WorldWideScience

Sample records for groundwater quality parameters

  1. CORRELATION STUDY AMONG WATER QUALITY PARAMETERS OF GROUNDWATER OF VALSAD DISTRICT OF SOUTH GUJARAT(INDIA

    Directory of Open Access Journals (Sweden)

    R. T. Vashi

    2015-09-01

    Full Text Available Groundwater samples were collected from five talukas of Valsad district for one year (from August 2008 to July 2009 and were analyzed for their physicochemical characteristics.  The present investigation is focused on  determination of parameters like pH, Colour, Electrical Conductivity (EC, Total Hardness (TH, Calcium (Ca, Magnesium (Mg, Total Alkalinity (TA, Total Dissolved Solids (TDS, Silica, Chloride, Sulphate, Fluoride, Sodium, Chemical Oxygen Demand (COD and metals like Copper (Cu and Manganese (Mn.  Correlation coefficients were determined to identify the highly correlated parameters and interrelated water quality parameters. Correlation matrix of Valsad district suggests that EC of groundwater is found to be significantly correlated with eight out of seventeen water quality parameters studied.  It may be suggested that the quality of Valsad district can be checked very effectively by controlling EC of water.

  2. Distribution of Redox-Sensitive Groundwater Quality Parameters Downgradient of a Landfill (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Rügge, Kirsten; Pedersen, Jørn K.;

    1995-01-01

    , dinitrogen oxide, nitrite, nitrate, and oxygen in the groundwater samples indicate that methane production, sulfate reduction, iron reduction, manganese reduction, and nitrate reduction take place in the plume. Adjacent to the landfill, methanogenic and sulfatereducing zones were identified, while aerobic......The leachate plume stretching 300 m downgradient from the Grindsted Landfill (Denmark) has been characterized in terms of redox-sensitive groundwater quality parameters along two longitudinal transects (285 samples). Variations in the levels of methane, sulfide, iron(ll), manganese(ll), ammonium...

  3. Interpolation of groundwater quality parameters with some values below the detection limit

    Directory of Open Access Journals (Sweden)

    A. Bárdossy

    2011-05-01

    Full Text Available For many environmental variables, measurements cannot deliver exact observation values as their concentration is below the sensibility of the measuring device (detection limit. These observations provide useful information but cannot be treated in the same manner as the other measurements. In this paper a methodology for the spatial interpolation of these values is described. The method is based on spatial copulas. Here two copula models – the Gaussian and a non-Gaussian v-copula are used. First a mixed maximum likelihood approach is used to estimate the marginal distributions of the parameters. After removal of the marginal distributions the next step is the maximum likelihood estimation of the parameters of the spatial dependence including values below the detection limit into account. Interpolation using copulas yields full conditional distributions for the unobserved sites and can be used to estimate confidence intervals, and provides a good basis for spatial simulation. The methodology is demonstrated on three different groundwater quality parameters, i.e. arsenic, chloride and deethylatrazin, measured at more than 2000 locations in South-West Germany. The chloride values are artificially censored at different levels in order to evaluate the procedures on a complete dataset. Interpolation results are evaluated using a cross validation approach. The method is compared with ordinary kriging and indicator kriging. The uncertainty measures of the different approaches are also compared.

  4. Interpolation of groundwater quality parameters with some values below the detection limit

    Directory of Open Access Journals (Sweden)

    A. Bárdossy

    2011-09-01

    Full Text Available For many environmental variables, measurements cannot deliver exact observation values as their concentration is below the sensitivity of the measuring device (detection limit. These observations provide useful information but cannot be treated in the same manner as the other measurements. In this paper a methodology for the spatial interpolation of these values is described. The method is based on spatial copulas. Here two copula models – the Gaussian and a non-Gaussian v-copula are used. First a mixed maximum likelihood approach is used to estimate the marginal distributions of the parameters. After removal of the marginal distributions the next step is the maximum likelihood estimation of the parameters of the spatial dependence including taking those values below the detection limit into account. Interpolation using copulas yields full conditional distributions for the unobserved sites and can be used to estimate confidence intervals, and provides a good basis for spatial simulation. The methodology is demonstrated on three different groundwater quality parameters, i.e. arsenic, chloride and deethylatrazin, measured at more than 2000 locations in South-West Germany. The chloride values are artificially censored at different levels in order to evaluate the procedures on a complete dataset by progressive decimation. Interpolation results are evaluated using a cross validation approach. The method is compared with ordinary kriging and indicator kriging. The uncertainty measures of the different approaches are also compared.

  5. Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru River basin, Cuddapah District, Andhra Pradesh, South India

    Science.gov (United States)

    Raju, N. Janardhana

    2007-06-01

    In the management of water resources, quality of water is just as important as its quantity. In order to know the quality and/or suitability of groundwater for domestic and irrigation in upper Gunjanaeru River basin, 51 water samples in post-monsoon and 46 in pre-monsoon seasons were collected and analyzed for various parameters. Geological units are alluvium, shale and quartzite. Based on the analytical results, chemical indices like percent sodium, sodium adsorption ratio, residual sodium carbonate, permeability index (PI) and chloroalkaline indices were calculated. The pre-monsoon waters have low sodium hazard as compared to post-monsoon season. Residual sodium carbonate values revealed that one sample is not suitable in both the seasons for irrigation purposes due the occurrence of alkaline white patches and low permeability of the soil. PI values of both seasons revealed that the ground waters are generally suitable for irrigation. The positive values of Chloroalkaline indices in post-monsoon (80%) and in pre-monsoon (59%) water samples indicate absence of base-exchange reaction (chloroalkaline disequilibrium), and remaining samples of negative values of the ratios indicate base-exchange reaction (chloroalkaline equilibrium). Chadha rectangular diagram for geochemical classification and hydrochemical processes of groundwater for both seasons indicates that most of waters are Ca Mg HCO3 type. Assessment of water samples from various methods indicated that majority of the water samples in both seasons are suitable for different purposes except at Yanadipalle (sample no. 8) that requires precautionary measures. The overall quality of groundwater in post-monsoon season in all chemical constituents is on the higher side due to dissolution of surface pollutants during the infiltration and percolation of rainwater and at few places due to agricultural and domestic activities.

  6. Optimal design of monitoring networks for multiple groundwater quality parameters using a Kalman filter: application to the Irapuato-Valle aquifer.

    Science.gov (United States)

    Júnez-Ferreira, H E; Herrera, G S; González-Hita, L; Cardona, A; Mora-Rodríguez, J

    2016-01-01

    A new method for the optimal design of groundwater quality monitoring networks is introduced in this paper. Various indicator parameters were considered simultaneously and tested for the Irapuato-Valle aquifer in Mexico. The steps followed in the design were (1) establishment of the monitoring network objectives, (2) definition of a groundwater quality conceptual model for the study area, (3) selection of the parameters to be sampled, and (4) selection of a monitoring network by choosing the well positions that minimize the estimate error variance of the selected indicator parameters. Equal weight for each parameter was given to most of the aquifer positions and a higher weight to priority zones. The objective for the monitoring network in the specific application was to obtain a general reconnaissance of the water quality, including water types, water origin, and first indications of contamination. Water quality indicator parameters were chosen in accordance with this objective, and for the selection of the optimal monitoring sites, it was sought to obtain a low-uncertainty estimate of these parameters for the entire aquifer and with more certainty in priority zones. The optimal monitoring network was selected using a combination of geostatistical methods, a Kalman filter and a heuristic optimization method. Results show that when monitoring the 69 locations with higher priority order (the optimal monitoring network), the joint average standard error in the study area for all the groundwater quality parameters was approximately 90 % of the obtained with the 140 available sampling locations (the set of pilot wells). This demonstrates that an optimal design can help to reduce monitoring costs, by avoiding redundancy in data acquisition.

  7. Groundwater quality and water quality index at Bhandara District.

    Science.gov (United States)

    Rajankar, Prashant N; Tambekar, Dilip H; Wate, Satish R

    2011-08-01

    The present investigation reports the results of a monitoring study focusing on groundwater quality of Bhandara District of central India. Since, remediation of groundwater is very difficult, knowledge of the existing nature, magnitude, and sources of the various pollution loads is a prerequisite to assessing groundwater quality. The water quality index (WQI) value as a function of various physicochemical and bacteriological parameters was determined for groundwater obtained from a total of 21 locations. The WQI during pre-monsoon season varied from 68 to 83, while for post-monsoon, it was between 56 and 76. Significantly (P < 0.01) lower WQI for the post-monsoon season was observed, indicating deterioration of the groundwater overall in corresponding season. The study revealed that groundwater from only 19% locations was fit for domestic use, thus indicating the need of proper treatment before use.

  8. [Endotoxin Contamination and Correlation with Other Water Quality Parameters of Groundwater from Self-Contained Wells in Beijing].

    Science.gov (United States)

    Zhang, Can; Liu, Wen-jun; Ao, Lu; Shi, Yun; An, Dai-zhi; Liu, Zhi-ping

    2015-12-01

    A survey of endotoxin activity in groundwater from 14 self-contained wells in PLA units stationed in Beijing was conducted by the kinetic-turbid assay of Tachypleus Amebocyte Lysate (TAL). Bacteriological parameters, including total cell counts detected by flow cytometry, heterotrophic plate counts (HPC), standard plate counts and total coliforms were analyzed. Additionally, suspended particles, turbidity, dissolved organic carbon (DOC), and UV₂₅₄ were investigated. Total endotoxin activities ranged from 0. 15 to 13.20 EU · mL⁻¹, free endotoxin activities ranged from 0.10 to 5.29 EU · mL⁻¹ and bound endotoxin activities ranged from 0.01 to 8.60 EU · mL⁻¹. Most of the endotoxins in heavily contaminated groundwater existed as bound endotoxins. As for total endotoxins, the sequence of correlation coefficients with other parameters was total cell counts (r = 0.88 ) > HPC (r = 0.79) > DOC (r = 0.77) > UV₂₅₄ (r = 0.57) > total coliforms (r = 0.50) > standard plate counts (r = 0.49) = turbidity (r = 0. 49) > total particles (r = 0.41). The sequence of correlations of the bound endotoxins with other parameters was total cell counts (r = 0.81) > HPC (r = 0.66) > total coliforms (r = 0.65) > turbidity (r = 0.62) > total particles (r = 0.58) > standard plate counts (r = 0.22). Free endotoxins were correlated with DOC and UV₂₅₄, r = 0.58 and 0.26, respectively. Result showed free endotoxins had a higher correlation with DOC, and a lower correlation with UV₂₅₄.

  9. Decadal variations in groundwater quality

    DEFF Research Database (Denmark)

    Jessen, Søren; Postma, Dieke; Thorling, Lærke

    2017-01-01

    Twenty-five years of groundwater quality monitoring in a sandy aquifer beneath agricultural fields showed large temporal and spatial variations in major ion groundwater chemistry, which were linked closely to the nitrate (NO3) content of agricultural recharge. Between 1988 and 2013, the NO3 content...... loading. Agriculture thus is an important determinant of major ion groundwater chemistry. Temporal and spatial variations in the groundwater quality were simulated using a 2D reactive transport model, which combined effects of the historical NO3 leaching and denitrification, with dispersive mixing...... into the pristine groundwater residing deeper in the aquifer. Reactant-to-product ratios across reaction fronts are altered by dispersive mixing and transience in reactant input functions. Modelling therefore allowed a direct comparison of observed and simulated ratios of concentrations of NO3 (reactant...

  10. Trends in groundwater quality in relation to groundwater age

    NARCIS (Netherlands)

    Visser, A.

    2009-01-01

    Groundwater is a valuable natural resource and as such should be protected from chemical pollution. Because of the long travel times of pollutants through groundwater bodies, early detection of groundwater quality deterioration is necessary to efficiently protect groundwater bodies. The aim of this

  11. Trends in groundwater quality in relation to groundwater age

    NARCIS (Netherlands)

    Visser, A.

    2009-01-01

    Groundwater is a valuable natural resource and as such should be protected from chemical pollution. Because of the long travel times of pollutants through groundwater bodies, early detection of groundwater quality deterioration is necessary to efficiently protect groundwater bodies. The aim of this

  12. Groundwater pollution: Are we monitoring appropriate parameters ...

    African Journals Online (AJOL)

    However, in practice groundwater quality monitoring is the main tool for timely ... quality is a specialised task for a hydrogeologist and a water quality monitoring expert. Although general prescriptions for waste management facilities exist these ... approaches have identified various sets of pollutants and pollution indicators.

  13. Classification management plan of groundwater quality in Taiwan

    Science.gov (United States)

    Chen, Chun Ming; Chen, Yu Ying; Pan, Shih Cheng; Li, Hui Jun; Hsiao, Fang Ke

    2017-04-01

    Taiwan Environmental Protection Administration has been monitoring regional water quality for 14 years. Since the beginning of 2002 till now, there are 453 regional groundwater monitoring wells in ten groundwater subregions in Taiwan, and the monitoring of groundwater quality has been carried out for a long time. Currently, water quality monitoring project has reached 50 items, while the number of water quality monitoring data has reached more than 20,000. In order to use the monitoring data efficiently, this study constructed the localized groundwater quality indicators of Taiwan. This indicator takes into account the different users' point of view, incorporating the Taiwan groundwater pollution monitoring standards (Category II), irrigation water quality standard and drinking water source water quality standard. 50 items of water quality monitoring projects were simplified and classified. The groundwater quality parameters were divided into five items, such as potability for drinking water, salting, external influence, health influences and toxicity hazard. The weight of the five items of groundwater was calculated comprehensively, and the groundwater quality of each monitoring well was evaluated with three grades of good, ordinary, and poor. According to the monitoring results of the groundwater monitoring wells in October to December of 2016, about 70% of groundwater quality in Taiwan is in good to ordinary grades. The areas with poor groundwater quality were mostly distributed in coastal, agriculture and part of the urban areas. The conductivity or ammonia nitrogen concentration was higher in those regions, showing that groundwater may be salinized or affected by external influences. Groundwater quality indicators can clearly show the current comprehensive situation of the groundwater environment in Taiwan and can be used as a tool for groundwater quality classification management. The indicators can coordinate with the Taiwan land planning policy in the

  14. A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices.

    Science.gov (United States)

    Vadiati, M; Asghari-Moghaddam, A; Nakhaei, M; Adamowski, J; Akbarzadeh, A H

    2016-12-15

    Due to inherent uncertainties in measurement and analysis, groundwater quality assessment is a difficult task. Artificial intelligence techniques, specifically fuzzy inference systems, have proven useful in evaluating groundwater quality in uncertain and complex hydrogeological systems. In the present study, a Mamdani fuzzy-logic-based decision-making approach was developed to assess groundwater quality based on relevant indices. In an effort to develop a set of new hybrid fuzzy indices for groundwater quality assessment, a Mamdani fuzzy inference model was developed with widely-accepted groundwater quality indices: the Groundwater Quality Index (GQI), the Water Quality Index (WQI), and the Ground Water Quality Index (GWQI). In an effort to present generalized hybrid fuzzy indices a significant effort was made to employ well-known groundwater quality index acceptability ranges as fuzzy model output ranges rather than employing expert knowledge in the fuzzification of output parameters. The proposed approach was evaluated for its ability to assess the drinking water quality of 49 samples collected seasonally from groundwater resources in Iran's Sarab Plain during 2013-2014. Input membership functions were defined as "desirable", "acceptable" and "unacceptable" based on expert knowledge and the standard and permissible limits prescribed by the World Health Organization. Output data were categorized into multiple categories based on the GQI (5 categories), WQI (5 categories), and GWQI (3 categories). Given the potential of fuzzy models to minimize uncertainties, hybrid fuzzy-based indices produce significantly more accurate assessments of groundwater quality than traditional indices. The developed models' accuracy was assessed and a comparison of the performance indices demonstrated the Fuzzy Groundwater Quality Index model to be more accurate than both the Fuzzy Water Quality Index and Fuzzy Ground Water Quality Index models. This suggests that the new hybrid fuzzy

  15. Groundwater Quality in Mura Valley (Slovenia)

    Science.gov (United States)

    Zajc Benda, T.; Souvent, P.; Bračič Železnik, B.; Čenčur Curk, B.

    2012-04-01

    Groundwater quality is one of the most important parameters in drinking water supply management. For safe drinking water supply, the quality of groundwater in the water wells on the recharge area has to be controlled. Groundwater quality data will be presented for one test area in the SEE project CC-WaterS (Climate Change and Impacts on Water Supply) Mura valley, which lies in the northeastern part of Slovenia. The Mura valley is a part of the Pannonian basin tectonic unit, which is filled with Tertiary and Quaternary gravel and sand sediments. The porous aquifer is 17 m thick in average and recharges from precipitation (70 %) and from surface waters (30 %). The aquifer is the main source of drinking water in the area for almost 53.000 inhabitants. Most of the aquifer lies beneath the agricultural area what represents the risk of groundwater quality. The major groundwater pollutants in the Mura valley are nitrates, atrazine, desethyl-atrazine, trichloroethane and tetrachloroethene. National groundwater quality monitoring is carried out twice a year, so some polluting events could be missed. The nitrate concentrations in the past were up to 140 mg/l. Concentration trends are decreasing and are now below 60 mg/l. Concentrations of atrazine and desethyl-atrazine, are decreasing as well and are below 0,1 µg/l. Trichloroethene and tetrachloroethene were detected downstream of main city in Mura valley, in the maximum concentrations of 280 μg/l in June 2005 (trichloroethene) and 880 μg/l in October 1997 (tetrachloroethene). So, it can be summarized that the trends for most pollutants in the Mura valley are decreasing, what is a good prediction for the future. Input estimation of the total nitrogen (N) (mineral and organic fertilizers) in the Mura valley shows, that the risk of leaching is enlarged in the areas, where the N input is larger than 250 kg/ha, this is at 6,3 % of all agricultural areas. Prediction for the period 2021-2050 indicates that the leaching of N

  16. Mapping groundwater quality in the Netherlands

    NARCIS (Netherlands)

    Pebesma, Edzer Jan

    2001-01-01

    Groundwater quality is the suitability of groundwater for a certain purpose (e.g. for human consumption), and is mostly determined by its chemical composition. Pollution from agricultural and industrial origin threatens the groundwater quality in the Netherlands. Locally, this pollution is me

  17. ASSESSMENT OF GROUNDWATER QUALITY IN SHALLOW ...

    African Journals Online (AJOL)

    development of human societies. In Okrika Island ... abstraction of groundwater due to population increase in Port ... 298. Nwankwoala and Walter: Assessment of Groundwater Quality in Shallow Coastal Aquifers ..... and Tai-Eleme areas.

  18. Groundwater Quality Assessment Based on Geographical Information System and Groundwater Quality Index

    Directory of Open Access Journals (Sweden)

    Zahra Derakhshan

    2015-06-01

    Full Text Available Iran is located in an arid and semi-arid part of the world. Accordingly, the management of the water resources in the country is a priority. In this regard, determining the quality and pollution of surface water and groundwater is very important, especially in areas where groundwater resources are used for drinking. Groundwater quality index (GQI checks the components of the available water with various quality levels. To assess the quality of drinking groundwater of Yazd-Ardakan plain according to GQI in geographical information system (GIS environment, the electrical conductivity, sodium, calcium, magnesium, chlorine, pH, sodium adsorption ratio, bicarbonate, sulfate, potassium, water hardness, and all substances dissolved in the waters of 80 wells were determined. The samples were obtained from Yazd Regional Water Organization from 2005 to 2014. Using this data, the map components were plotted by Kriging geostatistical method. Then, the map of GQI was prepared after normalizing each map component, switching to a rating map, and extracting the weight of each component from the rating map. Based on the GQI index map, the index point which was 87 in 2005 has increased to 81 in 2014. These maps show a decline in groundwater quality from west to the east region. This decline in groundwater quality is due to the existence of Neogene Organizations in the east and geomorphologic unit of the bare epandage pediment in the west. The map removal and single-parameter sensitivity analysis showed that GQI index in Yazd-Ardakan plain is more sensitive to the components of electrical conductivity (EC, total dissolved solids (TDS, and total hardness (TH. Therefore, these components should be monitored more carefully and repeatedly.

  19. An assessment of groundwater quality using water quality index in Chennai, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    I Nanda Balan

    2012-01-01

    Full Text Available Context : Water, the elixir of life, is a prime natural resource. Due to rapid urbanization in India, the availability and quality of groundwater have been affected. According to the Central Groundwater Board, 80% of Chennai′s groundwater has been depleted and any further exploration could lead to salt water ingression. Hence, this study was done to assess the groundwater quality in Chennai city. Aim : To assess the groundwater quality using water quality index in Chennai city. Materials and Methods: Chennai city was divided into three zones based on the legislative constituency and from these three zones three locations were randomly selected and nine groundwater samples were collected and analyzed for physiochemical properties. Results: With the exception of few parameters, most of the water quality assessment parameters showed parameters within the accepted standard values of Bureau of Indian Standards (BIS. Except for pH in a single location of zone 1, none of the parameters exceeded the permissible values for water quality assessment as prescribed by the BIS. Conclusion: This study demonstrated that in general the groundwater quality status of Chennai city ranged from excellent to good and the groundwater is fit for human consumption based on all the nine parameters of water quality index and fluoride content.

  20. 583 GROUNDWATER QUALITY ASSESSMENT AND MONITORING ...

    African Journals Online (AJOL)

    Osondu

    2012-10-30

    Oct 30, 2012 ... monitor and assess groundwater quality. Key words: ... improved yield/production and discharge of waste from ... Thus, the groundwater quality monitoring and .... D/Line. 28.51. 6.76. 49.42. 65.6. 23. ND. 60.24. 1.58. 10.361.

  1. Impact of geochemical stressors on shallow groundwater quality

    Science.gov (United States)

    An, Y.-J.; Kampbell, D.H.; Jeong, S.-W.; Jewell, K.P.; Masoner, J.R.

    2005-01-01

    Groundwater monitoring wells (about 70 wells) were extensively installed in 28 sites surrounding Lake Texoma, located on the border of Oklahoma and Texas, to assess the impact of geochemical stressors to shallow groundwater quality. The monitoring wells were classified into three groups (residential area, agricultural area, and oil field area) depending on their land uses. During a 2-year period from 1999 to 2001 the monitoring wells were sampled every 3 months on a seasonal basis. Water quality assay consisted of 25 parameters including field parameters, nutrients, major ions, and trace elements. Occurrence and level of inorganics in groundwater samples were related to the land use and temporal change. Groundwater of the agricultural area showed lower levels of ferrous iron and nitrate than the residential area. The summer season data revealed more distinct differences in inorganic profiles of the two land use groundwater samples. There is a possible trend that nitrate concentrations in groundwater increased as the proportions of cultivated area increased. Water-soluble ferrous iron occurred primarily in water samples with a low dissolved oxygen concentration and/or a negative redox potential. The presence of brine waste in shallow groundwater was detected by chloride and conductivity in oil field area. Dissolved trace metals and volatile organic carbons were not in a form of concentration to be stressors. This study showed that the quality of shallow ground water could be related to regional geochemical stressors surrounding the lake. ?? 2005 Elsevier B.V. All rights reserved.

  2. Estimating Groundwater Quality Changes Using Remotely Sensed Groundwater Storage and Multivariate Regression

    Science.gov (United States)

    Gibbons, A.; Thomas, B. F.; Famiglietti, J. S.

    2014-12-01

    Global groundwater dependence is likely to increase with continued population growth and climate-driven freshwater redistribution. Recent groundwater quantity studies have estimated large-scale aquifer depletion rates using monthly water storage variations from NASA's Gravity Recovery and Climate Experiment (GRACE) mission. These innovative approaches currently fail to evaluate groundwater quality, integral to assess the availability of potable groundwater resources. We present multivariate relationships to predict total dissolved solid (TDS) concentrations as a function of GRACE-derived variations in water table depth, dominant land use, and other physical parameters in two important aquifer systems in the United States: the High Plains aquifer and the Central Valley aquifer. Model evaluations were performed using goodness of fit procedures and cross validation to identify general model forms. Results of this work demonstrate the potential to characterize global groundwater potability using remote sensing.

  3. Iowa ground-water quality

    Science.gov (United States)

    Buchmiller, R.C.; Squillace, P.J.; Drustrup, R.D.

    1987-01-01

    The population served by ground-water supplies in Iowa (fig. L4) is estimated to be about 2,392,000, or 82 percent of the total population (U.S. Geological Survey, 1985, p. 211). The population of Iowa is distributed fairly uniformly throughout the State (fig. IB), with 59 percent residing in rural areas or towns of less than 10,000 (U.S. Bureau of the Census, 1982). Surficial aquifers, the Jordan aquifer, and aquifers that form the uppermost bedrock aquifer in a particular area are most commonly used for drinking-water supplies and usually provide ample amounts of good quality water. However, naturally occurring properties or substances such as hardness, dissolved solids, and radioactivity limit the use of water for drinking purposes in some areas of each of the five principal aquifers (fig. 2/4). Median concentrations of nitrate in all aquifers and radium-226 in all aquifers except the Jordan are within the primary drinking-water standards established by the U.S. Environmental Protection Agency (1986a). Median concentrations for dissolved solids in the surficial, Dakota, and Jordan aquifers exceed secondary drinking-water standards established by the U.S. Environmental Protection Agency (1986b).

  4. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  5. A groundwater quality index map for Namibia

    Science.gov (United States)

    Bergmann, Thomas; Schulz, Oliver; Wanke, Heike; Püttmann, Wilhelm

    2016-04-01

    Groundwater quality and contamination is a huge concern for the population of Namibia, especially for those living in remote areas. There, most farmers use their own wells to supply themselves and their animals with drinking water. In many cases, except for a few studies that were done in some areas, the only groundwater quality measurements that took place were taken at the time the well was drilled. These data were collected and are available through the national GROWAS-Database. Information on measurements determining the amount of contaminants such as fluoride, TDS, other major ions and nitrate for several thousand wells are provided there. The aim of this study was I) to check the database for its reliability by comparing it to results from different studies and statistical analysis, II) to analyze the database on groundwater quality using different methods (statistical-, pattern- and correlation analysis) and III) to embed our own field work that took place within a selected Namibian region into that analysis. In order to get a better understanding of the groundwater problems in different areas of Namibia, a groundwater quality index map based on GROWAS was created using GIS processing techniques. This map uses several indicators for groundwater quality in relation to selected guidelines and combines them into an index, thus enabling the assessment of groundwater quality with regard to more than one pollutant. The goal of the groundwater quality map is to help identify where the overall groundwater quality is problematic and to communicate these problems. Additionally, suggestions for an enhancement of the database and for new field surveys will be given. The field work was focusing on three farms within an area known for its problematic nitrate concentration in groundwater. There, 23 wells were probed. In order to identify the sources of the contamination, isotopic measurements were executed for three of these wells with high nitrate concentrations

  6. Hydrogeochemical quality and suitability studies of groundwater in northern Bangladesh.

    Science.gov (United States)

    Islam, M J; Hakim, M A; Hanafi, M M; Juraimi, Abdul Shukor; Aktar, Sharmin; Siddiqa, Aysha; Rahman, A K M Shajedur; Islam, M Atikul; Halim, M A

    2014-07-01

    Agriculture, rapid urbanization and geochemical processes have direct or indirect effects on the chemical composition of groundwater and aquifer geochemistry. Hydro-chemical investigations, which are significant for assessment of water quality, were carried out to study the sources of dissolved ions in groundwater of Dinajpur district, northern Bangladesh. The groundwater samplish were analyzed for physico-chemical properties like pH, electrical conductance, hardness, alkalinity, total dissolved solids and Ca2+, Mg2+, Na+, K+, CO3(2-), HCO3(-), SO4(2-) and Cl- ions, respectively. Based on the analyses, certain parameters like sodium adsorption ratio, soluble sodium percentage, potential salinity, residual sodium carbonate, Kelly's ratio, permeability index and Gibbs ratio were also calculated. The results showed that the groundwater of study area was fresh, slightly acidic (pH 5.3-6.4) and low in TDS (35-275 mg I(-1)). Ground water of the study area was found suitable for irrigation, drinking and domestic purposes, since most of the parameters analyzed were within the WHO recommended values for drinking water. High concentration of NO3- and Cl- was reported in areas with extensive agriculture and rapid urbanization. Ion-exchange, weathering, oxidation and dissolution of minerals were major geochemical processes governing the groundwater evolution in study area. Gibb's diagram showed that all the samples fell in the rock dominance field. Based on evaluation, it is clear that groundwater quality of the study area was suitable for both domestic and irrigation purposes.

  7. Geographical Information System Techniques for Evaluation of Groundwater Quality

    Directory of Open Access Journals (Sweden)

    Shahram Ashraf

    2011-01-01

    Full Text Available Problem statement: The present paper tries to assess groundwater suitability for irrigation purpose in Damghan plain (5400 ha. Approach: Twenty four water samples were collected from the active wells. Parameters such as Electrical Conductivity (EC, pH, Total Dissolved Solids (TDS, were recorded in the field and major anions and cations (Ca2+, Mg2+, K+, Na+, CO32-, HCO3-, Cl-, SO42- and NO3- were analyzed in the laboratory. The data of water wells were imported into the GIS software and the different water quality maps were produced using point data. Then Suitability index of groundwater quality determined by overlaying of water quality maps. Results: Suitability index values revealed that the ground water in Amin Abad, Abdi, Abd Abad, Nasr Abad and parts of Shams Abad villages of study area had "Suitable" quality with the suitability index range between 75-100 and therefore can be used for irrigation usage. Suitability index of the groundwater in Hasnie, Gani Abad and parts of Shams Abad villages were "Moderate" quality with the range between 35-70 and Abas Abad, Abir Abad and Shaman villages had "unsuitable" quality and cannot be used for irrigation purposes. In respect of all evaluating criteria, villages of study areas that had "Suitable" and Moderate quality could safely be used for longterm irrigation purposes. Conclusion: The present study demonstrated high efficiency for GIS to analyze complex spatial data and groundwater quality suitability.

  8. Groundwater Quality Assessment for Waste Management Area U: First Determination

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, Floyd N.; Chou, Charissa J.

    2000-08-04

    As a result of the most recent recalculation one of the indicator parameters, specific conductance, exceeded its background value in downgradient well 299-W19-41, triggering a change from detection monitoring to groundwater quality assessment program. The major contributors to the higher specific conductance are nonhazardous constituents (i.e., sodium, calcium, magnesium, chloride, sulfate, and bicarbonate). Nitrate, chromium, and technetium-99 are present and are increasing; however, they are significantly below their drinking waster standards. Interpretation of groundwater monitoring data indicates that both the nonhazardous constituents causing elevated specific conductance in groundwater and the tank waste constituents present in groundwater at the waste management area are a result of surface water infiltration in the southern portion of the facility. There is evidence for both upgradient and waste management area sources for observed nitrate concentrations. There is no indication of an upgradient source for the observed chromium and technetium-99.

  9. Assessment of groundwater quality status in Amini Island of Lakshadweep.

    Science.gov (United States)

    Prasad, N B Narasimha; Mansoor, O A

    2005-01-01

    Amini Island is one of the 10 inhabited islands in Lakshadweep. Built on the ancient volcanic formations Lakshadweep is the the tiniest Union Territory of India. The major problem experienced by the islanders is the acute scarcity of fresh drinking water. Groundwater is the only source of fresh water and the availability of the same is very restricted due to peculiar hydrologic, geologic, geomorphic and demographic features. Hence, proper understanding of the groundwater quality, with reference to temporal and spatial variations, is very important to meet the increasing demand and also to formulate future plans for groundwater development. In this context, the assessment of groundwater quality status was carried out in Amini Island. All the available information on water quality, present groundwater usage pattern, etc. was collected and analyzed. Total hardness and salinity are found to be the most critical water quality parameters exceeding the permissible limits of drinking water standards. Spatial variation diagrams of salinity and hardness have been prepared for different seasons. It is also observed from these maps that the salinity and hardness are comparatively better on the lagoon side compared to the seaside. These maps also suggest that the salinity and the hardness problem is more in the southern tip compared to northern portion.

  10. Groundwater pollution: are we monitoring appropriate parameters?

    CSIR Research Space (South Africa)

    Tredoux, G

    2004-01-01

    Full Text Available . In the literature, divergent approaches have identified various sets of pollutants and pollution indicators. This paper discusses international and local trends in groundwater monitoring for baseline studies and on-going pollution detection monitoring for a variety...

  11. Parameter Estimation and Experimental Design in Groundwater Modeling

    Institute of Scientific and Technical Information of China (English)

    SUN Ne-zheng

    2004-01-01

    This paper reviews the latest developments on parameter estimation and experimental design in the field of groundwater modeling. Special considerations are given when the structure of the identified parameter is complex and unknown. A new methodology for constructing useful groundwater models is described, which is based on the quantitative relationships among the complexity of model structure, the identifiability of parameter, the sufficiency of data, and the reliability of model application.

  12. Quality of groundwater resources in Afghanistan.

    Science.gov (United States)

    Hayat, Ehsanullah; Baba, Alper

    2017-07-01

    Water is the main source of energy production and economy in Afghanistan where agriculture accounts for more than 50% of the country's gross domestic product (GDP). Access to safe drinking water is still a problem in the country, which has caused different health issues and even child mortality especially in rural areas. Groundwater is the main source of drinking water in the country. However, little knowledge is available about the quality of groundwater throughout the entire country, and its quality has not been investigated extensively yet like in other countries in the world. While most people think that consuming groundwater is a reliable and safe source of drinking water for health, the United Nations (UN) agencies report various kinds of waterborne diseases and even child mortalities due to drinking water quality in the country. In this article, significant geogenic and anthropogenic factors that play a vital role in groundwater contamination of the country are identified and explained. Different geogenic contaminations such as arsenic, fluoride, sulfate, and boron occur in several areas of Afghanistan that have a direct effect on human health. The water quality mapping for Afghanistan is completed for half of the country, which shows that groundwater is plagued by high levels of fluoride and arsenic in some areas. The water quality mapping of the other half of the country cannot be completed due to security concerns currently. Also, there are different kinds of waterborne diseases such as diarrhea, cholera, and dysentery that can be seen in different parts of the country because of anthropogenic activities which continuously deteriorate groundwater.

  13. Groundwater Quality Assessment in Jazan Region, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Adel M. Alhababy

    2015-04-01

    Full Text Available Jazan province is an arid area, located at the southwestern part of Saudi Arabia along the Red Sea coast. Groundwater is the only resource of drinking water in this area; thus, its suitability for drinking and domestic uses is of public and scientific concern. In this study, groundwater samples were collected from 23 sites in Jazan area during fall 2014; measurements and analysis of water quality parameters including pH, total dissolved solids TDS, turbidity, hardness, alkalinity, ammonia, nitrite, nitrate, sulfate, calcium, magnesium, chloride, iron and fluoride were carried out with references to WHO and Gulf Standardization Organization GSO. TDS values exceeded the permissible limit of 600 mg/l in 30.4% of samples, total hardness values exceeded the permissible limits of 300 mg/l in 34.8% of samples, and nitrate concentration exceeded the permissible limit of 50 mg/l in only one sample. However, the concentrations of investigated parameters in the groundwater samples were within the permissible limits of WHO. Our results showed that the water quality of groundwater in Jazan area is acceptable and could be used safely for drinking and domestic purposes. However, a special attention should be paid to the concentration of TDS and nitrate in groundwater in future studies.

  14. Parameter and Uncertainty Estimation in Groundwater Modelling

    DEFF Research Database (Denmark)

    Jensen, Jacob Birk

    The data basis on which groundwater models are constructed is in general very incomplete, and this leads to uncertainty in model outcome. Groundwater models form the basis for many, often costly decisions and if these are to be made on solid grounds, the uncertainty attached to model results must...... be quantified. This study was motivated by the need to estimate the uncertainty involved in groundwater models.Chapter 2 presents an integrated surface/subsurface unstructured finite difference model that was developed and applied to a synthetic case study.The following two chapters concern calibration...... and uncertainty estimation. Essential issues relating to calibration are discussed. The classical regression methods are described; however, the main focus is on the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. The next two chapters describe case studies in which the GLUE methodology...

  15. Ground-water quality atlas of Wisconsin

    Science.gov (United States)

    Kammerer, Phil A.

    1981-01-01

    This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.

  16. Groundwater Quality Assessment Based on Improved Water Quality Index in Pengyang County, Ningxia, Northwest China

    Directory of Open Access Journals (Sweden)

    Li Pei-Yue

    2010-01-01

    Full Text Available The aim of this work is to assess the groundwater quality in Pengyang County based on an improved water quality index. An information entropy method was introduced to assign weight to each parameter. For calculating WQI and assess the groundwater quality, total 74 groundwater samples were collected and all these samples subjected to comprehensive physicochemical analysis. Each of the groundwater samples was analyzed for 26 parameters and for computing WQI 14 parameters were chosen including chloride, sulphate, pH, chemical oxygen demand (COD, total dissolved solid (TDS, total hardness (TH, nitrate, ammonia nitrogen, fluoride, total iron (Tfe, arsenic, iodine, aluminum, nitrite, metasilicic acid and free carbon dioxide. At last a zoning map of different water quality was drawn. Information entropy weight makes WQI perfect and makes the assessment results more reasonable. The WQI for 74 samples ranges from 12.40 to 205.24 and over 90% of the samples are below 100. The excellent quality water area covers nearly 90% of the whole region. The high value of WQI has been found to be closely related with the high values of TDS, fluoride, sulphate, nitrite and TH. In the medium quality water area and poor quality water area, groundwater needs some degree of pretreated before consumption. From the groundwater conservation view of point, the groundwater still need protection and long term monitoring in case of future rapid industrial development. At the same time, preventive actions on the agricultural non point pollution sources in the plain area are also need to be in consideration.

  17. Control of Groundwater Remediation Process as Distributed Parameter System

    Directory of Open Access Journals (Sweden)

    Mendel M.

    2014-12-01

    Full Text Available Pollution of groundwater requires the implementation of appropriate solutions which can be deployed for several years. The case of local groundwater contamination and its subsequent spread may result in contamination of drinking water sources or other disasters. This publication aims to design and demonstrate control of pumping wells for a model task of groundwater remediation. The task consists of appropriately spaced soil with input parameters, pumping wells and control system. Model of controlled system is made in the program MODFLOW using the finitedifference method as distributed parameter system. Control problem is solved by DPS Blockset for MATLAB & Simulink.

  18. Groundwater quality characterization around Jawaharnagar open dumpsite, Telangana State

    Science.gov (United States)

    Unnisa, Syeda Azeem; Zainab Bi, Shaik

    2017-03-01

    In the present work groundwater samples were collected from ten different data points in and around Jawaharnagar municipal dumpsite, Telangana State Hyderabad city from May 2015 to May 2016 on monthly basis for groundwater quality characterization. Pearson's correlation coefficient (r) value was determined using correlation matrix to identify the highly correlated and interrelated water quality standards issued by Bureau of Indian Standard (IS-10500:2012). It is found that most of the groundwater samples are above acceptable limits and are not potable. The chemical analysis results revealed that pH range from 7.2 to 7.8, TA 222 to 427 mg/l, TDS 512 to 854 mg/l, TH 420 to 584 mg/l, Calcium 115 to 140 mg/l, Magnesium 55 to 115 mg/l, Chlorides 202 to 290 mg/l, Sulphates 170 to 250 mg/l, Nitrates 6.5 to 11.3 mg/l, and Fluoride 0.9 to 1.7 mg/l. All samples showed higher range of physicochemical parameters except nitrate content which was lower than permissible limit. Highly positive correlation was observed between pH-TH (r = 0.5063), TA-Cl- (r = 0.5896), TDS-SO4 - (r = 0.5125), Mg2+-NO3 - (r = 0.5543) and Cl--F- (r = 0.7786). The groundwater samples in and around Jawaharnagar municipal dumpsite implies that groundwater samples were contaminated by municipal leachate migration from open dumpsite. The results revealed that the systematic calculations of correlation coefficient between water parameters and regression analysis provide qualitative and rapid monitoring of groundwater quality.

  19. Assessment of groundwater utilization for irrigating park trees under the spatiotemporal uncertainty condition of water quality

    Science.gov (United States)

    Jang, Cheng-Shin; Kuo, Yi-Ming

    2013-04-01

    Parks have a variety of functions for residents and are important for urban landscape planning. The healthy growth of urban park trees requires regular irrigation. To reduce the pressure of high groundwater levels and to avoid wasting groundwater resources, proper groundwater extraction for irrigating park trees in the Taipei Basin is regarded as a reciprocal solution of sustainable groundwater management and preserving excellent urban landscapes. Therefore, this study determines pristine groundwater use for irrigating park trees in the metropolitan Taipei Basin under the spatiotemporal uncertainty condition of water quality. First, six hydrochemical parameters in groundwater associated with an irrigation water quality standard were collected from a 12-year survey. Upper, median and lower quartiles of the six hydrochemical parameters were obtained to establish three thresholds. According to the irrigation water quality standard, multivariate indicator kriging (MVIK) was adopted to probabilistically evaluate the integration of the six hydrochemical parameters. Entropy was then applied to quantify the spatiotemporal uncertainty of the hydrochemical parameters. Finally, locations, which have high estimated probabilities for the median-quartile threshold and low local uncertainty, are suitable for pumping groundwater for irrigating park trees. The study results demonstrate that MVIK and entropy are capable of characterizing the spatiotemporal uncertainty of groundwater quality parameters and determining suitable parks of groundwater utilization for irrigation. Moreover, the upper, median and lower quartiles of hydrochemical parameters are served as three estimated thresholds in MVIK, which is robust to assessment predictions. Therefore, this study significantly improves the methodological application and limitation of MVIK for spatiotemporally analyzing environmental quality compared with the previous related works. Furthermore, the analyzed results indicate that 64

  20. Groundwater Quality in Jingyuan County, a Semi-Humid Area in Northwest China

    Directory of Open Access Journals (Sweden)

    Wu Jianhua

    2011-01-01

    Full Text Available Groundwater quality assessment is an essential study which plays an important role in the rational development and utilization of groundwater in any part of the world. In the study, groundwater qualities in Jingyuan County, in Ningxia, China were assessed with entropy weighted water quality index method. In the assessment, 12 hydrochemical parameters including chloride, sulphate, sodium, iron, pH, total dissolved solid (TDS, total hardness (TH, nitrate, ammonia, nitrogen, fluoride, iodine and nitrite were selected. The assessment results show that the concentrations of iodine, TH, iron and TDS are the most influencing parameters affecting the groundwater quality. The assessment results are rational and are in consistency with the results of filed investigation of which both indicates the groundwater in Jingyuan County is fit for drinking.

  1. Groundwater Quality Monitoring at Logan Cave National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the current project was to continue establishing a long term groundwater quality monitoring program at Logan Cave that would allow groundwater threats...

  2. Changes of Groundwater Quality in the Sorrounding Pollution Sources Due to Earthquake Dissaster

    Directory of Open Access Journals (Sweden)

    Sudarmadji Sudarmadji

    2016-05-01

    Full Text Available Groundwater is the main domestic water supply of the population of the Yogyakarta Special Region, both in the urban and as well as in the rural area due to its quantity and quality advantages. The rapid population growth has caused an increase of groundwater demand, consequently it is facing some problems to the sustainability of groundwater supply. Lowering of groundwater level has been observed in some places, as well as the degradation of groundwater quality. Earthquake which stroke Yogyakarta on 27 May 2006, damaged buildings and other infrastructures in the area, including roads and bridges. It might also damage the underground structures such as septic tanks, and pipes underneath the earth surface. It might cause cracking of the geologic structures. Furthermore, the damage of underneath infrastructures might create groundwater quality changes in the area. Some complains of local community on lowering and increasing groundwater level and groundwater quality changes were noted. Field observation and investigation were conducted, including collection of groundwater samples close to (the pollution sources. Laboratory analyses indicated that some parameters increased to exceed the drinking water quality standards. The high content of Coli form bacteria possibly was caused by contamination of nearby septic tanks or other pollution sources to the observed groundwater in the dug well.

  3. Assessment of quality and geochemical processes occurring in groundwaters near central air conditioning plant site in Trombay, Maharashtra, India.

    Science.gov (United States)

    Tirumalesh, K; Shivanna, K; Sriraman, A K; Tyagi, A K

    2010-04-01

    This paper summarizes the findings obtained in a monitoring study to understand the sources and processes affecting the quality of shallow and deep groundwater near central air conditioning plant site in Trombay region by making use of physicochemical and biological analyses. All the measured parameters of the groundwaters indicate that the groundwater quality is good and within permissible limits set by (Indian Bureau of Standards 1990). Shallow groundwater is dominantly of Na-HCO(3) type whereas deep groundwater is of Ca-Mg-HCO(3) type. The groundwater chemistry is mainly influenced by dissolution of minerals and base exchange processes. High total dissolved solids in shallow groundwater compared to deeper ones indicate faster circulation of groundwater in deep zone preferably through fissures and fractures whereas groundwater flow is sluggish in shallow zone. The characteristic ionic ratio values and absence of bromide point to the fact that seawater has no influence on groundwater system.

  4. Groundwater Quality Assessment for Waste Management Area U: First Determination

    Energy Technology Data Exchange (ETDEWEB)

    FN Hodges; CJ Chou

    2000-08-04

    Waste Management Area U (TWA U) is located in the 200 West Area of the Hanford Site. The area includes the U Tank Farm, which contains 16 single-shell tanks and their ancillary equipment and waste systems. WMA U is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) as stipulated in 40 CFR Part 265, Subpart F, which is incorporated into the Washington State dangerous waste regulations (WAC 173-303400) by reference. Groundwater monitoring at WMA U has been guided by an interim status indicator evaluation program. As a result of changes in the direction of groundwater flow, background values for the WMA have been recalculated several times during its monitoring history. The most recent recalculation revealed that one of the indicator parameters, specific conductance, exceeded its background value in downgradient well 299-W19-41. This triggered a change from detection monitoring to a groundwater quality assessment program. The major contributors to the higher specific conductance are nonhazardous constituents, such as bicarbonate, calcium, chloride, magnesium, sodium and sulfate. Chromium, nitrate, and technetium-99 are present and are increasing; however, they are significantly below their drinking water standards. The objective of this study is to determine whether the increased concentrations of chromium, nitrate, and technetium-99 in groundwater are from WMA U or from an upgradient source. Interpretation of groundwater monitoring data indicates that both the nonhazardous constituents causing elevated specific conductance in groundwater and the tank waste constituents present in groundwater at the WMA are a result of surface water infiltration in the southern portion of the WMA. There is evidence that both upgradient and WMA sources contribute to the nitrate concentrations that were detected. There is no indication of an upgradient source for the chromium and technetium-99 that was detected. Therefore, a source of contamination appears to

  5. Groundwater: Quality Levels and Human Exposure, SW Nigeria

    Directory of Open Access Journals (Sweden)

    Olusola Adeyemi

    2017-04-01

    Full Text Available Groundwater serves as a source of freshwater for agricultural, industrial and domestic purposes and it accounts for about 42%, 27% and 36% respectively. As it remains the only source of all-year-round supply of freshwater globally, it is of vital importance as regards water security, human survival and sustainable agriculture. The main goal of this study is to identify the main cause-effect relationship between human activities and the state of groundwater quality using a communication tool (the DPSIR Model; Drivers, Pressures, State, Impact and Response. A total of twenty-one samples were collected from ten peri-urban communities scattered across three conterminous Local Government Areas in Southwestern Nigeria. Each of the groundwater samples was tested for twelve parameters - total dissolved solids, pH, bicarbonate, chloride, lead, electrical conductivity, dissolved oxygen, nitrate, sulphate, magnesium and total suspended solids. The study revealed that the concentrations of DO and Pb were above threshold limits, while pH and N were just below the threshold and others elements were within acceptable limits based on Guidelines for Drinking Water Quality and Nigeria Standard for Drinking Water Quality. The study revealed that groundwater quality levels from the sampled wells are under pressure leading to reduction in the amount of freshwater availability. This is a first-order setback in achieving access to freshwater as a sustainable development goal across Less Developed Communities (LDCs globally. To combat this threat, there is the need for an integrated approach in response towards groundwater conservation and sustainability by all stakeholders.

