appropriate tracers are needed to identify groundwater contamination and protect human health. Stable isotopes δ15N and δ 18O offer unique information about the importance of nitrate sources and processes affecting nitrate in aquifers. We investigated the influence of septic systems on groundwater quality in and around the city of Beaumont, CA during 2010-11. Groundwater samples were collected from 38 active wells and 10 surface water sites in the region (urban and natural streams, agricultural drainage and groundwater recharge basins supplied by the California State Water Project). Stable isotopes and pharmaceuticals and personal care products (PPCPs) were analyzed for all the water samples. The variations of δ15N and δ 18O of nitrate were 2 - 21 per mil and -4 - 9 per mil respectively. δ15N-NO3 values greater than 10 per mil have been associated with nitrate inputs from sewage and animal waste, but in the Beaumont wells, PPCP concentrations were at or below the detection limit in most wells with high isotope ratios. We also observed a strong linear relationship between δ15N and δ 18O of nitrate (slope of~ 0.5) in the vast majority of our samples including those with high isotope ratios. Our results suggest that denitrification was widespread in the Beaumont aquifer and strongly affected the isotope composition of nitrate. In some wells, PPCPs (carbamazepine, sulfamethoxazole, primidone, meprobamate and diuron) and isotope measurements indicated inputs from human waste, but these sites were affected primarily by local waste-water treatment plant effluent. A mixing model was developed using multiple tracers to determine sources and contributions of groundwater

  12. Lyapunov Criteria for Structural Stability of Supply Chain System

    Institute of Scientific and Technical Information of China (English)

    LU Ying-jin; TANG Xiao-wo; ZHOU Zong-fang

    2004-01-01

    In this paper, based on Cobb-Douglas production function, the structural stability of the supply chain system are analyzed by employing Lyapunov criteria. That the supply chain system structure,with the variance of the rate of re-production input funding, becomes unstable is proved. Noticeably, the solutions shows that when the optimal combination of input parameter element, the qualitative properties of supply chain system change and the supply chain system becomes unstable.

  13. Artesian water supply control system in transient conditions

    Directory of Open Access Journals (Sweden)

    Костянтин Олегович Буравченко

    2016-06-01

    Full Text Available The paper describes an artesian water supply control system in the transition mode. The control system searches for the optimal performance trajectory of the water supply on the basis of a maximum return with a view to the fastest mode of stabilization. The analysis of artesian water supply control systems in transition mode and methods of improvement was conducted

  14. Ground-water flow and quality in Wisconsin's shallow aquifer system

    Science.gov (United States)

    Kammerer, P.A.

    1995-01-01

    The areal concentration distribution of commonmineral constituents and properties of ground water in Wisconsin's shallow aquifer system are described in this report. Maps depicting the water quality and the altitude of the water table are included. The shallow aquifer system in Wisconsin, composed of unconsolidated sand and gravel and shallow bedrock, is the source of most potable ground-water supplies in the State. Most ground water in the shallow aquifer system moves in local flow systems, but it interacts with regional flow systems in some areas.

  15. Supplementary report on the ground-water supplies of the Atlantic City region

    Science.gov (United States)

    Barksdale, Henry C.; Sundstrom, Raymond W.; Brunstein, Maurice S.

    1936-01-01

    This report is the second progress report on the ground-water investigations in the Atlantic City region. Many important problems still remain to be solved, however, and it is in no sense a final report.

  16. Fault tolerant system design for uninterruptible power supplies

    OpenAIRE

    B. Y. Volochiy; D. S. Kuznetsov

    2012-01-01

    The problem of design for reliability of a fault tolerant system for uninterruptible power supplies is considered. Configuration of a fault tolerant system determines the structure of an uninterruptible power supply: power supply built from modules of the same type, stand-by sliding reserve for them, twice total reserve of the power supply with two accumulator batteries, the controls and diagnostics means. The developed tool for automated analytical model of fault tolerant systems generation ...

  17. Simulation of Groundwater Flow in the Coastal Plain Aquifer System of Virginia

    Science.gov (United States)

    Heywood, Charles E.; Pope, Jason P.

    2009-01-01

    75 percent of the total groundwater withdrawn from Coastal Plain aquifers during the year 2000. Unreported self-supplied withdrawals were simulated in the groundwater model by specifying their probable locations, magnitudes, and aquifer assignments on the basis of a separate study of domestic-well characteristics in Virginia. The groundwater flow model was calibrated to 7,183 historic water-level observations from 497 observation wells with the parameter-estimation codes UCODE-2005 and PEST. Most water-level observations were from the Potomac aquifer system, which permitted a more complex spatial distribution of simulated hydraulic conductivity within the Potomac aquifer than was possible for other aquifers. Zone, function, and pilot-point approaches were used to distribute assigned hydraulic properties within the aquifer system. The good fit (root mean square error = 3.6 feet) of simulated to observed water levels and reasonableness of the estimated parameter values indicate the model is a good representation of the physical groundwater flow system. The magnitudes and temporal and spatial distributions of residuals indicate no appreciable model bias. The model is intended to be useful for predicting changes in regional groundwater levels in the confined aquifer system in response to future pumping. Because the transient release of water stored in low-permeability confining units is simulated, drawdowns resulting from simulated pumping stresses may change substantially through time before reaching steady state. Consequently, transient simulations of water levels at different future times will be more accurate than a steady-state simulation for evaluating probable future aquifer-system responses to proposed pumping.

  18. [Groundwater organic pollution source identification technology system research and application].

    Science.gov (United States)

    Wang, Xiao-Hong; Wei, Jia-Hua; Cheng, Zhi-Neng; Liu, Pei-Bin; Ji, Yi-Qun; Zhang, Gan

    2013-02-01

    Groundwater organic pollutions are found in large amount of locations, and the pollutions are widely spread once onset; which is hard to identify and control. The key process to control and govern groundwater pollution is how to control the sources of pollution and reduce the danger to groundwater. This paper introduced typical contaminated sites as an example; then carried out the source identification studies and established groundwater organic pollution source identification system, finally applied the system to the identification of typical contaminated sites. First, grasp the basis of the contaminated sites of geological and hydrogeological conditions; determine the contaminated sites characteristics of pollutants as carbon tetrachloride, from the large numbers of groundwater analysis and test data; then find the solute transport model of contaminated sites and compound-specific isotope techniques. At last, through groundwater solute transport model and compound-specific isotope technology, determine the distribution of the typical site of organic sources of pollution and pollution status; invest identified potential sources of pollution and sample the soil to analysis. It turns out that the results of two identified historical pollution sources and pollutant concentration distribution are reliable. The results provided the basis for treatment of groundwater pollution.

  19. [Hydrogeochemical characteristics of a typical karst groundwater system in Chongqing].

    Science.gov (United States)

    Yang, Ping-Heng; Lu, Bing-Qing; He, Qiu-Fang; Chen, Xue-Bin

    2014-04-01

    The two-year hydrologic process, hydrochemistry, and a portion of deltaD, delta18O of both the surface water at the inlet and the groundwater at the outlet, were investigated to identify the spatial and temporal variations of hydrogeochemistry in the Qingmuguan karst groundwater system. Research results show that there are wet and dry periods in the groundwater system owing to the striking influence of seasonal rainfall. The evolution of the chemical compositions in the groundwater is significantly influenced by the water and rock interaction, anthropogenic activities and rainwater dilution. The variations of the chemical compositions in the groundwater exhibit obvious spatiality and temporality. The deltaD and delta18O of the surface water beneath the local Meteoric Water Line of Chonqing indicate that the surface water is strongly evaporated. Furthermore, the deltaD and delta18O of the surface water are more positive in the dry period than in the wet period, showing a distinct seasonal effect. The deltaD and delta18O of the groundwater are quite stable and much negative compared with those of the surface water, which suggests that the rainwater recharge the groundwater via two pathways, one directly through sinkholes and the other via the vadose zone.

  20. Organic Carbon Fluxes in a Stressed Groundwater System

    Science.gov (United States)

    Baker, A.; Graham, P. W.; Grbich, N.; Chinu, K.; Yu, D.

    2013-12-01

    Dissolved Organic Carbon (DOC) flux in groundwater is poorly understood: influenced by recharge, extraction and surface processes. We reviewed existing datasets for DOC concentration and flux in Australian groundwater systems. In a temperate, semi-arid, Australian research site we measured variations in DOC content during a series of high intensity extraction and recovery events in the surrounding aquifer and abstracted groundwater. Groundwater was abstracted from a fractured basalt / metasediment aquifer overlain by residual soils and flanked by a Quaternary alluvial channel. Groundwater systems included the fractured rock system interconnected with the alluvial aquifer through a leaky aquitard and a perched aquifer held at the soil bedrock interface. Prior to and throughout the test, groundwater samples were collected from wells within the fractured rock, alluvial aquifer and soil bedrock interface and analysed for DOC. Initial DOC concentrations in the upper aquifer were ~2 mg/L, following pumping concentrations increased 36 mg/L (ave) peaking at 72 mg/L. In the lower aquifer initial TOC concentrations were ~1.6 mg/L, during pumping levels increased to 3.98 mg/L (ave) peaking at 14.32 mg/L. Results indicate the fractured rock aquifers ability to recharge was exceeded during intense pumping periods and a larger component of water was drawn from the upper aquifer. This increased the volume of water being drawn through the soil profile and increased DOC content in abstracted groundwater. Hydrological setting, well construction and pumping regime are likely to affect the concentration of DOC within abstracted groundwater. Further attention to abstracted groundwater as a component in terrestrial DOC fluxes is warranted.

  1. Cost analysis of ground-water supplies in the North Atlantic region, 1970

    Science.gov (United States)

    Cederstrom, Dagfin John

    1973-01-01

    report includes an analysis of test drilling costs leading to a production well field. The discussion shows that test drilling is a relatively low cost item and that more than a minimum of test holes in a previously unexplored area is, above all, simple insurance in keeping down costs and may easily result in final lower costs for the system. Use of the jet drill for testing is considered short sighted and may result in higher total costs and possibly failure to discover good aquifers. Economic development of ground water supplies will depend on obtaining qualified hydrologic and engineering advice, on carrying out adequate test drilling, and on utilizing high-quality (at times, more costly) material.

  2. Groundwater Regulation in the Houston-Galveston Region to Control Subsidence - Balancing Total Water Demand, Available Alternative Water Supplies, and Groundwater Withdrawal

    Science.gov (United States)

    Turco, M. J.

    2014-12-01

    In 1975, as a result of area residents and local governments becoming increasingly alarmed by the continued impact of subsidence on economic growth and quality of life in the region, the Harris-Galveston Coastal Subsidence District was created by the 64th Texas Legislature as an underground water conservation district. The primary mission of what is now the Harris-Galveston Subsidence District, is to provide for the regulation of the withdrawal of groundwater to control subsidence. Subsidence has been a concern in the Houston, TX area throughout most of recent history. Since 1906, over 10 feet of subsidence has occurred, with a broad area of 6 feet of subsidence throughout most of the Houston Area.Over its nearly forty years of existence, the District has developed substantial data sets providing the foundation for its regulatory plan. Annual water-level measurements, a network of deep extensometers, over 80 subsidence GPS monitors, and updated numerical and analytical models have been utilized. Periodically, the District utilizes U.S. Census data to predict the future magnitude and location of population and water demand. In 2013, all of these data sets were combined producing an updated regulatory plan outlining the timelines of conversion to alternative sources of water and defining the maximum percentage groundwater can contribute to a user's total water demand.The management of the groundwater resources within the District has involved significant coordination with regional ground and surface water suppliers; ongoing interaction with other state and local regulatory bodies; analysis of accurate and up to date predictions on water usage; the enforcement of real disincentives to those who rely too heavily on groundwater and a commitment to practicing and promoting water conservation.Water supplies in the region are projected to continue to be stressed in the future due to rapid population increases in the region. Future District efforts will be focused on

  3. An innovative artificial recharge system to enhance groundwater storage in basaltic terrain: example from Maharashtra, India

    Science.gov (United States)

    Bhusari, Vijay; Katpatal, Y. B.; Kundal, Pradeep

    2016-08-01

    The management of groundwater poses challenges in basaltic terrain as its availability is not uniform due to the absence of primary porosity. Indiscriminate excessive withdrawal from shallow as well as deep aquifers for meeting increased demand can be higher than natural recharge, causing imbalance in demand and supply and leading to a scarcity condition. An innovative artificial recharge system has been conceived and implemented to augment the groundwater sources at the villages of Saoli and Sastabad in Wardha district of Maharashtra, India. The scheme involves resectioning of a stream bed to achieve a reverse gradient, building a subsurface dam to arrest subsurface flow, and installation of recharge shafts to recharge the deeper aquifers. The paper focuses on analysis of hydrogeological parameters like porosity, specific yield and transmissivity, and on temporal groundwater status. Results indicate that after the construction of the artificial recharge system, a rise of 0.8-2.8 m was recorded in the pre- and post-monsoon groundwater levels in 12 dug wells in the study area; an increase in the yield was also noticed which solved the drinking water and irrigation problems. Spatial analysis was performed using a geographic information system to demarcate the area of influence of the recharge system due to increase in yields of the wells. The study demonstrates efficacy, technical viability and applicability of an innovative artificial recharge system constructed in an area of basaltic terrain prone to water scarcity.

  4. Geohydrology, geochemistry, and groundwater simulation (1992-2011) and analysis of potential water-supply management options, 2010-60, of the Langford Basin, California

    Science.gov (United States)

    Voronin, Lois M.; Densmore, Jill N.; Martin, Peter; Brush, Charles F.; Carlson, Carl S.; Miller, David M.

    2013-01-01

    Groundwater withdrawals began in 1992 from the Langford Basin within the Fort Irwin National Training Center (NTC), California. From April 1992 to December 2010, approximately 12,300 acre-feet of water (averaging about 650 acre-feet per year) has been withdrawn from the basin and transported to the adjacent Irwin Basin. Since withdrawals began, water levels in the basin have declined by as much as 40 feet, and the quality of the groundwater withdrawn from the basin has deteriorated. The U.S. Geological Survey collected geohydrologic data from Langford Basin during 1992–2011 to determine the quantity and quality of groundwater available in the basin. Geophysical surveys, including gravity, seismic refraction, and time-domain electromagnetic induction surveys, were conducted to determine the depth and shape of the basin, to delineate depths to the Quaternary-Tertiary interface, and to map the depth to the water table and changes in water quality. Data were collected from existing wells and test holes, as well as 11 monitor wells that were installed at 5 sites as part of this study. Water-quality samples collected from wells in the basin were used to determine the groundwater chemistry within the basin and to delineate potential sources of poor-quality groundwater. Analysis of stable isotopes of oxygen and hydrogen in groundwater indicates that present-day precipitation is not a major source of recharge to the basin. Tritium and carbon-14 data indicate that most of the basin was recharged prior to 1952, and the groundwater in the basin has an apparent age of 12,500 to 30,000 years. Recharge to the basin, estimated to be less than 50 acre-feet per year, has not been sufficient to replenish the water that is being withdrawn from the basin. A numerical groundwater-flow model was developed for the Langford Basin to better understand the aquifer system used by the Fort Irwin NTC as part of its water supply, and to provide a tool to help manage groundwater resources at

  5. Schedule Planning for Repairing Power Supply System

    Directory of Open Access Journals (Sweden)

    Kuo-Wei Lin

    2012-01-01

    Full Text Available Problem statement: Taiwan is located in the tropical ocean areas. The strong typhoon in summer often causes the collapse of electric transmission towers and results in power outages that seriously affect peoples lives and industrial production. Approach: In light of this situation, this study aims to employ project management techniques of Theory of Constraints (TOC to develop a practical TOC model to quickly repair the towers and restore power supplied system. Results: The actual application had verified that the research model could not only shorten the duration of work but also save the manpower and material expenses. Conclusion: It once again proved the excellent results of reparation operations by applying TOC to project management.

  6. Supply Chain as Complex Adaptive System and Its Modeling

    Institute of Scientific and Technical Information of China (English)

    MingmingWang

    2004-01-01

    Supply chain is a complex, hierarchical, integrated, open and dynamic network.Every node in the network is an independent business unit that unites other organizations to develop its value, the competition and cooperation between these units are basic impetus of the development and evolution of the supply chain system. The characteristics of supply chain as a complex adaptive system and its modeling are discussed in this paper, and use an example demonstrating the feasibility of CAS modeling in supply chain management study.

  7. Cyto- and genotoxic profile of groundwater used as drinking water supply before and after disinfection.

    Science.gov (United States)

    Pellacani, C; Cassoni, F; Bocchi, C; Martino, A; Pinto, G; Fontana, F; Furlini, M; Buschini, A

    2016-12-01

    The assessment of the toxicological properties of raw groundwater may be useful to predict the type and quality of tap water. Contaminants in groundwater are known to be able to affect the disinfection process, resulting in the formation of substances that are cytotoxic and/or genotoxic. Though the European directive (98/83/EC, which establishes maximum levels for contaminants in raw water (RW)) provides threshold levels for acute exposure to toxic compounds, the law does not take into account chronic exposure at low doses of pollutants present in complex mixture. The purpose of this study was to evaluate the cyto- and genotoxic load in the groundwater of two water treatment plants in Northern Italy. Water samples induced cytotoxic effects, mainly observed when human cells were treated with RW. Moreover, results indicated that the disinfection process reduced cell toxicity, independent of the biocidal used. The induction of genotoxic effects was found, in particular, when the micronucleus assay was carried out on raw groundwater. These results suggest that it is important to include bio-toxicological assays as additional parameters in water quality monitoring programs, as their use would allow the evaluation of the potential risk of groundwater for humans.

  8. CBTL Design Case Summary Conventional Feedstock Supply System - Herbaceous

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T. Wright; Erin M. Searcy

    2012-02-01

    A conventional bale feedstock design has been established that represents supply system technologies, costs, and logistics that are achievable today for supplying herbaceous feedstocks as a blendstock with coal for energy production. Efforts are made to identify bottlenecks and optimize the efficiency and capacities of this supply system, within the constraints of existing local feedstock supplies, equipment, and permitting requirements. The feedstock supply system logistics operations encompass all of the activities necessary to move herbaceous biomass feedstock from the production location to the conversion reactor ready for blending and insertion. This supply system includes operations that are currently available such that costs and logistics are reasonable and reliable. The system modeled for this research project includes the uses of field-dried corn stover or switchgrass as a feedstock to annually supply an 800,000 DM ton conversion facility.

  9. Artificial groundwater recharge as integral part of a water resources system in a humid environment

    Science.gov (United States)

    Kupfersberger, Hans; Stadler, Hermann

    2010-05-01

    In Graz, Austria, artificial groundwater recharge has been operated as an integral part of the drinking water supply system for more than thirty years. About 180 l/s of high quality water from pristine creeks (i.e. no pre-treatment necessary) are infiltrated via sand and lawn basins and infiltration trenches into two phreatic aquifers to sustain the extraction of approximately 400 l/s. The remaining third of drinking water for roughly 300.000 people is provided by a remote supply line from the East alpine karst region Hochschwab. By this threefold model the water supply system is less vulnerable to external conditions. In the early 1980's the infiltration devices were also designed as a hydraulic barrier against riverbank infiltration from the river Mur, which at that time showed seriously impaired water quality due to upstream paper mills. This resulted into high iron and manganese groundwater concentrations which lead to clogging of the pumping wells. These problems have been eliminated in the meantime due to the onsite purification of paper mill effluents and the construction of many waste water treatment plants. The recharge system has recently been thoroughly examined to optimize the operation of groundwater recharge and to provide a basis for further extension. The investigations included (i) field experiments and laboratory analyses to improve the trade off between infiltration rate and elimination capacities of the sand filter basins' top layer, (ii) numerical groundwater modelling to compute the recovery rate of the recharged water, the composition of the origin of the pumped water, emergency scenarios due to the failure of system parts, the transient capture zones of the withdrawal wells and the coordination of recharge and withdrawal and (iii) development of an online monitoring setup combined with a decision support system to guarantee reliable functioning of the entire structure. Additionally, the depreciation, maintenance and operation costs of the

  10. Groundwater Quality Assessment Based on Geographical Information System and Groundwater Quality Index

    Directory of Open Access Journals (Sweden)

    Zahra Derakhshan

    2015-06-01

    Full Text Available Iran is located in an arid and semi-arid part of the world. Accordingly, the management of the water resources in the country is a priority. In this regard, determining the quality and pollution of surface water and groundwater is very important, especially in areas where groundwater resources are used for drinking. Groundwater quality index (GQI checks the components of the available water with various quality levels. To assess the quality of drinking groundwater of Yazd-Ardakan plain according to GQI in geographical information system (GIS environment, the electrical conductivity, sodium, calcium, magnesium, chlorine, pH, sodium adsorption ratio, bicarbonate, sulfate, potassium, water hardness, and all substances dissolved in the waters of 80 wells were determined. The samples were obtained from Yazd Regional Water Organization from 2005 to 2014. Using this data, the map components were plotted by Kriging geostatistical method. Then, the map of GQI was prepared after normalizing each map component, switching to a rating map, and extracting the weight of each component from the rating map. Based on the GQI index map, the index point which was 87 in 2005 has increased to 81 in 2014. These maps show a decline in groundwater quality from west to the east region. This decline in groundwater quality is due to the existence of Neogene Organizations in the east and geomorphologic unit of the bare epandage pediment in the west. The map removal and single-parameter sensitivity analysis showed that GQI index in Yazd-Ardakan plain is more sensitive to the components of electrical conductivity (EC, total dissolved solids (TDS, and total hardness (TH. Therefore, these components should be monitored more carefully and repeatedly.

  11. Power supply system for KSTAR neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, W., E-mail: franciscocho@nfri.re.kr; Bae, Y.S.; Han, W.S.; Jeong, J.H.; Kim, J.S.; Park, H.T.; Yang, H.L.; Oh, Y.K.; Kwak, J.G.

    2015-10-15

    Highlights: • The power supply system in KSTAR NBI consists of DC power supplies for ion source. • For operation NBI, DC High Voltage based on the low voltage transformer with chopper. • The surge absorber near the ion source limit the energy deposited to accelerator grid. - Abstract: The power supply system in KSTAR neutral beam injector consists of low voltage and high current DC power supplies for plasma generator of ion source and high voltage and high current DC power supply for accelerator grid system. The arc discharge is initiated by an arc power supply supplying the arc voltage between the chamber wall and 12 filaments which are heated by individual filament power supply. The negative output of arc power supply is common to each positive output of 12 filament power supplies. To interrupt the arc discharging for the fault condition of the arc current unbalance, DCCT current monitor is placed at the positive output cable of the filament power supply. The plasma grid (G1) power supply has the maximum capability of 120 kV/70 A which consists of low voltage regulator with IGBT-switched chopper array system for the voltage control in unit of 600 V and the high voltage rectified transformers to supply DC voltage of 20 kV, 30 kV, and 50 kV. The output voltage of the G1 power supply is also connected to the input of the voltage divider system which supplies the gradient voltage to the gradient grid (G2) in the range of 80–90% of G1 voltage by changing tap of winding resistors in unit of 1%. The charged G1 voltage is turned on and off by the high voltage switch (HVS) system consisting of MOSFET fast semiconductor switches which can immediately be opened less than 1 μs when the ion source grid breakdown occurs. The decelerating grid (G3) power supply is inverter system using capacitor-charge power supply to supply maximum −5 kV/5 A. The important component in power supply system is the surge absorber near the ion source to limit the arc energy deposited to

  12. Characterization of groundwater quality destined for drinking water supply of Khenchela City (eastern Algeria

    Directory of Open Access Journals (Sweden)

    Benrabah Samia

    2016-09-01

    Full Text Available In spite of the abundance of water resources in the watershed of Khenchela region, the strong urban growth and the expansion of agricultural land resulted in a considerable increase in water needs. This fact exposed groundwater and surface vulnerability to an overlooked growing pollution.

  13. Simulation of Production Lines Supply within Internal Logistics Systems

    Science.gov (United States)

    Čujan, Zdeněk

    2016-11-01

    Supplying of production lines is a complex logistic process, which is very difficult with regards to the requirements of its operation and scheduling. For this reason, this supplying process demands an increased attention. Application of a computer simulation is an efficient tool suitable for solution of the supplying logistic questions. In this paper the application possibilities of the software Tecnomatix Plant Simumlation specified for simulation of the supplying process by means of the system Milk Run will be presented.

  14. Improved aquifer characterization and the optimization of the design of brackish groundwater desalination systems

    KAUST Repository

    Malivaa, Robert G.

    2011-07-01

    Many water scarce regions possess brackish-water resources that can be desalted to provide alternative water supplies. Brackish groundwater desalination by reverse osmosis (RO) is less expensive than seawater systems because of reduced energy and pretreatment requirements and lesser volumes of concentrate that require disposal. Development of brackish groundwater wellfields include the same hydraulic issues that affect conventional freshwater wellfields. Managing well interference and prevention of adverse impacts such as land subsidence are important concerns. RO systems are designed to treat water whose composition falls within a system-specific envelope of salinities and ion concentrations. A fundamental requirement for the design of brackish groundwater RO systems is prediction of the produced water chemistry at both the start of pumping and after 10-20 years of operation. Density-dependent solute-transport modeling is thus an integral component of the design of brackish groundwater RO systems. The accuracy of groundwater models is dependent upon the quality of the hydrogeological data upon which they are based. Key elements of the aquifer characterization are the determination of the three-dimensional distribution of salinity within the aquifer and the evaluation of aquifer heterogeneity with respect to hydraulic conductivity. It is necessary to know from where in a pumped aquifer (or aquifer zone) water is being produced and the contribution of vertical flow to the produced water. Unexpected, excessive vertical migration (up-coning) of waters that are more saline has adversely impacted some RO systems because the salinity of the water delivered to the system exceeded the system design parameters. Improved aquifer characterization is possible using advanced geophysical techniques, which can, in turn, lead to more accurate solute-transport models. Advanced borehole geophysical logs, such as nuclear magnetic resonance, were run as part of the exploratory test

  15. Control technology in supply systems. Regelungstechnik in der Versorgungstechnik

    Energy Technology Data Exchange (ETDEWEB)

    Bach, H.; Baumgarth, S.; Forsch, K.; Reeker, J.; Krinninger, H.; Ruosch, E.; Schaefer, A.; Schiele, J.; Schroeder, H.; Treusch, W.

    1983-01-01

    The textbook presents the theoretical fundamentals and practical examples of control technology in supply systems. Practical examples of the fields of heating, air conditioning, and gas supply are presented in detail. The book comprises the following chapters: 1. Introduction to control technology; 2. steady state and time behaviour of control loop elements; 3. controlled systems; 4. control equipment; 5. control elements; 6. closed loops; 7. preset control; 8. meshed control loops; 9. digital control technology; 10. central control systems for supply systems of buildings; 11. examples of supply systems control.

  16. Groundwater systems of the Indian Sub-Continent

    Directory of Open Access Journals (Sweden)

    Abhijit Mukherjee

    2015-09-01

    Full Text Available The Indian Sub-Continent is one of the most densely populated regions of the world, hosting ∼23% of the global population within only ∼3% of the world's land area. It encompasses some of the world's largest fluvial systems in the world (River Brahmaputra, Ganges and Indus Basins, which hosts some of the highest yielding aquifers in the world. The distribution of usable groundwater in the region varies considerably and the continued availability of safe water from many of these aquifers (e.g. Bengal Basin is constrained by the presence of natural contaminants. Further, the trans-boundary nature of the aquifers in the Indian Sub-Continent makes groundwater resource a potentially politically sensitive issue, particularly since this region is the largest user of groundwater resources in the world. Indeed, there is considerable concern regarding dwindling well yield and declining groundwater levels, even for the highly productive aquifers. Though irrigation already accounts for >85% of the total ground water extraction of the region, there is a mounting pressure on aquifers for food security of the region. Highly variable precipitation, hydrogeological conditions and predicted, impending climate change effects provide substantial challenges to groundwater management. The observed presence of natural groundwater contaminants together with the growing demand for irrigated food production and predicted climate change further complicate the development of strategies for using groundwater resources sustainably. We provide an introduction and overview of 11 articles, collated in this special issue, which describe the current condition of vulnerable groundwater resources across the Indian Sub-Continent.

  17. Magnetically switched power supply system for lasers

    Science.gov (United States)

    Pacala, Thomas J. (Inventor)

    1987-01-01

    A laser power supply system is described in which separate pulses are utilized to avalanche ionize the gas within the laser and then produce a sustained discharge to cause the gas to emit light energy. A pulsed voltage source is used to charge a storage device such as a distributed capacitance. A transmission line or other suitable electrical conductor connects the storage device to the laser. A saturable inductor switch is coupled in the transmission line for containing the energy within the storage device until the voltage level across the storage device reaches a predetermined level, which level is less than that required to avalanche ionize the gas. An avalanche ionization pulse generating circuit is coupled to the laser for generating a high voltage pulse of sufficient amplitude to avalanche ionize the laser gas. Once the laser gas is avalanche ionized, the energy within the storage device is discharged through the saturable inductor switch into the laser to provide the sustained discharge. The avalanche ionization generating circuit may include a separate voltage source which is connected across the laser or may be in the form of a voltage multiplier circuit connected between the storage device and the laser.

  18. CBTL Design Case Summary Conventional Feedstock Supply System - Woody

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T. Wright; Erin M. Searcy

    2012-02-01

    A conventional woody feedstock design has been developed that represents supply system technologies, costs, and logistics that are achievable today for supplying woody biomass as a blendstock with coal for energy production. Efforts are made to identify bottlenecks and optimize the efficiency and capacities of this supply system, within the constraints and consideration of existing local feedstock supplies, equipment, and permitting requirements. The feedstock supply system logistics operations encompass all of the activities necessary to move woody biomass from the production location to the conversion reactor ready for blending and insertion. This supply system includes operations that are currently available such that costs and logistics are reasonable and reliable. The system modeled for this research project includes the use of the slash stream since it is a more conservative analysis and represents the material actually used in the experimental part of the project.

  19. IEA Response System for Oil Supply Emergencies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-15

    Emergency response to oil supply disruptions has remained a core mission of the International Energy Agency since its founding in 1974. This information pamphlet explains the decisionmaking process leading to an IEA collective action, the measures available -- focusing on stockdraw -- and finally, the historical background of major oil supply disruptions and the IEA response to them. It also demonstrates the continuing need for emergency preparedness, including the growing importance of engaging key transition and emerging economies in dialogue about energy security.

  20. IEA Response System for Oil Supply Emergencies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    Emergency response to oil supply disruptions has remained a core mission of the International Energy Agency since its founding in 1974. This information pamphlet explains the decisionmaking process leading to an IEA collective action, the measures available -- focusing on stockdraw -- and finally, the historical background of major oil supply disruptions and the IEA response to them. It also demonstrates the continuing need for emergency preparedness, including the growing importance of engaging key transition and emerging economies in dialogue about energy security.

  1. Simulations of groundwater flow and particle-tracking analysis in the zone of contribution to a public-supply well in San Antonio, Texas

    Science.gov (United States)

    Lindgren, Richard L.; Houston, Natalie A.; Musgrove, MaryLynn; Fahlquist, Lynne S.; Kauffman, Leon J.

    2011-01-01

    In 2006, a public-supply well in San Antonio, Texas, was selected for intensive study to assess the vulnerability of public-supply wells in the Edwards aquifer to contamination by a variety of compounds. A local-scale, steady-state, three-dimensional numerical groundwater-flow model was developed and used in this study to evaluate the movement of water and solutes from recharge areas to the selected public-supply well. Particle tracking was used to compute flow paths and advective traveltimes throughout the model area and to delineate the areas contributing recharge and zone of contribution for the selected public-supply well.

  2. Life Cycle Multi-Criteria Analysis Of Alternative Energy Supply Systems For A Residential Building

    Directory of Open Access Journals (Sweden)

    Artur Rogoža

    2013-12-01

    Full Text Available The article analyses energy supply alternatives for a partially renovated residential building. In addition to the existing district heating (base case alternative systems, gas boilers, heat pumps (air-water and ground-water, solar collectors, solar cells, and combinations of these systems have been examined. Actual heat consumption of the building and electricity demand determined by the statistical method are used for simulating the systems. The process of simulation is performed using EnergyPro software. In order to select an optimal energy supply option, the life cycle analysis of all systems has been carried out throughout a life span of the building, and the estimated results of energy, environmental and economic evaluation have been converted into non-dimensional variables (3E using multi–criteria analysis.Article in Lithuanian

  3. Investigations of groundwater system and simulation of regional groundwater flow for North Penn Area 7 Superfund site, Montgomery County, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Goode, Daniel J.

    2013-01-01

    Groundwater in the vicinity of several industrial facilities in Upper Gwynedd Township and vicinity, Montgomery County, in southeast Pennsylvania has been shown to be contaminated with volatile organic compounds (VOCs), the most common of which is the solvent trichloroethylene (TCE). The 2-square-mile area was placed on the National Priorities List as the North Penn Area 7 Superfund site by the U.S. Environmental Protection Agency (USEPA) in 1989. The U.S. Geological Survey (USGS) conducted geophysical logging, aquifer testing, and water-level monitoring, and measured streamflows in and near North Penn Area 7 from fall 2000 through fall 2006 in a technical assistance study for the USEPA to develop an understanding of the hydrogeologic framework in the area as part of the USEPA Remedial Investigation. In addition, the USGS developed a groundwater-flow computer model based on the hydrogeologic framework to simulate regional groundwater flow and to estimate directions of groundwater flow and pathways of groundwater contaminants. The study area is underlain by Triassic- and Jurassic-age sandstones and shales of the Lockatong Formation and Brunswick Group in the Mesozoic Newark Basin. Regionally, these rocks strike northeast and dip to the northwest. The sequence of rocks form a fractured-sedimentary-rock aquifer that acts as a set of confined to partially confined layers of differing permeabilities. Depth to competent bedrock typically is less than 20 ft below land surface. The aquifer layers are recharged locally by precipitation and discharge locally to streams. The general configuration of the potentiometric surface in the aquifer is similar to topography, except in areas affected by pumping. The headwaters of Wissahickon Creek are nearby, and the stream flows southwest, parallel to strike, to bisect North Penn Area 7. Groundwater is pumped in the vicinity of North Penn Area 7 for industrial use, public supply, and residential supply. Results of field investigations

  4. Power supply devices and systems of relay protection

    CERN Document Server

    Gurevich, Vladimir

    2013-01-01

    Power Supply Devices and Systems of Relay Protection brings relay protection and electrical power engineers a single, concentrated source of information on auxiliary power supply systems and devices. The book also tackles specific problems and solutions of relay protection power supply systems and devices, which are often not dealt with in the literature. The author, an experienced engineer with more than 100 patents, draws on his own experience to offer practical, tested advice to readers. A Guide to Relay Protection Power Supply for Engineers and Technicians The first chapter reviews the ele

  5. Fault tolerant system design for uninterruptible power supplies

    Directory of Open Access Journals (Sweden)

    B. Y. Volochiy

    2012-02-01

    Full Text Available The problem of design for reliability of a fault tolerant system for uninterruptible power supplies is considered. Configuration of a fault tolerant system determines the structure of an uninterruptible power supply: power supply built from modules of the same type, stand-by sliding reserve for them, twice total reserve of the power supply with two accumulator batteries, the controls and diagnostics means. The developed tool for automated analytical model of fault tolerant systems generation and illustration of its capabilities in determination of requirements for repair service and accumulator batteries are given.

  6. Flexible Workflow Management in Agile Supply Chain System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With the vehement development of global competition , Agile Supply Chain (ASC) becomes an effective approach that supports dynamic ent erprise alliance and realizes agile manufacturing, as for the enterprises to cap ture market opportunities rapidly and strengthen their anti-risk ability. As Ag ile Supply Chain System (ASCS) is dynamic and distributed, the realization of it 's processes needs to be much flexible. Often in Agile Supply Chain System (ASCS ), there are many dynamic tasks, many changes of the ...

  7. Groundwater flow systems in the great Aletsch glacier region (Valais, Switzerland)

    Science.gov (United States)

    Alpiger, Andrea; Loew, Simon

    2014-05-01

    Groundwater flow systems in Alpine areas are often complex and challenging to investigate due to special topographic and climatic conditions governing groundwater recharge and bedrock flow. Studies seeking to characterize high-alpine groundwater systems remain rare, but are of high interest, e.g. for water supply, hydropower systems, traffic tunnels or rock slope deformation and landslide hazards. The goal of this study is to better understand the current and past groundwater flow systems of the UNESCO World Heritage mountain ridge separating the great Aletsch glacier and the Rhone valley, considering climatic and glacier fluctuations during the Lateglacial and Holocene periods. This ridge is crossed by a hydropower bypass drift (Riederhornstollen) and is composed of fractured crystalline rocks overlain by various types of landslides and glacial deposits. Surface hydrology observations (fracture properties, groundwater seepage, spring lines and physico-chemical parameters) and hydropower drift inflow measurements contributed to the characterization of bedrock hydraulic conductivities and preferential groundwater pathways. Basic conceptual hydrogeological models were tested with observed drift inflows and the occurrence of springs using free-surface, variably saturated, vertical 2D groundwater flow models (using the code SEEP/W from GeoStudio 2007). Already simple two-layer models, representing profile sections orthogonal to the mountain ridge, provided useful results. Simulations show that differences in the occurrence of springs on each side of the mountain ridge are likely caused by the occurrence of glacial till (generating perched groundwater), the deep-seated sagging landslide mass, faults and asymmetric ridge topography, which together force the main groundwater flow direction to be oriented towards the Rhone valley, even from beyond the mountain ridge. Surprisingly, the most important springs (those with high discharge rates) are located at high elevations

  8. Environmental pollutions impacts on the bacteriological and physicochemical quality of suburban and rural groundwater supplies in Marrakesh area (Morocco).

    Science.gov (United States)

    Lamrani Alaoui, H; Oufdou, K; Mezrioui, N

    2008-10-01

    This study scrutinized bacteriological and chemical quality of groundwater supplies of Marrakesh (Morocco) within a year. It assessed the influence of some chemical factors on fecal and opportunistic pathogenic bacterial communities. The annual average densities of fecal coliforms, fecal streptococci and Pseudomonas aeruginosa were respectively: 1891 colony forming units (CFU)/100 mL, 1246 CFU/100 mL and 206 CFU/100 mL. The total occurrence of these bacteria during the period of study was 94%. Detectable non-O1 Vibrio cholerae was present in 81% of samples and the mean abundances ranged from 0 to 11100 MPN/100 mL. Significant correlations between fecal coliforms and streptococci and between fecal coliforms and non-O1 V. cholerae (p pollution to acceptable levels.

  9. Research about the Control of Geological Structure on Karst Groundwater system in Zhangfang, Beijing,China.

    Science.gov (United States)

    Qiao, X.

    2015-12-01

    Carbonate formations are intensively distributed throughout Zhangfang, fangshan, in West Mountain area in Beijing. Karst groundwater exits among the geological fracture network which is characterized by the different arrangements and levels in different types of fracture networks and structures. The influence of the tectonic environment on the dynamic change rule and the enrichment regulation of karst system is significant for the exploitation and protection of karst groundwater resources. From the control function of fault and fracture point of view, based on the developmental and distribution pattern of multi-episodic tectonism, this study analyzed fractures in the three-fold structural units characterized by NE-NW and NS trends and discussed the influence of multi-episodic tectonism on the groundwater flow system and rich water zones. The results showed that the geological fracture underwent two episodes of tectonism, thrusting nappe in the Jurassic and extension in the Cretaceous. The overprint of two episodes resulted in a number of faults with high hydraulic conductivity, which serve as conduits. The superiority joints groups are in the NE and NW directions, with conjugated characteristics. The high-angle or vertical dips directly benefit infiltration. The fractures in the intersection areas have formed groundwater runoff channels and strong space, controlling water-rich zones such as Baidai, Ganchi-Changgou and Gaozhuang-Shiwo. Magmatic rock and the aquiclude also contribute to the rich water zones and the location of springs, all of which have important significance for water supply. Keywords: system of Karst groundwater, geological structure, fracture network, hydrogeological flow field, Zhangfang karst area

  10. Standard sample supply system; Hyojun shiryo kyokyu system

    Energy Technology Data Exchange (ETDEWEB)

    Osaka, S. [Center for Coal Utilization Japan, Tokyo (Japan)

    1997-03-20

    More than 20 universities and research institutes participate in the study of developing basic technology of coal utilization, and the `Standard sample supply system` prepares, keeps and supplys standard samples so that common samples can be used in the study. Coal samples of 50 to 100 will be prepared for 5 years. A coal sample is about 160 kg. The samples are collected from coal yards of big consumers such as power stations, etc. and coal suppliers. How to smash and keep coal are also described. Main facilities and machinery and their specification are given. Each standard sample is analyzed by means of the coal and ash analysis method of JIS and the data are distributed. The items of the analysis are shown in table. A database system will be prepared by the end of 1996. 2 figs., 2 tabs.

  11. Sourcing and pricing strategies for two retailers in a decentralized supply chain system under supply disruption

    Directory of Open Access Journals (Sweden)

    M.A. Azarmehr

    2012-01-01

    Full Text Available This paper presents the decentralized supply chain with two suppliers and two competing retailers. It also investigates the sourcing and pricing strategies of two retailers in a decentralized supply chain system under a supply disruption environment. These retailers face their individual stochastic demand markets; however, they compete with each other through a two-stage price and service operation. The interactive dynamics among retailers is characterized, including the existence and uniqueness of the Nash Equilibrium in service and price games demonstrated.

  12. 24 CFR 3280.704 - Fuel supply systems.

    Science.gov (United States)

    2010-04-01

    ...), shall be delivered from the system into the gas supply connection. (b) LP-gas containers—(1) Maximum... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Fuel supply systems. 3280.704 Section 3280.704 Housing and Urban Development Regulations Relating to Housing and Urban Development...

  13. 30 CFR 36.27 - Fuel-supply system.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fuel-supply system. 36.27 Section 36.27 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... Construction and Design Requirements § 36.27 Fuel-supply system. (a) Fuel tank. (1) The fuel tank shall...

  14. Microflora of drinking water distributed through decentralized supply systems (Tomsk)

    Science.gov (United States)

    Khvaschevskaya, A. A.; Nalivaiko, N. G.; Shestakova, A. V.

    2016-03-01

    The paper considers microbiological quality of waters from decentralized water supply systems in Tomsk. It has been proved that there are numerous microbial contaminants of different types. The authors claim that the water distributed through decentralized supply systems is not safe to drink without preliminary treatment.

  15. A supply chain approach to biochar systems [Chapter 2

    Science.gov (United States)

    Nathaniel M. Anderson; Richard D. Bergman; Deborah S. Page-Dumroese

    2017-01-01

    Biochar systems are designed to meet four related primary objectives: improve soils, manage waste, generate renewable energy, and mitigate climate change. Supply chain models provide a holistic framework for examining biochar systems with an emphasis on product life cycle and end use. Drawing on concepts in supply chain management and engineering, this chapter presents...