  6. Groundwater quality in the Santa Barbara Coastal Plain, California

    Science.gov (United States)

    Davis, Tracy A.; Belitz, Kenneth

    2016-10-03

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California established the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Santa Barbara Coastal Plain is one of the study units.

  7. Groundwater quality in the western San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.

    2017-06-09

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Western San Joaquin Valley is one of the study units being evaluated. 

  8. Assessment on seasonal variation of groundwater quality of phreatic aquifers - A river basin system

    Digital Repository Service at National Institute of Oceanography (India)

    Laluraj, C.M.; Gopinath, G.

    suspended solids (TDS), fluoride and total iron content will help to identify the quality of ground water. Groundwater contamination can often have serious ill ef- fects on human health. Groundwater with low pH values can cause gastrointestinal disorders... is considered as an important parameter for irrigation and industrial purposes. Total dissolved solids help to identify the potability of groundwater. Total iron content may not have direct effects on human health but is of importance due to aesthetic reasons...

  9. An assessment of groundwater quality using water quality index in Chennai, Tamil Nadu, India

    OpenAIRE

    I Nanda Balan; Shivakumar, M.; Madan Kumar, P. D.

    2012-01-01

    Context : Water, the elixir of life, is a prime natural resource. Due to rapid urbanization in India, the availability and quality of groundwater have been affected. According to the Central Groundwater Board, 80% of Chennai′s groundwater has been depleted and any further exploration could lead to salt water ingression. Hence, this study was done to assess the groundwater quality in Chennai city. Aim : To assess the groundwater quality using water quality index in Chennai city. Materials and ...

  10. Assessing groundwater quality for irrigation using indicator kriging method

    Science.gov (United States)

    Delbari, Masoomeh; Amiri, Meysam; Motlagh, Masoud Bahraini

    2016-11-01

    One of the key parameters influencing sprinkler irrigation performance is water quality. In this study, the spatial variability of groundwater quality parameters (EC, SAR, Na+, Cl-, HCO3 - and pH) was investigated by geostatistical methods and the most suitable areas for implementation of sprinkler irrigation systems in terms of water quality are determined. The study was performed in Fasa county of Fars province using 91 water samples. Results indicated that all parameters are moderately to strongly spatially correlated over the study area. The spatial distribution of pH and HCO3 - was mapped using ordinary kriging. The probability of concentrations of EC, SAR, Na+ and Cl- exceeding a threshold limit in groundwater was obtained using indicator kriging (IK). The experimental indicator semivariograms were often fitted well by a spherical model for SAR, EC, Na+ and Cl-. For HCO3 - and pH, an exponential model was fitted to the experimental semivariograms. Probability maps showed that the risk of EC, SAR, Na+ and Cl- exceeding the given critical threshold is higher in lower half of the study area. The most proper agricultural lands for sprinkler irrigation implementation were identified by evaluating all probability maps. The suitable areas for sprinkler irrigation design were determined to be 25,240 hectares, which is about 34 percent of total agricultural lands and are located in northern and eastern parts. Overall the results of this study showed that IK is an appropriate approach for risk assessment of groundwater pollution, which is useful for a proper groundwater resources management.

  11. Hydrochemical Assessment of Surfacewater and Groundwater Quality at Bank Infiltration Site

    Science.gov (United States)

    Shamsuddin, M. K. N.; Suratman, S.; Ramli, M. F.; Sulaiman, W. N. A.; Sefie, A.

    2016-07-01

    Groundwater and surface water quantity and quality are an important factor that contribute for drinking water demand and agriculture use. The water quality analysis was assessed using multivariate statistical analyses based on analytical quantitative data that include Discriminant Analysis (DA) and Principal Component Analysis (PCA), based on 36 water quality parameters from the rivers, lakes, and groundwater sites at Jenderam Hilir, which were collected from 2013 to 2014 (56 observations). The DA identified six significant parameters (pH, NO2-, NO3-, F, Fe2+, and Mn2+) from 36 variables to distinguish between the river, lake, and groundwater groups (classification accuracy = 98%). The PCA had confirmed 10 possible causes of variation in the groundwater quality with an eigenvalue greater than 1, which explained 82.931% of the total variance in the water quality data set.

  12. Effects Of Leaky Sewers On Groundwater Quality

    Science.gov (United States)

    Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Oswald, S. E.; Schirmer, M.

    2007-12-01

    The impact of urban areas on groundwater quality has become an emerging research field in hydrogeology. Urban subsurface infrastructures like sewer networks are often leaky, so untreated wastewater may enter the urban aquifer. The transport of wastewater into the groundwater is still not well understood under field conditions. In the research platform WASSER Leipzig (Water And Sewershed Study of Environmental Risk in Leipzig- Germany) the effects of leaky sewers on the groundwater quality are investigated. The research is focused on the occurrence and transport of so-called "xenobiotics" such as pharmaceuticals and personal care product additives. Xenobiotics may pose a threat on human health, but can also be considered a marker for an urban impact on water resources. A new test site was established in Leipzig to quantify mass fluxes of xenobiotics into the groundwater from a leaky sewer. Corresponding to the leaks which were detected by closed circuit television inspections, monitoring wells were installed up- and downstream of the sewer. Concentrations of eight xenobiotics (technical-nonylphenol, bisphenol-a, caffeine, galaxolide, tonalide, carbamazepine, phenazone, ethinylestradiol) obtained from first sampling programmes were found to be highly heterogeneous, but a relation between the position of the sampling points and the sewer could not be clearly identified. However, concentrations of sodium, chloride, potassium and nitrate increased significantly downstream of the sewer which may be due to wastewater exfiltration, since no other source is known on the water flowpath from the upstream to the downstream wells. Because of the highly heterogeneous spatial distribution of xenobiotics at the test site, a monitoring concept was developed comprising both high-resolution sampling and an integral approach to obtain representative average concentrations. Direct-push techniques were used to gain insight into the fine-scale spatial distribution of the target compounds

  13. Groundwater Quality Assessment near a Municipal Landfill, Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    E.O. Longe

    2010-01-01

    Full Text Available The current research examined the level of groundwater contamination near a municipal landfill sitein Alimosho Local Government Area of Lagos State, Nigeria. Water quality parameters (physico-chemical andheavy metals of leachate and groundwater samples were analyzed. The mean concentrations of all measuredparameters except NO3G, PO4+ and CrG conform to the stipulated World Health Organization potable waterstandards and the Nigerian Standard for Drinking Water Quality. Mean concentration values for TDS, DO,NH4+, SO4+, PO4+, NO3G and ClG are 9.17 mg LG1, 3.19 mg LG1, 0.22 mg LG1, 1.60 mg LG1, 10.73 mg LG1, 38.5mg LG1 and 7.80 mg LG1 respectively. The mean concentration values for Fe, Mn, Zn and Cr- in groundwatersamples are 0.07mg LG1, 0.08mg LG1, 0.08mg LG1 and 0.44mg LG1 respectively. The current results showinsignificant impact of the landfill operations on the groundwater resource. The existing soil stratigraphy atthe landfill site consisting of clay and silty clay is deduced to have significantly influenced natural attenuationof leachate into the groundwater resource. It is however observed that in the absence of a properly designedleachate collection system, uncontrolled accumulation of leachates at the base of the landfill pose potentialcontamination risk to groundwater resource in the very near future. The research recommends an upgrade ofthe solous landfill to a standard that would guarantee adequate protection of both the surface and thegroundwater resources in the locality.

  14. Quality of bedrock groundwater in western Finland, with special reference to nitrogen compounds

    Directory of Open Access Journals (Sweden)

    Karro, E.

    1999-12-01

    Full Text Available Monitoring of bedrock aquifers utilized for water supply in the Vaasa region, western Finland, suggests slight changes in the chemical composition of groundwater resulting both from natural and anthropogenic factors. Applying the permissible limits for parameters in drinking water reveals that the groundwater quality is generally good. Groundwater occurring in fractures and fissures of the crystalline bedrock is protected from anthropogenic pollution by clay and till deposits with low permeability. Temporally, the contents of nitrogen compounds in groundwater exhibit a decreasing trend. Reducing conditions prevailing in bedrock aquifers are reflected in elevated ammonium, iron and manganese contents in water.

  15. Groundwater Quality Assessment in hard rock terrain of Rasipuram Taluk, Namakkal District

    Directory of Open Access Journals (Sweden)

    K.Ramesh,

    2016-02-01

    Full Text Available Groundwater is of most important to rural development in many countries of the world. Over exploitation of groundwater has become a major challenge not only to the present civilization and also for the future generations. The main focus of this study is to assess the suitability of groundwater quality for drinking and irrigation purposes in vicinity of Rasipuram block in Tamil Nadu. Groundwater samples from 15 locations were collected from different wells during January 2015 and analyzed for different physico-chemical parameters. The usefulness of these parameters in predicting groundwater quality characteristics were discussed. The quality of groundwater in the study area is fresh to brackish water, moderately hard to very hard in nature. The piper plot shows that the most of the groundwater samples fall in the field of Na+ -Cland mixed Ca++ -Na+ -Cltype. Water quality index rating was carried out to quantify overall groundwater quality status of the area. The WQI for these samples ranges from 37.34 to 650. Hence majority of the water samples are poor to very poor in water quality. The area in general is characterized by hard water, hence is not suitable for drinking purpose. The samples plotted in the piper and USSL diagram were used to understand the chemical characteristic of groundwater for irrigation purposes. However, the values of SAR, Na% and RSC indicate that groundwater is suitable for irrigation purposes. Overall water quality of the study area was found satisfactory for drinking purpose except in few locations and suitable for irrigation purpose. Hence the local government needs to initiate remedial measures.

  16. Hydrogeochemistry and Water Quality Index in the Assessment of Groundwater Quality for Drinking Uses.

    Science.gov (United States)

    Batabyal, Asit Kumar; Chakraborty, Surajit

    2015-07-01

    The present investigation is aimed at understanding the hydrogeochemical parameters and development of a water quality index (WQI) to assess groundwater quality of a rural tract in the northwest of Bardhaman district of West Bengal, India. Groundwater occurs at shallow depths with the maximum flow moving southeast during pre-monsoon season and south in post-monsoon period. The physicochemical analysis of groundwater samples shows the major ions in the order of HCO3>Ca>Na>Mg>Cl>SO4 and HCO3>Ca>Mg>Na>Cl>SO4 in pre- and post-monsoon periods, respectively. The groundwater quality is safe for drinking, barring the elevated iron content in certain areas. Based on WQI values, groundwater falls into one of three categories: excellent water, good water, and poor water. The high value of WQI is because of elevated concentration of iron and chloride. The majority of the area is occupied by good water in pre-monsoon and poor water in post-monsoon period.

  17. Identification of groundwater parameters using an adaptative multiscale method.

    Science.gov (United States)

    Majdalani, Samer; Ackerer, Philippe

    2011-01-01

    The identification of groundwater parameters in heterogeneous systems is a major challenge in groundwater modeling. Flexible parameterization methods are needed to assess the complexity of the spatial distributions of these parameters in real aquifers. In this article, we introduce an adaptative parameterization to identify the distribution of hydraulic conductivity within the large-scale (4400 km(2) ) Upper Rhine aquifer. The method is based on adaptative multiscale triangulation (AMT) coupled with an inverse problem procedure that identifies the parameters' distributions by reducing the error between measured and simulated heads. The AMT method has the advantage of combining both zonation and interpolation approaches. The AMT method uses area-based interpolation rather than an interpolation based on stochastic features. The method is applied to a standard 2D groundwater model that takes into account the interactions between the aquifer and surface water bodies, groundwater recharge, and pumping wells. The simulation period covers 204 months, from January 1986 to December 2002. Recordings at 109 piezometers are used for model calibration. The simulated heads are globally quite accurate and reproduce the main dynamics of the system. The local hydraulic conductivities resulting from the AMT method agree qualitatively with existing local experimental observations across the Rhine aquifer.

  18. Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013

    Science.gov (United States)

    Arnold, Terri L.; DeSimone, Leslie A.; Bexfield, Laura M.; Lindsey, Bruce D.; Barlow, Jeannie R.; Kulongoski, Justin T.; Musgrove, Marylynn; Kingsbury, James A.; Belitz, Kenneth

    2016-06-20

    Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, which assess land-use effects on shallow groundwater quality; major aquifer study networks, which assess the quality of groundwater used for domestic supply; and enhanced trends networks, which evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, and radionuclides. These groundwater quality data are tabulated in this report. Quality-control samples also were collected; data from blank and replicate quality-control samples are included in this report.

  19. Parameter Estimation for Groundwater Models under Uncertain Irrigation Data.

    Science.gov (United States)

    Demissie, Yonas; Valocchi, Albert; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.

  20. Parameter estimation for groundwater models under uncertain irrigation data

    Science.gov (United States)

    Demissie, Yonas; Valocchi, Albert J.; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.

  1. Assessment and modeling of groundwater quality using WQI and GIS in Upper Egypt area.

    Science.gov (United States)

    Rabeiy, Ragab ElSayed

    2017-04-04

    The continuous growth and development of population need more fresh water for drinking, irrigation, and domestic in arid countries like Egypt. Evaluation the quality of groundwater is an essential study to ensure its suitability for different purposes. In this study, 812 groundwater samples were taken within the middle area of Upper Egypt (Sohag Governorate) to assess the quality of groundwater for drinking and irrigation purposes. Eleven water parameters were analyzed at each groundwater sample (Na(+), K(+), Ca(2+), Mg(2+), HCO3(-) SO4(2-), Fe(2+), Mn(2+), Cl(-), electrical conductivity, and pH) to exploit them in water quality evaluation. A classical statistics were applied for the raw data to examine the distribution of physicochemical parameters in the investigated area. The relationship between groundwater parameters was tested using the correlation coefficient where a strong relationship was found between several water parameters such as Ca(2+) and Cl(-). Water quality index (WQI) is a mathematical model used to transform many water parameters into a single indicator value which represents the water quality level. Results of WQI showed that 20% of groundwater samples are excellent, 75% are good for drinking, and 7% are very poor water while only 1% of samples are unsuitable for drinking. To test the suitability of groundwater for irrigation, three indices are used; they are sodium adsorption ration (SAR), sodium percentage (Na%), and permeability index (PI). For irrigation suitability, the study proved that most sampling sites are suitable while less than 3% are unsuitable for irrigation. The spatial distribution of the estimated values of WQI, SAR, Na%, PI, and each groundwater parameter was spatially modeled using GIS.

  2. Groundwater quality in western New York, 2011

    Science.gov (United States)

    Reddy, James E.

    2013-01-01

    Water samples collected from 16 production wells and 15 private residential wells in western New York from July through November 2011 were analyzed to characterize the groundwater quality. Fifteen of the wells were finished in sand and gravel aquifers, and 16 were finished in bedrock aquifers. Six of the 31 wells were sampled in a previous western New York study, which was conducted in 2006. Water samples from the 2011 study were analyzed for 147 physiochemical properties and constituents that included major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater generally is of acceptable quality, although at 30 of the 31 wells sampled, at least one of the following constituents was detected at a concentration that exceeded current or proposed Federal or New York State drinking-water standards: pH (two samples), sodium (eight samples), sulfate (three samples), total dissolved solids (nine samples), aluminum (two samples), arsenic (one sample), iron (ten samples), manganese (twelve samples), radon-222 (sixteen samples), benzene (one sample), and total coliform bacteria (nine samples). Existing drinking-water standards for color, chloride, fluoride, nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, Escherichia coli, and heterotrophic bacteria were not exceeded in any of the samples collected. None of the pesticides analyzed exceeded existing drinking-water standards.

  3. Can we calibrate simultaneously groundwater recharge and aquifer hydrodynamic parameters ?

    Science.gov (United States)

    Hassane Maina, Fadji; Ackerer, Philippe; Bildstein, Olivier

    2017-04-01

    By groundwater model calibration, we consider here fitting the measured piezometric heads by estimating the hydrodynamic parameters (storage term and hydraulic conductivity) and the recharge. It is traditionally recommended to avoid simultaneous calibration of groundwater recharge and flow parameters because of correlation between recharge and the flow parameters. From a physical point of view, little recharge associated with low hydraulic conductivity can provide very similar piezometric changes than higher recharge and higher hydraulic conductivity. If this correlation is true under steady state conditions, we assume that this correlation is much weaker under transient conditions because recharge varies in time and the parameters do not. Moreover, the recharge is negligible during summer time for many climatic conditions due to reduced precipitation, increased evaporation and transpiration by vegetation cover. We analyze our hypothesis through global sensitivity analysis (GSA) in conjunction with the polynomial chaos expansion (PCE) methodology. We perform GSA by calculating the Sobol indices, which provide a variance-based 'measure' of the effects of uncertain parameters (storage and hydraulic conductivity) and recharge on the piezometric heads computed by the flow model. The choice of PCE has the following two benefits: (i) it provides the global sensitivity indices in a straightforward manner, and (ii) PCE can serve as a surrogate model for the calibration of parameters. The coefficients of the PCE are computed by probabilistic collocation. We perform the GSA on simplified real conditions coming from an already built groundwater model dedicated to a subdomain of the Upper-Rhine aquifer (geometry, boundary conditions, climatic data). GSA shows that the simultaneous calibration of recharge and flow parameters is possible if the calibration is performed over at least one year. It provides also the valuable information of the sensitivity versus time, depending on

  4. SEASONAL VARIATIONS IN GROUNDWATER QUALITY OF VALSAD DISTRICT OF SOUTH GUJARAT (INDIA

    Directory of Open Access Journals (Sweden)

    P. Shroff

    2015-05-01

    Full Text Available Groundwater is an important precious natural resource. For optimum utilization of water resources, it is necessary to know both the quality as well as quantity of water. The present investigation is focused on seasonal variation in groundwater quality of Valsad district of south Gujarat (India. Groundwater samples from fifteen sampling stations were collected for two year i.e. from Aug 2007 to July 2009 and analyzed for pH, Colour, Total Hardness (TH, Calcium (Ca, Magnesium (Mg, Total Alkalinity (TA, Chloride and Sodium. Marginally higher level was observed in almost all parameters in summer season. No significant change observed in pH, Colour and Calcium.

  5. Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in central Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Bodrud-Doza

    2016-04-01

    Full Text Available This study investigates the groundwater quality in the Faridpur district of central Bangladesh based on preselected 60 sample points. Water evaluation indices and a number of statistical approaches such as multivariate statistics and geostatistics are applied to characterize water quality, which is a major factor for controlling the groundwater quality in term of drinking purposes. The study reveal that EC, TDS, Ca2+, total As and Fe values of groundwater samples exceeded Bangladesh and international standards. Ground water quality index (GWQI exhibited that about 47% of the samples were belonging to good quality water for drinking purposes. The heavy metal pollution index (HPI, degree of contamination (Cd, heavy metal evaluation index (HEI reveal that most of the samples belong to low level of pollution. However, Cd provide better alternative than other indices. Principle component analysis (PCA suggests that groundwater quality is mainly related to geogenic (rock–water interaction and anthropogenic source (agrogenic and domestic sewage in the study area. Subsequently, the findings of cluster analysis (CA and correlation matrix (CM are also consistent with the PCA results. The spatial distributions of groundwater quality parameters are determined by geostatistical modeling. The exponential semivariagram model is validated as the best fitted models for most of the indices values. It is expected that outcomes of the study will provide insights for decision makers taking proper measures for groundwater quality management in central Bangladesh.

  6. Groundwater quality and hydrogeological characteristics of Malacca state in Malaysia

    Directory of Open Access Journals (Sweden)

    Shirazi Sharif Moniruzzaman

    2015-03-01

    Full Text Available Groundwater quality and aquifer productivity of Malacca catchment in Peninsular Malaysia are presented in this article. Pumping test data were collected from 210 shallow and 17 deep boreholes to get well inventory information. Data analysis confirmed that the aquifers consisting of schist, sand, limestone and volcanic rocks were the most productive aquifers for groundwater in Malacca state. GIS-based aquifer productivity map was generated based on bedrock and discharge capacity of the aquifers. Aquifer productivity map is classified into three classes, namely high, moderate and low based on discharge capacity. Groundwater potential of the study area is 35, 57 and 8% of low, moderate and high class respectively. Fifty two shallow and 14 deep aquifer groundwater samples were analyzed for water quality. In some cases, groundwater quality analysis indicated that the turbidity, total dissolved solids, iron, chloride and cadmium concentrations exceeded the limit of drinking water quality standards.

  7. Hydrochemical characteristics and quality assessment of groundwater along the Manavalakurichi coast, Tamil Nadu, India

    Science.gov (United States)

    Srinivas, Y.; Aghil, T. B.; Hudson Oliver, D.; Nithya Nair, C.; Chandrasekar, N.

    2015-09-01

    The present study was carried out to find the groundwater quality of coastal aquifer along Manavalakurichi coast. For this study, a total of 30 groundwater samples were collected randomly from open wells and borewells. The concentration of major ions and other geochemical parameters in the groundwater were analyzed in the laboratory by adopting standard procedures suggested by the American Public Health Association. The order of the dominant cations in the study area was found to be Na+ > Ca2+ > Mg2+ > K+, whereas the sequence of dominant anions was {{Cl}}^{ - } > {{HCO}}3^{ - } > {{SO}}4^{2 - } . The hydrogeochemical facies of the groundwater samples were studied by constructing piper trilinear diagram which revealed the evidence of saltwater intrusion into the study area. The obtained geochemical parameters were compared with the standard permissible limits suggested by the World Health Organization and Indian Standard Institution to determine the drinking water quality in the study area. The analysis suggests that the groundwater from the wells W25 and W26 is unsuitable for drinking. The suitability of groundwater for irrigation was studied by calculating percent sodium, sodium absorption ratio and residual sodium carbonate values. The Wilcox and USSL plots were also prepared. It was found that the groundwater from the stations W1, W25 and W26 is unfit for irrigation. The Gibbs plots were also sketched to study the mechanisms controlling the geochemical composition of groundwater in the study area.

  8. Hydrochemical characteristics and quality assessment of groundwater along the Manavalakurichi coast, Tamil Nadu, India

    Science.gov (United States)

    Srinivas, Y.; Aghil, T. B.; Hudson Oliver, D.; Nithya Nair, C.; Chandrasekar, N.

    2017-06-01

    The present study was carried out to find the groundwater quality of coastal aquifer along Manavalakurichi coast. For this study, a total of 30 groundwater samples were collected randomly from open wells and borewells. The concentration of major ions and other geochemical parameters in the groundwater were analyzed in the laboratory by adopting standard procedures suggested by the American Public Health Association. The order of the dominant cations in the study area was found to be Na+ > Ca2+ > Mg2+ > K+, whereas the sequence of dominant anions was {{Cl}}^{ - } > {{HCO}}3^{ - } > {{SO}}4^{2 - }. The hydrogeochemical facies of the groundwater samples were studied by constructing piper trilinear diagram which revealed the evidence of saltwater intrusion into the study area. The obtained geochemical parameters were compared with the standard permissible limits suggested by the World Health Organization and Indian Standard Institution to determine the drinking water quality in the study area. The analysis suggests that the groundwater from the wells W25 and W26 is unsuitable for drinking. The suitability of groundwater for irrigation was studied by calculating percent sodium, sodium absorption ratio and residual sodium carbonate values. The Wilcox and USSL plots were also prepared. It was found that the groundwater from the stations W1, W25 and W26 is unfit for irrigation. The Gibbs plots were also sketched to study the mechanisms controlling the geochemical composition of groundwater in the study area.

  9. Groundwater Quality Assessment Using Averaged Water Quality Index: A Case Study of Lahore City, Punjab, Pakistan

    Science.gov (United States)

    Umair Shahid, Syed; Iqbal, Javed

    2016-10-01

    Water quality is considered as a major issue in mega cities of developing countries. The city of Lahore has over 10 million populations with the highest population density in the Punjab Province, Pakistan. Groundwater is the main source of drinking water in Lahore. The groundwater quality should be regularly monitored to cope up with drinking water quality issues. The water quality index (WQI), previously used in many studies was usually based on one-year data to analyze the water quality situation of the study area. However, the results obtained from the data, based on single observation from different points may have distortion. This might have occurred due to the inclusion of multiple types of errors induced in the data as a result of improper sampling design, lack of expertise in terms of both sampling method and sample testing, instrumental and human errors, etc. Therefore, the study evaluated the groundwater physicochemical parameters (turbidity, pH, total dissolved solids, hardness, chlorides, alkalinity and calcium) for three years. The averaged water quality index (AWQI) was computed using ArcGIS 10.3 model builder. The AWQI map indicated that the water quality in the study area was generally good except in few places like Anarkali, Baghbanpura, Allama Iqbal Town, Mughalpura and Mozang due to relatively higher turbidity levels. The results of this study can be used for decision making regarding provision of clean drinking water to the city of Lahore. Moreover, the methodology adopted in this study can be implemented in other mega cities as well to monitor groundwater quality.

  10. Groundwater quality in central New York, 2012

    Science.gov (United States)

    Reddy, James E.

    2014-01-01

    Water samples were collected from 14 production wells and 15 private wells in central New York from August through December 2012 in a study conducted by the U.S. Geological Survey in cooperation with the New York State Department of Environmental Conservation. The samples were analyzed to characterize the groundwater quality in unconsolidated and bedrock aquifers in this area. Fifteen of the wells are finished in sand-and-gravel aquifers, and 14 are finished in bedrock aquifers. Six of the 29 wells were sampled in a previous central New York study, which was conducted in 2007. Water samples from the 2012 study were analyzed for 147 physiochemical properties and constituents, including major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds, dissolved gases (argon, carbon dioxide, methane, nitrogen, oxygen), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that the groundwater generally is of acceptable quality, although for all of the wells sampled, at least one of the following constituents was detected at a concentration that exceeded current or proposed Federal or New York State drinking-water standards: color (2 samples), pH (7 samples), sodium (9 samples), chloride (2 samples), fluoride (2 samples), sulfate (2 samples), dissolved solids (8 samples), aluminum (4 samples), arsenic (1 sample), iron (9 samples), manganese (13 samples), radon-222 (13 samples), total coliform bacteria (6 samples), and heterotrophic bacteria (2 samples). Drinking-water standards for nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, and

  11. Spatial variability and long-term analysis of groundwater quality of Faisalabad industrial zone

    Science.gov (United States)

    Nasir, Muhammad Salman; Nasir, Abdul; Rashid, Haroon; Shah, Syed Hamid Hussain

    2016-09-01

    Water is the basic necessity of life and is essential for healthy society. In this study, groundwater quality analysis was carried out for the industrial zone of Faisalabad city. Sixty samples of groundwater were collected from the study area. The quality maps of deliberately analyzed results were prepared in GIS. The collected samples were analyzed for chemical parameters and heavy metals, such as total hardness, alkalinity, cadmium, arsenic, nickel, lead, and fluoride, and then, the results were compared with the WHO guidelines. The values of these results were represented by a mapping of quality parameters using the ArcView GIS v9.3, and IDW was used for raster interpolation. The long-term analysis of these parameters has been carried out using the `R Statistical' software. It was concluded that water is partially not fit for drinking, and direct use of this groundwater may cause health issues.

  12. Analysis of Groundwater Quality of Aligarh City, (India: Using Water Quality Index.

    Directory of Open Access Journals (Sweden)

    Khwaja M. Anwar

    2014-12-01

    Full Text Available Water is essential for all living organisms for their existence and metabolic process. Unethical human intervention in natural system and over exploitation of groundwater resources induces degradation of its quality. In many instances groundwater is used directly for drinking as well as for other purposes, hence the evaluation of groundwater quality is extremely important. The present study is aimed to analyze the underground water quality at Aligarh. In this study 80 water samples were collected from 40 places and analyzed for 14 water quality parameters for pre-monsoon and post-monsoon seasons (2012. The water quality index of these samples ranges from 18.92 to 74.67 pre-monsoon and 16.82 to 70.34 during post-monsoon. The study reveals that 50 % of the area under study falls in moderately polluted category. The ground water of Aligarh city needs some treatment before consumption and it also needs to be protected from contamination.

  13. Study of Seasonal Variation in Groundwater Quality of Sagar City (India) by Principal Component Analysis

    OpenAIRE

    Hemant Pathak; S. N. Limaye

    2011-01-01

    Groundwater is one of the major resources of the drinking water in Sagar city (India.). In this study 15 sampling station were selected for the investigations on 14 chemical parameters. The work was carried out during different months of the pre-monsoon, monsoon and post-monsoon seasons in June 2009 to June 2010. The multivariate statistics such as principal component and cluster analysis were applied to the datasets to investigate seasonal variations in groundwater quality. Principal axis fa...

  14. Positive and negative impacts of five Austrian gravel pit lakes on groundwater quality.

    Science.gov (United States)

    Muellegger, Christian; Weilhartner, Andreas; Battin, Tom J; Hofmann, Thilo

    2013-01-15

    Groundwater-fed gravel pit lakes (GPLs) affect the biological, organic, and inorganic parameters of inflowing groundwater through combined effects of bank filtration at the inflow, reactions within the lake, and bank filtration at the outflow. GPLs result from wet dredging for sand and gravel and may conflict with groundwater protection programs by removing the protective soil cover and exposing groundwater to the atmosphere. We have investigated the impact on groundwater of five GPLs with different sizes, ages, and mean residence times, and all having low post-excavation anthropogenic usage. The results revealed highly active biological systems within the lake water, in which primary producers significantly reduced inflowing nitrate concentrations. Decalcification also occurred in lake water, reducing water hardness, which could be beneficial for waterworks in hard groundwater areas. Downgradient groundwater nitrate and calcium concentrations were found to be stable, with only minor seasonal variations. Biological degradation of organic material and organic micropollutants was also observed in the GPLs. For young GPLs adequate sediment deposits may not yet have formed and degradation processes at the outflow may consequently not yet be well established. However, our results showed that within 5 years from the cessation of excavation a protective sediment layer is established that is sufficient to prevent the export of dissolved organic carbon to downgradient groundwater. GPLs can improve groundwater quality in anthropogenically (e.g., pesticides and nitrate) or geologically (e.g., hardness) challenging situations. However, post-excavation usage of GPLs is often dominated by human activities such as recreational activities, water sports, or fish farming. These activities will affect lake and groundwater quality and the risks involved are difficult to predict and monitor and can lead to overall negative impacts on groundwater quality. Copyright © 2012 Elsevier B

  15. This year`s model: Geochemical modeling and groundwater quality

    Energy Technology Data Exchange (ETDEWEB)

    Tuchfeld, H.A.; Simmons, S.P.; Jesionek, K.S. [GeoSyntec Consultants, Walnut Creek, CA (United States)]|[GeoSyntec Consultants, Atlanta, GA (United States); Romito, A.A. [Browning-Ferris Industries, Inc., Houston, TX (United States)

    1998-07-01

    It has been determined that landfill gas migration is a source of volatile organic compounds (VOCs) in groundwater. This can occur through: direct partitioning of migrating gas constituents into the groundwater; alteration of the physiochemical properties of the groundwater; and by indirect means (such as migration of landfill gas condensate and vadose zone water contaminated by landfill gas). This article examines the use of geochemical modeling as a useful tool for differentiating the effects of municipal solid waste (MSW) landfill gas versus leachate on groundwater quality at MSW landfill sites.

  16. Multivariate statistical approach for the assessment of groundwater quality in Ujjain City, India.

    Science.gov (United States)

    Vishwakarma, Vikas; Thakur, Lokendra Singh

    2012-10-01

    Groundwater quality assessment is an essential study which plays important role in the rational development and utilization of groundwater. Groundwater quality greatly influences the health of local people. The variations of water quality are essentially the combination of both anthropogenic and natural contributions. In order to understand the underlying physical and chemical processes this study analyzes 8 chemical and physical-chemical water quality parameters, viz. pH, turbidity, electrical conductivity, total dissolved solids, total alkalinity, total hardness, chloride and fluoride recorded at the 54 sampling stations during summer season of 2011 by using multivariate statistical techniques. Hierarchical clustering analysis (CA) is first applied to distinguish groundwater quality patterns among the stations, followed by the use of principle component analysis (PCA) and factor analysis (FA) to extract and recognize the major underlying factors contributing to the variations among the water quality measures. The first three components were chosen for interpretation of the data, which accounts for 72.502% of the total variance in the data set. The maximum number of variables, i.e. turbidity, EC, TDS and chloride were characterized by first component, while second and third were characterized by total alkalinity, total hardness, fluoride and pH respectively. This shows that hydro chemical constituents of the groundwater are mainly controlled by EC, TDS, and fluoride. The findings of the cluster analysis are presented in the form of dendrogram of the sampling stations (cases) as well as hydro chemical variables, which produced four major groupings, suggest that groundwater monitoring can be consolidated.

  17. Groundwater Quality in Central New York, 2007

    Science.gov (United States)

    Eckhardt, David A.V.; Reddy, J.E.; Shaw, Stephen B.

    2009-01-01

    Water samples were collected from 7 production wells and 28 private residential wells in central New York from August through December 2007 and analyzed to characterize the chemical quality of groundwater. Seventeen wells are screened in sand and gravel aquifers, and 18 are finished in bedrock aquifers. The wells were selected to represent areas of greatest groundwater use and to provide a geographical sampling from the 5,799-square-mile study area. Samples were analyzed for 6 physical properties and 216 constituents, including nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, phenolic compounds, organic carbon, and 4 types of bacteria. Results indicate that groundwater used for drinking supply is generally of acceptable quality, although concentrations of some constituents or bacteria exceeded at least one drinking-water standard at several wells. The cations detected in the highest concentrations were calcium, magnesium, and sodium; anions detected in the highest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrients were nitrate and ammonia, but no nutrients exceeded Maximum Contaminant Levels (MCLs). The trace elements barium, boron, lithium, and strontium were detected in every sample; the trace elements present in the highest concentrations were barium, boron, iron, lithium, manganese, and strontium. Fifteen pesticides, including seven pesticide degradates, were detected in water from 17 of the 35 wells, but none of the concentrations exceeded State or Federal MCLs. Sixteen volatile organic compounds were detected in water from 15 of the 35 wells. Nine analytes and three types of bacteria were detected in concentrations that exceeded Federal and State drinking-water standards, which typically are identical. One sample had a water color that exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) and the New York State MCL of 10 color

  18. GROUNDWATER QUALITY AND CONTAMINATION INDEX MAPPING IN CHANGCHUN CITY, CHINA

    Institute of Scientific and Technical Information of China (English)

    Hamadoun BOKAR; TANG Jie; LIN Nian-feng

    2004-01-01

    Groundwater in Changchun City, Jilin Province of China tends to be influenced by human activities.Chemical types of groundwater were detected in both shallow and deep groundwater were: HCO3- - Ca2+ and HCO3-of groundwater quality due to the increase of TDS, NO3- + NO2 (as Nitrogen) and TH contents have been observed from 1991 to 1998. Scatter analyses showed strong positive correlations between Ca2+, Cl- and NO3- ions and weak negative correlations between the depth of water table and Ca2+, 8O42-. C1- and NO3-ions. A mapping of contaminant index based on Chinese standard of groundwater showed that a large proportion of the groundwater in 1998 was deteriorated by human process. Despite their low values of sodium adsorption ratio (SAR), the most of the sampled wells were not suitable for drinking and agriculture purposes due to higher contents of NO3-, NO2 and Mn2+ ions.

  19. Hydrochemical Analysis and Evaluation of Groundwater Quality and Agriculture Soil of Khairpur Taluka, Sindh, Pakistan

    Directory of Open Access Journals (Sweden)

    Tajnees Pirzada

    2016-06-01

    Full Text Available The inhabitants of Khairpur Taluka mostly consume groundwater for drinking and agriculture purposes. The present study was conducted to monitor the essential quality parameters of groundwater and soil. Both groundwater and soil samples of the area were classified as alkaline. All the major ions except Na and SO4 were found within the permissible limits, while the concentrations of Zn, Fe, Co, Pb, Ni and Mn in studied groundwater samples were found above the specified limit of WHO. However, soil samples were found rich in major and trace elements except Cd, which was low in comparison to world average of agriculture soil. Irrigation character of water samples on SAR vs. Na% plot display fair type with few exceptions. The piper diagram implied mixed water composition with Na-Ca-Mg and HCO3-SO4+Cl as dominate ions. Diverse shapes of Stiff polygons also support the mixed nature of groundwater in the study area.

  20. [Bacteriological quality of groundwaters in cemeteries].

    Science.gov (United States)

    Martins, M T; Pellizari, V H; Pacheco, A; Myaki, D M; Adams, C; Bossolan, N R; Mendes, J M; Hassuda, S

    1991-02-01

    Groundwater samples collected by piezometers from three cemeteries in geologically distinct areas of S. Paulo and Santos, Brazil, were analysed in order to determine their hygienic and sanitary conditions. Fecal coliformes, fecal streptococci, sulfite reducer clostridia and Salmonella were searched for the purpose of evaluating sanitary conditions, and total coliforms, heterotrophic bacteria, proteolitic and lipolitic microorganisms for evaluating hygienic conditions. In some samples, nitrate levels were also determined. It was discovered that these waters do not present adequate sanitary and hygienic conditions and that, in some cases, nitrate levels were extremely high (75.7 mg/l). In most samples, higher levels of fecal streptococci and sufite reducer clostridia than fecal coliforms were detected, which seems to show that the two former indicators would be more appropriate for evaluating the sanitary conditions of this kind of water. Salmonella were detected in only one of 44 samples analysed and coliphages in none. In the statistical analysis, the correlation matrix showed significant correlations among three fecal pollution indicators, as well as among anaerobic and aerobic heterotrophs and lipolitic bacteria. A direct relationship between the deterioration of water quality and the geological and hydrogeological conditions of the environment studied was observed. When cemeteries are constructed these conditions should, therefore, be taken into consideration.

  1. Assessment of Groundwater Quality of Ilorin Metropolis using Water Quality Index Approach

    Directory of Open Access Journals (Sweden)

    J. A. Olatunji

    2015-06-01

    Full Text Available Groundwater as a source of potable water is becoming more important in Nigeria. Therefore, the need to ascertain the continuing potability of the sources cannot be over emphasised. This study is aimed at assessing the quality of selected groundwater samples from Ilorin metropolis, Nigeria, using the water quality index (WQI method. Twenty two water samples were collected, 10 samples from boreholes and 12 samples from hand dug wells. All these were analysed for their physico – chemical properties. The parameters used for calculating the water quality index include the following: pH, total hardness, total dissolved solid, calcium, fluoride, iron, potassium, sulphate, nitrate and carbonate. The water quality index for the twenty two samples ranged from 0.66 to 756.02 with an average of 80.77. Two of the samples exceeded 100, which is the upper limit for safe drinking water. The high values of WQI from the sampling locations are observed to be due to higher values of iron and fluoride. This study reveals that the investigated groundwaters are mostly potable and can be consumed without treatment. Nonetheless, the sources identified to be unsafe should be treated before consumption.

  2. GROUNDWATER QUALITY ASSESSMENT FOR DRINKING PURPOSES USING GIS MODELLING (CASE STUDY: CITY OF TABRIZ

    Directory of Open Access Journals (Sweden)

    M. Jeihouni

    2014-10-01

    Full Text Available Tabriz is the largest industrial city in North West of Iran and it is developing rapidly. A large proportion of water requirements for this city are supplied from dams. In this research, groundwater quality assessed through sampling 70 wells in Tabriz and its rural areas. The purposes of this study are: (1 specifying spatial distribution of groundwater quality parameters such as Chloride, Electrical Conductivity (EC, pH, hardness and sulphate (2 mapping groundwater quality for drinking purpose by employing Analytic Hierarchy Process (AHP method in the study area using GIS and Geosatistics. We utilized an interpolation technique of ordinary kriging for generating thematic map of each parameter. The final map indicates that the groundwater quality esaeicni from North to South and from West to East of the study area. The areas located in Center, South and South West of the study area have the optimum quality for drinking purposes which are the best locations to drill wells for supplying water demands of Tabriz city. In critical conditions, the groundwater quality map as a result of this research can be taken into account by East Azerbaijan Regional Water Company as decision support system to drill new wells or selecting existing wells to supply drinking water to Tabriz city.

  3. Groundwater Quality Monitoring at Logan Cave National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Proposal is to establish long-term groundwater parameters associated with the outflow from Logan Cave and the implication to the aquatic resources in the cave.

  4. QUALITY PARAMETERS IN NANOTECHNOLOGIC APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Ayşegül Akdoğan Eker

    2013-06-01

    Full Text Available Nanotechnology concept which has added a new dimension to our lives in recent years, is finding a place in every sector day by day. The combined effect of nanotechnology is almost equal to the industrial revolution of last 200 years and have is able to fill all developments in a few years. However this development should be taken under control. Otherwise unstoppable new structures will not ease life but will be a problem for humanity. For this purpose, the main parameters (from the start up stage of nano-technologic applications to the obtained product should be checked. These parameters are actually not different than the adaptation of the classical quality indicators for nanotechnology applications. Especially it plays an important role in obtaining a uniform distribution and regarding the features of the end product in nano-technological ceramic and etc. applications. The most important problem faced in particles of that size is the accumulation they create. Another problem is the increasing friction force as size gets smaller. The friction force of asubstance increases proportionally with the cube of its surface area. Another problem is surface tension. The increasing surface tension due to increasing surface area will cause the particles to attract and stick to each other. The structures aimed to be obtained are mostly complex and especially in upwards approach, it is thermodynamically very hard for the atoms to get into that order. Therefore in this announcement, we stated the quality parameters that will be taken into consideration in nano-technological applications and the methods for obtaining those parameters. The aim is to explain these parameters with all dimensions so that they will lead the way to the future nano-technological applications.

  5. Groundwater Quality Deterioration due to Municipal Solid Waste Dumping Practices

    Science.gov (United States)

    Parameswari, Kaliyaperumal; Karunakaran, Krishnasamy

    2011-07-01

    Groundwater is the major source of drinking water in both urban and rural India. The demand for water has increased over the years and this has led to water scarcity. The scarcity situation, especially in urban areas, is aggravated by the problem of water pollution or contamination by solid waste dumping. In many urban centers in India, the quality of groundwater is getting severely affected because of the widespread pollution, due to the discharge of untreated waste water in water bodies and leachate from the unscientific disposal of solid wastes. It is necessary to realize the importance of groundwater and preserve its quality through careful monitoring and remediation. This study focuses on the magnitude of groundwater pollution due to improper solid waste dumping practices prevailing in the southern part of the Chennai Metropolitan Area. The Perungudi dumpsite, a solid waste dumping site in the periphery of Chennai city, India, has been chosen for this study. The chemical characteristic of solid waste and leachate has been studied, and the groundwater samples from various locations around the dumpsite were collected and analyzed. Samples were analyzed for pH, electrical conductivity, total dissolved solids, chlorides, sulfate, calcium, magnesium, total hardness, sodium, potassium, BOD, and COD. Heavy metals such as lead, iron, and zinc have been analyzed. The study reveals that most of the groundwater samples do not conform to drinking water quality standards. The study also indicates that groundwater remediation techniques and proper groundwater quality monitoring on a regular basis are of utmost importance in the study area. A few in-situ groundwater remediation technologies have been suggested to improve the present water quality.

  6. ASSESSMENT OF WATER QUALITY INDEX FOR GROUNDWATER OF VALSAD DISTRICT OF SOUTH GUJARAT (INDIA

    Directory of Open Access Journals (Sweden)

    P. Shroff

    2015-07-01

    Full Text Available The present study aims the assessment of the water quality index (WQI for the groundwater of Valsad district of South Gujarat. Total fifteen sampling stations from five talukas of Valsad district were selected and groundwater samples were collected for two years (from August 2007 to July 2009. In this present study, WQI created by Canadian Council of Minister of the Environment (CCME was used. For calculating the WQI, groundwater samples were analyzed for seventeen physico-chemical parameters like pH, Colour, Electrical Conductivity (EC, Total Hardness (TH, Calcium (Ca, Magnesium (Mg, Total Alkalinity (TA, Total Dissolved Solids (TDS, Silica, Chloride, Sulphate, Fluoride, Sodium, Chemical Oxygen Demand (COD and metals like Copper (Cu, Lead (Pb and Manganese (Mn.  The WQI for Valsad district suggests that the groundwater quality is marginal.  

  7. ASSESSMENT OF WATER QUALITY INDEX FOR GROUNDWATER OF VALSAD DISTRICT OF SOUTH GUJARAT (INDIA

    Directory of Open Access Journals (Sweden)

    P. Shroff

    2013-12-01

    Full Text Available The present study aims the assessment of the water quality index (WQI for the groundwater of Valsad district of South Gujarat. Total fifteen sampling stations from five talukas of Valsad district were selected and groundwater samples were collected for two years (from August 2007 to July 2009. In this present study, WQI created by Canadian Council of Minister of the Environment (CCME was used. For calculating the WQI, groundwater samples were analyzed for seventeen physico-chemical parameters like pH, Colour, Electrical Conductivity (EC, Total Hardness (TH, Calcium (Ca, Magnesium (Mg, Total Alkalinity (TA, Total Dissolved Solids (TDS, Silica, Chloride, Sulphate, Fluoride, Sodium, Chemical Oxygen Demand (COD and metals like Copper (Cu, Lead (Pb and Manganese (Mn. The WQI for Valsad district suggests that the groundwater quality is marginal.

  8. Analysis of Water Quality Index for Groundwater in Gudur Mandal, SPSR Nellore District - Integrated With RS And GIS

    Directory of Open Access Journals (Sweden)

    Nambi Harish

    2016-05-01

    Full Text Available Groundwater has become a necessary resource over the past decades due to the increase in its usage for drinking, water supply, irrigation and industrial uses etc. Groundwater resources are now facing threats due to anthropogenic activities. The groundwater quality is equally important as that of quantity. Mapping of spatial variability of groundwater quality is of vital importance and it is particularly significant where groundwater is primary source of potable water. The present study has been undertaken to analyze the spatial variability of groundwater quality for Gudur Mandal, SPSR Nellore District located in the Andhra Pradesh State. MS ExcelAnalysis ToolPak is used for mathematical analysis of the parameters and ArcGIS Version 10.1 is used for the spatial analysis and it is a powerful tool for representation and analysis of spatial information related to water resources. A total of 280 bore well water samples are collected. The major water quality parameters such as pH, Total dissolved solids, Total alkalinity as calcium carbonate, Total hardness, Chloride, Sulphate, Nitrate, Fluoride, Iron have been analysed as per BIS 10500-2012. The spatial variation maps of these groundwater quality parameters were derived and integrated through GIS. The final integrated map shows five priority classes such as Excellent, Good, Poor, Very poor, Unsuitable for zones of the study area and provides a guideline for the suitability of groundwater for domestic purposes

  9. Ground-water flow related to streamflow and water quality

    Science.gov (United States)

    Van Voast, W. A.; Novitzki, R.P.