  16. Contamination of Groundwater Systems in the US and Canada by Enteric Pathogens, 1990–2013: A Review and Pooled-Analysis

    Science.gov (United States)

    Hynds, Paul Dylan; Thomas, M. Kate; Pintar, Katarina Dorothy Milena

    2014-01-01

    Background Up to 150 million North Americans currently use a groundwater system as their principal drinking water source. These systems are a potential source of exposure to enteric pathogens, contributing to the burden of waterborne disease. Waterborne disease outbreaks have been associated with US and Canadian groundwater systems over the past two decades. However, to date, this literature has not been reviewed in a comprehensive manner. Methods and Principal Findings A combined review and pooled-analysis approach was used to investigate groundwater contamination in Canada and the US from 1990 to 2013; fifty-five studies met eligibility criteria. Four study types were identified. It was found that study location affects study design, sample rate and studied pathogen category. Approximately 15% (316/2210) of samples from Canadian and US groundwater sources were positive for enteric pathogens, with no difference observed based on system type. Knowledge gaps exist, particularly in exposure assessment for attributing disease to groundwater supplies. Furthermore, there is a lack of consistency in risk factor reporting (local hydrogeology, well type, well use, etc). The widespread use of fecal indicator organisms in reported studies does not inform the assessment of human health risks associated with groundwater supplies. Conclusions This review illustrates how groundwater study design and location are critical for subsequent data interpretation and use. Knowledge gaps exist related to data on bacterial, viral and protozoan pathogen prevalence in Canadian and US groundwater systems, as well as a need for standardized approaches for reporting study design and results. Fecal indicators are examined as a surrogate for health risk assessments; caution is advised in their widespread use. Study findings may be useful during suspected waterborne outbreaks linked with a groundwater supply to identify the likely etiological agent and potential transport pathway. PMID:24806545

  17. Research of Agile Supply Chain Management Decision Support System

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Agile Supply Chain Management (ASCM) is an important topic and has received much attention recently.ASCM is a new management technology.Agile Supply Chain Management Decision Support System (ASCM-DSS) is presented.Firstly, agile supply chain management technology is introduced.Secondly a decision support system for agile supply chain management is proposed.Then, the implementation of ASCM-DSS in enterprise is discussed.Finally, a fuzzy intelligence decision-making process in Shanghai Turbine Generator Company (STGC) is described in detail.

  18. Permafrost thaw in a nested groundwater-flow system

    Science.gov (United States)

    McKenzie, Jeffery M.; Voss, Clifford I.

    2013-01-01

    Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding

  19. Ecohydrological Investigations of a Groundwater-Lake System

    DEFF Research Database (Denmark)

    Frandsen, Mette Cristine Schou

    I). •Does dense bottom vegetation affect the small scale hydrology of the lake bed sediment? (Paper 2). •How can natural tracers (δ 18O) be used to quantify the temporal variation in groundwater seepage dynamics? (Paper 3). •Is it possible to combine ecological data of surface water chemistry...... and data on groundwater chemistry to stoichiometrically describe changes in the lake in a historical time frame? (Paper 4). he main conclusions from the study are: •When evaluating the ecology of a groundwater-lake system, both hydrological and biological parameters are needed to accurately describe...... by this. The reasons for the lowered hydraulic conductivity seems to be an combination of the organic content in the sediment (i.e. the roots of the plants) and a vegetation induced entrapment of fine particles in the sediment. Over the course of three years I followed the small scale variation...

  20. Management of the Arsenic Groundwater System Lagunera - MEXICO

    Science.gov (United States)

    Boochs, P. W.; Billib, M.; Aparicio, J.; Gutierrez, C.

    2007-05-01

    mixing of "young" water with less arsenic and "old" water with high arsenic was excluded, which results in the long term to higher arsenic concentrations in the groundwater. In order to understand the actual situation and to prognosticate the further development of the arsenic concentration in the Comarca Lagunera region, it was necessary to reproduce the historical development with a simulation model which includes the different anthropogenic impacts. For this purpose the groundwater model MODFLOW was used and the investigation area of about 7000 sq km was divided by a regular square grid with a mesh size of 1 km. The calibration of the model started with steady state conditions, using an assumed, uninfluenced "original status" of 1900. Subsequently, the influence of the immensely rising groundwater discharge beginning 1950 and the canalization of the river Nazas were simulated and the results were compared with measurements at selected times. The prognostic calculations showed, that the increase of the arsenic concentration will go on in the future under the present conditions of overpumping. Therefore, it has to be reduced. To control the arsenic migration towards the urban wells for dringking water supply artificial recharge can be done. Another possibility is a treatment, especially subterranean, of arsenic or to use surface water for drinking water purposes.

  1. Groundwater and security

    NARCIS (Netherlands)

    Conti, K.I.; Kukurić, N.; Gupta, J.; Pahl-Wostl, C.; Bhaduri, A.; Gupta, J.

    2016-01-01

    Humans abstract two hundred times more groundwater than oil, annually. Ironically, the role of groundwater in water management and supply is underappreciated, partially due to its invisibility. By conducting a literature survey and investigating groundwater information databases, this chapter answer

  2. Limits to global groundwater consumption

    Science.gov (United States)

    de Graaf, I.; Van Beek, L. P.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2016-12-01

    Groundwater is the largest accessible freshwater resource worldwide and is of critical importance for irrigation, and so for global food security. For many regions of the world where groundwater abstraction exceeds groundwater recharge, persistent groundwater depletion occurs. A direct consequence of depletion is falling groundwater levels, reducing baseflows to rivers, harming ecosystems. Also, pumping costs increase, wells dry up and land subsidence can occur. Water demands are expected to increase further due to growing population, economic development and climate change, posing the urgent question how sustainable current water abstractions are worldwide and where and when these abstractions approach conceivable limits with all the associated problems. Here, we estimated past and future trends (1960-2050) in groundwater levels resulting from changes in abstractions and climate and predicted when limits of groundwater consumption are reached. We explored these limits by predicting where and when groundwater levels drop that low that groundwater becomes unattainable for abstractions and how river flows are affected. Water availabilities, abstractions, and lateral groundwater flows are simulated (5 arcmin. resolution) using a coupled version of the global hydrological model PCR-GLOBWB and a groundwater model based on MODFLOW. The groundwater model includes a parameterization of the worlds confined and unconfined aquifer systems, needed for a realistic simulation of groundwater head dynamics. Results show that, next to the existing regions experiencing groundwater depletion (like India, Pakistan, Central Valley) new regions will develop, e.g. Southern Europe, the Middle East, and Africa. Using a limit that reflects present-day feasibility of groundwater abstraction, we estimate that in 2050 groundwater becomes unattainable for 20% of the global population, mainly in the developing countries and pumping cost will increase significantly. Largest impacts are found

  3. [Groundwater].

    Science.gov (United States)

    González De Posada, Francisco

    2012-01-01

    From the perspective of Hydrogeology, the concept and an introductory general typology of groundwater are established. From the perspective of Geotechnical Engineering works, the physical and mathematical equations of the hydraulics of permeable materials, which are implemented, by electric analogical simulation, to two unique cases of global importance, are considered: the bailing during the construction of the dry dock of the "new shipyard of the Bahia de Cádiz" and the waterproofing of the "Hatillo dam" in the Dominican Republic. From a physical fundamental perspective, the theories which are the subset of "analogical physical theories of Fourier type transport" are related, among which the one constituted by the laws of Adolf Fick in physiology occupies a historic role of some relevance. And finally, as a philosophical abstraction of so much useful mathematical process, the one which is called "the Galilean principle of the mathematical design of the Nature" is dealt with.

  4. Effective groundwater modeling of the data-poor Nubian Aquifer System (Chad, Egypt, Libya, Sudan) - use of parsimony and 81Kr-based groundwater ages (Invited)

    Science.gov (United States)

    Voss, C. I.; Soliman, S. M.; Aggarwal, P. K.

    2013-12-01

    Important information for management of large aquifer systems can be obtained via a parsimonious approach to groundwater modeling, in part, employing isotope-interpreted groundwater ages. ';Parsimonious' modeling implies active avoidance of overly-complex representations when constructing models. This approach is essential for evaluation of aquifer systems that lack informative hydrogeologic databases. Even in the most remote aquifers, despite lack of typical data, groundwater ages can be interpreted from isotope samples at only a few downstream locations. These samples incorporate hydrogeologic information from the entire upstream groundwater flowpath; thus, interpreted ages are among the most-effective information sources for groundwater model development. This approach is applied to the world's largest non-renewable aquifer, the transboundary Nubian Aquifer System (NAS) of Chad, Egypt, Libya and Sudan. In the NAS countries, water availability is a critical problem and NAS can reliably serve as a water supply for an extended future period. However, there are national concerns about transboundary impacts of water use by neighbors. These concerns include excessive depletion of shared groundwater by individual countries and the spread of water-table drawdown across borders, where neighboring country near-border shallow wells and oases may dry. Development of a parsimonious groundwater flow model, based on limited available NAS hydrogeologic data and on 81Kr groundwater ages below oases in Egypt, is a key step in providing a technical basis for international discussion concerning management of this non-renewable water resource. Simply-structured model analyses, undertaken as part of an IAEA/UNDP/GEF project, show that although the main transboundary issue is indeed drawdown crossing national boundaries, given the large scale of NAS and its plausible ranges of aquifer parameter values, the magnitude of transboundary drawdown will likely be small and may not be a

  5. A Modeling Tool for Evaluating Climate Change Impacts on Water Supply System

    Science.gov (United States)

    Chuang, L.; Tung, C.; Liu, T.

    2009-12-01

    Climate change may exacerbate short-term climate variability and more extreme hydrological events, and then may impact on human society and natural environment. Socioeconomic development is dependent on adequate water resources, but climate change may impact on such supply system, including available streamflow, groundwater, irrigation water demand. The purpose of this study is to apply an integrated modeling tool to assess the climate change impacts on regional water supply systems and then to propose response strategies to strengthen adaptive capacity to achieve sustainable water uses. The modeling tool integrates the functions of downscaling, weather generation, hydrological modeling, and an interface for linking system dynamics models. The Touchien river basin in Taiwan is chosen as a study area, which has a high-tech industry park. The vulnerability of the water supply system was evaluated for present and future conditions. The results demonstrated that the water supply system could meet current water demand, but might be subjected to serious water shortage due to future climate change and increasing water demand. At last, this study provides suggestions to government agency to develop better water resources management strategies to mitigate the impacts of changing climate.

  6. JIT supply chain; an investigation through general system theory

    Directory of Open Access Journals (Sweden)

    O P Mishra

    2013-03-01

    Full Text Available This paper explains theoretical approach of the four theories of General system Theory (GST developed by Yourdon (1989 [Yourdon, E. (1989. Modern Structured Analysis. Yourdon Press, Prentice-Hall International, Englewood Cliffs, New Jersey. Senge] while applying it in information technology and subsequently used by caddy (2007 [Caddy I.N., & Helou, M.M. (2007. Supply chains and their management: Application of general systems theory. Journal of Retailing and Consumer Services, 14, 319–327.] in field of supply chain and management. JIT philosophy in core activities of supply chain i.e. procurement, production processes, and logistics are discussed through general system theory. The growing structure of the supply chain poses the implication restrictions and requires a heavy support system, many times a compromise is done while implementing JIT. The study would be useful to understand the general trends generated naturally regarding the adoption of the JIT philosophy in the supply chain.

  7. Naval Logistics Integration Through Interoperable Supply Systems

    Science.gov (United States)

    2014-06-13

    Air Ground Task Force Materiel Distribution Center MOADT Mean Outside Assistance Delay Time MRO Material Release Order MSRT Mean Supply Response...within GCSS-MC only) for subsequent processing. After pick release ran, GCSS-MC sent Web-STRATIS a Material Release Orders ( MRO ) (also referred to...as a pick) via the Web-STRATIS outbound interface.18 Upon receipt of the MROs , warehouse personnel were able to view the requests in Web- STRATIS and

  8. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System

    Science.gov (United States)

    Kumpel, E.; Nelson, K. L.

    2012-12-01

    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real

  9. Assessment of groundwater availability in the Northern Atlantic Coastal Plain aquifer system From Long Island, New York, to North Carolina

    Science.gov (United States)

    Masterson, John P.; Pope, Jason P.; Fienen, Michael N.; Monti, Jr., Jack; Nardi, Mark R.; Finkelstein, Jason S.

    2016-08-31

    Long Island to northeastern North Carolina, and includes aquifers primarily within New York, New Jersey, Delaware, Maryland, Virginia, and North Carolina. The seaward-dipping sedimentary wedge that underlies the northern Atlantic Coastal Plain physiographic province forms a complex groundwater system. Although the NACP aquifer system is recognized by the U.S. Geological Survey as one of the smallest of the 66 principal aquifer systems in the Nation, it ranks 13th overall in terms of total groundwater withdrawals and is 7th in population served. Despite abundant precipitation [about 45 inches per year (in/yr)], the supply of fresh surface water in this region is limited because many of the surface waters in this area are brackish estuaries, contributing to why many communities in the northern Atlantic Coastal Plain physiographic province rely heavily on groundwater to meet their water needs.Increases in population and changes in land use during the past 100 years have resulted in diverse increased demands for freshwater throughout the northern Atlantic Coastal Plain physiographic province with groundwater serving as a vital source of drinking water for the nearly 20 million people who live in the region. Total groundwater withdrawal in 2013 was estimated to be about 1,300 million gallons per day (Mgal/d) and accounts for about 40 percent of the drinking water supply with the densely populated areas tending to have the highest rates of withdrawals and, therefore, being most susceptible to effects from these withdrawals over time.Water levels in many of the confined aquifers are decreasing by as much as 2 feet per year (ft/yr) in response to extensive development and subsequent increased withdrawals throughout the region. Total water-level decreases (drawdowns) are more than 100 feet (ft) in some aquifers from their predevelopment (before 1900) levels. These drawdowns extend across state lines and under the Chesapeake and Delaware Bays, creating the potential for

  10. Groundwater availability of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho

    Science.gov (United States)

    Vaccaro, J.J.; Kahle, S.C.; Ely, D.M.; Burns, E.R.; Snyder, D.T.; Haynes, J.V.; Olsen, T.D.; Welch, W.B.; Morgan, D.S.

    2015-09-22

    The Columbia Plateau Regional Aquifer System (CPRAS) covers about 44,000 square miles of southeastern Washington, northeastern Oregon, and western Idaho. The area supports a $6-billion per year agricultural industry, leading the Nation in production of apples, hops, and eight other commodities. Groundwater pumpage and surface-water diversions supply water to croplands that account for about 5 percent of the Nation’s irrigated lands. Groundwater also is the primary source of drinking water for the more than 1.3 million people in the study area. Increasing competitive demands for water for municipal, fisheries/ecosystems, agricultural, domestic, hydropower, and recreational uses must be met by additional groundwater withdrawals and (or) by changes in the way water resources are allocated and used throughout the hydrologic system. As of 2014, most surface-water resources in the study area were either over allocated or fully appropriated, especially during the dry summer season. In response to continued competition for water, numerous water-management activities and concerns have gained prominence: water conservation, conjunctive use, artificial recharge, hydrologic implications of land-use change, pumpage effects on streamflow, and effects of climate variability and change. An integrated understanding of the hydrologic system is important in order to implement effective water-resource management strategies that address these concerns.

  11. Transient effects on groundwater chemical compositions from pumping of supply wells at the Nevada National Security Site, 1951-2008

    Science.gov (United States)

    Paces, James B.; Elliott, Peggy E.; Fenelon, Joseph M.; Laczniak, Randell J.; Moreo, Michael T.

    2012-01-01

    Nuclear testing and support activities at the Nevada National Security Site have required large amounts of water for construction, public consumption, drilling, fire protection, hydraulic and nuclear testing, and dust control. To supply this demand, approximately 20,000 million gallons of water have been pumped from 23 wells completed in 19 boreholes located across the Nevada National Security Site starting as early as the 1950s. As a consequence of more or less continuous pumping from many of these wells for periods as long as 58 years, transient groundwater flow conditions have been created in the aquifers that supplied the water. To evaluate whether long-term pumping caused changes in water compositions over time, available chemical analyses of water samples from these 19 boreholes were compiled, screened, and evaluated for variability including statistically significant temporal trends that can be compared to records of groundwater pumping. Data used in this report have been extracted from a large database (Geochem08, revision 3.0, released in September 2008) containing geochemical and isotopic information created and maintained by primary contractors to the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office. Data extracted from this source were compiled for the entire period of record, converted to uniform reporting units, and screened to eliminate analyses of poor or unknown quality, as well as clearly spurious values. The resulting data are included in accompanying spreadsheets that give values for (1) pH and specific conductance, (2) major ion concentrations, (3) trace element concentrations and environmental isotope ratios, and (4) mean, median, and variance estimates for major ion concentrations. The resulting data vary widely in quality and time-series density. An effort has been made to establish reasonable ranges of analytical uncertainty expected for each analyte and eliminate analyses that are obvious outliers

  12. Conducting Sanitary Surveys of Water Supply Systems. Student Workbook.

    Science.gov (United States)

    1976

    This workbook is utilized in connection with a 40-hour course on sanitary surveys of water supply systems for biologists, chemists, and engineers with experience as a water supply evaluator. Practical training is provided in each of the 21 self-contained modules. Each module outlines the purpose, objectives and content for that section. The course…

  13. Development of city water supply net information system

    Institute of Scientific and Technical Information of China (English)

    CHENJing; GUOShiquan; LUJun

    2003-01-01

    Through analyzing the present conditions of water supply networks technical administration files in Chongqing, this paper points out the significance and urgency for exploiting advanced water supply networks information system. It also gives the concept of GIS and some suggestions for the exploitation.

  14. Supply Chain Resilience: Assessing USAF Weapon System Life Cycle

    Science.gov (United States)

    2010-03-01

    Appendix E: Supply Chain Resilience Storyboard ........................................................... 87 Bibliography...bolt that, in March 2000, struck a Philips semiconductor plant in Albuquerque, New Mexico , created a 10-minute blaze that contaminated millions of...strategic planning of weapon systems as they mature and progress through the life cycle. 87 Appendix E: Supply Chain Resilience Storyboard 88

  15. Key Challenges and Opportunities for Conjunctive Management of Surface and Groundwater in Mega-Irrigation Systems: Lower Indus, Pakistan

    Directory of Open Access Journals (Sweden)

    Frank van Steenbergen

    2015-11-01

    Full Text Available This paper focuses on the scope of conjunctive management in the Lower Indus part of the Indus Basin Irrigation System (IBIS, and the contribution this could make towards food security and socio-economic development. The total Gross Command Area (GCA of the Lower Indus is 5.92 Mha, with a cultivable command area (CCA of 5.43 Mha, most of which is in Sindh Province. There is a limited use of groundwater in Sindh (about 4.3 Billion Cubic Meter (BCM for two reasons: first, there is a large area where groundwater is saline; and second, there is a high surface irrigation supply to most of the canal commands, e.g., average annual supply to rice command is 1723 mm, close to the annual reference crop evapotranspiration for the area, while there is an additional annual rainfall of about 200 mm. These high irrigation allocations, even in areas where groundwater is fresh, create strong disincentives for farmers to use groundwater. Consequently, areas are waterlogged to the extent of 50% and 70% before and after the monsoon, respectively, which contributes to surface salinity through capillary rise. In Sindh, about 74%–80% of the available groundwater recharge is lost in the form of non-beneficial evaporation. This gives rise to low cropping intensities and yields compared to fresh groundwater areas elsewhere in the IBIS. The drought of 1999–2002 has demonstrated a reduction in waterlogging without any corresponding reduction in crop yields. Therefore, in order to efficiently meet current water requirements of all the sectors, i.e., agriculture, domestic and industrial, an ab initio level of water reallocation and efficient water management, with consideration to groundwater quality and its safe yield, in various areas are recommended. This might systematically reduce the waterlogged areas, support greater cropping intensity than is currently being practiced, and free up water for horizontal expansion, such as in the Thar Desert.

  16. An open source hydroeconomic model for California's water supply system: PyVIN

    Science.gov (United States)

    Dogan, M. S.; White, E.; Herman, J. D.; Hart, Q.; Merz, J.; Medellin-Azuara, J.; Lund, J. R.

    2016-12-01

    Models help operators and decision makers explore and compare different management and policy alternatives, better allocate scarce resources, and predict the future behavior of existing or proposed water systems. Hydroeconomic models are useful tools to increase benefits or decrease costs of managing water. Bringing hydrology and economics together, these models provide a framework for different disciplines that share similar objectives. This work proposes a new model to evaluate operation and adaptation strategies under existing and future hydrologic conditions for California's interconnected water system. This model combines the network structure of CALVIN, a statewide optimization model for California's water infrastructure, along with an open source solver written in the Python programming language. With the flexibilities of the model, reservoir operations, including water supply and hydropower, groundwater pumping, and the Delta water operations and requirements can now be better represented. Given time series of hydrologic inputs to the model, typical outputs include urban, agricultural and wildlife refuge water deliveries and shortage costs, conjunctive use of surface and groundwater systems, and insights into policy and management decisions, such as capacity expansion and groundwater management policies. Water market operations also represented in the model, allocating water from lower-valued users to higher-valued users. PyVIN serves as a cross-platform, extensible model to evaluate systemwide water operations. PyVIN separates data from the model structure, enabling model to be easily applied to other parts of the world where water is a scarce resource.

  17. Power supply system design and build for Antarctica telescope

    Science.gov (United States)

    Du, Fujia; Li, Hao; Li, Aiai

    2016-07-01

    Currently, more and more telescopes were built and installed in Dome A of Antarctic. The telescopes are remote controlled, unattended operation due to Dome A's environment. These telescopes must be work successfully at least one year without any failure. According to past experience, the power supply system is the weakest point in whole system. The telescopes have to stop if the power system have a problem, even a minor problem. So the high requirement for power supply system are presented. The requirement include high reliability, the self-diagnosis and perfect monitor system. Furthermore, the optic telescope only can work at night. The power source mainly relay on diesel engine. To protect the Antarctic environment and increase the life of engines. The power capacity is limited during observation. So it need the power supply system must be high power factor, high efficient. To meet these requirement, one power supply system was design and built for Antarctic telescope. The power supply system have the following features. First, we give priority to achieve high reliability. The reliability of power system was calculated and the redundant system is designed to make sure that the spare one can be work immediately when some parts have problems. Second, the perfect monitor system was designed to monitor the voltage, current, power and power factor for each power channel. The status of power supply system can be acquired by internet continuously. All the status will be logged in main computer for future analysis. Third, the PFC (Power Factor Correction) technology was used in power supply system. This technology can dramatically increase the power factor, especially in high power situation. The DC-DC inverter instead of AC-DC inverter was used for different voltage level to increase the efficient of power supply.

  18. Numerical simulation of groundwater flow in the Columbia Plateau Regional Aquifer System, Idaho, Oregon, and Washington

    Science.gov (United States)

    Ely, D. Matthew; Burns, Erick R.; Morgan, David S.; Vaccaro, John J.

    2014-01-01

    A three-dimensional numerical model of groundwater flow was constructed for the Columbia Plateau Regional Aquifer System (CPRAS), Idaho, Oregon, and Washington, to evaluate and test the conceptual model of the system and to evaluate groundwater availability. The model described in this report can be used as a tool by water-resource managers and other stakeholders to quantitatively evaluate proposed alternative management strategies and assess the long‑term availability of groundwater. The numerical simulation of groundwater flow in the CPRAS was completed with support from the Groundwater Resources Program of the U.S. Geological Survey Office of Groundwater.

  19. Assessment of Non-Revenue Water Situation in Mandalay City: Response to the Management of Sustainable Water Supply System in Mandalay City

    OpenAIRE

    Ser Moe Yi; Kampanad Bhaktikul; Kobkaew Manomaipiboon; Thongplew Kongjun

    2017-01-01

    Mandalay city is experiencing inefficient use of groundwater resources and inadequate water supply system to residents. The study focused on the issue of non-revenue water (NRW) and stakeholders’ perception on its management in order to design the remediation measures for the water lost controls and the sustainable water supply system. A total of 134 samples of water employees, and 383 households were assessed through structured questionnaires. It has been found that more than 50% of the wate...

  20. The Complex Economic System of Supply Chain Financing

    Science.gov (United States)

    Zhang, Lili; Yan, Guangle

    Supply Chain Financing (SCF) refers to a series of innovative and complicated financial services based on supply chain. The SCF set-up is a complex system, where the supply chain management and Small and Medium Enterprises (SMEs) financing services interpenetrate systematically. This paper establishes the organization structure of SCF System, and presents two financing models respectively, with or without the participation of the third-party logistic provider (3PL). Using Information Economics and Game Theory, the interrelationship among diverse economic sectors is analyzed, and the economic mechanism of development and existent for SCF system is demonstrated. New thoughts and approaches to solve SMEs financing problem are given.

  1. Optimal Dispatching of Large-scale Water Supply System

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper deals with the use of optimal control techniques in large-scale water distribution networks. According to the network characteristics and actual state of the water supply system in China, the implicit model, which may be solved by utilizing the hierarchical optimization method, is established. In special, based on the analyses of the water supply system containing variable-speed pumps, a software tool has been developed successfully. The application of this model to the city of Shenyang (China) is compared to experiential strategy. The results of this study show that the developed model is a very promising optimization method to control the large-scale water supply systems.

  2. Assessing the vulnerability of a karst groundwater system to contamination by pharmaceuticals

    Science.gov (United States)

    Einsiedl, Florian; Radke, Michael

    2010-05-01

    Contamination of drinking water supplies is a serious problem and a potential threat to public health. Organic micropollutants such as pharmaceuticals and personal care products are identified as an environmental risk and concern has been raised about their environmental presence and fate. These compounds are present in effluents of wastewater treatment plants (WWTPs) in concentrations of up to several µg/L, and they have frequently been detected in surface waters and groundwater systems. A popular method for wastewater disposal in karst areas is the injection of wastewater into open sinkholes. Subsequently, the wastewater infiltrates rapidly along conduits and through the fractured karst aquifer. This is a major contributing factor to the contamination of karst aquifers. To address the vulnerability of such systems against relatively mobile organic micropollutants, we investigated the occurrence of two pharmaceuticals (diclofenac, ibuprofen) in combination with the groundwater heterogeneity and flow pathways in the aquifer. Groundwater samples and effluents of three WWTPs were repeatedly collected during a field campaign in the Franconian Alb karst system which is located in southern Germany. These results were coupled with hydrogeological investigations such as tracer tests, application of environmental isotopes (3H), and modeling. The results of this study demonstrated that (i) both pharmaceuticals are mobile in the karst aquifer and thus represent a risk for contamination of karst water, (ii) the transport of pharmaceuticals in the fractured system with mean transit times of some years affects the karst groundwater contamination, and (iii) long-term wastewater injection containing organic micropollutants into karst ecosystems may contribute to water quality deterioration over years.

  3. Intelligent Vehicle Electrical Power Supply System with Central Coordinated Protection

    Institute of Scientific and Technical Information of China (English)

    YANG Diange; KONG Weiwei; LI Bing; LIAN Xiaomin

    2016-01-01

    The current research of vehicle electrical power supply system mainly focuses on electric vehicles (EV) and hybrid electric vehicles (HEV). The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect;electrical/electronic devices (EEDs) applied in vehicles are usually directly connected with the vehicle’s battery. With increasing numbers of EEDs being applied in traditional fuel vehicles, vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively. In this paper, a new vehicle electrical power supply system for traditional fuel vehicles, which accounts for all electrical/electronic devices and complex work conditions, is proposed based on a smart electrical/electronic device (SEED) system. Working as an independent intelligent electrical power supply network, the proposed system is isolated from the electrical control module and communication network, and access to the vehicle system is made through a bus interface. This results in a clean controller power supply with no electromagnetic interference. A new practical battery state of charge (SoC) estimation method is also proposed to achieve more accurate SoC estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel. Optimized protection methods are also used to ensure power supply safety. Experiments and tests on a traditional fuel vehicle are performed, and the results reveal that the battery SoC is calculated quickly and sufficiently accurately for battery over-discharge protection. Over-current protection is achieved, and the entire vehicle’s power utilization is optimized. For traditional fuel vehicles, the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture, enhancing system reliability and security.

  4. Intelligent vehicle electrical power supply system with central coordinated protection

    Science.gov (United States)

    Yang, Diange; Kong, Weiwei; Li, Bing; Lian, Xiaomin

    2016-07-01

    The current research of vehicle electrical power supply system mainly focuses on electric vehicles (EV) and hybrid electric vehicles (HEV). The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect; electrical/electronic devices (EEDs) applied in vehicles are usually directly connected with the vehicle's battery. With increasing numbers of EEDs being applied in traditional fuel vehicles, vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively. In this paper, a new vehicle electrical power supply system for traditional fuel vehicles, which accounts for all electrical/electronic devices and complex work conditions, is proposed based on a smart electrical/electronic device (SEED) system. Working as an independent intelligent electrical power supply network, the proposed system is isolated from the electrical control module and communication network, and access to the vehicle system is made through a bus interface. This results in a clean controller power supply with no electromagnetic interference. A new practical battery state of charge (SoC) estimation method is also proposed to achieve more accurate SoC estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel. Optimized protection methods are also used to ensure power supply safety. Experiments and tests on a traditional fuel vehicle are performed, and the results reveal that the battery SoC is calculated quickly and sufficiently accurately for battery over-discharge protection. Over-current protection is achieved, and the entire vehicle's power utilization is optimized. For traditional fuel vehicles, the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture, enhancing system reliability and security.

  5. Metabolic modelling to support long term strategic decisions on water supply systems

    Science.gov (United States)

    Ciriello, Valentina; Felisa, Giada; Lauriola, Ilaria; Pomanti, Flavio; Di Federico, Vittorio

    2017-04-01

    Water resources are essential for the economic development and sustenance of anthropic activities belonging to the civil, agricultural and industrial sectors. Nevertheless, availability of water resources is not uniformly distributed in space and time. Moreover, the increasing water demand, mainly due to population growth and expansion of agricultural crops, may cause increasing water stress conditions, if combined with the effects of climate change. Under these circumstances, it is necessary to improve the resilience of water supply systems both in terms of infrastructures and environmental compliance. Metabolic modelling approaches represent a flexible tool able to provide support to decision making in the long term, based on sustainability criteria. These approaches mimic the water supply network through a set of material and energy fluxes that interact and influence each other. By analyzing these fluxes, a suite of key performance indicators is evaluated in order to identify which kind of interventions may be applied to increase the sustainability of the system. Here, we adopt these concepts to analyze the water supply network of Reggio-Emilia (Italy) which is supported by water withdrawals from both surface water and groundwater bodies. We analyze different scenarios, including possible reduction of water withdrawals from one of the different sources as a consequence of a decrease in water availability under present and future scenarios. On these basis, we identify preventive strategies for a dynamic management of the water supply system.

  6. Modeling sustainability in renewable energy supply chain systems

    Science.gov (United States)

    Xie, Fei

    This dissertation aims at modeling sustainability of renewable fuel supply chain systems against emerging challenges. In particular, the dissertation focuses on the biofuel supply chain system design, and manages to develop advanced modeling framework and corresponding solution methods in tackling challenges in sustaining biofuel supply chain systems. These challenges include: (1) to integrate "environmental thinking" into the long-term biofuel supply chain planning; (2) to adopt multimodal transportation to mitigate seasonality in biofuel supply chain operations; (3) to provide strategies in hedging against uncertainty from conversion technology; and (4) to develop methodologies in long-term sequential planning of the biofuel supply chain under uncertainties. All models are mixed integer programs, which also involves multi-objective programming method and two-stage/multistage stochastic programming methods. In particular for the long-term sequential planning under uncertainties, to reduce the computational challenges due to the exponential expansion of the scenario tree, I also developed efficient ND-Max method which is more efficient than CPLEX and Nested Decomposition method. Through result analysis of four independent studies, it is found that the proposed modeling frameworks can effectively improve the economic performance, enhance environmental benefits and reduce risks due to systems uncertainties for the biofuel supply chain systems.

  7. Distributed parallel computing in stochastic modeling of groundwater systems.

    Science.gov (United States)

    Dong, Yanhui; Li, Guomin; Xu, Haizhen

    2013-03-01

    Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  8. Subregions of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the subregions of the transient ground-water flow model of the Death Valley regional ground-water flow system (DVRFS). Subregions are...

  9. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    Science.gov (United States)

    : Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided

  10. Effect of Climate Change on the Food Supply System: Implications ...

    African Journals Online (AJOL)

    Effect of Climate Change on the Food Supply System: Implications for Food ... results in global warming with its attendant consequences such as floods, drought, forest fires, poverty, malnutrition, health and various socioeconomic problems.

  11. Effects of climate change on groundwater: observed and forecasted trends on Italian systems

    Science.gov (United States)

    Doveri, Marco; Menichini, Matia; Provenzale, Antonello; Scozzari, Andrea

    2017-04-01

    Groundwater represents the main source of water supply at global level. In Italy, as well as in most European countries, water needs are mainly covered by groundwater exploitation. The reliance on this resource is continuously growing, given the key role that groundwater plays for mitigating the climate change/variability and for addressing the significant increase in the global water demand. Despite this, and unlike surface waters, groundwater bodies have not been widely studied, and there is a general paucity of quantitative information, especially in relation to climate change. Although groundwater systems are more resilient to climate change than surface waters, they are affected both directly and indirectly. The estimation of the entity of these effects is mandatory for a reliable management of this crucial resource. The analysis of hydro-meteorological data over a few decades highlights that also the Italian territory is experiencing a change of the climate regime. Besides the increase of mean annual temperature, observed in particular since the early 1980s, longer and more frequent drought periods have been registered, as well as an increase of extreme events characterized by heavy rainfall. It is also noticeable a decrease in total rainfall, that is much more evident in the period from January to June. In addition to the reduced yearly inputs from precipitation, such trends determine also a lower snow accumulation and earlier snow melt in mountain areas, a general increase of evapotranspiration rates and an increased runoff fraction of the effective rainfall amount. As flood hydrographs of several major Italian rivers (e.g., Po, Brenta and Arno rivers) confirm, evident effects concern surface water resources. The main observed phenomena consist in the decline of mean annual discharge, the increase of extreme events with high discharge concentrated in short periods, and longer and earlier periods of low base flow. Impacts on groundwater recharge are not well

  12. Evaluation of Background Mercury Concentrations in the SRS Groundwater System

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B.B.

    1999-03-03

    Mercury analyses associated with the A-01 Outfall have highlighted the importance of developing an understanding of mercury in the Savannah River Site groundwater system and associated surface water streams. This activity is critical based upon the fact that the EPA Ambient Water Quality Criteria (AWQC) for this constituent is 0.012mg/L, a level that is well below conventional detection limits of 0.1 to 0.2 mg/L. A first step in this process is obtained by utilizing the existing investment in groundwater mercury concentrations (20,242 records) maintained in the SRS geographical information management system (GIMS) database. Careful use of these data provides a technically defensible initial estimate for total recoverable mercury in background and contaminated SRS wells.

  13. An Integrated Framework for Assessment of Hybrid Water Supply Systems

    Directory of Open Access Journals (Sweden)

    Mukta Sapkota

    2015-12-01

    Full Text Available Urban water managers around the world are adopting decentralized water supply systems, often in combination with centralized systems. While increasing demand for water arising from population growth is one of the primary reasons for this increased adoption of alternative technologies, factors such as climate change, increased frequency of extreme weather events and rapid urbanization also contribute to an increased rate of adoption of these technologies. This combination of centralized-decentralized water systems approach is referred to as “hybrid water supply systems” and is based on the premise that the provision of alternative water sources at local scales can both extend the capacity of existing centralized water supply infrastructures, and improve resilience to variable climatic conditions. It is important to understand, however, that decentralized water production and reuse may change the flow and composition of wastewater and stormwater, thereby potentially also having negative impacts on its effectiveness and performance. This paper describes a framework to assess the interactions between decentralized water supply systems and existing centralized water servicing approaches using several analytical tools, including water balance modelling, contaminant balance modelling and multi-criteria decision analysis. The framework enables the evaluation of impacts due to change in quantity and quality of wastewater and stormwater on the existing centralized system arising from the implementation of hybrid water supply systems. The framework consists of two parts: (1 Physical system analysis for various potential scenarios and (2 Ranking of Scenarios. This paper includes the demonstration of the first part of the framework for an area of Melbourne, Australia by comparing centralized water supply scenario with a combination of centralized water supply and reuse of treated waste water supply scenario.

  14. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    : Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  15. Energy Supply System for Industrial Poultry Houses

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2016-04-01

    Full Text Available The gas engine driven carbon dioxide heat pump designed for providing the heat, cold and electricity for industrial poultry house is proposed. The scheme differs from the known by using recuperative heat exchanger installed between the exhaust air duct of poultry house and heat pump evaporator and the heat curtain installed on the air duct after the evaporator. The air coming into the poultry house after the regenerative heat exchanger is supplied to the heat pump gas cooler. The heat pump produces heat of the required parameters of the input air and water for watering of poultry, space heating, etc. Heat pump compressor is driven by gas engine (GPA, by natural gas or biogas. The part of the gas-piston engine heat is used for adjusting the optimal heat pump mode and for regeneration of the absorbent in an evaporative cooler. The proposed technical solution of the above scheme provides a higher COP of the heat pump. Installing of heat curtain does not require the use of non-freezing solution to prevent icing of the air outlet of heat pump evaporator. The latter allows producing, besides electric power and heat, still cold (with the use off the adsorption-refrigerating machine and provide drying air inlet evaporative cooler (if necessary.

  16. Groundwater institutions and management problems in the developing world

    NARCIS (Netherlands)

    Wegerich, K.

    2006-01-01

    The Role of Groundwater in Delhi¿s Water Supply: Interaction between formal and informal Development of the Water System, and possible scenarios of Evolution; A. Maria. Water Supply and Sanitation Sector Analysis of the Secondary Towns of Azerbaijan: Does groundwater play a role? S. Puri and T. Roma

  17. Discharge areas for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents discharge areas in the Death Valley regional ground-water flow system (DVRFS) transient model. Natural ground-water discharge occurs...

  18. Material-property zones used in the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Zones in this data set represent spatially contiguous areas that influence ground-water flow in the Death Valley regional ground-water flow system (DVRFS), an...

  19. Material-property zones used in the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Zones in this data set represent spatially contiguous areas that influence ground-water flow in the Death Valley regional ground-water flow system (DVRFS), an...

  20. Discharge areas for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents discharge areas in the Death Valley regional ground-water flow system (DVRFS) transient model. Natural ground-water discharge...

  1. Groundwater dynamics in the complex aquifer system of Gidabo River Basin, southern Main Ethiopian Rift: Evidences from hydrochemistry and isotope hydrology

    Science.gov (United States)

    Degu, Abraham; Birk, Steffen; Dietzel, Martin; Winkler, Gerfried; Moggessie, Aberra

    2014-05-01

    Located in the tectonically active Main Ethiopian Rift system, the Gidabo River Basin in Ethiopia has a complex hydrogeological setting. The strong physiographic variation from highland to rift floor, variability in volcanic structures and disruption of lithologies by cross-cutting faults contribute for their complex nature of hydrogeology in the area. Until now, the groundwater dynamics and the impact of the tectonic setting on groundwater flow in this region are not well understood, though the local population heavily depends on groundwater as the major water supply. A combined approach based on hydrochemical and isotopic data was applied to investigate the regional flow dynamics of the groundwater and the impact of tectonic setting. Groundwater evolves from slightly mineralized Ca-Mg-HCO3 on the highland to highly mineralized Na-HCO3 dominating type in the deep rift floor aquifers. δ18O and δD composition of groundwater show a general progressive enrichment from the highland to the rift floor, except in thermal and deep rift floor aquifers. Relatively the thermal and deep rift floor aquifers are depleted and show similar signature to the groundwaters of highland, indicating groundwater inflow from the highland. Correspondingly, rising HCO3 and increasingly enriched signatures of δ 13C points to hydrochemical evolution of DIC and diffuse influx of mantle CO2 into the groundwater system. Thermal springs gushing out along some of the fault zones, specifically in the vicinity of Dilla town, display clear influence of mantle CO2 and are an indication of the role of the faults acting as a conduit for deep circulating thermal water to the surface. By considering the known geological structures of the rift, hydrochemical and isotopic data we propose a conceptual groundwater flow model by characterizing flow paths to the main rift axis. The connection between groundwater flow and the impact of faults make this model applicable to other active rift systems with similar

  2. Assessment of hydrogeologic terrains, well-construction characteristics, groundwater hydraulics, and water-quality and microbial data for determination of surface-water-influenced groundwater supplies in West Virginia

    Science.gov (United States)

    Kozar, Mark D.; Paybins, Katherine S.

    2016-08-30

    In January 2014, a storage tank leaked, spilling a large quantity of 4-methylcyclohexane methanol into the Elk River in West Virginia and contaminating the water supply for more than 300,000 people. In response, the West Virginia Legislature passed Senate Bill 373, which requires the West Virginia Department of Health and Human Resources (WVDHHR) to assess the susceptibility and vulnerability of public surface-water-influenced groundwater supply sources (SWIGS) and surface-water intakes statewide. In response to this mandate for reassessing SWIGS statewide, the U.S. Geological Survey (USGS), in cooperation with the WVDHHR, Bureau of Public Health, Office of Environmental Health Services, compiled available data and summarized the results of previous groundwater studies to provide the WVDHHR with data that could be used as part of the process for assessing and determining SWIGS.

  3. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed preprocessing supply system designs

    Energy Technology Data Exchange (ETDEWEB)

    Muth, jr., David J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Langholtz, Matthew H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jacobson, Jacob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwab, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wu, May [Argonne National Lab. (ANL), Argonne, IL (United States); Argo, Andrew [Sundrop Fuels, Golden, CO (United States); Brandt, Craig C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cafferty, Kara [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chiu, Yi-Wen [Argonne National Lab. (ANL), Argonne, IL (United States); Dutta, Abhijit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eaton, Laurence M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-03-31

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to

  4. The imperative for stronger vaccine supply and logistics systems.

    Science.gov (United States)

    Zaffran, Michel; Vandelaer, Jos; Kristensen, Debra; Melgaard, Bjørn; Yadav, Prashant; Antwi-Agyei, K O; Lasher, Heidi

    2013-04-18

    With the introduction of new vaccines, developing countries are facing serious challenges in their vaccine supply and logistics systems. Storage capacity bottlenecks occur at national, regional, and district levels and system inefficiencies threaten vaccine access, availability, and quality. As countries adopt newer and more expensive vaccines and attempt to reach people at different ages and in new settings, their logistics systems must be strengthened and optimized. As a first step, national governments, donors, and international agencies have crafted a global vision for 2020 vaccine supply and logistics systems with detailed plans of action to achieve five priority objectives. Vaccine products and packaging are designed to meet the needs of developing countries. Immunization supply systems support efficient and effective vaccine delivery. The environmental impact of energy, materials, and processes used in immunization systems is minimized. Immunization information systems enable better and more timely decision-making. Competent and motivated personnel are empowered to handle immunization supply chain issues. Over the next decade, vaccine supply and logistics systems in nearly all developing countries will require significant investments of time and resources from global and national partners, donors, and governments. These investments are critical if we are to reach more people with current and newer vaccines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. The 3D simulation and optimized management model of groundwater systems based on ecoenvironmental water demand

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item and unification of groundwater's economic, environmental and ecological functions were taken into account. Based on eco-environmental water demand at Da'an in Jilin province, a three-dimensional simulation and optimized management model of groundwater systems was established. All water balance components of groundwater systems in 1998 and 1999 were simulated with this model and the best optimal exploitation scheme of groundwater systems in 2000 was determined, so that groundwater resource was efficiently utilized and good economic, ecologic and social benefits were obtained.

  6. Using Soft Systems Methodology to Address Supply Chain Management Problems

    Directory of Open Access Journals (Sweden)

    Gulender Gencoglu

    2002-05-01

    Full Text Available This paper reports an investigation of if, and how, Soft Systems Methodology (SSM might.be used to facilitate better management of industry supply chains. In two workshops involving supply chain managers from the Textile Clothing and Footwear (TCF industry and industry facilitators, ways in which SSM techniques might supplement existing Supply Chain Management (SCM workshop approaches have been explored. Specifically, the placement of SSM techniques within a workshop setting, reactions to the techniques, perceived reasons for using SSM, together with strengths and difficulties encountered, have been examined.

  7. An Optimal Method for Developing Global Supply Chain Management System

    Directory of Open Access Journals (Sweden)

    Hao-Chun Lu

    2013-01-01

    Full Text Available Owing to the transparency in supply chains, enhancing competitiveness of industries becomes a vital factor. Therefore, many developing countries look for a possible method to save costs. In this point of view, this study deals with the complicated liberalization policies in the global supply chain management system and proposes a mathematical model via the flow-control constraints, which are utilized to cope with the bonded warehouses for obtaining maximal profits. Numerical experiments illustrate that the proposed model can be effectively solved to obtain the optimal profits in the global supply chain environment.

  8. Algal Supply System Design - Harmonized Version

    Energy Technology Data Exchange (ETDEWEB)

    Jared Abodeely; Daniel Stevens; Allison Ray; Debor

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.

  9. Method of Distinguishing Hydrologic Drought for Water Supply System

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    It is very common to design water supply system to adjust runoff. Thus it will not meet the practical needs if only the hydrologic drought in natural basin is studied. In practice the natural water balance and water deficits must be researched, i. e., the adjusting effects of the water supply system such as a reservoir should be considered, and the drought event be distinguished according to the special system. The problem of drought identification under adjusted runoff was investigated in this study. By considering water transfer during different periods, a method to distinguish hydrologic drought for the water supply system was developed, and a standard drought severity index SWDSI was proposed. The method has been applied in Pan Jiakou water supply system in China. From 1953 to 1997, a total of 14 hydrologic droughts were identified in the water supply system, among which there were 3 severe droughts, 6 moderate droughts and 5 light droughts. The results are in good agreement with the historic drought records.

  10. Planning Mechanisms for Regional Electric Power Supply System Development

    Directory of Open Access Journals (Sweden)

    Evgeniy Anatolyevich Malyshev

    2015-12-01

    Full Text Available Key problems of the regional electric power supply systems are examined. These problems result from a lack of regulated interaction mechanisms for uniting the different entities’ resources aimed at the realization of investment activities. One of the main problems of the power supply industry is physical and moral aging of both generating and networking equipment. In the article, the necessity of management system formation to control the development of power sector has been proved. The deficiencies of the modern investment procedure in power companies are described. The absence of continuity between the regional and local strategic planning documents and investment planning of a power company has been found out. The possibility to develop a new mechanism for attracting investment has been proposed. The regulation of joint activities to implement the development program for the regional power supply industry has been proposed. The management system to develop the Russian power industry has been proposed. The comparative analysis of generating capacity development mechanisms has been carried out, such as capacity supply agreement (CSA, investment support mechanism (ISM, and long-term power market (LPM. The interaction procedure of the planning of the power supply infrastructure development has been described. The mechanism connecting the state sectoral and regional planning and corporate planning of power supply infrastructure development has been proposed. The regional aspects of industrial policy and its legislative support have been considered. To successfully implement the public-private-partnership (PPP projects, it is necessary to create the effective PPP model within the federal and regional legislation framework; to develop the financial model providing the recoverability of investments; to provide a mutually beneficial cooperation between executive bodies and private investors. The possibility to apply the PPP mechanism for regional

  11. Power supply system for traction batteries

    Energy Technology Data Exchange (ETDEWEB)

    Perkuhn, E. (DETA Akkumulatorenwerk G.m.b.H., Bad Lauterberg (Germany, F.R.))

    1977-12-01

    Battery life is usually shortest in combined systems. The author discusses the causes of battery wear; if the battery is serviced correctly, it is mainly the charging process which is responsible. This process is described and explained. Battery chargers are mentioned where charging voltage and charging current are best adapted to the battery requirements. These battery chargers are also switched off automatically.

  12. Assessing the vulnerability of public-supply wells to contamination--Glacial aquifer system in Woodbury, Connecticut

    Science.gov (United States)

    Jagucki, Martha L.; Brown, Craig J.; Starn, J. Jeffrey; Eberts, Sandra M.

    2010-01-01

    This fact sheet highlights findings from the vulnerability study of a public-supply well in Woodbury, Connecticut. The well typically produces water at the rate of 72 gallons per minute from the glacial aquifer system in the Pomperaug River Basin. Water samples were collected at the public-supply well and at monitoring wells installed in or near the simulated zone of contribution to the supply well. Samples of untreated water from the public-supply wellhead contained several types of undesirable constituents, including 11 volatile organic compounds (VOCs), nitrate, pesticides, uranium, and radon. Most of these constituents were detected at concentrations below drinking-water standards, where such standards exist. Only concentrations of the VOC trichlorethylene exceeded the Maximum Contaminant Level (MCL) of 5 micrograms per liter (ug/L) established by U.S. Environmental Protection Agency for drinking water. Radon concentrations exceeded a proposed-but not finalized-MCL of 300 picocuries per liter (pCi/L). Overall, the study findings point to four main factors that affect the movement and fate of contaminants and the vulnerability of the public-supply well in Woodbury: (1) groundwater age (how long ago water entered, or recharged, the aquifer); (2) the percentage of recharge received through urban areas; (3) the percentage of recharge received through dry wells and their proximity to the public-supply well; and (4) natural geochemical processes occurring within the aquifer system; that is, processes that affect the amounts and distribution of chemical substances in aquifer sediments and groundwater. A computer-model simulation of groundwater flow to the public-supply well was used to estimate the age of water particles entering the well along the length of the well screen. About 90 percent of the simulated flow to the well consists of water that entered the aquifer 9 or fewer years ago. Such young water is vulnerable to contaminants resulting from human activities

  13. Optimal reconstruction of historical water supply to a distribution system: A. Methodology.

    Science.gov (United States)

    Aral, M M; Guan, J; Maslia, M L; Sautner, J B; Gillig, R E; Reyes, J J; Williams, R C

    2004-09-01

    The New Jersey Department of Health and Senior Services (NJDHSS), with support from the Agency for Toxic Substances and Disease Registry (ATSDR) conducted an epidemiological study of childhood leukaemia and nervous system cancers that occurred in the period 1979 through 1996 in Dover Township, Ocean County, New Jersey. The epidemiological study explored a wide variety of possible risk factors, including environmental exposures. ATSDR and NJDHSS determined that completed human exposure pathways to groundwater contaminants occurred in the past through private and community water supplies (i.e. the water distribution system serving the area). To investigate this exposure, a model of the water distribution system was developed and calibrated through an extensive field investigation. The components of this water distribution system, such as number of pipes, number of tanks, and number of supply wells in the network, changed significantly over a 35-year period (1962--1996), the time frame established for the epidemiological study. Data on the historical management of this system was limited. Thus, it was necessary to investigate alternative ways to reconstruct the operation of the system and test the sensitivity of the system to various alternative operations. Manual reconstruction of the historical water supply to the system in order to provide this sensitivity analysis was time-consuming and labour intensive, given the complexity of the system and the time constraints imposed on the study. To address these issues, the problem was formulated as an optimization problem, where it was assumed that the water distribution system was operated in an optimum manner at all times to satisfy the constraints in the system. The solution to the optimization problem provided the historical water supply strategy in a consistent manner for each month of the study period. The non-uniqueness of the selected historical water supply strategy was addressed by the formulation of a second

  14. Groundwater flow and mixing in a wetland–stream system

    DEFF Research Database (Denmark)

    Karan, Sachin; Engesgaard, Peter Knudegaard; Zibar, Majken Caroline Looms;

    2013-01-01

    We combined electrical resistivity tomography (ERT) on land and in a stream with zone-based hydraulic conductivities (from multi-level slug testing) to investigate the local geological heterogeneity of the deposits in a wetland–stream system. The detailed geology was incorporated into a numerical....... The presented approach of integrating such methods in groundwater–surface water exchange studies, proved efficient to obtain information of the controlling factors....... steady-state groundwater model that was calibrated against average head observations. The model results were tested against groundwater fluxes determined from streambed temperature measurements. Discharge varied up to one order of magnitude across the stream and the model was successful in capturing...... this variability. Water quality analyses from multi-level sampling underneath the streambed and in the wetland showed a stratification in groundwater composition with an aerobic shallow zone with oxygen and nitrate (top ∼3 m) overlying a reduced, anoxic zone. While NO3- concentrations up to 58 mg L−1 were found...

  15. Analysis and Design: Accounting Information System in Purchasing and Supplying

    Directory of Open Access Journals (Sweden)

    Noerlina Noerlina

    2011-05-01

    Full Text Available The purpose of the research are the purchase and material supply process are the main process of the company and it will determine the operational company, so it needs an accounting information system to help them in the planning and taking the best decision. Research methods used are data and information collected which using the analysis and design method. This method needs to support the design of accounting information system in the company. The result are there’s still any weaknesses happened that will hamper the operational company.Index Terms - Analysis and Design, Accounting Information System, Purchasing, Supply.

  16. Ligncellulosic feedstock supply systems with intermodal and overseas transportation

    Energy Technology Data Exchange (ETDEWEB)

    Ric Hoefnagels; Kara Cafferty; Erin Searcy; Jacob J. Jacobson; Martin Junginger; Thijs Cornelissen; Andre Faaij

    2014-12-01

    With growing demand for biomass from industrial uses and international trade, the logistic operations required to economically move the biomass from the field or forest to the end users have become increasingly complex. In addition to economics, understanding energy and GHG emissions is required to design cost effective, sustainable logistic process operations; in order to improve international supply chains it is also important to understate their interdependencies and related uncertainties. This article presents an approach to assess lignocellulosic feedstock supply systems at the operational level. For this purpose, the Biomass Logistic Model (BLM) has been linked with the Geographic Information Systems based Biomass Intermodal Transportation model (BIT-UU) and extended with inter-continental transport routes. Case studies of herbaceous and woody biomass, produced in the U.S. Midwest and U.S. Southeast, respectively, and shipped to Europe for conversion to Fischer-Tropsch (FT) diesel are included to demonstrate how intermodal transportation and, in particular, overseas shipping integrates with the bioenergy supply chains. For the cases demonstrated, biomass can be supplied at 99 € Mg-1 to 117 € Mg-1 (dry) and converted to FT-diesel at 19 € GJ-1 to 24 € GJ-1 depending on the feedstock type and location, intermediate (chips or pellets) and size of the FT-diesel production plant. With the flexibility to change the design of supply chains as well as input variables, many alternative supply chain cases can be assessed.

  17. Optimal Control and Optimization of Stochastic Supply Chain Systems

    CERN Document Server

    Song, Dong-Ping

    2013-01-01

    Optimal Control and Optimization of Stochastic Supply Chain Systems examines its subject in the context of the presence of a variety of uncertainties. Numerous examples with intuitive illustrations and tables are provided, to demonstrate the structural characteristics of the optimal control policies in various stochastic supply chains and to show how to make use of these characteristics to construct easy-to-operate sub-optimal policies.                 In Part I, a general introduction to stochastic supply chain systems is provided. Analytical models for various stochastic supply chain systems are formulated and analysed in Part II. In Part III the structural knowledge of the optimal control policies obtained in Part II is utilized to construct easy-to-operate sub-optimal control policies for various stochastic supply chain systems accordingly. Finally, Part IV discusses the optimisation of threshold-type control policies and their robustness. A key feature of the book is its tying together of ...

  18. Monitoring water supply systems for anomaly detection and response

    NARCIS (Netherlands)

    Bakker, M.; Lapikas, T.; Tangena, B.H.; Vreeburg, J.H.G.

    2012-01-01

    Water supply systems are vulnerable to damage caused by unintended or intended human actions, or due to aging of the system. In order to minimize the damages and the inconvenience for the customers, a software tool was developed to detect anomalies at an early stage, and to support the responsible s

  19. The changing logistical system of the building materials supply chain

    NARCIS (Netherlands)

    Voordijk, Johannes T.

    2000-01-01

    This study analyses how policy measures and technological developments affect the trade-offs between elements of the logistical system of a supply chain. It is assumed that this logistical system consists of the following elements: sourcing, production, inventory, transportation and service. Two

  20. SYNTHESIS OF MODULAR UNINTERRUPTED POWER SUPPLY SYSTEMS WITH INCREASED RELIABILITY

    Directory of Open Access Journals (Sweden)

    Grigorash O. V.

    2015-04-01

    Full Text Available The level of technical development today requires the creation of highly effective, including reliable, uninter-rupted power supply systems. We have shown modern requirements and design features of modern systems of uninterruptible power supply, which should be built on a modular principle. It is shown that the problem of synthesis of systems in a modular approach is addressing three issues: development of the structure of the system subject to the requirements of consumers to quality of power and the allowable time of power outage; determining the required level redundancy of major functional units (blocks, elements to ensure the required reliability of the system; - ensuring the most effective interconnection of modules, including electromagnetic compatibility, and the rational use during normal and emergency operation of the system. We have proposed new structural solution of the main functional units and uninterrupted power supply systems in modular design. To reduce EMI and improve efficiency uninterruptible power supply systems in the design of static converters we need to use a transformer with a rotating magnetic field. In addition, the prospective current is to be used as a source of renewable energy. Another promising approach is the use of direct frequency converters as voltage stabilizers and frequency of the current

  1. Assessing the Vulnerability of Public-Supply Wells to Contamination: Floridan Aquifer System Near Tampa, Florida

    Science.gov (United States)

    Jagucki, Martha L.; Katz, Brian G.; Crandall, Christy A.; Eberts, Sandra M.

    2009-01-01

    This fact sheet highlights findings from the vulnerability study of a public-supply well in Temple Terrace, Florida, northeast of Tampa. The well selected for study typically produces water at the rate of 700 gallons per minute from the Upper Floridan aquifer. Water samples were collected at the public-supply well and at monitoring wells installed in or near the simulated zone of contribution to the supply well. Samples of untreated water from the public-supply wellhead contained the undesirable constituents nitrate, arsenic, uranium, radon-222, volatile organic compounds (VOCs), and pesticides, although all were detected at concentrations less than established drinking-water standards, where such standards exist. Overall, study findings point to four primary factors that affect the movement and fate of contaminants and the vulnerability of the public-supply well in Temple Terrace: (1) groundwater age (how long ago water entered, or recharged, the aquifer); (2) short-circuiting of contaminated water through sinkholes; (3) natural geochemical processes within the aquifer; and (4) pumping stress. Although the public-supply well is completed in the Upper Floridan aquifer, it produces water with concentrations of nitrate, VOCs, and the natural contaminant radon that are intermediate between the typical composition of water from the Upper Floridan aquifer and that of the overlying surficial aquifer system. Mixing calculations show that the water produced by the public-supply well could consist of upwards of 50 percent water from the surficial aquifer system mixed with water from the Upper Floridan aquifer. Anthropogenically affected water from the surficial aquifer system travels rapidly to depth through sinkholes that must be directly connected to the cavernous zone intersected by the public-supply well (and several other production wells in the region). Such solution features serve as fast pathways to the well and circumvent the natural attenuation of nitrate and

  2. An Integrated Approach on Groundwater Flow and Heat/Solute Transport for Sustainable Groundwater Source Heat Pump (GWHP) System Operation

    Science.gov (United States)

    Park, D. K.; Bae, G. O.; Joun, W.; Park, B. H.; Park, J.; Park, I.; Lee, K. K.

    2015-12-01

    The GWHP system uses a stable temperature of groundwater for cooling and heating in buildings and thus has been known as one of the most energy-saving and cost-efficient renewable energy techniques. A GWHP facility was installed at an island located at the confluence of North Han and South Han rivers, Korea. Because of well-developed alluvium, the aquifer is suitable for application of this system, extracting and injecting a large amount of groundwater. However, the numerical experiments under various operational conditions showed that it could be vulnerable to thermal interference due to the highly permeable gravel layer, as a preferential path of thermal plume migration, and limited space for well installation. Thus, regional groundwater flow must be an important factor of consideration for the efficient operation under these conditions but was found to be not simple in this site. While the groundwater level in this site totally depends on the river stage control of Paldang dam, the direction and velocity of the regional groundwater flow, observed using the colloidal borescope, have been changed hour by hour with the combined flows of both the rivers. During the pumping and injection tests, the water discharges in Cheongpyeong dam affected their respective results. Moreover, the measured NO3-N concentrations might imply the effect of agricultural activities around the facility on the groundwater quality along the regional flow. It is obvious that the extraction and injection of groundwater during the facility operation will affect the fate of the agricultural contaminants. Particularly, the gravel layer must also be a main path for contaminant migration. The simulations for contaminant transport during the facility operation showed that the operation strategy for only thermal efficiency could be unsafe and unstable in respect of groundwater quality. All these results concluded that the integrated approach on groundwater flow and heat/solute transport is necessary

  3. Bimode uninterruptible power supply compatibility in renewable hybrid energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Bower, W. (Sandia National Labs., Albuquerque, NM (USA)); O' Sullivan, G. (Abacus Controls, Inc., Somerville, NJ (USA))

    1990-08-01

    Inverters installed in renewable hybrid energy systems are typically used in a stand-alone mode to supply ac power to loads from battery storage when the engine-generator is not being used. Similarities in topology and in the performance requirements of the standby uninterruptible power supply (UPS) system and the hybrid system suggest the UPS could be used in hybrid energy systems. Another alternative to inverters with add-on charging circuits or standby UPS hardware is the Bimode UPS. The bimode UPS uses common circuitry and power components for dc to ac inversion and battery charging. It also provides an automatic and nearly instantaneous ac power transfer function when the engine-generator is started or stopped. The measured operating and transfer characteristics of a bimode UPS in a utility system and in a hybrid system are presented. The applicability of the bimode UPS to hybrid systems and its compatibility in a PV/engine-generator hybrid system are given.

  4. Flexibility of Supply Chain in Industrialised Building System (IBS

    Directory of Open Access Journals (Sweden)

    Kassim U.

    2014-01-01

    Full Text Available It is irrefutable that the construction industry is in need of a highly technological construction method or system for the simple aim of giving it a push it deserves. In Malaysia this technologically enhanced method is known as the Indutrialised Building System (IBS. Concerted efforts have been made for the past decade by various responsible parties especially by the government. Therefore, the IBS ‘Road Map’ 2003–2010 was introduced and now continues with the IBS ‘road map’ 2011-2015. However, its performance is still at its infancy, which target is only at an initial stage. This study seeks to identify and analyse the factor of the IBS’ system’s supply chain flexibility as a factor on the success of the system itself. It has been a suspicion that there exists a condition and situation where the supply chain is too rigid and is not flexible in fulfilling the needs and demands of the IBS development in Malaysia. This inflexible situation has brought about a broad range of problems and has stood in the way of the development of the industrialised building system, despite it being introduced since 1964, or 49 years ago. Flexibility in the IBS supply chain is very important and is associated with other industries like transportation, manufacturing industry, and others. Up until now, we have yet to discover any special studies related to the flexibility in the IBS supply chain in this country. Responding to this challenge, this research is hoped to be able to provide sufficient feedback to the solution to the IBS supply chain flexibility issue. The researcher is confident that the poor system flow of supply chain has impeded the advancement of the Industrialised Building System that has long been open to debate.

  5. Smart Power Supply for Battery-Powered Systems

    Science.gov (United States)

    Krasowski, Michael J.; Greer, Lawrence; Prokop, Norman F.; Flatico, Joseph M.

    2010-01-01

    A power supply for battery-powered systems has been designed with an embedded controller that is capable of monitoring and maintaining batteries, charging hardware, while maintaining output power. The power supply is primarily designed for rovers and other remote science and engineering vehicles, but it can be used in any battery alone, or battery and charging source applications. The supply can function autonomously, or can be connected to a host processor through a serial communications link. It can be programmed a priori or on the fly to return current and voltage readings to a host. It has two output power busses: a constant 24-V direct current nominal bus, and a programmable bus for output from approximately 24 up to approximately 50 V. The programmable bus voltage level, and its output power limit, can be changed on the fly as well. The power supply also offers options to reduce the programmable bus to 24 V when the set power limit is reached, limiting output power in the case of a system fault detected in the system. The smart power supply is based on an embedded 8051-type single-chip microcontroller. This choice was made in that a credible progression to flight (radiation hard, high reliability) can be assumed as many 8051 processors or gate arrays capable of accepting 8051-type core presently exist and will continue to do so for some time. To solve the problem of centralized control, this innovation moves an embedded microcontroller to the power supply and assigns it the task of overseeing the operation and charging of the power supply assets. This embedded processor is connected to the application central processor via a serial data link such that the central processor can request updates of various parameters within the supply, such as battery current, bus voltage, remaining power in battery estimations, etc. This supply has a direct connection to the battery bus for common (quiescent) power application. Because components from multiple vendors may have

  6. Simulation of the regional groundwater-flow system of the Menominee Indian Reservation, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.; Dunning, Charles P.

    2015-01-01

    A regional, two-dimensional, steady-state groundwater-flow model was developed to simulate the groundwater-flow system and groundwater/surface-water interactions within the Menominee Indian Reservation. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Menominee Indian Tribe of Wisconsin, to contribute to the fundamental understanding of the region’s hydrogeology. The objectives of the regional model were to improve understanding of the groundwater-flow system, including groundwater/surface-water interactions, and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate groundwater/surface-water interactions, provide a framework for simulating regional groundwater-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate groundwater-flow patterns at multiple scales. Simulations made with the regional model reproduce groundwater levels and stream base flows representative of recent conditions (1970–2013) and illustrate groundwater-flow patterns with maps of (1) the simulated water table and groundwater-flow directions, (2) probabilistic areas contributing recharge to high-capacity pumped wells, and (3) estimation of the extent of infiltrated wastewater from treatment lagoons.

  7. Stygoregions – a promising approach to a bioregional classification of groundwater systems

    Science.gov (United States)

    Stein, Heide; Griebler, Christian; Berkhoff, Sven; Matzke, Dirk; Fuchs, Andreas; Hahn, Hans Jürgen

    2012-01-01

    Linked to diverse biological processes, groundwater ecosystems deliver essential services to mankind, the most important of which is the provision of drinking water. In contrast to surface waters, ecological aspects of groundwater systems are ignored by the current European Union and national legislation. Groundwater management and protection measures refer exclusively to its good physicochemical and quantitative status. Current initiatives in developing ecologically sound integrative assessment schemes by taking groundwater fauna into account depend on the initial classification of subsurface bioregions. In a large scale survey, the regional and biogeographical distribution patterns of groundwater dwelling invertebrates were examined for many parts of Germany. Following an exploratory approach, our results underline that the distribution patterns of invertebrates in groundwater are not in accordance with any existing bioregional classification system established for surface habitats. In consequence, we propose to develope a new classification scheme for groundwater ecosystems based on stygoregions. PMID:22993698

  8. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  9. Challenges for creating a site-specific groundwater-use record for the Ozark Plateaus aquifer system (central USA) from 1900 to 2010

    Science.gov (United States)

    Knierim, Katherine J.; Nottmeier, Anna M.; Worland, Scott; Westerman, Drew A.; Clark, Brian R.

    2017-09-01

    Hydrologic budgets to determine groundwater availability are important tools for water-resource managers. One challenging component for developing hydrologic budgets is quantifying water use through time because historical and site-specific water-use data can be sparse or poorly documented. This research developed a groundwater-use record for the Ozark Plateaus aquifer system (central USA) from 1900 to 2010 that related county-level aggregated water-use data to site-specific well locations and aquifer units. A simple population-based linear model, constrained to 0 million liters per day in 1900, provided the best means to extrapolate groundwater-withdrawal rates pre-1950s when there was a paucity of water-use data. To disaggregate county-level data to individual wells across a regional aquifer system, a programmatic hierarchical process was developed, based on the level of confidence that a well pumped groundwater for a specific use during a specific year. Statistical models tested on a subset of the best-available site-specific water-use data provided a mechanism to bracket historic groundwater use, such that groundwater-withdrawal rates ranged, on average, plus or minus 38% from modeled values. Groundwater withdrawn for public supply and domestic use accounted for between 48 and 74% of total groundwater use since 1901, highlighting that groundwater provides an important drinking-water resource. The compilation, analysis, and spatial and temporal extrapolation of water-use data remain a challenging task for water scientists, but is of paramount importance to better quantify groundwater use and availability.

  10. Challenges for creating a site-specific groundwater-use record for the Ozark Plateaus aquifer system (central USA) from 1900 to 2010

    Science.gov (United States)

    Knierim, Katherine; Nottmeier, Anna M.; Worland, Scott C.; Westerman, Drew A.; Clark, Brian R.

    2017-01-01

    Hydrologic budgets to determine groundwater availability are important tools for water-resource managers. One challenging component for developing hydrologic budgets is quantifying water use through time because historical and site-specific water-use data can be sparse or poorly documented. This research developed a groundwater-use record for the Ozark Plateaus aquifer system (central USA) from 1900 to 2010 that related county-level aggregated water-use data to site-specific well locations and aquifer units. A simple population-based linear model, constrained to 0 million liters per day in 1900, provided the best means to extrapolate groundwater-withdrawal rates pre-1950s when there was a paucity of water-use data. To disaggregate county-level data to individual wells across a regional aquifer system, a programmatic hierarchical process was developed, based on the level of confidence that a well pumped groundwater for a specific use during a specific year. Statistical models tested on a subset of the best-available site-specific water-use data provided a mechanism to bracket historic groundwater use, such that groundwater-withdrawal rates ranged, on average, plus or minus 38% from modeled values. Groundwater withdrawn for public supply and domestic use accounted for between 48 and 74% of total groundwater use since 1901, highlighting that groundwater provides an important drinking-water resource. The compilation, analysis, and spatial and temporal extrapolation of water-use data remain a challenging task for water scientists, but is of paramount importance to better quantify groundwater use and availability.

  11. Outline of the integrated simulation system (GEOMASS system) to evaluate groundwater flow and application to groundwater simulation in the Tono area

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Kaoru; Saegusa, Hiromitsu [Japan Nuclear Cycle Development Inst., Toki, Gifu (Japan). Tono Geoscience Center

    2003-03-01

    The Tono Geoscience Center (TGC) has been developing the GEOMASS system since 1997 to evaluate the groundwater flow at depth in a rock mass. The system provides an integrated simulation system environment for both model development and groundwater flow simulations. The integrated simulation system allows users to use resources efficiently. The system also allows users to make rapid improvement of their models as data increases. Also, it is possible to perform more realistic groundwater flow simulations due to the capability of modeling the rock mass as a continuum with discrete hydro-structural features in the rock. TGC tested the operation and usefulness of the GEOMASS system by applying to groundwater flow simulations in the Tono area, Gifu Prefecture. TGC confirmed that the system is very useful for complex geological models and multiple modeling. (author)

  12. The Design of the Parallel Switching Power Supply System

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2013-10-01

    Full Text Available This study introduces a parallel switching power supply system which is controlled by C8051F020 MCU. The system consists of DC/DC converter, voltage-controlled constant current source circuit, over-current protection circuit and auxiliary power supply. TPS54331 is used to constitute a highly efficient DC/DC converter, reducing the input DC voltage to supply the voltage-controlled constant current source circuit. The parallel current-sharing of the system is realized by the voltage-controlled constant current source circuit. The output current of the two parallel power supply can be adjusted by changing the control voltage. When the output current exceeds the set value, the system starts over-current protection circuit to cut off the power and delays to restore power automatically after a certain period of time. The test results show that the system is stable and reliable, easy to control and has a function of over-current protection and automatic recovery.

  13. An interdisciplinary approach for groundwater management in area contaminated by fluoride in East African Rift System

    Science.gov (United States)

    Da Pelo, Stefania; Melis, M. Teresa; Dessì, Francesco; Pistis, Marco; Funedda, Antonio; Oggiano, Giacomo; Carletti, Alberto; Soler Gil, Albert; Barbieri, Manuela; Pittalis, Daniele; Ghiglieri, Giorgio

    2017-04-01

    Groundwater is the main source of fresh water supply for most of the rural communities in Africa (approximately 75% of Africans has confidence in groundwater as their major source of drinking water). Many African countries has affected by high fluoride concentration in groundwater (up to 90 mg/L), generating the contamination of waters, soils and food, in particular in the eastern part of the continent. It seems that fluoride concentration is linked to geology of the Rift Valley: geogenic occurrence of fluoride is often connected to supergenic enrichment due to the weathering of alkaline volcanic rocks, fumaric gases and presence of thermal waters. The H2020 project FLOWERED (de-FLuoridation technologies for imprOving quality of WatEr and agRo-animal products along the East African Rift Valley in the context of aDaptation to climate change) wish to address environmental and health (human and animal) issues associated to the fluoride contamination in the African Rift Valley, in particular in three case study area located in Ethiopia, Tanzania and Kenya. FLOWERED aims to develop an integrated, sustainable and participative water and agriculture management at a cross-boundary catchment scale through a strong interdisciplinary research approach. It implies knowledge of geology, hydrogeology, mineralogy, geochemistry, agronomy, crop and animal sciences, engineering, technological sciences, data management and software design, economics and communication. The proposed approach is based on a detailed knowledge of the hydrogeological setting, with the identification and mapping of the specific geological conditions of water contamination and its relation with the different land uses. The East African Rift System (EARS) groundwater circulation and storage, today already poorly understood, is characterized by a complex arrangement of aquifers. It depends on the type of porosity and permeability created during and after the rock formation, and is strongly conditioned by the

  14. The Impact of Integrated Aquifer Storage and Recovery and Brackish Water Reverse Osmosis (ASRRO on a Coastal Groundwater System

    Directory of Open Access Journals (Sweden)

    Steven Eugenius Marijnus Ros

    2017-04-01

    Full Text Available Aquifer storage and recovery (ASR of local, freshwater surpluses is a potential solution for freshwater supply in coastal areas, as is brackish water reverse osmosis (BWRO of relatively shallow groundwater in combination with deeper membrane concentrate disposal. A more sustainable and reliable freshwater supply may be achieved by combining both techniques in one ASRRO system using multiple partially penetrating wells (MPPW. The impact of widespread use of ASRRO on a coastal groundwater system was limited based on regional groundwater modelling but it was shown that ASRRO decreased the average chloride concentration with respect to the autonomous scenario and the use of BWRO. ASRRO was successful in mitigating the local negative impact (saltwater plume formation caused by the deep disposal of membrane concentrate during BWRO. The positive impacts of ASRRO with respect to BWRO were observed in the aquifer targeted for ASR and brackish water abstraction (Aquifer 1, but foremost in the deeper aquifer targeted for membrane concentrate disposal (Aquifer 2. The formation of a horizontal freshwater barrier was found at the top of both aquifers, reducing saline seepage. The disposal of relatively fresh concentrate in Aquifer 2 led to brackish water outflow towards the sea. The net abstraction in Aquifer 1 enforced saltwater intrusion, especially when BWRO was applied. The conclusion of this study is that ASRRO can provide a sustainable alternative for BWRO.

  15. Applicability and methodology of determining sustainable yield in groundwater systems

    Science.gov (United States)

    Kalf, Frans R. P.; Woolley, Donald R.

    2005-03-01

    There is currently a need for a review of the definition and methodology of determining sustainable yield. The reasons are: (1) current definitions and concepts are ambiguous and non-physically based so cannot be used for quantitative application, (2) there is a need to eliminate varying interpretations and misinterpretations and provide a sound basis for application, (3) the notion that all groundwater systems either are or can be made to be sustainable is invalid, (4) often there are an excessive number of factors bound up in the definition that are not easily quantifiable, (5) there is often confusion between production facility optimal yield and basin sustainable yield, (6) in many semi-arid and arid environments groundwater systems cannot be sensibly developed using a sustained yield policy particularly where ecological constraints are applied. Derivation of sustainable yield using conservation of mass principles leads to expressions for basin sustainable, partial (non-sustainable) mining and total (non-sustainable) mining yields that can be readily determined using numerical modelling methods and selected on the basis of applied constraints. For some cases there has to be recognition that the groundwater resource is not renewable and its use cannot therefore be sustainable. In these cases, its destiny should be the best equitable use. producciones sostenibles en cuenca, minado parcial (no sostenible) y total (no sostenible) que pueden determinarse fácilmente utilizando métodos de modelos numéricos y seleccionados en base a restricciones aplicadas. En algunos casos tiene que reconocerse que el recurso de agua subterránea no es renovable y que por lo tanto su uso no puede ser sostenible. En estos casos su destino debe de ser el uso más equitativo.

  16. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    Science.gov (United States)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-09-01

    Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Stable water isotopes (δ2H, δ18O) were used to trace hydrological processes and tritium (3H) to evaluate the relative contribution of modern water in samples. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal groundwater, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3-type. It originates as recharge at "La Primavera" caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal groundwater is characterized by high salinity, temperature, Cl, Na and HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed-HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural return flow. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Twenty-seven groundwater samples contain at least a small fraction of modern water. The application of a multivariate mixing model allowed the mixing proportions of hydrothermal fluids, polluted waters and cold groundwater in sampled water to be evaluated. This study will help local water authorities to identify and dimension groundwater contamination, and act accordingly. It may be broadly applicable to

  17. Securing innovation through a differentiated supply system : The fashion industry

    NARCIS (Netherlands)

    Kamann, Dirk-Jan F.; Steller, Daan; Kaminishi, K; Duysters, G

    2007-01-01

    This paper describes a Situation where next to very innovative goods with short life cycles and volatile demand, rather commodity type goods are carried with more stable demand. A 'Two Lane Strategy' is described, with two different configurations of actors in the company's supply system. In each of

  18. Physical distribution costs in construction supply chains: a systems approach

    NARCIS (Netherlands)

    Voordijk, Johannes T.

    2010-01-01

    The objective of this study is to provide insights into the trade-offs of physical distribution cost patterns in construction supply chains by modelling and measuring these costs. The model of the physical distribution system consists of the following (cost) elements: inventory, transport, handling,

  19. Collaborative Learning in Advanced Supply Systems: The KLASS Pilot Project.

    Science.gov (United States)

    Rhodes, Ed; Carter, Ruth

    2003-01-01

    The Knowledge and Learning in Advanced Supply Systems (KLASS) project developed collaborative learning networks of suppliers in the British automotive and aerospace industries. Methods included face-to-face and distance learning, work toward National Vocational Qualifications, and diagnostic workshops for senior managers on improving quality,…

  20. Physical distribution costs in construction supply chains: a systems approach

    NARCIS (Netherlands)

    Voordijk, Hans

    2010-01-01

    The objective of this study is to provide insights into the trade-offs of physical distribution cost patterns in construction supply chains by modelling and measuring these costs. The model of the physical distribution system consists of the following (cost) elements: inventory, transport, handling,

  1. Advanced control of a water supply system: a case study

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2014-01-01

    Conventional automatic production flow control and pump pressure control of water supply systems are robust and simple: production flow is controlled based on the level in the clear water reservoir and pump pressure is controlled on a static set-point. Recently, more advanced computer-based control

  2. Quantitative modelling in design and operation of food supply systems

    NARCIS (Netherlands)

    Beek, van P.

    2004-01-01

    During the last two decades food supply systems not only got interest of food technologists but also from the field of Operations Research and Management Science. Operations Research (OR) is concerned with quantitative modelling and can be used to get insight into the optimal configuration and opera

  3. Non standard pallet series designing problem in ammunition supply system

    Institute of Scientific and Technical Information of China (English)

    Li Liangchun; Guo Min; Wang Hongwei

    2005-01-01

    According to the compound packing problem in ammunition supply system in our army, the non-standard pallet series design model is proposed, and the original problem that can be solved as a set cover problem with a nested bin-packing problem, is analyzed, then two heuristic algorithms are applied to solve the problem.

  4. Water supply system decision making using multicriteria analysis

    African Journals Online (AJOL)

    2005-07-04

    Jul 4, 2005 ... managing urban water supply systems, for example, a shortage of resources available to ... which can be used according to the type of problem, such as choice-based, ranking- .... g(b) and g(a)), in other words, size of larger scale, where max corresponds to the ... ing that a dominance hypothesis is justified.

  5. Mitigating the Cost of Anarchy in Supply Chain Systems

    NARCIS (Netherlands)

    H.E. Romeijn (Edwin); W.J. van den Heuvel (Wim); J. Geunes (Joseph)

    2012-01-01

    textabstractIn a decentralized two-stage supply chain where a supplier serves a retailer who, in turn, serves end customers, operations decisions based on local incentives often lead to suboptimal system performance. Operating decisions based on local incentives may in such cases lead to a degree of

  6. Establishment of sustainable water supply system in small islands through rainwater harvesting (RWH): case study of Guja-do.

    Science.gov (United States)

    Han, Mooyoung; Ki, Jaehong

    2010-01-01

    Many islands in Korea have problems related to water source security and supply. In particular, the water supply condition is worse in small islands which are remote from the mainland. A couple of alternatives are developed and suggested to supply water to islands including water hauling, groundwater extraction, and desalination. However, these alternatives require much energy, cost, and concern in installation and operation. Rainwater harvesting is a sustainable option that supplies water with low energy and cost. However, lack of practical or comprehensive studies on rainwater harvesting systems in these regions hinders the promotion of the system. Therefore, this research examines defects of current RWH systems on an existing island, Guja-do, and provides technical suggestions in quantitative and qualitative aspects. A simple system design modification and expansion of system capacity using empty space such as a wharf structure can satisfy both the qualitative and the quantitative water demand of the island. Since rainwater harvesting is estimated to be a feasible water supply option under the Korean climate, which is an unfavorable condition for rainwater harvesting, implies a high potential applicability of rainwater harvesting technology to other regions over the world suffering from water shortage.

  7. A number of upgrades on RHIC power supply system

    Energy Technology Data Exchange (ETDEWEB)

    Mi, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Bruno, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Drozd, J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Nolan, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Orsatti, F. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Heppener, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Di Lieto, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Schultheiss, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Samms, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Zapasek, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Sandberg, J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    This year marks the 15th run for the Relativistic Heavy Ion Collider (RHIC). Operation of a reliable superconducting magnet power supply system is a key factor of an accelerator’s performance. Over the past 15 years, the RHIC power supply group has made many improvements to increase the machine availability and reduce failures. During these past 15 years of operating RHIC a lot of problems have been solved or addressed. In this paper some of the essential upgrades/improvements are discussed.

  8. Application of groundwater residence time tracers and broad screening for micro-organic contaminants in the Indo-Gangetic aquifer system

    Science.gov (United States)

    Lapworth, Dan; Das, Prerona; Mukherjee, Abhijit; Petersen, Jade; Gooddy, Daren; Krishan, Gopal

    2017-04-01

    Groundwater abstracted from aquifers underlying urban centres across India provide a vital source of domestic water. Abstraction from municipal and private supplies is considerable and growing rapidly with ever increasing demand for water from expanding urban populations. This trend is set to continue. The vulnerability of deeper aquifers (typically >100 m below ground) used for domestic water to contamination migration from often heavily contaminated shallow aquifer systems has not been studies in detail in India. This paper focusses on the occurrence of micro-organic contaminants within sedimentary aquifers beneath urban centres which are intensively pumped for drinking water and domestic use. New preliminary results from a detailed case study undertaken across Varanasi, a city with an estimated population of ca. 1.5 million in Uttar Pradesh. Micro -organic groundwater quality status and evolution with depth is investigated through selection of paired shallow and deep sites across the city. These results are considered within the context of paired groundwater residence time tracers within the top 150m within the sedimentary aquifer system. Groundwater emerging contaminant results are compared with surface water quality from the Ganges which is also used for drinking water supply. Broad screening for >800 micro-organic compounds was undertaken. Age dating tools were employed to constrain and inform a conceptual model of groundwater recharge and contaminant evolution within the sedimentary aquifer system.

  9. Numerical simulation of groundwater flow for the Yakima River basin aquifer system, Washington

    Science.gov (United States)

    Ely, D.M.; Bachmann, M.P.; Vaccaro, J.J.

    2011-01-01

    A regional, three-dimensional, transient numerical model of groundwater flow was constructed for the Yakima River basin aquifer system to better understand the groundwater-flow system and its relation to surface-water resources. The model described in this report can be used as a tool by water-management agencies and other stakeholders to quantitatively evaluate proposed alternative management strategies that consider the interrelation between groundwater availability and surface-water resources.

  10. Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mohammad, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kenney, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansen, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The success of the earlier logistic pathway designs (Biochemical and Thermochemical) from a feedstock perspective was that it demonstrated that through proper equipment selection and best management practices, conventional supply systems (referred to in this report as “conventional designs,” or specifically the 2012 Conventional Design) can be successfully implemented to address dry matter loss, quality issues, and enable feedstock cost reductions that help to reduce feedstock risk of variable supply and quality and enable industry to commercialize biomass feedstock supply chains. The caveat of this success is that conventional designs depend on high density, low-cost biomass with no disruption from incremental weather. In this respect, the success of conventional designs is tied to specific, highly productive regions such as the southeastern U.S. which has traditionally supported numerous pulp and paper industries or the Midwest U.S for corn stover.

  11. Assessing the relative bioavailability of DOC in regional groundwater systems

    Science.gov (United States)

    Chapelle, Francis H.; Bradley, Paul M.; Journey, Celeste; McMahon, Peter B.