    1968-01-01

    A ground-water flow system in southwestern Minnesota illustrates water movement between geologic units and between the land surface and the subsurface. The flow patterns indicate numerous zones of ground-water recharge and discharge controlled by topography, varying thicknesses of geologic units, variation in permeabilities, and the configuration of the basement rock surface. Variations in streamflow along a reach of the Yellow Medicine River agree with the subsurface flow system. Increases and decreases in runoff per square mile correspond, apparently, to ground-water discharge and recharge zones. Ground-water quality variations between calcium sulfate waters typical of the Quaternary drift and sodium chloride waters typical of the Cretaceous rocks are caused by mixing of the two water types. The zones of mixing are in agreement with ground-water flow patterns along the hydrologic section.

  10. Assessment of Groundwater Quality along the Cooum River, Chennai, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    N. S. Elangovan

    2013-01-01

    Full Text Available Groundwater quality in Chennai city along the Cooum river, during the premonsoon (June–July and postmonsoon (Dec–Jan for three years, from 2009 to 2011, was analyzed. Groundwater samples were collected from 20 bore wells on either side of the river. The analysis focused on the determination of seven specific water quality parameters, namely, pH, EC, TDS, BOD, COD, Na and Pb, using standard procedures. The statistical analysis, like the mean and standard deviation, coefficient of variance, and correlation, and multilinear regression analysis of the obtained data were carried out. The analysis of the collected samples reveals that the stated water quality parameters have not complied with the WHO standards, and the water is not fit for drinking and domestic purposes. The correlation and multilinear regression analyses suggest that the conductivity has a significant correlation with the other six considered water quality parameters.

  11. Groundwater quality across scales: impact on nutrient transport to large water bodies

    Science.gov (United States)

    Dürr, Hans; Moosdorf, Nils; Mallast, Ulf

    2017-04-01

    High concentrations of dissolved nutrients such as nitrogen (N) and phosphorus (P) in groundwater are an increasing concern in many areas of the world. Especially regions with high agriculture impact see widespread declining groundwater quality, with considerable uncertainty mainly regarding the impact of phosphorus (P). Implications reach from direct impacts on different water users to discharge of nutrient-rich groundwater to rivers, lakes and coastal areas, where it can contribute to eutrophication, hypoxia or harmful algal blooms. While local-scale studies are abundant and management options exist, quantitative approaches at regional to continental scales are scarce and frequently have to deal with data inconsistencies or are temporally sparse. Here, we present the research framework to combine large databases of local groundwater quality to data sets of climatical, hydrological, geological or landuse parameters. Pooling of such information, together with robust methods such as water balances and groundwater models, can provide constraints such as upper boundaries and likely ranges of nutrient composition in various settings, or for the nutrient transport to large water bodies. Remote Sensing can provide spatial information on the location of groundwater seepage. Results will eventually help to identify focus areas and lead to improved understanding of the role of groundwater in the context of global biogeochemical cycles.

  12. Effects of Oil Spillage on Groundwater Quality In Nigeria

    Directory of Open Access Journals (Sweden)

    Nwachukwu A. N

    2014-06-01

    Full Text Available The purpose of the study was to ascertain the effect of oil spillage on groundwater quality in the oil producing Niger Delta region of Nigeria. The study was carried out in Abacheke community in Egbema Local Government area, Imo state.Water Samples were collected forquality analysis in boreholes/wells at three locations A, B, C. Locations A and B are areas with history of spillage while C is a location downstream with no history of oil spillage. The following parameters were tested for; physical parameters (temperature and turbidity, inorganic constituents (Conductivity, PH, TDS, DO, BOD, Mg, and P and organic constituents (Total hydro-carbonThe results showed the some parameters exceeded the WHO permissible levels. Comparatively, Sample C had a lower value of hydrocarbon content (0.6 mg/l while Samples A and B values were 0.9mg/l and 1.1mg/l respectively.The Turbidityvalue for sample C was 5 NTU compared to values of 14 and 18 NTU from samples A and B respectively. Results of PH test also showed that samples A and B were more acidic (5.56 and 5.98 respectively than Sample C. The higher level of Turbidity and Total hydro-carbon for samples A and B isan indication of oil pollution which is attributable to incessant spillage. It is therefore necessary that appropriate treatment be carried out on the water samples to avoid adverse health effects.We also recommend that comprehensive groundwater monitoring should be carried out in the Niger Delta area and cleanup exercises carried outwhenever there is an oil spill to prevent infiltration of oil into the ground water.

  13. Evaluation of groundwater quality in and around Peenya industrial area of Bangalore, South India using GIS techniques.

    Science.gov (United States)

    Pius, Anitha; Jerome, Charmaine; Sharma, Nagaraja

    2012-07-01

    Groundwater resource forms a significant component of the urban water supply. Declining groundwater levels in Bangalore Urban District is generally due to continuous overexploitation during the last two decades or more. There is a tremendous increase in demand in the city for good quality groundwater resource. The present study monitors the groundwater quality using geographic information system (GIS) techniques for a part of Bangalore metropolis. Thematic maps for the study area are prepared by visual interpretation of SOI toposheets on 1:50,000 scale using MapInfo software. Physicochemical analysis data of the groundwater samples collected at predetermined locations form the attribute database for the study, based on which spatial distribution maps of major water quality parameters are prepared using MapInfo GIS software. Water quality index was then calculated by considering the following water quality parameters--pH, total dissolved solids, total hardness, calcium hardness, magnesium hardness, alkalinity, chloride, nitrate and sulphate to find the suitability of water for drinking purpose. The water quality index for these samples ranged from 49 to 502. The high value of water quality index reveals that most of the study area is highly contaminated due to excessive concentration of one or more water quality parameters and that the groundwater needs pretreatment before consumption.

  14. Estimation of impacts on groundwater quality in an urban area of Ljubljana

    Science.gov (United States)

    Janža, Mitja; Prestor, Joerg; Pestotnik, Simona; Jamnik, Brigita

    2016-04-01

    Groundwater is a major source of drinking water supply in many cities worldwide. It is relatively stable and better-protected water resource compared to surface water and will have a vital role in assuring water-supply security in the future. In urbanized catchments numerous human activities (e.g. settling, industry, traffic, agriculture) take place which pose a threat to groundwater quality. For sustainable management of urban groundwater resources an integrated and adaptive approach based on continuous monitoring supported by modeling is needed. The aim of presented study was to develop a model of environmental pressures and impacts on Ljubljansko polje aquifer which is the main source exploited for the public drinking water supply of the city of Ljubljana. It is based on estimation of contaminants emissions from different sources, coupled with numerical transport modelling which is used to assess the impact on groundwater quality. The model was built up on detailed analysis of nitrogen mass balance and validated with monitoring data - concentration measurements of relevant chemical parameters. Based on the model simulations impacts of different sources of pollution on groundwater quality was estimated and priority of measures for improvement of chemical status of groundwater was defined.

  15. Assessment of Groundwater Quality of Ilorin Metropolis using Water ...

    African Journals Online (AJOL)

    Akorede

    groundwater samples from Ilorin metropolis, Nigeria, using the water quality index ... index to represent gradation in water quality was first ... defined as a rating reflecting the composite influence of a ... the susceptibility of water resources to atmospheric pollutant .... are largely undifferentiated and cover about 50% of the.

  16. Modeling of Groundwater Quantity and Quality Management, Nile Valley, Egypt

    Science.gov (United States)

    Owlia, R.; Fogg, G. E.

    2012-12-01

    Groundwater levels have been rising in the Luxor area of Egypt due to increased agricultural irrigation following the construction of the Aswan High Dam (AHD) in 1970. This has led to soil and groundwater salinity problems caused by increasing evapotranspiration from shallower water table, as well as the degradation of historical monuments whose foundations are weakening by capillary rise of water into the columns and stonework. While similar salinity problems exist elsewhere in the world (e.g., San Joaquin Valley of California), we hypothesize that as long as groundwater discharge to the Nile River continues and serves as a sink for the salt, the regional salt balance will be manageable and will not lead to irreversible salinization of soils. Further, we hypothesize that if a groundwater system such as this one becomes overdrafted, thereby cutting off groundwater discharge to the River, the system salt balance will be less manageable and possibly non-sustainable. With groundwater flow modeling we are investigating approaches for managing the irrigation and groundwater levels so as to eliminate water stresses on Egyptian monuments and antiquities. Consequences of possible actions for managing the water table through groundwater pumping and alternative irrigation practices will be presented. Moreover, through the use of high resolution modeling of system heterogeneity, we will simulate the long term salt balance of the system under various scenarios, including the overdraft case. The salt source will be a function of groundwater discharge to the surface via bare-soil evaporation and crop transpiration. The built-in heterogeneity will account for dispersion, fast transport in connected media and slow mass transfer between aquifer and aquitard materials. Key Words: Groundwater, modeling, water quality, sustainability, salinity, irrigated agriculture, Nile aquifer.

  17. Agricultural conversion of floodplain ecosystems: implications for groundwater quality.

    Science.gov (United States)

    Schilling, Keith E; Jacobson, Peter J; Vogelgesang, Jason A

    2015-04-15

    With current trends of converting grasslands to row crop agriculture in vulnerable areas, there is a critical need to evaluate the effects of land use on groundwater quality in large river floodplain systems. In this study, groundwater hydrology and nutrient dynamics associated with three land cover types (grassland, floodplain forest and cropland) were assessed at the Cedar River floodplain in southeastern Iowa. The cropland site consisted of newly-converted grassland, done specifically for our study. Our objectives were to evaluate spatial and temporal variations in groundwater hydrology and quality, and quantify changes in groundwater quality following land conversion from grassland to row crop in a floodplain. We installed five shallow and one deep monitoring wells in each of the three land cover types and recorded water levels and quality over a three year period. Crop rotations included soybeans in year 1, corn in year 2 and fallow with cover crops during year 3 due to river flooding. Water table levels behaved nearly identically among the sites but during the second and third years of our study, NO₃-N concentrations in shallow floodplain groundwater beneath the cropped site increased from 0.5 mg/l to more than 25 mg/l (maximum of 70 mg/l). The increase in concentration was primarily associated with application of liquid N during June of the second year (corn rotation), although site flooding may have exacerbated NO₃-N leaching. Geophysical investigation revealed differences in ground conductivity among the land cover sites that related significantly to variations in groundwater quality. Study results provide much-needed information on the effects of different land covers on floodplain groundwater and point to challenges ahead for meeting nutrient reduction goals if row crop land use expands into floodplains.

  18. Assessment of spatial structure of groundwater quality variables based on the entropy theory

    Directory of Open Access Journals (Sweden)

    Y. Mogheir

    2003-01-01

    Full Text Available Fundamental to the spatial sampling design of a groundwater quality monitoring network is the spatial structure of groundwater quality variables. The entropy theory presents an alternative approach to describe this variability. A case study is presented which used groundwater quality observations (13 years; 1987-2000 from groundwater domestic wells in the Gaza Strip, Palestine. The analyses of the spatial structure used the following variables: Electrical Conductivity (EC, Total Dissolved Solids (TDS, Calcium (Ca, Magnesium (Mg, Sodium (Na, Potassium (K, Chloride (Cl, Nitrate (NO3, Sulphate (SO4, alkalinity and hardness. For all these variables the spatial structure is described by means of Transinformation as a function of distance between wells (Transinformation Model and correlation also as a function of distance (Correlation Model. The parameters of the Transinformation Model analysed were: (1 the initial value of the Transinformation; (2 the rate of information decay; (3 the minimum constant value; and (4 the distance at which the Transinformation Model reaches its minimum value. Exponential decay curves were fitted to both models. The Transinformation Model was found to be superior to the Correlation Model in representing the spatial variability (structure. The parameters of the Transinformation Model were different for some variables and similar for others. That leads to a reduction of the variables to be monitored and consequently reduces the cost of monitoring. Keywords: transinformation, correlation, spatial structure, municipal wells, groundwater monitoring, entropy

  19. Assessment of Groundwater quality in Krishnagiri and Vellore Districts in Tamil Nadu, India

    Science.gov (United States)

    Shanmugasundharam, A.; Kalpana, G.; Mahapatra, S. R.; Sudharson, E. R.; Jayaprakash, M.

    2015-11-01

    Groundwater quality is important as it is the main factor determining its suitability for drinking, domestic, agricultural and industrial purposes. The suitability of groundwater for drinking and irrigation has been assessed in north and eastern part of Krishnagiri district, South-western part of Vellore district and contiguous with Andhra Pradesh states, India. A total of 31 groundwater samples were collected in the study area. The groundwater quality assessment has been carried out by evaluating the physicochemical parameters such as pH, EC, TDS, HCO3^{ - } , Cl-, SO4^{2 - } , Ca2+, Mg2+, Na+ and K+. The dominant cations are in the order of Na+ > K+ > Ca2+ > Mg2+ while the dominant anions have the trends of Cl- > HCO3^{ - } > SO4^{2 - } > CO3. The quality of the water is evaluated using Wilcox diagram and the results reveals that most of the samples are found to be suitable for irrigation. Based on these parameters, groundwater has been assessed in favor of its suitability for drinking and irrigation purpose.

  20. Physicochemical quality evaluation of groundwater and development of drinking water quality index for Araniar River Basin, Tamil Nadu, India.

    Science.gov (United States)

    Jasmin, I; Mallikarjuna, P

    2014-02-01

    Groundwater is the most important natural resource which cannot be optimally used and sustained unless its quality is properly assessed. In the present study, the spatial and temporal variations in physicochemical quality parameters of groundwater of Araniar River Basin, India were analyzed to determine its suitability for drinking purpose through development of drinking water quality index (DWQI) maps of the post- and pre-monsoon periods. The suitability for drinking purpose was evaluated by comparing the physicochemical parameters of groundwater in the study area with drinking water standards prescribed by the World Health Organization (WHO) and Bureau of Indian Standards (BIS). Interpretation of physicochemical data revealed that groundwater in the basin was slightly alkaline. The cations such as sodium (Na(+)) and potassium (K(+)) and anions such as bicarbonate (HCO3 (-)) and chloride (Cl(-)) exceeded the permissible limits of drinking water standards (WHO and BIS) in certain pockets in the northeastern part of the basin during the pre-monsoon period. The higher total dissolved solids (TDS) concentration was observed in the northeastern part of the basin, and the parameters such as calcium (Ca(2+)), magnesium (Mg(2+)), sulfate (SO4 (2-)), nitrate (NO3 (-)), and fluoride (F(-)) were within the limits in both the seasons. The hydrogeochemical evaluation of groundwater of the basin demonstrated with the Piper trilinear diagram indicated that the groundwater samples of the area were of Ca(2+)-Mg(2+)-Cl(-)-SO4 (2-), Ca(2+)-Mg(2+)-HCO3 (-) and Na(+)-K(+)-Cl(-)-SO4 (2-) types during the post-monsoon period and Ca(2+)-Mg(2+)-Cl(-)-SO4 (2-), Na(+)-K(+)-Cl(-)-SO4 (2-) and Ca(2+)-Mg(2+)-HCO3 (-) types during the pre-monsoon period. The DWQI maps for the basin revealed that 90.24 and 73.46% of the basin area possess good quality drinking water during the post- and pre-monsoon seasons, respectively.

  1. Water quality analysis of groundwater in crystalline basement rocks, Northern Ghana

    Science.gov (United States)

    Anku, Y.S.; Banoeng-Yakubo, B.; Asiedu, D.K.; Yidana, S.M.

    2009-01-01

    Hydrochemical data are presented for groundwater samples, collected from fractured aquifers in parts of northern Ghana. The data was collected to assess the groundwater suitability for domestic and agricultural use. Results of the study reveal that the pH of the groundwater in the area is slightly acidic to slightly alkaline. The electrical conductivity values, total dissolved solids (TDS) values and calcium, magnesium and sodium concentrations in the groundwater are generally below the limit set by the WHO for potable water supply. On the basis of activity diagrams, groundwater from the fractured aquifers appears to be stable within the montmorillonite field, suggesting weathering of silicate minerals. An inverse distance weighting interpolator with a power of 2 was applied to the data points to produce prediction maps for nitrate and fluoride. The distribution maps show the presence of high nitrate concentrations (50-194??mg/l) in some of the boreholes in the western part of the study area indicating anthropogenic impact on the groundwater. Elevated fluoride level (1.5-4??mg/l), higher than the WHO allowable fluoride concentration of 1.5, is recorded in the groundwater underlying the northeastern part of the study area, more specifically Bongo and its surrounding communities of the Upper East region. Results of this study suggest that groundwater from the fractured aquifers in the area exhibit low sodicity-low salinity (S1-C1), low sodicity-medium salinity (S1-C2) characteristics [United States Salinity Laboratory (USSL) classification scheme]. All data points from this study plot within the 'Excellent to good' category on a Wilcox diagram. Groundwater in this area thus appears to provide irrigation water of excellent quality. The hydrochemical results indicate that, although nitrate and fluoride concentrations in some boreholes are high, the groundwater in the study area, based on the parameters analyzed, is chemically potable and suitable for domestic and

  2. Water quality analysis of groundwater in crystalline basement rocks, Northern Ghana

    Science.gov (United States)

    Anku, Yvonne S.; Banoeng-Yakubo, Bruce; Asiedu, Daniel K.; Yidana, Sandow M.

    2009-09-01

    Hydrochemical data are presented for groundwater samples, collected from fractured aquifers in parts of northern Ghana. The data was collected to assess the groundwater suitability for domestic and agricultural use. Results of the study reveal that the pH of the groundwater in the area is slightly acidic to slightly alkaline. The electrical conductivity values, total dissolved solids (TDS) values and calcium, magnesium and sodium concentrations in the groundwater are generally below the limit set by the WHO for potable water supply. On the basis of activity diagrams, groundwater from the fractured aquifers appears to be stable within the montmorillonite field, suggesting weathering of silicate minerals. An inverse distance weighting interpolator with a power of 2 was applied to the data points to produce prediction maps for nitrate and fluoride. The distribution maps show the presence of high nitrate concentrations (50-194 mg/l) in some of the boreholes in the western part of the study area indicating anthropogenic impact on the groundwater. Elevated fluoride level (1.5-4 mg/l), higher than the WHO allowable fluoride concentration of 1.5, is recorded in the groundwater underlying the northeastern part of the study area, more specifically Bongo and its surrounding communities of the Upper East region. Results of this study suggest that groundwater from the fractured aquifers in the area exhibit low sodicity-low salinity (S1-C1), low sodicity-medium salinity (S1-C2) characteristics [United States Salinity Laboratory (USSL) classification scheme]. All data points from this study plot within the ‘Excellent to good’ category on a Wilcox diagram. Groundwater in this area thus appears to provide irrigation water of excellent quality. The hydrochemical results indicate that, although nitrate and fluoride concentrations in some boreholes are high, the groundwater in the study area, based on the parameters analyzed, is chemically potable and suitable for domestic and

  3. Groundwater quality assessment in the village of Lutfullapur Nawada, Loni, District Ghaziabad, Uttar Pradesh, India.

    Science.gov (United States)

    Singh, Vinod K; Bikundia, Devendra Singh; Sarswat, Ankur; Mohan, Dinesh

    2012-07-01

    The groundwater quality for drinking, domestic and irrigation in the village Lutfullapur Nawada, Loni, district Ghaziabad, U.P., India, has been assessed. Groundwater samples were collected, processed and analyzed for temperature, pH, conductivity, salinity, total alkalinity, carbonate alkalinity, bicarbonate alkalinity, total hardness, calcium hardness, magnesium hardness, total solids, total dissolved solids, total suspended solids, nitrate-nitrogen, chloride, fluoride, sulfate, phosphate, silica, sodium, potassium, calcium, magnesium, total chromium, cadmium, copper, iron, nickel, lead and zinc. A number of groundwater samples showed levels of electrical conductivity (EC), alkalinity, chloride, calcium, sodium, potassium and iron exceeding their permissible limits. Except iron, the other metals (Cr, Cd, Cu, Ni, Pb, and Zn) were analyzed below the permissible limits. The correlation matrices for 28 variables were performed. EC, salinity, TS and TDS had significant positive correlations among themselves and also with NO (3) (-) , Cl(-), alkalinity, Na(+), K(+), and Ca(2+). Fluoride was not significantly correlated with any of the parameters. NO (3) (-) was significantly positively correlated with Cl(-), alkalinity, Na(+), K(+) and Ca(2+). Chloride also correlated significantly with alkalinity, Na(+), K(+) and Ca(2+). Sodium showed a strong and positive correlation with K(+) and Ca(2+). pH was negatively correlated with most of the physicochemical parameters. This groundwater is classified as a normal sulfate and chloride type. Base-exchange indices classified 73% of the groundwater sources as the Na(+)-SO (4) (2-) type. The meteoric genesis indices demonstrated that 67% of groundwater sources belong to a deep meteoric water percolation type. Hydrochemical groundwater evaluations revealed that most of the groundwaters belong to the Na(+)-K(+)-Cl(-)-SO (4) (2-) type followed by Na(+)-K(+)-HCO (3) (-) type. Salinity, chlorinity and SAR indices indicated that majority

  4. [Effects of reclaimed water recharge on groundwater quality: a review].

    Science.gov (United States)

    Chen, Wei-Ping; Lü, Si-Dan; Wang, Mei-E; Jiao, Wen-Tao

    2013-05-01

    Reclaimed water recharge to groundwater is an effective way to relieve water resource crisis. However, reclaimed water contains some pollutants such as nitrate, heavy metals, and new type contaminants, and thus, there exists definite environmental risk in the reclaimed water recharge to groundwater. To promote the development of reclaimed water recharge to groundwater and the safe use of reclaimed water in China, this paper analyzed the relevant literatures and practical experiences around the world, and summarized the effects of different reclaimed water recharge modes on the groundwater quality. Surface recharge makes the salt and nitrate contents in groundwater increased but the risk of heavy metals pollution be smaller, whereas well recharge can induce the arsenic release from sedimentary aquifers, which needs to be paid more attention to. New type contaminants are the hotspots in current researches, and their real risks are unknown. Pathogens have less pollution risks on groundwater, but some virus with strong activity can have the risks. Some suggestions were put forward to reduce the risks associated with the reclaimed water recharge to groundwater in China.

  5. Hydrochemical and multivariate analysis of groundwater quality in the northwest of Sinai, Egypt.

    Science.gov (United States)

    El-Shahat, M F; Sadek, M A; Salem, W M; Embaby, A A; Mohamed, F A

    2017-08-01

    The northwestern coast of Sinai is home to many economic activities and development programs, thus evaluation of the potentiality and vulnerability of water resources is important. The present work has been conducted on the groundwater resources of this area for describing the major features of groundwater quality and the principal factors that control salinity evolution. The major ionic content of 39 groundwater samples collected from the Quaternary aquifer shows high coefficients of variation reflecting asymmetry of aquifer recharge. The groundwater samples have been classified into four clusters (using hierarchical cluster analysis), these match the variety of total dissolvable solids, water types and ionic orders. The principal component analysis combined the ionic parameters of the studied groundwater samples into two principal components. The first represents about 56% of the whole sample variance reflecting a salinization due to evaporation, leaching, dissolution of marine salts and/or seawater intrusion. The second represents about 15.8% reflecting dilution with rain water and the El-Salam Canal. Most groundwater samples were not suitable for human consumption and about 41% are suitable for irrigation. However, all groundwater samples are suitable for cattle, about 69% and 15% are suitable for horses and poultry, respectively.

  6. Uniqueness, scale, and resolution issues in groundwater model parameter identification

    Directory of Open Access Journals (Sweden)

    Tian-chyi J. Yeh

    2015-07-01

    Full Text Available This paper first visits uniqueness, scale, and resolution issues in groundwater flow forward modeling problems. It then makes the point that non-unique solutions to groundwater flow inverse problems arise from a lack of information necessary to make the problems well defined. Subsequently, it presents the necessary conditions for a well-defined inverse problem. They are full specifications of (1 flux boundaries and sources/sinks, and (2 heads everywhere in the domain at at least three times (one of which is t = 0, with head change everywhere at those times must being nonzero for transient flow. Numerical experiments are presented to corroborate the fact that, once the necessary conditions are met, the inverse problem has a unique solution. We also demonstrate that measurement noise, instability, and sensitivity are issues related to solution techniques rather than the inverse problems themselves. In addition, we show that a mathematically well-defined inverse problem, based on an equivalent homogeneous or a layered conceptual model, may yield physically incorrect and scenario-dependent parameter values. These issues are attributed to inconsistency between the scale of the head observed and that implied by these models. Such issues can be reduced only if a sufficiently large number of observation wells are used in the equivalent homogeneous domain or each layer. With a large number of wells, we then show that increase in parameterization can lead to a higher-resolution depiction of heterogeneity if an appropriate inverse methodology is used. Furthermore, we illustrate that, using the same number of wells, a highly parameterized model in conjunction with hydraulic tomography can yield better characterization of the aquifer and minimize the scale and scenario-dependent problems. Lastly, benefits of the highly parameterized model and hydraulic tomography are tested according to their ability to improve predictions of aquifer responses induced by

  7. Characterization of shallow groundwater quality in the Lower St. Johns River Basin: a case study

    Science.gov (United States)

    Ying Ouyang; Jia-En Zhang; Prem. Parajuli

    2013-01-01

    Characterization of groundwater quality allows the evaluation of groundwater pollution and provides information for better management of groundwater resources. This study characterized the shallow groundwater quality and its spatial and seasonal variations in the Lower St. Johns River Basin, Florida, USA, under agricultural, forest, wastewater, and residential land...

  8. Assessment of groundwater quality at a MSW landfill site using standard and AHP based water quality index: a case study from Ranchi, Jharkhand, India.

    Science.gov (United States)

    Chakraborty, Shubhrasekhar; Kumar, R Naresh

    2016-06-01

    Landfill leachate generated from open MSW dumpsite can cause groundwater contamination. The impact of open dumping of MSW on the groundwater of adjacent area was studied. To assess the spatial and temporal variations in groundwater quality, samples were collected around an open MSW dumping site in Ranchi city, Jharkhand, India. Groundwater samples were analysed for various physicochemical and bacteriological parameters for 1 year. Results indicated that the groundwater is getting contaminated due to vertical and horizontal migration of landfill leachate. Extent of contamination was higher in areas closer to the landfill as indicated by high alkalinity, total dissolved solids and ammonia concentration. Metals such as lead, iron, and manganese were present at concentrations of 0.097, 0.97 and 0.36 mg/L, respectively exceeding the Bureau of Indian Standards (BIS) 10,500 for drinking water. Enterobacteriaceae were also detected in several groundwater samples and highest coliform count of 2.1×10(4) CFU/mL was recorded from a dug well. In order to determine the overall groundwater quality, water quality index (WQI) was calculated using weighted arithmetic index method and this index was further modified by coupling with the analytical hierarchy process (AHP) to get specific information. WQI values indicated that the overall groundwater quality of the region came under "poor" category while zone wise classification indicated the extent of impact of landfill leachate on groundwater.

  9. Environmental impact of municipal dumpsite leachate on ground-water quality in Jawaharnagar, Rangareddy, Telangana, India

    Science.gov (United States)

    Soujanya Kamble, B.; Saxena, Praveen Raj

    2016-10-01

    The aim of the present work was to study the impact of dumpsite leachate on ground-water quality of Jawaharnagar village. Leachate and ground-water samples were investigated for various physico-chemical parameters viz., pH, total dissolved solids (TDS), total hardness (TH), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), chloride (Cl-), carbonates (CO3 2-), bicarbonates (HCO3 -), nitrates (NO3 -), and sulphates (SO4 2-) during dry and wet seasons in 2015 and were reported. The groundwater was hard to very hard in nature, and the concentrations of total dissolved solids, chlorides, and nitrates were found to be exceeding the permissible levels of WHO drinking water quality standards. Piper plots revealed that the dominant hydrochemical facies of the groundwater were of calcium chloride (CaCl2) type and alkaline earths (Ca2+ and Mg2+) exceed the alkali (Na+ and SO4 2-), while the strong acids (Cl- and SO4 2-) exceed the weak acids (CO3 2- and HCO3 -). According to USSL diagram, all the ground-water samples belong to high salinity and low-sodium type (C3S1). Overall, the ground-water samples collected around the dumpsite were found to be polluted and are unfit for human consumption but can be used for irrigation purpose with heavy drainage and irrigation patterns to control the salinity.

  10. A report on Groundwater quality studies in Malwa region of Punjab, MUKTSAR

    Directory of Open Access Journals (Sweden)

    Rajni Sharma

    2014-12-01

    Full Text Available Punjab is the most cultivated state in India with the highest consumption of fertilizers. Muktsar district is one of them. Economy of the district is based on the Agriculture crops and 80% population of the district is engaged in Agriculture. Sri Muktsar Sahib is situated in the cotton belt of Punjab. Paddy, Wheat, Sugarcane, Oilseeds, Pulses and vegetables are also cultivated in this area. This paper highlights the analysis of groundwater quality parameters and compares its suitability for irrigation and drinking purpose. Water samples were collected from hand-pumps at different depth in October 2010. . Water samples were analysed for almost all major cations, anions, dissolved heavy metals and turbidity. parameters like total hardness, EC, magnesium ratio, were calculated on the basis of chemical data. A questionnaire was also used to investigate perception of villagers on taste and odour. The heavy metals studied in industrial area of Muktsar were Mercury, arsenic and lead. Comparison of the concentration of the chemical constituents with WHO (world health organization drinking water standards of 2004 , ICMR limits and various classifications show that present status of groundwater in Muktsar is not suitable for drinking. Higher totalhardness (TH and total dissolved solids at numerous places indicate the unsuitability of groundwater for drinking and irrigation. Results obtained in this forms baseline data for the utility of groundwater. No clear correlation between the quality parameters studied here and perceived quality in terms of satisfactory taste response were obtained at electrical conductivity values higher than the threshold minimum acceptable value

  11. A CORRELATION AND REGRESSION STUDY ON THE GROUNDWATER QUALITY IN ALIGARH CITY, UTTAR PRADESH

    Directory of Open Access Journals (Sweden)

    Ummatul Fatima

    2015-07-01

    Full Text Available Ground water is the vital source of sustenance and survival of every living organism. The present study aimed at a statistical regression analysis of Groundwater at 16 locations of Aligarh city, Uttar Pradesh. A correlation study has been carried out amongst all possible pairs of 15 physico-chemical parameters viz., pH, total acidity, phenolphthalein alkalinity, total alkalinity, total hardness, calcium, magnesium, dissolved oxygen, chemical oxygen demand, turbidity, electrical conductivity, total solid, total dissolved solid, total suspended solid and chloride to assess groundwater quality. The correlation analysis provides an excellent tool for the prediction of parameter values within reasonable degree of accuracy. The existence of strong correlation between Total Hardness & Magnesium and Total Dissolved Solid & Total Solid are ascertained. The analysis reveals that the groundwater of the area needs some treatment before consumption and it also needs to be protected from the perils of contamination.

  12. Hydrogeochemical investigations and groundwater quality assessment of Torbat-Zaveh plain, Khorasan Razavi, Iran.

    Science.gov (United States)

    Nematollahi, M J; Ebrahimi, P; Razmara, M; Ghasemi, A

    2016-01-01

    Hydrogeochemical investigations of groundwater in Torbat-Zaveh plain have been carried out to assess the water quality for drinking and irrigation purposes. In this study, 190 groundwater samples were collected and analyzed for physicochemical parameters and major ion concentrations. The abundance of major cations and anions was in the following order: Na(+) > Mg(2+) > Ca(2+) > K(+), and Cl(-) > [Formula: see text] > [Formula: see text] > [Formula: see text]. As a result, alkaline element (Na(+)) exceeds alkaline earth elements (Mg(2+) and Ca(2+)), and strong acids (Cl(-) and [Formula: see text]) dominate weak acids ([Formula: see text] and [Formula: see text]) in majority of the groundwater samples. Statistical analyses including Spearman correlation coefficients and factor analysis display good correlation between physicochemical parameters (EC, TDS and TH) and Na(+), Mg(2+), Ca(2+), Cl(-) and [Formula: see text]. The results display that rock-weathering interactions and ion-exchange processes play important role in controlling groundwater chemistry. Saturation index values also indicate that water chemistry is significantly affected by carbonate minerals such as calcite, aragonite and dolomite. US Salinity Laboratory(USSL) and Wilcox diagrams together with permeability index values reveal that most of the groundwater samples are suitable for irrigation purpose. However, in some regions, the water samples do not indicate required irrigational quality.

  13. Effect of the extent of well purging on laboratory parameters of groundwater samples

    Science.gov (United States)

    Reka Mathe, Agnes; Kohler, Artur; Kovacs, Jozsef

    2017-04-01

    Chemicals reaching groundwater cause water quality deterioration. Reconnaissance and remediation demands high financial and human resources. Groundwater samples are important sources of information. Representativity of these samples is fundamental to decision making. According to relevant literature the way of sampling and the sampling equipment can affect laboratory concentrations measured in samples. Detailed and systematic research on this field is missing from even international literature. Groundwater sampling procedures are regulated worldwide. Regulations describe how to sample a groundwater monitoring well. The most common element in these regulations is well purging prior to sampling. The aim of purging the well is to avoid taking the sample from the stagnant water instead of from formation water. The stagnant water forms inside and around the well because the well casing provides direct contact with the atmosphere, changing the physico-chemical composition of the well water. Sample from the stagnant water is not representative of the formation water. Regulations regarding the extent of the purging are different. Purging is mostly defined as multiply (3-5) well volumes, and/or reaching stabilization of some purged water parameters (pH, specific conductivity, etc.). There are hints for sampling without purging. To define the necessary extent of the purging repeated pumping is conducted, triplicate samples are taken at the beginning of purging, at one, two and three times well volumes and at parameter stabilization. Triplicate samples are the means to account for laboratory errors. The subsurface is not static, the test is repeated 10 times. Up to now three tests were completed.

  14. Assessment of groundwater quality: a fusion of geochemical and geophysical information via Bayesian neural networks.

    Science.gov (United States)

    Maiti, Saumen; Erram, V C; Gupta, Gautam; Tiwari, Ram Krishna; Kulkarni, U D; Sangpal, R R

    2013-04-01

    Deplorable quality of groundwater arising from saltwater intrusion, natural leaching and anthropogenic activities is one of the major concerns for the society. Assessment of groundwater quality is, therefore, a primary objective of scientific research. Here, we propose an artificial neural network-based method set in a Bayesian neural network (BNN) framework and employ it to assess groundwater quality. The approach is based on analyzing 36 water samples and inverting up to 85 Schlumberger vertical electrical sounding data. We constructed a priori model by suitably parameterizing geochemical and geophysical data collected from the western part of India. The posterior model (post-inversion) was estimated using the BNN learning procedure and global hybrid Monte Carlo/Markov Chain Monte Carlo optimization scheme. By suitable parameterization of geochemical and geophysical parameters, we simulated 1,500 training samples, out of which 50 % samples were used for training and remaining 50 % were used for validation and testing. We show that the trained model is able to classify validation and test samples with 85 % and 80 % accuracy respectively. Based on cross-correlation analysis and Gibb's diagram of geochemical attributes, the groundwater qualities of the study area were classified into following three categories: "Very good", "Good", and "Unsuitable". The BNN model-based results suggest that groundwater quality falls mostly in the range of "Good" to "Very good" except for some places near the Arabian Sea. The new modeling results powered by uncertainty and statistical analyses would provide useful constrain, which could be utilized in monitoring and assessment of the groundwater quality.

  15. Artificial neural networks for defining the water quality determinants of groundwater abstraction in coastal aquifer

    Science.gov (United States)

    Lallahem, S.; Hani, A.

    2017-02-01

    Water sustainability in the lower Seybouse River basin, eastern Algeria, must take into account the importance of water quantity and quality integration. So, there is a need for a better knowledge and understanding of the water quality determinants of groundwater abstraction to meet the municipal and agricultural uses. In this paper, the artificial neural network (ANN) models were used to model and predict the relationship between groundwater abstraction and water quality determinants in the lower Seybouse River basin. The study area chosen is the lower Seybouse River basin and real data were collected from forty five wells for reference year 2006. Results indicate that the feed-forward multilayer perceptron models with back-propagation are useful tools to define and prioritize the important water quality parameters of groundwater abstraction and use. The model evaluation shows that the correlation coefficients are more than 95% for training, verification and testing data. The model aims to link the water quantity and quality with the objective to strengthen the Integrated Water Resources Management approach. It assists water planners and managers to better assess the water quality parameters and progress towards the provision of appropriate quantities of water of suitable quality.

  16. Factors influencing groundwater quality: towards an integrated management approach.

    Science.gov (United States)

    De Giglio, O; Quaranta, A; Barbuti, G; Napoli, C; Caggiano, G; Montagna, M T

    2015-01-01

    The safety of groundwater resources is a serious issue, particularly when these resources are the main source of water for drinking, irrigation and industrial use in coastal areas. In Italy, 85% of the water used by the public is of underground origin. The aim of this report is to analyze the main factors that make groundwater vulnerable. Soil characteristics and filtration capacity can promote or hinder the diffusion of environmental contaminants. Global climate change influences the prevalence and degree of groundwater contamination. Anthropic pressure causes considerable exploitation of water resources, leading to reduced water availability and the progressive deterioration of water quality. Management of water quality will require a multidisciplinary, dynamic and practical approach focused on identifying the measures necessary to reduce contamination and mitigate the risks associated with the use of contaminated water resources.

  17. Impacts of Tanneries on Quality of Groundwater in Pallavaram, Chennai Metropolitan City

    Directory of Open Access Journals (Sweden)

    K.Ramesh,

    2014-01-01

    Full Text Available The present study was carried out with the objective of determining the extent of groundwater pollution caused by tanning industries and solid waster dumpsite in Pallavaram area located south of Chennai (Madras, which is a town of number of small and large scale leather industries. About 22 groundwater samples were collected and analyzed for the concentration of physio-chemical parameters and trace ions during September 2011 and January 2012. Ca-Mg-Cl and Na-Cl are the major water types in this area. It is inferred that, total hardness falls in hard to very hard category. The water quality index rated as poor to very poor quality except few samples. The study reveals that the concentration of major ions and chromium are exceeding the permissible limit. Groundwater is unsuitable for human consumption as it contains higher concentration of major ions and chromium. Tannery uses a large number of chemicals during the process of discharging toxic wastes into open drains and municipality solid waste dumpsite to the nearby land is the major reasons deterioration of water quality in this area. Contamination of groundwater causes water scarcity for domestic purpose of this study is to highlight the impact of tannery effluent on groundwater

  18. Hydro chemical characteristic and Quality Assessment of Groundwater of Ranchi Township Area, Jharkhand, India

    Directory of Open Access Journals (Sweden)

    Prabhunath Singh

    2014-12-01

    Full Text Available In the present study, detail investigation of groundwater for the suitability of drinking, domestic and irrigation purposes in Ranchi township area. For this purpose, 27 groundwater samples from wells and tube wellswere collected and analyzed for pH, electrical conductivity (EC, total dissolved solids (TDS , major cations (Ca2+, Mg2+, Na+ and K+ and major anions (HCO3- F-, Cl-, NO3-, SO42-. pH of the analyzed samples indicates slightly alkaline nature of the water samples. Total dissolved solids of 94% of analyzed groundwater samples were falling in the category of fresh water and 6% in the category of brackish water. HCO3- and Cl- are dominant anions and Ca2+and Na+ as the dominant cation in the water chemistry.In majority of the samples, the analyzed parameters are well within the desirable limits and water is potable for drinking purposes. However, concentrations of EC, TDS, TH, Ca2+, and Mg2+exceed the desirable limit at few sites.Parameter like residual sodium carbonate (RSC, permeability index (PI, percent sodium (%Na, sodium adsorption ratio (SAR were calculated and plotted to understand the water quality and utilitarian aspect of groundwater for irrigation uses. The calculated parameters show that the majority of the groundwater samples are suitable for irrigation uses. However,high salinity values at few sites restrict the suitability of the water for irrigation uses.

  19. Relevance of water quality index for groundwater quality evaluation: Thoothukudi District, Tamil Nadu, India

    Science.gov (United States)

    Singaraja, C.

    2017-09-01

    The present hydrogeochemical study was confined to the Thoothukudi District in Tamilnadu, India. A total of 100 representative water samples were collected during pre-monsoon and post-monsoon and analyzed for the major cations (sodium, calcium, magnesium and potassium) and anions (chloride, sulfate, bicarbonate, fluoride and nitrate) along with various physical and chemical parameters (pH, total dissolved salts and electrical conductivity). Water quality index rating was calculated to quantify the overall water quality for human consumption. The PRM samples exhibit poor quality in greater percentage when compared with POM due to dilution of ions and agricultural impact. The overlay of WQI with chloride and EC corresponds to the same locations indicating the poor quality of groundwater in the study area. Sodium (Na %), sodium absorption ratio (SAR), residual sodium carbonate (RSC), residual sodium bicarbonate, permeability index (PI), magnesium hazards (MH), Kelly's ratio (KR), potential salinity (PS) and Puri's salt index (PSI) and domestic quality parameters such as total hardness (TH), temporary, permanent hardness and corrosivity ratio (CR) were calculated. The majority of the samples were not suitable for drinking, irrigation and domestic purposes in the study area. In this study, the analysis of salinization/freshening processes was carried out through binary diagrams such as of mole ratios of {SO}_{ 4}^{ 2- } /Cl- and Cl-/EC that clearly classify the sources of seawater intrusion and saltpan contamination. Spatial diagram BEX was used to find whether the aquifer was in the salinization region or in the freshening encroachment region.

  20. Implications of groundwater quality to corrosion problem and urban ...

    African Journals Online (AJOL)

    Bheema

    interaction with subsurface water. Being the major ... dealt with hydrogeochemistry but none on the impact of water quality on water pipes and ...... contamination of surface and subsurface water and saline residues in soils. ... for water supply(lifting, transportation and distribution). ..... Groundwater in the Urban Environment.

  1. Groundwater Dynamics and Quality Assessment in an Agricultural Area

    Directory of Open Access Journals (Sweden)

    Stefano L. Russo

    2011-01-01

    Full Text Available Problem statement: The analysis of the relationships among the different hydrogeological Units and the assessment of groundwater quality are fundamental to adopt suitable territorial planning measures aimed to reduce the potential groundwater pollution especially in agricultural regions. In this study, the characteristics of groundwater dynamics and the assessment of its quality in the Cuneo Plain (NW Italy were examined. Approach: In order to define the geological setting an intense bibliographic analysis has been performed by the authors. This analysis was implemented by several correlated land controls and specific surveys that have permitted to analyze to certain reliability the Quaternary evolution of the entire plain sector and the current relationships among the different geological bodies that strongly affect the groundwater dynamics. Results: The Quaternary alluvial deposits overlap a Tertiary sedimentary succession through a series of erosional unconformity surfaces. These Quaternary deposits highlight a variable thickness ranging from 80-100 m in the foothills of the mountains up to a few meters in the more distal portion of the plain. In these deposits there are several unconfined aquifers which are not hydraulically interconnected due to the deep fluvial incisions that reach the underlying tertiary substrate. The Cuneo plain is intensively populated and lot of villages and farms characterize the landscape. In the overall area it is present an intensive agricultural and livestock activity predominantly represented by crops of wheat and corn and farms of cattle and pigs. All these activities represent point and diffuse groundwater pollution sources and require a considerable amount of groundwater which is withdrawn from the Quaternary aquifers by means of thousands of water wells. The groundwater quality is strongly influenced by the content of nitrates and manganese. The nitrates are linked to pollution due to agricultural activities

  2. Groundwater quality in Maharashtra, India: focus on nitrate pollution.

    Science.gov (United States)

    Gupta, Indrani; Salunkhe, Abhaysinh; Rohra, Nanda; Kumar, Rakesh

    2011-10-01

    Groundwater Survey and Development Agency (GSDA), Central Ground Water Board (CGWB) and Maharashtra Pollution Control Board (MPCB) have been carrying out groundwater quality monitoring at about 1407 monitoring locations in various districts of Maharashtra state in India. The groundwater quality data for pH, TDS, total hardness, sulphate, flouride and nitrate were compared with BIS: 10500:2004-2005 standards for drinking purpose. The results show that nitrate pollution is becoming more prevalent in groundwater of Maharashtra. Water quality data during the period 2007-2009 show that 544 locations out of 1407 locations exceeded 45 mgl(-1), the allowable NO3 level for drinking water. About 227 locations exceeded nitrate level beyond 100 mgl(-1). At 87 talukas in 23 districts of Maharashtra the NO3 levels exceeded the standard in all samples monitored during 2007-2009. The Buldana district with highest locations (27) had nitrate above 100 mgl(-1) followed by Amravati (24) and Akola (20) districts. At 7 talukas in 4 districts, fluoride was found above permissible limit of 1.5 mgl(-1), 100% of the time. 2 talukas in 2 districts of Maharashtra showed 100% non compliance of pH as per BIS standard of 6.5-8.5 mgl(-1). The districts having good to excellent quality of groundwater were Bhandara, Gondia, Kolhapur, Mumbai city, Mumbai Suburban, Nandurbar, Raigad, Ratnagiri, Satara, Sindhudurg, Thane and Washim. Vaijapur taluka in Aurangabad, Sinnar in Nashik and Kalambh taluka in Osmanabad have very poor water quality. Paithan taluka in Aurangabad, Shegaon taluka at Buldhana district, Amolner taluka at Jalgaon district and Jafrabad in Jalna district have water unsuitable for drinking.

  3. Study of Seasonal Variation in Groundwater Quality of Sagar City (India by Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Hemant Pathak

    2011-01-01

    Full Text Available Groundwater is one of the major resources of the drinking water in Sagar city (India.. In this study 15 sampling station were selected for the investigations on 14 chemical parameters. The work was carried out during different months of the pre-monsoon, monsoon and post-monsoon seasons in June 2009 to June 2010. The multivariate statistics such as principal component and cluster analysis were applied to the datasets to investigate seasonal variations in groundwater quality. Principal axis factoring has been used to observe the mode of association of parameters and their interrelationships, for evaluating water quality. Average value of BOD, COD, ammonia and iron was high during entire study period. Elevated values of BOD and ammonia in monsoon, slightly more value of BOD in post-monsoon, BOD, ammonia and iron in pre-monsoon period reflected contribution on temporal effect on groundwater. Results of principal component analysis evinced that all the parameters equally and significantly contribute to groundwater quality variations. Factor 1 and factor 2 analysis revealed the DO value deteriorate due to organic load (BOD/Ammonia in different seasons. Hierarchical cluster analysis grouped 15 stations into four clusters in monsoon, five clusters in post-monsoon and five clusters in pre-monsoon with similar water quality features. Clustered group at monsoon, post-monsoon and pre-monsoon consisted one station exhibiting significant spatial variation in physicochemical composition. The anthropogenic nitrogenous species, as fallout from modernization activities. The study indicated that the groundwater sufficiently well oxygenated and nutrient-rich in study places.