    2013-01-01

    It has been hypothesized that the degree to which a hyperbolic relationship exists between concentrations of dissolved organic carbon (DOC) and dissolved oxygen (DO) in groundwater may indicate the relative bioavailability of DOC. This hypothesis was examined for 73 different regional aquifers of the United States using 7745 analyses of groundwater compiled by the National Water Assessment (NAWQA) program of the U.S. Geological Survey. The relative reaction quotient (RRQ), a measure of the curvature of DOC concentrations plotted versus DO concentrations and regressed to a decaying hyperbolic equation, was used to assess the relative bioavailability of DOC. For the basalt aquifer of Oahu, Hawaii, RRQ values were low (0.0013 mM−2), reflecting a nearly random relationship between DOC and DO concentrations. In contrast, on the island of Maui, treated sewage effluent injected into a portion of the basalt aquifer resulted in pronounced hyperbolic DOC-DO behavior and a higher RRQ (142 mM−2). RRQ values for the 73 aquifers correlated positively with mean concentrations of ammonia, dissolved iron, and manganese, and correlated negatively with mean pH. This indicates that greater RRQ values are associated with greater concentrations of the final products of microbial reduction reactions. RRQ values and DOC concentrations were negatively correlated with the thickness of the unsaturated zone (UNST) and depth to the top of the screened interval. Finally, RRQ values were positively correlated with mean annual precipitation (MAP), and the highest observed RRQ values were associated with aquifers receiving MAP rates ranging between 900 and 1300 mm/year. These results are uniformly consistent with the hypothesis that the hyperbolic behavior of DOC-DO plots, as quantified by the RRQ metric, can be an indicator of relative DOC bioavailability in groundwater systems.

  12. Occurrence of pharmaceuticals in a water supply system and related human health risk assessment.

    Science.gov (United States)

    de Jesus Gaffney, Vanessa; Almeida, Cristina M M; Rodrigues, Alexandre; Ferreira, Elisabete; Benoliel, Maria João; Cardoso, Vitor Vale

    2015-04-01

    A monitoring study of 31 pharmaceuticals along Lisbon's drinking water supply system was implemented, which comprised the analysis of 250 samples including raw water (surface water and groundwater), and drinking water. Of the 31 pharmaceutical compounds, only sixteen were quantified in the analyzed samples, with levels ranging from 0.005 to 46 ng/L in raw water samples and 0.09-46 ng/L in drinking water samples. The human health risk assessment performed showed that appreciable risks to the consumer's health arising from exposure to trace levels of pharmaceuticals in drinking water are extremely unlikely, as RQs values were all below 0.001. Also, pharmaceuticals were selected as indicators to be used as a tool to control the quality of raw water and the treatment efficiency in the drinking water treatment plants.

  13. Sub-marine groundwater for the supply of drinking water. A review of the hydro-geological potential and its technical and economical feasibility.

    Science.gov (United States)

    Haakon Bakken, Tor; Mangset, Lars Erik

    2010-05-01

    Sub-marine groundwater is water stored in aquifers under the sea-bed and is expected to be present in large quantities on the continental shelf. The proposed utilization of sub-marine groundwater as a new source of drinking water supply is a radical and new idea that has never been fully explored or tested anywhere in the world. In regions where access to raw water of acceptable quality is very limited and desalination of sea water is the only realistic alternative to increase the supply of potable water, utilization of sub-marine groundwater might play a role. A technical concept deemed suitable to the hydrological and geological characteristics of sub-marine water is proposed based on well-proven technology from the off-shore oil & gas sector. A course economic assessment of this concept is conducted based on judgmental cost estimates from experts in the hydro-geological and oil & gas domain. The technical concept uses a jackup or a barge with a modular rig during drilling, while a steel jacket with a modular rig or a sub-sea installation is assumed to be feasible technical solutions during production. The selection of technology will vary from case to case depending on factors such as the local off-shore conditions (wave/wind exposure, drilling depth, distance from shore, etc.), required reliability of supply, access to/availability of technology and financial considerations. A standard reverse osmosis plant is proposed as treatment solution, given the assumed need to desalinate moderately saline water. The costs of each treatment step, as a function of raw water salinity are providing input to the subsequent economical estimates. The proposed treatment solution is assumed being a conservative choice of technology. The costs of producing drinking water from sub-marine groundwater are compared with desalination of sea water, given that this is the only realistic alternative. Based on a systematic risk assessment using the same comparative financial structure and

  14. AUTOMATION OF THE RESIDENTIAL BUILDING WATER SUPPLY SYSTEM PUMPING STATION

    OpenAIRE

    A. M. Kulia

    2016-01-01

    Essence of process of water-supply of apartment dwelling house is considered. The existent state over of automation of the pumping stations is brought. The task of development of the effective system of automatic control is put by them. Possibility of decision of task is shown by the use in the system of frequency transformer that feeds the electrodrives of pumps, and also due to perfection of algorithms of the pumps rotation frequency adjusting and logical management of their switching a seq...

  15. Drought risk and vulnerability in water supply systems.

    OpenAIRE

    Garrote de Marcos, Luis; Cubillo, Francisco

    2008-01-01

    This paper provides an overview of the challenges presented to the managers of water supply systems by drought and water scarcity. Risk assessment is an essential tool for the diagnostic of water scarcity in this type of systems. The evaluation of the risk of water shortage is performed with the use of complex mathematical models. Different alternatives to address the problem are presented, covering a range of methodological approaches. The actions adopted to prevent or mitigate the effects o...

  16. Low-Level Volatile Organic Compounds in Active Public Supply Wells as Ground-Water Tracers in the Los Angeles Physiographic Basin, California, 2000

    Science.gov (United States)

    Shelton, Jennifer L.; Burow, Karen R.; Belitz, Kenneth; Dubrovsky, Neil M.; Land, Michael; Gronberg, JoAnn

    2001-01-01

    Data were collected to evaluate the use of low-level volatile organic compounds (VOC) to assess the vulnerability of public supply wells in the Los Angeles physiographic basin. Samples of untreated ground water from 178 active public supply wells in the Los Angeles physiographic basin show that VOCs were detected in 61 percent of the ground-water samples; most of these detections were low, with only 29 percent above 1 mg/L (microgram per liter). Thirty-nine of the 86 VOCs analyzed were detected in at least one sample, and 11 VOCs were detected in 7 percent or more of the samples. The six most frequently detected VOCs were trichloromethane (chloroform) (46 percent); trichloroethene (TCE) (28 percent); tetrachloro-ethene (PCE) (19 percent); methyl tert-butyl ether (MTBE) (14 percent); 1,1-dichloroethane (11 percent); and 1,1,1-trichloroethane (TCA) (11 percent). These VOCs were also the most frequently detected VOCs in ground water representative of a wide range of hydrologically conditions in urban areas nationwide. Only two VOCs (TCE and PCE) exceeded state and federal primary maximum contaminant levels (MCL) for drinking water in a total of seven samples. Because samples were collected prior to water treatment, sample concentrations do not represent the concentrations entering the drinking-water system.Ground water containing VOCs may be considered to be a tracer of postindustrial-aged water-water that was recharged after the onset of intense urban development. The overall distribution of VOC detections is related to the hydrological and the engineered recharge facilities in the Coastal Los Angeles Basin and the Coastal Santa Ana Basin that comprise the Los Angeles physiographic basin. Most of the ground-water recharge occurs at engineered recharge facilities in the generally coarse-grained northeastern parts of the study area (forebay areas). Ground-water recharge from the land surface is minimal in the southwestern part of the basins, distal from the recharge

  17. A research on grey numerical imitation and modeling of groundwater seepage system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on grey set, grey numbers and their operation properties, the grey numerical model of groundwater seepage system was set up for the first time, the whole grey solving method of the model was given and it was proved that the common solving method of the model was only a special case of the grey solving methods. At the same time, the grey solving method was compared widely with common solving method, classical numerical method. The study shows that the grey solving method is better in depicting the procedure of transporting grey data of groundwater system. On the basis of the theoretical study, two basic kinds of cases about groundwater seepage were selected: the prediction of pit yield and the evaluation of groundwater resources on a groundwater basin. In the cases, systematical analyses were made for generalization and greylization of the hydrogeologic conditions, setting up of the grey model, identification and correction of the model as well as its prediction and evaluation. It was pointed out that when the grey numerical model is used to predict pit yield, the upper limit of the “grey band” of groundwater level cannot be higher than planed safe groundwater level, when evaluating the groundwater resource, the lower limit of the “grey band” of groundwater level cannot be lower than controlled level of groundwater.

  18. Fate of human viruses in groundwater recharge systems

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, J.M.; Landry, E.F.

    1980-03-01

    The overall objective of this research program was to determine the ability of a well-managed tertiary effluent-recharge system to return virologically acceptable water to the groundwater aquifer. The study assessed the quality of waters renovated by indigenous recharge operations and investigated a number of virus-soil interrelationships. The elucidation of the interactions led to the establishment of basin operating criteria for optimizing virus removal. Raw influents, chlorinated tertiary effluents, and renovated wastewater from the aquifer directly beneath a uniquely designed recharge test basin were assayed on a weekly basis for the presence of human enteroviruses and coliform bacteria. High concentrations of viruses were routinely isolated from influents but were isolated only on four occasions from tertiary-treated sewage effluents. In spite of the high quality effluent being recharged, viruses were isolated from the groundwater observation well, indicating their ability to penetrate the unsaturated zone. Results of poliovirus seeding experiments carried out in the test basin clearly indicated the need to operate recharge basins at low (e.g. 1 cm/h) infiltration rates in areas having soil types similar to those found at the study site. The method selected for reducing the test basin infiltration rate involved clogging the basin surface with settled organic material from highly turbid effluent. Alternative methods for slowing infiltration rates are discussed in the text.

  19. Simulation and assessment of agricultural biomass supply chain systems

    Directory of Open Access Journals (Sweden)

    D. Pavlou

    2017-05-01

    Full Text Available Agricultural biomass supply chain consists of a number of interacted sequential operations affected by various variables, such as weather conditions, machinery systems, and biomass features. These facts make the process of biomass supply chain as a complex system that requires computational tools, e.g. simulation and mathematical models, for their assessment and analysis. A biomass supply chain simulation model developed on the ExtendSim 8 simulation environment is presented in this paper. A number of sequential operations are applied in order biomass to be mowed, harvested, and transported to a biorefinery facility. Different operational scenarios regarding the travel distance between field and biorefinery facility, number of machines, and capacity of machines are analyzed showing how different parameters affect the processes within biomass supply chain in terms of time and cost. The results shown that parameters such as area of the field, travel distance, number of available machines, capacity of the machines, etc. should be taken into account in order a less time and/ or cost consuming machinery combination to be selected.

  20. Ecohydrological Investigations of a Groundwater-Lake System

    DEFF Research Database (Denmark)

    Frandsen, Mette Cristine Schou

    are very dynamic systems on a spatial scale. Variability in meteorology can lead to variability in the hydrology, and in some cases ignite transient effects that are temporally distinct and difficult to capture. •To some extend the lakes acts as sentinel for all the in and out-puts to the system as well...... I). •Does dense bottom vegetation affect the small scale hydrology of the lake bed sediment? (Paper 2). •How can natural tracers (δ 18O) be used to quantify the temporal variation in groundwater seepage dynamics? (Paper 3). •Is it possible to combine ecological data of surface water chemistry...... by this. The reasons for the lowered hydraulic conductivity seems to be an combination of the organic content in the sediment (i.e. the roots of the plants) and a vegetation induced entrapment of fine particles in the sediment. Over the course of three years I followed the small scale variation...

  1. Modeling Reactive Transport in Coupled Groundwater-Conduit Systems

    Science.gov (United States)

    Spiessl, S. M.; Sauter, M.; Zheng, C.; Viswanathan, H. S.

    2002-05-01

    Modeling reactive transport in coupled groundwater-conduit systems requires consideration of two transport time scales in the flow and transport models. Consider for example a subsurface mine consisting of a network of highly conductive shafts, drifts or ventilation raises (i.e., conduits) within the considerably less permeable ore material (i.e., matrix). In the conduits, potential contaminants can travel much more rapidly than in the background aquifer (matrix). Since conduits cannot necessarily be regarded as a continuum, double continuum models are only of limited use for simulation of contaminant transport in such coupled groundwater-conduit systems. This study utilizes a "hybrid" flow and transport model in which contaminants can in essence be transported at a slower time scale in the matrix and at a faster time scale in the conduits. The hybrid flow model uses an approach developed by Clemens et al. (1996), which is based on the modelling of flow in a discrete pipe network, coupled to a continuum representing the low-permeability inter-conduit matrix blocks. Laminar or turbulent flow can be simulated in the different pipes depending on the flow conditions in the model domain. The three-dimensional finite-difference groundwater flow model MODFLOW (Harbaugh and McDonald, 1996) is used to simulate flow in the continuum. Contaminant transport within the matrix is simulated with a continuum approach using the three-dimensional multi-species solute transport model MT3DMS (Zheng and Wang, 1999), while that in the conduit system is simulated with a one-dimensional advective transport model. As a first step for reactive transport modeling in such systems, only equilibrium reactions among multiple species are considered by coupling the hybrid transport model to a geochemical speciation package. An idealized mine network developed by Viswanathan and Sauter (2001) is used as a test problem in this study. The numerical experiment is based on reference date collected from

  2. Robust optimization methodologies for water supply systems design

    Directory of Open Access Journals (Sweden)

    J. Marques

    2012-08-01

    Full Text Available Water supply systems (WSSs are vital infrastructures for the well-being of people today. To achieve good customer satisfaction the water supply service must always be able to meet people's needs, in terms of both quantity and quality. But unpredictable extreme conditions can cause severe damage to WSSs and lead to poorer levels of service or even to their failure. Operators dealing with a system's day-to-day operation know that events like burst water mains can compromise the functioning of all or part of a system. To increase a system's reliability, therefore, designs should take into account operating conditions other than normal ones. Recent approaches based on robust optimization can be used to solve optimization problems which involve uncertainty and can find designs which are able to cope with a range of operating conditions. This paper presents a robust optimization model for the optimal design of water supply systems operating under different circumstances. The model presented here uses a hydraulic simulator linked to an optimizer based on a simulated annealing heuristic. The results show that robustness can be included in several ways for varying levels reliability and that it leads to more reliable designs for only small cost increases.

  3. Longitudinal study of microbial diversity and seasonality in the Mexico City metropolitan area water supply system.

    Science.gov (United States)

    Mazari-Hiriart, Marisa; López-Vidal, Yolanda; Ponce-de-León, Sergio; Calva, Juan José; Rojo-Callejas, Francisco; Castillo-Rojas, Gonzalo

    2005-09-01

    In the Mexico City metropolitan area (MCMA), 70% of the water for 18 million inhabitants is derived from the Basin of Mexico regional aquifer. To provide an overview of the quality of the groundwater, a longitudinal study was conducted, in which 30 sites were randomly selected from 1,575 registered extraction wells. Samples were taken before and after chlorine disinfection during both the rainy and dry seasons (2000-2001). Microbiological parameters (total coliforms, fecal coliforms, streptococci, and Vibrio spp.), the presence of Helicobacter pylori, and physicochemical parameters, including the amount of trihalomethanes (THMs), were determined. Although microorganisms and inorganic and organic compounds were evident, they did not exceed current permissible limits. Chlorine levels were low, and the bacterial counts were not affected by chlorine disinfection. Eighty-four bacterial species from nine genera normally associated with fecal contamination were identified in water samples. H. pylori was detected in at least 10% of the studied samples. About 40% of the samples surpassed the THM concentration allowed by Mexican and U.S. regulations, with levels of chloroform being high. The quality of the water distributed to the MCMA varied between the rainy and dry seasons, with higher levels of pH, nitrates, chloroform, bromodichloromethane, total organic carbon, and fecal streptococci during the dry season. This study showed that the groundwater distribution system is susceptible to contamination and that there is a need for a strict, year-round disinfection strategy to ensure adequate drinking-water quality. This situation in one of the world's megacities may reflect what is happening in large urban centers in developing countries which rely on a groundwater supply.

  4. Environmental inventories for future electricity supply systems for Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Dones, R.; Gantner, U.; Hirschberg, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Doka, G.; Knoepfel, I. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1996-02-01

    This report provides the analysis of environmental inventories for selected electricity supply systems considered as possible options to meet the expected electricity demand in Switzerland in year 2030. Two possible electricity demand level cases were postulated by VSE, both under the basic assumption of economic growth: a high-growth demand case corresponding to a yearly increase of 2% from year 1995 to year 2010 and 1% from year 2010 to year 2030, and a low-growth demand case corresponding to a yearly increase of 1% from year 1995 to year 2010 and 0.5% from year 2010 to year 2030. The base (i.e. secured) supply in year 2030 will be, according to VSE, totally dominated by hydro with rather minor contributions from combined heat-and-power plants, small gas turbines, incinerators and solar photovoltaic plants. Due to decommissioning of the currently operating nuclear power plants and expiration of long-term electricity import contracts there will eventually occur a gap between the postulated electricity demand and the base supply. VSE provided seven options to cover this gap, defined in terms of mixes with different contributions from gas, coal, nuclear and solar chains; in this context a distinction is also made with respect to shares of domestic and imported electricity. The systems considered represent advanced technologies, regarded as either typical or most suitable for the Swiss conditions. System-specific input to the present analysis has been partially generated based on direct contacts with the industry. Life Cycle Analysis (LCA) was used to establish environmental inventories for the systems analysed. The analysis has been performed on three levels:(1) individually for each system considered, (2) comparison of systems, (3) comparison of supply options. Results are also provided for these three levels.

  5. Do septic systems contribute micropollutants and their transformation products to shallow groundwater?

    Science.gov (United States)

    Septic systems may contribute micropollutants to shallow groundwater and surface water. We constructed two in situ conventional drainfields (drip dispersal and gravel trench) and an advanced drainfield of septic systems to investigate the fate and transport of micropollutants to shallow groundwater....

  6. Effects of climate change on coastal groundwater systems: A modeling study in the Netherlands

    NARCIS (Netherlands)

    Oude Essink, Gualbert; Van Baaren, Esther S.; De Louw, Perry G.B.

    2010-01-01

    Climate change in combination with increased anthropogenic activities will affect coastal groundwater systems throughout the world. In this paper, we focus on a coastal groundwater system that is already threatened by a relatively high seawater level: the low‐lying Dutch Delta. Nearly one third of

  7. Groundwater circulation and utilisation in an unconfined carbonate system - revealing the potential effect of climate change and humankind activities

    Science.gov (United States)

    Tóth, Ádám; Mádl-Szönyi, Judit

    2016-04-01

    Characteristics of gravitational groundwater flow systems in carbonate regions were presented by Mádl-Szönyi & Tóth (2015) based on theoretical considerations, identification and classification of groundwater flow-related field phenomena and numerical simulation. It was revealed that the changes of flow pattern in carbonate framework attributed to groundwater utilization and/or climate change are more apparent due to the effective hydraulic conductivity of carbonates. Consequently, natural or artificial disturbances of water level propagate farther, deeper and faster in carbonates than in siliciclastic basins. These changes could result in degradation and reorganization of hierarchical flow systems, modification of recharge and discharge areas and even alteration of physicochemical parameters (Mádl-Szönyi & Tóth, 2015). This paper presents the application of the gravity-driven regional groundwater flow concept to the hydrogeologically complex thick carbonate system of the Transdanubian Range, Hungary, depicting the flow pattern of the area and to a practical problem of a local study area, conflicts of interest of water supply and water use of a golf course. The question is how will the natural discharge on the golf course be influenced by the planned karst drinking water production well. In addition, the effects of climate change on this conflict were evaluated. We demonstrate the importance of the understanding the appropriate scale in karst studies and illustrate how the gravity-driven regional groundwater flow concept can help to determine it. For this purpose, the hydrogeological conditions of the study site were examined at different scales. The goals were to define the appropriate scale and reveal the effects of tectonic structures; and give prognoses for the possible impact of a planned drinking water well and climate change on the golf course based on numerical simulation. The study also showed the low geothermal potential of the area.

  8. Appraising options to reduce shallow groundwater tables and enhance flow conditions over regional scales in an irrigated alluvial aquifer system

    Science.gov (United States)

    Morway, Eric D.; Gates, Timothy K.; Niswonger, Richard G.

    2013-01-01

    Some of the world’s key agricultural production systems face big challenges to both water quantity and quality due to shallow groundwater that results from long-term intensive irrigation, namely waterlogging and salinity, water losses, and environmental problems. This paper focuses on water quantity issues, presenting finite-difference groundwater models developed to describe shallow water table levels, non-beneficial groundwater consumptive use, and return flows to streams across two regions within an irrigated alluvial river valley in southeastern Colorado, USA. The models are calibrated and applied to simulate current baseline conditions in the alluvial aquifer system and to examine actions for potentially improving these conditions. The models provide a detailed description of regional-scale subsurface unsaturated and saturated flow processes, thereby enabling detailed spatiotemporal description of groundwater levels, recharge to infiltration ratios, partitioning of ET originating from the unsaturated and saturated zones, and groundwater flows, among other variables. Hybrid automated and manual calibration of the models is achieved using extensive observations of groundwater hydraulic head, groundwater return flow to streams, aquifer stratigraphy, canal seepage, total evapotranspiration, the portion of evapotranspiration supplied by upflux from the shallow water table, and irrigation flows. Baseline results from the two regional-scale models are compared to model predictions under variations of four alternative management schemes: (1) reduced seepage from earthen canals, (2) reduced irrigation applications, (3) rotational lease fallowing (irrigation water leased to municipalities, resulting in temporary dry-up of fields), and (4) combinations of these. The potential for increasing the average water table depth by up to 1.1 and 0.7 m in the two respective modeled regions, thereby reducing the threat of waterlogging and lowering non-beneficial consumptive use

  9. Power supply system for negative ion source at IPR

    Energy Technology Data Exchange (ETDEWEB)

    Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K G; Soni, Jignesh; Bandyopadhyay, M; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun, E-mail: agrajit@ipr.res.i [Institute for Plasma Research, Gandhinagar, Gujarat - 382428 (India)

    2010-02-01

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density {approx}5 x 10{sup 12} cm{sup -3}, from which {approx} 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage ({approx}15 to 35kV), and high current ({approx} 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< {+-}1%), low ripple (< {+-}2%), isolation ({approx}50kV), low energy content (< 10J) and fast cut-off (< 100{mu}s). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically ({approx} 50k

  10. Defining regulatory requirements for water supply systems in Vietnam

    Directory of Open Access Journals (Sweden)

    Deryushev Leonid Georgiyevich

    2014-01-01

    Full Text Available In the article the authors offer their suggestions for improving the reliability of the standardization requirements for water supply facilities in Vietnam, as an analog of building regulations of Russia 31.13330.2012. In Russia and other advanced countries the reliability of the designed water supply systems is usual to assess quantitatively. Guidelines on the reliability assessment of water supply systems and facilities have been offered by many researchers, but these proposals are not officially approved. Some methods for assessing the reliability of water supply facilities are informally used in practice when describing their quality. These evaluation methods are simple and useful. However, the given estimations defy common sense and regulatory requirements used by all the organizations, ministries and departments, for example, of Russia, in the process of allowances for restoration and repair of water supply facilities. Inadequacy of the water supply facilities assessment is shown on the example of assessing the reliability of pipeline system. If we take MTBF of specific length of the pipeline as reliability index for a pipeline system, for example, 5 km, a pipeline of the similar gauge, material and working conditions with the length of 5 m, according to the estimation on the basis of non-official approach, must have a value of MTBF 1000 times greater than with the length of 5 km. This conclusion runs counter to common sense, for the reason that all the pipes in the area of 5 km are identical, have the same load and rate of wear (corrosion, fouling, deformation, etc.. It was theoretically and practically proved that products of the same type in the same operating conditions (excluding determined impact of a person, work as an entity, which MTBF is equal to the average lifetime. It is proposed to take the average service life as a reliability indicator of a pipeline. Durability, but not failsafety of the pipe guarantees pipeline functioning

  11. Potential water supply of a small reservoir and alluvial aquifer system in southern Zimbabwe

    NARCIS (Netherlands)

    Hamer, de W.; Love, D.; Owen, R.; Booij, M.J.; Hoekstra, A.Y.

    2007-01-01

    Groundwater use by accessing alluvial aquifers of non‐perennial rivers can be an important additional water resource in the semi‐arid region of southern Zimbabwe. The research objective of the study was to calculate the potential water supply for the upper‐Mnyabezi catchment under current conditions

  12. Potential water supply of a small reservoir and alluvial aquifer system in southern Zimbabwe

    NARCIS (Netherlands)

    Hamer, de W.; Love, D.; Owen, R.; Booij, M.J.; Hoekstra, A.Y.

    2008-01-01

    Groundwater use by accessing alluvial aquifers of non-perennial rivers can be an important additional water resource in the semi-arid region of southern Zimbabwe. The research objective of the study was to calculate the potential water supply for the upper-Mnyabezi catchment under current conditions

  13. Potential water supply of a small reservoir and alluvial aquifer system in southern Zimbabwe

    NARCIS (Netherlands)

    de Hamer, W.; Love, D.; Owen, R.; Booij, Martijn J.; Hoekstra, Arjen Ysbert

    2008-01-01

    Groundwater use by accessing alluvial aquifers of non-perennial rivers can be an important additional water resource in the semi-arid region of southern Zimbabwe. The research objective of the study was to calculate the potential water supply for the upper-Mnyabezi catchment under current conditions

  14. Potential water supply of a small reservoir and alluvial aquifer system in southern Zimbabwe

    NARCIS (Netherlands)

    de Hamer, W.; Love, D.; Owen, R.; Booij, Martijn J.; Hoekstra, Arjen Ysbert

    2007-01-01

    Groundwater use by accessing alluvial aquifers of non‐perennial rivers can be an important additional water resource in the semi‐arid region of southern Zimbabwe. The research objective of the study was to calculate the potential water supply for the upper‐Mnyabezi catchment under current conditions

  15. Automated Monitoring System for Waste Disposal Sites and Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    S. E. Rawlinson

    2003-03-01

    A proposal submitted to the U.S. Department of Energy (DOE), Office of Science and Technology, Accelerated Site Technology Deployment (ASTD) program to deploy an automated monitoring system for waste disposal sites and groundwater, herein referred to as the ''Automated Monitoring System,'' was funded in fiscal year (FY) 2002. This two-year project included three parts: (1) deployment of cellular telephone modems on existing dataloggers, (2) development of a data management system, and (3) development of Internet accessibility. The proposed concept was initially (in FY 2002) to deploy cellular telephone modems on existing dataloggers and partially develop the data management system at the Nevada Test Site (NTS). This initial effort included both Bechtel Nevada (BN) and the Desert Research Institute (DRI). The following year (FY 2003), cellular modems were to be similarly deployed at Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL), and the early data management system developed at the NTS was to be brought to those locations for site-specific development and use. Also in FY 2003, additional site-specific development of the complete system was to be conducted at the NTS. To complete the project, certain data, depending on site-specific conditions or restrictions involving distribution of data, were to made available through the Internet via the DRI/Western Region Climate Center (WRCC) WEABASE platform. If the complete project had been implemented, the system schematic would have looked like the figure on the following page.

  16. Vulnerability of deep groundwater in the Bengal Aquifer System to contamination by arsenic

    Science.gov (United States)

    Burgess, W.G.; Hoque, M.A.; Michael, H.A.; Voss, C.I.; Breit, G.N.; Ahmed, K.M.

    2010-01-01

    Shallow groundwater, the primary water source in the Bengal Basin, contains up to 100 times the World Health Organization (WHO) drinking-water guideline of 10g l 1 arsenic (As), threatening the health of 70 million people. Groundwater from a depth greater than 150m, which almost uniformly meets the WHO guideline, has become the preferred alternative source. The vulnerability of deep wells to contamination by As is governed by the geometry of induced groundwater flow paths and the geochemical conditions encountered between the shallow and deep regions of the aquifer. Stratification of flow separates deep groundwater from shallow sources of As in some areas. Oxidized sediments also protect deep groundwater through the ability of ferric oxyhydroxides to adsorb As. Basin-scale groundwater flow modelling suggests that, over large regions, deep hand-pumped wells for domestic supply may be secure against As invasion for hundreds of years. By contrast, widespread deep irrigation pumping might effectively eliminate deep groundwater as an As-free resource within decades. Finer-scale models, incorporating spatial heterogeneity, are needed to investigate the security of deep municipal abstraction at specific urban locations. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  17. Overview on the power supply systems for plasma instabilities control

    Energy Technology Data Exchange (ETDEWEB)

    Toigo, V., E-mail: vanni.toigo@igi.cnr.it [Consorzio RFX - EURATOM - ENEA Association, C.so Stati Uniti 4, 35127 Padova (Italy); Gaio, E.; Piovan, R.; Barp, M.; Bigi, M.; Ferro, A.; Finotti, C.; Novello, L.; Recchia, M.; Zamengo, A.; Zanotto, L. [Consorzio RFX - EURATOM - ENEA Association, C.so Stati Uniti 4, 35127 Padova (Italy)

    2011-10-15

    The paper presents an overview on the power supply (PS) systems for plasma instabilities control in fusion experiments, based on active control coils. First, the MHD instabilities and the approach to their control in Tokamaks and Reversed Field Pinches (RFPs) are described. Then, the features of MHD modes controls presently used in fusion experiments are reviewed. For the control systems based on active coils fed by fast power supplies, the typical requirements in terms of power, dynamics, accuracy and delay are summarized and discussed. Then, a survey on the technology available to design these types of PSs is given, together with the most suitable circuit topologies and guidelines for the design, on the basis of solutions adopted in existing experiments.

  18. A study of industrial hydrogen and syngas supply systems

    Science.gov (United States)

    Amos, W. J.; Solomon, J.; Eliezer, K. F.

    1979-01-01

    The potential and incentives required for supplying hydrogen and syngas feedstocks to the U.S. chemical industry from coal gasification systems were evaluated. Future hydrogen and syngas demand for chemical manufacture was estimated by geographic area and projected economics for hydrogen and syngas manufacture was estimated with geographic area of manufacture and plant size as parameters. Natural gas, oil and coal feedstocks were considered. Problem areas presently affecting the commercial feasibility of coal gasification discussed include the impact of potential process improvements, factors involved in financing coal gasification plants, regulatory barriers affecting coal gasification, coal mining/transportation, air quality regulations, and competitive feedstock pricing barriers. The potential for making coal gasification the least costly H2 and syngas supply option. Options to stimulate coal gasification system development are discussed.

  19. Modern Solutions for Automation of Electrical Traction Power Supply Systems

    Directory of Open Access Journals (Sweden)

    Ana Mihaela Andreica

    2011-09-01

    Full Text Available This paper presents modern solutions for the automation of the electrical traction power supply system used in urban public transport (trams, trolleybuses and subway trains. The monitoring and control of this process uses SCADA distributed architectures, grouped around a central point (dispatcher who controls all field sensors, transmitters and actuators using programmable logical controllers. The presented applications refer to the Bucharest electrical transport infrastructure.

  20. Flexible procurement systems is key to supply chain sustainability

    OpenAIRE

    Surajit Bag

    2016-01-01

    Background: In this dynamic business environment, manufacturers are focusing primarily on delivery performance and competitive pricing to win orders. It is essential that manufacturers adopt flexible procurement systems (FPSs) in such an uncertain environment for business sustainability.Objectives: The purpose of the study is to identify the elements of FPSs and model the interrelationships between elements of FPSs and, finally, to understand how FPSs are linked with supply chain sustainabili...

  1. Systems for uninterrupted power supply; USV - ein starkes Stueck Sicherheit

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, D.; Soelter, W. [AEG SVS GmbH, Warstein-Belecke (Germany)

    1999-09-01

    The millennium bug is only one of the many potential hazards in information technology. Systems for uninterrupted power supply offer a solution. [German] Alle Welt spricht vom Jahr-2000-Problem (Y2K). Die Meinungen dazu reichen von Horror-Szenarien bis hin zum Ignorieren dieses Problems. Dabei steht fest: Das Jahr-2000-Problem ist nur eines unter vielen Gefahrenpotentialen fuer die Informationstechnik. Dabei lassen sich alle Stoerfaktoren, die aus der Energieversorgung resultieren mit einer USV beseitigen. USV sichern Geschaeftsablaeufe und Fertigungsprozesse. (orig.)

  2. AUTOMATION OF THE RESIDENTIAL BUILDING WATER SUPPLY SYSTEM PUMPING STATION

    Directory of Open Access Journals (Sweden)

    A. M. Kulia

    2016-08-01

    Full Text Available Essence of process of water-supply of apartment dwelling house is considered. The existent state over of automation of the pumping stations is brought. The task of development of the effective system of automatic control is put by them. Possibility of decision of task is shown by the use in the system of frequency transformer that feeds the electrodrives of pumps, and also due to perfection of algorithms of the pumps rotation frequency adjusting and logical management of their switching a sequence. The practical value of the use of the system is to increase dynamic.

  3. Relation of streams, lakes, and wetlands to groundwater flow systems

    Science.gov (United States)

    Winter, Thomas C.

    Surface-water bodies are integral parts of groundwater flow systems. Groundwater interacts with surface water in nearly all landscapes, ranging from small streams, lakes, and wetlands in headwater areas to major river valleys and seacoasts. Although it generally is assumed that topographically high areas are groundwater recharge areas and topographically low areas are groundwater discharge areas, this is true primarily for regional flow systems. The superposition of local flow systems associated with surface-water bodies on this regional framework results in complex interactions between groundwater and surface water in all landscapes, regardless of regional topographic position. Hydrologic processes associated with the surface-water bodies themselves, such as seasonally high surface-water levels and evaporation and transpiration of groundwater from around the perimeter of surface-water bodies, are a major cause of the complex and seasonally dynamic groundwater flow fields associated with surface water. These processes have been documented at research sites in glacial, dune, coastal, mantled karst, and riverine terrains. Résumé Les eaux de surface sont parties intégrantes des systèmes aquifères. Les eaux souterraines interagissent avec les eaux de surface dans presque tous les types d'environnements, depuis les petits ruisseaux, les lacs et les zones humides jusqu'aux bassins versants des vallées des grands fleuves et aux lignes de côte. Il est en général admis que les zones topographiquement hautes sont des lieux de recharge des aquifères et les zones basses des lieux de décharge, ce qui est le cas des grands systèmes aquifères régionaux. La superposition de systèmes locaux, associés à des eaux de surface, à l'organisation régionale d'écoulements souterrains résulte d'interactions complexes entre les eaux souterraines et les eaux de surface dans tous les environnements, quelle que soit la situation topographique régionale. Les processus

  4. Development of dual-source hybrid heat pump system using groundwater and air

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Yujin; Ooka, Ryozo [Cw403 Institute of Industry Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Shiba, Yoshiro [Zeneral Heatpump Industry Co., Ltd., Nagoya 459-8001 (Japan)

    2010-06-15

    To achieve high heat pump efficiency, groundwater heat pump (GWHP) system uses groundwater, which is relatively stable AT temperature compared with outdoor air, as a heat source. However, it is difficult to meet annual heating and cooling loads using only groundwater as a heat source. In order to optimize the operation method of GWHP systems, it is necessary to develop a system utilizing both groundwater and air sources according to the building load conditions. Furthermore, during intermediate seasons (such as spring and autumn) with reduced heating and cooling loads, GWHP system is less efficient than air source heat pump (ASHP) system according to temperature conditions. In order to more efficiently use GWHP systems, it is necessary to develop a system which utilizes both groundwater and air sources according to temperature conditions and building loads. This research has developed a GWHP system that employs a hybrid heat pump system with groundwater wells using dual groundwater and air heat sources. In this paper, the annual performance of the developed system has been calculated, and several case studies have been conducted on the effect of introduction location, refrigerant and pumping rate. Furthermore, the coefficient of system performance and the effects on underground environments have been evaluated by real-scale experiment using two wells. (author)

  5. Optimization of electrical supply systems of oil production installations

    Energy Technology Data Exchange (ETDEWEB)

    Nissenbaum, I.A.; Novoselov, Yu.B.; Tsekhnov, A.N.

    1979-01-01

    The problem of optimization of electrical system assumes determination of the method for constructing the system, the functioning of which would assure minimal values of the technical-economic criterion -- costs, which are the basic economic factor in construction and exploitation of the system. When designing electro-supply systems for oil production installations, in particular, the pump stations, three principal versions of the optimization problem are possible, which are determined by the different conditions of the system, the type of minimizing criteria and volume of optimizing parameters. The most difficult optimization of an electrical system is when it is characterized only by assumed values of active power flow, which are determined by the specific energy requirements of the planned technological processes and the type of equipment used. Second, the more common optimization problem is improvement of the existing electrical network, with established processes and equipment use. The third version is a developing system, in which as a result of introduction of new technological installations, or remodeling of old ones, and which may result in a sharp change or re-distribution of the active power supply. Determining operating regimen of the system and optimization of economic-technical criteria should be a result of large-scale calculation and simulation using a digital computer, and use of iteration and non-linear programming methods.

  6. The effect of iron oxidation in the groundwater of the alluvial aquifer of the Velika Morava River, Serbia, on the clogging of water supply wells

    Directory of Open Access Journals (Sweden)

    Majkić-Dursun Brankica

    2015-01-01

    Full Text Available The oxidation of dissolved iron(II in groundwater and precipitation on the screens and discharge pipes of water wells that tap shallow alluvial aquifers leads to the formation of well encrustations. Well clogging has a number of adverse impacts reflected in declining production capacity, increasing parasitic drawdown and growing maintenance costs of the water supply source. Chemical clogging rarely occurs as a stand-alone process in the groundwater of shallow alluvial aquifers; it is generally catalyzed by micro-organisms, the role of which is important to explain rapid blocking. This paper presents a calculation of the rate of homogeneous chemical oxidation of iron in wells that tap the alluvial aquifer of the Velika Morava River in Serbia, where there are pronounced iron hydroxide clogging issues. When the dynamic groundwater level drops to such an extent that the pumps need to be shut down, or when the well capacity is very low, the results show that there is enough time for iron encrustation to form. Iron oxidation does not occur solely inside the well; the process tends to extend into a much wider zone, beyond the well. [Projekat Ministartsva nauke Republike Srbije, br. TR37014

  7. A city scale study on the effects of intensive groundwater heat pump systems on heavy metal contents in groundwater.

    Science.gov (United States)

    García-Gil, Alejandro; Epting, Jannis; Garrido, Eduardo; Vázquez-Suñé, Enric; Lázaro, Jesús Mateo; Sánchez Navarro, José Ángel; Huggenberger, P; Calvo, Miguel Ángel Marazuela

    2016-12-01

    As a result of the increasing use of shallow geothermal resources, hydraulic, thermal and chemical impacts affecting groundwater quality can be observed with ever increasing frequency (Possemiers et al., 2014). To overcome the uncertainty associated with chemical impacts, a city scale study on the effects of intensive geothermal resource use by groundwater heat pump systems on groundwater quality, with special emphasis on heavy metal contents was performed. Statistical analysis of geochemical data obtained from several field campaigns has allowed studying the spatiotemporal relationship between temperature anomalies in the aquifer and trace element composition of groundwater. The relationship between temperature and the concentrations of trace elements resulted in weak correlations, indicating that temperature changes are not the driving factor in enhancing heavy metal contaminations. Regression models established for these correlations showed a very low reactivity or response of heavy metal contents to temperature changes. The change rates of heavy metal contents with respect to temperature changes obtained indicate a low risk of exceeding quality threshold values by means of the exploitation regimes used, neither producing nor enhancing contamination significantly. However, modification of pH, redox potential, electrical conductivity, dissolved oxygen and alkalinity correlated with the concentrations of heavy metals. In this case, the change rates of heavy metal contents are higher, with a greater risk of exceeding threshold values. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Modelling groundwater systems: Understanding and improving groundwater quantity and quality management

    NARCIS (Netherlands)

    Ebrahim, G.Y.

    2013-01-01

    Groundwater is one of the most important natural resources. It is the principal source of drinking water in rural and many urban cities, and widely used for irrigation in most arid and semi-arid countries. However, recently it has become apparent that many human activities are negatively impacting b

  9. Documentation of a groundwater flow model developed to assess groundwater availability in the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to North Carolina

    Science.gov (United States)

    Masterson, John P.; Pope, Jason P.; Fienen, Michael N.; Monti, Jr., Jack; Nardi, Mark R.; Finkelstein, Jason S.

    2016-08-31

    The U.S. Geological Survey developed a groundwater flow model for the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to northeastern North Carolina as part of a detailed assessment of the groundwater availability of the area and included an evaluation of how these resources have changed over time from stresses related to human uses and climate trends. The assessment was necessary because of the substantial dependency on groundwater for agricultural, industrial, and municipal needs in this area.

  10. Biogeochemical dynamics of pollutants in Insitu groundwater remediation systems

    Science.gov (United States)

    Kumar, N.; Millot, R.; Rose, J.; Négrel, P.; Battaglia-Brunnet, F.; Diels, L.

    2010-12-01

    Insitu (bio) remediation of groundwater contaminants has been area of potential research interest in last few decades as the nature of contaminant encountered has also changed drastically. This gives tough challenge to researchers in finding a common solution for all contaminants together in one plume. Redox processes play significant role in pollutant dynamics and mobility in such systems. Arsenic particularly in reduced environments can get transformed into its reduced form (As3+), which is apparently more mobile and highly toxic. Also parallel sulfate reduction can lead to sulfide production and formation of thioarsenic species. On the other hand heavy metals (Zn, Fe, and Cd) in similar conditions will favour more stable metal sulfide precipitation. In the present work, we tested Zero Valent Iron (ZVI) in handling such issues and found promising results. Although it has been well known for contaminants like arsenic and chlorinated compounds but not much explored for heavy metals. Its high available surface area supports precipitation and co -precipitation of contaminants and its highly oxidizing nature and water born hydrogen production helps in stimulation of microbial activities in sediment and groundwater. These sulfate and Iron reducing bacteria can further fix heavy metals as stable metal sulfides by using hydrogen as potential electron donor. In the present study flow through columns (biotic and control) were set up in laboratory to understand the behaviour of contaminants in subsurface environments, also the impact of microbiology on performance of ZVI was studied. These glass columns (30 x 4cm) with intermediate sampling points were monitored over constant temperature (20°C) and continuous groundwater (up)flow at ~1ml/hr throughout the experiment. Simulated groundwater was prepared in laboratory containing sulfate, metals (Zn,Cd) and arsenic (AsV). While chemical and microbial parameters were followed regularly over time, solid phase has been

  11. Development of a decision support system for groundwater pollution assessment

    NARCIS (Netherlands)

    Kukuric, N.