  4. Geochemical processes controlling the groundwater quality in lower Palar river basin, southern India

    Indian Academy of Sciences (India)

    M Senthilkumar; L Elango

    2013-04-01

    Hydrogeochemical study of groundwater was carried out in a part of the lower Palar river basin, southern India to determine the geochemical processes controlling the groundwater quality. Thirty-nine groundwater samples were collected from the study area and analysed for pH, Eh, EC, Ca, Mg, Na, K, HCO3, CO3, Cl and SO4. The analysed parameters of the groundwater in the study area were found to be well within the safe range in general with respect to the Bureau of Indian Standards for drinking water except for few locations. The results of these analyses were used to identify the geochemical processes that are taking place in this region. Cation exchange and silicate weathering are the important processes controlling the major ion distribution of the study area. Mass balance reaction model NETPATH was used to assess the ion exchange processes. High concentration of Ca in groundwater of the study area is due to the release of Ca by aquifer material and adsorption of Na due to ion exchange processes. Groundwater of the study area is suitable for drinking and irrigation purposes except for few locations.

  5. Mapping groundwater quality distinguishing geogenic and anthropogenic contribution using NBL

    Science.gov (United States)

    Preziosi, Elisabetta; Ducci, Daniela; Condesso de Melo, Maria Teresa; Parrone, Daniele; Sellerino, Mariangela; Ghergo, Stefano; Oliveira, Joana; Ribeiro, Luis

    2015-04-01

    Groundwaters are threatened by anthropic activities and pollution is interesting a large number of aquifers worldwide. Qualitative and quantitative monitoring is required to assess the status and track its evolution in time and space especially where anthropic pressures are stronger. Up to now, groundwater quality mapping has been performed separately from the assessment of its natural status, i.e. the definition of the natural background level of a particular element in a particular area or groundwater body. The natural background level (NBL) of a substance or element allows to distinguish anthropogenic pollution from contamination of natural origin in a population of groundwater samples. NBLs are the result of different atmospheric, geological, chemical and biological interaction processes during groundwater infiltration and circulation. There is an increasing need for the water managers to have sound indications on good quality groundwater exploitation. Indeed the extension of a groundwater body is often very large, in the order of tens or hundreds of square km. How to select a proper location for good quality groundwater abstraction is often limited to a question of facility for drilling (access, roads, authorizations, etc.) or at the most related to quantitative aspects driven by geophysical exploration (the most promising from a transmissibility point of view). So how to give indications to the administrators and water managers about the exploitation of good quality drinking water? In the case of anthropic contamination, how to define which area is to be restored and to which threshold (e.g. background level) should the concentration be lowered through the restoration measures? In the framework of a common project between research institutions in Italy (funded by CNR) and Portugal (funded by FCT), our objective is to establish a methodology aiming at merging together 1) the evaluation of NBL and 2) the need to take into account the drinking water standards

  6. Application of optimisation techniques in groundwater quantity and quality management

    Indian Academy of Sciences (India)

    Amlan Das; Bithin Datta

    2001-08-01

    This paper presents the state-of-the-art on application of optimisation techniques in groundwater quality and quantity management. In order to solve optimisation-based groundwater management models, researchers have used various mathematical programming techniques such as linear programming (LP), nonlinear programming (NLP), mixed-integer programming (MIP), optimal control theory-based mathematical programming, differential dynamic programming (DDP), stochastic programming (SP), combinatorial optimisation (CO), and multiple objective programming for multipurpose management. Studies reported in the literature on the application of these methods are reviewed in this paper.

  7. Groundwater Quality Assessment for Drinking and Irrigation Purposes in Obuasi Municipality of Ghana, A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Anthony Ewusi

    2013-01-01

    Full Text Available Groundwater quality of the Obuasi municipality was assessed to understand the contamination processes due to the presence of various contaminant sources and complicated geochemical processes and the suitability of groundwater for irrigation and drinking purpose for a sustainable agriculture and basic human needs. Water samples were collected during the raining season when a rise in water table was expected and during the dry season. They were analyzed for major cations and anions. Parameters like sodium adsorption ratio, % sodium, electrical conductivity, total hardness, total dissolve solutes and stoechiometric relations were calculated on the basis of chemical data. A questionnaire was also used to investigate perception of consumers on taste and odour. Comparison of the concentration of the chemical constituents with World Health Organization (WHO drinking water standards of 2004 and various classifications show that present status of groundwater in Obuasi is good for drinking and irrigation purposes. Concentrations of major cations and anions in the groundwater systems vary spatially and temporally. Abundance of these anions is in the following order: Ca2+>Na+>Mg2+>K+ = HCO3->Cl-> SO24->H2SiO4Br->PO24->F-. In terms of rainy season impact, Obuasi groundwater shows dilution and flushing, however, samples show excessive leaching of different chemical components into the groundwater system leading to the enrichment of different anions and cations and this indicate pollution from extraneous sources. No clear correlation between the quality parameters and perceived quality in terms of satisfactory taste response were obtained at electrical conductivity values lower than the threshold minimum acceptable value.

  8. Assessment of groundwater quality and health risk in drinking water basin using GIS.

    Science.gov (United States)

    Şener, Şehnaz; Şener, Erhan; Davraz, Ayşen

    2017-02-01

    Eğirdir Lake basin was selected as the study area because the lake is the second largest freshwater lake in Turkey and groundwater in the basin is used as drinking water. In the present study, 29 groundwater samples were collected and analyzed for physico-chemical parameters to determine the hydrochemical characteristics, groundwater quality, and human health risk in the study area. The dominant ions are Ca(2+), Mg(2+), HCO3(2-), and SO4(2). According to Gibbs plot, the predominant samples fall in the rock-water interaction field. A groundwater quality index (WQI) reveals that the majority of the samples falls under good to excellent category of water, suggesting that the groundwater is suitable for drinking and other domestic uses. The Ca-Mg-HCO3, Ca-HCO3, Ca-SO4-HCO3, and Ca-Mg-HCO3-SO4 water types are the dominant water types depending on the water-rock interaction in the investigation area. Risk of metals to human health was then evaluated using hazard quotients (HQ) by ingestion and dermal pathways for adults and children. It was indicated that As with HQ ingestion >1 was the most important pollutant leading to non-carcinogenic concerns. It can be concluded that the highest contributors to chronic risks were As and Cr for both adults and children.

  9. Prospects and quality indices for groundwater development in Ibadan metropolis, southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Ajibade, O.M.

    2013-03-01

    Full Text Available An integrated geophysical and hydrogeochemical studies were conducted in part of Ibadan metropolis, Southwestern Nigeria to investigate the groundwater potential and quality for sustainable development. Interpreted results of vertical electrical sounding data revealed three to four geo-electric layers; top soil (22.1-441.4 Ωm, lateritic horizon (402.1-712.2 Ωm, clayey/sandyclay layer (2.95-66.0 Ωm and weathered/fractured bedrock (66.3-1056.7 Ωm. Stacked overburden isopach and basement isoresitivity maps revealed few areas with thick overburden and fractured basement, hence of apparently high groundwater prospect. Hydrogeochemical study indicates that groundwater in the study area is generally fresh, soft- moderately hard, slightly acidic and dominated by Na, Ca, Mg, Cl and HCO3 ions. The dominant hydrochemical facies is Na-Cl type with minor mixed Ca-Na-Cl and Ca-Cl types. Many of the analyzed parameters fall within recommended limits and thus, most of the groundwater in the study area are chemically suitable for drinking. A few however, recorded TDS, pH, NO3, Al, Mg and Cl concentrations above permissible levels, suggesting some concern in terms of potability. The groundwater quality for agricultural purposes was assessed using Sodium absorption ratio, permeability index and electrical conductivity values along with USSL and Wilcox diagrams, all indicating that most of the samples are excellent to good for irrigation.

  10. Assessment of groundwater quality for drinking and irrigation purposes using hydrochemical studies in Malwa region, southwestern part of Punjab, India

    Science.gov (United States)

    Kaur, Tajinder; Bhardwaj, Renu; Arora, Saroj

    2016-10-01

    Deterioration of groundwater quality due to anthropogenic activities is increasing at an alarming rate in most parts of the Punjab, but limited work has been carried out on groundwater quality and monitoring. This paper highlights the groundwater quality and compares its suitability for drinking and irrigation purpose in Malwa region, a southwestern part of Punjab. The Malwa region makes up the most cultivated area of Punjab with high consumption of pesticides and fertilizers. Twenty-four water samples representing groundwater sources were collected and analyzed for almost all major cations, anions and other physicochemical parameters. Analytical results of physicochemical analysis showed majority of the samples above the permissible limits of the Indian standards. The groundwater of the study area was very hard and the relative abundance of major cations and anions was Na+ > Ca2+ > Mg2+ > K+ and HCO3 - > SO4 2- > Cl-. Fluoride content was higher than permissible limit in 75 % of the samples. The mean concentration of arsenic in groundwater was 9.37 and 11.01µg/L during summer and winter season, respectively. The parameters like sodium adsorption ratio and sodium percentage (Na%) revealed good quality of groundwater for irrigation purposes, whereas magnesium ratio and corrosivity ratio values showed that water is not suitable for agriculture and domestic use. The dominant hydrochemical facies of groundwater was Ca-Mg-HCO3 and Ca-Mg-SO4-Cl. Chloro alkaline indices 1 and 2 indicated that reverse ion exchange is dominant in the region. The samples fall in rock dominance and evaporation dominance fields as indicated by Gibbs diagram. The saturation index shows that all the water samples were supersaturated with respect to carbonate minerals. This work thus concludes that groundwater in the study area is chemically unsuitable for domestic and agricultural uses. It is recommended to carry out a continuous water quality monitoring program and development of effective

  11. ASSESSMENT OF WATER QUALITY INDEX FOR GROUNDWATER ...

    African Journals Online (AJOL)

    2013-12-31

    Dec 31, 2013 ... measurement units in a single metric and its effectiveness as a communication tool. ... Fair. Water quality is usually protected but occasionally threatened or ... Electrical Conductivity (EC) value is an index to represent the total.

  12. Seasonal Variation in Groundwater Quality of Yavatmal District, India

    Directory of Open Access Journals (Sweden)

    P. N. Rajankar

    2011-01-01

    Full Text Available Seventy samples of groundwater were collected from different parts of Yavatmal District, India and analyzed. The results of this analysis were compared with the WHO water quality standards. The groundwater quality in this district showed slightly seasonal variation while the data computed in Water Quality Index (WQI calculator. The WQI was varied from 73.0 to 80.2 during pre monsoon and 68.7 to 72.4 in post monsoon season, which showed slightly seasonal variation. This may be attributed to surface runoff and percolation process. The results showed that, the water in these areas are bacteriologically not safe and need treatment before it is used for drinking.

  13. Virological control of groundwater quality using biomolecular tests.

    Science.gov (United States)

    Carducci, A; Casini, B; Bani, A; Rovini, E; Verani, M; Mazzoni, F; Giuntini, A

    2003-01-01

    Deep groundwater, even if generally protected, could be contaminated by surface or rain water infiltration through soil fractures, septic tanks, cesspits, land irrigation, disposal of wastewater and disposal of muds from depuration systems. The sanitary importance of such possible contamination is related to the different uses of the water and it is at the maximum level when it is intended for human use. Routine microbiological analyses do not consider viruses, only bacterial parameters, as contamination indicators. However, it is known that enteric viruses can survive a long time in deep aquifers and that they may not always be associated with bacterial indicators. The virological analysis of waters intended for drinking use is provided only as an occasional control exercised at the discretion of the sanitary authority. Technological difficulties with obtaining data about groundwater viral contamination led to a study to devise rapid and efficient methods for their detection and the application of these methods to samples from different sources. Four acid nucleic extraction techniques have been tested (classic proteinase K- phenol/chloroform, QIAamp Viral RNA Kit (Qiagen), SV Total RNA Isolation System (Promega) and NucleoSpin Virus L (Macherey-Nagel). Sensitivity and specificity of RT-PCR protocols for entero- (EV), hepatitis A (HAV) and small round structured (SRSV) viruses have been verified. Deep groundwater samples (100 L) were concentrated (2-step tangential flow ultrafiltration) and the concentrate contaminated with serial 10-fold dilutions of a known titre of poliovirus type 3. Extracted RNA was concentrated (microcon-100) and analysed by RT-PCR using specific EV primers and visualising amplification products by agarose gel electrophoresis. In addition, two different methods of RT-PCR for non-cultivable viruses have been tested: (a) RT-PCR and nested RT-PCR for HAV and (b) RT-PCR with generic primers and RT-PCR with specific primers for SRSV. Different

  14. Status and understanding of groundwater quality in the North San Francisco Bay groundwater basins, 2004

    Science.gov (United States)

    Kulongoski, Justin T.; Belitz, Kenneth; Landon, Matthew K.; Farrar, Christopher

    2010-01-01

    Groundwater quality in the approximately 1,000-square-mile (2,590-square-kilometer) North San Francisco Bay study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in northern California in Marin, Napa, and Sonoma Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA North San Francisco Bay study was designed to provide a spatially unbiased assessment of untreated groundwater quality in the primary aquifer systems. The assessment is based on water-quality and ancillary data collected by the USGS from 89 wells in 2004 and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter referred to as primary aquifers) were defined by the depth interval of the wells listed in the CDPH database for the North San Francisco Bay study unit. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallower groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifers of the North San Francisco Bay study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or

  15. Groundwater-Quality Assessment, Pike County, Pennsylvania, 2007

    Science.gov (United States)

    Senior, Lisa A.

    2009-01-01

    Pike County, a 545 square-mile area in northeastern Pennsylvania, has experienced the largest relative population growth of any county in the state from 1990 to 2000 and its population is projected to grow substantially through 2025. This growing population may result in added dependence and stresses on water resources, including the potential to reduce the quantity and degrade the quality of groundwater and associated stream base flow with changing land use. Groundwater is the main source of drinking water in the county and is derived primarily from fractured-rock aquifers (shales, siltstones, and sandstones) and some unconsolidated glacial deposits that are recharged locally from precipitation. The principal land uses in the county as of 2005 were public, residential, agricultural, hunt club/private recreational, roads, and commercial. The public lands cover a third of the county and include national park, state park, and other state lands, much of which are forested. Individual on-site wells and wastewater disposal are common in many residential areas. In 2007, the U.S. Geological Survey, in cooperation with the Pike County Conservation District, began a study to provide current information on groundwater quality throughout the county that will be helpful for water-resource planning. The countywide reconnaissance assessment of groundwater quality documents current conditions with existing land uses and may serve as a baseline of groundwater quality for future comparison. Twenty wells were sampled in 2007 throughout Pike County to represent groundwater quality in the principal land uses (commercial, high-density and moderate-density residential with on-site wastewater disposal, residential in a sewered area, pre-development, and undeveloped) and geologic units (five fractured-rock aquifers and one glacial unconsolidated aquifer). Analyses selected for the groundwater samples were intended to identify naturally occurring constituents from the aquifer or

  16. Groundwater quality assessment using geoelectrical and geochemical approaches: case study of Abi area, southeastern Nigeria

    Science.gov (United States)

    Ebong, Ebong D.; Akpan, Anthony E.; Emeka, Chimezie N.; Urang, Job G.

    2016-06-01

    The electrical resistivity technique which involved the Schlumberger depth sounding method and geochemical analyses of water samples collected from boreholes was used to investigate the suitability of groundwater aquifers in Abi for drinking and irrigation purposes. Fifty randomly located electrical resistivity data were collected, modeled, and interpreted after calibration with lithologic logs. Ten borehole water samples were collected and analysed to determine anion, cation concentrations and some physical and chemical parameters, such as water colour, temperature, total dissolved solids, and electrical conductivity. The results show that the lithostratigraphy of the study area is composed of sands, sandstones (fractured, consolidated and loosed), siltstones, shales (compacted and fractured) of the Asu River Group, Eze-Aku Formation which comprises the aquifer units, and the Nkporo Shale Formation. The aquifer conduits are known to be rich in silicate minerals, and the groundwater samples in some locations show a significant amount of Ca2+, Mg2+, and Na+. These cations balanced the consumption of H+ during the hydrolytic alteration of silicate minerals. The geochemical analysis of groundwater samples revealed dominant calcium-magnesium-carbonate-bicarbonate water facies. Irrigation water quality parameters, such as sodium absorption ratio, percentage of sodium, and permeability index, were calculated based on the physico-chemical analyses. The groundwater quality was observed to be influenced by the interaction of some geologic processes but was classified to be good to excellent, indicating its suitability for domestic and irrigation purposes.

  17. Groundwater quality assessment using geoelectrical and geochemical approaches: case study of Abi area, southeastern Nigeria

    Science.gov (United States)

    Ebong, Ebong D.; Akpan, Anthony E.; Emeka, Chimezie N.; Urang, Job G.

    2017-09-01

    The electrical resistivity technique which involved the Schlumberger depth sounding method and geochemical analyses of water samples collected from boreholes was used to investigate the suitability of groundwater aquifers in Abi for drinking and irrigation purposes. Fifty randomly located electrical resistivity data were collected, modeled, and interpreted after calibration with lithologic logs. Ten borehole water samples were collected and analysed to determine anion, cation concentrations and some physical and chemical parameters, such as water colour, temperature, total dissolved solids, and electrical conductivity. The results show that the lithostratigraphy of the study area is composed of sands, sandstones (fractured, consolidated and loosed), siltstones, shales (compacted and fractured) of the Asu River Group, Eze-Aku Formation which comprises the aquifer units, and the Nkporo Shale Formation. The aquifer conduits are known to be rich in silicate minerals, and the groundwater samples in some locations show a significant amount of Ca2+, Mg2+, and Na+. These cations balanced the consumption of H+ during the hydrolytic alteration of silicate minerals. The geochemical analysis of groundwater samples revealed dominant calcium-magnesium-carbonate-bicarbonate water facies. Irrigation water quality parameters, such as sodium absorption ratio, percentage of sodium, and permeability index, were calculated based on the physico-chemical analyses. The groundwater quality was observed to be influenced by the interaction of some geologic processes but was classified to be good to excellent, indicating its suitability for domestic and irrigation purposes.

  18. Groundwater quality in West Virginia, 1993-2008

    Science.gov (United States)

    Chambers, Douglas B.; Kozar, Mark D.; White, Jeremy S.; Paybins, Katherine S.

    2012-01-01

    Approximately 42 percent of all West Virginians rely on groundwater for their domestic water supply. However, prior to 2008, the quality of the West Virginia’s groundwater resource was largely unknown. The need for a statewide assessment of groundwater quality prompted the U.S. Geological Survey (USGS), in cooperation with West Virginia Department of Environmental Protection (WVDEP), Division of Water and Waste Management, to develop an ambient groundwater-quality monitoring program. The USGS West Virginia Water Science Center sampled 300 wells, of which 80 percent were public-supply wells, over a 10-year period, 1999–2008. Sites for this statewide ambient groundwater-quality monitoring program were selected to provide wide areal coverage and to represent a variety of environmental settings. The resulting 300 samples were supplemented with data from a related monitoring network of 24 wells and springs. All samples were analyzed for field measurements (water temperature, pH, specific conductance, and dissolved oxygen), major ions, trace elements, nutrients, volatile organic compounds, fecal indicator bacteria, and radon-222. Sub-sets of samples were analyzed for pesticides or semi-volatile organic compounds; site selection was based on local land use. Samples were grouped for comparison by geologic age of the aquifer, Groups included Cambrian, Ordovician, Silurian, Devonian, Pennsylvanian, Permian, and Quaternary aquifers. A comparison of samples indicated that geologic age of the aquifer was the largest contributor to variability in groundwater quality. This study did not attempt to characterize drinking water provided through public water systems. All samples were of raw, untreated groundwater. Drinking-water criteria apply to water that is served to the public, not to raw water. However, drinking water criteria, including U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL), non-enforceable secondary maximum contaminant level (SMCL

  19. Analyzing the effects of geological and parameter uncertainty on prediction of groundwater head and travel time

    Directory of Open Access Journals (Sweden)

    X. He

    2013-08-01

    Full Text Available Uncertainty of groundwater model predictions has in the past mostly been related to uncertainty in the hydraulic parameters, whereas uncertainty in the geological structure has not been considered to the same extent. Recent developments in theoretical methods for quantifying geological uncertainty have made it possible to consider this factor in groundwater modeling. In this study we have applied the multiple-point geostatistical method (MPS integrated in the Stanford Geostatistical Modeling Software (SGeMS for exploring the impact of geological uncertainty on groundwater flow patterns for a site in Denmark. Realizations from the geostatistical model were used as input to a groundwater model developed from Modular three-dimensional finite-difference ground-water model (MODFLOW within the Groundwater Modeling System (GMS modeling environment. The uncertainty analysis was carried out in three scenarios involving simulation of groundwater head distribution and travel time. The first scenario implied 100 stochastic geological models all assigning the same hydraulic parameters for the same geological units. In the second scenario the same 100 geological models were subjected to model optimization, where the hydraulic parameters for each of them were estimated by calibration against observations of hydraulic head and stream discharge. In the third scenario each geological model was run with 216 randomized sets of parameters. The analysis documented that the uncertainty on the conceptual geological model was as significant as the uncertainty related to the embedded hydraulic parameters.

  20. ASSESSMENT OF GROUNDWATER QUALITY IN SUNAMGANJ OF BANGLADESH

    Directory of Open Access Journals (Sweden)

    F. Raihan, J. B. Alam

    2008-07-01

    Full Text Available In this study, groundwater quality in Sunamganj of Bangladesh was studied based on different indices for irrigation and drinking uses. Samples were investigated for sodium absorption ratio, soluble sodium percentage, residual sodium carbonate, electrical conductance, magnesium adsorption ratio, Kelly's ratio, total hardness, permeability index, residual sodium bi-carbonate to investigate the ionic toxicity. From the analytical result, it was revealed that the values of Sodium Adsorption Ratio indicate that ground water of the area falls under the category of low sodium hazard. So, there was neither salinity nor toxicity problem of irrigation water, so that ground water can safely be used for long-term irrigation. Average Total Hardness of the samples in the study area was in the range of between 215 mg/L at Tahirpur and 48250 mg/L at Bishamvarpur. At Bishamvarpur, the water was found very hard. Average total hardness of the samples was in the range of between 215 mg/L at Tahirpur and 48250 mg/L at Bishamvarpur. At Bishamvarpur, the water was found very hard. It was shown based on GIS analysis that the groundwater quality in Zone-1 could be categorized of "excellent" class, supporting the high suitability for irrigation. In Zone-2 and Zone-3, the groundwater quality was categorized as "risky" and "poor" respectively. The study has also made clear that GIS-based methodology can be used effectively for ground water quality mapping even in small catchments.

  1. Seasonal variations of some physicochemical parameters of groundwater in crude oil flow stations

    Directory of Open Access Journals (Sweden)

    Inengite A.K.

    2013-01-01

    Full Text Available Groundwater quality monitoring of some oil locations in the Niger Delta were investigated in order to establish the influence of oil production and storage activities on the groundwater quality of these areas. Water samples were collected from groundwater monitoring boreholes, monthly for twenty four months, during the operational phase of the facilities and evaluated. Analytical techniques employed were those specified by the Department of Petroleum Resources and American Public Health Association. The physicochemical parameters analysed were temperature, pH, electrical conductivity, turbidity, chloride, total hardness, nitrate, sulphate, phosphate and dissolved oxygen. Results obtained indicated that temperature, showed no significant difference for both seasons at P<0.05 using the students t- test, while conductivity, chloride and total hardness showed significantly higher values in the dry than in the rainy season. While pH, nitrate, sulphate, phosphate, dissolved oxygen (DO and turbidity showed higher values in the rainy than in the dry season. The mean values ranged from 24.0 to 27.90C for temperature which showed no significant difference between rainy and dry season at P<0.05 confidence limit. pH values for the groundwater ranged from 4.83 to 7.99, indicating that some locations were more acidic than the FMENV and WHO standards of 6.5 to 8.5. Conductivity ranged from 38.22 to 241.776µS/cm, chloride 7.14 to 39.17mg/l, DO 1.98 to 6.23mg/l, turbidity 0.11 to 5.45NTU and total hardness 9.06 to 64.75mg/l. The nutrient values of the samples ranged from 0.75 to 33.64mg/l for sulphate, 0.22 to 3.84mg/l for phosphate and 0.11 to 3.54mg/l for nitrate. All these were within permissible limits for domestic water acceptability. Although, the concentration of some parameters fell within the acceptable limits, these sources of water may be unacceptable for potable and industrial uses without treatment.

  2. Using GA-Ridge regression to select hydro-geological parameters influencing groundwater pollution vulnerability.

    Science.gov (United States)

    Ahn, Jae Joon; Kim, Young Min; Yoo, Keunje; Park, Joonhong; Oh, Kyong Joo

    2012-11-01

    For groundwater conservation and management, it is important to accurately assess groundwater pollution vulnerability. This study proposed an integrated model using ridge regression and a genetic algorithm (GA) to effectively select the major hydro-geological parameters influencing groundwater pollution vulnerability in an aquifer. The GA-Ridge regression method determined that depth to water, net recharge, topography, and the impact of vadose zone media were the hydro-geological parameters that influenced trichloroethene pollution vulnerability in a Korean aquifer. When using these selected hydro-geological parameters, the accuracy was improved for various statistical nonlinear and artificial intelligence (AI) techniques, such as multinomial logistic regression, decision trees, artificial neural networks, and case-based reasoning. These results provide a proof of concept that the GA-Ridge regression is effective at determining influential hydro-geological parameters for the pollution vulnerability of an aquifer, and in turn, improves the AI performance in assessing groundwater pollution vulnerability.

  3. Groundwater quality and its suitability for drinking and irrigational use in the Southern Tiruchirappalli district, Tamil Nadu, India

    Science.gov (United States)

    Selvakumar, S.; Ramkumar, K.; Chandrasekar, N.; Magesh, N. S.; Kaliraj, S.

    2014-12-01

    A total of 20 groundwater samples were collected from both dug and bore wells of southern Tiruchirappalli district and analyzed for various hydrogeochemical parameters. The analyzed physicochemical parameters such as pH, electrical conductivity, total dissolved solids, calcium, magnesium, sodium, potassium, bicarbonate, carbonate, sulfate, chloride, nitrate, and fluoride are used to characterize the groundwater quality and its suitability for drinking and irrigational uses. The results of the chemical analysis indicates that the groundwater in the study area is slightly alkaline and mainly contains Na+, Ca2+, and Mg2+ cations as well as HCO3 2-, Cl-, SO4 2-and NO3 - anions. The total dissolved solids mainly depend on the concentration of major ions such as Ca, Mg, Na, K, HCO3, Cl, and SO4. Based on TDS, 55 % of the samples are suitable for drinking and rest of the samples are unsuitable for drinking. The total hardness indicates that majority of the groundwater samples are found within the permissible limit of WHO. The dominant hydrochemical facies for groundwater are Ca-Mg-Cl, Ca-HCO3, and Ca-Cl type. The USSL graphical geochemical representation of groundwater quality suggests that majority of the water samples belongs to high medium salinity with low alkali hazards. The Gibb's plot indicates that the groundwater chemistry of the study area is mainly controlled by evaporation and rock-water interaction. Spearman's correlation and factor analysis were used to distinguish the statistical relation between different ions and contamination source in the study area.

  4. Groundwater-quality characteristics for the Wyoming Groundwater-Quality Monitoring Network, November 2009 through September 2012

    Science.gov (United States)

    Boughton, Gregory K.

    2014-01-01

    Groundwater samples were collected from 146 shallow (less than or equal to 500 feet deep) wells for the Wyoming Groundwater-Quality Monitoring Network, from November 2009 through September 2012. Groundwater samples were analyzed for physical characteristics, major ions and dissolved solids, trace elements, nutrients and dissolved organic carbon, uranium, stable isotopes of hydrogen and oxygen, volatile organic compounds, and coliform bacteria. Selected samples also were analyzed for gross alpha radioactivity, gross beta radioactivity, radon, tritium, gasoline range organics, diesel range organics, dissolved hydrocarbon gases (methane, ethene, and ethane), and wastewater compounds. Water-quality measurements and concentrations in some samples exceeded numerous U.S. Environmental Protection Agency (EPA) drinking water standards. Physical characteristics and constituents that exceeded EPA Maximum Contaminant Levels (MCLs) in some samples were arsenic, selenium, nitrite, nitrate, gross alpha activity, and uranium. Total coliforms and Escherichia coli in some samples exceeded EPA Maximum Contaminant Level Goals. Measurements of pH and turbidity and concentrations of chloride, sulfate, fluoride, dissolved solids, aluminum, iron, and manganese exceeded EPA Secondary Maximum Contaminant Levels in some samples. Radon concentrations in some samples exceeded the alternative MCL proposed by the EPA. Molybdenum and boron concentrations in some samples exceeded EPA Health Advisory Levels. Water-quality measurements and concentrations also exceeded numerous Wyoming Department of Environmental Quality (WDEQ) groundwater standards. Physical characteristics and constituents that exceeded WDEQ Class I domestic groundwater standards in some samples were measurements of pH and concentrations of chloride, sulfate, dissolved solids, iron, manganese, boron, selenium, nitrite, and nitrate. Measurements of pH and concentrations of chloride, sulfate, dissolved solids, aluminum, iron

  5. Hydrogeochemical assessment of groundwater quality in parts of the niger delta, Nigeria

    Science.gov (United States)

    Amadi, P. A.; Ofoegbu, C. O.; Morrison, T.

    1989-11-01

    Detailed hydrogeochemical analysis of several samples of groundwater collected from parts of the Niger Delta, Nigeria has been carried out in an effort to assess the quality of groundwater in the area. Results obtained showed the groundwater in the area to be enriched in Na+, Ca++, Mg++, Cl-, HCO{3/-}, and SO{4/-}. The concentration of these ions as well as such parameters as salinity, total hardness, and TDS are below the World Health Organization (WHO) standards for drinking water. The concentration of Ca++ was found to be higher than Mg++ except in some areas very close to the coast suggesting the encroachment of saltwater. This encroachment of saltwater is further indicated by the general increase in Cl- and a decreased in HCO{3/-} content towards the coast and Na/Cl ratios. On the basis of the present hydrogeochemical studies, five groundwater types have been recognized to occur in the area of study. These are (1) Sodium-Calcium-Magnesium-Bicarbonate type (Na-Ca-Mg-5HCO3), (2) Iron-Calcium-Bicarbonate type (Fe-Ca-4HCO3), (3) Sodium-Calcium-Magnesium-Sulfate type (Na - Ca - Mg - tfrac{5}{2}SO_4 ), (4) Iron-Chloride-Bicarbonate (Fe-Cl-HCO3), and (5) Magnesium-Chloride type (Mg-2Cl). The assemblage of groundwater types in the area shows that both compound and single groundwater types occur. The geochemical characteristics of the groundwaters are thought to be closely related to the peculiar geologic and hydrologic conditions that prevail in the Niger Delta area of Nigeria.

  6. Groundwater quality in the Upper Santa Ana Watershed study unit, California

    Science.gov (United States)

    Kent, Robert; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Upper Santa Ana Watershed is one of the study units being evaluated.

  7. Groundwater quality in the Bear Valley and Lake Arrowhead Watershed, California

    Science.gov (United States)

    Mathany, Timothy; Burton, Carmen; Fram, Miranda S.

    2017-06-20

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Bear Valley and Lake Arrowhead Watershed study areas in southern California compose one of the study units being evaluated.

  8. Chemometric analysis of groundwater quality data around municipal landfill and paper factory and their potential influence on population’s health

    Directory of Open Access Journals (Sweden)

    Ljiljana Čačić

    2012-02-01

    Full Text Available Aim To assess the level of 15 groundwater quality parameters in groundwater samples collected around municipal landfill and paper factory in order to evaluate usefulness of the groundwater and its possible implication on the human health. Methods Obtained data have been analyzed by principal component analysis (PCA technique, in order to differentiate the groundwater samples on the basis of their compositional differences and origin. Results Wastes and effluents from municipal landfill did not contribute significantly to the pollution of the aquatic medium. Groundwater degradation caused by high contents of nitrate, mineral oils, organic and inorganic matters was particularly expressed in the narrow area of the city centre, near the paper factory and most likely it has occurred over a long period of time. The results have shown that the concentrations of the most measured parameters(NO3-N, NH4-N, oils, organic matter, Fe, Pb, Ni and Cr were above llowed limits for drinking and domestic purposes. onclusion This study has provided important information on cological status of the groundwater systems and for identification f groundwater quality parameters with concentrations above llowable limits for human consumption. The results generally evealed that groundwater assessed in this study mainly does not atisfy safe limits for drinking water and domestic use. As a consequence, ontaminated groundwater becomes a large hygienic nd toxicological problem, since it considerably impedes groundwater tilization. Even though, all of these contaminants havenot yet reached toxic levels, they still represent long term risk for ealth of the population.

  9. A proposed ground-water quality monitoring network for Idaho

    Science.gov (United States)

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  10. Groundwater quality assessment for domestic and agriculture purposes in Puducherry region

    Science.gov (United States)

    Sridharan, M.; Senthil Nathan, D.

    2017-03-01

    Totally about 174 groundwater samples have been collected during pre-monsoon and post-monsoon season to study the suitability for domestic and agriculture purposes along the coastal aquifers of Puducherry region. Parameters such as pH, total dissolved solids (TDS), electrical conductivity (EC), sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), bicarbonate (HCO3), chloride (Cl) and sulfate (SO4) were analyzed to assess the suitability of groundwater for domestic purposes. Sodium adsorption ratio (SAR), magnesium adsorption ratio (MAR), residual sodium bicarbonate (RSC), soluble sodium percentage (Na%), permeability index (PI) and chlorinity index were assessed for irrigation purposes. The higher concentration of ions such as Na, Ca, Cl and So4 indicates seawater intrusion, mineral dissolution, intense agricultural practices and improper sewage disposal. The level of EC, TDS and hardness in the water samples indicates that maximum of them are suitable for drinking and domestic purposes. The parameters such as SAR, Na%, PI, MAR and Chlorinity index indicates that majority of water sample are very good to moderately suitable for agriculture. In pre-monsoon, RSC of about 5.7% of samples was higher which when used for a longer time alter the soil properties and reduce crop production. Wilcox diagram suggests that water samples are of medium saline to low sodium type indicating that groundwater is suitable for irrigation. Temporal variation of groundwater quality shows significant increasing trend in EC, TDS and ions like Mg, K and Cl in the last decade, mainly due to anthropogenic activities with little geogenic impact in the quality of groundwater.

  11. Groundwater quality assessment of the Limnos Island Volcanic Aquifers, Greece.

    Science.gov (United States)

    Panagopoulos, George; Panagiotaras, Dionisios; Giannoulopoulos, Panagiotis

    2013-05-01

    Limnos Island in Greece, which has been the subject of extensive hydrogeological research, contains confined volcanic aquifers that overlie impermeable flysch. Groundwater salinization is usually the effect of seawater intrusion, and results from a combination of factors such as low annual areal precipitation and exploitation of aquifers for civil, commercial, and agricultural purposes. Areas with intense agricultural activities have also increasingly observed these effects. A geochemical evaluation on the basis of multiple ion (Ca2+, Mg2+, Na+, K+, HCO3-, Cl-, SO4(2-), NO3-) concentrations and physicochemical parameters distribution revealed that ion exchange is the dominant hydrogeochemical process. However, the enrichment of groundwater in potassium and magnesium results from rock and mineral weathering and dissolution.

  12. Decreasing groundwater quality at Cisadane riverbanks: groundwater-surface water approach

    CERN Document Server

    Irawan, Dasapta Erwin; Yeni, Defitri; Kuntoro, Arno Adi; Julian, Miga Magenika

    2016-01-01

    The decreasing of groundwater quality has been the major issue in Tangerang area. One of the key process is the interaction between groundwater and Cisadane river water, which flows over volcanic deposits of Bojongmanik Fm, Genteng Fm, Tuf Banten, and Alluvial Fan. The objective of this study is to unravel such interactions based on the potentiometric mapping in the riverbank. We had 60 stop sites along the riverbank for groundwater and river water level observations, and chemical measurements (TDS, EC, temp, and pH). Three river water gauge were also analyzed to see the fluctuations. We identified three types of hydrodynamic relationships with fairly low flow gradients: effluent flow at Segmen I (Kranggan - Batuceper) with 0.2-0.25 gradient, perched flow at Segmen II (Batuceper-Kalibaru) with gradient 0.2-0.25, and influent flow at Segmen III (Kalibaru-Tanjungburung) with gradient 0.15-0.20. Such low flow gradient is controlled by the moderate to low morphological slope in the area. The gaining and losing st...

  13. Water quality index development for groundwater quality assessment of Greater Noida sub-basin, Uttar Pradesh, India

    Directory of Open Access Journals (Sweden)

    Sajal Singh

    2016-12-01

    Full Text Available The water quality index (WQI is an important parameter for determining the drinking water quality for the end users. The study for the same has been carried on the groundwater by collecting 47 groundwater samples from 25 blocks of Greater Noida city, India. In order to develop WQI the samples were subjected to a comprehensive physicochemical and biological analysis of 11 parameters such as pH, calcium, magnesium, chloride, nitrate, sulphate, total dissolved solids, fluorides, bicarbonate, sodium and potassium. Geographical information system has been used to map the sampling area. The coordinates in terms of latitude and longitude of the sampling locations were recorded with the help of global positioning system. Piper plots and cation–anion correlation matrix were plotted from the values obtained by the analysis of various parameters. The WQI index for the same has been calculated and the values ranged from 53.69 to 267.85. The WQI values from present study indicate the very poor quality water in the area dominated by industrial and construction activities. Poor water quality has been observed in commercial zone of the study area. The analysis reveals the fact that the ground water of the Greater Noida needs a degree of treatment before consumption and needs to be protected from further contamination.

  14. Identification of pork quality parameters by proteomics

    NARCIS (Netherlands)

    Wiel, van de D.F.M.; Zhang, W.L.

    2007-01-01

    A major parameter for quality of pork is its waterholding capacity (WHC). Prediction of WHC immediately after slaughter would be of benefit both to slaughterhouses for reasons of better logistics and/or branding of premium-meat, and to consumers for improved quality of meat products such as ham. In

  15. Groundwater quality assessment for the Chestnut Ridge Hydrogeologic Regime at the Y-12 Plant. 1991 groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several hazardous and non-hazardous waste- management facilities associated with the US Department of Energy (DOE) Y-12 Plant (Figure 1). These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (CRHR), which is one of the three regimes defined for the purposes of groundwater quality monitoring and remediation (Figure 2). The Health, Safety, Environment, and Accountability (HSEA) Division of the Y-12 Plant Environmental Management Department manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP).

  16. Groundwater Quality Data in the Mojave Study Unit, 2008: Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2009-01-01

    ground water. In total, over 230 constituents and water-quality indicators (field parameters) were investigated. Three types of quality-control samples (blanks, replicates, and matrix spikes) each were collected at approximately 5-8 percent of the wells, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a significant source of bias in the data for the groundwater samples. Differences between replicate samples generally were within acceptable ranges, indicating acceptable analytical reproducibility. Matrix spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, untreated groundwater typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to untreated ground water. However, to provide some context for the results, concentrations of constituents measured in the untreated ground water were compared with regulatory and non-regulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and thresholds established for aesthetic and technical concerns by CDPH. Comparisons between data collected for this study and thresholds for drinking-water are for illustrative purposes only, and are not indicative of compliance or non-compliance with those thresholds. Most constituents that were detected in groundwater samples in the 59 wells in MOJO were found at concentrations below drinking-water thresholds. In MOJO's 52 grid wells, volatile organic compounds (VOCs) were detected in 40 percent of the wells, and pesticides and pesticide degradates were detected in 23 percent of the grid wel

  17. A pragmatic approach to study the groundwater quality suitability for domestic and agricultural usage, Saq aquifer, northwest of Saudi Arabia.

    Science.gov (United States)

    Nazzal, Yousef; Ahmed, Izrar; Al-Arifi, Nassir S N; Ghrefat, Habes; Zaidi, Faisal K; El-Waheidi, Mahmud M; Batayneh, Awni; Zumlot, Taisser

    2014-08-01

    The present study deals with detailed hydrochemical assessment of groundwater within the Saq aquifer. The Saq aquifer which extends through the NW part of Saudi Arabia is one of the major sources of groundwater supply. Groundwater samples were collected from about 295 groundwater wells and analyzed for various physico-chemical parameters such as electrical conductivity (EC), pH, temperature, total dissolved solids (TDS), Na(+), K(+), Ca(2+), Mg(2+), CO3 (-), HCO3 (-), Cl(-), SO4 (2-), and NO3 (-). Groundwater in the area is slightly alkaline and hard in nature. Electrical conductivity (EC) varies between 284 and 9,902 μS/cm with an average value of 1,599.4 μS/cm. The groundwater is highly mineralized with approximately 30 % of the samples having major ion concentrations above the WHO permissible limits. The NO3 (-) concentration varies between 0.4 and 318.2 mg/l. The depth distribution of NO3 (-) concentration shows higher concentration at shallow depths with a gradual decrease at deeper depths. As far as drinking water quality criteria are concerned, study shows that about 33 % of samples are unfit for use. A detailed assessment of groundwater quality in relation to agriculture use reveals that 21 % samples are unsuitable for irrigation. Using Piper's classification, groundwater was classified into five different groups. Majority of the samples show Mix-Cl-SO4- and Na-Cl-types water. The abundances of Ca(2+) and Mg(2+) over alkalis infer mixed type of groundwater facies and reverse exchange reactions. The groundwater has acquired unique chemical characteristics through prolonged rock-water interactions, percolation of irrigation return water, and reactions at vadose zone.

  18. Development of AHPDST Vulnerability Indexing Model for Groundwater Vulnerability Assessment Using Hydrogeophysical Derived Parameters and GIS Application

    Science.gov (United States)

    Mogaji, K. A.

    2017-04-01

    Producing a bias-free vulnerability assessment map model is significantly needed for planning a scheme of groundwater quality protection. This study developed a GIS-based AHPDST vulnerability index model for producing groundwater vulnerability model map in the hard rock terrain, Nigeria by exploiting the potentials of analytic hierarchy process (AHP) and Dempster-Shafer theory (DST) data mining models. The acquired borehole and geophysical data in the study area were processed to derive five groundwater vulnerability conditioning factors (GVCFs), namely recharge rate, aquifer transmissivity, hydraulic conductivity, transverse resistance and longitudinal conductance. The produced GVCFs' thematic maps were multi-criterially analyzed by employing the mechanisms of AHP and DST models to determine the normalized weight ( W) parameter for the GVCFs and mass function factors (MFFs) parameter for the GVCFs' thematic maps' class boundaries, respectively. Based on the application of the weighted linear average technique, the determined W and MFFs parameters were synthesized to develop groundwater vulnerability potential index (GVPI)-based AHPDST model algorithm. The developed model was applied to establish four GVPI mass/belief function indices. The estimates based on the applied GVPI belief function indices were processed in GIS environment to create prospective groundwater vulnerability potential index maps. The most representative of the resulting vulnerability maps (the GVPIBel map) was considered for producing the groundwater vulnerability potential zones (GVPZ) map for the area. The produced GVPZ map established 48 and 52% of the areal extent to be covered by the lows/moderate and highs vulnerable zones, respectively. The success and the prediction rates of the produced GVPZ map were determined using the relative operating characteristics technique to give 82.3 and 77.7%, respectively. The analyzed results reveal that the developed GVPI-based AHPDST model algorithm is

  19. Development of AHPDST Vulnerability Indexing Model for Groundwater Vulnerability Assessment Using Hydrogeophysical Derived Parameters and GIS Application

    Science.gov (United States)

    Mogaji, K. A.

    2017-02-01

    Producing a bias-free vulnerability assessment map model is significantly needed for planning a scheme of groundwater quality protection. This study developed a GIS-based AHPDST vulnerability index model for producing groundwater vulnerability model map in the hard rock terrain, Nigeria by exploiting the potentials of analytic hierarchy process (AHP) and Dempster-Shafer theory (DST) data mining models. The acquired borehole and geophysical data in the study area were processed to derive five groundwater vulnerability conditioning factors (GVCFs), namely recharge rate, aquifer transmissivity, hydraulic conductivity, transverse resistance and longitudinal conductance. The produced GVCFs' thematic maps were multi-criterially analyzed by employing the mechanisms of AHP and DST models to determine the normalized weight (W) parameter for the GVCFs and mass function factors (MFFs) parameter for the GVCFs' thematic maps' class boundaries, respectively. Based on the application of the weighted linear average technique, the determined W and MFFs parameters were synthesized to develop groundwater vulnerability potential index (GVPI)-based AHPDST model algorithm. The developed model was applied to establish four GVPI mass/belief function indices. The estimates based on the applied GVPI belief function indices were processed in GIS environment to create prospective groundwater vulnerability potential index maps. The most representative of the resulting vulnerability maps (the GVPIBel map) was considered for producing the groundwater vulnerability potential zones (GVPZ) map for the area. The produced GVPZ map established 48 and 52% of the areal extent to be covered by the lows/moderate and highs vulnerable zones, respectively. The success and the prediction rates of the produced GVPZ map were determined using the relative operating characteristics technique to give 82.3 and 77.7%, respectively. The analyzed results reveal that the developed GVPI-based AHPDST model algorithm is

  20. Characterization of Surface Water and Groundwater Quality in the Lower Tano River Basin Using Statistical and Isotopic Approach.

    Science.gov (United States)

    Edjah, Adwoba; Stenni, Barbara; Cozzi, Giulio; Turetta, Clara; Dreossi, Giuliano; Tetteh Akiti, Thomas; Yidana, Sandow

    2017-04-01

    Adwoba Kua- Manza Edjaha, Barbara Stennib,c,Giuliano Dreossib, Giulio Cozzic, Clara Turetta c,T.T Akitid ,Sandow Yidanae a,eDepartment of Earth Science, University of Ghana Legon, Ghana West Africa bDepartment of Enviromental Sciences, Informatics and Statistics, Ca Foscari University of Venice, Italy cInstitute for the Dynamics of Environmental Processes, CNR, Venice, Italy dDepartment of Nuclear Application and Techniques, Graduate School of Nuclear and Allied Sciences University of Ghana Legon This research is part of a PhD research work "Hydrogeological Assessment of the Lower Tano river basin for sustainable economic usage, Ghana, West - Africa". In this study, the researcher investigated surface water and groundwater quality in the Lower Tano river basin. This assessment was based on some selected sampling sites associated with mining activities, and the development of oil and gas. Statistical approach was applied to characterize the quality of surface water and groundwater. Also, water stable isotopes, which is a natural tracer of the hydrological cycle was used to investigate the origin of groundwater recharge in the basin. The study revealed that Pb and Ni values of the surface water and groundwater samples exceeded the WHO standards for drinking water. In addition, water quality index (WQI), based on physicochemical parameters(EC, TDS, pH) and major ions(Ca2+, Na+, Mg2+, HCO3-,NO3-, CL-, SO42-, K+) exhibited good quality water for 60% of the sampled surface water and groundwater. Other statistical techniques, such as Heavy metal pollution index (HPI), degree of contamination (Cd), and heavy metal evaluation index (HEI), based on trace element parameters in the water samples, reveal that 90% of the surface water and groundwater samples belong to high level of pollution. Principal component analysis (PCA) also suggests that the water quality in the basin is likely affected by rock - water interaction and anthropogenic activities (sea water intrusion). This

  1. An Investigation of Quality of Groundwater of Taluka Nawabshah

    Directory of Open Access Journals (Sweden)

    . Khuhawar

    2011-06-01

    Full Text Available Sixty five water samples (four surface water and sixty one groundwater were collected from taluka Nawabshah and were analyzed for physico-chemical parameters; pH, electrical conductivity (EC, total dissolved salts (TDS and heavy metals, Fe, Zn, Cu, Mn, Co, Pb, Ni and Cd. The results were obtained in the ranges; pH 6.95-8.87, EC 239-13170 µS/cm and TDS 153-8429. The concentration of heavy metals was observed in the ranges; Fe 46-1070 µg/L, Zn 0-460 µg/L, Cu 3-311 µg/L, Mn 4-418 µg/L, Co 0-33 µg/L, Pb 6-50 µg/L, Ni 0-37µg/L and Cd 0-18µg/L. The results were compared with world health organization (WHO and local standards set for drinking water. Contamination index of groundwater was observed within 0.2-20.7. Only two water samples (both surface water were observed suitable for drinking purpose, but all the remaining samples were highly contaminated with toxic heavy metals. An elevated level of toxic heavy metals in the groundwater of the area is of great concern.