    1999-01-01

    Computers have become the main tooi used in groundwater management. Computer software has been developed for storage, processing and presentation of information on groundwater pollution problems. Continuing demands for more efficiënt handling of information have resulted in increasing integration of

  12. Alternative power supply systems for remote industrial customers

    Science.gov (United States)

    Kharlamova, N. V.; Khalyasmaa, A. I.; Eroshenko, S. A.

    2017-06-01

    The paper addresses the problem of alternative power supply of remote industrial clusters with renewable electric energy generation. As a result of different technologies comparison, consideration is given to wind energy application. The authors present a methodology of mean expected wind generation output calculation, based on Weibull distribution, which provides an effective express-tool for preliminary assessment of required installed generation capacity. The case study is based on real data including database of meteorological information, relief characteristics, power system topology etc. Wind generation feasibility estimation for a specific territory is followed by power flow calculations using Monte Carlo methodology. Finally, the paper provides a set of recommendations to ensure safe and reliable power supply for the final customers and, subsequently, to provide sustainable development of the regions, located far from megalopolises and industrial centres.

  13. Air supply system for an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Eftink, A.

    1992-06-11

    The present invention describes a system for supplying the primary combustion air to a reciprocating piston internal combustion engine including a trochoidal chamber air pump having a pair of pumping chambers interposed between an air intake and each of the cylinders of the engine. Each pumping chamber has an air inlet connected to an air intake, and an air outlet that is connected to the cylinders. In a two-cycle mode of operation, each pumping chamber outlet is connected to one engine cylinder. In a four-cycle mode of operation, each pumping chamber outlet is connected to a pair of cylinders to supply air during the intake stroke. The input shaft of the trochoidal chamber air pump is driven by, and may be connected to, the crankshaft of the engine so as to rate on a 1:1 ratio. (author)

  14. Using integrated information systems in supply chain management

    Science.gov (United States)

    Gonzálvez-Gallego, Nicolás; Molina-Castillo, Francisco-Jose; Soto-Acosta, Pedro; Varajao, Joao; Trigo, Antonio

    2015-02-01

    The aim of this paper is to empirically test not only the direct effects of information and communication technology (ICT) capabilities and integrated information systems (IS) on firm performance, but also the moderating role of IS integration along the supply chain in the relationship between ICT external and capabilities and business performance. Data collected from 102 large Iberian firms from Spain and Portugal are used to test the research model. The hierarchical multiple regression analysis is employed to test the direct effects and the moderating relationships proposed. Results show that external and internal ICT capabilities are important drivers of firm performance, while merely having integrated IS do not lead to better firm performance. In addition, a moderating effect of IS integration in the relationship between ICT capabilities and business performance is found, although this integration only contributes to firm performance when it is directed to connect with suppliers or customers rather than when integrating the whole supply chain.

  15. Pathogen transport in groundwater systems: contrasts with traditional solute transport

    Science.gov (United States)

    Hunt, Randall J.; Johnson, William P.

    2017-06-01

    Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in "Colloid Filtration Theory", a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.

  16. Pathogen transport in groundwater systems: contrasts with traditional solute transport

    Science.gov (United States)

    Hunt, Randall J.; Johnson, William P.

    2016-12-01

    Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in "Colloid Filtration Theory", a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.

  17. Groundwater impact on geothermal systems; Impacto del agua subterranea en los sistemas geotermicos

    Energy Technology Data Exchange (ETDEWEB)

    Katzenbach, R.; Wagner, I. M.

    2009-07-01

    Thermal behavior of geothermal systems is influenced by the presence and the velocity of the groundwater. The impact has to be accounted for during the dimensioning as well as during the construction. it is shown that the impact on the interference with neigh bored installation has to be controlled, especially in case of groundwater flow. (Author) 9 refs.

  18. Effects of a constructed wetland and pond system upon shallow groundwater quality

    Science.gov (United States)

    Ying Ouyang

    2013-01-01

    Constructed wetland (CW) and constructed pond (CP) are commonly utilized for removal of excess nutrients and certain pollutants from stormwater. This study characterized shallow groundwater quality for pre- and post-CW and CP system conditions using data from monitoring wells. Results showed that the average concentrations of groundwater phosphorus (P) decreased from...

  19. Bacterial community of biofilms developed under different water supply conditions in a distribution system.

    Science.gov (United States)

    Sun, Huifang; Shi, Baoyou; Bai, Yaohui; Wang, Dongsheng

    2014-02-15

    In order to understand the bacterial community characteristics of biofilms developed under different finished water supply histories in drinking water distribution systems (DWDS), biofilm samples on different type of iron corrosion scales in a real DWDS were collected and systematically investigated using 454 pyrosequencing of 16S rRNA gene. The richness and diversity estimators showed that biofilms formed in DWDS transporting finished groundwater (GW) had the lowest level of bacterial diversity. From phylum to genus level, the dominant bacterial groups found in the biofilms under finished surface water (SW) and GW conditions were distinct. Proteobacteria was the dominant group in all biofilm samples (in the range of 40%-97%), but was relatively higher in biofilms with GW. The relative abundance of Firmicutes in biofilms with SW (28%-35%) was significantly higher (piron-reducing bacteria (mainly Bacillus) and iron-oxidizing bacteria (mainly Acidovorax) were relatively higher in biofilms with SW, which might contribute to the formation of much thicker or tubercle-formed corrosion scales under SW supply condition. Several potential opportunistic pathogens, such as Burkholderia fungorum, Mycobacterium neoaurum, Mycobacterium frederiksbergense were detected in the biofilms.

  20. Study on Problems and Countermeasures of Rural Public Goods Supplying System

    Institute of Scientific and Technical Information of China (English)

    JIANG Hua

    2006-01-01

    In current China, the main problem existing in the rural public goods supplying system is the unbalanced condition of public goods supply, and the chief reason for which is unitary system of supply main body.Thus the leading countermeasure for corner of public goods supply is to reform the present unitary rural public goods supplying system, to strengthen functional transfer of rural grass-roots directive organization, to adopt diversified mode and provide public goods on the base of overall planning of urban and rural areas and to implement unitary and diversified supplying strategy. In this way, supplying efficiency of the rural public goods will be improved.

  1. Development of Solar Electricity Supply System in India: An Overview

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar Gupta

    2013-01-01

    Full Text Available Solar electricity supply system has grown at very rapid pace in India during the last few years. A total of 1047.84 MW of grid connected photovoltaic projects and 160.8 MW of off-grid systems have been commissioned under different policy mechanisms between January 2010 and November 2012. It is observed that solar capacity development has achieved a greater height under state policies (689.81 MW than others. A study is made in this paper of various national and state level schemes, incentives, packages, instruments, and different mechanisms to promote solar photovoltaics and its effectiveness.

  2. Electronics in cars: consequences for the energy-supply system

    Science.gov (United States)

    Beil, Falk

    The amount of electronics in cars is constantly increasing. Thus, the question arises, whether the current wiring designs will continue to be able to meet the required output related to this increase in the future. Which consequences result, then, for the design of the wiring system and its components? An examination of the electrical consumers currently installed in motor vehicles, and of those planned for future use, shows that the wiring system load during driving will increase to as much as 2000 W. Many new devices, such as the telephone, will also enjoy increasing use while the vehicle is at a standstill, which will result in the type of wiring system load changing in the future. In addition to this, loading will increase due to greater traffic density; the vehicle will be operated more often at idling speed, leading to a reduction in the available current. Thus, a balanced current supply can no longer be ensured with present designs. That means new energy supply concepts are required, e.g. the 24 V wiring system and energy management. In addition, the wiring system components must be optimized. This particularly applies to the battery, which must be further developed in order to obtain increased cell strength, a longer service life and improved temperature stability.

  3. Performance of constructed wetland system for public water supply.

    Science.gov (United States)

    Elias, J M; Salati Filho, E; Salati, E

    2001-01-01

    The project is being conducted in the town of Analândia, São Paulo, Brazil. The constructed wetlands system for water supply consists of a channel with floating aquatic macrophytes, HDS system (Water Decontamination with Soil-Patent PI 850.3030), chlorinating system, filtering system and distribution. The project objectives include investigating the process variables to further optimize design and operation factors, evaluating the relation of nutrients and plants development, biomass production, shoot development, nutrient cycling and total and fecal coliforms removal, comparing the treatment efficiency among the seasons of the year; and moreover to compare the average values obtained between February and June 1998 (Salati et al., 1998) with the average obtained for the same parameters between March and June 2000. Studies have been developed in order to verify during one year the drinking quality of the water for the following parameters: turbidity, color, pH, dissolved oxygen, total of dissolved solids, COD, chloride, among others, according to the Ministry of Health's Regulation 36. This system of water supply projected to treat 15 L s(-1) has been in continuous operation for 2 years, it was implemented with support of the National Environment Fund (FNMA), administered by the Center of Environmental Studies (CEA-UNESP), while the technical supervision and design were performed by the Institute of Applied Ecology. The actual research project is being supported by FAPESP.

  4. Alignment of Information Systems with Supply Chains: Impacts on Supply Chain Performance and Organizational Performance

    Science.gov (United States)

    Qrunfleh, Sufian M.

    2010-01-01

    Over the past decade, an important focus of researchers has been on supply chain management (SCM), as many organizations believe that effective SCM is the key to building and sustaining competitive advantage for their products/services. To manage the supply chain, companies need to adopt an SCM strategy (SCMS) and implement appropriate SCM…

  5. Alignment of Information Systems with Supply Chains: Impacts on Supply Chain Performance and Organizational Performance

    Science.gov (United States)

    Qrunfleh, Sufian M.

    2010-01-01

    Over the past decade, an important focus of researchers has been on supply chain management (SCM), as many organizations believe that effective SCM is the key to building and sustaining competitive advantage for their products/services. To manage the supply chain, companies need to adopt an SCM strategy (SCMS) and implement appropriate SCM…

  6. Badger Army Ammunition Plant groundwater data management system

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J.P. [Olin Corp., Baraboo, WI (United States). Badger Army Ammunition Plant

    1994-12-31

    At the Badger Army Ammunition Plant (Badger), there are currently over 200 wells that are monitored on a quarterly basis. Badger has had three active production periods since its construction in 1942. During these periods, various nitrocellulose based propellants were produced including single base artillery propellants were produced including single base artillery propellant, double base rocket propellant and BALL POWDER{reg_sign} propellant. Intermediate materials used in the manufacture of these propellants were also produced, including nitroglycerine, and sulfuric and nitric acids. To meet the challenge of managing the data in-house, a groundwater data management system (GDMS) was developed. Although such systems are commercially available, they were not able to provide the specific capabilities necessary for data management and reporting at Badger. The GDMS not only provides the routine database capabilities of data sorts and queries, but has provided an automated data reporting system as well. The reporting function alone has significantly reduced the time and efforts that would normally be associated with this task. Since the GDMS was developed at Badger, the program can be continually adapted to site specific needs. Future planned modifications include automated reconciliation, improved transfer of data to graphics software, and statistical analysis and interpretation of the data.

  7. A Suggestion for Safeguards System under Nuclear Supply Assurance Environment

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Seong Youn [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2009-05-15

    Various ideas about nuclear fuel supply assurance have been proposed with the expectation of a new era of 'Nuclear Renaissance.' The possibility is ever than high now as the environmental impact due to the fossil fuel burning is worsening. But there are several obstacles to realize the resurrection of nuclear power as promising energy source in the future. The disposal of high radioactive wastes like nuclear spent fuel could be the first one that everyone can imagine, because those wastes are regarded as one of the direct threat to human health. But the most dangerous threat can be materialized through the diversion of nuclear material, if some malicious actors like some rogue states or terrorist groups take chance of the nuclear industry booming. Most supply assurance ideas based on multilateral approach provide the way to provide nuclear fuel while limiting dissipation of sensitive technologies. But regarding the safeguards implementation under the supply assurance environment, it seems that any appropriate approach has not been prepared. It is prerequisite to establish safeguards implementation system for multilateral facilities prior to their actual operation.

  8. Adsorptive iron removal from groundwater

    NARCIS (Netherlands)

    Sharma, S.K.

    2001-01-01

    Iron is commonly present in groundwater worldwide. The presence of iron in the water supply is not harmful to human health, however it is undesirable. Bad taste, discoloration, staining, deposition in the distribution system leading to aftergrowth, and incidences of high turbidity are some

  9. Numerical modeling of geothermal groundwater flow in karst aquifer system in eastern Weibei, Shaanxi Province, China

    Institute of Scientific and Technical Information of China (English)

    LI Ming; LI GuoMin; YANG Liao; DANG XueYa; ZHAO ChunHu; HOU GuangCai; ZHANG MaoSheng

    2007-01-01

    The quantitative assessment of geothermal water resources is important to the exploitation and utilization of geothermal resources. In the geothermal water systems the density of groundwater changes with the temperature, therefore the variations in hydraulic heads and temperatures are very complicated. A three-dimensional density-dependent model coupling the groundwater flow and heat transport is established and used to simulate the geothermal water flow in the karst aquifers in eastern Weibei,Shaanxi Province, China. The multilayered karst aquifer system in the study area is cut by some major faults which control the regional groundwater flow. In order to calibrate and simulate the effect of the major faults, each fault is discretized as a belt of elements with special hydrological parameters in the numerical model. The groundwater dating data are used to be integrated with the groundwater flow pattern and calibrate the model. Simulation results show that the calculated hydraulic heads and temperature fit with the observed data well.

  10. Leaks in the internal water supply piping systems

    Directory of Open Access Journals (Sweden)

    Orlov Evgeniy Vladimirovich

    2015-03-01

    Full Text Available Great water losses in the internal plumbing of a building lead to the waste of money for a fence, purification and supply of water volumes in excess. This does not support the concept of water conservation and resource saving lying today in the basis of any building’s construction having plumbing. Leakage means unplanned of water losses systems in domestic water supply systems (hot or cold as a result of impaired integrity, complicating the operation of a system and leading to high costs of repair and equipment restoration. A large number of leaks occur in old buildings, where the regulatory service life of pipelines has come to an end, and the scheduled repair for some reason has not been conducted. Steel pipelines are used in the systems without any protection from corrosion and they get out of order. Leakages in new houses are also not uncommon. They usually occur as a result of low-quality adjustment of the system by workers. It also important to note the absence of certain skills of plumbers, who don’t conduct the inspections of in-house systems in time. Sometimes also the residents themselves forget to keep their pipeline systems and water fittings in their apartment in good condition. Plumbers are not systematically invited for preventive examinations to detect possible leaks in the domestic plumbing. The amount of unproductive losses increases while simultaneous use of valve tenants, and at the increase of the number of residents in the building. Water leaks in the system depend on the amount of water system piping damages, and damages of other elements, for example, water valves, connections, etc. The pressure in the leak area also plays an important role.

  11. Considerations on Risk in Supply Chain Management Information Systems Implementation

    Directory of Open Access Journals (Sweden)

    Valentin-Petru Măzăreanu

    2013-02-01

    Full Text Available Innovation in information and communication technologies resulted in the digital revolution. This kind of revolution is changing the way people work, learn, communicate and manage their businesses. Due to the need to achieve the competitive advantage and to meet the business requirements, we are witnessing an increasing shift from business to e-business and mobile business. In this kind of world solutions like Supply Chain Management (SCM are increasingly appearing. The business success depends on how effective the information system works. Any interruption of the information system will inevitably lead to business loss. To ensure the successful implementation of a SCM project it is necessary to study even from the early stages which are the possible actions / risks / obstacles which might damage in one way or another the execution of the project. The role of the literature and case studies review in the field of interest is undeniable because it provides us with access to the so-called lessons-learned. By using this approach, in this paper, we present the most common risks and risk sources encountered in the implementation projects of SCM type information systems. We also propose a risk identification framework that can be used in the early stages of the implementation project of a Supply Chain Management information system.

  12. Onsite wastewater system nitrogen contributions to groundwater in coastal North Carolina.

    Science.gov (United States)

    Humphrey, C P; O'Driscoll, M A; Deal, N E; Lindbo, D L; Thieme, S C; Zarate-Bermudez, M A

    2013-12-01

    The objective of the study described in this article was to evaluate the nitrogen contributions from two onsite wastewater systems (sites 1 and 2) to groundwater and adjacent surface waters in coastal Beaufort County, North Carolina. Groundwater levels and water quality parameters including total nitrogen, nitrogen species, temperature, and pH were monitored from October 2009 to May 2010. Nitrogen was also tested in groundwater from deeper irrigation or drinking water wells from the two sites and six additional neighboring residences. Mean total nitrogen concentrations in groundwater beneath onsite wastewater systems 1 and 2 were 34.3 +/- 16.7 mg/L and 12.2 +/- 2.9 mg/L, respectively, and significantly higher than background groundwater concentrations (Groundwater in the deeper wells appeared not to be influenced by the onsite systems. Groundwater nitrogen concentrations typically decreased with distance down-gradient from the systems, but were still elevated relative to background conditions more than 15 m from the systems and near the estuary. This was a pioneering effort to better understand the link of onsite systems, the fate of nitrogen in the environment, and public health.

  13. Boundary of the area contributing flow to the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the area contributing ground-water flow to the Death Valley regional ground-water flow-system (DVRFS) model domain. The...

  14. Boundary of the area contributing flow to the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the area contributing ground-water flow to the Death Valley regional ground-water flow-system (DVRFS) model domain....

  15. Quantifying renewable groundwater stress with GRACE

    Science.gov (United States)

    Richey, Alexandra S.; Thomas, Brian F.; Lo, Min‐Hui; Reager, John T.; Voss, Katalyn; Swenson, Sean; Rodell, Matthew

    2015-01-01

    Abstract Groundwater is an increasingly important water supply source globally. Understanding the amount of groundwater used versus the volume available is crucial to evaluate future water availability. We present a groundwater stress assessment to quantify the relationship between groundwater use and availability in the world's 37 largest aquifer systems. We quantify stress according to a ratio of groundwater use to availability, which we call the Renewable Groundwater Stress ratio. The impact of quantifying groundwater use based on nationally reported groundwater withdrawal statistics is compared to a novel approach to quantify use based on remote sensing observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. Four characteristic stress regimes are defined: Overstressed, Variable Stress, Human‐dominated Stress, and Unstressed. The regimes are a function of the sign of use (positive or negative) and the sign of groundwater availability, defined as mean annual recharge. The ability to mitigate and adapt to stressed conditions, where use exceeds sustainable water availability, is a function of economic capacity and land use patterns. Therefore, we qualitatively explore the relationship between stress and anthropogenic biomes. We find that estimates of groundwater stress based on withdrawal statistics are unable to capture the range of characteristic stress regimes, especially in regions dominated by sparsely populated biome types with limited cropland. GRACE‐based estimates of use and stress can holistically quantify the impact of groundwater use on stress, resulting in both greater magnitudes of stress and more variability of stress between regions. PMID:26900185

  16. Development of a Portfolio Simulation System for Apparel Supply Chain

    Institute of Scientific and Technical Information of China (English)

    DONG Ai-hua; WONG Wai-keung; YEUNG Kwok-wing; CHAN Sek-foo

    2009-01-01

    In this paper, a generic retailer-oriented portfolio simulation system linking manufacturer, retailer, and customer in apparel supply chain is presented. The purpose of the simulator is to generate a portfolio consisting of replenishment strategy and performance index under different sales forecasting errors to satisfy the retailerdefined customer service level in apparel industry. After analyzing the main parameters in the portfolio simulator,the procedure and detailed structure of the simulator are then described. With the use of data from the industry, one case study of the portfolio simulator is achieved and the process of the simulation is validated.

  17. Fuel Costs, Propulsion Systems and Interplanetary Supply Chains

    Science.gov (United States)

    Smith, R.

    A perspective on the economics of space logistics in a future state where there are continuous supply routes between Earth and outlying bodies in the solar system is discussed. In particular, the dependence of the cost of transport on specific impulse and % of non-fuel mass as cargo is discussed. Also, a simple way to calculate the optimal cargo mass of a transport ship carrying a commodity with constant demand is proposed as well as qualitative issues regarding backhaul and inventory that space logistics planners will have to one day confront.

  18. Motivation System of Crowdsourcing Community from a Supply Chain Perspective

    Directory of Open Access Journals (Sweden)

    Jiangang Pang

    2016-01-01

    Full Text Available This paper uses principal-agent theory to study the issue of incentivizing crowdsourcing communities. It proves that enterprises can generate innovation plans of high quality and expected utility using the crowdsourcing community. Outsourcers can encourage high-quality people to join by adopting a linear variable compensation scheme and make the low-quality people quit by requiring them to supply more effort. The paper also shows that enterprises’ participation in crowdsourcing community innovation can effectively improve their innovative ability and that it is necessary for enterprises to construct an effective and cooperative innovative system combining crowdsourcing community innovation and their own internal innovation.

  19. Assessment of groundwater availability in the Northern Atlantic Coastal Plain aquifer system From Long Island, New York, to North Carolina

    Science.gov (United States)

    Masterson, John P.; Pope, Jason P.; Fienen, Michael N.; Monti, Jr., Jack; Nardi, Mark R.; Finkelstein, Jason S.

    2016-08-31

    Long Island to northeastern North Carolina, and includes aquifers primarily within New York, New Jersey, Delaware, Maryland, Virginia, and North Carolina. The seaward-dipping sedimentary wedge that underlies the northern Atlantic Coastal Plain physiographic province forms a complex groundwater system. Although the NACP aquifer system is recognized by the U.S. Geological Survey as one of the smallest of the 66 principal aquifer systems in the Nation, it ranks 13th overall in terms of total groundwater withdrawals and is 7th in population served. Despite abundant precipitation [about 45 inches per year (in/yr)], the supply of fresh surface water in this region is limited because many of the surface waters in this area are brackish estuaries, contributing to why many communities in the northern Atlantic Coastal Plain physiographic province rely heavily on groundwater to meet their water needs.Increases in population and changes in land use during the past 100 years have resulted in diverse increased demands for freshwater throughout the northern Atlantic Coastal Plain physiographic province with groundwater serving as a vital source of drinking water for the nearly 20 million people who live in the region. Total groundwater withdrawal in 2013 was estimated to be about 1,300 million gallons per day (Mgal/d) and accounts for about 40 percent of the drinking water supply with the densely populated areas tending to have the highest rates of withdrawals and, therefore, being most susceptible to effects from these withdrawals over time.Water levels in many of the confined aquifers are decreasing by as much as 2 feet per year (ft/yr) in response to extensive development and subsequent increased withdrawals throughout the region. Total water-level decreases (drawdowns) are more than 100 feet (ft) in some aquifers from their predevelopment (before 1900) levels. These drawdowns extend across state lines and under the Chesapeake and Delaware Bays, creating the potential for

  20. Local planning of electricity supply systems; Lokal kraftsystemplanlegging

    Energy Technology Data Exchange (ETDEWEB)

    Egeland, H.; Otnes, H.

    1995-01-25

    This publication discusses the planning of electricity supply systems in the Norwegian distribution networks and the legal basis and supply quality. It also describes the realization of the planning work and the design of the power system plan. The authorities expect that, prior to the construction of new distribution plants, the local concessionaire will perform an analysis of the needs and see this in connection with the other plants, with rehabilitations and alternative upgrades. To meet this objective an overview should be worked out of the transfer system in the region along with a plan for the coming network investments. Regional concessionaires who do not have such plans are therefore recommended to make them as soon as possible. Plans will be required as needed. The plan must be vertically coordinated with the main distribution network or regional network and horizontally with the neighbouring networks. A plan will be an important basis for the energy company`s strategic plans and a tool for efficient exploitation of its resources. 1 figure

  1. Geochemistry and the understanding of ground-water systems

    Science.gov (United States)

    Glynn, Pierre D.; Plummer, L. Niel

    2005-03-01

    Geochemistry has contributed significantly to the understanding of ground-water systems over the last 50 years. Historic advances include development of the hydrochemical facies concept, application of equilibrium theory, investigation of redox processes, and radiocarbon dating. Other hydrochemical concepts, tools, and techniques have helped elucidate mechanisms of flow and transport in ground-water systems, and have helped unlock an archive of paleoenvironmental information. Hydrochemical and isotopic information can be used to interpret the origin and mode of ground-water recharge, refine estimates of time scales of recharge and ground-water flow, decipher reactive processes, provide paleohydrological information, and calibrate ground-water flow models. Progress needs to be made in obtaining representative samples. Improvements are needed in the interpretation of the information obtained, and in the construction and interpretation of numerical models utilizing hydrochemical data. The best approach will ensure an optimized iterative process between field data collection and analysis, interpretation, and the application of forward, inverse, and statistical modeling tools. Advances are anticipated from microbiological investigations, the characterization of natural organics, isotopic fingerprinting, applications of dissolved gas measurements, and the fields of reaction kinetics and coupled processes. A thermodynamic perspective is offered that could facilitate the comparison and understanding of the multiple physical, chemical, and biological processes affecting ground-water systems. La géochimie a contribué de façon importante à la compréhension des systèmes d'eaux souterraines pendant les 50 dernières années. Les avancées ont portées sur le développement du concept des faciès hydrochimiques, sur l'application de la théorie des équilibres, l'étude des processus d'oxydoréduction, et sur la datation au radiocarbone. D'autres concepts, outils et

  2. STRATEGIC ISSUES GROUNDWATER EXTRACTION MANAGEMENT IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Ekaterina I. Golovina

    2017-05-01

    Full Text Available Water is a key component of our environment; it is a renewable, limited and vulnerable natural resource, which provides economic, social, and environmental well-being of the population. The most promising source of drinking water supply is groundwater usage. Drinking and industrial groundwater is one of the most important components of the groundwater mineral resource base in the Russian Federation. Modern system of groundwater extraction management and state regulation is currently imperfect and has definite disadvantages, among them - lack of control over natural resources by the state, an old system of tax rates for the use of groundwater, commercialization stage of licensing, the budget deficit, which is passed on other spheres of the national economy. This article provides general information about the state of groundwater production and supply in Russia, negative trends of groundwater usage, some actions for the improvement in the system of groundwater’s fund management are suggested. The most important amendments of the law “About mineral resources” are overviewed, effects of these changes are revealed and recommendations for future groundwater extraction regulation are given.

  3. Scaling of flow and transport behavior in heterogeneous groundwater systems

    Science.gov (United States)

    Scheibe, Timothy; Yabusaki, Steven

    1998-11-01

    Three-dimensional numerical simulations using a detailed synthetic hydraulic conductivity field developed from geological considerations provide insight into the scaling of subsurface flow and transport processes. Flow and advective transport in the highly resolved heterogeneous field were modeled using massively parallel computers, providing a realistic baseline for evaluation of the impacts of parameter scaling. Upscaling of hydraulic conductivity was performed at a variety of scales using a flexible power law averaging technique. A series of tests were performed to determine the effects of varying the scaling exponent on a number of metrics of flow and transport behavior. Flow and transport simulation on high-performance computers and three-dimensional scientific visualization combine to form a powerful tool for gaining insight into the behavior of complex heterogeneous systems. Many quantitative groundwater models utilize upscaled hydraulic conductivity parameters, either implicitly or explicitly. These parameters are designed to reproduce the bulk flow characteristics at the grid or field scale while not requiring detailed quantification of local-scale conductivity variations. An example from applied groundwater modeling is the common practice of calibrating grid-scale model hydraulic conductivity or transmissivity parameters so as to approximate observed hydraulic head and boundary flux values. Such parameterizations, perhaps with a bulk dispersivity imposed, are then sometimes used to predict transport of reactive or non-reactive solutes. However, this work demonstrates that those parameters that lead to the best upscaling for hydraulic conductivity and head do not necessarily correspond to the best upscaling for prediction of a variety of transport behaviors. This result reflects the fact that transport is strongly impacted by the existence and connectedness of extreme-valued hydraulic conductivities, in contrast to bulk flow which depends more strongly on

  4. Nitrate removal from groundwater driven by electricity generation and heterotrophic denitrification in a bioelectrochemical system.

    Science.gov (United States)

    Tong, Yiran; He, Zhen

    2013-11-15

    This research aims to develop a new approach for in situ nitrate removal from groundwater by using a bioelectrochemical system (BES). The BES employs bioelectricity generated from organic compounds to drive nitrate moving from groundwater into the anode and reduces nitrate to nitrogen gas by heterotrophic denitrification. This laboratory study of a bench-scale BES demonstrated effective nitrate removal from both synthetic and actual groundwater. It was found that applying an electrical potential improved the nitrate removal and the highest nitrate removal rate of 208.2 ± 13.3g NO3(-)-Nm(-3) d(-1) was achieved at 0.8 V. Although the open circuit condition (no electricity generation) still resulted in a nitrate removal rate of 158.5 ± 4.2 gm(-3) d(-1) due to ion exchange, electricity production could inhibit ion exchange and prevent introducing other undesired ions into groundwater. The nitrate removal rate exhibited a linear relationship with the initial nitrate concentration in groundwater. The BES produced a higher current density of 33.4 Am(-3) and a higher total coulomb of 244.7 ± 9.1C from the actual groundwater than the synthetic groundwater, likely because other ions in the actual groundwater promoted ion movement to assist electricity generation. Further development of this BES will need to address several key challenges in anode feeding solution, ion competition, and long-term stability.

  5. Assessing the Vulnerability of Public-Supply Wells to Contamination: Central Valley Aquifer System near Modesto, California

    Science.gov (United States)

    Jagucki, Martha L.; Jurgens, Bryant C.; Burow, Karen R.; Eberts, Sandra M.

    2009-01-01

    This fact sheet highlights findings from the vulnerability study of a public-supply well in Modesto, California. The well selected for study pumps on average about 1,600 gallons per minute from the Central Valley aquifer system during peak summer demand. Water samples were collected at the public-supply well and at monitoring wells installed in the Modesto vicinity. Samples from the public-supply wellhead contained the undesirable constituents uranium, nitrate, arsenic, volatile organic compounds (VOCs), and pesticides, although none were present at concentrations exceeding drinking-water standards. Of these contaminants, uranium and nitrate pose the most significant water-quality risk to the public-supply well because human activities have caused concentrations in groundwater to increase over time. Overall, study findings point to four primary factors that affect the movement and (or) fate of contaminants and the vulnerability of the public-supply well in Modesto: (1) groundwater age (how long ago water entered, or recharged, the aquifer); (2) irrigation and agricultural and municipal pumping that drives contaminants downward into the primary production zone of the aquifer; (3) short-circuiting of contaminated water down the public-supply well during the low-pumping season; and (4) natural geochemical conditions of the aquifer. A local-scale computer model of groundwater flow and transport to the public-supply well was constructed to simulate long-term nitrate and uranium concentrations reaching the well. With regard to nitrate, two conflicting processes influence concentrations in the area contributing recharge to the well: (1) Beneath land that is being farmed or has recently been farmed (within the last 10 to 20 years), downward-moving irrigation waters contain elevated nitrate concentrations; yet (2) the proportion of agricultural land has decreased and the proportion of urban land has increased since 1960. Urban land use is associated with low nitrate

  6. Flood risk assessment of fresh water supply systems

    Science.gov (United States)

    Arrighi, Chiara; Tarani, Fabio; Vicario, Enrico; Castelli, Fabio

    2017-04-01

    Flooding is a common hazard causing damages to people, buildings and infrastructures. Often located in low-lying areas or nearby rivers, water utilities are particularly vulnerable to flooding. Water and debris can inundate the facility, thereby damaging equipment and causing power outages. Such impacts can lead to costly repairs, disruptions of service, hazardous situations for personnel and public health advisories. While flood damage evaluation to buildings and their contents is becoming increasingly available, the quantification of impact on critical infrastructures is less common. In this work, we present the flood risk assessment of a fresh water supply system considering the hazard of a riverine flooding and exposure and vulnerability of the system components (i.e. pipes, junctions, lifting stations etc.). The evaluation of flood impact on the aqueduct network is carried out for flood scenarios with assigned recurrence intervals. Vulnerable elements exposed to the flood are identified and analysed in order to determine their residual functionality. Above a selected threshold, the affected elements are considered as failed. The water distribution piping system is modelled through a model based on EPANET designed so as to implement Pressure-Driven Demand (PDD), which is more appropriate when modelling water distribution networks with a high number of offline nodes. Results of piping system model affected by the flood are then compared in a QGIS environment with flood depth to identify the location of service outages and potential risk of contamination. The application to the water supply system of the city of Florence (Italy), serving approximately 385000 inhabitants through 900 km of piping is presented and discussed.

  7. Net infiltration of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Recharge in the Death Valley regional ground-water flow system (DVRFS) was estimated from net infiltration simulated by Hevesi and others (2003) using a...

  8. Examining the impacts of increased corn production on groundwater quality using a coupled modeling system

    Science.gov (United States)

    This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirect...

  9. Hydrogeologic map of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset represents the surface hydrogeology of an approximately 45,000 square-kilometer area of the Death Valley regional ground-water flow system...

  10. Study area boundary for the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents the Death Valley regional ground-water flow system (DVRFS) study area which encompasses approximately 100,000-square kilometers in...

  11. Groundwater Discharge Area for the Diamond Valley Flow System, Central Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data were created as part of a hydrologic study to characterize groundwater budgets and water quality in the Diamond Valley Flow System (DVFS), central Nevada....

  12. Water Well Locations - MO 2010 Public Water System Wells 20 Year Groundwater Distance (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This shapefile represents the estimated distance groundwater around some public water system (PWS) wells will travel in a twenty-year period. See process description.

  13. Study area boundary for the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents the Death Valley regional ground-water flow system (DVRFS) study area which encompasses approximately 100,000-square kilometers in...

  14. Evapotranspiration Units for the Diamond Valley Flow System Groundwater Discharge Area, Central Nevada, 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data were created as part of a hydrologic study to characterize groundwater budgets and water quality in the Diamond Valley Flow System (DVFS), central Nevada....

  15. Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on ground-water flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Goode, Daniel J.

    1999-01-01

    Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Lansdale, Pa., is used as drinking water and for industrial supply. In 1979, ground water in the Lansdale area was found to be contaminated with trichloroethylene, tetrachloroethylene, and other man-made organic compounds, and in 1989, the area was placed on the U.S. Environmental Protection Agency's (USEPA) National Priority List as the North Penn Area 6 site. To assist the USEPA in the hydrogeological assessment of the site, the U.S. Geological Survey began a study in 1995 to describe the ground-water system and to determine the effects of changes in the well pumping patterns on the direction of ground-water flow in the Lansdale area. This determination is based on hydrologic and geophysical data collected from 1995-98 and on results of the simulation of the regional ground-water-flow system by use of a numerical model.Correlation of natural-gamma logs indicate that the sedimentary rock beds strike generally northeast and dip at angles less than 30 degrees to the northwest. The ground-water system is confined or semi-confined, even at shallow depths; depth to bedrock commonly is less than 20 feet (6 meters); and depth to water commonly is about 15 to 60 feet (5 to 18 meters) below land surface. Single-well, aquifer-interval-isolation (packer) tests indicate that vertical permeability of the sedimentary rocks is low. Multiple-well aquifer tests indicate that the system is heterogeneous and that flow appears primarily in discrete zones parallel to bedding. Preferred horizontal flow along strike was not observed in the aquifer tests for wells open to the pumped interval. Water levels in wells that are open to the pumped interval, as projected along the dipping stratigraphy, are drawn down more than water levels in wells that do not intersect the pumped interval. A regional potentiometric map based on measured water levels indicates that ground water flows from Lansdale towards discharge

  16. A hybrid decision support system for iron ore supply

    Directory of Open Access Journals (Sweden)

    A. Samolejová

    2012-01-01

    Full Text Available Many European metallurgical companies are forced to import iron ore from remote destinations. For these companies it is necessary to determine the amount of iron ore that will have to be ordered and to create such a delivery schedule so that the continuous operation of blast-furnace plant is not disrupted and there is no exceedingly large stock of this raw material. The objective of this article is to design the decision support system for iron ore supply which would effi ciently reduce uncertainty and risk of that decision-making. The article proposes a hybrid intelligent system which represents a combination of diff erent artifi cial intelligence methods with dynamic simulation technique for that purpose.

  17. Fuel-cell powered uninterruptible power supply systems: Design considerations

    Science.gov (United States)

    Choi, Woojin; Howze, Jo. W.; Enjeti, Prasad

    A 1-kVA fuel cell powered, line-interactive uninterruptible power supply (UPS) system that employs modular (fuel cell and power converter) blocks is introduced. Two commercially available proton-exchange membrane fuel cell (25-39 V, 500 W) modules together with suitable dc-dc and dc-ac power electronic converter modules are employed. A supercapacitor module is also used to compensate for the instantaneous power fluctuations and to overcome the slow dynamics of the fuel processor (reformers). Further energy stored in the supercapacitor is also utilized to handle a momentary overload such as 200% for a short duration. Due to the absence of batteries, the system satisfies the demand for an environmentally clean source of energy. A complete design that defines the amount of hydrogen storage required for a power outage of 1 h, and the sizing of the supercapacitors for transient load demand is presented for a 1-kVA UPS.

  18. Modeling integrated water user decisions in intermittent supply systems

    Science.gov (United States)

    Rosenberg, David E.; Tarawneh, Tarek; Abdel-Khaleq, Rania; Lund, Jay R.

    2007-07-01

    We apply systems analysis to estimate household water use in an intermittent supply system considering numerous interdependent water user behaviors. Some 39 household actions include conservation; improving local storage or water quality; and accessing sources having variable costs, availabilities, reliabilities, and qualities. A stochastic optimization program with recourse decisions identifies the infrastructure investments and short-term coping actions a customer can adopt to cost-effectively respond to a probability distribution of piped water availability. Monte Carlo simulations show effects for a population of customers. Model calibration reproduces the distribution of billed residential water use in Amman, Jordan. Parametric analyses suggest economic and demand responses to increased availability and alternative pricing. It also suggests potential market penetration for conservation actions, associated water savings, and subsidies to entice further adoption. We discuss new insights to size, target, and finance conservation.

  19. Modeling and analyzing a health care supply chain system

    OpenAIRE

    Al-Thumairi, Ahmed Hamad

    2006-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. A Thesis presented on Improving and Redefining the Supply Chain in Healthcare, defining existing problems with current Supply Chain applications, and reviewing current applications and trends in the Supply Chain culture within the Manufacturing Industries and Healthcare Industries. Research of successful applications of new, and improvements to existing supply chain methodologies are prese...

  20. Groundwater quality of the Gulf Coast aquifer system, Houston, Texas, 2010

    Science.gov (United States)

    Oden, Jeannette H.; Brown, Dexter W.; Oden, Timothy D.

    2011-01-01

    During March–December 2010, the U.S. Geological Survey, in cooperation with the city of Houston, collected source-water samples from 60 municipal supply wells in the Houston area. These data were collected as part of an ongoing study to determine concentrations, spatial extent, and associated geochemical conditions that might be conducive for mobility and transport of selected naturally occurring contaminants (selected trace elements and radionuclides) in the Gulf Coast aquifer system in the Houston area. In the summers of 2007 and 2008, a reconnaissance-level survey of these constituents in untreated water from 28 municipal supply wells was completed in the Houston area. Included in this report are the complete analytical results for 47 of the 60 samples collected in 2010—those results which were received from the laboratories and reviewed by the authors as of December 31, 2010. All of the wells sampled were screened in the Gulf Coast aquifer system; 22 were screened entirely in the Evangeline aquifer, and the remaining 25 wells contained screened intervals that intersected both Evangeline and Chicot aquifers. The data documented in this report were collected as part of an ongoing study to characterize source-water-quality conditions in untreated groundwater prior to drinking-water treatment. An evaluation of contaminant occurrence in source water provides background information regarding the presence of a contaminant in the environment. Because source-water samples were collected prior to any treatment or blending that potentially could alter contaminant concentrations, the water-quality results documented by this report represent the quality of the source water, not the quality of finished drinking water provided to the public.

  1. Mountain Plains Learning Experience Guide: Plumbing. Course: Supply Piping Systems.

    Science.gov (United States)

    Arneson, R.; And Others

    One of three individualized courses included in a plumbing curriculum, this course covers installing, servicing, and repairing supply lines and fixtures commonly found in residential/commercial structures. The course is comprised of four units: (1) Pipe and Fittings, (2) Cold Water Supply, (3) Hot Water Supply, and (4) Fixtures. Each unit begins…

  2. Influence of long-term sewage irrigation on the distribution of organochlorine pesticides in soil-groundwater systems.

    Science.gov (United States)

    Zhang, Caixiang; Liao, Xiaoping; Li, Jiale; Xu, Liang; Liu, Ming; Du, Bin; Wang, Yanxin

    2013-07-01

    Serious shortage of water resources is one of the major factors restricting the sustainable development of cropland and pasture land in northern and northwestern China. Although the reuse of wastewater for agricultural irrigation becomes a well established practice in these regions, many contaminants have been also introduced into the soil-groundwater systems such as persistent organochlorine pesticides (OCPs). To study the influence of long-term sewage irrigation on the distribution of OCPs in soil-groundwater systems, the groundwater flow field was investigated and 31 topsoil samples, 9 boreholes, 11 sewage effluents and 34 groundwater samples were collected in Xiaodian, Taiyuan city, one of the largest sewage irrigation districts, China. During sampling, three representative types of regions were considered including effluent-irrigated area, groundwater-irrigated area served as the control field and no-irrigated area as reference "background". The results showed over-exploitation of groundwater had changed the flow field of groundwater and wherever in soil or in groundwater, the concentration of OCPs in effluent-irrigation area presented the highest value, which indicated that the sewage irrigation had a strong influence on the distribution of OCPs in soil-groundwater systems. Principal component analysis for OCPs content in groundwater showed that the major influence factors on the occurrence and distribution of OCPs in groundwater systems attribute to the flow field of groundwater and to the current pesticide use.