  2. Deterioration of coastal groundwater quality in Island and mainland regions of Ramanathapuram District, Southern India.

    Science.gov (United States)

    Sivasankar, Venkataramann; Ramachandramoorthy, Thiagarajan; Chandramohan, A

    2013-01-01

    A study was carried out in the Island and mainland regions of Ramanathapuram District to characterize the physico-chemical characteristics of 87 groundwater samples in Island and 112 groundwater samples in mainland which include pH, EC, TDS, salinity, total alkalinity, calcium hardness, magnesium hardness, total hardness, chloride and fluoride. Heavy inorganic load in majority of the groundwater samples has been estimated due to the salinity, TDS, TH and chloride beyond the threshold level which substantiates the percolation of sea water into the freshwater confined zones. Although the groundwater sources are available in plenty, the scarcity of potable water is most prevalent in this coastal area. The Water Quality Index (WQI) and Langeleir Saturation Index (LSI) have also been calculated to know the potable and corrosive/incrusting nature of the water samples. The statistical tools such as principal component analysis, box plots and correlation matrix have also been used to explain the influence of different physico-chemical parameters with respect to one another among the groundwater samples. The percentage of groundwater samples in mainland was more than that in Island with respect to the acceptable limit of WHO drinking standard, especially in TDS, CH, TH and chloride but the converse is observed in the case of fluoride. About 8% of the mainland aquifers and 42% of Island aquifers were identified to have fluoride greater than 1.5 mg/l. The signature of salt-water intrusion is observed from the ratio of Cl/CO(3)(2-) + HCO(3) and TA/TH. A proper management plan to cater potable water to the immediate needs of the people is to be envisaged.

  3. 考虑参数不确定性的地下饮用水源地水质健康风险评价%Health Risk Assessment of Groundwater Quality in Source of Drinking Water Based on the Uncertain Parameters

    Institute of Scientific and Technical Information of China (English)

    郑德凤; 赵锋霞; 孙才志; 臧正; 苏琳

    2015-01-01

    首先引入环境健康风险评价模型,考虑模型中部分参数的不确定性,采用三角模糊数表征暴露参数的区间范围,选取风险管理易接受的可信度水平对暴露参数的区间数进行转化,建立基于三角模糊数的水质健康风险评价模型,对饮用水源地地下水中化学致癌物和非致癌污染物通过饮水途径、皮肤接触和呼吸途径所致健康危害的风险率进行了分析与计算.以盘锦市6个地下饮用水源地的水质分析资料为例,应用上述水质健康风险评价模型,分别对水中化学致癌物和非致癌物经饮水、皮肤接触和呼吸途径所致人体健康风险进行评价.结果表明致癌物对人体健康危害远大于非致癌物,非致癌物所致人体健康风险不受关注.污染物经饮水途径所致人体健康危害大于呼吸途径和皮肤接触途径,呼吸途径和皮肤接触途径所致人体健康风险可以忽略.化学致癌物所致人体健康危害排序为Cr6+>As>Cd,非致癌物所致人体健康风险排序为氟化物>铅>铜>锰>锌>铁>汞>氨氮>氰化物>挥发酚.水源地中大洼水源地存在的致癌风险率最大,其次是兴一和兴南水源地,石山、高升和盘东水源地存在的致癌风险最小.据此可确定各饮用水源地水中污染物的主次及治理的优先顺序,为饮用水源污染的风险管理提供依据.%The assessment model of environmental health risk was firstly introduced in this article. Considering the uncertainty of some parameters in the model, triangle fuzzy number was used to express interval range of exposure parameters. The interval range of exposure parameters was transformed into interval estimate by choosing acceptable reliability level of risk management. Then the model on health risk of groundwater quality based on triangle fuzzy number was established. By using the above model, interval estimates of the health risk rate from carcinogens and non-carcinogens by drinking

  4. Physicochemical Assessment of Surface and Groundwater Quality of the Greater Chittagong Region of Bangladesh

    Directory of Open Access Journals (Sweden)

    M. J. Ahmed

    2010-12-01

    Full Text Available The study was carried out to assess surface and groundwater quality of the greater Chittagong (Chittagong and Cox’s Bazar districts and Chittagong Hill Tracts (Rangamati, Khagrachhari and Bandarban districts of Bangladesh. To study the various physicochemical and microbiological parameters, surface water samples from the Karnafuli, Halda, Sangu, Matamuhuri, Bakkhali, Naf, Kasalong, Chingri and Mayani Rivers, Kaptai Lake and groundwater samples from almost every Upazilas, smaller administrative unit of Bangladesh, were collected and analyzed. The statistical methods of sampling were used for collecting samples. Samples were preserved using suitable preservation methods. Water samples from the freshwater resources were collected from different points and tide conditions and at different seasons for continuous monitoring during the hydrological years 2008-2009. The collected samples were analyzed for the following parameters: pH, electrical conductivity (EC, total dissolved solids (TDS, total suspended solids (TSS, total solids (TS, dissolved oxygen (DO, transparency, acidity, dissolved carbon dioxide, total alkalinity, total hardness, chloride, ammonia-N, hydrogen sulfide, sulphate-S, o-phosphate-P, biochemical oxygen demand (BOD, chemical oxygen demand (COD, nitrate-N, nitrite-N, total nitrite and nitrate-N, arsenic, iron, manganese, copper, nickel, chromium, cadmium, lead, calcium, magnesium, sodium and potassium using the procedure outlined in the standard methods. Average values of maximum physicochemical and microbiological parameters studied for the Karnafuli River were found higher than the World Health Organization (WHO guideline. The maximum water quality parameters of Kaptai Lake and other Rivers of Chittagong region were existed within the permissible limits of WHO guideline. The data showed the water quality slightly differs in pre-monsoon and post-monsoon than monsoon season. The concentration of different constituents of most of

  5. Groundwater Quality Assessment in Jakarta Capital Region for the Safe Drinking Water

    Science.gov (United States)

    Fadly, M.; Prayogi, T. E.; Mohamad, F.; Zulfaris, D. Y.; Memed, M. W.; Daryanto, A.; Abdillah, F.; Nasution, E. M.; Sudianto, J. R.; Giarto, B.; Maliki, F.

    2017-03-01

    This study aims to determine the quality of Jakarta Capital Region’s groundwater and its recommendation based on the standards set by the Indonesian government especially The Health Minister Decree No. 907 / Menkes / SK / VII / 2002 about The Drinking Water Monitoring. The study activity uses the data that carried out by Geological Agency, Ministry of Energy and Mineral Resources, Indonesia from March to April 2015. The methods used in this study are direct observation and hydrogeological measurement to measure physics and chemistry parameters. The results show that most places in the study area have the low quality of groundwater which is below the drinking water quality standards according to the government. However, at the unconfined aquifer (depth of 0-40 meters), the certain areas such as in the Kramat Jati, Halim Perdana Kusuma, Tongkol-Pademangan, and Duren sawit are still relatively safe for consumption as drinking water. In addition, the confined aquifer (depth> 40 meters) such as in the area of Cibubur, Pasar Rebo, and Jagakarsa are considered safe for consumption as drinking water. This study is expected to be used as a benchmark for researchers, especially academics in the region in order to maintain the sustainable groundwater resources in the area.

  6. Fuzzy model for determination and assessment of groundwater quality in the city of Zrenjanin, Serbia

    Directory of Open Access Journals (Sweden)

    Kiurski-Milosević Jelena Ž.

    2015-01-01

    Full Text Available The application of the fuzzy logic for determination and assessment of the chemical quality of groundwater for drinking purposes in the city of Zrenjanin is presented. The degree of certainty and uncertainties are one of the problems in the most commonly used methods for assessing the water quality. Fuzzy logic can successfully handle these problems. Evaluation of fuzzy model was carried out on the samples from two representative wells that are located at depths of two aquifers from which water is taken to supply the population as drinking water. The samples were analyzed on 8 different chemical water quality parameters. In the research arsenic concentration (As3+, As5+ is considered as the dominant parameter due to its suspecting carcinogenic effects on human health. This type of research is for the first time conducted in the city of Zrenjanin, middle Banat region. [Projekat Ministarstva nauke Republike Srbije, br. MNTR174009 i br. TR34014

  7. Groundwater Parameters and Flow Systems Near Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Moore, G.K.

    1989-01-01

    Precipitation near Oak Ridge National Laboratory (ORNL) averages 132 cm/yr. About 76 cm/yr of water is consumed by evapotranspiration. The natural streamflow, which averages 56 cm/yr of water, consists of overland flow (about 21 cm/yr) from water bodies, wetlands, and impervious areas of groundwater discharge (about 35 cm/yr of water). Groundwater occurs in a stormflow zone that extends from the land surface to a depth of 0.3-2 m and in shallow and deeper aquifers that extend from the water table to the base of fresh water. in the stormflow zone, most water flows through macropores and mesopores, which have a volumetric porosity of about 0.002. In the vadose zone and below the water table, water flows through fractures that have a volumetric porosity in the range 1 x 10{sup -5} to 0.02. Water inflow occurs by precipitation and infiltration. infiltration that exceeds the soil water deficit forms a perched water table in the stormflow zone at the level where infiltration rate exceeds vertical hydraulic conductivity. Some water percolates down to the water table but the majority flows downslope to the streams. Recharge of the shallow aquifer is only about 3.2 cm/yr of water or 5.7% of streamflow. Most of the water that recharges the shallow aquifer is discharged by evapotranspiration above the water table. The remainder is discharged at springs and streams where the water table is within the stormflow zone. Digital models that permit unsaturated conditions and transient flows may be more appropriate than steady-state models of saturated flow for the ORNL area.

  8. Spectral Induced Polarization monitoring of the groundwater physico-chemical parameters daily variations for stream-groundwater interactions

    Science.gov (United States)

    Jougnot, Damien; Camerlynck, Christian; Robain, Henri; Tallec, Gaëlle; Ribolzi, Olivier; Gaillardet, Jérôme

    2017-04-01

    During the last decades, geophysical methods have been attracting an increasing interest in hydrology and environmental sciences given their sensitivity to parameters of interests and their non-intrusive nature. The Spectral Induced Polarization (SIP) is a low frequency electro-magnetic method that allows the characterization of the subsurface through its complex electrical conductivity. It reports the modulus of the conductivity and the phase between an injected current and a measured voltage over a rather large frequency range (from few millihertz to few tens of kilohertz). The real part of the conductivity is sensitive to lithological (porosity, specific surface area) and hydrological (water saturation, water salinity) parameters, while the imaginary part is linked to electrochemical polarizations, that have been shown to be largely influenced by the chemistry of the pore water. In the present contribution, we aim at better characterizing the exchanges between a stream and the surrounding groundwater using the SIP method and its sensitivity to pore water changes over time. Two sites from the OZCAR Research Infrastructure (French Critical Zone observatories) have been chosen for this study: the Houay Pano catchment (Laos) and the Orgeval catchment (France). These two sites have a good existing infrastructure and have been already studied extensively in terms of hydrology, geophysics, and hydrochemistry. They constitute perfect experimental sites to develop novel methodologies for the assessment of stream-groundwater exchanges. We propose to obtain a vertical description of the changes in complex electrical conductivity with depth based on SIP soundings undertaken with the multi-channel system SIP Fuchs III. We conducted a high-frequency monitoring close to a river stream (one vertical profiles every 30 min). In parallel, a high frequency monitoring of the physico-chemical parameters (temperature, conductivity, ionic concentrations) in the river stream has been

  9. Baseline assessment of groundwater quality in Wayne County, Pennsylvania, 2014

    Science.gov (United States)

    Senior, Lisa A.; Cravotta, III, Charles A.; Sloto, Ronald A.

    2016-06-30

    The Devonian-age Marcellus Shale and the Ordovician-age Utica Shale, geologic formations which have potential for natural gas development, underlie Wayne County and neighboring counties in northeastern Pennsylvania. In 2014, the U.S. Geological Survey, in cooperation with the Wayne Conservation District, conducted a study to assess baseline shallow groundwater quality in bedrock aquifers in Wayne County prior to potential extensive shale-gas development. The 2014 study expanded on previous, more limited studies that included sampling of groundwater from 2 wells in 2011 and 32 wells in 2013 in Wayne County. Eighty-nine water wells were sampled in summer 2014 to provide data on the presence of methane and other aspects of existing groundwater quality throughout the county, including concentrations of inorganic constituents commonly present at low levels in shallow, fresh groundwater but elevated in brines associated with fluids extracted from geologic formations during shale-gas development. Depths of sampled wells ranged from 85 to 1,300 feet (ft) with a median of 291 ft. All of the groundwater samples collected in 2014 were analyzed for bacteria, major ions, nutrients, selected inorganic trace constituents (including metals and other elements), radon-222, gross alpha- and gross beta-particle activity, selected man-made organic compounds (including volatile organic compounds and glycols), dissolved gases (methane, ethane, and propane), and, if sufficient methane was present, the isotopic composition of methane.Results of the 2014 study show that groundwater quality generally met most drinking-water standards, but some well-water samples had one or more constituents or properties, including arsenic, iron, pH, bacteria, and radon-222, that exceeded primary or secondary maximum contaminant levels (MCLs). Arsenic concentrations were higher than the MCL of 10 micrograms per liter (µg/L) in 4 of 89 samples (4.5 percent) with concentrations as high as 20 µg/L; arsenic

  10. Assessment of groundwater quality from Bankura I and II Blocks, Bankura District, West Bengal, India

    Science.gov (United States)

    Nag, S. K.; Das, Shreya

    2017-02-01

    Hydrochemical evaluation of groundwater has been conducted in Bankura I and II Blocks to analyze and determining groundwater quality in the area. Thirty-six groundwater samples were analyzed for their physical and chemical properties using standard laboratory methods. The constituents have the following ranges in the water: pH 6.4-8.6, electrical conductivity 80-1900 μS/cm, total hardness 30-730 mg/l, TDS 48-1001 mg/l, Ca2+ 4.2-222.6 mg/l, Na+ 2.33-103.33 mg/l, Mg2+ 1.56-115.36 mg/l, K+ 0.67-14 mg/l and Fe BDL-2.53 mg/l, HCO3^{ - } 48.8-1000.4 mg/l, Cl- 5.6-459.86 mg/l and SO4^{ = } BDL-99.03 mg/l. Results also show that bicarbonate ions ( HCO3^{ - } ) dominate the other anions (Cl- and SO4^{2 - } ). Sodium adsorption ratio (SAR), soluble sodium percentage (SSP), residual sodium carbonate (RSC), magnesium adsorption ratio (MAR), total hardness (TH), and permeability index (PI) were calculated as derived parameters, to investigate the ionic toxicity. Concerned chemical parameters when plotted in the U.S. Salinity diagram indicate that waters are of C1-S1, C2-S1 and C3-S1 types, i.e., low salinity and low sodium which is good for irrigation. The values of Sodium Adsorption Ratio indicate that the groundwater of the area falls under the category of low sodium hazard. So, there is neither salinity nor toxicity problem of irrigation water, and hence the ground water can safely be used for long-term irrigation. The chemical parameters when plotted in Piper's trilinear diagram are found to concentrate in the central and west central part of the diamond-shaped field. Based on the analytical results, groundwater in the area is found to be generally fresh and hard to very hard. The abundance of the major ions is as follows: HCO3 > Cl > SO4 and Ca > Na > Mg > K > Fe. Results also show that bicarbonate ions ( HCO3^{ - } ) dominate the other anions (Cl- and SO4^{2 - } ). According to Gibbs diagrams samples fall in the rock dominance field and the chemical quality of

  11. Groundwater Quality Protection in Oakland County: A Sourcebook for Teachers.

    Science.gov (United States)

    East Michigan Environmental Action Council, Troy.

    This sourcebook consists of background information and activities related to groundwater protection. The first section focuses on the characteristics of groundwater, the water cycle, stormwater runoff, and uses of groundwater. The second section addresses household hazardous materials--both from a safety standpoint and a groundwater standpoint.…

  12. Groundwater Quality Protection in Oakland County: A Sourcebook for Teachers.

    Science.gov (United States)

    East Michigan Environmental Action Council, Troy.

    This sourcebook consists of background information and activities related to groundwater protection. The first section focuses on the characteristics of groundwater, the water cycle, stormwater runoff, and uses of groundwater. The second section addresses household hazardous materials--both from a safety standpoint and a groundwater standpoint.…

  13. Evaluation of groundwater quality and suitability for irrigation and drinking purposes in southwest Punjab, India using hydrochemical approach

    Science.gov (United States)

    Sharma, Diana Anoubam; Rishi, Madhuri S.; Keesari, Tirumalesh

    2016-08-01

    Groundwater samples from alluvial aquifers of Bathinda district, southwest Punjab were measured for physicochemical parameters as well as major ion chemistry to evaluate the groundwater suitability for drinking and irrigation purposes and to present the current hydrochemical status of groundwater of this district. Temporal variations were analyzed by comparing the pre- and post-monsoon groundwater chemistry. Most of the samples showed contamination: F- (72 %), Mg2+ (22 %), SO4 2- (28 %), TH (25 %), NO3 - (22 %), HCO3 - (22 %) and TDS (11 %) during pre-monsoon and F- (50 %), Mg2+ (39 %), SO4 2- (22 %), TH (28 %), NO3 - (22 %) and TDS (28 %) during post-monsoon above permissible limits for drinking, while rest of the parameters fall within the limits. Irrigation suitability was checked using sodium absorption ratio (SAR), residual sodium carbonate (RSC), percent sodium (Na%) and permeability index (PI). Most of the samples fall under good to suitable category during pre-monsoon period, but fall under doubtful to unsuitable category during post-monsoon period. Presence of high salt content in groundwater during post-monsoon season reflects leaching of salts present in the unsaturated zone by infiltrating precipitation. Hydrochemical data was interpreted using Piper's trilinear plot and Chadha's plot to understand the various geochemical processes affecting the groundwater quality. The results indicate that the order of cation dominance is Na+ > Mg2+ > Ca2+, while anion dominance is in the order Cl- > HCO3 - > SO4 2-. The geochemistry of groundwater of this district is mainly controlled by the carbonate and silicate mineral dissolution and ion exchange during pre-monsoon and leaching from the salts deposited in vadose zone during post-monsoon. The main sources of contamination are soluble fertilizers and livestock wastes. This study is significant as the surface water resources are limited and the quality and quantity of groundwater are deteriorating with time due to

  14. An almost-parameter-free harmony search algorithm for groundwater pollution source identification.

    Science.gov (United States)

    Jiang, Simin; Zhang, Yali; Wang, Pei; Zheng, Maohui

    2013-01-01

    The spatiotemporal characterization of unknown sources of groundwater pollution is frequently encountered in environmental problems. This study adopts a simulation-optimization approach that combines a contaminant transport simulation model with a heuristic harmony search algorithm to identify unknown pollution sources. In the proposed methodology, an almost-parameter-free harmony search algorithm is developed. The performance of this methodology is evaluated on an illustrative groundwater pollution source identification problem, and the identified results indicate that the proposed almost-parameter-free harmony search algorithm-based optimization model can give satisfactory estimations, even when the irregular geometry, erroneous monitoring data, and prior information shortage of potential locations are considered.

  15. Groundwater quality analysis using multivariate statistical techniques (case study: Fars province, Iran).

    Science.gov (United States)

    Noshadi, Masoud; Ghafourian, Amir

    2016-07-01

    This research investigated the quality of groundwater of 298 wells during 10 years, in Fars province, southern Iran, to survey spatial variation of groundwater quality and also major sources of hydro-chemical components for drinking and agricultural uses. To classify the sampling stations in each year, hierarchical cluster analysis, using the Euclidean distances and "Ward" method, was used. According to the results of cluster analysis, there were three quality groups in groundwater of the research area: first group of 170 wells with type of Ca-HCO3, second group of 98 wells with type of Ca-HCO3, and third group of 30 wells with type of Na-Cl. Hydro-chemical parameters were increased from the first to the third group, and on the basis of Schoeller and USSL diagrams, the water of wells of the third group was considered unsuitable for irrigation and drinking. Principal component (PC) analysis and factor analysis reduced the complex and voluminous data matrix into three main components, accounting for more than 80 % of the total variance. The first PC contained TDS, EC, TH, Na(+), Cl(-), Mg(2+), SO4 (2-), Ca(2+), and SAR parameters. Therefore, the first dominant factor was salinity. In PC2, HCO3 and pH were the dominant parameters, which may indicate weathering of silicate minerals. The PC3 contained high loadings for NO2 (2-) and NO3 (-). This factor indicates anthropogenic contaminants that may be caused by improper disposal of domestic wastes or the use of chemical fertilizers in agriculture and leaching of them.

  16. Groundwater quality in the Monterey Bay and Salinas Valley groundwater basins, California

    Science.gov (United States)

    Kulongoski, Justin T.; Belitz, Kenneth

    2011-01-01

    The Monterey-Salinas study unit is nearly 1,000 square miles and consists of the Santa Cruz Purisima Formation Highlands, Felton Area, Scotts Valley, Soquel Valley, West Santa Cruz Terrace, Salinas Valley, Pajaro Valley, and Carmel Valley groundwater basins (California Department of Water Resources, 2003; Kulongski and Belitz, 2011). These basins were grouped into four study areas based primarily on geography. Groundwater basins in the north were grouped into the Santa Cruz study area, and those to the south were grouped into the Monterey Bay, the Salinas Valley, and the Paso Robles study areas (Kulongoski and others, 2007). The study unit has warm, dry summers and cool, moist winters. Average annual rainfall ranges from 31 inches in Santa Cruz in the north to 13 inches in Paso Robles in the south. The study areas are drained by several rivers and their principal tributaries: the Salinas, Pajaro, and Carmel Rivers, and San Lorenzo Creek. The Salinas Valley is a large intermontane valley that extends southeastward from Monterey Bay to Paso Robles. It has been filled, up to a thickness of 2,000 feet, with Tertiary and Quaternary marine and terrestrial sediments that overlie granitic basement. The Miocene-age Monterey Formation and Pliocene- to Pleistocene-age Paso Robles Formation, and Pleistocene to Holocene-age alluvium contain freshwater used for supply. The primary aquifers in the study unit are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells are typically drilled to depths of 200 to 650 feet, consist of solid casing from the land surface to depths of about 175 to 500 feet, and are perforated below the solid casing. Water quality in the primary aquifers may differ from that in the shallower and deeper parts of the aquifer system. Groundwater movement is generally from the southern part of the Salinas Valley north towards the Monterey Bay

  17. Groundwater Quality Assessment in the Upper East Region of Ghana

    Science.gov (United States)

    Apambire, W. B.

    2001-05-01

    In Ghana, West Africa, fluoride occurs as a natural pollutant in some groundwaters, while the presence of isolated high levels of nitrate and arsenic in groundwater is due to human activities such as poor sanitation, garbage disposal and mining practices. The challenge for Ghana is to ensure that groundwater quality and environmental adversities such as water level decline are not compromised by attempts to increase water quantity. Concentrations of groundwater fluoride in the study area range from 0.11 to 4.60 mg/L, with the highest concentrations found in the fluorine-enriched Bongo granitoids. Eighty-five out of 400 wells sampled have fluoride concentrations above the World Health Organization maximum guideline value of 1.5 mg/L and thus causes dental fluorosis in children drinking from the wells. The distribution of fluoride in groundwater is highly related to the distribution of dental fluorosis in the UER. Nitrate concentrations ranged from 0.03 to 211.00 mg/L and the mean value was 16.11 mg/L. Twenty-one samples had concentrations in excess of the guideline value of 45 mg/L. Consumption of water in excess of the guideline value, by infants, may cause an infantile disease known as methaemoglobinaemia. It is inferred that groundwaters with exceptionally high NO3 values have been contaminated principally through human activities such as farming and waste disposal. This is because wells with high nitrate concentrations are all located in and around towns and sizable villages. Also, there is good correlation between Cl and NO3 (r = +0.74), suggesting that both elements come from the same sources of pollution. Only two well waters had concentrations of iron in excess of the guideline value of 0.3 mg/L. These samples come from shallow hand-dug wells. The maximum concentration of iron in groundwaters is 3.5 mg/L. The recommended guideline limit for Al in drinking water is 0.2 mg/L; two wells had Al concentrations of 12.0 and 4.0 mg/L, respectively. Other high

  18. Impact of landfill leachate on the groundwater quality: A case study in Egypt

    Directory of Open Access Journals (Sweden)

    Magda M. Abd El-Salam

    2015-07-01

    Full Text Available Alexandria Governorate contracted an international company in the field of municipal solid waste management for the collection, transport and disposal of municipal solid waste. Construction and operation of the sanitary landfill sites were also included in the contract for the safe final disposal of solid waste. To evaluate the environmental impacts associated with solid waste landfilling, leachate and groundwater quality near the landfills were analyzed. The results of physico-chemical analyses of leachate confirmed that its characteristics were highly variable with severe contamination of organics, salts and heavy metals. The BOD5/COD ratio (0.69 indicated that the leachate was biodegradable and un-stabilized. It was also found that groundwater in the vicinity of the landfills did not have severe contamination, although certain parameters exceeded the WHO and EPA limits. These parameters included conductivity, total dissolved solids, chlorides, sulfates, Mn and Fe. The results suggested the need for adjusting factors enhancing anaerobic biodegradation that lead to leachate stabilization in addition to continuous monitoring of the groundwater and leachate treatment processes.

  19. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-02-20

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  20. Megacity pumping and preferential flow threaten groundwater quality

    Science.gov (United States)

    Khan, Mahfuzur R.; Koneshloo, Mohammad; Knappett, Peter S. K.; Ahmed, Kazi M.; Bostick, Benjamin C.; Mailloux, Brian J.; Mozumder, Rajib H.; Zahid, Anwar; Harvey, Charles F.; van Geen, Alexander; Michael, Holly A.

    2016-09-01

    Many of the world's megacities depend on groundwater from geologically complex aquifers that are over-exploited and threatened by contamination. Here, using the example of Dhaka, Bangladesh, we illustrate how interactions between aquifer heterogeneity and groundwater exploitation jeopardize groundwater resources regionally. Groundwater pumping in Dhaka has caused large-scale drawdown that extends into outlying areas where arsenic-contaminated shallow groundwater is pervasive and has potential to migrate downward. We evaluate the vulnerability of deep, low-arsenic groundwater with groundwater models that incorporate geostatistical simulations of aquifer heterogeneity. Simulations show that preferential flow through stratigraphy typical of fluvio-deltaic aquifers could contaminate deep (>150 m) groundwater within a decade, nearly a century faster than predicted through homogeneous models calibrated to the same data. The most critical fast flowpaths cannot be predicted by simplified models or identified by standard measurements. Such complex vulnerability beyond city limits could become a limiting factor for megacity groundwater supplies in aquifers worldwide.

  1. Groundwater quality in the Genesee River Basin, New York, 2010

    Science.gov (United States)

    Reddy, James E.

    2012-01-01

    Water samples collected from eight production wells and eight private residential wells in the Genesee River Basin from September through December 2010 were analyzed to characterize the groundwater quality in the basin. Eight of the wells were completed in sand and gravel aquifers, and eight were finished in bedrock aquifers. Three of the 16 wells were sampled in the first Genesee River Basin study during 2005-2006. Water samples from the 2010 study were analyzed for 147 physiochemical properties and constituents that included major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater generally is of acceptable quality, although concentrations of the following constituents exceeded current or proposed Federal or New York State drinking-water standards at each of the 16 wells sampled: color (one sample), sodium (three samples), sulfate (three samples), total dissolved solids (four samples), aluminum (one sample), arsenic (two samples), copper (one sample), iron (nine samples), manganese (eight samples), radon-222 (nine samples), and total coliform bacteria (six samples). Existing drinking-water standards for pH, chloride, fluoride, nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, Escherichia coli, and heterotrophic bacteria were not exceeded in any of the samples collected. None of the pesticides and VOCs analyzed exceeded existing drinking-water standards.

  2. Groundwater Quality in the Shallow Aquifers of the Hadauti Plateau of the District of Baran, Rajasthan, India

    Science.gov (United States)

    Kumar, Lokesh; Rakshit, Amitava

    2014-07-01

    With the rapid pace of agricultural development, industrialization and urbanization, the commonly observed geogenic contaminants in groundwater are fluoride and nitrate, whereas nitrate is the dominant anthropogenic contaminant in the south-eastern plains of Rajasthan, India. Samples obtained using a tube well and hand pump in November, 2012, demonstrate that Na-Cl is the dominant salt in the groundwater, and the total salinity of the water is between 211-1056 mg L-1. Moreover, the observed sodium adsorption ratio (SAR) and residual sodium carbonate (RSC) values ranged between 0.87 to 26.22 meq L-1 and -12.5 to 30.5 meq L-1 respectively. The study further shows that 6% of the total samples contain high amounts of nitrate, and 49% contain fluoride. A water quality index (WQI) rating was carried out using nine parameters to quantify the overall groundwater quality status of the area.

  3. Groundwater Quality in the Shallow Aquifers of the Hadauti Plateau of the District of Baran, Rajasthan, India

    Directory of Open Access Journals (Sweden)

    Kumar Lokesh

    2014-07-01

    Full Text Available With the rapid pace of agricultural development, industrialization and urbanization, the commonly observed geogenic contaminants in groundwater are fluoride and nitrate, whereas nitrate is the dominant anthropogenic contaminant in the south-eastern plains of Rajasthan, India. Samples obtained using a tube well and hand pump in November, 2012, demonstrate that Na-Cl is the dominant salt in the groundwater, and the total salinity of the water is between 211-1056 mg L-1. Moreover, the observed sodium adsorption ratio (SAR and residual sodium carbonate (RSC values ranged between 0.87 to 26.22 meq L-1 and -12.5 to 30.5 meq L-1 respectively. The study further shows that 6% of the total samples contain high amounts of nitrate, and 49% contain fluoride. A water quality index (WQI rating was carried out using nine parameters to quantify the overall groundwater quality status of the area.

  4. Groundwater quality assessment for the Bear Creek Hydrogeologic Regime at the Y-12 Plant: 1991 groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The report contains groundwater and surface water quality data obtained during the 1991 calendar year at several hazardous and non- hazardous waste management facilities associated with the US Department of Energy (DOE) Y-12 Plant (Figure 1). These sites are southwest of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime (BCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation (Figure 2). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Division manages the monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP).

  5. Groundwater quality assessment plan for single-shell tank waste management Area U at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    FN Hodges; CJ Chou

    2000-03-21

    Waste Management Area U (WMA U) includes the U Tank Farm, is currently regulated under RCRA interim-status regulations, and is scheduled for closure probably post-2030. Groundwater monitoring has been under an evaluation program that compared general contaminant indicator parameters from downgradient wells to background values established from upgradient wells. One of the indicator parameters, specific conductance, exceeded its background value in one downgradient well triggering a change from detection monitoring to a groundwater quality assessment program. The objective of the first phase of this assessment program is to determine whether the increased concentrations of nitrate and chromium in groundwater are from WMA U or from an upgradient source. Based on the results of the first determination, if WMA U is not the source of contamination, then the site will revert to detection monitoring. If WMA U is the source, then a second part of the groundwater quality assessment plan will be prepared to define the rate and extent of migration of contaminants in the groundwater and their concentrations.

  6. Geoinformatics Approach for Groundwater Prospects and Quality Studies - A Review

    Directory of Open Access Journals (Sweden)

    Rajvir Singh

    2015-06-01

    Full Text Available Water is a prime requirement for all the living and non-living processes. On the earth, 71% is water but the availability of useable fresh water for drinking and other purposes is about 2.8%. Out of this 2.8 % fresh water, the share of groundwater is only 0.6% that makes it more pertinent to conservation, preservation, and management. The urbanization, industrialization, and intensive agricultural practices have put further pressure on the available fresh water. The modern techniques like space technology, GIS and GPS have great utility in mapping, monitoring, planning and management of water resources. The temporal satellite data in different spectral bands and on different spatial resolutions make the remote sensing satellite data highly useful for mapping and monitoring of an area. The geographical information system (GIS has the capability to store, retrieve, edit and represent the data in informative way. The global positioning system (GPS gives the real time geo-coordinates, path and altitude of desired object or terrain. Thus, the geoinformatics have huge potential for solving the problems of groundwater availability and quality, and there is a need to harness the potential of these techniques for societal benefits to provide water everyone.

  7. Groundwater quality in the Santa Clara River Valley, California

    Science.gov (United States)

    Burton, Carmen A.; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    The Santa Clara River Valley (SCRV) study unit is located in Los Angeles and Ventura Counties, California, and is bounded by the Santa Monica, San Gabriel, Topatopa, and Santa Ynez Mountains, and the Pacific Ocean. The 460-square-mile study unit includes eight groundwater basins: Ojai Valley, Upper Ojai Valley, Ventura River Valley, Santa Clara River Valley, Pleasant Valley, Arroyo Santa Rosa Valley, Las Posas Valley, and Simi Valley (California Department of Water Resources, 2003; Montrella and Belitz, 2009). The SCRV study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 12 to 28 inches. The study unit is drained by the Ventura and Santa Clara Rivers, and Calleguas Creek. The primary aquifer system in the Ventura River Valley, Ojai Valley, Upper Ojai Valley, and Simi Valley basins is largely unconfined alluvium. The primary aquifer system in the remaining groundwater basins mainly consists of unconfined sands and gravels in the upper portion and partially confined marine and nonmarine deposits in the lower portion. The primary aquifer system in the SCRV study unit is defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. Public-supply wells typically are completed in the primary aquifer system to depths of 200 to 1,100 feet below land surface (bls). The wells contain solid casing reaching from the land surface to a depth of about 60-700 feet, and are perforated below the solid casing to allow water into the well. Water quality in the primary aquifer system may differ from the water in the shallower and deeper parts of the aquifer. Land use in the study unit is approximately 40 percent (%) natural (primarily shrubs, grassland, and wetlands), 37% agricultural, and 23% urban. The primary crops are citrus, avocados, alfalfa, pasture, strawberries, and dry beans. The largest urban areas in the study unit are the cities of

  8. Groundwater Quality in the Central Eastside San Joaquin Valley, California

    Science.gov (United States)

    Belitz, Kenneth; Landon, Matthew K.

    2010-01-01

    The Central Eastside study unit is located in California's San Joaquin Valley. The 1,695 square mile study unit includes three groundwater subbasins: Modesto, Turlock, and Merced (California Department of Water Resources, 2003). The primary water-bearing units consist of discontinuous lenses of gravel, sand, silt, and clay, which are derived largely from the Sierra Nevada Mountains to the east. Public-supply wells provide most of the drinking water supply in the Central Eastside. Consequently, the primary aquifer in the Central Eastside study unit is defined as that part of the aquifer corresponding to the perforated interval of wells listed in the California Department of Public Health database. Public-supply wells are typically drilled to depths of 200 to 350 feet, consist of solid casing from the land surface to a depth of about 100 to 200 feet, and they are perforated below the solid casing. Water quality in the shallower and deeper parts of the aquifer system may differ from that in the primary aquifer. The Central Eastside study unit has hot and dry summers and cool, moist, winters. Average annual rainfall ranges from 11 to 15 inches. The Stanislaus, Tuolumne, and Merced Rivers, with headwaters in the Sierra Nevada Mountains, are the primary streams traversing the study unit. Land use in the study unit is approximately 59 percent (%) agricultural, 34% natural (primarily grassland), and 7% urban. The primary crops are almonds, walnuts, peaches, grapes, grain, corn, and alfalfa. The largest urban areas (2003 population in parentheses) are the cities of Modesto (206,872), Turlock (63,467), and Merced (69,512). Municipal water use accounts for about 5% of the total water use in the Central Eastside study unit, with the remainder used for irrigated agriculture. Groundwater accounts for about 75% of the municipal supply, and surface water accounts for about 25%. Recharge to the groundwater flow system is primarily from percolation of irrigation return

  9. Analyzing the effects of geological and parameter uncertainty on prediction of groundwater head and travel time

    DEFF Research Database (Denmark)

    He, X.; Sonneborg, T.O.; Jørgensen, F.

    2013-01-01

    in three scenarios involving simulation of groundwater head distribution and travel time. The first scenario implied 100 stochastic geological models all assigning the same hydraulic parameters for the same geological units. In the second scenario the same 100 geological models were subjected to model...

  10. Groundwater-Quality Data in the South Coast Interior Basins Study Unit, 2008: Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Kulongoski, Justin T.; Ray, Mary C.; Belitz, Kenneth

    2009-01-01

    ], and radioactive constituents [gross alpha and gross beta radioactivity and radon-222]. Naturally occurring isotopes [stable isotopes of hydrogen, oxygen, and carbon, and activities of tritium and carbon-14] and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, 288 constituents and water-quality indicators (field parameters) were investigated. Three types of quality-control samples (blanks, replicates, and matrix spikes) each were collected at approximately 4-11 percent of the wells, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a significant source of bias in the data obtained from the groundwater samples. Differences between replicate samples generally were less than 10 percent relative standard deviation, indicating acceptable analytical reproducibility. Matrix spike recoveries were within the acceptable range (70 to 130 percent) for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, untreated groundwater typically is treated, disinfected, and/or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to untreated groundwater. However, to provide some context for the results, concentrations of constituents measured in the untreated groundwater were compared with regulatory and nonregulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH), and to nonregulatory thresholds established for aesthetic and technical concerns by CDPH. Comparisons between data collected for this study and thresholds for drinking water are for illustrative purposes only, and are not indicative of complia

  11. Elaboration of groundwater quality maps using Kriging methods; Creacion de mapas de calidad de aguas subterraneas mediante metodos de Krigeaje

    Energy Technology Data Exchange (ETDEWEB)

    Chica-Olmo, M.; Luque-Espinar, J. A.

    2003-07-01

    Two different geostatistical approaches for the elaboration of groundwater quality maps are presented. Firstly, the main theoretical aspects concerning to the two estimation methods used, ordinary kriging and indicator kriging, are described. They share a common theoretical basis but focus their estimations in different terms. The former gives the most probable value of a groundwater quality parameter in the aquifer, e. g. nitrate contents, so that is applied to map it spatial distribution. Whereas the latter estimates is applied to estimate the spatial probability distribution function of surpassing a given threshold or alert value for the experimental parameter. A case study regarding the Vega of Granada aquifer is also presented. The comparative advantages offered by each of these methods are discussed, taking into account the random behaviour shown by the studied variable. It is concluded that maps created by both methods provide value information of great interest for decision-making with regards to water quality control. (Author) 10 refs.

  12. Quality assessment of groundwater from the south-eastern Arabian Peninsula.

    Science.gov (United States)

    Zhang, H W; Sun, Y Q; Li, Y; Zhou, X D; Tang, X Z; Yi, P; Murad, A; Hussein, S; Alshamsi, D; Aldahan, A; Yu, Z B; Chen, X G; Mugwaneza, V D P

    2017-08-01

    Assessment of groundwater quality plays a significant role in the utilization of the scarce water resources globally and especially in arid regions. The increasing abstraction together with man-made contamination and seawater intrusion have strongly affected groundwater quality in the Arabia Peninsula, exemplified by the investigation given here from the United Arab Emirates, where the groundwater is seldom reviewed and assessed. In the aim of assessing current groundwater quality, we here present a comparison of chemical data linked to aquifers types. The results reveal that most of the investigated groundwater is not suitable for drinking, household, and agricultural purposes following the WHO permissible limits. Aquifer composition and climate have vital control on the water quality, with the carbonate aquifers contain the least potable water compared to the ophiolites and Quaternary clastics. Seawater intrusion along coastal regions has deteriorated the water quality and the phenomenon may become more intensive with future warming climate and rising sea level.

  13. Assessment of Groundwater Quality of Selected Inland Valley Agro-ecosystems for Irrigation in Southwest Nigeria

    Directory of Open Access Journals (Sweden)

    Olatunji S Aboyeji

    2015-10-01

    Full Text Available The study assessed the quality of groundwater of 6 inland valley (IV agro-ecosystems with a view to establishing their characteristics for cropping in the derived savannah of southwest Nigeria. Water samples were collected in piezometers during the rainy and dry seasons and analysed for physicochemical and heavy metal properties. Major water quality indices and comparison with stipulated standards were used to determine the usability of the waters for irrigation. The study showed that the waters were generally neutral to slightly alkaline, with the dominance structure of the major cations and anions in the order of Na+ > Ca2+ > K+ > Mg2+ and Cl- > SO42- > HCO3- > CO3. The concentration of heavy metals was generally within the recommended limits for most crops grown in the study area. Major water quality indices (sodium adsorption ratio, soluble sodium percentage, total dissolved solids, permeability index, magnesium adsorption ratio, Kelly’s ratio and residual sodium bicarbonate are generally within the levels acceptable for crop irrigation. Kruskal-Wallis H test (two-tailed showed that there was no statistically significant difference in the water quality parameters/indices between the inland valley sites, P = 0.935. The groundwater of inland valley agro-ecosystems of the study area is generally suitable for agricultural utilisation.DOI: http://dx.doi.org/10.5755/j01.erem.71.2.10802

  14. Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations

    Science.gov (United States)

    MacDonald, A. M.; Bonsor, H. C.; Ahmed, K. M.; Burgess, W. G.; Basharat, M.; Calow, R. C.; Dixit, A.; Foster, S. S. D.; Gopal, K.; Lapworth, D. J.; Lark, R. M.; Moench, M.; Mukherjee, A.; Rao, M. S.; Shamsudduha, M.; Smith, L.; Taylor, R. G.; Tucker, J.; van Steenbergen, F.; Yadav, S. K.

    2016-10-01

    Groundwater abstraction from the transboundary Indo-Gangetic Basin comprises 25% of global groundwater withdrawals, sustaining agricultural productivity in Pakistan, India, Nepal and Bangladesh. Recent interpretations of satellite gravity data indicate that current abstraction is unsustainable, yet these large-scale interpretations lack the spatio-temporal resolution required to govern groundwater effectively. Here we report new evidence from high-resolution in situ records of groundwater levels, abstraction and groundwater quality, which reveal that sustainable groundwater supplies are constrained more by extensive contamination than depletion. We estimate the volume of groundwater to 200 m depth to be >20 times the combined annual flow of the Indus, Brahmaputra and Ganges, and show the water table has been stable or rising across 70% of the aquifer between 2000 and 2012. Groundwater levels are falling in the remaining 30%, amounting to a net annual depletion of 8.0 +/- 3.0 km3. Within 60% of the aquifer, access to potable groundwater is restricted by excessive salinity or arsenic. Recent groundwater depletion in northern India and Pakistan has occurred within a longer history of groundwater accumulation from extensive canal leakage. This basin-wide synthesis of in situ groundwater observations provides the spatial detail essential for policy development, and the historical context to help evaluate recent satellite gravity data.

  15. Ground-water flow and quality near Canon City, Colorado

    Science.gov (United States)

    Hearne, G.A.; Litke, D.W.

    1987-01-01

    Water in aquifers that underlie the Lincoln Park area near Canon City, Colorado, contains measurable concentrations of chemical constituents that are similar to those in raffinate (liquid waste) produced by a nearby uranium ore processing mill. The objective of this study was to expand the existing geohydrologic data base by collecting additional geohydrologic and water quality, in order to refine the description of the geohydrologic and geochemical systems in the study area. Geohydrologic data were collected from nine tests wells drilled in the area between the U.S. Soil Conservation Service dam and Lincoln Park. Lithologic and geophysical logs of these wells indicated that the section of Vermejo Formation penetrated consisted of interbedded sandstone and shale. The sandstone beds had a small porosity and small hydraulic conductivity. Groundwater flow from the U.S. Soil Conservation Service dam to Lincoln Park seemed to be along an alluvium-filled channel in the irregular and relatively undescribed topography of the Vermejo Formation subcrop. North of the De Weese Dye Ditch, the alluvium becomes saturated and groundwater generally flows to the northeast. Water samples from 28 sites were collected and analyzed for major ions and trace elements; selected water samples also were analyzed for stable isotopes; samples were collected from wells near the uranium ore processing mill, from privately owned wells in Lincoln Park, and from the test wells drilled in the intervening area. Results from the quality assurance samples indicate that cross-contamination between samples from different wells was avoided and that the data are reliable. Water in the alluvial aquifer underlying Lincoln Park is mainly a calcium bicarbonate type. Small variations in the composition of water in the alluvial aquifer appears to result from a reaction of water leaking from the De Weese Dye Ditch with alluvial material. Upward leakage from underlying aquifers does not seem to be significant in

  16. Improvement of Groundwater Quality Using Constructed Wetland for Agricultural Irrigation

    Directory of Open Access Journals (Sweden)

    Pantip Klomjek

    2014-06-01

    Full Text Available This research was designed to evaluate the performance of Constructed Wetlands (CW for groundwater quality improvement. In the first phase of this study, performance of CW planted with cattails for Manganese (Mn and Iron (Fe reduction was evaluated at 12, 24 and 48 hours of Hydraulic Retention Time (HRT. Average efficiencies of all tested CW systems were higher than 90 and 75% for Mn and Fe concentration reduction. Subsequently, the efficiency of CW operated at 12 hours of HRT was investigated at different plant harvest intervals. In the second phase of study, Mn and Fe removal efficiencies were 75-100 and 48-99%, respectively. Both Mn and Fe removal efficiencies for the CW system were not different between 4, 6 and 8 weeks of harvest intervals. However, the efficiency obviously increased after the first plant harvest. Average Mn and Fe removal rates of the CWs operated at the tested harvest intervals were 0.068 to 0.092 and 0.383 to 0.432 g/m2/d, respectively. Fe removal rate was not significantly different under the various test conditions. However the highest Mn removal rate was obtained in CWs operated with a harvest interval of 4 weeks. Mn accumulation rates in cattail shoots and roots were 0.04-8.25 and 0.83-23.14 mg/m2/d, respectively. Fe accumulation rates in those were 0.04-164.27 and 249.62-1,701.54 mg/m2/d, respectively. Obviously, cattail underground tissues accumulated both Mn and Fe at higher concentrations than those of the above ground tissue. These results show that CW can improve the quality of groundwater before agricultural irrigation.

  17. Impact of Earthquake Demolition Debris on the Quality of Groundwater

    Directory of Open Access Journals (Sweden)

    M. S. Benmenni

    2010-01-01

    Full Text Available Problem statement: Debris from construction or demolition/deconstruction processes have no significant impact on the environment as they are res-usable and inert. This has been also long admitted for solid waste generated by the demolition of damaged cities following violent earthquakes. Approach: This study is a contribution to the assessment of actual impact on the quality of groundwater of buried demolition debris from the city of Boumerdes, in the North of Algeria 5 years after the May 21st 2003 earthquake hit the region. The public discharge of Boumerdes city has been used as a temporary landfill. It is located about 5 km downtown of Boumerdes at the Tidjelabine site which is marly-calcareous formation. Leachate from the landfill was directly rejected in the receiving environment, where the soil is marly-calcareous type with cracks giving a variable permeability (10-2 m sec-1 to nearly 10-6 m sec-1 that facilitates infiltration of potential pollutants to the groundwater. The slope character (from 5-10% of the field contributes to pollutants movement and may accentuate water quality deterioration. Three domestic wells (designated S1, S2 and S3 were selected in the vicinity of the landfill and served as piezometers. Leachate samples were taken from the landfill and evaluated. Results: Leachate analysis indicated organic matter with relatively high COD (1136 mg L-1 O2 and BOD5 (200 mg L-1 O2; whereas the pH yielded 7.65 thus indicating fermentation phase of the landfill. Heavy metal contents were beyond national standard limits except for Pb with 0.51 mg L-1 which is slightly higher than limit value of 0.5 mg L-1. More than five years after the creation of this landfill and despite its predominant C&D nature, these results showed that it was following a typical urban wastes decomposition scheme. Same analysis carried on water samples drawn from the piezometers yielded following results: acidic pH (6.88, acceptable values of target heavy metals

  18. Groundwater quality in the Yuba River and Bear River Watersheds, Sierra Nevada, California

    Science.gov (United States)

    Fram, Miranda S.; Jasper, Monica; Taylor, Kimberly A.

    2017-09-27

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Yuba River and Bear River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking water supplies. 

  19. Quality control parameters for Tamra (copper) Bhasma.

    Science.gov (United States)

    Jagtap, Chandrashekhar Yuvaraj; Prajapati, Pradeepkumar; Patgiri, Biswajyoti; Shukla, Vinay J

    2012-04-01

    Metallic Bhasmas are highly valued and have their own importance in Ayurvedic formulations. To testify the Bhasmas various parameters have been told in Rasashastra classics. Tamra Bhasma (TB) with its different properties is used in the treatment of various diseases is quiet famous among the Ayurvedic physicians (Vaidyas). The present study was carried out to set up the quality control parameters for the TB by making the use of classical tests along with advanced analytical tools. Copper wire taken for the preparation of Bhasma was first analyzed for its copper content and then subjected to Shodhana, Marana and Amrutikarana procedures as per the classical references. Final product complied with all the classical parameters like Rekhapurnatwa, Varitaratwa etc. After complying with these tests TB was analyzed by advanced analytical techniques like particle size distribution (PSD) analysis, scanning electron microscopy (SEM), and inductive coupled plasma spectrometry (ICP). PSD analysis of TB showed volumetric mean diameter of 28.70 μm, 50% of the material was below 18.40 μm size. Particle size less than 2μm were seen in SEM. 56.24 wt % of copper and 23.06 wt % of sulphur was found in ICP-AES. Heavy metals like cadmium, selenium were not detected while others like arsenic, lead and mercury were present in traces. These observations could be specified as the quality control parameters conforming to all the classical tests under the Bhasma Pariksha.

  20. Hydrochemical and microbiological quality of groundwater in the Merdja area, Tébessa, North-East of Algeria

    Science.gov (United States)

    Fehdi, Chemseddine; Rouabhia, Abdelkader; Mechai, Abdelbasset; Debabza, Manel; Abla, Khalida; Voudouris, Kostas

    2016-03-01

    The aim of this study was to perform a preliminary assessment of the hydrochemical and microbial groundwater quality of the Merdja plain (Tébessa area). Twenty samples of groundwater collected from Bekkaria (Site 1) to Ain Chabro (Site 2) were assessed for their suitability for human consumption. Groundwater from the aquifer in the Merdja area can be divided into two major groups according to geographical locations and chemical compositions. Water in the center part of the study area is characterized by the dominance of chloride, sulfate, sodium, and potassium; whereas waters in the limestone aquifers in the west are dominated by the same cations but have higher concentrations of bicarbonate. Microbiological parameters were determined in 13 groundwater samples collected from the study area. Total coliforms, thermotolerant coliforms, E. coli, Enterococcus spp., Salmonella sp., Staphylococcus spp., and P. aeruginosa were detected in 96.36, 88.18, 100, 47.5, 97.27, 96.7, and 75 % of the groundwater samples, respectively. The pollution of groundwater comes from a variety of sources, Ouadi El Kebir River, including land application of agricultural chemicals and organic wastes, infiltration of irrigation water, septic tanks, and infiltration of effluent from sewage treatment plants, pits, lagoons, and ponds used for storage.

  1. Groundwater quality in the Chemung River Basin, New York, 2008

    Science.gov (United States)

    Risen, Amy J.; Reddy, James E.

    2011-01-01

    The second groundwater quality study of the Chemung River Basin in south-central New York was conducted as part of the U.S. Geological Survey 305(b) water-quality-monitoring program. Water samples were collected from five production wells and five private residential wells from October through December 2008. The samples were analyzed to characterize the chemical quality of the groundwater. Five of the wells are screened in sand and gravel aquifers, and five are finished in bedrock aquifers. Two of these wells were also sampled for the first Chemung River Basin study of 2003. Samples were analyzed for 6 physical properties and 217 constituents, including nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, phenolic compounds, organic carbon, and four types of bacterial analyses. Results of the water-quality analyses for individual wells are presented in tables, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. Water quality in the study area is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards; these were: sodium (one sample), total dissolved solids (one sample), aluminum (one sample), iron (one sample), manganese (four samples), radon-222 (eight samples), trichloroethene (one sample), and bacteria (four samples). The pH of all samples was typically neutral or slightly basic (median 7.5); the median water temperature was 11.0 degrees Celsius (?C). The ions with the highest median concentrations were bicarbonate (median 202 milligrams per liter [mg/L]) and calcium (median 59.0 mg/L). Groundwater in the study area is moderately hard to very hard, but more samples were hard or very hard (121 mg/L as calcium carbonate (CaCO3) or greater) than were moderately hard (61-120 mg/L as Ca

  2. Spatiotemporal evaluation of the groundwater quality in Gharbiya Governorate, Egypt.

    Science.gov (United States)

    Masoud, Alaa A; El Bouraie, Mohamed M; El-Nashar, Wafaa; Mashaly, Hamdy

    2017-03-01

    Groundwater quality indicators were monitored over 6 years (2007-2012) from 55 drinking water supply wells in Gharbiya Governorate (Egypt). The prime objective was to characterize, for the first time, the governorate-wide significant and sustained trends in the concentrations of the groundwater pollutants. Quality indicators included turbidity, pH, total dissolved solid (TDS), electric conductivity (EC), Cl(-), SO4(2-), Na(+), total alkalinity, hardness (total, Mg, and Ca), Fe(2+), Mn(2+), Cu(2+), Zn(2+), F(-), NH4(+), NO2(-), NO3(-), PO4(3-), dissolved oxygen (DO), and SiO2 contents. Detection and estimation of trends and magnitude were carried out applying the non-parametric Mann-Kendall and Thiel-Sen trend statistical tests, respectively. Factor analysis was applied to identify significant sources of quality variation and their loads. Violation of groundwater quality standards clarified emergence of Mn(2+) (46%), Fe(2+) (35%), and NH4(+) (33%). Out of the 55 wells, notable upward trends (deterioration) were significant (>95% level) for TDS (89%), NO3(-) (85), PO4(3-) (75%), NH4(+) (65%), total alkalinity (62%), Fe(2+) (58%), NO2(-) (47%), Mg hardness (36%), turbidity (25%), and Mn(2+) (24%). Ranges of attenuation rates (mg/l/year) varied for TDS (24.3, -0.7), Mg hardness (3.8, -0.85), total alkalinity (1.4, -1.2), NO3(-) (0.52, -0.066), PO4(3-) (0.069, -0.064), NH4(+) (0.038, -0.019), Mn(2+) (0.015, -0.044), Fe(2+) (0.006, -0.014), and NO2(-) (0.006, -0.00003). Highest rates marked Tanta (total alkalinity and Fe(2+)), Al-Mehala Al-Kubra (TDS, Mg hardness, and NO3(-)), Kafr Al-Zayat (NH4(+)), Zifta (Mn(2+)), Bassyun (NO2(-)), and Qutur (PO4(3-)). Precision of the trend estimate varied in goodness of fit, for TDS (86%), Mg hardness (76%), total alkalinity (73%), PO4(3-) (67.4%), NH4(+) (66.8%), Mn(2+) (55%), and Fe(2+) (49.6%), arranged in decreasing order. Two main varimax-rotated factors counted for more than 55% of the quality variance and, in particular

  3. Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India.

    Science.gov (United States)

    Rao, N Subba; Rao, P Surya; Reddy, G Venktram; Nagamani, M; Vidyasagar, G; Satyanarayana, N L V V

    2012-08-01

    Study on chemical characteristics of groundwater and impacts of groundwater quality on human health, plant growth, and industrial sector is essential to control and improve the water quality in every part of the country. The area of the Varaha River Basin is chosen for the present study, where the Precambrian Eastern Ghats underlain the Recent sediments. Groundwater quality is of mostly brackish and very hard, caused by the sources of geogenic, anthropogenic, and marine origin. The resulting groundwater is characterized by Na(+) > Mg(2+) > Ca(2+) : [Formula: see text] > Cl(-) > [Formula: see text], Na(+) > Mg(2+) > Ca(2+) : [Formula: see text] > Cl(-) > [Formula: see text] > [Formula: see text], Na(+) > Mg(2+) > Ca(2+) : [Formula: see text] > Cl(-), and Na(+) > Mg(2+) > Ca(2+) : Cl(-) > [Formula: see text] > [Formula: see text] facies, following the topographical and water flow-path conditions. The genetic geochemical evolution of groundwater ([Formula: see text] and Cl(-)-[Formula: see text] types under major group of [Formula: see text]) and the hydrogeochemical signatures (Na(+)/Cl(-), >1 and [Formula: see text]/Cl(-), originally fresh quality, but is subsequently modified to brackish by the influences of anthropogenic and marine sources, which also supported by the statistical analysis. The concentrations of total dissolved solids (TDS), TH, Mg(2+), Na(+), K(+), [Formula: see text], Cl(-), [Formula: see text], and F(-) are above the recommended limits prescribed for drinking water in many locations. The quality of groundwater is of mostly moderate in comparison with the salinity hazard versus sodium hazard, the total salt concentration versus percent sodium, the residual sodium carbonate, and the magnesium hazard, but is of mostly suitable with respect to the permeability index for irrigation. The higher concentrations of TDS, TH, [Formula: see text], Cl(-), and [Formula: see text

  4. Groundwater quality in the shallow aquifers of the Tulare, Kaweah, and Tule Groundwater Basins and adjacent highlands areas, Southern San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.

    2017-01-18

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the Tulare, Kaweah, and Tule groundwater basins and adjacent highlands areas of the southern San Joaquin Valley constitute one of the study units being evaluated.

  5. Groundwater quality and occurrence and distribution of selected constituents in the Aquia and Upper Patapsco aquifers, Naval Air Station Patuxent River, St. Mary's County, Maryland, July 2008

    Science.gov (United States)

    Dieter, Cheryl A.; Campo, Kimberly W.; Baker, Anna C.

    2012-01-01

    The Naval Air Station Patuxent River in southern Maryland has continued to expand in the first decade of the 21st century, contributing to rapid population growth in the surrounding area. The increase in population has caused State and County water managers and others to be concerned about the impact of population growth on the quantity and quality of groundwater supplies. The U.S. Geological Survey has been investigating the groundwater resources of the air station since 1998. As part of that ongoing investigation, groundwater was sampled in 2008 in six wells in the Aquia aquifer and two wells in the Upper Patapsco aquifer in the vicinity of Naval Air Station Patuxent River and Webster Outlying Field. Groundwater samples were analyzed for basic chemistry (field parameters, major ions, and nutrients) as well as several water-quality issues of concern including the occurrence of arsenic and tungsten, and saltwater intrusion. The results of the 2008 groundwater-quality sampling indicate that the overall quality of groundwater in the Aquia aquifer has not changed since 1943; data are too limited to determine if groundwater quality has changed in the Upper Patapsco aquifer. At one well in the Aquia aquifer, the arsenic concentration exceeded the U.S. Environmental Protection Agency standard for drinking water. Arsenic was not detected in samples from the Upper Patapsco aquifer. Tungsten concentrations were detected at low concentrations near the laboratory reporting level in all eight samples. There was no evidence of saltwater intrusion in any of the wells.

  6. Calendar year 1995 groundwater quality report for the Beak Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. Part 2: 1995 groundwater quality data interpretations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This annual groundwater quality report (GWQR) contains an evaluation of the groundwater and surface water monitoring data obtained during the 1995 calendar year (CY) for several hazardous and nonhazardous waste management facilities associated with the US DOE Y-12 Plant. The sites addressed by this document are located in Bear Creek Valley (BCV) west of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime. The Bear Creek Regime is one of three hydrogeologic regimes defined for the purposes of groundwater and surface water quality monitoring at the Y-12 Plant. The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements. Each annual Part 2 GWQR addresses RCRA interim status reporting requirements regarding assessment of the horizontal and vertical extent of groundwater contamination. This report includes background information regarding the extent of groundwater and surface water contamination in the Bear Creek Regime based on the conceptual models described in the remedial investigation report (Section 2); a summary of the groundwater and surface water monitoring activities performed during CY 1995 (Section 3.0); analysis and interpretation of the CY 1995 monitoring data for groundwater (Section 4.0) and surface water (Section 5.0); a summary of conclusions and recommendations (Section 6.0); and a list of cited references (Section 7.0). Appendices contain diagrams, graphs, data tables, and summaries and the evaluation and decision criteria for data screening.

  7. Groundwater-Quality Data in the Antelope Valley Study Unit, 2008: Results from the California GAMA Program

    Science.gov (United States)

    Schmitt, Stephen J.; Milby Dawson, Barbara J.; Belitz, Kenneth

    2009-01-01

    Groundwater quality in the approximately 1,600 square-mile Antelope Valley study unit (ANT) was investigated from January to April 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within ANT, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 57 wells in Kern, Los Angeles, and San Bernardino Counties. Fifty-six of the wells were selected using a spatially distributed, randomized, grid-based method to provide statistical representation of the study area (grid wells), and one additional well was selected to aid in evaluation of specific water-quality issues (understanding well). The groundwater samples were analyzed for a large number of organic constituents (volatile organic compounds [VOCs], gasoline additives and degradates, pesticides and pesticide degradates, fumigants, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), and radioactive constituents (gross alpha and gross beta radioactivity, radium isotopes, and radon-222). Naturally occurring isotopes (strontium, tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, 239 constituents and water-quality indicators (field parameters) were investigated. Quality

  8. Impacts of afforestation on groundwater resources and quality

    Science.gov (United States)

    Allen, Alistair; Chapman, Deborah

    2001-07-01

    Plans to double the proportion of land under forest cover in Ireland by the year 2035 have been initiated. The plan, primarily financially driven, ignores potential environmental impacts of forestry, particularly impacts on groundwater resources and quality. Since groundwater supplies almost 25% of Ireland's total potable water, these impacts are important. Field investigations indicate that afforestation leads to a reduction in runoff by as much as 20%, mainly due to interception of rainfall by forest canopies. Clearfelling has the opposite impact. Implications are that uncoordinated forestry practices can potentially exacerbate flooding. Groundwater recharge is affected by forestry, largely due to greater uptake of soil water by trees and to increased water-holding capacity of forest soils, arising from higher organic contents. Recharge rates under forests can be reduced to one tenth that under grass or heathland. Groundwater quality may be affected by enhanced acidification and nitrification under forests, due partly to scavenging of atmospheric pollutants by forest canopies, and partly to greater deposition of highly acid leaf litter. The slower recharge rates of groundwater under forests lead to significant delays in manifestation of deterioration in groundwater quality. Résumé. Des plans sont à l'étude pour doubler la proportion du couvert forestier en Irlande d'ici à 2035. Le plan, primitivement déterminé sur une base financière, ignore les impacts environnementaux potentiels de la foresterie, et particulièrement les impacts sur les ressources en eau souterraine et leur qualité. Du fait que les eaux souterraines satisfont presque 25% du total de l'eau potable de l'Irlande, ces impacts sont importants. Les études de terrain montrent que le reboisement conduit à une réduction du ruissellement d'au moins 20%, principalement à cause d'une interception de la pluie par le couvert forestier. Les coupes ont un impact contraire. Les implications sont

  9. Baseline assessment of groundwater quality in Wayne County, Pennsylvania, 2014

    Science.gov (United States)

    Senior, Lisa A.; Cravotta, III, Charles A.; Sloto, Ronald A.

    2016-06-30

    The Devonian-age Marcellus Shale and the Ordovician-age Utica Shale, geologic formations which have potential for natural gas development, underlie Wayne County and neighboring counties in northeastern Pennsylvania. In 2014, the U.S. Geological Survey, in cooperation with the Wayne Conservation District, conducted a study to assess baseline shallow groundwater quality in bedrock aquifers in Wayne County prior to potential extensive shale-gas development. The 2014 study expanded on previous, more limited studies that included sampling of groundwater from 2 wells in 2011 and 32 wells in 2013 in Wayne County. Eighty-nine water wells were sampled in summer 2014 to provide data on the presence of methane and other aspects of existing groundwater quality throughout the county, including concentrations of inorganic constituents commonly present at low levels in shallow, fresh groundwater but elevated in brines associated with fluids extracted from geologic formations during shale-gas development. Depths of sampled wells ranged from 85 to 1,300 feet (ft) with a median of 291 ft. All of the groundwater samples collected in 2014 were analyzed for bacteria, major ions, nutrients, selected inorganic trace constituents (including metals and other elements), radon-222, gross alpha- and gross beta-particle activity, selected man-made organic compounds (including volatile organic compounds and glycols), dissolved gases (methane, ethane, and propane), and, if sufficient methane was present, the isotopic composition of methane.Results of the 2014 study show that groundwater quality generally met most drinking-water standards, but some well-water samples had one or more constituents or properties, including arsenic, iron, pH, bacteria, and radon-222, that exceeded primary or secondary maximum contaminant levels (MCLs). Arsenic concentrations were higher than the MCL of 10 micrograms per liter (µg/L) in 4 of 89 samples (4.5 percent) with concentrations as high as 20 µg/L; arsenic

  10. Geostatistical analysis of tritium, groundwater age and other noble gas derived parameters in California.

    Science.gov (United States)

    Visser, A; Moran, J E; Hillegonds, Darren; Singleton, M J; Kulongoski, Justin T; Belitz, Kenneth; Esser, B K

    2016-03-15

    Key characteristics of California groundwater systems related to aquifer vulnerability, sustainability, recharge locations and mechanisms, and anthropogenic impact on recharge are revealed in a spatial geostatistical analysis of a unique data set of tritium, noble gases and other isotopic analyses unprecedented in size at nearly 4000 samples. The correlation length of key groundwater residence time parameters varies between tens of kilometers ((3)H; age) to the order of a hundred kilometers ((4)Heter; (14)C; (3)Hetrit). The correlation length of parameters related to climate, topography and atmospheric processes is on the order of several hundred kilometers (recharge temperature; δ(18)O). Young groundwater ages that highlight regional recharge areas are located in the eastern San Joaquin Valley, in the southern Santa Clara Valley Basin, in the upper LA basin and along unlined canals carrying Colorado River water, showing that much of the recent recharge in central and southern California is dominated by river recharge and managed aquifer recharge. Modern groundwater is found in wells with the top open intervals below 60 m depth in the southeastern San Joaquin Valley, Santa Clara Valley and Los Angeles basin, as the result of intensive pumping and/or managed aquifer recharge operations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Hydrochemistry and quality assessment of groundwater in the Ardabil area, Iran

    Science.gov (United States)

    Aghazadeh, N.; Chitsazan, M.; Golestan, Y.

    2016-11-01

    In the study area, groundwater is the main water resource for various purposes such as drinking, agriculture and industrial. To evaluate the hydrochemical characteristics of groundwater and suitability for drinking, irrigation and industrial purposes, seventy-seven samples were collected and analyzed for various ions. Results show that, groundwater in the study area is mainly hard to very hard, and slightly alkaline-fresh to brackish in nature. According to the hydrochemistry diagrams, the main groundwater types are Ca, Mg-HCO3, Na-HCO3 and Na-Cl. Calculation of mineral saturation index indicate that the groundwater samples are saturated with respect to carbonate minerals and under-saturated with respect to sulfate minerals such as gypsum and anhydride. The mineral weathering, mixing, ion exchange and anthropogenic activity are the dominant hydrogeochemical natural processes. Results of investigating the quality of heavy metals and calculating the heavy metal index indicated that the groundwater of study area is not contaminated with heavy metals. In this research, the various indices were used to determine the quality of groundwater for various uses. Calculate the indices and comparison results with the WHO standards to determine the quality of groundwater for various uses indicated that the most of the groundwater in study area is chemically suitable for drinking, industrial and agricultural uses.

  12. The use of Kriging Techniques with in GIS Environment to Investigate Groundwater Quality in the Amman-Zarqa Basin/Jordan

    Directory of Open Access Journals (Sweden)

    Atef Al-Mashagbah

    2012-02-01

    Full Text Available The Kriging techniques are called the best linear unbiased estimator since it tries to have a mean residual error equal to zero. It aims to minimizing the variance of the errors and hence is a strong advantage over other estimation methods like inverse distance weighting or moving average. In this study, the ordinary kriging techniques were used to estimate groundwater quality parameters (Ca2+, Mg2+, Na+, K+, Cl- and NO3-. It was found that the spatial interpolation of groundwater quality of the study area poses various problems due to the complex impact of cultivation and urbanization systems of the study area. Testing of various methods and parameters, by comparing and ranking their cross-correlation errors, show that ordinary kriging method using the different semivariogram models provides the overall good results. Also, most of the groundwater quality parameters have moderate spatial structure except NO3 and Ca that have a strong spatial structure.

  13. Hydrogeochemistry for the assessment of groundwater quality in Varanasi: a fast-urbanizing center in Uttar Pradesh, India.

    Science.gov (United States)

    Janardhana Raju, Nandimandalam; Shukla, U K; Ram, Prahlad

    2011-02-01

    The hydrogeochemical parameters for groundwater samples of the Varanasi area, a fast-urbanizing region in India, were studied to evaluate the major ion chemistry, weathering and solute acquisition processes controlling water composition, and suitability of water quality for domestic and irrigation uses. Sixty-eight groundwater samples were collected randomly from dug wells and hand pumps in the urban Varanasi area and analyzed for various chemical parameters. Geologically, the study area comprises Quaternary alluvium made up of an alternating succession of clay, silty clay, and sand deposits. The Total dissolved solids classification reveals that except two locations, the groundwater samples are desirable for drinking, and all are useful for irrigation purposes. The cationic and anionic concentrations indicated that the majority of the groundwater samples belong to the order of Na>Ca>Mg>K and HCO3>Cl>SO4 types, respectively. Geochemical classification of groundwater based on the Chadha rectangular diagram shows that the majority (81%) of groundwater samples belong to the calcium-bicarbonate type. The HCO3/(HCO3+SO4) ratio (0.87) indicates mostly carbonic acid weathering process due to presence of kankar carbonate mixed with clay/fine sand. The high nitrate concentration (>45 mg/l) of about 18% of the groundwater samples may be due to the local domestic sewage, leakage of septic tanks, and improper management of sanitary landfills. In general, the calculated values of sodium adsorption ratio, percent sodium, residual sodium carbonate, and permeability index indicate good to permissible use of water for irrigation, and only a few locations demand remedial measures for better crop yields.

  14. Quality of groundwater and surface water, Wood River Valley, south-central Idaho, July and August 2012

    Science.gov (United States)

    Hopkins, Candice B.; Bartolino, James R.

    2013-01-01

    Residents and resource managers of the Wood River Valley of south-central Idaho are concerned about the effects that population growth might have on the quality of groundwater and surface water. As part of a multi-phase assessment of the groundwater resources in the study area, the U.S. Geological Survey evaluated the quality of water at 45 groundwater and 5 surface-water sites throughout the Wood River Valley during July and August 2012. Water samples were analyzed for field parameters (temperature, pH, specific conductance, dissolved oxygen, and alkalinity), major ions, boron, iron, manganese, nutrients, and Escherichia coli (E.coli) and total coliform bacteria. This study was conducted to determine baseline water quality throughout the Wood River Valley, with special emphasis on nutrient concentrations. Water quality in most samples collected did not exceed U.S. Environmental Protection Agency standards for drinking water. E. coli bacteria, used as indicators of water quality, were detected in all five surface-water samples and in two groundwater samples collected. Some analytes have aesthetic-based recommended drinking water standards; one groundwater sample exceeded recommended iron concentrations. Nitrate plus nitrite concentrations varied, but tended to be higher near population centers and in agricultural areas than in tributaries and less populated areas. These higher nitrate plus nitrite concentrations were not correlated with boron concentrations or the presence of bacteria, common indicators of sources of nutrients to water. None of the samples collected exceeded drinking-water standards for nitrate or nitrite. The concentration of total dissolved solids varied considerably in the waters sampled; however a calcium-magnesium-bicarbonate water type was dominant (43 out of 50 samples) in both the groundwater and surface water. Three constituents that may be influenced by anthropogenic activity (chloride, boron, and nitrate plus nitrite) deviate from this

  15. Groundwater quality assessment using geospatial and statistical tools in Salem District, Tamil Nadu, India

    Science.gov (United States)

    Arulbalaji, P.; Gurugnanam, B.

    2016-11-01

    The water quality study of Salem district, Tamil Nadu has been carried out to assess the water quality for domestic and irrigation purposes. For this purpose, 59 groundwater samples were collected and analyzed for pH, electrical conductivity (EC), total dissolved solids (TDS), major anions (HCO3 -, CO3 -, F-, Cl-, NO2 - + NO3 -, and SO4 2-), major cations (Ca2+ Mg2+, Na+, and K+), alkalinity (ALK), and hardness (HAR). To assess the water quality, the following chemical parameters were calculated based on the analytical results, such as Piper plot, water quality index (WQI), sodium adsorption ratio (SAR), magnesium hazard (MH), Kelly index (KI), and residual sodium carbonate (RSC). Wilcox diagram represents that 23% of the samples are excellent to good, 40% of the samples are good to permissible, 10% of the samples are permissible to doubtful, 24% of the samples are doubtful unsuitable, and only 3% of the samples are unsuitable for irrigation. SAR values shows that 52% of the samples indicate high-to-very high and low-to-medium alkali water. KI values indicate good quality (30%) and not suitable (70%) for irrigation purposes. RSC values indicate that 89% of samples are suitable for irrigation purposes. MH reveals that 17% suitable and 83% samples are not suitable for irrigation purposes and for domestic purposes the excellent (8%), good (48%), and poor (44%). The agricultural waste, fertilizer used, soil leaching, urban runoff, livestock waste, and sewages are the sources of poor water quality. Some samples are not suitable for irrigation purposes due to high salinity, hardness, and magnesium concentration. In general, the groundwater of the Salem district was polluted by agricultural activities, anthropogenic activities, ion exchange, and weathering.

  16. Spatial and temporal trends in groundwater quantity and quality in urban area

    Science.gov (United States)

    Fejes, I.; Farsang, A.

    2012-04-01

    Nowadays one of the most important environmental problems in urban areas is groundwater contamination, since it takes effect on all parts of the urban environment. Therefore in this research the groundwater-system of Szeged (SE Hungary) was monitored and the temporal and spatial changes of heavy metals and other inorganic contaminants were examined. Water quantity and quality investigations twenty-eight sampling wells from the groundwater monitoring network of Szeged were carried out. In the course of well selection, we were about to cover complete area of the city. The water samples were collected every month from October of 2010 to September of 2011 and every second month from November 2011. Temperature, pH, total salt content, electrical conductivity, water levels and the concentrations of 12 components (copper, cadmium, cobalt, chrome, lead, nickel, zinc, arsenic, nitrate, nitrite, ammonium, orthophosphate) were measured. The water levels were strongly influenced by the extreme precipitation of the investigated period, so the maximum and minimum of groundwater levels have differed from the average. Changes of water levels followed the changes of precipitation in autumn and winter, but in spring and summer other factors, like evaporation and effects of the vegetation influenced the water regime. The relationship of different pollutants and their distribution were determined in the city. As the results show, the amount of toxic materials in the groundwater in Szeged has exceeded the limit values (according to the joint decree) in many cases. The groundwater is contaminated with lead, nickel, copper, zinc, arsenic, nitrate, ammonium and orthophosphate mainly in the downtown, close to the river Tisza, which can cause ecological and human-health risk as well. In outskirts lowest concentrations were detected. Significant statistical relationship, used Spearman's rank correlation, was determined among the siderophile (namely chrome and nickel), chalcophile elements

  17. Effects of a constructed wetland and pond system upon shallow groundwater quality

    Science.gov (United States)

    Ying Ouyang

    2013-01-01

    Constructed wetland (CW) and constructed pond (CP) are commonly utilized for removal of excess nutrients and certain pollutants from stormwater. This study characterized shallow groundwater quality for pre- and post-CW and CP system conditions using data from monitoring wells. Results showed that the average concentrations of groundwater phosphorus (P) decreased from...

  18. Monitoring groundwater quality in South-Africa: Development of a national strategy

    CSIR Research Space (South Africa)

    Parsons, R

    1995-04-01

    Full Text Available Little is known about the temporal distribution of groundwater quality on a national scale in South Africa. The effective management of the country's groundwater resources is thus difficult and a need exists for a national network for monitoring...

  19. Use of the landfill water pollution index (LWPI) for groundwater quality assessment near the landfill sites.

    Science.gov (United States)

    Talalaj, Izabela A; Biedka, Pawel

    2016-12-01

    The purpose of the paper is to assess the groundwater quality near the landfill sites using landfill water pollution index (LWPI). In order to investigate the scale of groundwater contamination, three landfills (E, H and S) in different stages of their operation were taken into analysis. Samples of groundwater in the vicinity of studied landfills were collected four times each year in the period from 2004 to 2014. A total of over 300 groundwater samples were analysed for pH, EC, PAH, TOC, Cr, Hg, Zn, Pb, Cd, Cu, as required by the UE legal acts for landfill monitoring system. The calculated values of the LWPI allowed the quantification of the overall water quality near the landfill sites. The obtained results indicated that the most negative impact on groundwater quality is observed near the old Landfill H. Improper location of piezometer at the Landfill S favoured infiltration of run-off from road pavement into the soil-water environment. Deep deposition of the groundwater level at Landfill S area reduced the landfill impact on the water quality. Conducted analyses revealed that the LWPI can be used for evaluation of water pollution near a landfill, for assessment of the variability of water pollution with time and for comparison of water quality from different piezometers, landfills or time periods. The applied WQI (Water Quality Index) can also be an important information tool for landfill policy makers and the public about the groundwater pollution threat from landfill.

  20. Groundwater quality in the Mohawk River Basin, New York, 2011

    Science.gov (United States)

    Nystrom, Elizabeth A.; Scott, Tia-Marie

    2013-01-01

    Water samples were collected from 21 production and domestic wells in the Mohawk River Basin in New York in July 2011 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Mohawk River Basin covers 3,500 square miles in New York and is underlain by shale, sandstone, carbonate, and crystalline bedrock. The bedrock is overlain by till in much of the basin, but surficial deposits of saturated sand and gravel are present in some areas. Nine of the wells sampled in the Mohawk River Basin are completed in sand and gravel deposits, and 12 are completed in bedrock. Groundwater in the Mohawk River Basin was typically neutral or slightly basic; the water typically was very hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 15 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Four pesticides, all herbicides or their degradates, were detected in four samples at trace levels; three VOCs, including chloroform and two solvents, were detected in four samples. The greatest radon-222 activity, 2,300 picocuries per liter, was measured in a sample from a bedrock well, but the median radon activity was higher in samples from sand and gravel wells than in samples from bedrock wells. Coliform bacteria were detected in five samples with a maximum of 92 colony-forming units per 100 milliliters. Water quality in the Mohawk River Basin is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards. The standards

  1. Hydrogen for representing groundwater quality and contamination; Hidrogramas para la representacion de la calidad t contaminacion de las aguas subterraneas

    Energy Technology Data Exchange (ETDEWEB)

    Queralt, R. [Dept. Medi Ambient, Generalitat de Catalunya (Spain)

    2000-07-01

    A new groundwater hydrogram called Roda is defined. It represents the quality and contamination of the water in the form of a wheel, or clock, in which the circumference is equivalent to the legal or defined concentration limit for each of the radii corresponding to the 12 parameters involved: chlorides, sulphates, bicarbonates, nitrates, manganese, TOC, iron, potassium, magnesium, calcium, sodium and conductivity. Its practical application to the groundwater in various Catalan aquifers is reported. This involved a trial with a graphic representation hydrogram that complements already existing indices such as the ISQA for physicochemical quality, the BMWPC for biological quality and the star system for inshore seawater. It is hoped to devise a simpler representation system than RODA in the form of an index or equivalent. (Author) 10 refs.

  2. Hydrogeology, groundwater flow, and groundwater quality of an abandoned underground coal-mine aquifer, Elkhorn Area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; McCoy, Kurt J.; Britton, James Q.; Blake, B.M.

    2017-01-01

    The Pocahontas No. 3 coal seam in southern West Virginia has been extensively mined by underground methods since the 1880’s. An extensive network of abandoned mine entries in the Pocahontas No. 3 has since filled with good-quality water, which is pumped from wells or springs discharging from mine portals (adits), and used as a source of water for public supplies. This report presents results of a three-year investigation of the geology, hydrology, geochemistry, and groundwater flow processes within abandoned underground coal mines used as a source of water for public supply in the Elkhorn area, McDowell County, West Virginia. This study focused on large (> 500 gallon per minute) discharges from the abandoned mines used as public supplies near Elkhorn, West Virginia. Median recharge calculated from base-flow recession of streamflow at Johns Knob Branch and 12 other streamflow gaging stations in McDowell County was 9.1 inches per year. Using drainage area versus mean streamflow relationships from mined and unmined watersheds in McDowell County, the subsurface area along dip of the Pocahontas No. 3 coal-mine aquifer contributing flow to the Turkey Gap mine discharge was determined to be 7.62 square miles (mi2), almost 10 times larger than the 0.81 mi2 surface watershed. Results of this investigation indicate that groundwater flows down dip beneath surface drainage divides from areas up to six miles east in the adjacent Bluestone River watershed. A conceptual model was developed that consisted of a stacked sequence of perched aquifers, controlled by stress-relief and subsidence fractures, overlying a highly permeable abandoned underground coal-mine aquifer, capable of substantial interbasin transfer of water. Groundwater-flow directions are controlled by the dip of the Pocahontas No. 3 coal seam, the geometry of abandoned mine workings, and location of unmined barriers within that seam, rather than surface topography. Seven boreholes were drilled to intersect

  3. Groundwater quality comparison between rural farms and riparian wells in the western Amazon, Brazil

    Directory of Open Access Journals (Sweden)

    Nei K Leite

    2011-01-01

    Full Text Available Groundwater quality of a riparian forest is compared to wells in surrounding rural areas at Urupá River basin. Groundwater types were calcium bicarbonated at left margin and sodium chloride at right, whereas riparian wells exhibited a combination of both (sodium bicarbonate. Groundwater was mostly solute-depleted with concentrations within permissible limits for human consumption, except for nitrate. Isotopic composition suggests that inorganic carbon in Urupá River is mostly supplied by runoff instead of riparian groundwater. Hence, large pasture areas in addition to narrow riparian forest width in this watershed may have an important contribution in the chemical composition of this river.

  4. Geospatial modelling for groundwater quality mapping: a case study of Rupnagar district, Punjab, India

    Science.gov (United States)

    Sahoo, S.; Kaur, A.; Litoria, P.; Pateriya, B.

    2014-11-01

    Over period of time, the water usage and management is under stress for various reasons including pollution in both surface and subsurface. The groundwater quality decreases due to the solid waste from urban and industrial nodes, rapid use of insecticides and pesticides in agricultural practices. In this study, ground water quality maps for Rupnagar district of Punjab has been prepared using geospatial interpolation technique through Inverse Distance Weighted (IDW) approach. IDW technique has been used for major ground water quality parameters observed from the field samples like Arsenic, Hardness, pH, Iron, Fluoride, TDS, and Sulphate. To assess the ground water quality of the Rupnagar district, total 280 numbers of samples from various sources of tubewells for both pre and post monsoon have collected. Out of which, 80 to 113 samples found Iron with non potable limits ranging 0.3-1.1mg/l and 0.3-1.02mg/l according to BIS standard for both the seasons respectively. Chamkaur Sahib, Rupnagar, Morinda blocks have been found non potable limit of iron in both pre & post-monsoon. 11 to 52 samples in this region have sulphate with permissible limits in both the season ranging 200-400mg/l and 201-400mg/l. But arsenic had acceptable limit in both the season. Various parameters-wise ground water quality map is generated using the range values of drinking water quality to know the distribution of different parameters and diversification in the concentration of different elements. These maps are very much needful for human being to expand awareness among the people to maintain the Cleanness of water at their highest quality and purity levels to achieve a healthy life.

  5. Zonal management of multi-purposes groundwater utilization based on water quality and impact on the aquifer.

    Science.gov (United States)

    Liang, Ching-Ping; Jang, Cheng-Shin; Chen, Ching-Fang; Chen, Jui-Sheng

    2016-07-01

    Groundwater is widely used for drinking, irrigation, and aquaculture in the Pingtung Plain, Southwestern Taiwan. The overexploitation and poor quality of groundwater in some areas of the Pingtung Plain pose great challenges for the safe use and sustainable management of groundwater resources. Thus, establishing an effective management plan for multi-purpose groundwater utilization in the Pingtung Plain is imperative. Considerations of the quality of the groundwater and potential impact on the aquifer of groundwater exploitation are paramount to multi-purpose groundwater utilization management. This study proposes a zonal management plan for the multi-purpose use of groundwater in the Pingtung Plain. The zonal management plan is developed by considering the spatial variability of the groundwater quality and the impact on the aquifer, which is defined as the ratio of the actual groundwater extraction rate to transmissivity. A geostatistical Kriging approach is used to spatially delineate the safe zones based on the water quality standards applied in the three groundwater utilization sectors. Suitable zones for the impact on the aquifer are then spatially determined. The evaluation results showing the safe water quality zones for the three types of utilization demands and suitable zones for the impact on aquifer are integrated to create a zonal management map for multi-purpose groundwater utilization which can help government administrators to establish a water resource management strategy for safe and sustainable use of groundwater to meet multi-purpose groundwater utilization requirements in the Pingtung Plain.

  6. Temperature change affected groundwater quality in a confined marine aquifer during long-term heating and cooling.

    Science.gov (United States)

    Saito, Takeshi; Hamamoto, Shoichiro; Ueki, Takashi; Ohkubo, Satoshi; Moldrup, Per; Kawamoto, Ken; Komatsu, Toshiko

    2016-05-01

    Global warming and urbanization together with development of subsurface infrastructures (e.g. subways, shopping complexes, sewage systems, and Ground Source Heat Pump (GSHP) systems) will likely cause a rapid increase in the temperature of relatively shallow groundwater reservoirs (subsurface thermal pollution). However, potential effects of a subsurface temperature change on groundwater quality due to changed physical, chemical, and microbial processes have received little attention. We therefore investigated changes in 34 groundwater quality parameters during a 13-month enhanced-heating period, followed by 14 months of natural or enhanced cooling in a confined marine aquifer at around 17 m depth on the Saitama University campus, Japan. A full-scale GSHP test facility consisting of a 50 m deep U-tube for circulating the heat-carrying fluid and four monitoring wells at 1, 2, 5, and 10 m from the U-tube were installed, and groundwater quality was monitored every 1-2 weeks. Rapid changes in the groundwater level in the area, especially during the summer, prevented accurate analyses of temperature effects using a single-well time series. Instead, Dual-Well Analysis (DWA) was applied, comparing variations in subsurface temperature and groundwater chemical concentrations between the thermally-disturbed well and a non-affected reference well. Using the 1 m distant well (temperature increase up to 7 °C) and the 10 m distant well (non-temperature-affected), the DWA showed an approximately linear relationships for eight components (B, Si, Li, dissolved organic carbon (DOC), Mg(2+), NH4(+), Na(+), and K(+)) during the combined 27 months of heating and cooling, suggesting changes in concentration between 4% and 31% for a temperature change of 7 °C.

  7. Assessment of groundwater quality for drinking and irrigation use in shallow hard rock aquifer of Pudunagaram, Palakkad District Kerala

    Science.gov (United States)

    Satish Kumar, V.; Amarender, B.; Dhakate, Ratnakar; Sankaran, S.; Raj Kumar, K.

    2016-06-01

    Groundwater samples were collected for pre-monsoon and post-monsoon seasons based on the variation in the geomorphological, geological, and hydrogeological factors for assessment of groundwater quality for drinking and irrigation use in a shallow hard rock aquifer of Pudunagaram area, Palakkad district, Kerala. The samples were analyzed for various physico-chemical parameters and major ion chemistry. Based on analytical results, Gibbs diagram and Wilcox plots were plotted and groundwater quality has been distinguished for drinking and irrigation use. Gibbs diagram shows that the samples are rock dominance and controlling the mechanism for groundwater chemistry in the study area, while Wilcox plot suggest that most of the samples are within the permissible limit of drinking and irrigation use. Further, the suitability of water for irrigation was determined by analyzing sodium adsorption ratio, residual sodium carbonate, sodium percent (%Na), Kelly's ratio, residual sodium carbonate, soluble sodium percentage, permeability index, and water quality index. It has been concluded that, the water from the study area is good for drinking and irrigation use, apart few samples which are exceeding the limits due to anthropogenic activities and those samples were indisposed for irrigation.

  8. Drinking Water Quality and Occurrence of Giardia in Finnish Small Groundwater Supplies

    Directory of Open Access Journals (Sweden)

    Tarja Pitkänen

    2015-08-01

    Full Text Available The microbiological and chemical drinking water quality of 20 vulnerable Finnish small groundwater supplies was studied in relation to environmental risk factors associated with potential sources of contamination. The microbiological parameters analyzed included the following enteric pathogens: Giardia and Cryptosporidium, Campylobacter species, noroviruses, as well as indicator microbes (Escherichia coli, intestinal enterococci, coliform bacteria, Clostridium perfringens, Aeromonas spp. and heterotrophic bacteria. Chemical analyses included the determination of pH, conductivity, TOC, color, turbidity, and phosphorus, nitrate and nitrite nitrogen, iron, and manganese concentrations. Giardia intestinalis was detected from four of the water supplies, all of which had wastewater treatment activities in the neighborhood. Mesophilic Aeromonas salmonicida, coliform bacteria and E. coli were also detected. None of the samples were positive for both coliforms and Giardia. Low pH and high iron and manganese concentrations in some samples compromised the water quality. Giardia intestinalis was isolated for the first time in Finland in groundwater wells of public water works. In Europe, small water supplies are of great importance since they serve a significant sector of the population. In our study, the presence of fecal indicator bacteria, Aeromonas and Giardia revealed surface water access to the wells and health risks associated with small water supplies.

  9. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant. 1991 groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several waste management facilities and petroleum fuel underground storage tank (UST) sites associated with the Y-12 Plant. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation. This report was prepared for informational purposes. Included are the analytical data for groundwater samples collected from selected monitoring wells during 1991 and the results for quality assurance/quality control (QA/QC) samples associated with each groundwater sample. This report also contains summaries of selected data, including ion-charge balances for each groundwater sample, a summary of analytical results for nitrate (a principle contaminant in the UEFPCHR), results of volatile organic compounds (VOCs) analyses validated using the associated QA/QC sample data, a summary of trace metal concentrations which exceeded drinking-water standards, and a summary of radiochemical analyses and associated counting errors.

  10. Assessment of Groundwater Quality in a Typical Rural Settlement in Southwest Nigeria

    Directory of Open Access Journals (Sweden)

    O. B. Banjoko

    2007-12-01

    Full Text Available In most rural settlements in Nigeria, access to clean and potable water is a great challenge, resulting in water borne diseases. The aim of this study was to assess the levels of some physical, chemical, biochemical and microbial water quality parameters in twelve hand – dug wells in a typical rural area (Igbora of southwest region of the country. Seasonal variations and proximity to pollution sources (municipal waste dumps and defecation sites were also examined. Parameters were determined using standard procedures. All parameters were detected up to 200 m from pollution source and most of them increased in concentration during the rainy season over the dry periods, pointing to infiltrations from storm water. Coliform population, Pb, NO3- and Cd in most cases, exceeded the World Health Organization recommended thresholds for potable water. Effect of distance from pollution sources was more pronounced on fecal and total coliform counts, which decreased with increasing distance from waste dumps. The qualities of the well water samples were therefore not suitable for human consumption without adequate treatment. Regular monitoring of groundwater quality, abolishment of unhealthy waste disposal practices and introduction of modern techniques are recommended.

  11. Evaluation of the quality of groundwater sampling: Experience derived from radioactive waste disposal programmes in Sweden and Finland during 1980-1992

    Energy Technology Data Exchange (ETDEWEB)

    Smellie, J.A.T. [Conterra AB, Uppsala (Sweden); Laaksoharju, M. [Intera, Solletuna (Sweden); Snellman, M.V. [Posiva Oy, Helsinki (Finland); Ruotsalainen, P.H. [Fintact Oy, (Finland)

    1999-09-01

    Existing Finnish and Swedish hydrogeochemical field data from the 1980s and the early 1990s have been closely examined in the light of other influencing activities, such as geology and hydrology, which form an integral part of site-specific investigations. The report has considered data relating to the monitoring of groundwater chemical trends and groundwater sampling and analysis. These data have been used to simulate the effects of important parameters on groundwater quality and representativeness, to generate recommendations to improve the standard of hydrogeochemical sampling and analyses, and to discuss these results in the broader context of future site-specific investigations. (orig.)

  12. Hydrogeochemistry and groundwater quality assessment of Ranipet industrial area, Tamil Nadu, India

    Indian Academy of Sciences (India)

    G Tamma Rao; V V S Gurunadha Rao; K Ranganathan

    2013-06-01

    One of the highly polluted areas in India located at Ranipet occupies around 200 tanneries and other small scale chemical industries. Partially treated industrial effluents combined with sewage and other wastes discharged on the surface cause severe groundwater pollution in the industrial belt. This poses a problem of supply of safe drinking water in the rural parts of the country. A study was carried out to assess the groundwater pollution and identify major variables affecting the groundwater quality in Ranipet industrial area. Twenty five wells were monitored during pre- and post-monsoon in 2008 and analyzed for the major physico-chemical variables. The water quality variables such as total dissolved solids (TDS), Iron (Fe2+), Hexavalent Chromium (Cr6+), at most of the sampling locations exceeded the ISI and WHO guideline levels for drinking water. Multivariate statistical techniques such as factor analysis were applied to identify the major factors (variables) corresponding to the different source of variation in groundwater quality. The water quality of groundwater is influenced by both anthropogenic and chemical weathering. The most serious pollution threat to groundwater is from TDS, Cr6+ and Fe2+, which are associated with sewage and pollution of tannery waste. The study reveals that the groundwater quality changed due to anthropogenic and natural influences such as agricultural, natural weathering process.