  3. Flexible procurement systems is key to supply chain sustainability

    Directory of Open Access Journals (Sweden)

    Surajit Bag

    2016-01-01

    Full Text Available Background: In this dynamic business environment, manufacturers are focusing primarily on delivery performance and competitive pricing to win orders. It is essential that manufacturers adopt flexible procurement systems (FPSs in such an uncertain environment for business sustainability.Objectives: The purpose of the study is to identify the elements of FPSs and model the interrelationships between elements of FPSs and, finally, to understand how FPSs are linked with supply chain sustainability.Method: Besides providing a brief conceptual review of FPSs, the study largely illustrates the use of an innovative multi-criteria decision-making approach called total interpretive structural modelling (TISM.Results: The total interpretive structural modelling–based model evaluates the causality and illustrates elements with interpretation of relations and suggests that bottom-level elements are vital for sustainability in FPSs and avert risks. Secondly, strategic sourcing is positively influencing supplier integration. Thirdly, supplier integration positively influences supplier responsiveness. Fourthly, skills of flexible procurement workforce positively influence supplier integration. Fifthly, it is found that supplier integration positively influences flexible transportation. The sixth finding suggests that supplier integration positively influences eco-friendly packaging. The seventh finding highlights that supplier integration positively influences ISO 14001 certifications. The eighth finding explains that supplier responsiveness positively influences customer satisfaction. It is also observed that flexible transport reduces operational cost and environmental costs. The second last finding explains eco-friendly packaging and reduction in environmental cost by careful selection of packing material and chemicals. Lastly, it is found that ISO 14001/environmental certifications reduce environmental costs by greening suppliers and pressurises them to

  4. Intrusion problematic during water supply systems' operation

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Rodriguez, Jesus; Lopez-Jimenez, P. Amparo [Departamento de Ingenieria Hidraulica y Medio Ambiente, Universidad Politecnica de Valencia, Camino de Vera, s/n, 46022, Valencia (Spain); Ramos, Helena M. [Civil Engineering Department and CEHIDRO, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal)

    2011-07-01

    Intrusion through leaks occurrence is a phenomenon when external fluid comes into water pipe systems. This phenomenon can cause contamination problems in drinking pipe systems. Hence, this paper focuses on the entry of external fluids across small leaks during normal operation conditions. This situation is especially important in elevated points of the pipe profile. Pressure variations can origin water volume losses and intrusion of contaminants into the drinking water pipes. This work focuses in obtaining up the physical representation on a specific case intrusion in a pipe water system. The combination of two factors is required to generate this kind of intrusion in a water supply system: on one hand the existence of at least a leak in the system; on the other hand, a pressure variation could occur during the operation of the system due to consumption variation, pump start-up or shutdown. The potential of intrusion during a dynamic or transient event is here analyzed. To obtain this objective an experimental case study of pressure transient scenario is analyzed with a small leak located nearby the transient source.

  5. Trends in concentrations of nitrate and total dissolved solids in public supply wells of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins, San Bernardino County, California: Influence of legacy land use

    Science.gov (United States)

    Kent, Robert; Landon, Matthew K.

    2013-01-01

    Concentrations and temporal changes in concentrations of nitrate and total dissolved solids (TDS) in groundwater of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins of the Upper Santa Ana Valley Groundwater Basin were evaluated to identify trends and factors that may be affecting trends. One hundred, thirty-one public-supply wells were selected for analysis based on the availability of data spanning at least 11 years between the late 1980s and the 2000s. Forty-one of the 131 wells (31%) had a significant (p < 0.10) increase in nitrate and 14 wells (11%) had a significant decrease in nitrate. For TDS, 46 wells (35%) had a significant increase and 8 wells (6%) had a significant decrease. Slopes for the observed significant trends ranged from − 0.44 to 0.91 mg/L/yr for nitrate (as N) and − 8 to 13 mg/L/yr for TDS. Increasing nitrate trends were associated with greater well depth, higher percentage of agricultural land use, and being closer to the distal end of the flow system. Decreasing nitrate trends were associated with the occurrence of volatile organic compounds (VOCs); VOC occurrence decreases with increasing depth. The relations of nitrate trends to depth, lateral position, and VOCs imply that increasing nitrate concentrations are associated with nitrate loading from historical agricultural land use and that more recent urban land use is generally associated with lower nitrate concentrations and greater VOC occurrence. Increasing TDS trends were associated with relatively greater current nitrate concentrations and relatively greater amounts of urban land. Decreasing TDS trends were associated with relatively greater amounts of natural land use. Trends in TDS concentrations were not related to depth, lateral position, or VOC occurrence, reflecting more complex factors affecting TDS than nitrate in the study area.

  6. Trends in concentrations of nitrate and total dissolved solids in public supply wells of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins, San Bernardino County, California: influence of legacy land use.

    Science.gov (United States)

    Kent, Robert; Landon, Matthew K

    2013-05-01

    Concentrations and temporal changes in concentrations of nitrate and total dissolved solids (TDS) in groundwater of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins of the Upper Santa Ana Valley Groundwater Basin were evaluated to identify trends and factors that may be affecting trends. One hundred, thirty-one public-supply wells were selected for analysis based on the availability of data spanning at least 11 years between the late 1980s and the 2000s. Forty-one of the 131 wells (31%) had a significant (pwells (11%) had a significant decrease in nitrate. For TDS, 46 wells (35%) had a significant increase and 8 wells (6%) had a significant decrease. Slopes for the observed significant trends ranged from -0.44 to 0.91 mg/L/yr for nitrate (as N) and -8 to 13 mg/L/yr for TDS. Increasing nitrate trends were associated with greater well depth, higher percentage of agricultural land use, and being closer to the distal end of the flow system. Decreasing nitrate trends were associated with the occurrence of volatile organic compounds (VOCs); VOC occurrence decreases with increasing depth. The relations of nitrate trends to depth, lateral position, and VOCs imply that increasing nitrate concentrations are associated with nitrate loading from historical agricultural land use and that more recent urban land use is generally associated with lower nitrate concentrations and greater VOC occurrence. Increasing TDS trends were associated with relatively greater current nitrate concentrations and relatively greater amounts of urban land. Decreasing TDS trends were associated with relatively greater amounts of natural land use. Trends in TDS concentrations were not related to depth, lateral position, or VOC occurrence, reflecting more complex factors affecting TDS than nitrate in the study area.

  7. A GIS-Enabled, Michigan-Specific, Hierarchical Groundwater Modeling and Visualization System

    Science.gov (United States)

    Liu, Q.; Li, S.; Mandle, R.; Simard, A.; Fisher, B.; Brown, E.; Ross, S.

    2005-12-01

    Efficient management of groundwater resources relies on a comprehensive database that represents the characteristics of the natural groundwater system as well as analysis and modeling tools to describe the impacts of decision alternatives. Many agencies in Michigan have spent several years compiling expensive and comprehensive surface water and groundwater inventories and other related spatial data that describe their respective areas of responsibility. However, most often this wealth of descriptive data has only been utilized for basic mapping purposes. The benefits from analyzing these data, using GIS analysis functions or externally developed analysis models or programs, has yet to be systematically realized. In this talk, we present a comprehensive software environment that allows Michigan groundwater resources managers and frontline professionals to make more effective use of the available data and improve their ability to manage and protect groundwater resources, address potential conflicts, design cleanup schemes, and prioritize investigation activities. In particular, we take advantage of the Interactive Ground Water (IGW) modeling system and convert it to a customized software environment specifically for analyzing, modeling, and visualizing the Michigan statewide groundwater database. The resulting Michigan IGW modeling system (IGW-M) is completely window-based, fully interactive, and seamlessly integrated with a GIS mapping engine. The system operates in real-time (on the fly) providing dynamic, hierarchical mapping, modeling, spatial analysis, and visualization. Specifically, IGW-M allows water resources and environmental professionals in Michigan to: * Access and utilize the extensive data from the statewide groundwater database, interactively manipulate GIS objects, and display and query the associated data and attributes; * Analyze and model the statewide groundwater database, interactively convert GIS objects into numerical model features

  8. [Central sterile supply department management system design and implementation based on RFID technology].

    Science.gov (United States)

    Li, Lei

    2012-03-01

    With the analysis of the requirements of sterilization and supply center of hospital(referred to as "supply room"), the management system of supply room was developed and integrated into the RFID technology. The?system has achieve disinfection materials circulation process traceability to improve the quality management of disinfection materials and reduce the management costs.

  9. Groundwater-flow model and effects of projected groundwater use in the Ozark Plateaus Aquifer System in the vicinity of Greene County, Missouri - 1907-2030

    Science.gov (United States)

    Richards, Joseph M.

    2010-01-01

    Recent and historical periods of rapid growth have increased the stress on the groundwater resources in the Ozark aquifer in the Greene County, Missouri area. Historical pumpage from the Ozark aquifer has caused a cone of depression beneath Springfield, Missouri. In an effort to ease its dependence on groundwater for supply, the city of Springfield built a pipeline in 1996 to bring water from Stockton Lake to the city. Rapid population growth in the area coupled with the expanding cone of depression raised concern about the sustainability of groundwater as a resource for future use. A groundwater-flow model was developed by the U.S. Geological Survey in cooperation with Greene County, Missouri, the U. S. Army Corps of Engineers, and the Missouri Department of Natural Resources to assess the effect that increased groundwater demand is having on the long-term availability of groundwater in and around Greene County, Missouri. Three hydrogeologic units were represented in the groundwater-flow model: the Springfield Plateau aquifer, the Ozark confining unit, and the Ozark aquifer. The Springfield Plateau aquifer is less than 350 feet thick in the model area and generally is a low yield aquifer suitable only for domestic use. The Ozark aquifer is composed of a more than 900-foot thick sequence of dolomite and sandstone in the model area and is the primary aquifer throughout most of southern Missouri. Wells open to the entire thickness of the Ozark aquifer typically yield 1,000 gallons per minute or more. Between the two aquifers is the Ozark confining unit composed of as much as 98 feet of shale and limestone. Karst features such as sinkholes, springs, caves, and losing streams are present in both aquifers, but the majority of these features occur in the Springfield Plateau aquifer. The solution-enlarged fracture and bedding plane conduits in the karst system, particularly in the Springfield Plateau aquifer, are capable of moving large quantities of groundwater through

  10. Septic Systems Contribution to Phosphorus in Shallow Groundwater: Field-Scale Studies Using Conventional Drainfield Designs

    Science.gov (United States)

    Mechtensimer, Sara

    2017-01-01

    Septic systems can be a potential source of phosphorus (P) in groundwater and contribute to eutrophication in aquatic systems. Our objective was to investigate P transport from two conventional septic systems (drip dispersal and gravel trench) to shallow groundwater. Two new in-situ drainfields (6.1 m long by 0.61 m wide) with a 3.72 m2 infiltrative surface were constructed. The drip dispersal drainfield was constructed by placing 30.5 cm commercial sand on top of natural soil and the gravel trench drainfield was constructed by placing 30.5 cm of gravel on top of 30.5 cm commercial sand and natural soil. Suction cup lysimeters were installed in the drainfields (at 30.5, 61, 106.7 cm below infiltrative surface) and piezometers were installed in the groundwater (>300 cm below infiltrative surface) to capture P dynamics from the continuum of unsaturated to saturated zones in the septic systems. Septic tank effluent (STE), soil-water, and groundwater samples were collected for 64 events (May 2012–Dec 2013) at 2 to 3 days (n = 13), weekly (n = 29), biweekly (n = 17), and monthly (n = 5) intervals. One piezometer was installed up-gradient of the drainfields to monitor background groundwater (n = 15). Samples were analyzed for total P (TP), orthophosphate-P (PO4–P), and other–P (TP—PO4-P). The gravel trench drainfield removed significantly (p300 cm in the groundwater, both systems had similar TP reductions of >97%. After 18 months of STE application, there was no significant increase in groundwater TP concentrations in both systems. We conclude that both drainfield designs are effective at reducing P transport to shallow groundwater. PMID:28107505

  11. Septic Systems Contribution to Phosphorus in Shallow Groundwater: Field-Scale Studies Using Conventional Drainfield Designs.

    Science.gov (United States)

    Mechtensimer, Sara; Toor, Gurpal S

    2017-01-01

    Septic systems can be a potential source of phosphorus (P) in groundwater and contribute to eutrophication in aquatic systems. Our objective was to investigate P transport from two conventional septic systems (drip dispersal and gravel trench) to shallow groundwater. Two new in-situ drainfields (6.1 m long by 0.61 m wide) with a 3.72 m2 infiltrative surface were constructed. The drip dispersal drainfield was constructed by placing 30.5 cm commercial sand on top of natural soil and the gravel trench drainfield was constructed by placing 30.5 cm of gravel on top of 30.5 cm commercial sand and natural soil. Suction cup lysimeters were installed in the drainfields (at 30.5, 61, 106.7 cm below infiltrative surface) and piezometers were installed in the groundwater (>300 cm below infiltrative surface) to capture P dynamics from the continuum of unsaturated to saturated zones in the septic systems. Septic tank effluent (STE), soil-water, and groundwater samples were collected for 64 events (May 2012-Dec 2013) at 2 to 3 days (n = 13), weekly (n = 29), biweekly (n = 17), and monthly (n = 5) intervals. One piezometer was installed up-gradient of the drainfields to monitor background groundwater (n = 15). Samples were analyzed for total P (TP), orthophosphate-P (PO4-P), and other-P (TP-PO4-P). The gravel trench drainfield removed significantly (p300 cm in the groundwater, both systems had similar TP reductions of >97%. After 18 months of STE application, there was no significant increase in groundwater TP concentrations in both systems. We conclude that both drainfield designs are effective at reducing P transport to shallow groundwater.

  12. Complex groundwater flow systems as traveling agent models

    CERN Document Server

    López-Corona, Oliver; Escolero, Oscar; González, Tomás; Morales-Casique, Eric

    2014-01-01

    Analyzing field data from pumping tests, we show that as with many other natural phenomena, groundwater flow exhibits a complex dynamics described by 1/f power spectrum. This result is theoretically studied within an agent perspective. Using a traveling agent model, we prove that this statistical behavior emerges when the medium is complex. Some heuristic reasoning is provided to justify both spatial and dynamic complexity, as the result of the superposition of an infinite number of stochastic processes. Even more, we show that this implies that non-Kolmogorovian probability is needed for its study, and provide a set of new partial differential equations for groundwater flow.

  13. Effects of rainwater harvesting on centralized urban water supply systems

    DEFF Research Database (Denmark)

    Grandet, C.; Binning, Philip John; Mikkelsen, Peter Steen

    2010-01-01

    The potential effect of widespread rainwater harvesting practices on mains water demand and quality management are investigated for three different types of urban areas characterized by different roof area to water demand ratios. Two rainfall patterns are considered with similar average annual de...... if they enable the deferment of requirements for new mains water infrastructure.......The potential effect of widespread rainwater harvesting practices on mains water demand and quality management are investigated for three different types of urban areas characterized by different roof area to water demand ratios. Two rainfall patterns are considered with similar average annual...... depths but very different temporal distributions. Supply reliability and the extent of reliance on the public distribution system are identified as suitable performance indicators for mains water infrastructure. A uniform temporal distribution of rainfall in an oceanic climate like that of Dinard...

  14. Failure Analysis of a Water Supply Pumping Pipeline System

    Directory of Open Access Journals (Sweden)

    Oscar Pozos-Estrada

    2016-09-01

    Full Text Available This paper describes the most important results of a theoretical, experimental and in situ investigation developed in connection with a water supply pumping pipeline failure. This incident occurred after power failure of the pumping system that caused the burst of a prestressed concrete cylinder pipe (PCCP. Subsequently, numerous hydraulic transient simulations for different scenarios and various air pockets combinations were carried out in order to fully validate the diagnostic. As a result, it was determined that small air pocket volumes located along the pipeline profile were recognized as the direct cause of the PCCP rupture. Further, a detail survey of the pipeline was performed using a combination of non-destructive technologies in order to determine if immediate intervention was required to replace PCC pipes. In addition, a hydraulic model was employed to analyze the behavior of air pockets located at high points of the pipeline.

  15. The impact of Green Information Systems on sustainable supply chain and organizational performance

    OpenAIRE

    Ogunyemi, T; Aktas, E

    2013-01-01

    This paper reports about a research in progress focusing on the impact of green information systems on sustainable supply chain performance. Green information systems, supply chains and their relation to sustainability and performance measurement are explained. The preliminary literature review resulted in a draft conceptual framework where sustainable supply chain measures focusing on economic, environmental and social aspects are combined with traditional supply chain performance measures o...

  16. Impact of Integration of Manufacturaing Planning and Control Systems on Supply Chain Management

    OpenAIRE

    KAWAI, Ayako; SATO, Ryo

    2009-01-01

    Manufacturing planning and control systems (MPCSs, for short) are an essentialelement for supply chain processes today. However, there are few researches whichinclude planning information systems in supply chain models and optimize the wholestructure holistically in spite of the social importance of MPCSs for supply chainmanagement. At present, we do not have any ideas even about process behaviorwhen organizations which have MPCSs are linked in a supply chain. To clarifyfundamental properties...

  17. Construction of Network Management Information System of Agricultural Products Supply Chain Based on 3PLs

    OpenAIRE

    Gao, Shujin; Yang, Qiangxian

    2010-01-01

    The necessity to construct the network management information system of 3PLs agricultural supply chain is analyzed, showing that 3PLs can improve the overall competitive advantage of agricultural supply chain. 3PLs changes the homogeneity management into specialized management of logistics service and achieves the alliance of the subjects at different nodes of agricultural products supply chain. Network management information system structure of agricultural products supply chain based on 3PL...

  18. California Groundwater Management During Drought: Existing and Future Regulatory Approaches

    Science.gov (United States)

    Ekdahl, E.; Boland-Brien, S.; Vanderburgh, B.; Landau, K.; Bean, J.; Peltier, T.

    2015-12-01

    Groundwater has served as an effective buffer to California's crippling drought of 2012-2015, allowing continued agricultural production in many areas where surface water deliveries have been curtailed. However, over-reliance on groundwater has caused plummeting groundwater levels in much of the state's heavily agricultural regions, with annual groundwater overdraft state-wide estimated in the millions of acre-feet per year. Prior to 2015, California water law did not allow for the effective monitoring or assessment of groundwater use; passage of new state regulations will require development of locally-managed plans that, for the first time, require comprehensive groundwater management and groundwater basin sustainability. Because these plans are not required to be implemented for another 25 years, groundwater levels will likely continue to decrease. Some communities that are 100-percent reliant on groundwater as a source of municipal supply may face shortages and supply issues, which may exacerbate known water quality concerns. Examination of community water systems that are reliant on groundwater, their existing water quality issues, and their response to the current drought (through existing mandatory conservation requirements imposed by California state regulators) can identify areas that are particularly susceptible to continued groundwater overdraft.

  19. Horizontal flow barriers for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional features simulated as horizontal flow barriers in the Death Valley regional ground-water flow system...

  20. Altitudes of the top of model layers for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the altitudes of the tops of 16 model layers simulated in the Death Valley regional ground-water flow system (DVRFS) transient flow...

  1. Horizontal flow barriers for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional features simulated as horizontal flow barriers in the Death Valley regional ground-water flow system...

  2. Control system devices : architectures and supply channels overview.

    Energy Technology Data Exchange (ETDEWEB)

    Trent, Jason; Atkins, William Dee; Schwartz, Moses Daniel; Mulder, John C.

    2010-08-01

    This report describes a research project to examine the hardware used in automated control systems like those that control the electric grid. This report provides an overview of the vendors, architectures, and supply channels for a number of control system devices. The research itself represents an attempt to probe more deeply into the area of programmable logic controllers (PLCs) - the specialized digital computers that control individual processes within supervisory control and data acquisition (SCADA) systems. The report (1) provides an overview of control system networks and PLC architecture, (2) furnishes profiles for the top eight vendors in the PLC industry, (3) discusses the communications protocols used in different industries, and (4) analyzes the hardware used in several PLC devices. As part of the project, several PLCs were disassembled to identify constituent components. That information will direct the next step of the research, which will greatly increase our understanding of PLC security in both the hardware and software areas. Such an understanding is vital for discerning the potential national security impact of security flaws in these devices, as well as for developing proactive countermeasures.

  3. [Study on geochemical susceptivity of groundwater system in representative karstic regions].

    Science.gov (United States)

    He, Shou-yang; Zhu, Li-jun; Dong, Zhi-fen; Zhang, Yi; Yu, Xiao-hong

    2010-05-01

    We investigated geochemical susceptivity of groundwater in representative karst groundwater system. The results indicated that Ca2+ and Mg2+, correlative the average values of geochemical susceptivity index (GSI) were 0.73 and 0.19; HCO3- and SO4(2-), interrelated the average values of geochemical susceptivity index were 0.92 and 0.37, are the principal cations and anions in karstic groundwater system, respectively. And the major elements are obviously characterized by the geochemical susceptivity. The rank order of geochemical susceptivity for major elements in study region is HCO3- > Ca2+ > SO4(2+) > Mg2+ > Cl- > Na+ > NO3- > K+. The susceptive regions of groundwater system were zoned by the geochemical susceptivity index of HCO3- (GSI(HCO3-)), which classified as GSI(HCO3-) 1 is high-susceptivity zone, respectively. The groundwater systems in high-susceptivity zone may become as a collected and genetic room for pollutants. Furthermore, both continual or active exchange and mutual recharge between surface water and groundwater in high-susceptivity zones might induce intersectant pollution and serious cycle.

  4. Multimedia Environmental Pollutant Assessment System (MEPAS{reg_sign}): Groundwater pathway formulations

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, G.; McDonald, J.P. [Pacific Northwest National Lab., Richland, WA (United States); Sato, C. [Idaho State Univ., Pocatello, ID (United States)

    1996-06-01

    This report describes the mathematical formulations used for contaminant fate and transport in the groundwater pathway of the Multimedia Environmental Pollutant Assessment System (MEPAS). It is one in a series of reports that collectively describe the components of MEPAS. The groundwater component of the MEPAS methodology models solute transport through the groundwater environment (i.e., partially saturated and saturated zones). Specifically, this component provides estimates of groundwater contaminant fluxes at various transporting medium interfaces (e.g., water table or aquifer/river interface) and contaminant concentrations at withdrawal wells. Contaminant fluxes at transporting medium interfaces represent boundary conditions for the next medium in which contaminant migration and fate is to be simulated (e.g., groundwater contamination entering a surface-water environment). Contaminant concentrations at withdrawal wells provide contaminant levels for the exposure assessment component of MEPAS. A schematic diagram illustrating the groundwater environment is presented. The migration and fate of contaminants through the groundwater environment are described by the three-dimensional, advective-dispersive equation for solute transport. The results are based on semianalytical solutions (i.e., solutions that require numerical integration) that are well established in the scientific literature. To increase computational efficiency, limits of integration are also identified.

  5. Solid polyelectrolyte fuel cell power supply system; Kotai kobunshigata nenryo denchi dengen system

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, T. [Kanagawa (Japan); Kadoma, H. [Yokohama (Japan); Hashizaki, K.; Tani, T. [Mitsubishi Heavy Industries Ltd., Tokyo (Japan)

    1996-06-11

    When a previous solid polyelectrolyte fuel cell power supply system is used underwater, the water generated by the cell reaction is stored in a water storage tank and it is necessary that the system is suspended in case the generated water is full in the water storage tank to take the system out of water and the water in the tank is discharged in the atmosphere. The solid polyelectrolyte fuel cell power supply system of this invention is equipped with a discharge pump to exhaust the generated water out of the closed vessel accommodating the system or equipped with a device to exhaust the generated water into the outside water accompanied with gushing of high-pressure gas into the outside water. As a result, the water generated by the cell reaction can be exhausted from the system into the outside water at any required time so that the fuel cell power supply system can be operated continuously as far as the supply of the fuel or the oxidizer last. By the installment of this function, a solid polyelectrolyte fuel cell power supply system can be used as an independent underwater power source or as a power source for an underwater moving body. 4 figs.

  6. STATISTICAL INVESTIGATION OF THE GROUNDWATER SYSTEM IN DARB EL-ARBAEIN, SOUTHWESTERN DESERT, EGYPT

    Directory of Open Access Journals (Sweden)

    Kashouty Mohamed El

    2009-12-01

    Full Text Available In Darb El Arbaein, the groundwater is the only water resources. The aquifer system starts from Paleozoic-Mesozoic to Upper Cretaceous sandstone rocks. They overlay the basement rocks and the aquifer is confined. In the present research, the performance of the statistical analyses to classify groundwater samples depending on their chemical characters has been tested. The hydrogeological and hydrogeochemical data of 92 groundwater samples was obtained from the GARPAD authority in northern, central, and southern Darb El Arbaein. A robust classification scheme for partitioning groundwater chemistry into homogeneous groups was an important tool for the characterization of Nubian sandstone aquifer. We test the performance of the many available graphical and statistical methodologies used to classify water samples. R-mode, Q-mode, correlation analysis, and principal component analysis were investigated. All the methods were discussed and compared as to their ability to cluster, ease of use, and ease of interpretation. The correlation investigation clarifies the relationship among the lithology, hydrogeology, and anthropogenic. Factor investigation revealed three factors namely; the evaporation process-agriculturalimpact-lithogenic dissolution, the hydrogeological characteristics of the aquifer system, and the surface meteoric water that rechargethe aquifer system. Two main clusters that subdivided into four sub clusters were identified in groundwater system based on hydrogeological and hydrogeochemical data. They reflect the impact of geomedia, hydrogeology, geographic position, and agricultural wastewater. The groundwater is undersaturated with respect to most selected minerals. The groundwater was supersaturated with respect to iron minerals in northern and southern Darb El Arbaein. The partial pressure of CO2 of the groundwater versus saturation index of calcite shows the gradual change in PCO2 from atmospheric to the present aquifer

  7. Geographical Information System Techniques for Evaluation of Groundwater Quality

    Directory of Open Access Journals (Sweden)

    Shahram Ashraf

    2011-01-01

    Full Text Available Problem statement: The present paper tries to assess groundwater suitability for irrigation purpose in Damghan plain (5400 ha. Approach: Twenty four water samples were collected from the active wells. Parameters such as Electrical Conductivity (EC, pH, Total Dissolved Solids (TDS, were recorded in the field and major anions and cations (Ca2+, Mg2+, K+, Na+, CO32-, HCO3-, Cl-, SO42- and NO3- were analyzed in the laboratory. The data of water wells were imported into the GIS software and the different water quality maps were produced using point data. Then Suitability index of groundwater quality determined by overlaying of water quality maps. Results: Suitability index values revealed that the ground water in Amin Abad, Abdi, Abd Abad, Nasr Abad and parts of Shams Abad villages of study area had "Suitable" quality with the suitability index range between 75-100 and therefore can be used for irrigation usage. Suitability index of the groundwater in Hasnie, Gani Abad and parts of Shams Abad villages were "Moderate" quality with the range between 35-70 and Abas Abad, Abir Abad and Shaman villages had "unsuitable" quality and cannot be used for irrigation purposes. In respect of all evaluating criteria, villages of study areas that had "Suitable" and Moderate quality could safely be used for longterm irrigation purposes. Conclusion: The present study demonstrated high efficiency for GIS to analyze complex spatial data and groundwater quality suitability.

  8. Contribution of additive manufacturing systems to supply chain

    OpenAIRE

    Shah, Satya; Mattiuzza, Stefano; Naghi Ganji, Elmira; Coutroubis, Alec

    2017-01-01

    The current economic pressures have been challenging manufacturing SMEs that play a complicated role in the Supply Chain (SC); and innovation in the manufacturing supply chain which requires new approaches and technologies. Additive Manufacturing (AM) is considered by research studies as pioneering and disruptive technology that can drive such a transformation. This paper is aimed at investigating in what measures can additive manufacturing techniques adopted as an opportunity for the supply ...

  9. Study on the Stability of Supply Chain System Under Perturbations of Dynamic Parameters

    Institute of Scientific and Technical Information of China (English)

    YingjinLu; XiaowoTang; ZongfangZhou

    2004-01-01

    The stability of supply chain system is key to implement efficiently inventory policies and improve quality of service in the supply chain. If the supply chain system were unstable, the lead-time would be uncertain. As a result, directly affects the process of manufacture, and the service level. In this paper, we analyze the stability of the supply chain system under perturbations of dynamic parameters based on the Cobb-Douglas production function and study influences on supply chain performance. We prove that the supply chain system, with the increases of the re-production input funding, becomes unstable. Further, when the optimal combination of input parameter elements, the supply chain system becomes unstable.

  10. Vulnerability of water supply systems to cyber-physical attacks

    Science.gov (United States)

    Galelli, Stefano; Taormina, Riccardo; Tippenhauer, Nils; Salomons, Elad; Ostfeld, Avi

    2016-04-01

    The adoption of smart meters, distributed sensor networks and industrial control systems has largely improved the level of service provided by modern water supply systems. Yet, the progressive computerization exposes these critical infrastructures to cyber-physical attacks, which are generally aimed at stealing critical information (cyber-espionage) or causing service disruption (denial-of-service). Recent statistics show that water and power utilities are undergoing frequent attacks - such as the December power outage in Ukraine - , attracting the interest of operators and security agencies. Taking the security of Water Distribution Networks (WDNs) as domain of study, our work seeks to characterize the vulnerability of WDNs to cyber-physical attacks, so as to conceive adequate defense mechanisms. We extend the functionality of EPANET, which models hydraulic and water quality processes in pressurized pipe networks, to include a cyber layer vulnerable to repeated attacks. Simulation results on a medium-scale network show that several hydraulic actuators (valves and pumps, for example) can be easily attacked, causing both service disruption - i.e., water spillage and loss of pressure - and structural damages - e.g., pipes burst. Our work highlights the need for adequate countermeasures, such as attacks detection and reactive control systems.

  11. Groundwater-abstraction induced land subsidence and groundwater regulation in the North China Plain

    Science.gov (United States)

    Guo, H.; Wang, L.; Cheng, G.; Zhang, Z.

    2015-11-01

    Land subsidence can be induced when various factors such as geological, and hydrogeological conditions and intensive groundwater abstraction combine. The development and utilization of groundwater in the North China Plain (NCP) bring great benefits, and at the same time have led to a series of environmental and geological problems accompanying groundwater-level declines and land subsidence. Subsidence occurs commonly in the NCP and analyses show that multi-layer aquifer systems with deep confined aquifers and thick compressible clay layers are the key geological and hydrogeological conditions responsible for its development in this region. Groundwater overdraft results in aquifer-system compaction, resulting in subsidence. A calibrated, transient groundwater-flow numerical model of the Beijing plain portion of the NCP was developed using MODFLOW. According to available water supply and demand in Beijing plain, several groundwater regulation scenarios were designed. These different regulation scenarios were simulated with the groundwater model, and assessed using a multi-criteria fuzzy pattern recognition model. This approach is proven to be very useful for scientific analysis of sustainable development and utilization of groundwater resources. The evaluation results show that sustainable development of groundwater resources may be achieved in Beijing plain when various measures such as control of groundwater abstraction and increase of artificial recharge combine favourably.

  12. Aquifer-Circulating Water Curtain Cultivation System To Recover Groundwater Level And Temperature

    Science.gov (United States)

    Kim, Y.; Ko, K.; Chon, C.; Oh, S.

    2011-12-01

    Groundwater temperature, which generally ranges 14 to 16 degree of Celsius all year long, can be said to be 'constant' compared to the amplitude of daily variation of air temperature or surface water. Water curtain cultivating method utilizes this 'constant' groundwater temperature to warm up the inside of greenhouse during winter night by splash groundwater on the roof of inner greenhouse. The area of water curtain cultivation system have increased up to 107.5 square kilometers as of 2006 since when it is first introduced to South Korea in 1984. Groundwater shortage problem became a great issue in a concentrated water curtain cultivation area because the pumped and splashed groundwater is abandoned to nearby stream and natural recharge rate is reduced by greenhouses. The amount of groundwater use for water curtain cultivation system in South Korea is calculated to be 587 million cubic meters which is 35% of national agricultural use of groundwater. A new water curtain cultivation system coupled with aquifer circulating of the splashed groundwater and greenhouse roof-top rainwater harvesting is developed and applied to field site in Nonsan-si, Chungnam province to minimize groundwater shortage problem and recover groundwater level. The aquifer circulating water curtain cultivation system is consist of a pumping well and a injection well of 80 m deep, groundwater transfer and splashing system, recovery tank and rainwater collecting waterway. The distance between injection and pumping well is 15 m and an observation well is installed in the middle of the wells. To characterize hydrogeological properties of this site, hydraulic test such as pumping tests and tracer tests with dye tracer, thermal tracer and ion tracer. Once the integrated system is constructed in this site, hydraulic head in all the wells and temperature of air, recovery tank and groundwater in all the wells are monitored during the operation for 3months in winter season. Hydraulic test and tracer

  13. Simulations of Ground-Water Flow, Transport, Age, and Particle Tracking near York, Nebraska, for a Study of Transport of Anthropogenic and Natural Contaminants (TANC) to Public-Supply Wells

    Science.gov (United States)

    Clark, Brian R.; Landon, Matthew K.; Kauffman, Leon J.; Hornberger, George Z.

    2008-01-01

    Contamination of public-supply wells has resulted in public-health threats and negative economic effects for communities that must treat contaminated water or find alternative water supplies. To investigate factors controlling vulnerability of public-supply wells to anthropogenic and natural contaminants using consistent and systematic data collected in a variety of principal aquifer settings in the United States, a study of Transport of Anthropogenic and Natural Contaminants to public-supply wells was begun in 2001 as part of the U.S. Geological Survey National Water-Quality Assessment Program. The area simulated by the ground-water flow model described in this report was selected for a study of processes influencing contaminant distribution and transport along the direction of ground-water flow towards a public-supply well in southeastern York, Nebraska. Ground-water flow is simulated for a 60-year period from September 1, 1944, to August 31, 2004. Steady-state conditions are simulated prior to September 1, 1944, and represent conditions prior to use of ground water for irrigation. Irrigation, municipal, and industrial wells were simulated using the Multi-Node Well package of the modular three-dimensional ground-water flow model code, MODFLOW-2000, which allows simulation of flow and solutes through wells that are simulated in multiple nodes or layers. Ground-water flow, age, and transport of selected tracers were simulated using the Ground-Water Transport process of MODFLOW-2000. Simulated ground-water age was compared to interpreted ground-water age in six monitoring wells in the unconfined aquifer. The tracer chlorofluorocarbon-11 was simulated directly using Ground-Water Transport for comparison with concentrations measured in six monitoring wells and one public supply well screened in the upper confined aquifer. Three alternative model simulations indicate that simulation results are highly sensitive to the distribution of multilayer well bores where leakage

  14. Base-stock Policies Under Exogenous and Endogenous, Sequential Supply Systems

    DEFF Research Database (Denmark)

    Bhagwan Bendre, Abhijit; Thorstenson, Anders

    In pursuit of globalization and specialization, companies tend to outsource more of their supply processes. This may diminish their control over supply processes and increase uncertainties in supply lead times. In order to achieve acceptable service levels at minimum total costs, it is an additio......In pursuit of globalization and specialization, companies tend to outsource more of their supply processes. This may diminish their control over supply processes and increase uncertainties in supply lead times. In order to achieve acceptable service levels at minimum total costs...... endogenous and exogenous supply systems and focus on the average stockout and average inventory as performance measures. Results show that the qualitative performance of neither of the backorder or lost-sales case differ significantly due to the choice of supply system. While, backorder and lost...

  15. An expert system supporting decision making process for sustainable groundwater use in main alluvial aquifers in Slovenia

    Science.gov (United States)

    Souvent, Petra; Vižintin, Goran; Celarc, Sašo; Čenčur Curk, Barbara

    2016-04-01

    The expert decision support system for groundwater management in the shallow alluvial aquifers was developed to assist the decision makers to quantify available groundwater for a given alluvial aquifer and provide additional information about quantity of groundwater available for water rights licensing. The system links numerical groundwater flow models with the water permits and concessions databases in a complex decision support system. Six regional stand-alone groundwater models are used in the process of the assessment of groundwater quantitative status as well as for assessing availability of groundwater resources during the period of maximum water consumption and minimum groundwater recharge. Model runs have been realized in a steady state and are calibrated to a medium-low hydrological field conditions, because water quantities for all already granted as well as to-be granted water rights have to be ensured in any time for several years. The major goal of the expert decision support system is therefore to provide control mechanisms in order to verify the water rights licensing for the sustainable use of groundwater resources. The system enables that the water quantity data from water permits and concessions in conjunction with the results of numerical groundwater modeling are used in the managing process of granting new water rights to users in terms of their long-term access to groundwater (sufficient quantity of groundwater) and in relation to the water rights of other users (co-impact of groundwater pumping). Also, groundwater access must be managed in such a way that it does not cause unacceptable local impacts (pumping must not lower the water level for more than 2/3 of water body in the medium-low hydrological conditions).

  16. Critical success factors for implementing supply chain information systems : insights from the pork industry

    NARCIS (Netherlands)

    Denolf, J.M.

    2014-01-01

    Critical success factors for implementing supply chain information systems – Janne M. Denolf Due to intensified competition, companies realize that they should closely collaborate with their supply-chain partners to further cut costs and stay competitive. To do so, supply-chai

  17. Barcelona's water supply, 1867–1967 : the transition to a modern system

    OpenAIRE

    Guàrdia Bassols, Manuel; Rosselló i Nicolau, Maribel; Garriga Bosch, Sergi

    2013-01-01

    Barcelona's water supply since 14th century to 1867, the Eixample's water supply problem the development of modern water supply since 1867 to 1967 the new sanitation system impact on water consumption water's slow entry into the domestic sphere from post-war restrictions to widespread water consumption. Peer Reviewed

  18. Groundwater-flow model for the Wood River Valley aquifer system, south-central Idaho

    Science.gov (United States)

    Fisher, Jason C.; Bartolino, James R.; Wylie, Allan H.; Sukow, Jennifer; McVay, Michael

    2016-06-27

    A three-dimensional numerical model of groundwater flow was developed for the Wood River Valley (WRV) aquifer system, Idaho, to evaluate groundwater and surface-water availability at the regional scale. This mountain valley is located in Blaine County and has a drainage area of about 2,300 square kilometers (888 square miles). The model described in this report can serve as a tool for water-rights administration and water-resource management and planning. The model was completed with support from the Idaho Department of Water Resources, and is part of an ongoing U.S. Geological Survey effort to characterize the groundwater resources of the WRV. A highly reproducible approach was taken for constructing the WRV groundwater-flow model. The collection of datasets, source code, and processing instructions used to construct and analyze the model was distributed as an R statistical-computing and graphics package.

  19. Optimization and decision support systems for supply chains

    CERN Document Server

    Corominas, Albert; Miranda, João

    2017-01-01

    This contributed volume presents a collection of materials on supply chain management including industry-based case studies addressing petrochemical, pharmaceutical, manufacturing and reverse logistics topics. Moreover, the book covers sustainability issues, as well as optimization approaches. The target audience comprises academics, industry managers, and practitioners in the field of supply chain management, being the book also beneficial for graduate students.

  20. Supply Management Analysis of the Chilean Navy Acquisition System

    Science.gov (United States)

    2014-12-01

    1. Generic supply chain diagram (from Sanders, 2012) ......................................11 Figure 2. Chilean Navy Logistics Organization...Sanders, 2012). Supply chain management involves the following activities (Monczka et al., 2009, pp. 17–19). • Purchasing or procurement • Inbound ...it will be measured, and how the data obtained will be used (Monczka et al., 2009). Some examples of indicators used inside the military logistics

  1. Assessment of Non-Revenue Water Situation in Mandalay City: Response to the Management of Sustainable Water Supply System in Mandalay City

    Directory of Open Access Journals (Sweden)

    Ser Moe Yi

    2017-07-01

    Full Text Available Mandalay city is experiencing inefficient use of groundwater resources and inadequate water supply system to residents. The study focused on the issue of non-revenue water (NRW and stakeholders’ perception on its management in order to design the remediation measures for the water lost controls and the sustainable water supply system. A total of 134 samples of water employees, and 383 households were assessed through structured questionnaires. It has been found that more than 50% of the water employees are not aware of the NRW concept. Furthermore, over 90% of the water users are not willing to participate in water management. The WB­EasyCalc software version 4.09 was used to determine NRW and the result of NRW is 46% of the total system input volume. The main causes of water losses in Mandalay city are: 1 a very low pressure system; 2 poor-quality repairs; 3 lack of regular maintenance; 4 water employees’ insufficient knowledge; 5 lack of awareness about the NRW concept; 6 poor customer relationships; and 7 water users’ lack of willingness to participate in the water losses management. Therefore, it is recommended that water utility service efficiency be optimized by giving capacity building to the water employees. It is also recommended that district metering areas (DMA be introduced and good customer relationship be established. This is to improve the water users’ willingness to participate in the water losses management for the efficient use under scarcity groundwater resources and for the sustainable water supply system.

  2. Enhancing lean supply chain through traffic light quality management system

    Directory of Open Access Journals (Sweden)

    Md. Mazharul Islam

    2013-03-01

    Full Text Available Lean is a continuous journey to grow and excel the company. Any company want to develop and cope with the world pace must adopt lean. However, in most of the organizations the management culture or people’s mentality is not so good to embrace change. They have predestined mind set where no change is normally allowed. Lean is a cooperative way of working that involves all departments and all personnel to work together in a team for the betterment of the entire company. Without providing fixed solution of any problem it suggests the best way that people willingly accept to do. Lean normally deals with highest quality, shorter lead time and lowest cost. In Bangladesh, most of the garment manufacturing companies are experiencing a massive quality problem. We describe a case where traffic light, a tool of lean quality system was adopted to a garment manufacturing company in Bangladesh. We also provide the charts to contrast the before and after scenario in detail, in order to illustrate the company benefits. After the traffic light system being implemented, the quality status was improved, production capacity was increased; significant days were saved that enhanced the lead time and thus strengthen the supply chain.

  3. Evaluation and optimization of secondary water supply system renovation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Due to pollution in second water supply system (SWSS), nine renovation alternative plans were proposed and comprehensive evaluations of different plan based on Analytical Hierarchy Process (AHP) were presented in this paper. Comparisons of advantages and disadvantages among the plans of SWSS renovations provided solid foundation for selecting the most appropriate plan for engineering projects. In addition, a mathematical model of the optimal combination of renovation plans has been set up and software Lingo was used to solve the model. As a case study, the paper analyzed 15 buildings in Tianjin City. After simulation of the SWSS renovation system, an optimal scheme was obtained, the result of which indicates that 10 out of those 15 buildings need be renovated in priority. The renovation plans selected for each building are the ones ranked higher in the comprehensive analysis. The analysis revealed that the optimal scheme, compared with two other randomly calculated ones, increased the percentage of service population by 19.6% and 13.6% respectively, which significantly improved social and economical benefits.

  4. System Dynamics Model for VMI&TPL Integrated Supply Chains

    Directory of Open Access Journals (Sweden)

    Guo Li

    2013-01-01

    Full Text Available This paper establishes VMI-APIOBPCS II model by extending VMI-APIOBPCS model from serial supply chain to distribution supply chain. Then TPL is introduced to this VMI distribution supply chain, and operational framework and process of VMI&TPL integrated supply chain are analyzed deeply. On this basis VMI-APIOBPCS II model is then changed to VMI&TPL-APIOBPCS model and VMI&TPL integrated operation mode is simulated. Finally, compared with VMI-APIOBPCS model, the TPL’s important role of goods consolidation and risk sharing in VMI&TPL integrated supply chain is analyzed in detail from the aspects of bullwhip effect, inventory level, service level, and so on.

  5. Research on Knowledge-Oriented Supply ChainRisk Management System Model

    OpenAIRE

    Yingchun Guo

    2011-01-01

    Based on analyzing the characteristics of supply chain risk management under the influences of knowledge, in this paper integrates basic theories and methods of knowledge management into the process of risk management, builds a knowledge-oriented supply chain risk management system model, and proposes relevant strategies, presenting references for practical application of knowledge-oriented supply chain risk management. By means of acquiring, storing, sharing, and transferring supply chain ri...

  6. Options of sustainable groundwater supply from safe aquifers in areas with elevated arsenic - a case study from Bangladesh

    Science.gov (United States)

    Jakariya, M.; Bhattacharya, P.; Bromssen, M. V.

    2008-05-01

    Access to safe drinking water is a basic human right. Several millions of people, mainly in developing countries are affected by arsenic in drinking water and the global impact now makes it a top priority water quality issue. A wide gap between the number of exposed people and the pace of mitigation programmes in rural areas of developing countries is the main problem in providing safe drinking water. The main challenge is to develop a sustainable mitigation option that rural and disadvantaged people can adopt and implement themselves to overcome possible public heath hazards. During the recent years, new approaches have emerged in Bangladesh, primarily emerging out of people's own initiative. The local drillers target presumed safe aquifers on the basis of colour and texture of the sediments. A recent study by our research group revealed a distinct correlation between the colour characteristics of the sediments and the groundwater redox conditions. The coupling between the colour of sediments and the redox characteristics of groundwater may thus be used as a tool to assess the risk for As mobilization from the aquifers. The study showed that it is possible to assess the relative risk of high concentrations of As in aquifers if the colour characteristics of the sediments are known and thus, local drillers may target safe aquifers. For validating the sustainability of this mitigation option geological, hydrogeological and microbiological investigations are needed. The sustainability of the aquifers needs to be assessed by combining results from various field and laboratory investigations and by running predictive models. There is also a need to raise the awareness and thereby create a platform for motivating the local drillers to be educated in installing safe tubewells. Awareness raising and community mobilisation are two top priorities for implementing a sustainable safe water project in rural village areas. Significant preparation, attention, and focus must be

  7. Simulation of groundwater flow and hydrologic effects of groundwater withdrawals from the Kirkwood-Cohansey aquifer system in the Pinelands of southern New Jersey

    Science.gov (United States)

    Charles, Emmanuel G.; Nicholson, Robert S.

    2012-01-01

    The Kirkwood-Cohansey aquifer system is an important source of present and future water supply in southern New Jersey. Because this unconfined aquifer system also supports sensitive wetland and aquatic habitats within the New Jersey Pinelands (Pinelands), water managers and policy makers need up-to-date information, data, and projections that show the effects of potential increases in groundwater withdrawals on these habitats. Finite-difference groundwater flow models (MODFLOW) were constructed for three drainage basins (McDonalds Branch Basin, 14.3 square kilometers (km2); Morses Mill Stream Basin, 21.63 km2; and Albertson Brook Basin, 52.27 km2) to estimate the effects of potential increases in groundwater withdrawals on water levels and the base-flow portion of streamflow, in wetland and aquatic habitats. Three models were constructed for each drainage basin: a transient model consisting of twenty-four 1-month stress periods (October 2004 through September 2006); a transient model to simulate the 5- to 10-day aquifer tests that were performed as part of the study; and a high-resolution, steady-state model used to assess long-term effects of increased groundwater withdrawals on water levels in wetlands and on base flow. All models were constructed with the same eight-layer structure. The smallest horizontal cell dimensions among the three model areas were 150 meters (m) for the 24-month transient models, 10 m for the steady-state models, and 3 m for the transient aquifer-test models. Boundary flows of particular interest to this study and represented separately are those for wetlands, streams, and evapotranspiration. The final variables calibrated from both transient models were then used in steady-state models to assess the long-term effects of increased groundwater withdrawals on water levels in wetlands and on base flow. Results of aquifer tests conducted in the three study areas illustrate the effects of withdrawals on water levels in wetlands and on base

  8. Energy Production System Management - Renewable energy power supply integration with Building Automation System

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Joao [Centre of Mechatronics Engineering - CEM/Institut of Mechanical Engineering - IDMEC, University of Evora, R. Romao Ramalho, 59, 7000-671 Evora (Portugal); Martins, Joao [Centre of Technology and Systems/Faculdade de Ciencias e Tecnologia, Universidade Nova Lisboa, 1049-001 Lisboa (Portugal)

    2010-06-15

    Intelligent buildings, historically and technologically, refers to the integration of four distinctive systems: Building Automation Systems (BAS), Telecommunication Systems, Office Automation Systems and Computer Building Management Systems. The increasing sophisticated BAS has become the ''heart and soul'' of modern intelligent buildings. Integrating energy supply and demand elements - often known as Demand-Side Management (DSM) - has became an important energy efficiency policy concept. Nowadays, European countries have diversified their power supplies, reducing the dependence on OPEC, and developing a broader mix of energy sources maximizing the use of renewable energy domestic sources. In this way it makes sense to include a fifth system into the intelligent building group: Energy Production System Management (EPSM). This paper presents a Building Automation System where the Demand-Side Management is fully integrated with the building's Energy Production System, which incorporates a complete set of renewable energy production and storage systems. (author)

  9. On Construction of Supply Chain System for China’s Modern Agricultural Products

    Institute of Scientific and Technical Information of China (English)

    Wanjiang; WANG

    2015-01-01

    In view of drawbacks in supply chain of China’s traditional agricultural products,this paper proposed building supply chain system for modern agricultural products: taking informationization as basis,channel system as core,organization system as support,and service system and safety system as guarantee,to promote high efficient operation of the supply chain system. The channel system stresses alliance and integration of channel system,informationization of channel management,and terminalization of channel operation; the organization system stresses organization,large scale,group,and brand of participant entities; service system stresses construction of service means,service platform,and operation mechanism; safety system stresses building quality safety based agricultural product supply chain management mode. In order to ensure high efficient operation of supply chain for modern agricultural products,it is required to straighten out supply chain management system,actively cultivate core enterprises of supply chain,strengthen information construction of supply chain,select suitable supply chain mode,and improve benefit allocation mechanism.

  10. Simulation of groundwater flow and hydrologic effects of groundwater withdrawals from the Kirkwood-Cohansey aquifer system in the Pinelands of southern New Jersey

    Science.gov (United States)

    Charles, Emmanuel G.; Nicholson, Robert S.

    2012-01-01

    The Kirkwood-Cohansey aquifer system is an important source of present and future water supply in southern New Jersey. Because this unconfined aquifer system also supports sensitive wetland and aquatic habitats within the New Jersey Pinelands (Pinelands), water managers and policy makers need up-to-date information, data, and projections that show the effects of potential increases in groundwater withdrawals on these habitats. Finite-difference groundwater flow models (MODFLOW) were constructed for three drainage basins (McDonalds Branch Basin, 14.3 square kilometers (km2); Morses Mill Stream Basin, 21.63 km2; and Albertson Brook Basin, 52.27 km2) to estimate the effects of potential increases in groundwater withdrawals on water levels and the base-flow portion of streamflow, in wetland and aquatic habitats. Three models were constructed for each drainage basin: a transient model consisting of twenty-four 1-month stress periods (October 2004 through September 2006); a transient model to simulate the 5- to 10-day aquifer tests that were performed as part of the study; and a high-resolution, steady-state model used to assess long-term effects of increased groundwater withdrawals on water levels in wetlands and on base flow. All models were constructed with the same eight-layer structure. The smallest horizontal cell dimensions among the three model areas were 150 meters (m) for the 24-month transient models, 10 m for the steady-state models, and 3 m for the transient aquifer-test models. Boundary flows of particular interest to this study and represented separately are those for wetlands, streams, and evapotranspiration. The final variables calibrated from both transient models were then used in steady-state models to assess the long-term effects of increased groundwater withdrawals on water levels in wetlands and on base flow. Results of aquifer tests conducted in the three study areas illustrate the effects of withdrawals on water levels in wetlands and on base

  11. Ground-Water Budgets for the Wood River Valley Aquifer System, South-Central Idaho, 1995-2004

    Science.gov (United States)

    Bartolino, James R.

    2009-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Haley, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system which consists of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on ground water for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the ground-water resource. To help address these concerns this report describes a ground-water budget developed for the Wood River Valley aquifer system for three selected time periods: average conditions for the 10-year period 1995-2004, and the single years of 1995 and 2001. The 10-year period 1995-2004 represents a range of conditions in the recent past for which measured data exist. Water years 1995 and 2001 represent the wettest and driest years, respectively, within the 10-year period based on precipitation at the Ketchum Ranger Station. Recharge or inflow to the Wood River Valley aquifer system occurs through seven main sources (from largest to smallest): infiltration from tributary canyons, streamflow loss from the Big Wood River, areal recharge from precipitation and applied irrigation water, seepage from canals and recharge pits, leakage from municipal pipes, percolation from septic systems, and subsurface inflow beneath the Big Wood River in the northern end of the valley. Total estimated mean annual inflow or recharge to the aquifer system for 1995-2004 is 270,000 acre-ft/yr (370 ft3/s). Total recharge for the wet year 1995 and the dry year 2001 is estimated to be 270,000 acre-ft/yr (370 ft3/s) and 220,000 acre-ft/yr (300 ft3/s), respectively. Discharge or outflow from the Wood River Valley aquifer system occurs through

  12. Materials Supply System Analysis Under Simulation Scenarios in a Lean Manufacturing Environment

    Directory of Open Access Journals (Sweden)

    J.A. Jiménez-García

    2014-10-01

    Full Text Available Identifying the most efficient supply system for a company working under Lean Manufacturing practices was possible with the support of this work. Promodel software was used to develop simulation model depicting a constant velocity joints (CVJ production system, where two different supply methods were assessed. According to results herein obtained, better performance is achieved under random supply method in comparison with a clustering supply method. The company’s goal is to keep 1% losses due to lack of material. In the actual process, this essential parameter was reduced from 2.73% to 1.177%, if random supply method is properly implemented.

  13. Triennial changes in groundwater quality in aquifers used for public supply in California: Utility as indicators of temporal trends

    Science.gov (United States)

    Kent, Robert; Landon, Matthew K.

    2016-01-01

    From 2004 to 2011, the U.S. Geological Survey collected samples from 1686 wells across the State of California as part of the California State Water Resources Control Board’s Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project (PBP). From 2007 to 2013, 224 of these wells were resampled to assess temporal trends in water quality. The samples were analyzed for 216 water-quality constituents, including inorganic and organic compounds as well as isotopic tracers. The resampled wells were grouped into five hydrogeologic zones. A nonparametric hypothesis test was used to test the differences between initial sampling and resampling results to evaluate possible step trends in water-quality, statewide, and within each hydrogeologic zone. The hypothesis tests were performed on the 79 constituents that were detected in more than 5 % of the samples collected during either sampling period in at least one hydrogeologic zone. Step trends were detected for 17 constituents. Increasing trends were detected for alkalinity, aluminum, beryllium, boron, lithium, orthophosphate, perchlorate, sodium, and specific conductance. Decreasing trends were detected for atrazine, cobalt, dissolved oxygen, lead, nickel, pH, simazine, and tritium. Tritium was expected to decrease due to decreasing values in precipitation, and the detection of decreases indicates that the method is capable of resolving temporal trends.

  14. Triennial changes in groundwater quality in aquifers used for public supply in California: utility as indicators of temporal trends.

    Science.gov (United States)

    Kent, Robert; Landon, Matthew K

    2016-11-01

    From 2004 to 2011, the U.S. Geological Survey collected samples from 1686 wells across the State of California as part of the California State Water Resources Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project (PBP). From 2007 to 2013, 224 of these wells were resampled to assess temporal trends in water quality. The samples were analyzed for 216 water-quality constituents, including inorganic and organic compounds as well as isotopic tracers. The resampled wells were grouped into five hydrogeologic zones. A nonparametric hypothesis test was used to test the differences between initial sampling and resampling results to evaluate possible step trends in water-quality, statewide, and within each hydrogeologic zone. The hypothesis tests were performed on the 79 constituents that were detected in more than 5 % of the samples collected during either sampling period in at least one hydrogeologic zone. Step trends were detected for 17 constituents. Increasing trends were detected for alkalinity, aluminum, beryllium, boron, lithium, orthophosphate, perchlorate, sodium, and specific conductance. Decreasing trends were detected for atrazine, cobalt, dissolved oxygen, lead, nickel, pH, simazine, and tritium. Tritium was expected to decrease due to decreasing values in precipitation, and the detection of decreases indicates that the method is capable of resolving temporal trends.

  15. Modelling climate change effects on a dutch coastal groundwater system using airborne electromagnetic measurements

    NARCIS (Netherlands)

    Faneca S̀anchez, M.; Gunnink, J.L.; Baaren, E.S. van; Oude Essink, G.H.P.; Siemon, B.; Auken, E.; Elderhorst, W.; Louw, P.G.B. de

    2012-01-01

    The forecast of climate change effects on the groundwater system in coastal areas is of key importance for policy makers. The Dutch water system has been deeply studied because of its complex system of low-lying areas, dunes, land won to the sea and dikes, but nowadays large efforts are still being

  16. 郑州市地下水自备井计划用水交易市场设计%The Design of Self-supply Groundwater Planned Water Use Trading Market in Zhengzhou

    Institute of Scientific and Technical Information of China (English)

    沈大军

    2013-01-01

    According to the requirements of developing water rights trading market, the paper designs the serf-supply groundwater planned water use trading market in Zhengzhou, and provides recommendations on the reform of related water resources management systems. The development of the self-supply groundwater planned water use trading market in Zhengzhou shall clarify initial water rights, conduct cap control and improve metering and monitoring systems firstly. Then related market trading systems shall be developed, including, annual water use indicator definition, carryover of water use indicator, trading product selection, trading period selection, trading pricing and on-line trade system development etc. After the development of water trading market, it is necessary to reform the current water resources management systems, including issuance of new water rights, environmental and ecological impact assessment, information disclosure, water use indicator definition and surcharge for over-planned water use etc.%根据水权交易市场建设的基本要求,文章设计了郑州市地下水自备井计划用水交易市场,并对相关的水资源管理制度改革提出了建议.郑州市地下水自备井计划用水交易市场首先需要明晰初始水权、实施总量控制和完善监测计量系统;然后建立相应的市场交易制度,包括年度用水计划制定、跨年度用水指标使用、交易产品选择、交易周期选择、交易价格生成和网上在线交易系统建设等.在建立水权交易市场以后,还需要对现有的水资源管理制度进行改革,包括新水权发放、生态与环境影响评价、市场信息公布、现有的用水计划制定和超计划累进加价制度改革等.

  17. Supply strategy configuration in fragmented production systems: An empirical study

    Directory of Open Access Journals (Sweden)

    Claudia Chackelson

    2013-07-01

    Full Text Available Purpose: Companies survive in saturated markets trying to be more productive and more efficient. In this context, it becomes critical for companies to manage the entire supply network to optimize overall performance.  Hence, the supply strategy plays an important role because it influences the way in which production and logistics network has to be configured and managed. This paper explores the benefits obtained configuring different supply strategies adapted to customer needs.Design/methodology/approach: For this purpose a case research from a Tier 2 point of view of the supply chain has been conducted. Findings and Originality/value: The case research demonstrates that a higher service level, less holding costs and increase turnovers can be obtained implementing the adequate supply strategy. Originality/value: There is a scarcity of research specifically focused on applied Supply Chain Principles within network configuration processes. Moreover, there are few empirical studies of global Tier 2 with multiple decoupling points into its supply chain network.

  18. Classification as a generic tool for characterising status and changes of regional scale groundwater systems

    Science.gov (United States)

    Barthel, Roland; Haaf, Ezra

    2016-04-01

    Regional hydrogeology is becoming increasingly important, but at the same time, scientifically sound, universal solutions for typical groundwater problems encountered on the regional scale are hard to find. While managers, decision-makers and state agencies operating on regional and national levels have always shown a strong interest in regional scale hydrogeology, researchers from academia tend to avoid the subject, focusing instead on local scales. Additionally, hydrogeology has always had a tendency to regard every problem as unique to its own site- and problem-specific context. Regional scale hydrogeology is therefore pragmatic rather than aiming at developing generic methodology (Barthel, 2014; Barthel and Banzhaf, 2016). One of the main challenges encountered on the regional scale in hydrogeology is the extreme heterogeneity that generally increases with the size of the studied area - paired with relative data scarcity. Even in well-monitored regions of the world, groundwater observations are usually clustered, leaving large areas without any direct data. However, there are many good reasons for assessing the status and predicting the behavior of groundwater systems under conditions of global change even for those areas and aquifers without observations. This is typically done by using rather coarsely discretized and / or poorly parameterized numerical models, or by using very simplistic conceptual hydrological models that do not take into account the complex three-dimensional geological setup. Numerical models heavily rely on local data and are resource-demanding. Conceptual hydrological models only deliver reliable information on groundwater if the geology is extremely simple. In this contribution, we present an approach to derive statistically relevant information for un-monitored areas, making use of existing information from similar localities that are or have been monitored. The approach combines site-specific knowledge with conceptual assumptions on

  19. Refurbishment of the power supply and NMR systems; Renovation des alimentations et du systeme RMN

    Energy Technology Data Exchange (ETDEWEB)

    Dugay, G. [Grand Accelerateur National d`Ions Lourdes (GANIL), 14 - Caen (France)] [and others

    1998-12-31

    This paper summarises some of the first renovation performed on GANIL power converters, their control system and on magnetic field measurements. Among numerous actions undertaken the most important four, mentioned in the report are: remote control interfaces; current catchers; pulsed supplies; RMN system renovation 4 refs., 2 figs.

  20. The Power Supply System for the J-TEXT Poloidal Field

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming; ZHUANG Ge; YU Kexun; QiU Shengshun; PAN Yuan

    2009-01-01

    Joint-TEXT(J-TEXT)is a medium-sized tokamak constructed at Huazhong University of Science and Technology.At present,the poloidal field power supply consists of three subsystem sets,namely Ohmic heating field power supply,vertical field power supply,and horizontal field power supply.The structure and function of the poloidal field(PF)power supply aus well as the updated control system of the power supply is described.The new scheme uses the realtime feedback control method for the poloidal field power supply.The experimental results show that the poloidal field energized by poloidal field power supply meets the J-TEXT operational requirement perfectly.

  1. An Isothermal Steam Expander for an Industrial Steam Supplying System

    Directory of Open Access Journals (Sweden)

    Chen-Kuang Lin

    2015-01-01

    Full Text Available Steam is an essential medium used in the industrial process. To ensure steam quality, small and middle scale boilers are often adopted. However, because a higher steam pressure (compared to the necessary steam pressure is generated, the boiler’s steam pressure will be reduced via a pressure regulator before the steam is directed through the process. Unfortunately, pressure is somewhat wasted during the reducing process. Therefore, in order to promote energy efficiency, a pressure regulator is replaced by a steam expander. With this steam expander, the pressure will be transformed into mechanical energy and extracted during the expansion process. A new type of isothermal steam expander for an industrial steam supplying system will be presented in the paper. The isothermal steam expander will improve the energy efficiency of a traditional steam expander by replacing the isentropic process with an isothermal expansion process. With this, steam condensation will decrease, energy will increase, and steam quality will be improved. Moreover, the mathematical model of the isothermal steam expander will be established by using the Schmidt theory, the same principle used to analyze Stirling engines. Consequently, by verifying the correctness of the theoretical model for the isothermal steam expander using experimental data, a prototype of 100 c.c. isothermal steam expander is constructed.

  2. Energy Cost Optimization in a Water Supply System Case Study

    Directory of Open Access Journals (Sweden)

    Daniel F. Moreira

    2013-01-01

    Full Text Available The majority of the life cycle costs (LCC of a pump are related to the energy spent in pumping, with the rest being related to the purchase and maintenance of the equipment. Any optimizations in the energy efficiency of the pumps result in a considerable reduction of the total operational cost. The Fátima water supply system in Portugal was analyzed in order to minimize its operational energy costs. Different pump characteristic curves were analyzed and modeled in order to achieve the most efficient operation point. To determine the best daily pumping operational scheduling pattern, genetic algorithm (GA optimization embedded in the modeling software was considered in contrast with a manual override (MO approach. The main goal was to determine which pumps and what daily scheduling allowed the best economical solution. At the end of the analysis it was possible to reduce the original daily energy costs by 43.7%. This was achieved by introducing more appropriate pumps and by intelligent programming of their operation. Given the heuristic nature of GAs, different approaches were employed and the most common errors were pinpointed, whereby this investigation can be used as a reference for similar future developments.

  3. Assessment of groundwater quality using geographical information system (GIS), at north-east Cairo, Egypt.

    Science.gov (United States)

    El-Shahat, M F; Sadek, M A; Mostafa, W M; Hagagg, K H

    2016-04-01

    The present investigation has been conducted to delineate the hydrogeochemical and environmental factors that control the water quality of the groundwater resources in the north-east of Cairo. A complementary approach based on hydrogeochemistry and a geographical information system (GIS) based protectability index has been employed for conducting this work. The results from the chemical analysis revealed that the groundwater of the Quaternary aquifer is less saline than that of the Miocene aquifer and the main factors that control the groundwater salinity in the studied area are primarily related to the genesis of the original recharging water modified after by leaching, dissolution, cation exchange, and fertilizer leachate. The computed groundwater quality index (WQI) falls into two categories: fair for almost all the Miocene groundwater samples, while the Quaternary groundwater samples are all have a good quality. The retarded flow and non-replenishment of the Miocene aquifer compared to the renewable active recharge of the Quaternary aquifer can explain this variation of WQI. The index and overlay approach exemplified by the DUPIT index has been used to investigate the protectability of the study aquifers against diffuse pollutants. Three categories (highly protectable less vulnerable, moderately protectable moderately vulnerable and less protectable highly vulnerable) have been determined and areally mapped.

  4. Geochemical modeling of groundwater evolution in a volcanic aquifer system of Kumamoto area, Japan

    Science.gov (United States)

    Hossain, S.; Hosono, T.; Ide, K.; Shimada, J.

    2013-12-01

    Inverse geochemical modeling (PHREEQC) was used to identify the evolution of groundwater in a volcanic aquifer system of Kumamoto area (103 Km2) in southern Japan. The modeling was based on flow paths proposed by different researcher using different techniques, and detailed chemical analysis of groundwater along the flow paths. Potential phases were constrained using general trends in hydrochemical data of groundwater, mineralogical data, and saturation indices data of minerals in groundwater. Hydrochemical data from a total of 180 spring, river and well water samples were used to evaluate water quality and to determine processes that control groundwater chemistry. The samples from the area were classified as recharge zone water (Ca-HCO3 and Ca-SO4 type), lateral flow to discharge zone water (Ca-HCO3 and Na-HCO3 type) and stagnant zone water (Na-Cl type). The inverse geochemical modeling demonstrated that relatively few phases are required to derive water chemistry in the area. The downstream changes in groundwater chemistry could be largely explained by the weathering of plagioclase to kaolinite, with possible contributions from weathering of biotite and pyroxene. In a broad sense, the reactions responsible for the hydrochemical evolution in the area fall into three categories (1) silicate weathering reactions (2) precipitation of amorphous silica and clay minerals and (3) Cation exchange reactions of Ca2+ to Na+.

  5. Potential corrosivity of untreated groundwater in the United States

    Science.gov (United States)

    Belitz, Kenneth; Jurgens, Bryant C.; Johnson, Tyler D.

    2016-07-12

    Corrosive groundwater, if untreated, can dissolve lead and other metals from pipes and other components in water distribution systems. Two indicators of potential corrosivity—the Langelier Saturation Index (LSI) and the Potential to Promote Galvanic Corrosion (PPGC)—were used to identify which areas in the United States might be more susceptible to elevated concentrations of metals in household drinking water and which areas might be less susceptible. On the basis of the LSI, about one-third of the samples collected from about 21,000 groundwater sites are classified as potentially corrosive. On the basis of the PPGC, about two-thirds of the samples collected from about 27,000 groundwater sites are classified as moderate PPGC, and about one-tenth as high PPGC. Potentially corrosive groundwater occurs in all 50 states and the District of Columbia.National maps have been prepared to identify the occurrence of potentially corrosive groundwater in the 50 states and the District of Columbia. Eleven states and the District of Columbia were classified as having a very high prevalence of potentially corrosive groundwater, 14 states as having a high prevalence of potentially corrosive groundwater, 19 states as having a moderate prevalence of potentially corrosive groundwater, and 6 states as having a low prevalence of potentially corrosive groundwater. These findings have the greatest implication for people dependent on untreated groundwater for drinking water, such as the 44 million people that are self-supplied and depend on domestic wells or springs for their water supply.

  6. A decision analysis approach for optimal groundwater monitoring system design under uncertainty

    Directory of Open Access Journals (Sweden)

    N. B. Yenigül

    2006-01-01

    Full Text Available Groundwater contamination is the degradation of the natural quality of groundwater as a result of human activity. Landfills are one of the most common human activities threatening the groundwater quality. The objective of the monitoring systems is to detect the contaminant plumes before reaching the regulatory compliance boundary in order to prevent the severe risk to both society and groundwater quality, and also to enable cost-effective counter measures in case of a failure. The detection monitoring problem typically has a multi-objective nature. A multi-objective decision model (called MONIDAM which links a classic decision analysis approach with a stochastic simulation model is applied to determine the optimal groundwater monitoring system given uncertainties due to the hydrogeological conditions and contaminant source characteristics. A Monte Carlo approach is used to incorporate uncertainties. Hydraulic conductivity and the leak location are the random inputs of the simulation model. The design objectives considered in the model are: (1 maximizing the detection probability, (2 minimizing the contaminated area and, (3 minimize the total cost of the monitoring system. The results show that the monitoring systems located close to the source are optimal except for the cases with very high unit installation and sampling cost and/or very cheap unit remediation cost.

  7. Integrated assessment of the impact of climate and land use changes on groundwater quantity and quality in the Mancha Oriental system (Spain)

    Science.gov (United States)

    Pulido-Velazquez, M.; Peña-Haro, S.; García-Prats, A.; Mocholi-Almudever, A. F.; Henriquez-Dole, L.; Macian-Sorribes, H.; Lopez-Nicolas, A.

    2015-04-01

    Climate and land use change (global change) impacts on groundwater systems cannot be studied in isolation. Land use and land cover (LULC) changes have a great impact on the water cycle and contaminant production and transport. Groundwater flow and storage are changing in response not only to climatic changes but also to human impacts on land uses and demands, which will alter the hydrologic cycle and subsequently impact the quantity and quality of regional water systems. Predicting groundwater recharge and discharge conditions under future climate and land use changes is essential for integrated water management and adaptation. In the Mancha Oriental system (MOS), one of the largest groundwater bodies in Spain, the transformation from dry to irrigated lands during the last decades has led to a significant drop of the groundwater table, with the consequent effect on stream-aquifer interaction in the connected Jucar River. Understanding the spatial and temporal distribution of water quantity and water quality is essential for a proper management of the system. On the one hand, streamflow depletion is compromising the dependent ecosystems and the supply to the downstream demands, provoking a complex management issue. On the other hand, the intense use of fertilizer in agriculture is leading to locally high groundwater nitrate concentrations. In this paper we analyze the potential impacts of climate and land use change in the system by using an integrated modeling framework that consists in sequentially coupling a watershed agriculturally based hydrological model (Soil and Water Assessment Tool, SWAT) with a groundwater flow model developed in MODFLOW, and with a nitrate mass-transport model in MT3DMS. SWAT model outputs (mainly groundwater recharge and pumping, considering new irrigation needs under changing evapotranspiration (ET) and precipitation) are used as MODFLOW inputs to simulate changes in groundwater flow and storage and impacts on stream

  8. Considerations of the Skilled Manpower Needs for Water Supply Systems.

    Science.gov (United States)

    Watters, Gregor

    1981-01-01

    General methods for determining skilled labor needs for water supply and wastewater treatment plant operation as applied in Turkey are outlined along with a model program for training personnel to meet these needs. (DC)

  9. IEA Response System for Oil Supply Emergencies (2012 update)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    Emergency response to oil supply disruptions has remained a core mission of the International Energy Agency since its founding in 1974. This information pamphlet explains the decisionmaking process leading to an IEA collective action, the measures available -- focusing on stockdraw -- and finally, the historical background of major oil supply disruptions and the IEA response to them. It also demonstrates the continuing need for emergency preparedness, including the growing importance of engaging key transition and emerging economies in dialogue about energy security.

  10. Future conditions for integration of the Baltic Electricity Supply System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The economies of Estonia, Latvia and Lithuania developed in close association with the north-west region of the former Soviet Union. This is especially true for energy supply systems and electricity generation and transmission; the Baltic States depend on Russia for much of their primary energy needs, and export power to Russia and Belarus. In restructuring their electricity industries, the Baltic States hope to establish closer relationships and trade with Western Europe. The initial focus has been on changes to the legislative framework, industry restructuring and the establishment of new regulatory institutions. Vertically integrated utilities are in the process of being broken up into a number of separate generation, transmission and distribution companies. This restructuring is a prelude to privatisation. The states aim to establish a common power market among themselves, and hope to integrate this market with neighbouring (Nordic and European) markets. Despite the target set by the Baltic authorities of a common market by 2001, there is little clarity, as yet, on the framework and guidelines for the structure and functioning of the market. This process is supported by other players in the region, and the EU has recently prioritised closer co-operation and harmonisation of power networks in the Baltic Sea region. The Swedish National Energy Administration has identified cooperation on energy and environmental issues in the Baltic Sea region as one of its priorities. Consequently, the Administration commissioned ECON to analyse the conditions for closer linkages between the Baltic and Nordic electricity systems. This report presents the findings of this analysis.

  11. Water supply and demand in an energy supply model

    Energy Technology Data Exchange (ETDEWEB)

    Abbey, D; Loose, V

    1980-12-01

    This report describes a tool for water and energy-related policy analysis, the development of a water supply and demand sector in a linear programming model of energy supply in the United States. The model allows adjustments in the input mix and plant siting in response to water scarcity. Thus, on the demand side energy conversion facilities can substitute more costly dry cooling systems for conventional evaporative systems. On the supply side groundwater and water purchased from irrigators are available as more costly alternatives to unappropriated surface water. Water supply data is developed for 30 regions in 10 Western states. Preliminary results for a 1990 energy demand scenario suggest that, at this level of spatial analysis, water availability plays a minor role in plant siting. Future policy applications of the modeling system are discussed including the evaluation of alternative patterns of synthetic fuels development.

  12. Master's Degree in Management Information Systems with a Supply Chain Management Focus

    Science.gov (United States)

    Ramaswamy, Kizhanatham V.; Boyd, Joseph L.; Desai, Mayur

    2007-01-01

    A graduate curriculum in Management Information Systems with a Supply Chain Management focus is presented. The motivation for this endeavor stems from the fact that the global scope of modern business organizations and the competitive environment in which they operate, requires an information system leveraged supply chain management system (SCM)…

  13. Master's Degree in Management Information Systems with a Supply Chain Management Focus

    Science.gov (United States)

    Ramaswamy, Kizhanatham V.; Boyd, Joseph L.; Desai, Mayur

    2007-01-01

    A graduate curriculum in Management Information Systems with a Supply Chain Management focus is presented. The motivation for this endeavor stems from the fact that the global scope of modern business organizations and the competitive environment in which they operate, requires an information system leveraged supply chain management system (SCM)…

  14. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs

    Energy Technology Data Exchange (ETDEWEB)

    David J. Muth, Jr.; Matthew H. Langholtz; Eric C. D. Tan; Jacob J. Jacobson; Amy Schwab; May M. Wu; Andrew Argo; Craig C. Brandt; Kara G. Cafferty; Yi-Wen Chiu; Abhijit Dutta; Laurence M. Eaton; Erin M. Searcy

    2014-08-01

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to

  15. Geochemical properties of groundwater used to geothermal cooling and heating system

    Science.gov (United States)

    Kim, Namju; Park, Youngyun; Lee, Jin-Yong

    2013-04-01

    Recently, geothermal cooling and heating system has been used in many countries to reduce emission of greenhouse gases such as water vapour and carbon dioxide (CO2). Especially, CO2 is emitted from combustion of fossil fuel used for cooling and heating of buildings. Therefore, many countries make an effort to reduce amount of CO2 emitted from use of fossil fuel. The geothermal cooling and heating system is good to reduce amount of CO2. Especially, open loop geothermal system shows good thermal efficiency. However, groundwater contaminations will be considered because groundwater is directly used in open loop geothermal system. This study was performed to examine chemical and isotope compositions of groundwater used in open loop geothermal system and to evaluate influence of the system on groundwater using hydrochemical modeling program (preequc). Water temperature of well used in the system (GH) and well around the system (GB) ranged from 8.4 to 17.0 ° and from 15.1 to 18.0 °, respectively. The water temperature in GH was lower than that in GB because of heating mode of the system. Also, EC in GH and GB showed significant difference. The variation trend of EC was different at each site where the system was installed. These results mean that main factors controlling EC in GH was not the system. Generally, EC of groundwater was influenced by water-rock interaction. However, DO and Eh hardly showed significant difference. The operation period of the system observed in this study was short than 5 years. Therefore, influence of the open loop geothermal system on groundwater did not shown significantly. However, while Fe2+ and Mn2+ were not observed in GB, these components were measured in GH. The concentrations of Fe2+ and Mn2+ in GH ranged from 0.02 to 0.14 mg/L and from 0.03 to 0.18 mg/L, respectively. These results mean that redox conditions of GH were changed by the system little by little. In this study, influence of the open loop geothermal system on groundwater

  16. Interests of long-term hydrogeological observatories for characterizing and modelling heterogeneous groundwater systems at multiple temporal and spatial scales: the example of Ploemeur, a crystalline rock aquifer (Brittany).

    Science.gov (United States)

    Bour, Olivier; Longuervergne, Laurent; Le Borgne, Tanguy; Lavenant, Nicolas; de Dreuzy, Jean-Raynald; Schuite, Jonathan; Labasque, Thierry; Aquilina, Luc; Davy, Philippe

    2017-04-01

    Characterizing groundwater flows and surface interactions in heterogeneous groundwater systems such as crystalline fractured rock is often extremely complex. In particular, hydraulic properties are highly variable while groundwater chemical properties may vary both in space and time, especially due to the impact of groundwater abstraction. Here, we show the interest of hydrological observatories and long-term monitoring for characterizing hydrological processes occurring in a crystalline rock aquifer. We present results from the site of Ploemeur (French Brittany) that belongs to the network of hydrogeological sites H+ and the research infrastructure OZCAR, and where interdisciplinary and integrated research at multiple temporal and spatial scales has been developed for almost twenty years. This outstandingly heterogeneous crystalline rock aquifer is also used for groundwater supply since 1991. In particular, we show how cross-borehole flowmeter tests, pumping tests and a frequency domain analysis of groundwater levels allow quantifying the hydraulic properties of the aquifer at different scales. In addition, groundwater temperature evolution was used as an excellent tracer for characterizing groundwater flow. At the site scale, measurements of ground surface deformation through long-base tiltmeters provide robust estimates of aquifer storage and allow identifying the active structures, including those acting during recharge process. Finally, a numerical model of the watershed scale that combines hydraulic data and groundwater ages confirms the geometry of this complex aquifer and the consistency of the different datasets. In parallel, this hydrological observatory is also used for developing hydrogeophysical methods and to characterize groundwater transport and biogeochemical reactivity in the sub-surface. The Ploemeur hydrogeological observatory is a good example of the interest of focusing research activities on a site during long-term as it provides a thorough

  17. Pathways of sulfate and hydrogen sulfide transformations in a BTEX- contaminated groundwater system

    DEFF Research Database (Denmark)

    Einsiedl, Florian; Anneser, B.; Griebler, C.

    2010-01-01

    of groundwater demands an improved understanding of the efficiency and limitations of microbially driven reactions on the degradation of pollutants in contaminated groundwater systems. In this context stable isotope approaches represent a powerful tool to evaluate and elucidate biogeochemical processes...... in complex environmental systems. As a result, compound specific stable isotope signatures in various sulfur species were determined in a tar-oil contaminated site and were linked to the microbial community distribution in the aquifer. The goal of the study was to reach an integrated understanding of sulfur...... cycling processes in contaminated aquifers relative to their importance for the biodegradation. The results show that sulfur cycling is an important process driving microbial degradation of contaminants in porous groundwater systems. For the anoxic plume core it appears that elemental sulfur is a key...

  18. Westinghouse Small Modular Reactor nuclear steam supply system design

    Energy Technology Data Exchange (ETDEWEB)

    Memmott, M. J.; Harkness, A. W.; Van Wyk, J. [Westinghouse Electric Company LLC, 600 Cranberry Woods Drive, Cranberry Twp. PA 16066 (United States)

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the first in a series of four papers which describe the design and functionality of the Westinghouse SMR. Also described in this series are the key drivers influencing the design of the Westinghouse SMR and the unique passive safety features of the Westinghouse SMR. Several critical motivators contributed to the development and integration of the Westinghouse SMR design. These design driving motivators dictated the final configuration of the Westinghouse SMR to varying degrees, depending on the specific features under consideration. These design drivers include safety, economics, AP1000{sup R} reactor expertise and experience, research and development requirements, functionality of systems and components, size of the systems and vessels, simplicity of design, and licensing requirements. The Westinghouse SMR NSSS consists of an integral reactor vessel within a compact containment vessel. The core is located in the bottom of the reactor vessel and is composed of 89 modified Westinghouse 17x17 Robust Fuel Assemblies (RFA). These modified fuel assemblies have an active core length of only 2.4 m (8 ft) long, and the entirety of the core is encompassed by a radial reflector. The Westinghouse SMR core operates on a 24 month fuel cycle. The reactor vessel is approximately 24.4 m (80 ft) long and 3.7 m (12 ft) in diameter in order to facilitate standard rail shipping to the site. The reactor vessel houses hot and cold leg channels to facilitate coolant flow, control rod drive mechanisms (CRDM), instrumentation and cabling, an intermediate flange to separate flow and instrumentation and facilitate simpler refueling, a pressurizer, a straight tube, recirculating steam

  19. A Novel Evaluation Indicator System and Evaluation Method for Supply Chain Performance of Food Production

    Directory of Open Access Journals (Sweden)

    Zhai Xiyao

    2015-02-01

    Full Text Available Supply chain performance evaluation is a research hotspot and lies in the core status in supply chain management. The study presents a new evaluation indicator system and evaluation algorithm for supply chain performance. First, the balanced score card is used to construct an evaluation indicator system for supply chain performance evaluation through analyzing the basic principle and connotation characteristics of supply chain management; Second analytic hierarchy process and fuzzy comprehensive evaluation algorithms are combined to satisfy the dynamic, subjective and transitional characteristics of evaluation indicators and improve evaluation accuracy. Thirdly the evaluation indicator system and evaluation algorithm are used in supply chain performance evaluation of fresh food products and the experimental results shows that the presented evaluation indicator system and evaluation algorithm has satisfied validity and feasibility.

  20. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  1. DC power supplies power management and surge protection for power electronic systems

    CERN Document Server

    Kularatna, Nihal

    2011-01-01

    Modern electronic systems, particularly portable consumer electronic systems and processor based systems, are power hungry, compact, and feature packed. This book presents the most essential summaries of the theory behind DC-DC converter topologies of both linear and switching types. The text discusses power supply characteristics and design specifications based on new developments in power management techniques and modern semiconductors entering into the portable electronics market. The author also addresses off-the-line power supplies, digital control of power supply, power supply protection

  2. Operating Rule Classification System of Water Supply Reservoir Based on Learning Classifier System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian-feng; WANG Xiao-lin; YIN Zheng-jie; LI Hui-qiang

    2008-01-01

    An operating rule classification system based on lesrning classifier system (LCS), which learns through credit assignment (bucket brigade algorithm, BBA) and rule discovery (genetic algorithm, GA), is established to extract water-supply reservoir operating rules. The proposed system acquires an online identification rate of 95% for training samples and an offline rate of 85% for testing samples in a case study. The performances of the rule classification system are discussed from the rationality of the obtained rules, the impact of training samples on rule extraction, and a comparison between the rule classification system and the artificial neural network (ANN). The results indicate that the LCS is feasible and effective for the system to obtain the reservoir supply operating rules.

  3. A Multi-Agent System Using JADE for Simulation of Supply Chains

    Institute of Scientific and Technical Information of China (English)

    AHN Hyungjun; PARK Sungjoo

    2004-01-01

    This paper proposes a prototype system for modeling and simulation of supply chains using a widely accepted agent platform Java agent development platform (JADE). A simple but practical coordination mechanism agent-based dynamic information network for supply chains (ADINS) is employed for the illustration of the suggested system and a simulation experiment is performed using a supply chain model of a Korean LCD manufacturing company. The result shows that the suggested mechanism is successful in reducing bullwhip effects and increasing service rates.

  4. A model for Ischia hydrothermal system: Evidences from the chemistry of thermal groundwaters

    Science.gov (United States)

    Di Napoli, R.; Aiuppa, A.; Bellomo, S.; Brusca, L.; D'Alessandro, W.; Candela, E. Gagliano; Longo, M.; Pecoraino, G.; Valenza, M.

    2009-10-01

    Ischia volcano, in Central Italy, has long been known for its copious surface hydrothermal manifestations, signs of a pervasive circulation of hot fluids in the subsurface. Because of the significant chemical heterogeneity of fumarolic gas discharges and hot spring discharges, evidences of a complex hydrothermal setting, a definite model of fluid circulation at depth is currently unavailable, in spite of the several previous efforts. Here, we report on the chemical and isotopic composition of 120 groundwater samples, collected during several sampling surveys from 2002 to 2007. The acquired data suggest that the composition of surface manifestations reflect contributions from meteoric water, sea water, and thermal fluids rising from two distinct hydrothermal reservoir, with equilibrium temperatures of respectively ~ 150 °C and ~ 270 °C, and depths of 150-300 m and > 300 m (but possibly > 1000 m). We also make use of an isotopic characterization of the dissolved gas phase in thermal waters to demonstrate that the Ischia hydrothermal system is currently supplied by a deep-rising gas component (DGC), characterized by CO 2 ~ 97.7 ± 1.2 vol.% (on a water-free basis), δ13C CO2 = - 3.51 ± 0.9‰, and helium isotopic ratio of about 3.5 Ra ( 3He/ 4He ratio normalized to the air ratio, Ra), likely magmatic in origin. An assessment of the thermal budget for Ischia hydrothermal system is also presented, in the attempt to derive a first estimate of the size and rate of degassing of the magmatic reservoir feeding the gas emissions. We calculate that a heat flow of about 153-222 MW presently drives hydrothermal circulation on the island, which we suggest is supplied in convective form (e.g., by the ascent of a high- T magmatic vapour phase) by complete degassing of 2.2-3.3 · 10 7 m 3 yr - 1 of trachytic magma (with ~ 2.1 wt.% dissolved H 2O content). If extrapolated to entire period of quiescence lasting since the Arso eruption in 1302 A.D., this volume corresponds to 1

  5. Control system of HLS transport line and Linac focusing power supplies

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The control system of transport line and Linac focusing power supplies of Hefei Light Source was built upon Experimental Physics and Industrial Control System. The hardware construction, software design and performance test of the control system are described.