  13. Hydrogeochemistry and groundwater quality assessment of Ranipet industrial area, Tamil Nadu, India

    Science.gov (United States)

    Rao, G. Tamma; Rao, V. V. S. Gurunadha; Ranganathan, K.

    2013-06-01

    One of the highly polluted areas in India located at Ranipet occupies around 200 tanneries and other small scale chemical industries. Partially treated industrial effluents combined with sewage and other wastes discharged on the surface cause severe groundwater pollution in the industrial belt. This poses a problem of supply of safe drinking water in the rural parts of the country. A study was carried out to assess the groundwater pollution and identify major variables affecting the groundwater quality in Ranipet industrial area. Twenty five wells were monitored during pre- and post-monsoon in 2008 and analyzed for the major physico-chemical variables. The water quality variables such as total dissolved solids (TDS), Iron (Fe2 + ), Hexavalent Chromium (Cr6 + ), at most of the sampling locations exceeded the ISI and WHO guideline levels for drinking water. Multivariate statistical techniques such as factor analysis were applied to identify the major factors (variables) corresponding to the different source of variation in groundwater quality. The water quality of groundwater is influenced by both anthropogenic and chemical weathering. The most serious pollution threat to groundwater is from TDS, Cr6 + and Fe2 + , which are associated with sewage and pollution of tannery waste. The study reveals that the groundwater quality changed due to anthropogenic and natural influences such as agricultural, natural weathering process.

  14. Risk Communication of Groundwater Quality in Northern Malawi, Africa

    Science.gov (United States)

    Holm, R.

    2011-12-01

    Malawi lies in Africa's Great Rift Valley. Its western border is defined by Lake Malawi, the third largest lake in Africa. Over 80% of Malawians live in rural areas and 90% of the labor force is associated with agriculture. More than half of the population lives below the poverty line. Area characteristics indicate a high likelihood of nitrate and total coliform in community drinking water. Infants exposed to high nitrate are at risk of developing methemoglobinemia. In addition, diarrheal diseases from unsafe drinking water are one of the top causes of mortality in children under five. Without sufficient and sustainable supplies of clean water, these challenges will continue to threaten Malawi's ability to overcome the devastating impact of diarrheal diseases on its population. Therefore, Malawi remains highly dependent on outside assistance and influence to reduce or eliminate the threat posed by unsafe drinking water. This research presents a literature review of nitrate and total coliform groundwater quality and a proposed risk communication plan for drinking water in northern Malawi.

  15. Spatial variability of groundwater quality of Sabour block, Bhagalpur district (Bihar, India)

    Science.gov (United States)

    Verma, D. K.; Bhunia, Gouri Sankar; Shit, Pravat Kumar; Kumar, S.; Mandal, Jajati; Padbhushan, Rajeev

    2016-01-01

    This paper examines the quality of groundwater of Sabour block, Bhagalpur district of Bihar state, which lies on the southern region of Indo-Gangetic plains in India. Fifty-nine samples from different sources of water in the block have been collected to determine its suitability for drinking and irrigational purposes. From the samples electrical conductivity (EC), pH and concentrations of Calcium (Ca2+), Magnesium (Mg2+), Sodium (Na+), Potassium (K+), carbonate ion (CO{3/2-}), Bicarbonate ion (HCO{3/-}), Chloride ion (Cl-), and Fluoride (F-) were determined. Surface maps of all the groundwater quality parameters have been prepared using radial basis function (RBF) method. RBF model was used to interpolate data points in a group of multi-dimensional space. Root Mean Square Error (RMSE) is employed to scrutinize the best fit of the model to compare the obtained value. The mean value of pH, EC, Ca2+, Mg2+, Na+, K+, HCO3 -, Cl-, and F- are found to be 7.26, 0.69, 38.98, 34.20, 16.92, 1.19, 0.02, and 0.28, respectively. Distribution of calcium concentration is increasing to the eastern part and K+ concentrations raise to the downstream area in the southwestern part. Low pH concentrations (less than 6.71) occur in eastern part of the block. Spatial variations of hardness in Sabour block portraying maximum concentration in the western part and maximum SAR (more than 4.23) were recorded in the southern part. These results are not exceeding for drinking and irrigation uses recommended by World Health Organization. Therefore, the majority of groundwater samples are found to be safe for drinking and irrigation management practices.

  16. Spatial variability of groundwater quality of Sabour block, Bhagalpur district (Bihar, India)

    Science.gov (United States)

    Verma, D. K.; Bhunia, Gouri Sankar; Shit, Pravat Kumar; Kumar, S.; Mandal, Jajati; Padbhushan, Rajeev

    2017-07-01

    This paper examines the quality of groundwater of Sabour block, Bhagalpur district of Bihar state, which lies on the southern region of Indo-Gangetic plains in India. Fifty-nine samples from different sources of water in the block have been collected to determine its suitability for drinking and irrigational purposes. From the samples electrical conductivity (EC), pH and concentrations of Calcium (Ca2+), Magnesium (Mg2+), Sodium (Na+), Potassium (K+), carbonate ion (CO 3 2- ), Bicarbonate ion (HCO 3 - ), Chloride ion (Cl-), and Fluoride (F-) were determined. Surface maps of all the groundwater quality parameters have been prepared using radial basis function (RBF) method. RBF model was used to interpolate data points in a group of multi-dimensional space. Root Mean Square Error (RMSE) is employed to scrutinize the best fit of the model to compare the obtained value. The mean value of pH, EC, Ca2+, Mg2+, Na+, K+, HCO3 -, Cl-, and F- are found to be 7.26, 0.69, 38.98, 34.20, 16.92, 1.19, 0.02, and 0.28, respectively. Distribution of calcium concentration is increasing to the eastern part and K+ concentrations raise to the downstream area in the southwestern part. Low pH concentrations (less than 6.71) occur in eastern part of the block. Spatial variations of hardness in Sabour block portraying maximum concentration in the western part and maximum SAR (more than 4.23) were recorded in the southern part. These results are not exceeding for drinking and irrigation uses recommended by World Health Organization. Therefore, the majority of groundwater samples are found to be safe for drinking and irrigation management practices.

  17. Examining the impacts of increased corn production on groundwater quality using a coupled modeling system

    Science.gov (United States)

    This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirect...

  18. Examining the impacts of increased corn production on groundwater quality using a coupled modeling system

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset was used to create graphics associated with manuscript: Garcia et al., Examining the impacts of increased corn production on groundwater quality using a...

  19. Elevated atmospheric carbon dioxide in agroecosystems affects groundwater quality

    Energy Technology Data Exchange (ETDEWEB)

    Torbert, H.A. [Blackland, Soil and Water Research Lab., Temple, TX (United States); Prior, S.A.; Rogers, H.H. [National Soil Dynamics Lab., Auburn, AL (United States); Schlesinger, W.H. [Duke Univ., Durham, NC (United States); Mullins, G.L.; Runion, G.B. [Auburn Univ., AL (United States)

    1996-07-01

    Increasing atmospheric carbon dioxide (CO{sub 2}) concentration has led to concerns about global changes to the environment. One area of global change that has not been addressed is the effect of elevated atmospheric CO{sub 2} on groundwater quality below agroecosystems. Elevated CO{sub 2} concentration alterations of plant growth and C/N ratios may modify C and N cycling in soil and affect nitrate (NO{sub 3}{sup {minus}}) leaching to groundwater. This study was conducted to examine the effects of a legume (soybean [Glycine max (L.) Merr.]) and a nonlegume (grain sorghum [Sorghum bicolor (L.) Moench]) CO{sub 2}-enriched agroecosystems on NO{sub 3}{sup {minus}} movement below the root zone in a Blanton loamy sand (loamy siliceous, thermic, Grossarenic Paleudults). The study was a split-plot design replicated three times with plant species (soybean and grain sorghum) as the main plots and CO{sub 2} concentration ({approximately}360 and {approximately}720 {mu}L L{sup {minus}1} CO{sub 2}) as subplots using open-top field chambers. Fertilizer application was made with {sup 15}N-depleted NH{sub 4}NO{sub 3} to act as a fertilizer tracer. Soil solution samples were collected weekly at 90-cm depth for a 2-yr period and monitored for NO{sub 3}{sup {minus}}-N concentrations. Isotope analysis of soil solution indicated that the decomposition of organic matter was the primary source of No{sub 3}{sup {minus}}-N in soil solution below the root zone through most of the monitoring period. Significant differences were observed for NO{sub 3}{sup {minus}}-N concentrations between soybean and grain sorghum, with soybean having the higher NO{sub 3}{sup {minus}}-N concentration. Elevated CO{sub 2} increased total dry weight, total N content, and C/N ratio of residue returned to soil in both years. Elevated CO{sub 2} significantly decreased NO{sub 3}{sup {minus}}-N concentrations below the root zone in both soybean and grain sorghum. 37 refs., 2 figs., 2 tabs.

  20. The spatial and seasonal variability of the groundwater chemistry and quality in the exploited aquifer in the Daxing District, Beijing, China.

    Science.gov (United States)

    Zhai, Yuanzheng; Lei, Yan; Zhou, Jun; Li, Muzi; Wang, Jinsheng; Teng, Yanguo

    2015-02-01

    The aquifer in the Beijing Plain is intensively used as a primary source to meet the growing needs of the various sectors (drinking, agricultural, and industrial purposes). The analysis of groundwater chemical characteristics provides much important information useful in water resources management. To characterize the groundwater chemistry, reveal its spatial and seasonal variability, and determine its quality suitability for domestic and agricultural uses, a total of 200 groundwater samples were collected in June and October 2012 from 100 exploited wells in Daxing District, Beijing, China. All of the indices (39 items) listed in the Quality Standard for Groundwater of China (QSGC) as well as eight additional common parameters were tested and analyzed for all samples, based on which research target was achieved. The seasonal effect on the groundwater chemistry and quality was very slight, whereas the spatial changes were very obvious. The aquifer is mainly dominated by HCO3-Ca·Mg-type water. Of the 39 quality indices listed in QSGC, 28 indices of all of the samples for the 2 months can be classified into the excellent level, whereas the remaining 11 indices can be classified into different levels with the total hardness, NO3, NO2, and Fe being the worst, mainly distributed in the residential and industrial land. According to the general quality index, the groundwater can be classified from good to a relatively poor level, mainly from southeast to northwest. Furthermore, the relatively poor-level area in the northwest expands to the southeast more than in the past years, to which people should pay attention because this reverse spatial distribution relative to the natural law indicates an obvious, anthropogenic impact on the groundwater. In addition, the groundwater in this area is generally very suitable for irrigation year-round. Nevertheless, we recommend performing agricultural water-saving measures for the sustainable development of water and urbanization

  1. Groundwater-quality data from the National Water-Quality Assessment Project, January through December 2014 and select quality-control data from May 2012 through December 2014

    Science.gov (United States)

    Arnold, Terri L.; Bexfield, Laura M.; Musgrove, MaryLynn; Lindsey, Bruce D.; Stackelberg, Paul E.; Barlow, Jeannie R.; DeSimone, Leslie A.; Kulongoski, Justin T.; Kingsbury, James A.; Ayotte, Joseph D.; Fleming, Brandon J.; Belitz, Kenneth

    2017-10-05

    Groundwater-quality data were collected from 559 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from January through December 2014. The data were collected from four types of well networks: principal aquifer study networks, which are used to assess the quality of groundwater used for public water supply; land-use study networks, which are used to assess land-use effects on shallow groundwater quality; major aquifer study networks, which are used to assess the quality of groundwater used for domestic supply; and enhanced trends networks, which are used to evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, radionuclides, and some constituents of special interest (arsenic speciation, chromium [VI] and perchlorate). These groundwater-quality data, along with data from quality-control samples, are tabulated in this report and in an associated data release.

  2. Quality-assurance plan for groundwater activities, U.S. Geological Survey, Washington Water Science Center

    Science.gov (United States)

    Kozar, Mark D.; Kahle, Sue C.

    2013-01-01

    This report documents the standard procedures, policies, and field methods used by the U.S. Geological Survey’s (USGS) Washington Water Science Center staff for activities related to the collection, processing, analysis, storage, and publication of groundwater data. This groundwater quality-assurance plan changes through time to accommodate new methods and requirements developed by the Washington Water Science Center and the USGS Office of Groundwater. The plan is based largely on requirements and guidelines provided by the USGS Office of Groundwater, or the USGS Water Mission Area. Regular updates to this plan represent an integral part of the quality-assurance process. Because numerous policy memoranda have been issued by the Office of Groundwater since the previous groundwater quality assurance plan was written, this report is a substantial revision of the previous report, supplants it, and contains significant additional policies not covered in the previous report. This updated plan includes information related to the organization and responsibilities of USGS Washington Water Science Center staff, training, safety, project proposal development, project review procedures, data collection activities, data processing activities, report review procedures, and archiving of field data and interpretative information pertaining to groundwater flow models, borehole aquifer tests, and aquifer tests. Important updates from the previous groundwater quality assurance plan include: (1) procedures for documenting and archiving of groundwater flow models; (2) revisions to procedures and policies for the creation of sites in the Groundwater Site Inventory database; (3) adoption of new water-level forms to be used within the USGS Washington Water Science Center; (4) procedures for future creation of borehole geophysics, surface geophysics, and aquifer-test archives; and (5) use of the USGS Multi Optional Network Key Entry System software for entry of routine water-level data

  3. Evaluation of the groundwater quality in the Alcochete area using GIS

    OpenAIRE

    Cavaleiro, Victor; Casinhas, Cláudio; Albuquerque, António; Carvalho, António; Silva, Flora

    2012-01-01

    Most of the water needed for domestic, agricultural, recreational and industrial activities in the Alcochete municipality (Portugal) comes from groundwater sources. However, doubts remain on the state of its quality and attractiveness for the current uses. A monitoring campaign was set in 67 groundwater sources (26 wells and 41 boreholes) for the period of 4 months to evaluate the water quality status. In order to better analyse the large and complex available information it was necessary to ...

  4. The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-02-11

    The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

  5. Groundwater-quality data in the Tulare Shallow Aquifer Study Unit, 2014-2015: Results from the California GAMA Priority Basin Project

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Johnson, Tyler

    2017-01-01

    The U.S. Geological Survey collected groundwater samples from 95 domestic wells in Tulare and Kings Counties, California in 2014-2015. The wells were sampled for the Tulare Shallow Aquifer Study Unit of the California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project’s assessment of the quality of groundwater resources used for domestic drinking water supply. Domestic wells commonly are screened at shallower depths than are public-supply wells. The Tulare Shallow Aquifer Study Unit includes the Kaweah, Tule, and Tulare Lake subbasins of the San Joaquin Valley groundwater basin and adjacent areas of the Sierra Nevada. The study unit was divided into equal area grid cells and one domestic well was sampled in each cell. Groundwater samples were analyzed for field water-quality parameters, volatile organic compounds, pesticides and pesticide degradates, nutrients, major ions and trace elements, gross alpha and gross beta particle activities, noble gases, tritium, carbon-14 in dissolved inorganic carbon, stable isotopic ratios of water and dissolved nitrate, and microbial indicators.These data support the following publication:Fram, M.S., 2017, Groundwater Quality in the Shallow Aquifers of the Tulare, Kaweah, and Tule Groundwater Basins and Adjacent Highlands areas, Southern San Joaquin Valley, California: U.S. Geological Survey Fact Sheet 2017–3001, 4 p., http://dx.doi.org/10.3133/fs20173001.

  6. QUALITY OF GROUNDWATER AND AQUATIC HUMIC SUBSTANCES FROM MAIN RESERVOIRE OF GROUND WATER No. 333

    Directory of Open Access Journals (Sweden)

    Izabella Pisarek

    2015-11-01

    Full Text Available The conducted research included the estimation of the quality of groundwater from the Main Reservoir of Ground Water No. 333 area in Opole District, Poland. The groundwater in the analyzed region shows high diversity in quality. The main threat for the quality of water in this region is the human household activity. The main pollutants of groundwater are: dissolved phosphorus, nitrate and ammonium. The quality and quantity of dissolved humic substances in groundwater were also investigated. The results showed that the contents of water-extractable organic carbon varied. Presently, the analyzed groundwater is characterized by large differences in dissolved forms of organic carbon. During migration of the soil solution through the soil profile to groundwater, dissolved humic substances undergo qualitative and quantitative changes. Correlation analysis between the quantity of carbon in soil and aquatic humic substances, especially fulvic acids, indicates the possibility of their translocation in soil profiles and their transformation and migration to groundwater. This conclusion can be confirmed by FT-IR-analysis.

  7. Elucidating hydraulic fracturing impacts on groundwater quality using a regional geospatial statistical modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Burton, Taylour G., E-mail: tgburton@uh.edu [Civil and Environmental Engineering, University of Houston, W455 Engineering Bldg. 2, Houston, TX 77204-4003 (United States); Rifai, Hanadi S., E-mail: rifai@uh.edu [Civil and Environmental Engineering, University of Houston, N138 Engineering Bldg. 1, Houston, TX 77204-4003 (United States); Hildenbrand, Zacariah L., E-mail: zac@informenv.com [Inform Environmental, LLC, Dallas, TX 75206 (United States); Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Carlton, Doug D., E-mail: doug.carlton@mavs.uta.edu [Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX (United States); Fontenot, Brian E., E-mail: brian.fonteno@mavs.uta.edu [Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Schug, Kevin A., E-mail: kschug@uta.edu [Collaborative Laboratories for Environmental Analysis and Remediation, University of Texas at Arlington, Arlington, TX 76019 (United States); Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX (United States)

    2016-03-01

    Hydraulic fracturing operations have been viewed as the cause of certain environmental issues including groundwater contamination. The potential for hydraulic fracturing to induce contaminant pathways in groundwater is not well understood since gas wells are completed while isolating the water table and the gas-bearing reservoirs lay thousands of feet below the water table. Recent studies have attributed ground water contamination to poor well construction and leaks in the wellbore annulus due to ruptured wellbore casings. In this paper, a geospatial model of the Barnett Shale region was created using ArcGIS. The model was used for spatial analysis of groundwater quality data in order to determine if regional variations in groundwater quality, as indicated by various groundwater constituent concentrations, may be associated with the presence of hydraulically fractured gas wells in the region. The Barnett Shale reservoir pressure, completions data, and fracture treatment data were evaluated as predictors of groundwater quality change. Results indicated that elevated concentrations of certain groundwater constituents are likely related to natural gas production in the study area and that beryllium, in this formation, could be used as an indicator variable for evaluating fracturing impacts on regional groundwater quality. Results also indicated that gas well density and formation pressures correlate to change in regional water quality whereas proximity to gas wells, by itself, does not. The results also provided indirect evidence supporting the possibility that micro annular fissures serve as a pathway transporting fluids and chemicals from the fractured wellbore to the overlying groundwater aquifers. - Graphical abstract: A relative increase in beryllium concentrations in groundwater for the Barnett Shale region from 2001 to 2011 was visually correlated with the locations of gas wells in the region that have been hydraulically fractured over the same time period

  8. Groundwater quality in the Northern Coast Ranges Basins, California

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2015-01-01

    The Northern Coast Ranges (NOCO) study unit is 633 square miles and consists of 35 groundwater basins and subbasins (California Department of Water Resources, 2003; Mathany and Belitz, 2015). These basins and subbasins were grouped into two study areas based primarily on locality. The groundwater basins and subbasins located inland, not adjacent to the Pacific Ocean, were aggregated into the Interior Basins (NOCO-IN) study area. The groundwater basins and subbasins adjacent to the Pacific Ocean were aggregated into the Coastal Basins (NOCO-CO) study area (Mathany and others, 2011).

  9. Temporal changes in groundwater quality of the Saloum coastal aquifer

    Directory of Open Access Journals (Sweden)

    Ndeye Maguette Dieng

    2017-02-01

    High variation in rainfall between the 2 reference years (2003 and 2012 also changes chemical patterns in the groundwater. Chemical evolution of the groundwater is geographically observed and is due to a combination of dilution by recharge, anthropic contamination and seawater intrusion. The results of environmental isotopes (δ18O, δ2H compared with the local meteoric line indicate that the groundwater has been affected by evaporation processes before and during infiltration. The results also clearly indicate mixing with saltwater and an evolution towards relative freshening between 2003 and 2012 in some wells near the Saloum River.

  10. Remote sensing and GIS techniques for evaluation of groundwater quality in municipal corporation of Hyderabad (Zone-V), India.

    Science.gov (United States)

    Asadi, S S; Vuppala, Padmaja; Reddy, M Anji

    2007-03-01

    Groundwater quality in Hyderabad has special significance and needs great attention of all concerned since it is the major alternate source of domestic, industrial and drinking water supply. The present study monitors the ground water quality, relates it to the land use / land cover and maps such quality using Remote sensing and GIS techniques for a part of Hyderabad metropolis. Thematic maps for the study are prepared by visual interpretation of SOI toposheets and linearly enhanced fused data of IRS-ID PAN and LISS-III imagery on 1:50,000 scale using AutoCAD and ARC/INFO software. Physico-chemical analysis data of the groundwater samples collected at predetermined locations forms the attribute database for the study, based on which, spatial distribution maps of major water quality parameters are prepared using curve fitting method in Arc View GIS software. Water Quality Index (WQI) was then calculated to find the suitability of water for drinking purpose. The overall view of the water quality index of the present study area revealed that most of the study area with >50 standard rating of water quality index exhibited poor, very poor and unfit water quality except in places like Banjara Hills, Erragadda and Tolichowki. Appropriate methods for improving the water quality in affected areas have been suggested.

  11. Remote Sensing and GIS Techniques for Evaluation of Groundwater Quality in Municipal Corporation of Hyderabad (Zone-V, India

    Directory of Open Access Journals (Sweden)

    M. Anji Reddy

    2007-03-01

    Full Text Available Groundwater quality in Hyderabad has special significance and needs great attention of all concerned since it is the major alternate source of domestic, industrial and drinking water supply. The present study monitors the ground water quality, relates it to the land use / land cover and maps such quality using Remote sensing and GIS techniques for a part of Hyderabad metropolis. Thematic maps for the study are prepared by visual interpretation of SOI toposheets and linearly enhanced fused data of IRS-ID PAN and LISS-III imagery on 1:50,000 scale using AutoCAD and ARC/INFO software. Physico-chemical analysis data of the groundwater samples collected at predetermined locations forms the attribute database for the study, based on which, spatial distribution maps of major water quality parameters are prepared using curve fitting method in Arc View GIS software. Water Quality Index (WQI was then calculated to find the suitability of water for drinking purpose. The overall view of the water quality index of the present study area revealed that most of the study area with > 50 standard rating of water quality index exhibited poor, very poor and unfit water quality except in places like Banjara Hills, Erragadda and Tolichowki. Appropriate methods for improving the water quality in affected areas have been suggested.

  12. Identification of pork quality parameters by proteomics.

    Science.gov (United States)

    van de Wiel, Dick F M; Zhang, Wei Li

    2007-09-01

    A major parameter for quality of pork is its waterholding capacity (WHC). Prediction of WHC immediately after slaughter would be of benefit both to slaughterhouses for reasons of better logistics and/or branding of premium-meat, and to consumers for improved quality of meat products such as ham. In our pilot study on proteome analysis of porcine muscle by two-dimensional electrophoresis, we have identified at least three and possibly eight significantly changed proteins that may serve as marker proteins for waterholding capacity. The most clearly identified proteins are creatine phospho kinase M-type (CPK), desmin, and a transcription activator (SWI/SNF related matrix-associated actin-dependent regulator of chromatin subfamily A member1, SNF2L1). A possible mechanism of how these proteins may influence WHC is discussed. An optimised protocol for protein extraction that provides for sufficient amounts of relatively pure proteins has been developed. Further studies are needed to validate and extend our preliminary results.

  13. Quality Parameters for Commercial Royal Jelly

    Directory of Open Access Journals (Sweden)

    Carmen Ioana Muresan

    2016-01-01

    Full Text Available Royal jelly has become a high-value commercial product and the standardization of this product is required to guarantee its quality on the market. The objective of the research activity was to pursue the chemical composition of commercial samples of Royal Jelly in Romania in order to propose standardization for this product. The physico-chemical composition of commercial Royal Jelly samples was analysed by determining quality parameters like: carbohydrates, lipids, proteins, 10-hydroxy-2-decenoic acid (10-HDA and mineral elements. Carbohydrates analysis showed values between 3.4 % and 5.87 % for fructose, 4.12 % and 7.05 % for glucose, while for sucrose the values ranged between 0.95 % and 2.56 % (determined by HPLC-RI. The lipids content ranged between 1.85 % and 6.32 % (determined by the Soxhlet method. The protein values extended from 13.10 % (RJ2 to 17.04 % (RJ10 (the total protein content was determined by the Kjeldahl method. The values for the major fatty acid in Royal Jelly, 10-HDA, ranged between 1.35 % (RJ8 and 2.03 % (RJ10 (determined by high-performance liquid chromatography. The concentration of minerals varied between 3188.70 mg/kg and 4023.39 mg/kg (the concentration of minerals was measured using flame atomic absorption spectrometry. Potassium, followed by magnesium, sodium and calcium, occurs in the highest concentrations. The commercial Royal Jelly samples analysed presented variable physico-chemical characteristics that correspond with the values given by international quality standard proposals for Royal Jelly.

  14. Isotopic and Hydrogeochemical Assessment of Groundwater quality of Punjab and Haryana, India.

    Science.gov (United States)

    Jyoti, V.; Douglas, E. M.; Hannigan, R.; Schaaf, C.; Moore, J.

    2016-12-01

    Punjab and Haryana lie in the semi-arid region of northwestern India and are characterized by a limited access to freshwater resources and an increasing dependence on groundwater resources to meet human demand, resulting in overexploitation. The objectives of the present study was to characterize groundwater recharge sources using stable isotopes of (δ2H) and (δ18O) and to trace geochemical evolution of groundwater using rare earth elements (REEs). Samples were collected from 30 different locations including shallow domestic handpumps, deep irrigation wells, surface water and rainwater. Samples were analyzed for stable isotopes of (δ2H) and (δ18O) using Isotope Ratio Mass Spectrometry (IRMS) and trace elements using Inductively Coupled Plasma Mass Spectrometry (ICPMS) at University of Massachusetts Boston. Precipitation, surface water and irrigation return flow were identified as the primary sources of recharge to groundwater. Sustainability of recharge sources is highly dependent on the glacier-fed rivers from the Himalayas that are already experiencing impacts from climate change. Geochemistry of REEs revealed geochemically evolved groundwater system with carbonate subsurface weathering as major hydrological processes. Enhanced dissolution of carbonates in the future can be a serious issue with extremely hard groundwater leaving scaly deposits inside pipes and wells. This would not only worsen the groundwater quality but would impose financial implications on the groundwater users in the community. If irrigated culture is to survive as an economically viable and environmentally sustainable activity in the region, groundwater management activities have to be planned at the regional scale.

  15. Impact of over-exploitation on groundwater quality: A case study from WR-2Watershed, India

    Indian Academy of Sciences (India)

    Anil M Pophare; Bhushan R Lamsoge; Yashwant B Katpatal; Vijay P Nawale

    2014-10-01

    The WR-2 watershed is located in the Deccan trap basaltic terrain of Maharashtra State, India. The watershed area incorporates a rich orange orchard belt that requires a huge quantity of water for irrigation. This requirement is mostly met through groundwater, extracted from the shallow aquifers of the WR-2 watershed. However, over the years, excess withdrawal of groundwater from these aquifers has resulted in depletion of groundwater level. The declining trends of groundwater level, both long term and short term, have had a negative impact on the groundwater quality of the study area. This effect can be gauged through the rising electrical conductivity (EC) of groundwater in the shallow aquifers (dug wells) of the WR-2 watershed. It is observed that the long term declining trend of groundwater level, during 1977–2010, varied from 0.03 to 0.04 m per year, whereas the corresponding trend of rising EC varied from 1.90 to 2.94 S/cm per year. During 2007–2010, about 56% dug wells showed a positive correlation between depleting groundwater level and rising EC values. The groundwater level depletion during this period ranged from 0.03 to 0.67 m per year, whereas the corresponding trend of rising EC ranged from 0.52 to 46.91 S/cm per year. Moreover, the water quality studies reveal that groundwater from more than 50% of the dug wells of the WR-2 watershed is not suitable for drinking purpose. The groundwater, though mostly suitable for irrigation purpose, is corrosive and saturated with respect to mineral equilibrium and shows a tendency towards chemical scale formation.

  16. Unconfined Groundwater Quality based on the Settlement Unit in Surakarta City

    Directory of Open Access Journals (Sweden)

    Munawar Cholil

    2004-01-01

    Full Text Available The quality of groundwater of unonfined aquifer with growing population density is endangered by population. This may cause serious problem as greatest portion of the population utility groundwater of unconfined aquifer as their drinking water. This research is aim at studying the difference in quality of groundwater of unonfined aquifer in Surakarta Munipicality by settlement units, and studying the impact settlement factors and groundwater depth on the quality of groundwater of unonfined aquifer. The research was executed by a survey methhod, taking 44 units of groundwater of unonfined aquifer samples at stratified proportional random from 44 villages. The samples were analyzed at the laboratory of Local Drinking Water Company (PDAM of Surakarta. Data were analyzed using by stiff diagram, variance analysis, and multiple regression. The research reveals that there is very little differences in the quality of free groundwater in Surakarta, as it is shown by same chemical properties. Several chemical properties were found very high in concentration, but the rest were simultaniously low. On the basis of minimum quality of drinking water coli content have exeeded the allowed limit for drinking water. Among the settlement units observed, there were no significant differences in the physical, chemical (except pH, bacteriological factors. This means that differences among various depth of water. Electrical onductivity (EC, Na, Mg, H2CO3, H2SO4, and NH3 were found different among various depth of water table. Major chemical conentration were significant with geology formation. Population density, built up areas, size of settlement, building density, and the condition of drainage simultaniously affect the quality of free ground water. No differences among settlement units was observed the most important fators determining the free groundwater quality was population density.

  17. Groundwater quality assessment of one former industrial site in Belgium using a TRIAD-like approach

    Energy Technology Data Exchange (ETDEWEB)

    Crevecoeur, Sophie [Aquapole, Laboratory of Animal Ecology and Ecotoxicology (LEAE), University of Liege, Allee du 6 Aout 15, 4000 Liege (Belgium); Debacker, Virginie, E-mail: Virginie.Debacker@ulg.ac.be [Aquapole, Laboratory of Animal Ecology and Ecotoxicology (LEAE), University of Liege, Allee du 6 Aout 15, 4000 Liege (Belgium); Joaquim-Justo, Celia [Aquapole, Laboratory of Animal Ecology and Ecotoxicology (LEAE), University of Liege, Allee du 6 Aout 15, 4000 Liege (Belgium); Gobert, Sylvie [Laboratory of Oceanology, University of Liege, Allee du 6 Aout 15, 4000 Liege (Belgium); Scippo, Marie-Louise [Laboratory of Food Analysis, University of Liege, Boulevard de Colonster 20, 4000 Liege (Belgium); Dejonghe, Winnie [Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Industriezone Vlasmeer 7, 2400 Mol (Belgium); Martin, Patrick [Royal Belgian Institute of Natural Sciences (RBINSc), Rue Vautier 29, 1000 Bruxelles (Belgium); Thome, Jean-Pierre [Aquapole, Laboratory of Animal Ecology and Ecotoxicology (LEAE), University of Liege, Allee du 6 Aout 15, 4000 Liege (Belgium)

    2011-10-15

    Contaminated industrial sites are important sources of pollution and may result in ecotoxicological effects on terrestrial, aquatic and groundwater ecosystems. An effect-based approach to evaluate and assess pollution-induced degradation due to contaminated groundwater was carried out in this study. The new concept, referred to as 'Groundwater Quality TRIAD-like' (GwQT) approach, is adapted from classical TRIAD approaches. GwQT is based on measurements of chemical concentrations, laboratory toxicity tests and physico-chemical analyses. These components are combined in the GwQT using qualitative and quantitative (using zero to one subindices) integration approaches. The TRIAD approach is applied for the first time on groundwater from one former industrial site located in Belgium. This approach will allow the classification of sites into categories according to the degree of contaminant-induced degradation. This new concept is a starting point for groundwater characterization and is open for improvement and adjustment. - Highlights: > This study presents the first application of the TRIAD approach on groundwater system. > Groundwater Quality TRIAD-like approach is based on measurements of chemical concentrations, laboratory toxicity tests and physico-chemical analyses. > None of the three TRIAD components could reliably predict the other one. - This study presents the first application of the TRIAD approach on groundwater system. None of the TRIAD components (chemistry, physico-chemistry and ecotoxicity) could reliably predict the other one.

  18. Assessment of Groundwater Quality of Outer Skirts of Kota City with Reference to its Potential of Scale Formation and Corrosivity

    Directory of Open Access Journals (Sweden)

    Nitin Gupta

    2011-01-01

    Full Text Available Kota City is a prominent industrial and educational town of Rajasthan state, India. Mega industrial projects of cement, fertilizers, power plant, oil seed processing units are located nearby the city. The groundwater of study area is used in domestic as well as in industrial activities. It is worthwhile to know the water quality status and its effect on entity, which is exposed in practical use. A comprehensive assessment of water quality parameters in groundwater samples drawn from 24 different locations, 6 sites from each direction at outer skirts of Kota City of Rajasthan, India, in four seasons of years 2006 to 2008 was carried out. To find out the suitability and stability of water, various indices available to assess the scale formation and corrosivity was used. The Langelier saturation index (LSI and Ryznar saturation index (RSI were calculated and discussed with respect to saturation level.

  19. Groundwater quality in the Lake Champlain Basin, New York, 2009

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2011-01-01

    Water was sampled from 20 production and domestic wells from August through November 2009 to characterize groundwater quality in the Lake Champlain Basin in New York. Of the 20 wells sampled, 8 were completed in sand and gravel, and 12 were completed in bedrock. The samples were collected and processed by standard U.S. Geological Survey procedures and were analyzed for 147 physiochemical properties and constituents, including major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. Water quality in the study area is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards; these were color (1 sample), pH (3 samples), sodium (3 samples), total dissolved solids (4 samples), iron (4 samples), manganese (3 samples), gross alpha radioactivity (1 sample), radon-222 (10 samples), and bacteria (5 samples). The pH of all samples was typically neutral or slightly basic (median 7.1); the median water temperature was 9.7°C. The ions with the highest median concentrations were bicarbonate [median 158 milligrams per liter (mg/L)] and calcium (median 45.5 mg/L). Groundwater in the study area is soft to very hard, but more samples were hard or very hard (121 mg/L or more as CaCO3) than were moderately hard or soft (120 mg/L or less as CaCO3); the median hardness was 180 mg/L as CaCO3. The maximum concentration of nitrate plus nitrite was 3.79 mg/L as nitrogen, which did not exceed established drinking-water standards for nitrate plus nitrite (10 mg/L as nitrogen). The trace elements with the highest median concentrations were strontium (median 202 micrograms per liter [μg/L]), and iron (median 55 μg/L in unfiltered water). Six pesticides and pesticide degradates, including atrazine, fipronil, disulfoton, prometon, and two pesticide degradates, CIAT and desulfinylfipronil, were detected among five samples at concentrations

  20. Groundwater Quality: Analysis of Its Temporal and Spatial Variability in a Karst Aquifer.

    Science.gov (United States)

    Pacheco Castro, Roger; Pacheco Ávila, Julia; Ye, Ming; Cabrera Sansores, Armando

    2017-06-15

    This study develops an approach based on hierarchical cluster analysis for investigating the spatial and temporal variation of water quality governing processes. The water quality data used in this study were collected in the karst aquifer of Yucatan, Mexico, the only source of drinking water for a population of nearly two million people. Hierarchical cluster analysis was applied to the quality data of all the sampling periods lumped together. This was motivated by the observation that, if water quality does not vary significantly in time, two samples from the same sampling site will belong to the same cluster. The resulting distribution maps of clusters and box-plots of the major chemical components reveal the spatial and temporal variability of groundwater quality. Principal component analysis was used to verify the results of cluster analysis and to derive the variables that explained most of the variation of the groundwater quality data. Results of this work increase the knowledge about how precipitation and human contamination impact groundwater quality in Yucatan. Spatial variability of groundwater quality in the study area is caused by: a) seawater intrusion and groundwater rich in sulfates at the west and in the coast, b) water rock interactions and the average annual precipitation at the middle and east zones respectively, and c) human contamination present in two localized zones. Changes in the amount and distribution of precipitation cause temporal variation by diluting groundwater in the aquifer. This approach allows to analyze the variation of groundwater quality controlling processes efficiently and simultaneously. © 2017, National Ground Water Association.

  1. Groundwater quality assessment and pollution source apportionment in an intensely exploited region of northern China.

    Science.gov (United States)

    Zhang, Qianqian; Wang, Huiwei; Wang, Yanchao; Yang, Mingnan; Zhu, Liang

    2017-07-01

    Deterioration in groundwater quality has attracted wide social interest in China. In this study, groundwater quality was monitored during December 2014 at 115 sites in the Hutuo River alluvial-pluvial fan region of northern China. Results showed that 21.7% of NO3(-) and 51.3% of total hardness samples exceeded grade III of the national quality standards for Chinese groundwater. In addition, results of gray relationship analysis (GRA) show that 64.3, 10.4, 21.7, and 3.6% of samples were within the I, II, IV, and V grades of groundwater in the Hutuo River region, respectively. The poor water quality in the study region is due to intense anthropogenic activities as well as aquifer vulnerability to contamination. Results of principal component analysis (PCA) revealed three major factors: (1) domestic wastewater and agricultural runoff pollution (anthropogenic activities), (2) water-rock interactions (natural processes), and (3) industrial wastewater pollution (anthropogenic activities). Using PCA and absolute principal component scores-multivariate linear regression (APCS-MLR), results show that domestic wastewater and agricultural runoff are the main sources of groundwater pollution in the Hutuo River alluvial-pluvial fan area. Thus, the most appropriate methods to prevent groundwater quality degradation are to improve capacities for wastewater treatment and to optimize fertilization strategies.

  2. Variable infiltration and river flooding resulting in changing groundwater quality - A case study from Central Europe

    Science.gov (United States)

    Miotliński, Konrad; Postma, Dieke; Kowalczyk, Andrzej

    2012-01-01

    SummaryThe changes in groundwater quality occurring in a buried valley aquifer following a reduction in groundwater exploitation and enhanced infiltration due to extensive flooding of the Odra River in 1997 were investigated. Long-time series data for the chemical composition of groundwater in a large well field for drinking water supply indicated the deterioration of groundwater quality in the wells capturing water from the flooded area, which had been intensively cultivated since the 1960s. Infiltration of flooded river water into the aquifer is suggested by an elevated chloride concentration, although salt flushing from the rewatered unsaturated zone due to the enhanced recharge event is much more feasible. Concomitantly with chloride increases in the concentrations of sulphate, ferrous iron, manganese, and nickel imply the oxidation of pyrite (FeS 2) which is abundant in the aquifer. The proton production resulting from pyrite oxidation is buffered by the dissolution of calcite, while the Ca:SO 4 stoichiometry of the groundwater indicates that pyrite oxidation coupled with nitrate reduction is the dominant process occurring in the aquifer. The pyritic origin of SO42- is confirmed by the sulphur isotopic composition. The resultant Fe 2+ increase induces Mn-oxide dissolution and the mobilisation of Ni 2+ previously adsorbed to Mn-oxide surfaces. The study has a major implication for groundwater quality prediction studies where there are considerable variations in water level associated with groundwater management and climate change issues.

  3. Preliminary development of a GIS-tool to assess threats to shallow groundwater quality from soil pollutants in Glasgow, UK (GRASP).

    Science.gov (United States)

    Dochartaigh, B. É. Ó.; Fordyce, F. M.; Ander, E. L.; Bonsor, H. C.

    2009-04-01

    The protection of groundwater and related surface water quality is a key aspect of the European Union Water Framework Directive and environmental legislation in many countries worldwide. Globally, the protection of urban groundwater resources and related ecosystem services is of growing concern as urbanisation increases. Although urban areas are often where groundwater resources are most in need of protection, there is frequently a lack of information about threats to groundwater quality. Most studies of soil and groundwater contamination, although detailed, are site-specific, and city-wide overviews are generally lacking. The British Geological Survey (BGS) is currently undertaking the Clyde Urban Super-Project (CUSP), delivering multi-disciplinary geoscience products for the Glasgow conurbation. Under this project, a GIS-based prioritisation tool known as GRASP (GRoundwater And Soil Pollutants) has been trialled to aid urban planning and sustainable development by providing a broad-scale assessment of threats to groundwater quality across the conurbation. GRASP identifies areas where shallow groundwater quality is at greatest threat from the leaching and downward movement of potentially harmful metals in the soil. Metal contamination is a known problem in many urban centres including Glasgow, which has a long industrial heritage and associated contamination legacy, notably with respect to Cr. GRASP is based primarily upon an existing British Standard - International Standards Organisation methodology to determine the leaching potential of metals from soils, which has been validated for 11 metals: Al, Fe, Cd, Co, Cr, Cu, Hg, Ni, Mn, Pb and Zn (BS-ISO 15175:2004). However, the GRASP tool is innovative as it combines assessments of soil leaching potential with soil metal content data to highlight threats to shallow groundwater quality. The input parameters required for GRASP (soil pH, clay, organic matter, sesquioxide and metal content) are based upon a systematic

  4. Direction of ground-water flow and ground-water quality near a landfill in Falmouth, Massachusetts

    Science.gov (United States)

    Persky, J.H.

    1986-01-01

    A landfill in Falmouth, Massachusetts, is upgradient of a pond used for municipal water supply, but analysis of groundwater flow directions and groundwater quality indicates that leachate from the landfill does not threaten the municipal water supply. A network of water table observation wells was established, and water table altitudes were measured in these wells on several dates in 1981. Water quality analyses and specific conductance measurements were made on water samples from several wells in the vicinity of the landfill between October 1980 and April 1983. A water table altitude contour map of the area between the landfill and Long Pond for April 16-17, 1981, indicates that the direction of groundwater flow is primarily southwest from the landfill to Buzzards Bay. A similar map for September 2, 1981--a time at which the water table was unusually low--indicates the possibility of groundwater discharge to Long Pond from the landfill site. Groundwater quality beneath the landfill exceeded U.S. EPA water quality criteria for domestic water supply for manganese and total dissolved solids. Concentrations as high as 52 mg/L of nitrogen as ammonia and 4,500 micrograms/L (ug/L) of manganese were found. Concentrations of ammonia, manganese, calcium, potassium, and alkalinity exceeded local background levels by more than a factor of 100; specific-conductance levels and concentrations of hardness, barium, chloride, sodium, magnesium, iron, and strontium exceeded local background levels by more than a factor of 10; and cadmium concentrations exceeded local background levels by more than a factor of 5. Water quality analyses and field specific conductance measurements indicate the presence of a volume of leachate extending south-southwest from the landfill. Average chloride concentrations of landfill leachate, precipitation on the surface of Long Pond, and recharge from the remainder of the recharge area were 180, 3, and 9 mg/L, respectively. No significant degradation of

  5. Correlation of Geoelectric Data with Aquifer Parameters to Delineate the Groundwater Potential of Hard rock Terrain in Central Uganda

    Science.gov (United States)

    Batte, A. G.; Barifaijo, E.; Kiberu, J. M.; Kawule, W.; Muwanga, A.; Owor, M.; Kisekulo, J.

    2010-12-01

    Knowledge of aquifer parameters is essential for management of groundwater resources. Conventionally, these parameters are estimated through pumping tests carried out on water wells. This paper presents a study that was conducted in three villages (Tumba, Kabazi, and Ndaiga) of Nakasongola District, central Uganda to investigate the hydrogeological characteristics of the basement aquifers. Our objective was to correlate surface resistivity data with aquifer properties in order to reveal the groundwater potential in the district. Existing electrical resistivity and borehole data from 20 villages in Nakasongola District were used to correlate the aquifer apparent resistivity ( ρ e) with its hydraulic conductivity ( K e), and aquifer transverse resistance (TR) with its transmissivity ( T e). K e was found to be related to ρ e by; {{Log }}(K_{{e}} ) = - 0.002ρ_{{e}} + 2.692 . Similarly, TR was found to be related to T by; {{TR}} = - 0.07T_{{e}} + 2260 . Using these expressions, aquifer parameters ( T c and K c) were extrapolated from measurements obtained from surface resistivity surveys. Our results show very low resistivities for the presumed water-bearing aquifer zones, possibly because of deteriorating quality of the groundwater and their packing and grain size. Drilling at the preferred VES spots was conducted before the pumping tests to reveal the aquifer characteristics. Aquifer parameters ( T o and K o) as obtained from pumping tests gave values (29,424.7 m2/day, 374.3 m/day), (9,801.1 m2/day, 437.0 m/day), (31,852.4 m2/day, 392.9 m/day). The estimated aquifer parameter ( T c and K c) when extrapolated from surface geoelectrical data gave (7,142.9 m2/day, 381.9 m/day), (28,200.0 m2/day, 463.4 m/day), (19,428.6 m2/day, 459.2 m/day) for Tumba, Kabazi, and Ndaiga villages, respectively. Interestingly, the similarity between the K c and K o pairs was not significantly different. We observed no significant relationships between the T c and T o pairs. The root

  6. Quality and Type of Chemical of Groundwater at Coastal Areas of Semarang

    Directory of Open Access Journals (Sweden)

    Setyawan Purnama

    2004-01-01

    Full Text Available There are two objectives of this researh. First, to identify and analyze the condition of ground water quality in the research area, and second to determined the chemial types of groundwater. To ahieve these objectives 59 groundwater samples were taken stratifiedly, base on the different of electrical conductance value. As a result, it is identified that most groundwater in the research area is not suitable for drinking water sources, because has high concentration of electrical conductance, turbidity, hardness, chloride, manganese, and salinity. Thiis conclusion is also supported by stiff diagram analysis. The result of Stuyfzand analysis shhows that the chemical types of groundwater is very variative. Groundwater in coastal areas has higher suply of saline water than fresh water.

  7. Groundwater-quality monitoring program in Chester County, Pennsylvania, 1980-2008

    Science.gov (United States)

    Senior, Lisa A.; Sloto, Ronald A.