  6. Fluoride, nitrate and water hardness in groundwater supplied to the rural communities of Ensenada County, Baja California, Mexico

    Science.gov (United States)

    Daesslé, L. W.; Ruiz-Montoya, L.; Tobschall, H. J.; Chandrajith, R.; Camacho-Ibar, V. F.; Mendoza-Espinosa, L. G.; Quintanilla-Montoya, A. L.; Lugo-Ibarra, K. C.

    2009-07-01

    The hydrogeochemistry of 26 wells belonging to ten different aquifers in the county of Ensenada, Baja California, is studied. These wells are all used to supply the rural communities in the region, which comprise ~37,000 inhabitants, excluding the city of Ensenada. High total dissolved solids (TDS) concentrations (maximum 7.35 g l-1) indicate that salt is a ubiquitous contaminant in the aquifers due to seawater intrusion. The aquifers that support extensive agriculture activities (Maneadero, San Quintín, San Simón and El Rosario) are characterized by higher N-NO3 concentrations (maximum 20 mg l-1) derived from fertilizers. Fluoride concentrations exceed the 1.5 mg l-1 Mexican official limit in only four wells. The enrichments of F- in the southern aquifers are thought to be associated to water-rock interactions controlled mainly by Na-Ca equilibrium reactions with fluorite, as suggested from high dissolved Na concentrations in these waters. In the northern aquifer of Maneadero, no enrichment of Na is found and a geothermal source for F- is likely. Water is hard to moderately hard, with Ca/Mg ratios >1. Although drinking water directly from the tap is not a common practice in these localities, most sources have concentrations of major ions and TDS that exceed the Mexican official limits.

  7. A DU bed system for storing and supplying hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Daeseo; Park, Jongchul; Ahn, Do-Hee; Chung, Hongsuk [KAERI, Daejeon (Korea, Republic of); Yun, Sei-Hun [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Depleted uranium (DU) has been extensively proposed for the storage, supply, and recovery of hydrogen isotopes. SDS is used for storing hydrogen isotopes as a metal hydride form. To control the SDS, it is necessary to monitor the tritium amount in a bed. In this study, a full-sized DU bed was designed and fabricated including cylindrical-type copper foam of nine layers to study the characteristics of hydriding/dehydriding and simulate the tritium amount in a bed. The integrity and leak inspection on the welding of a primary vessel was performed using a penetration test, helium leak test, and pressure test. Auto tuning on the cable heaters of two pairs in the DU bed was also be performed. In our next study, the hydriding/dehydriding on a DU bed will be performed. A simulation on the depleted uranium hydriding will be carried out. A DU bed was designed and fabricated including cylindrical-type copper foam of nine layers to study the characteristics of hydriding/dehydriding and simulate the tritium amount in a bed. Through a penetration test, it was confirmed that the welding of the primary vessel has a good integrity. It was confirmed that the two helium tubes is sound by inspecting a helium leak test on the welding of the primary vessel. It was also confirmed that the primary vessel has a good integrity by inspecting a helium leak and conducting a pressure test on it. Vacuuming of the DU bed system was carried out. Vacuuming of the in-bed calorimetric equipment was also carried out.

  8. System for selecting a postponement strategy portfolio for supply chains

    Directory of Open Access Journals (Sweden)

    Luiz Eduardo Simão

    2015-03-01

    Full Text Available The stagnation of the economy has increased competition and uncertainty in the industrial sector. Trends such as the increase in the proliferation of the variety of products and the requirement for customization of products has contributed to difficulties in forecasting demand, due to increased uncertainty of demand for final products. In this new competitive environment, it is no longer possible to use the traditional “one size fits all” supply chain process, with unique policies for all products because this practice can lead to significant profitability losses due to the increase in stock levels and lost sales. However, research on supply chains has given relatively little attention to the need to use different, segmented supply chain strategies as well as to develop and manage these multiple supply chains strategies simultaneously. Thus, this paper aims to present an approach for selecting a portfolio of postponement strategies based on segmentation of supply chain, based on analysis of the demand profile (volume-variety analysis and a tool to assist in the selection of postponement strategies driven by the customer-product sector and their respective propositions of value.

  9. Perishable Foodstuffs Within the System of Supply Logistics

    Directory of Open Access Journals (Sweden)

    Janez Požar

    2012-10-01

    Full Text Available Manufacturers and traders have always had to handle themanagement of supply chains. H01vever, this concept in itspresent meaning has only gained major importance in therecentyears. This is the result of linking supply chains with newtechnologies. The supply chain starts and ends with the endbuyer. The essence of supply elwin management is awarenessof the buyer's wishes and rapid delive1y of the required productsor se1vices. Supply chains play an exceptionally important roleroday. A common strategy for joint projects has ro be workedout wirh partners. In orderro achieve this, a lziglz degree of trustmust exist between them. Partners from various disciplines arenot competitors, but complement, and co-operate with eachother. In cold chains that ensure that perishable goods cover theproducer-consumer route in rlze shortest possible time, co-operationand trust are of key importance since only companies ableto provide the buyer with the right product at the right place andat the right price are successful in the market.

  10. Numerical simulation of a fine-grained denitrification layer for removing septic system nitrate from shallow groundwater

    Science.gov (United States)

    MacQuarrie, Kerry T. B.; Sudicky, Edward A.; Robertson, William D.

    2001-11-01

    One of the most common methods to dispose of domestic wastewater involves the release of septic effluent from drains located in the unsaturated zone. Nitrogen from such systems is currently of concern because of nitrate contamination of drinking water supplies and eutrophication of coastal waters. It has been proposed that adding labile carbon sources to septic distribution fields could enhance heterotrophic denitrification and thus reduce nitrate concentrations in shallow groundwater. In this study, a numerical model which solves for variably saturated flow and reactive transport of multiple species is employed to investigate the performance of a drain field design that incorporates a fine-grained denitrification layer. The hydrogeological scenario simulated is an unconfined sand aquifer. The model results suggest that the denitrification layer, supplemented with labile organic carbon, may be an effective means to eliminate nitrogen loading to shallow groundwater. It is also shown that in noncalcareous aquifers, the denitrification reaction may provide sufficient buffering capacity to maintain near neutral pH conditions beneath and down gradient of the drain field. Leaching of excess dissolved organic carbon (DOC) from the denitrification layer is problematic, and causes an anaerobic plume to develop in simulations where the water table is less than 5-6 m below ground surface; this anaerobic plume may lead to other down gradient changes in groundwater quality. A drain field and denitrification layer of smaller dimensions is shown to be just as effective for reducing nitrate, but has the benefit of reducing the excess DOC leached from the layer. This configuration will minimize the impact of wastewater disposal in areas where the water table is as shallow as 3.5 m.

  11. Modeling The Evolution Of A Regional Aquifer System With The California Central Valley Groundwater-Surface Water Simulation Model (C2VSIM)

    Science.gov (United States)

    Brush, C. F.; Dogrul, E. C.; Kadir, T. N.; Moncrief, M. R.; Shultz, S.; Tonkin, M.; Wendell, D.

    2006-12-01

    The finite element application IWFM has been used to develop an integrated groundwater-surface water model for California's Central Valley, an area of ~50,000 km2, to simulate the evolution of the groundwater flow system and historical groundwater-surface water interactions on a monthly time step from October 1921 to September 2003. The Central Valley's hydrologic system changed significantly during this period. Prior to 1920, most surface water flowed unimpeded from source areas in the mountains surrounding the Central Valley through the Sacramento-San Joaquin Delta to the Pacific Ocean, and groundwater largely flowed from recharge areas on the valley rim to discharge as evapotransipration in extensive marshes along the valley's axis. Rapid agricultural development led to increases in groundwater pumping from ~0.5 km3/yr in the early 1920's to 13-18 km3/yr in the 1940's to 1970's, resulting in strong vertical head gradients, significant head declines throughout the valley, and subsidence of >0.3 m over an area of 13,000 km2. Construction of numerous dams and development of an extensive surface water delivery network after 1950 altered the surface water flow regime and reduced groundwater pumping to the current ~10 km3/yr, increasing net recharge and leading to local head gradient reversals and water level recoveries. A model calibrated to the range of historical flow regimes in the Central Valley will provide robust estimations of stream-groundwater interactions for a range of projected future scenarios. C2VSIM uses the IWFM application to simulate a 3-D finite element groundwater flow process dynamically coupled with 1-D land surface, stream flow, lake and unsaturated zone processes. The groundwater flow system is represented with three layers each having 1393 elements. Land surface processes are simulated using 21 subregions corresponding to California DWR water-supply planning areas. The surface-water network is simulated using 431 stream nodes representing 72

  12. Effects of Local Nitrogen Supply on Water Uptake of Bean Plants in a Split Root System

    Institute of Scientific and Technical Information of China (English)

    Shiwei Guo; Qirong Shen; Holger Brueck

    2007-01-01

    To study the effects of local nitrogen supply on water and nutrient absorption, French bean (Phaseolus vulgaris L.)plants were grown in a split root system. Five treatments supplied with different nitrogen forms were compared:homogeneous nitrate (NN) and homogenous ammonium (AA) supply, spatially separated supply of nitrate and ammonium (NA), half of the root system supplied with N-free nutrient solution, the other half with either nitrate (NO) or ammonium (AO). The results showed that 10 d after onset of treatments, root dry matter (DM) in the nitratesupplied vessels treated with NA was more than two times higher than that in the ammonium-supplied vessels.Water uptake from the nitrate-supplied vessels treated with NA was 281% higher than under ammonium supply. In treatments NO and AO, the local supply of N resulted in clearly higher root DM, and water uptake from the nitratesupplied vessels was 82% higher than in the -N vessels. However, in AO plants, water uptake from the -N nutrient solution was 129% higher than from the ammonium-supplied vessels. This indicates a compensatory effect, which resulted in almost identical rates of total water uptake of treatments AA and AO, which had comparable shoot DM and leaf area. Ammonium supply reduced potassium and magnesium absorption. Water uptake was positively correlated with N, Mg and K uptake.

  13. Geochemical Characterization of Groundwater in a Volcanic System

    Directory of Open Access Journals (Sweden)

    Carmelo Bellia

    2015-06-01

    Full Text Available A geochemical investigation was undertaken at Mt. Etna Volcano to better define groundwater characteristics of its aquifers. Results indicate that the Na–Mg ± Ca–HCO3− ± (SO42− or Cl− type accounts for more than 80% of the groundwater composition in the volcano. The remaining 20% is characterized by elevated Ca2+. Waters along coastal areas are enriched in SO42− or Cl−, mainly due to mixing with seawater and anthropogenic effects. The majority of the samples showed values between −4‰ to −9‰ for δ18O and −19‰ to −53‰ for δ2H, suggesting that precipitation is the predominant source of recharge to the aquifers, especially in the west of the study area. The analysis of δ13C and pCO2 shows values 1 to 3 times higher than those expected for waters in equilibrium with the atmosphere, suggesting a partial gas contribution from deep sources. The diffusion of gasses is likely to be controlled by tectonic structures in the volcano. The ascent of deep brines is also reflected in the CO2 enrichment (up to 2.2 bars and enriched δ2H/δ18O compositions observed in the salt mounts of Paternò.

  14. Simulation of a Complex Groundwater System and an Application

    Science.gov (United States)

    Premchitt, Jerasak; Das Gupta, Ashim

    1981-06-01

    A hydrologic model of an extensive groundwater basin was developed for the study of land subsidence due to deep well pumping in Bangkok, Thailand. It is a quasi-three-dimensional flow model with relevant modifications to suit the hydrogeologic situations in the problem area. The troublesome effect of yield from aquitard is discarded, while the field information on subsurface strata is fully utilized to establish a realistic model. The subsurface is considered to be a single hydraulically connected body stratified into model layers for convenience in the simulation. Pumping can be imposed at any depth, and discharge rates can be arbitrary. Any number of model layers can be incorporated, with coupling being provided through the leakage flux. The power and flexibility of the model is demonstrated in the simulation of groundwater flow regime in the Lower Central Plain of Thailand for a time period of 45 years. At first the model is calibrated with available field measurements in the past, and it is then extended for the prediction of future situations. The model represents the actual field situation. The mathematical process is simple, and it would require less computing effort than the equivalent full three-dimensional model or the quasi-three-dimensional model with one-dimensional elements to represent aquitards.

  15. Quantifying changes in water use and groundwater availability in a megacity using novel integrated systems modeling

    Science.gov (United States)

    Hyndman, D. W.; Xu, T.; Deines, J. M.; Cao, G.; Nagelkirk, R.; Viña, A.; McConnell, W.; Basso, B.; Kendall, A. D.; Li, S.; Luo, L.; Lupi, F.; Ma, D.; Winkler, J. A.; Yang, W.; Zheng, C.; Liu, J.

    2017-08-01

    Water sustainability in megacities is a growing challenge with far-reaching effects. Addressing sustainability requires an integrated, multidisciplinary approach able to capture interactions among hydrology, population growth, and socioeconomic factors and to reflect changes due to climate variability and land use. We developed a new systems modeling framework to quantify the influence of changes in land use, crop growth, and urbanization on groundwater storage for Beijing, China. This framework was then used to understand and quantify causes of observed decreases in groundwater storage from 1993 to 2006, revealing that the expansion of Beijing's urban areas at the expense of croplands has enhanced recharge while reducing water lost to evapotranspiration, partially ameliorating groundwater declines. The results demonstrate the efficacy of such a systems approach to quantify the impacts of changes in climate and land use on water sustainability for megacities, while providing a quantitative framework to improve mitigation and adaptation strategies that can help address future water challenges.

  16. Steady-state numerical groundwater flow model of the Great Basin carbonate and alluvial aquifer system

    Science.gov (United States)

    Brooks, Lynette E.; Masbruch, Melissa D.; Sweetkind, Donald S.; Buto, Susan G.

    2014-01-01

    This report describes the construction, calibration, evaluation, and results of a steady-state numerical groundwater flow model of the Great Basin carbonate and alluvial aquifer system that was developed as part of the U.S. Geological Survey National Water Census Initiative to evaluate the nation’s groundwater availability. The study area spans 110,000 square miles across five states. The numerical model uses MODFLOW-2005, and incorporates and tests complex hydrogeologic and hydrologic elements of a conceptual understanding of an interconnected groundwater system throughout the region, including mountains, basins, consolidated rocks, and basin fill. The level of discretization in this model has not been previously available throughout the study area.

  17. Preparation of drinking water used in water supply systems of the towns Zrenjanin and Temerin by electrochemical methods.

    Science.gov (United States)

    Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Mikulic, Nenad

    2013-01-01

    The aim of this work was the development and application of the pilot plant with the capacity of 1000 L/day for the purification of groundwater used for human consumption characterized with high concentration of arsenic and increased values of organic pollutants, ammonia, nitrites, color and turbidity. For that purpose, groundwater from the production wells supplying the towns Zrenjanin and Temerin (Vojvodina, Serbia) was used. Due to its complex composition, the purification system required the combination of the electroreduction/electrocoagulation, using iron and aluminum electrode plates with/without ozonation, followed by the electromagnetic treatment and the finally by the simultaneous ozonation/UV treatment. The electroreduction was used for the removal of nitrates, nitrites, and Cr(VI), while the removal of arsenic, heavy metals, suspended solids, color and turbidity required the application of the electrocoagulation with simultaneous ozonation. Organic contaminants and ammonia were removed completely in the last treatment step by applying the simultaneous ozonation/UV treatment. All measured parameters in the purified water were significantly lower compared to the regulated values. Under the optimum treatment conditions, the removal efficiencies for color, turbidity, suspended solids, total arsenic, total chromium, Ni(II), total copper, sulfates, fluorides, chemical oxygen demand, ammonia, nitrates, and nitrites were 100%. The removal efficiencies of the total manganese and iron were 85.19% and 97.44%, respectively, whilst the final concentrations were 4 and 7 μg/L, respectively.

  18. Supply Chain Collaboration Roles of Interorganizational Systems, Trust, and Collaborative Culture

    CERN Document Server

    Cao, Mei

    2013-01-01

    To survive and thrive in the competition, firms have strived to achieve greater supply chain collaboration to leverage the resources and knowledge of suppliers and customers.  Internet based technologies, particularly interorganizational systems, further extend the firms’ opportunities to strengthen their supply chain partnerships and share real-time information to optimize their operations.  Supply Chain Collaboration: Roles of Interorganizational Systems, Trust, and Collaborative Culture explores the nature and characteristics, antecedents, and consequences of supply chain collaboration from multiple theoretical perspectives.  Supply Chain Collaboration: Roles of Interorganizational Systems, Trust, and Collaborative Culture conceptualizes supply chain collaboration as seven interconnecting elements including information sharing, incentive alignment, goal congruence, decision synchronization, resource sharing, as well as communication and joint knowledge creation. These seven components define the occur...

  19. Enhancing the design and management of a local organic food supply chain with Soft Systems Methodology

    DEFF Research Database (Denmark)

    Tavella, Elena; Hjortsø, Carsten Nico Portefée

    2012-01-01

    Supply chain partners for local organic food face uncertainties such as poor collaboration and communication that cannot be reduced through the application of traditional supply chain design and management techniques. Such techniques are known to improve supply chain coordination, but they do...... not adequately consider major aspects of local organic food supply chains such as ethics, sustainability and human values. Supply chain design and management approaches suita-ble to small-scale, local organic food enterprises are lacking and need to be developed. The aim of this paper is to suggest Soft Systems...... Methodology (SSM) as a new and suitable ap-proach to design and manage local organic food supply chains. We illustrate how SSM can be used to reduce uncertainties within local organic food supply chains based on a German case. This illustration serves to identify the benefits of using SSM, compared with ad...

  20. A Review of Supply Chain Management using Multi-Agent System

    Directory of Open Access Journals (Sweden)

    Vivek Kumar

    2010-09-01

    Full Text Available Supply chain consist of various components/ identities like supplier, manufacturer, factories, warehouses, distributions agents etc. These identities are involved for supplying raw materials, components which reassembles in factory to produce a finished product. With the increasing importance of computerbased communication technologies, communication networks are becoming crucial in supply chain management. Given the objectives of the supply chain: to have the right products in the right quantities, at the right place, at the right moment and at minimal cost, supply chain management is situated at the intersection of different professional sectors. This is particularly the case in construction, since building needs for its fabrication the incorporation of a number of industrial products. This paper focuses on an ongoing development and research activities of MAS (Multi Agent System for supply chain management and provides a review of the main approaches to supply chain communications as used mainly in manufacturing industries.

  1. Enhancing the design and management of a local organic food supply chain with Soft Systems Methodology

    DEFF Research Database (Denmark)

    Tavella, Elena; Hjortsø, Carsten Nico Portefée

    2012-01-01

    Supply chain partners for local organic food face uncertainties such as poor collaboration and communication that cannot be reduced through the application of traditional supply chain design and management techniques. Such techniques are known to improve supply chain coordination, but they do...... not adequately consider major aspects of local organic food supply chains such as ethics, sustainability and human values. Supply chain design and management approaches suita-ble to small-scale, local organic food enterprises are lacking and need to be developed. The aim of this paper is to suggest Soft Systems...... Methodology (SSM) as a new and suitable ap-proach to design and manage local organic food supply chains. We illustrate how SSM can be used to reduce uncertainties within local organic food supply chains based on a German case. This illustration serves to identify the benefits of using SSM, compared with ad...

  2. Budgets and chemical characterization of groundwater for the Diamond Valley flow system, central Nevada, 2011–12

    Science.gov (United States)

    Berger, David L.; Mayers, C. Justin; Garcia, C. Amanda; Buto, Susan G.; Huntington, Jena M.

    2016-07-29

    The Diamond Valley flow system consists of six hydraulically connected hydrographic areas in central Nevada. The general down-gradient order of the areas are southern and northern Monitor Valleys, Antelope Valley, Kobeh Valley, Stevens Basin, and Diamond Valley. Groundwater flow in the Diamond Valley flow system terminates at a large playa in the northern part of Diamond Valley. Concerns relating to continued water-resources development of the flow system resulted in a phased hydrologic investigation that began in 2005 by the U.S. Geological Survey in cooperation with Eureka County. This report presents the culmination of the phased investigation to increase understanding of the groundwater resources of the basin-fill aquifers in the Diamond Valley flow system through evaluations of groundwater chemistry and budgets. Groundwater chemistry was characterized using major ions and stable isotopes from groundwater and precipitation samples. Groundwater budgets accounted for all inflows, outflows, and changes in storage, and were developed for pre-development (pre-1950) and recent (average annual 2011–12) conditions. Major budget components include groundwater discharge by evapotranspiration and groundwater withdrawals; groundwater recharge by precipitation, and interbasin flow; and storage change.

  3. Supply Chain Quality Management in Agribusiness: An Approach of Quality Management Systems in Food Supply Chains

    OpenAIRE

    Mendes dos Reis, João,; Machado, Sivanilza,; Costa Neto, Pedro,; Monteiro, Rogério; Sacomano, José,

    2014-01-01

    Part 2: Case Studies; International audience; It is widely accepted that Quality Management Systems approach is indicated to ensure quality of products and services. Furthermore, Total Quality Management, Six Sigma, ISO Standards and Hoshin Kanri have established as important management systems for quality guarantee in many production processes. Unfortunately, these systems are not familiar to agribusiness companies. The aim of this study is to analyze the benefits of application of tradition...

  4. Agricultural Supply Chain Traceability System Based on Multi-Agent System

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In order to overcome defects in existing ASCTS(Agricultural Supply Chain Traceability System,a new traceability system based on Multi-Agent System(MAS) is put forward.By qualitative method,I analyze problems of application of Agent technology in tracing quality of agricultural products.Physical model is built for this system and structure of traceability system is determined.Finally,algorithm is presented for major entities.From analysis of algorithm,it is proved that this system has some reference value in improving breadth and depth of product traceability.

  5. Hybrid energy system evaluation in water supply system energy production: neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Fabio V.; Ramos, Helena M. [Civil Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal); Reis, Luisa Fernanda R. [Universidade de Sao Paulo, EESC/USP, Departamento de Hidraulica e Saneamento., Avenida do Trabalhador Saocarlense, 400, Sao Carlos-SP (Brazil)

    2010-07-01

    Water supply systems are large consumers of energy and the use of hybrid systems for green energy production is this new proposal. This work presents a computational model based on neural networks to determine the best configuration of a hybrid system to generate energy in water supply systems. In this study the energy sources to make this hybrid system can be the national power grid, micro-hydro and wind turbines. The artificial neural network is composed of six layers, trained to use data generated by a model of hybrid configuration and an economic simulator - CES. The reason for the development of an advanced model of forecasting based on neural networks is to allow rapid simulation and proper interaction with hydraulic and power model simulator - HPS. The results show that this computational model is useful as advanced decision support system in the design of configurations of hybrid power systems applied to water supply systems, improving the solutions in the development of its global energy efficiency.

  6. Hybrid energy system evaluation in water supply system energy production: neural network approach

    Directory of Open Access Journals (Sweden)

    Fabio V. Goncalves, Helena M. Ramos, Luisa Fernanda R. Reis

    2010-01-01

    Full Text Available Water supply systems are large consumers of energy and the use of hybrid systems for green energy production is this new proposal. This work presents a computational model based on neural networks to determine the best configuration of a hybrid system to generate energy in water supply systems. In this study the energy sources to make this hybrid system can be the national power grid, micro-hydro and wind turbines. The artificial neural network is composed of six layers, trained to use data generated by a model of hybrid configuration and an economic simulator – CES. The reason for the development of an advanced model of forecasting based on neural networks is to allow rapid simulation and proper interaction with hydraulic and power model simulator – HPS. The results show that this computational model is useful as advanced decision support system in the design of configurations of hybrid power systems applied to water supply systems, improving the solutions in the development of its global energy efficiency.

  7. [Use od ozone for disinfection of ships' system of water supply contaminated by Pseudomonas aeruginosa].

    Science.gov (United States)

    Rakhmanin, Iu A; Strikalenko, T V; Mokienko, A V; Stoianova, N V; Gutsel', Iu I

    1990-11-01

    Experimental substantiation is given of the use of ozone in doses, recommended for disinfection of water and ship water supply systems infected by Pseudomonas aeruginosa. The positive effect of ozonation of water supply systems infected by Pseudomonas aeruginosa was confirmed by results of field testing on ships of the Black sea marine steam-navigation.

  8. Strontium isotope geochemistry of groundwater affected by human activities in Nandong underground river system, China

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Yongjun, E-mail: jiangjyj@swu.edu.cn [School of Geographical Sciences, Southwest University, Chongqing 400715 (China)] [Institute of Karst Environment and Rock Desertification Rehabilitation, Chongqing 400715 (China)

    2011-03-15

    Research highlights: {yields} Spatio-temporal variations of Sr concentrations and Sr isotopic composition of groundwater were investigated in a karst underground river system. {yields} Agricultural fertilizers and sewage effluents significantly modified the natural Sr isotopic signature of karst groundwater. {yields} Sr in the carbonate aquifers was relatively non-radiogenic, with low Sr concentrations, while anthropogenic Sr correlated with agricultural fertilizers and sewage effluents was relatively radiogenic, with higher Sr concentrations. {yields} {sup 87}Sr/{sup 86}Sr ratios can provide key information for natural and anthropogenic sources in karst groundwater. - Abstract: The Nandong Underground River System (NURS) is located in a typical karst area dominated by agriculture in SE Yunnan Province, China. Groundwater plays an important role in the social and economical development in the area. The effects of human activities (agriculture and sewage effluents) on the Sr isotope geochemistry were investigated in the NURS. Seventy-two representative groundwater samples, which were collected from different aquifers (calcite and dolomite), under varying land-use types, both in summer and winter, showed significant spatial differences and slight seasonal variations in Sr concentrations and {sup 87}Sr/{sup 86}Sr ratios. Agricultural fertilizers and sewage effluents significantly modified the natural {sup 87}Sr/{sup 86}Sr ratios signature of groundwater that was otherwise dominated by water-rock interaction. Three major sources of Sr could be distinguished by {sup 87}Sr/{sup 86}Sr ratios and Sr concentrations in karst groundwater. Two sources of Sr are the Triassic calcite and dolomite aquifers, where waters have low Sr concentrations (0.1-0.2 mg/L) and low {sup 87}Sr/{sup 86}Sr ratios (0.7075-0.7080 and 0.7080-0.7100, respectively); the third source is anthropogenic Sr from agricultural fertilizers and sewage effluents with waters affected having radiogenic {sup 87

  9. Assessing the vulnerability of public-supply wells to contamination: Rio Grande aquifer system in Albuquerque, New Mexico

    Science.gov (United States)

    Jagucki, Martha L.; Bexfield, Laura M.; Heywood, Charles E.; Eberts, Sandra M.

    2012-01-01

    This fact sheet highlights findings from the vulnerability study of a public-supply well in Albuquerque, New Mexico (hereafter referred to as “the study well”). The study well produces about 3,000 gallons of water per minute from the Rio Grande aquifer system. Water samples were collected at the study well, at two other nearby public-supply wells, and at monitoring wells installed in or near the simulated zone of contribution to the study well. Untreated water samples from the study well contained arsenic at concentrations exceeding the Maximum Contaminant Level (MCL) of 10 micrograms per liter (µg/L) established by the U.S. Environmental Protection Agency for drinking water. Volatile organic compounds (VOCs) and nitrate also were detected, although at concentrations at least an order of magnitude less than established drinking-water standards, where such standards exist. Overall, study findings point to four primary influences on the movement and (or) fate of contaminants and the vulnerability of the public-supply well in Albuquerque: (1) groundwater age (how long ago water entered, or recharged, the aquifer), (2) groundwater development (introduction of manmade recharge and discharge sources), (3) natural geochemical conditions of the aquifer, and (4) seasonal pumping stresses. Concentrations of the isotope carbon-14 indicate that groundwater from most sampled wells in the local study area is predominantly water that entered, or recharged, the aquifer more than 6,000 years ago. However, the additional presence of the age tracer tritium in several groundwater samples at concentrations above 0.3 tritium units indicates that young (post-1950) recharge is reaching the aquifer across broad areas beneath Albuquerque. This young recharge is mixing with the thousands-of-years-old water, is migrating to depths as great as 245 feet below the water table, and is traveling to some (but not all) of the public-supply wells sampled. Most groundwater samples containing a

  10. Feedback control of water supply in an NFT growing system

    NARCIS (Netherlands)

    Gieling, Th.H.; Janssen, H.J.J.; Vries, de H.C.; Loef, P.

    2001-01-01

    The paper explores a concept of irrigation control, where the supply of nutrient solution is controlled without the use of predictive uptake models but rather by the use of a direct feedback of a drain flow measurement. This concept proves to be a viable approach. Results are presented, showing the

  11. 24 CFR 3285.605 - Fuel supply system.

    Science.gov (United States)

    2010-04-01

    ... installed if required by the LAHJ. (b) Crossovers. (1) Multi-section homes with fuel supply piping in both sections require crossover connections to join all sections of the home. The crossover design requirements... designed for a pressure that is at least 7 inches of water column and not more than 14 inches of...

  12. Lignocellulosic feedstock supply systems with intermodal and overseas transportation

    NARCIS (Netherlands)

    Hoefnagels, Ric; Searcy, E.; Kafferty, K.; Cornelissen, T.; Junginger, Martin; Jacobson, J.; Faaij, André

    2014-01-01

    With growing demand for internationally traded biomass, the logistic operations required to economically move biomass from the field or forest to end- users have become increasingly complex. To design cost effective and sustainable feedstock supply chains, it is important to understand the economics

  13. Structures and Opportunities to Supply the Telecommunication Systems in Underground Mines

    Science.gov (United States)

    Wojaczek, Antoni

    2016-06-01

    Telecommunication systems in underground mines require reliable power supply both of stationary and underground devices. Special problems connected with power supply occur in a case when subscriber devices are located in explosion hazard areas. The paper presents the basic problems connected with power supply of stationary elements of safety systems as well as subscriber devices located in explosion hazard areas that are significantly distant from stationary elements. Acceptable methods of supplying the subscribers devices under technical environment conditions of mine undergrounds have been determined.

  14. Applying a System Dynamics Approach for Modeling Groundwater Dynamics to Depletion under Different Economical and Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Hamid Balali

    2015-09-01

    Full Text Available In the recent decades, due to many different factors, including climate change effects towards be warming and lower precipitation, as well as some structural policies such as more intensive harvesting of groundwater and low price of irrigation water, the level of groundwater has decreased in most plains of Iran. The objective of this study is to model groundwater dynamics to depletion under different economic policies and climate change by using a system dynamics approach. For this purpose a dynamic hydro-economic model which simultaneously simulates the farmer’s economic behavior, groundwater aquifer dynamics, studied area climatology factors and government economical policies related to groundwater, is developed using STELLA 10.0.6. The vulnerability of groundwater balance is forecasted under three scenarios of climate including the Dry, Nor and Wet and also, different scenarios of irrigation water and energy pricing policies. Results show that implementation of some economic policies on irrigation water and energy pricing can significantly affect on groundwater exploitation and its volume balance. By increasing of irrigation water price along with energy price, exploitation of groundwater will improve, in so far as in scenarios S15 and S16, studied area’s aquifer groundwater balance is positive at the end of planning horizon, even in Dry condition of precipitation. Also, results indicate that climate change can affect groundwater recharge. It can generally be expected that increases in precipitation would produce greater aquifer recharge rates.

  15. Groundwater development effects on different scale hydrogeological systems using head, hydrochemical and isotopic data and implications for water resources management: The Selva basin (NE Spain)

    Science.gov (United States)

    Folch, A.; Menció, A.; Puig, R.; Soler, A.; Mas-Pla, J.

    2011-06-01

    SummaryHydrogeological resources in regional, large-scale groundwater systems are conditioned by their specific geological setting, which defines their capacity to supply human demand and their potential to recover from human-induced stress factors such as water withdrawal. In this paper, the hydrogeology of a range-and-basin hydrogeological system is described, based on potentiometric, hydrochemical and isotopic data, in order to fulfill a twofold objective: to characterize the alteration brought about in the hydrogeological system by intensive groundwater withdrawal, where tectonic elements such as fault zones play a significant role in the flow behaviour, and to define groundwater hydrodynamics under current human pressures as a necessary step to achieve appropriate groundwater management. Hydraulic head data indicate the relationships between geological formations in the range areas and the sedimentary infill of the basin. In this set-up, fault zones and a fracture network have a direct effect on the recharge, and allow upward vertical flow from the basement to the sedimentary aquifers. Hydrochemical and isotopic data support this observation. The use of fluoride and nitrate as tracers for the contribution of deep and shallow flow systems provides a detailed portrait of the effects of pumping on the flow path distribution. Isotopic data depict seasonal trends in the water captured by wells. In this connection, we can differentiate between two distinct flow systems: a regional, large-scale, longer residence time system, originating in the surrounding ranges, and a local flow system constituted by infiltration in the lower areas of the basin. The two systems, with specific water qualities, contribute differently to the resources that are withdrawn, and their specific contributions, in the frame of the basin water budget, determine the potential for present sustainable water exploitation.

  16. Functions of Supply and Marketing Cooperatives in Improving Rural Modern Circulation System

    Institute of Scientific and Technical Information of China (English)

    Conghui DU; Yongwei CUI

    2016-01-01

    This paper firstly described current development situation of China’s rural circulation system. In the process of accelerating modernization,the supply and marketing cooperative is always an essential force,but the gap between urban and rural circulation system is still expanding. On the basis of current development situation,it analyzed functions of supply and marketing cooperatives in rural logistics system. Finally,it came up with recommendations for improving China’s rural circulation system. In the new period,it is recommended to bring into play advantages of supply and marketing cooperatives,expand the coverage,gradually promote industry upgrade of renewable resource recycling,and constantly strengthen functions of supply and marketing cooperatives in building the rural modern circulation system,to build supply and marketing cooperatives into new forces and comprehensive platform for farmers’ production and living services.

  17. Design and Analysis of the Poloidal Field Grid Power Supply System for the HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper reports a new project - the poloidal field (PF) grid power supply system to replace the ac flywheel generator power supply system on the basis of the present running parameters of the HT-7 poloidal field and the short-circuit capacity of our transformer substation.The designed parameters of the PF grid power supply system have been verified to meet the requirements of the heating field (HF) and the vertical field (VF). In the meantime, in order to reduce the disturbance to the local power grid, the device of reactive power and harmonic current compensation has been added. Experimental results have confirmed the feasibility of the PF grid power supply system. Compared with the ac flywheel generator, the PF grid power supply system has the advantages of lower noise, precise control, convenient maintenance, simple operation and cost savings.

  18. Quantitative assessment of resilience of a water supply system under rainfall reduction due to climate change

    Science.gov (United States)

    Amarasinghe, Pradeep; Liu, An; Egodawatta, Prasanna; Barnes, Paul; McGree, James; Goonetilleke, Ashantha

    2016-09-01

    A water supply system can be impacted by rainfall reduction due to climate change, thereby reducing its supply potential. This highlights the need to understand the system resilience, which refers to the ability to maintain service under various pressures (or disruptions). Currently, the concept of resilience has not yet been widely applied in managing water supply systems. This paper proposed three technical resilience indictors to assess the resilience of a water supply system. A case study analysis was undertaken of the Water Grid system of Queensland State, Australia, to showcase how the proposed indicators can be applied to assess resilience. The research outcomes confirmed that the use of resilience indicators is capable of identifying critical conditions in relation to the water supply system operation, such as the maximum allowable rainfall reduction for the system to maintain its operation without failure. Additionally, resilience indicators also provided useful insight regarding the sensitivity of the water supply system to a changing rainfall pattern in the context of climate change, which represents the system's stability when experiencing pressure. The study outcomes will help in the quantitative assessment of resilience and provide improved guidance to system operators to enhance the efficiency and reliability of a water supply system.

  19. The Resilience of Groundwater Remediation System in Response to Changing Conditions

    Science.gov (United States)

    Hou, D.

    2016-12-01

    Anthropogenic activities have caused the contamination of groundwater resources at many locations. In an effort to protect human health and prevent further spreading of groundwater contamination, remediation systems have been or will be built at hundreds of thousands of sites. While the short term effectiveness has been the focus of past research and practice, the long-term effectiveness is increasingly scrutinized. When assessing the long-term effectiveness of groundwater remediation systems, it is important to examine how existing remediation systems respond to changing geophysical (e.g. climate change) and social (e.g. improved living standard and changing development needs) conditions. The resilience of remediation strategies, or their potential to adapt to future changes, is a critical sustainability consideration. We intend to examine the resilience of groundwater remediation systems in response to changing conditions. Among others, we explore the effects of sea level rise and changing hydroclimatic conditions on the life cycle impact of phytoremediation and bioremediation systems. The study was conducted in the San Francisco Bay area, where thousands of contaminated sites are located in an area that may be affected by sea level rise and changing hydroclimatic conditions.

  20. Groundwater Parameters and Flow Systems Near Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Moore, G.K.

    1989-01-01

    Precipitation near Oak Ridge National Laboratory (ORNL) averages 132 cm/yr. About 76 cm/yr of water is consumed by evapotranspiration. The natural streamflow, which averages 56 cm/yr of water, consists of overland flow (about 21 cm/yr) from water bodies, wetlands, and impervious areas of groundwater discharge (about 35 cm/yr of water). Groundwater occurs in a stormflow zone that extends from the land surface to a depth of 0.3-2 m and in shallow and deeper aquifers that extend from the water table to the base of fresh water. in the stormflow zone, most water flows through macropores and mesopores, which have a volumetric porosity of about 0.002. In the vadose zone and below the water table, water flows through fractures that have a volumetric porosity in the range 1 x 10{sup -5} to 0.02. Water inflow occurs by precipitation and infiltration. infiltration that exceeds the soil water deficit forms a perched water table in the stormflow zone at the level where infiltration rate exceeds vertical hydraulic conductivity. Some water percolates down to the water table but the majority flows downslope to the streams. Recharge of the shallow aquifer is only about 3.2 cm/yr of water or 5.7% of streamflow. Most of the water that recharges the shallow aquifer is discharged by evapotranspiration above the water table. The remainder is discharged at springs and streams where the water table is within the stormflow zone. Digital models that permit unsaturated conditions and transient flows may be more appropriate than steady-state models of saturated flow for the ORNL area.

  1. GROUNDWATER HYDROCHEMISTRY EVALUATION IN RURAL ...

    African Journals Online (AJOL)

    Osondu

    2012-10-09

    Oct 9, 2012 ... the quality of groundwater from domestic water supply boreholes across rural Botswana. Ionic ... quality limits the supply of potable fresh water. To utilize and protect valuable water ..... prescribed specification of World Health.

  2. Hydrochemical characterization and pollution sources identification of groundwater in Salawusu aquifer system of Ordos Basin, China.

    Science.gov (United States)

    Yang, Qingchun; Wang, Luchen; Ma, Hongyun; Yu, Kun; Martín, Jordi Delgado

    2016-09-01

    Ordos Basin is located in an arid and semi-arid region of northwestern China, which is the most important energy source bases in China. Salawusu Formation (Q3 s) is one of the most important aquifer systems of Ordos Basin, which is adjacent to Jurassic coalfield areas. A large-scale exploitation of Jurassic coal resources over ten years results in series of influences to the coal minerals, such as exposed to the oxidation process and dissolution into the groundwater due to the precipitation infiltration. Therefore, how these processes impact groundwater quality is of great concerns. In this paper, the descriptive statistical method, Piper trilinear diagram, ratios of major ions and canonical correspondence analysis are employed to investigate the hydrochemical evolution, determine the possible sources of pollution processes, and assess the controls on groundwater compositions using the monitored data in 2004 and 2014 (before and after large-scale coal mining). Results showed that long-term exploration of coal resources do not result in serious groundwater pollution. The hydrochemical types changed from HCO3(-)-CO3(2-) facies to SO4(2-)-Cl facies during 10 years. Groundwater hardness, nitrate and sulfate pollution were identified in 2014, which was most likely caused by agricultural activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Global Climate Responses to Anthropogenic Groundwater Exploitation

    Science.gov (United States)

    Zeng, Y.; Xie, Z.

    2015-12-01

    In this study, a groundwater exploitation scheme is incorporated into the earth system model, Community Earth System Model 1.2.0 (CESM1.2.0), which is called CESM1.2_GW, and the climatic responses to anthropogenic groundwater withdrawal are then investigated on global scale. The scheme models anthropogenic groundwater exploitation and consumption, which are then divided into agricultural irrigation, industrial use and domestic use. A group of 41-year ensemble groundwater exploitation simulations with six different initial conditions, and a group of ensemble control simulations without exploitation are conducted using the developed model CESM1.2_GW with water supplies and demands estimated. The results reveal that the groundwater exploitation and water consumption cause drying effects on soil moisture in deep layers and wetting effects in upper layers, along with a rapidly declining groundwater table in Central US, Haihe River Basin in China and Northern India and Pakistan where groundwater extraction are most severe in the world. The atmosphere also responds to anthropogenic groundwater exploitation. Cooling effects on lower troposphere appear in large areas of North China Plain and of Northern India and Pakistan. Increased precipitation occurs in Haihe River Basin due to increased evapotranspiration from irrigation. Decreased precipitation occurs in Northern India because water vapor here is taken away by monsoon anomalies induced by anthropogenic alteration of groundwater. The local reducing effects of anthropogenic groundwater exploitation on total terrestrial water storage evinces that water resource is unsustainable with the current high exploitation rate. Therefore, a balance between slow groundwater withdrawal and rapid human economic development must be achieved to maintain a sustainable water resource, especially in over-exploitation regions such as Central US, Northern China, India and Pakistan.

  4. Recent trends in groundwater levels in a highly seasonal hydrological system: the Ganges-Brahmaputra-Meghna Delta

    Directory of Open Access Journals (Sweden)

    M. Shamsudduha

    2009-12-01

    Full Text Available Groundwater levels in shallow aquifers underlying Asian mega-deltas are characterized by strong seasonal variations associated with monsoon rainfall. To resolve trend and seasonal components in weekly groundwater levels in the Ganges-Brahmaputra-Meghna (GBM Delta, we apply a nonparametric seasonal-trend decomposition procedure (STL to observations compiled from 1985–2005 in Bangladesh. Seasonality dominates observed variance in groundwater levels but declining groundwater levels (>1 m/yr are detected in urban and peri-urban areas around Dhaka as well as in north-central, north