    2010-01-01

    The U.S. Geological Survey in cooperation with the Chester County Water Resources Authority and the Chester County Health Department began a groundwater-quality monitoring program in 1980 in Chester County, Pa., where a large percentage of the population relies on wells for drinking-water supply. This report documents the program and serves as a reference for data collected through the program from 1980 through 2008. The initial focus of the program was to collect data on groundwater quality near suspected localized sources of contamination, such as uncontrolled landfills and suspected industrial wastes, to determine if contaminants were present that might pose a health risk to those using the groundwater. Subsequently, the program was expanded to address the effects of widely distributed contaminant sources associated with agricultural and residential land uses on groundwater quality and to document naturally occurring constituents, such as radium, radon, and arsenic, that are potential hazards in drinking water. Since 2000, base-flow stream samples have been collected in addition to well-water and spring samples in a few small drainage areas to investigate the relation between groundwater quality measured in well samples and streams. The program has primarily consisted of spatial assessment with limited temporal data collected on groundwater quality. Most data were collected through the monitoring program for reconnaissance purposes to identify and locate groundwater-quality problems and generally were not intended for rigorous statistical analyses that might determine land-use or geochemical factors affecting groundwater quality in space or through time. Results of the program found several contaminants associated with various land uses and human activities in groundwater in Chester County. Volatile organic compounds (such as trichloroethylene) were measured in groundwater near suspected localized contaminant sources in concentrations that exceeded drinking

  8. Identifying key parameters to differentiate groundwater flow systems using multifactorial analysis

    Science.gov (United States)

    Menció, Anna; Folch, Albert; Mas-Pla, Josep

    2012-11-01

    SummaryMultivariate techniques are useful in hydrogeological studies to reduce the complexity of large-scale data sets, and provide more understandable insight into the system hydrology. In this study, principal component analysis (PCA) has been used as an exploratory method to identify the key parameters that define distinct flow systems in the Selva basin (NE Spain). In this statistical analysis, all the information obtained in hydrogeological studies (that is, hydrochemical and isotopic data, but also potentiometric data) is used. Additionally, cluster analysis, based on PCA results, allows the associations between samples to be identified, and thus, corroborates the occurrence of different groundwater fluxes. PCA and cluster analysis reveal that two main groundwater flow systems exist in the Selva basin, each with distinct hydrochemical, isotopic, and potentiometric features. Regional groundwater fluxes are associated with high F- contents, and confined aquifer layers; while local fluxes are linked to nitrate polluted unconfined aquifers with a different recharge rates. In agreement with previous hydrogeological studies, these statistical methods stand as valid screening tools to highlight the fingerprint variables that can be used as indicators to facilitate further, more arduous, analytical approaches and a feasible interpretation of the whole data set.

  9. Modelling groundwater systems: Understanding and improving groundwater quantity and quality management

    NARCIS (Netherlands)

    Ebrahim, G.Y.

    2013-01-01

    Groundwater is one of the most important natural resources. It is the principal source of drinking water in rural and many urban cities, and widely used for irrigation in most arid and semi-arid countries. However, recently it has become apparent that many human activities are negatively impacting b

  10. "A space-time ensemble Kalman filter for state and parameter estimation of groundwater transport models"

    Science.gov (United States)

    Briseño, Jessica; Herrera, Graciela S.

    2010-05-01

    Herrera (1998) proposed a method for the optimal design of groundwater quality monitoring networks that involves space and time in a combined form. The method was applied later by Herrera et al (2001) and by Herrera and Pinder (2005). To get the estimates of the contaminant concentration being analyzed, this method uses a space-time ensemble Kalman filter, based on a stochastic flow and transport model. When the method is applied, it is important that the characteristics of the stochastic model be congruent with field data, but, in general, it is laborious to manually achieve a good match between them. For this reason, the main objective of this work is to extend the space-time ensemble Kalman filter proposed by Herrera, to estimate the hydraulic conductivity, together with hydraulic head and contaminant concentration, and its application in a synthetic example. The method has three steps: 1) Given the mean and the semivariogram of the natural logarithm of hydraulic conductivity (ln K), random realizations of this parameter are obtained through two alternatives: Gaussian simulation (SGSim) and Latin Hypercube Sampling method (LHC). 2) The stochastic model is used to produce hydraulic head (h) and contaminant (C) realizations, for each one of the conductivity realizations. With these realization the mean of ln K, h and C are obtained, for h and C, the mean is calculated in space and time, and also the cross covariance matrix h-ln K-C in space and time. The covariance matrix is obtained averaging products of the ln K, h and C realizations on the estimation points and times, and the positions and times with data of the analyzed variables. The estimation points are the positions at which estimates of ln K, h or C are gathered. In an analogous way, the estimation times are those at which estimates of any of the three variables are gathered. 3) Finally the ln K, h and C estimate are obtained using the space-time ensemble Kalman filter. The realization mean for each one

  11. Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5

    Science.gov (United States)

    Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.

    2014-01-01

    Groundwater resources from alluvial and bedrock aquifers of the Denver Basin are critical for municipal, domestic, and agricultural uses in Colorado along the eastern front of the Rocky Mountains. Rapid and widespread urban development, primarily along the western boundary of the Denver Basin, has approximately doubled the population since about 1970, and much of the population depends on groundwater for water supply. As part of the National Water-Quality Assessment Program, the U.S. Geological Survey conducted groundwater-quality studies during 2003–5 in the Denver Basin aquifer system to characterize water quality of shallow groundwater at the water table and of the bedrock aquifers, which are important drinking-water resources. For the Denver Basin, water-quality constituents of concern for human health or because they might otherwise limit use of water include total dissolved solids, fluoride, sulfate, nitrate, iron, manganese, selenium, radon, uranium, arsenic, pesticides, and volatile organic compounds. For the water-table studies, two monitoring-well networks were installed and sampled beneath agricultural (31 wells) and urban (29 wells) land uses at or just below the water table in either alluvial material or near-surface bedrock. For the bedrock-aquifer studies, domestic- and municipal-supply wells completed in the bedrock aquifers were sampled. The bedrock aquifers, stratigraphically from youngest (shallowest) to oldest (deepest), are the Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers. The extensive dataset collected from wells completed in the bedrock aquifers (79 samples) provides the opportunity to evaluate factors and processes affecting water quality and to establish a baseline that can be used to characterize future changes in groundwater quality. Groundwater samples were analyzed for inorganic, organic, isotopic, and age-dating constituents and tracers. This report discusses spatial and statistical distributions of chemical constituents

  12. Assessing Risks of Shallow Riparian Groundwater Quality Near an Oil Sands Tailings Pond.

    Science.gov (United States)

    Roy, J W; Bickerton, G; Frank, R A; Grapentine, L; Hewitt, L M

    2016-07-01

    The potential discharge of groundwater contaminated by oil sands process-affected water (OSPW) is a concern for aquatic ecosystems near tailings ponds. Groundwater in the area, but unaffected by OSPW, may contain similar compounds, complicating the assessment of potential ecological impacts. In this study, 177 shallow groundwater samples were collected from riparian areas along the Athabasca River and tributaries proximate to oil sands developments. For "pond-site" samples (71; adjacent to study tailings pond), Canadian aquatic life guidelines were exceeded for 11 of 20 assessed compounds. However, "non-pond" samples (54; not near any tailings pond) provided similar exceedances. Statistical analyses indicate that pond-site and non-pond samples were indistinguishable for all but seven parameters assessed, including salts, many trace metals, and fluorescence profiles of aromatic naphthenic acids (ANA). This suggests that, regarding the tested parameters, groundwater adjacent to the study tailings pond generally poses no greater ecological risk than other nearby groundwaters at this time. Multivariate analyses applied to the groundwater data set separated into 11 smaller zones support this conclusion, but show some variation between zones. Geological and potential OSPW influences could not be distinguished based on major ions and metals concentrations. However, similarities in indicator parameters, namely ANA, F, Mo, Se, and Na-Cl ratio, were noted between a small subset of samples from two pond-site zones and two OSPW samples and two shallow groundwater samples documented as likely OSPW affected. This indicator-based screening suggests that OSPW-affected groundwater may be reaching Athabasca River sediments at a few locations. © 2016 Her Majesty the Queen in Right of Canada. Groundwater © 2016, National Ground Water Association.

  13. Status and understanding of groundwater quality in the Sierra Nevada Regional study unit, 2008: California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the Sierra Nevada Regional (SNR) study unit was investigated as part of the California State Water Resources Control Board’s Groundwater Ambient Monitoring and Assessment Program Priority Basin Project. The study was designed to provide statistically unbiased assessments of the quality of untreated groundwater within the primary aquifer system of the Sierra Nevada. The primary aquifer system for the SNR study unit was delineated by the depth intervals over which wells in the State of California’s database of public drinking-water supply wells are open or screened. Two types of assessments were made: (1) a status assessment that described the current quality of the groundwater resource, and (2) an evaluation of relations between groundwater quality and potential explanatory factors that represent characteristics of the primary aquifer system. The assessments characterize untreated groundwater quality, rather than the quality of treated drinking water delivered to consumers by water distributors.

  14. Groundwater quality of Assini and Iria Valleys in Peloponnese Region, Greece

    Directory of Open Access Journals (Sweden)

    Maria Psychoyou

    2013-01-01

    Full Text Available The degradation of groundwater quality is mainly related to the intensification of agriculture, the use of fertilizers and the overexploitation of groundwater aquifers which in coastal areas leads to sea water intrusion. An assessment of groundwater quality was conducted in Assini and Iria valleys. Groundwater samples was collected in the beginning (May and in the end (October of the irrigation season and subjected to chemical analyses for the main anions and cations. Groundwater was classified using the Piper diagram. Chloride and E.C. (electrical conductivity contour maps of the regions were obtained in order to evaluate the extent of sea water intrusion. The main cultivated crops in the regions are irrigated citrus and high amounts of nitrogen fertilizers are used. Nitrate concentration of groundwater was found often to exceed the value of 50 mg/l. A comparison was made with the situation that was prevailing in the region eight years ago. The suitability of groundwater for irrigation was evaluated.

  15. Applicability of ELISA-based Determination of Pesticides for Groundwater Quality Monitoring

    Science.gov (United States)

    Tsuchihara, Takeo; Yoshimoto, Shuhei; Ishida, Satoshi; Imaizumi, Masayuki

    The principals and procedures of ELISA (Enzyme-linked Immunosorbent Assay)-based determination of pesticides (Fenitrothion) in environmental samples were reviewed, and the applicability of the ELISA method for groundwater quality monitoring were validated through the experimental tracer tests in soil columns and the field test in Okinoerabu Island. The test results showed that the ELISA method could be useful not only for screening but also for quantitative analysis of pesticides. In the experimental tracer tests in soil columns, the retardation of pesticides leaching compared with conservative tracers were observed. In the field test, the contamination of the pesticide was detected in groundwater samples in Okinoerabu Island, even though the targeted pesticide was considered to be applied to the upland field 4 months ago. In order to investigate the transport and fate of pesticides in groundwater taking into account retardation from the field to groundwater table and the residue in groundwater, continuous observations of pesticides in groundwater are in a strong need, and the ELISA method is applicable to the long-term quality groundwater monitoring.

  16. Experiences of Mass Pig Carcass Disposal Related to Groundwater Quality Monitoring in Taiwan

    Directory of Open Access Journals (Sweden)

    Zeng-Yei Hseu

    2016-12-01

    Full Text Available The pig industry is the most crucial animal industry in Taiwan; 10.7 million pigs were reared for consumption in 1996. A foot and mouth disease (FMD epidemic broke out on 19 March 1997, and 3,850,536 pigs were culled before July in the same year. The major disposal method of pig carcasses from the FMD outbreak was burial, followed by burning and incineration. To investigate groundwater quality, environmental monitoring of burial sites was performed from October 1997 to June 1999; groundwater monitoring of 90–777 wells in 20 prefectures was performed wo to six times in 1998. Taiwanese governmental agencies analyzed 3723 groundwater samples using a budget of US $1.5 million. The total bacterial count, fecal coliform, Salmonella spp., nitrite-N, nitrate-N, ammonium-N, sulfate, non-purgeable organic carbon, total oil, and total dissolved solid were recognized as indicators of groundwater contamination resulting from pig carcass burial. Groundwater at the burial sites was considered to be contaminated on the basis of the aforementioned indicators, particularly groundwater at burial sites without an impermeable cloth and those located at a relatively short distance from the monitoring well. The burial sites selected during outbreaks in Taiwan should have a low surrounding population, be away from water preservation areas, and undergo regular monitoring of groundwater quality.

  17. The CHPRC Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2009-04-03

    The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.

  18. Hydrochemical analysis and evaluation of groundwater quality in El Eulma area, Algeria

    Science.gov (United States)

    Belkhiri, Lazhar; Mouni, Lotfi

    2012-06-01

    The groundwater sources in the El Elma plain have been evaluated for their chemical composition and suitability for irrigation uses. Cluster analysis in Q-mode resulted in three major water types (HCO3 --Ca-2+dominated, Cl--HCO3 --Ca2+-dominated and Cl--Ca2+-Na+-dominated) for the groundwater. The US salinity diagram illustrates that most of the groundwater samples fall in C3S1 quality with high salinity hazard and low sodium hazard. Based on RSC values, all the samples of the three groups had values less than 1.25 and were good for irrigation.

  19. Demonstrating trend reversal of groundwater quality in relation to time of recharge determined by 3H/3He

    NARCIS (Netherlands)

    Visser, A.; Broers, H.P.; Grift, B. van der; Bierkens, M.F.P.

    2007-01-01

    Recent EU legislation is directed to reverse the upward trends in the concentrations of agricultural pollutants in groundwater. However, uncertainty of the groundwater travel time towards the screens of the groundwater quality monitoring networks complicates the demonstration of trend reversal. We i

  20. Impacts on Groundwater Quality Following the Application of ISCO: Understanding the Cause of and Designing Mitigation for Metals Mobilization

    Science.gov (United States)

    2015-05-01

    FINAL REPORT Impacts on Groundwater Quality Following the Application of ISCO: Understanding the Cause of and Designing Mitigation for Metals... groundwater concentrations before and after 2 ISCO treatment applications...Preliminary Evaluation: Groundwater characterization methods ............................. 13  Table 3.2.1 Initial Screening: ISCO Treatment Details

  1. Demonstrating trend reversal of groundwater quality in relation to time of recharge determined by 3H/3He

    NARCIS (Netherlands)

    Visser, A.; Broers, H.P.; Grift, B. van der; Bierkens, M.F.P.

    2007-01-01

    Recent EU legislation is directed to reverse the upward trends in the concentrations of agricultural pollutants in groundwater. However, uncertainty of the groundwater travel time towards the screens of the groundwater quality monitoring networks complicates the demonstration of trend reversal. We

  2. Ground-Water Quality Data in the Southern Sacramento Valley, California, 2005 - Results from the California GAMA Program

    Science.gov (United States)

    Milby Dawson, Barbara J.; Bennett, George L.; Belitz, Kenneth

    2008-01-01

    ) were collected at ten percent of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control data resulted in censoring of less than 0.03 percent of the analyses of ground-water samples. This study did not evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Health Services (CADHS) (Maximum Contaminant Levels [MCLs], notification levels [NLs], or lifetime health advisories [HA-Ls]) and thresholds established for aesthetic concerns (Secondary Maximum Contaminant Levels [SMCLs]). All wells were sampled for organic constituents and selected general water quality parameters; subsets of wells were sampled for inorganic constituents, nutrients, and radioactive constituents. Volatile organic compounds were detected in 49 out of 83 wells sampled and pesticides were detected in 35 out of 82 wells; all detections were below health-based thresholds, with the exception of 1 detection of 1,2,3-trichloropropane above a NL. Of the 43 wells sampled for trace elements, 27 had no detections of a trace element above a health-based threshold and 16 had at least one detection above. Of the 18 trace elements with health-based thresholds, 3 (arsenic, barium, and boron) were detected at concentrations higher an MCL. Of the 43 wells sampled for nitrate, only 1 well had a detection above the MCL. Twenty wells were sampled for radioactive constituents; only 1 (radon-222) was measured at activiti

  3. Water Quality Assessment of Groundwater Resources in Nagpur Region (India Based on WQI

    Directory of Open Access Journals (Sweden)

    P. N. Rajankar

    2009-01-01

    Full Text Available Water quality index (WQI has been calculated for different groundwater sources i.e. dug wells, bore wells and tube wells at Khaperkheda region, Maharashtra (India. Twenty two different sites were selected in post monsoon, winter and summer season. And water quality index was calculated using water quality index calculator given by National Sanitation Foundation (NSF information system. The calculated WQI showed fair water quality rating in post monsoon season which then changed to medium in summer and winter seasons for dug wells, but the bore wells and hand pumps showed medium water quality rating in all seasons where the quality was slightly differs in summer and winter season than post monsoon season, so the reasons to import water quality change and measures to be taken up in terms of groundwater quality management are required.

  4. Evaluation of water quality and hydrogeochemistry of surface and groundwater, Tiruvallur District, Tamil Nadu, India

    Science.gov (United States)

    Krishna Kumar, S.; Hari Babu, S.; Eswar Rao, P.; Selvakumar, S.; Thivya, C.; Muralidharan, S.; Jeyabal, G.

    2017-09-01

    Water quality of Tiruvallur Taluk of Tiruvallur district, Tamil Nadu, India has been analysed to assess its suitability in relation to domestic and agricultural uses. Thirty water samples, including 8 surface water (S), 22 groundwater samples [15 shallow ground waters (SW) and 7 deep ground waters (DW)], were collected to assess the various physico-chemical parameters such as Temperature, pH, Electrical conductivity (EC), Total dissolved solids (TDS), cations (Ca, Mg, Na, K), anions (CO3, HCO3, Cl, SO4, NO3, PO4) and trace elements (Fe, Mn, Zn). Various irrigation water quality diagrams and parameters such as United states salinity laboratory (USSL), Wilcox, sodium absorption ratio (SAR), sodium percentage (Na %), Residual sodium carbonate (RSC), Residual Sodium Bicarbonate (RSBC) and Kelley's ratio revealed that most of the water samples are suitable for irrigation. Langelier Saturation Index (LSI) values suggest that the water is slightly corrosive and non-scale forming in nature. Gibbs plot suggests that the study area is dominated by evaporation and rock-water dominance process. Piper plot indicates the chemical composition of water, chiefly controlled by dissolution and mixing of irrigation return flow.

  5. Evaluation of water quality and hydrogeochemistry of surface and groundwater, Tiruvallur District, Tamil Nadu, India

    Science.gov (United States)

    Krishna Kumar, S.; Hari Babu, S.; Eswar Rao, P.; Selvakumar, S.; Thivya, C.; Muralidharan, S.; Jeyabal, G.

    2016-07-01

    Water quality of Tiruvallur Taluk of Tiruvallur district, Tamil Nadu, India has been analysed to assess its suitability in relation to domestic and agricultural uses. Thirty water samples, including 8 surface water (S), 22 groundwater samples [15 shallow ground waters (SW) and 7 deep ground waters (DW)], were collected to assess the various physico-chemical parameters such as Temperature, pH, Electrical conductivity (EC), Total dissolved solids (TDS), cations (Ca, Mg, Na, K), anions (CO3, HCO3, Cl, SO4, NO3, PO4) and trace elements (Fe, Mn, Zn). Various irrigation water quality diagrams and parameters such as United states salinity laboratory (USSL), Wilcox, sodium absorption ratio (SAR), sodium percentage (Na %), Residual sodium carbonate (RSC), Residual Sodium Bicarbonate (RSBC) and Kelley's ratio revealed that most of the water samples are suitable for irrigation. Langelier Saturation Index (LSI) values suggest that the water is slightly corrosive and non-scale forming in nature. Gibbs plot suggests that the study area is dominated by evaporation and rock-water dominance process. Piper plot indicates the chemical composition of water, chiefly controlled by dissolution and mixing of irrigation return flow.

  6. Status and understanding of groundwater quality in the South Coast Interior groundwater basins, 2008: California GAMA Priority Basin Project

    Science.gov (United States)

    Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the approximately 653-square-mile (1,691-square-kilometer) South Coast Interior Basins (SCI) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The South Coast Interior Basins study unit contains eight priority groundwater basins grouped into three study areas, Livermore, Gilroy, and Cuyama, in the Southern Coast Ranges hydrogeologic province. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA South Coast Interior Basins study was designed to provide a spatially unbiased assessment of untreated (raw) groundwater quality within the primary aquifer system, as well as a statistically consistent basis for comparing water quality between basins. The assessment was based on water-quality and ancillary data collected by the USGS from 50 wells in 2008 and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined by the depth intervals of the wells listed in the CDPH database for the SCI study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as trace elements and minor ions. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifer system of the SCI study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration

  7. Determination of Groundwater Velocity and Dispersion Parameters by Borehole Wall Multielectrode Geoelectrics

    Science.gov (United States)

    Kessels, W.; Wuttke, M. W.

    2007-05-01

    A single well technique to determine groundwater flow values and transport parameters is presented. Multielectrode arrays are placed at the filtered casing depth by an inflatable packer or are installed on the borehole wall behind the casing.Tracer water with a higher or lower specific electrical conductivity (salinity) which is injected between the electrodes. This tracer plume then moves into the natural groundwater flow field. The observation of this movement by geoelectric logging enables the determination of the groundwater velocity and salinity. The transport parameters "effective porosity" and "dispersion length" can also be derived. The geoelectric logging uses n borehole electrodes and two grounding electrodes. Thus, either n independent two point measurements or n*(n-1)/2 pole-to-pole measurements can be conducted to obtain a full set of geoelectric measurements. This set is used to derive all electrode combinations by applying the law of superposition and reciprocity. The tracer distribution around the borehole during and after injection depends on the hydraulic and transport parameters of the aquifer and the filter sand. The transport parameter "porosity" plus the total injected tracer volume determines the tracer distribution around the borehole. The transport parameter "dispersivity" determines the abruptness of the tracer front. The method was tested by undertaking measurements in a lab aquifer filled with sand. The results are discussed and the limitations of the method are shown. Multielectrode installations behind casing were tested in situ in the two scientific boreholes CAT-LUD-1 and CAT- LUD-1A drilled in the northern part of Germany. A multielectrode packer system was designed, built and tested in these boreholes. The results are compared with colloid observations in the borehole and hydraulic triangulation in surrounded observation wells. Here, the interpretation of these in situ measurements is mainly restricted to two point geoelectric

  8. Assessment of groundwater quality using geographical information system (GIS), at north-east Cairo, Egypt.

    Science.gov (United States)

    El-Shahat, M F; Sadek, M A; Mostafa, W M; Hagagg, K H

    2016-04-01

    The present investigation has been conducted to delineate the hydrogeochemical and environmental factors that control the water quality of the groundwater resources in the north-east of Cairo. A complementary approach based on hydrogeochemistry and a geographical information system (GIS) based protectability index has been employed for conducting this work. The results from the chemical analysis revealed that the groundwater of the Quaternary aquifer is less saline than that of the Miocene aquifer and the main factors that control the groundwater salinity in the studied area are primarily related to the genesis of the original recharging water modified after by leaching, dissolution, cation exchange, and fertilizer leachate. The computed groundwater quality index (WQI) falls into two categories: fair for almost all the Miocene groundwater samples, while the Quaternary groundwater samples are all have a good quality. The retarded flow and non-replenishment of the Miocene aquifer compared to the renewable active recharge of the Quaternary aquifer can explain this variation of WQI. The index and overlay approach exemplified by the DUPIT index has been used to investigate the protectability of the study aquifers against diffuse pollutants. Three categories (highly protectable less vulnerable, moderately protectable moderately vulnerable and less protectable highly vulnerable) have been determined and areally mapped.

  9. Protecting groundwater quality with high frequency subsurface drip irrigation

    Science.gov (United States)

    Nitrate pollution from agriculture is a significant problem in the groundwater of the San Joaquin Valley of California (SJV). Nitrate is very mobile in water and transport is directly related to both water and fertilizer management on a crop. Surface irrigation is the principal method used in the SJ...

  10. Effect of punping on temporal changes in groundwater quality

    NARCIS (Netherlands)

    Kamra, S.K.; Khajanchi Lal,; Singh, O.P.; Boonstra, J.

    2002-01-01

    Pumping studies were conducted at five sites distributed over a 3000 ha area in the Gohana block in Haryana state of India. The project area is a part of the Indo-Gangetic plain and lies in a topographical depression susceptible to waterlogging, soil salinity and groundwater pollution from surroundi

  11. Effect of punping on temporal changes in groundwater quality

    NARCIS (Netherlands)

    Kamra, S.K.; Khajanchi Lal,; Singh, O.P.; Boonstra, J.

    2002-01-01

    Pumping studies were conducted at five sites distributed over a 3000 ha area in the Gohana block in Haryana state of India. The project area is a part of the Indo-Gangetic plain and lies in a topographical depression susceptible to waterlogging, soil salinity and groundwater pollution from surroundi

  12. Assessment of groundwater quality data for the Turtle Mountain Indian Reservation, Rolette County, North Dakota

    Science.gov (United States)

    Lundgren, Robert F.; Vining, Kevin C.

    2013-01-01

    The Turtle Mountain Indian Reservation relies on groundwater supplies to meet the demands of community and economic needs. The U.S. Geological Survey, in cooperation with the Turtle Mountain Band of Chippewa Indians, examined historical groundwater-level and groundwater-quality data for the Fox Hills, Hell Creek, Rolla, and Shell Valley aquifers. The two main sources of water-quality data for groundwater were the U.S. Geological Survey National Water Information System database and the North Dakota State Water Commission database. Data included major ions, trace elements, nutrients, field properties, and physical properties. The Fox Hills and Hell Creek aquifers had few groundwater water-quality data. The lack of data limits any detailed assessments that can be made about these aquifers. Data for the Rolla aquifer exist from 1978 through 1980 only. The concentrations of some water-quality constituents exceeded the U.S. Environmental Protection Agency secondary maximum contaminant levels. No samples were analyzed for pesticides and hydrocarbons. Numerous water-quality samples have been obtained from the Shell Valley aquifer. About one-half of the water samples from the Shell Valley aquifer had concentrations of iron, manganese, sulfate, and dissolved solids that exceeded the U.S. Environmental Protection Agency secondary maximum contaminant levels. Overall, the data did not indicate obvious patterns in concentrations.

  13. Ground-Water Quality in Western New York, 2006

    Science.gov (United States)

    Eckhardt, David A.V.; Reddy, James E.; Tamulonis, Kathryn L.

    2008-01-01

    Water samples were collected from 7 production wells and 26 private residential wells in western New York from August through December 2006 and analyzed to characterize the chemical quality of ground water. Wells at 15 of the sites were screened in sand and gravel aquifers, and 18 were finished in bedrock aquifers. The wells were selected to represent areas of greatest ground-water use and to provide a geographical sampling from the 5,340-square-mile study area. Samples were analyzed for 5 physical properties and 219 constituents that included nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds (VOC), phenolic compounds, organic carbon, and bacteria. Results indicate that ground water used for drinking supply is generally of acceptable quality, although concentrations of some constituents or bacteria exceeded at least one drinking-water standard at 27 of the 33 wells. The cations that were detected in the highest concentrations were calcium, magnesium, and sodium; anions that were detected in the highest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrients were nitrate and ammonia; nitrate concentrations were higher in samples from sand and gravel aquifers than in samples from bedrock. The trace elements barium, boron, copper, lithium, nickel, and strontium were detected in every sample; the trace elements with the highest concentrations were barium, boron, iron, lithium, manganese, and strontium. Eighteen pesticides, including 9 pesticide degradates, were detected in water from 14 of the 33 wells, but none of the concentrations exceeded State or Federal Maximum Contaminant Levels (MCLs). Fourteen volatile organic compounds were detected in water from 12 of the 33 wells, but none of the concentrations exceeded MCLs. Eight chemical analytes and three types of bacteria were detected in concentrations that exceeded Federal and State drinking-water standards, which are typically identical

  14. Chemometric expertise of the quality of groundwater sources for domestic use.

    Science.gov (United States)

    Spanos, Thomas; Ene, Antoaneta; Simeonova, Pavlina

    2015-01-01

    In the present study 49 representative sites have been selected for the collection of water samples from central water supplies with different geographical locations in the region of Kavala, Northern Greece. Ten physicochemical parameters (pH, electric conductivity, nitrate, chloride, sodium, potassium, total alkalinity, total hardness, bicarbonate and calcium) were analyzed monthly, in the period from January 2010 to December 2010. Chemometric methods were used for monitoring data mining and interpretation (cluster analysis, principal components analysis and source apportioning by principal components regression). The clustering of the chemical indicators delivers two major clusters related to the water hardness and the mineral components (impacted by sea, bedrock and acidity factors). The sampling locations are separated into three major clusters corresponding to the spatial distribution of the sites - coastal, lowland and semi-mountainous. The principal components analysis reveals two latent factors responsible for the data structures, which are also an indication for the sources determining the groundwater quality of the region (conditionally named "mineral" factor and "water hardness" factor). By the apportionment approach it is shown what the contribution is of each of the identified sources to the formation of the total concentration of each one of the chemical parameters. The mean values of the studied physicochemical parameters were found to be within the limits given in the 98/83/EC Directive. The water samples are appropriate for human consumption. The results of this study provide an overview of the hydrogeological profile of water supply system for the studied area.

  15. Evaluation of groundwater quality in rural-areas of northern Malawi: Case of Zombwe Extension Planning Area in Mzimba

    Science.gov (United States)

    Chidya, Russel C. G.; Matamula, Swithern; Nakoma, Oliver; Chawinga, Charles B. J.

    2016-06-01

    Many people in in the Sub-Saharan region rely on groundwater for drinking and other household uses. Despite this significance, information on the chemical composition of the water in the boreholes and emperical data on groundwater quality is limited in some rural areas of Malawi. This study was conducted to evaluate the physico-chemical quality of water from boreholes (n = 20) in Zombwe Extension Planning Area (EPA), Mzimba in Northern Malawi to ascertain their safety. Desktop studies and participatory approaches were employed to assess the socio-economic activities and water supply regime in the study areas. The water samples were analysed for pH, conductivity (EC), turbidity, water temperature, nitrate (NO3-), magnesium (Mg), calcium (Ca), zinc (Zn), fluoride (F-), and sulphate (SO42-). In-situ and laboratory analyses were carried out using portable meters and standard procedures. The results were compared with national (Malawi Bureau of Standards - MBS) and international standards (World Health Organization - WHO) for drinking water. The following ranges were obtained: pH (6.00-7.80), EC (437-3128 μS/cm), turbidity (0.10-5.80 NTU), water temperature (27.0-30.60 °C), NO3- (0.30-30.00 mg/L), F- (0.10-8.10 mg/L), Mg (31.00-91.00 mg/L), Ca (20.00-197.10 mg/L), SO42- (10.20-190 mg/L), Fe (0.10-3.60 mg/L) and Zn (0.00-5.10 mg/L). Generally, some parameters tested at several sites (>80%, n = 20) complied with both MBS and WHO limits. No significant differences (p > 0.05) was observed for most parameters (>65%, n = 11). Groundwater contamination was not significant in the area despite some parameters like F-, Ca and SO42- showing higher levels at other sites. Some sites registered very hard water (244.60-757.80 mg/L CaCO3) probably due to mineralization influenced by underground rock material. Further studies are needed to ascertain the groundwater quality of other parameters (like F-, and SO42-) which registered higher levels at some sites. Routine monitoring of the

  16. Assessment of the hydrogeochemistry and groundwater quality of the Tarim River Basin in an extreme arid region, NW China.

    Science.gov (United States)

    Xiao, Jun; Jin, Zhangdong; Wang, Jin

    2014-01-01

    The concentrations of the major and trace elements in the groundwater of the Tarim River Basin (TRB), the largest inland river basin of China, were analyzed before and during rainy seasons to determine the hydrogeochemistry and to assess the groundwater quality for irrigation and drinking purposes. The groundwater within the TRB was slightly alkaline and characterized by high ionic concentrations. The groundwater in the northern sub-basin was fresh water with a Ca(2+)-HCO3(-) water type, whereas the groundwater in the southern and central sub-basins was brackish with a Na(+)-Cl(-) water type. Evaporite dissolution and carbonate weathering were the primary and secondary sources of solutes in the groundwater within the basin, whereas silicate weathering played a minor role. The sodium adsorption ratio (SAR), water quality index (WQI), and sodium percentage (%Na) indicated that the groundwater in the northern sub-basin was suitable for irrigation and drinking, but that in the southern and central sub-basins was not suitable. The groundwater quality was slightly better in the wet season than in the dry season. The groundwater could be used for drinking after treatment for B(3+), F(-), and SO4(2-) and for irrigation after control of the sodium and salinity hazards. Considering the high corrosivity ratio of the groundwater in this area, noncorrosive pipes should be used for the groundwater supply. For sustainable development, integrated management of the surface water and the groundwater is needed in the future.

  17. Groundwater quality in the Western San Joaquin Valley study unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.

    2017-06-09

    Water quality in groundwater resources used for public drinking-water supply in the Western San Joaquin Valley (WSJV) was investigated by the USGS in cooperation with the California State Water Resources Control Board (SWRCB) as part of its Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. The WSJV includes two study areas: the Delta–Mendota and Westside subbasins of the San Joaquin Valley groundwater basin. Study objectives for the WSJV study unit included two assessment types: (1) a status assessment yielding quantitative estimates of the current (2010) status of groundwater quality in the groundwater resources used for public drinking water, and (2) an evaluation of natural and anthropogenic factors that could be affecting the groundwater quality. The assessments characterized the quality of untreated groundwater, not the quality of treated drinking water delivered to consumers by water distributors.The status assessment was based on data collected from 43 wells sampled by the U.S. Geological Survey for the GAMA Priority Basin Project (USGS-GAMA) in 2010 and data compiled in the SWRCB Division of Drinking Water (SWRCB-DDW) database for 74 additional public-supply wells sampled for regulatory compliance purposes between 2007 and 2010. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and SWRCB-DDW regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a spatially weighted, grid-based method to estimate the proportion of the groundwater resources used for public drinking water that has concentrations for particular constituents or class of constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale within the WSJV study unit, and permits comparison of the two study areas to other areas assessed by the GAMA Priority Basin Project

  18. Groundwater-quality data in the Klamath Mountains study unit, 2010: results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the 8,806-square-mile Klamath Mountains (KLAM) study unit was investigated by the U.S. Geological Survey (USGS) from October to December 2010, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The KLAM study unit was the thirty-third study unit to be sampled as part of the GAMA-PBP. The GAMA Klamath Mountains study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer system and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The primary aquifer system is defined by the perforation intervals of wells listed in the California Department of Public Health (CDPH) database for the KLAM study unit. Groundwater quality in the primary aquifer system may differ from the quality in the shallower or deeper water-bearing zones; shallower groundwater may be more vulnerable to surficial contamination. In the KLAM study unit, groundwater samples were collected from sites in Del Norte, Siskiyou, Humboldt, Trinity, Tehama, and Shasta Counties, California. Of the 39 sites sampled, 38 were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the primary aquifer system in the study unit (grid sites), and the remaining site was non-randomized (understanding site). The groundwater samples were analyzed for basic field parameters, organic constituents (volatile organic compounds [VOCs] and pesticides and pesticide degradates), inorganic constituents (trace elements, nutrients, major and minor ions, total dissolved solids [TDS]), radon-222, gross alpha and gross beta

  19. Evaluation of Parameter Uncertainty Reduction in Groundwater Flow Modeling Using Multiple Environmental Tracers

    Science.gov (United States)

    Arnold, B. W.; Gardner, P.

    2013-12-01

    Calibration of groundwater flow models for the purpose of evaluating flow and aquifer heterogeneity typically uses observations of hydraulic head in wells and appropriate boundary conditions. Environmental tracers have a wide variety of decay rates and input signals in recharge, resulting in a potentially broad source of additional information to constrain flow rates and heterogeneity. A numerical study was conducted to evaluate the reduction in uncertainty during model calibration using observations of various environmental tracers and combinations of tracers. A synthetic data set was constructed by simulating steady groundwater flow and transient tracer transport in a high-resolution, 2-D aquifer with heterogeneous permeability and porosity using the PFLOTRAN software code. Data on pressure and tracer concentration were extracted at well locations and then used as observations for automated calibration of a flow and transport model using the pilot point method and the PEST code. Optimization runs were performed to estimate parameter values of permeability at 30 pilot points in the model domain for cases using 42 observations of: 1) pressure, 2) pressure and CFC11 concentrations, 3) pressure and Ar-39 concentrations, and 4) pressure, CFC11, Ar-39, tritium, and He-3 concentrations. Results show significantly lower uncertainty, as indicated by the 95% linear confidence intervals, in permeability values at the pilot points for cases including observations of environmental tracer concentrations. The average linear uncertainty range for permeability at the pilot points using pressure observations alone is 4.6 orders of magnitude, using pressure and CFC11 concentrations is 1.6 orders of magnitude, using pressure and Ar-39 concentrations is 0.9 order of magnitude, and using pressure, CFC11, Ar-39, tritium, and He-3 concentrations is 1.0 order of magnitude. Data on Ar-39 concentrations result in the greatest parameter uncertainty reduction because its half-life of 269

  20. Hydrochemical and microbiological quality of groundwater in West Thrace Region of Turkey

    Science.gov (United States)

    Özler, H. Murat; Aydın, Ali

    2008-03-01

    The aim of this study was to do a preliminary assessment of the hydrochemical and microbial groundwater quality of the West Thrace region. Forty samples of groundwater collected from Edirne (Site 1) to Gelibolu (Site 2) were assessed for their suitability for human consumption. As3- was non-detectable in all the groundwater and Zn2+, Pb2+, F-, Cu2+, NH{4/+}, Cn- PO{4/3-} and Cl- were all below their respective European Union drinking water directive (EU-DWD) and Turkish food codex-drinking water directive (TFC-DWD). Maximum Acceptable Concentrations (MAC) Ni2+, Pb2+, Cd2+, Mg2+, Mn2+, and Ca2+ levels were detected in upper maximum acceptable concentrations 77.5, 42.5, 35.0, 50.0, 50.0, and 32.5% of the groundwater samples, respectively. However, in terms of Cr3+, Ni2+ and Pb2+, the differences between groundwaters of Sites 1 and 2 were significant ( p Enterococcus spp., Salmonella sp., Staphylococcus spp. and P. aeruginosa were detected in 25, 17.5, 15, 47.5, 15, 27.5, and 15% of the groundwater samples, respectively. Furthermore, heavy metals and trace elements were found after chemical analyzes in most samples. The pollution of groundwater come from a variety of sources, Meric and Ergene rivers, including land application of agricultural chemicals and organics wastes, infiltration of irrigation water, septic tanks, and infiltration of effluent from sewage treatment plants, pits, lagoons and ponds used storage.

  1. Objective parameters for engine noise quality evaluation; Objektive Parameter zur Bewertung der Motorgeraeuschqualitaet

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Bernhard; Brandl, Stephan [AVL List GmbH, Graz (Austria); Sontacchi, Alois [Univ. fuer Musik und Darstellende Kunst, Graz (Austria). Inst. fuer Elektronische Musik und Akustik; Girstmair, Josef [Kompetenzzentrum Das Virtuelle Fahrzeug, Graz (Austria). Gruppe Antriebsstrang Dynamik und Akustik

    2013-06-01

    Due to ongoing downsizing efforts and more stringent emission regulations, relevance of sound quality monitoring during engine and vehicle development is strongly increasing. Therefore AVL developed new sound quality parameters like CKI (Combustion Knocking Index) and HI (Harshness Index). Using these parameters sound quality can be objectively monitored, without subjective evaluations, online throughout the complete development process. (orig.)

  2. Assessment of chemical quality of groundwater in coastal volcano-sedimentary aquifer of Djibouti, Horn of Africa

    Science.gov (United States)

    Ahmed, Abdoulkader Houssein; Rayaleh, Waiss Elmi; Zghibi, Adel; Ouddane, Baghdad

    2017-07-01

    This research is conducted to evaluate the current status of hydrogeochemical contaminants and their sources in groundwater in the volcano-sedimentary aquifer of Djibouti. Groundwater samples were mostly collected from the volcanic and inferoflux aquifers and then were analyzed for quality on physicochemical parameters (EC, pH, Temperature, Cl-, SO42-, HCO3-, NO3-, Na+, Ca2+, Mg2+, K+, Br-, F-), minor and trace elements (Li, Ba, B, Sr, Si, Al, Cr, Fe, Mn, Mo, Pb, Co, Cu, Ni, Zn, Ti, V, As, Se). The interpretations of hydrochemical data are shown numerically and graphically through the Piper diagram such as the multivariate statistical analysis, binary diagram, the calculation of the saturation indexes, the index of base exchanges and ratio of Na+/Cl-, SO42-/Cl-, HCO3-/Cl-. The seawater ratio and ionic deviation in the groundwater were calculated using the chloride concentration. These processes can be used as indicators of seawater intrusion progress. This study reveals three groundwater quality groups and how the quality of water supply has been deteriorated through the process of seawater intrusion. The seawater intrusion extends into the Gulf basalts aquifer that covers nearly 12% of the whole area according to some observations. Some toxic elements present in drinking water (As and Se) have already exceeded the maximum permissible in almost the entire of the Gulf basalts aquifer affected by seawater intrusion. Indeed, some correlations were found between As, Se, with electrical conductivity and among other minor and trace elements such as Br, B, Sr, Co and Cr. It indicates that all these elements are mainly controlled by naturel/geogenic processes. The Principal component Analysis and the Hierarchical Cluster Analysis have led to the confirmation of the hypotheses developed in the previous hydrochemical study in which two factors explain the major hydrochemical processes in the aquifer. These factors reveal first the existence of an intensive intrusion of

  3. Solute transport modeling of the groundwater for quaternary aquifer quality management in Middle Delta, Egypt

    Directory of Open Access Journals (Sweden)

    S.M. Ghoraba

    2013-06-01

    Full Text Available Groundwater contamination is a major problem related strongly to both; protection of environment and the need of water. In the present study groundwater quality was investigated in the central part of the Nile Delta (El-Gharbiya Governorate. El-Gharbiya Governorate is an agricultural land and its densely populated area inhabited, includes small communities which totally not served by public sewers. Hydrochemical analyses were used to assess the quality of water in samples taken from the canals, drains and groundwater. A laboratory study and mathematical modeling works were presented. Two numerical computer models by the applying of finite difference method were adopted. Both models deal with the flow as a three-dimensional and unsteady. Results obtained include determining the levels of water and the values of solute concentration and distribution of it in the region at different times. The groundwater model MODFLOW was used to deal with the hydrodynamics of the flow through porous media. A solute transport model which can be communicated with MODFLOW through data files MT3DMS, was used to solve the problem of contaminants transport and the change of their concentrations with time. A proposed groundwater remediation scheme by using group of extraction wells was suggested at Birma region where the concentration values of ammonium contaminant are the up most according to hydrochemical analyses results. Proposed scenario for cleaning is to use a set of wells to pump contaminated groundwater extraction for treatment and reused to irrigation.

  4. Agriculture-related trends in groundwater quality of the glacial deposits aquifer, central Wisconsin

    Science.gov (United States)

    Saad, D.A.

    2008-01-01

    Measuring and understanding trends in groundwater quality is necessary for determining whether changes in land-management practices have an effect on groundwater quality. This paper describes an approach that was used to measure and understand trends using data from two groundwater studies conducted in central Wisconsin as part of the USGS NAWQA program. One of the key components of this approach, determining the age of sampled groundwater, gave a temporal component to the snapshots of water quality that were obtained through synoptic-sampling efforts. This approach can be used at other locations where groundwater quality data are collected, groundwater age can be determined, and associated temporal data are available. Results of these studies indicate measured concentrations of nitrate and atrazine plus deethylatrazine were correlated to historical patterns of fertilizer and atrazine use. Concentrations of nitrate in groundwater have increased over time; concentrations of atrazine plus deethylatrazine increased and then decreased. Concentrations of nitrate also were correlated to screen depth below the water level and concentrations of dissolved O2; concentrations of atrazine plus deethylatrazine were correlated to dissolved O2 and annual precipitation. To measure trends in concentrations of atrazine plus deethylatrazine, the data, collected over a near-decadal period, were adjusted to account for changes in laboratory-reporting levels and analytical recoveries. Only after accounting for these changes was it apparent that the median concentrations of atrazine plus deethylatrazine decreased over the near-decadal interval between sampling efforts. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  5. Geographical Information System based assessment of spatiotemporal characteristics of groundwater quality of upland sub-watersheds of Meenachil River, parts of Western Ghats, Kottayam District, Kerala, India

    Science.gov (United States)

    Vijith, H.; Satheesh, R.

    2007-09-01

    Hydrogeochemistry of groundwater in upland sub-watersheds of Meenachil river, parts of Western Ghats, Kottayam, Kerala, India was used to assess the quality of groundwater for determining its suitability for drinking and agricultural purposes. The study area is dominated by rocks of Archaean age, and Charnonckite is dominated over other rocks. Rubber plantation dominated over other types of the vegetation in the area. Though the study area receives heavy rainfall, it frequently faces water scarcity as well as water quality problems. Hence, a Geographical Information System (GIS) based assessment of spatiotemporal behaviour of groundwater quality has been carried out in the region. Twenty-eight water samples were collected from different wells and analysed for major chemical constituents both in monsoon and post-monsoon seasons to determine the quality variation. Physical and chemical parameters of groundwater such as pH, dissolved oxygen (DO), total hardness (TH), chloride (Cl), nitrate (NO3) and phosphate (PO4) were determined. A surface map was prepared in the ArcGIS 8.3 (spatial analyst module) to assess the quality in terms of spatial variation, and it showed that the high and low regions of water quality varied spatially during the study period. The influence of lithology over the quality of groundwater is negligible in this region because majority of the area comes under single lithology, i.e. charnockite, and it was found that the extensive use of fertilizers and pesticides in the rubber, tea and other agricultural practices influenced the groundwater quality of the region. According to the overall assessment of the basin, all the parameters analysed are below the desirable limits of WHO and Indian standards for drinking water. Hence, considering the pH, the groundwater in the study area is not suitable for drinking but can be used for irrigation, industrial and domestic purposes. The spatial analysis of groundwater quality patterns of the study area shows

  6. Quality of our groundwater resources: arsenic and fluoride

    Science.gov (United States)

    Nordstrom, D. Kirk

    2011-01-01

    Groundwater often contains arsenic or fluoride concentrations too high for drinking or cooking. These constituents, often naturally occurring, are not easy to remove. The right combination of natural or manmade conditions can lead to elevated arsenic or fluoride which includes continental source rocks, high alkalinity and pH, reducing conditions for arsenic, high phosphate, high temperature and high silica. Agencies responsible for safe drinking water should be aware of these conditions, be prepared to monitor, and treat if necessary.

  7. assessment of water quality parameters of kpeshi lagoon of ghana

    African Journals Online (AJOL)

    User

    ASSESSMENT OF WATER QUALITY PARAMETERS OF. KPESHI LAGOON OF GHANA ... Lagoons are shallow coastal bodies of water separated from the ocean by ... physico-chemical parameters. The main aim is .... factor in eutrophication.

  8. Groundwater quality assessment/corrective action feasibility plan

    Energy Technology Data Exchange (ETDEWEB)

    Stejskal, G.F.

    1989-11-15

    The Savannah River Laboratory (SRL) Seepage Basins are located in the northeastern section of the 700 Area at the Savannah River Site. Currently the four basins are out of service and are awaiting closure in accordance with the Consent Decree settled under Civil Act No. 1:85-2583. Groundwater monitoring data from the detection monitoring network around the SRL Basins was recently analyzed using South Carolina Hazardous Waste Management Regulations R.61-79.264.92 methods to determine if groundwater in the immediate vicinity of the SRL Basins had been impacted. Results from the data analysis indicate that the groundwater has been impacted by both volatile organic constituents (VOCs) and inorganic constituents. The VOCs, specifically trichloroethylene and tetrachloroethylene, are currently being addressed under the auspices of the SRS Hazardous Waste Permit Application (Volume III, Section J.6.3). The impacts resulting from elevated levels of inorganic constituent, such as barium, calcium, and zinc in the water table, do not pose a threat to human health and the environment. In order to determine if vertical migration of the inorganic constituents has occurred three detection monitoring wells are proposed for installation in the upper portion of the Congaree Aquifer.

  9. An Institutional Analysis of Groundwater Quality Control: Experiences in Hadano, Kanagawa Prefecture, Japan

    Directory of Open Access Journals (Sweden)

    Takahiro Endo

    2016-05-01

    Full Text Available A considerable number of studies have been made of institutional arrangements that can prevent excessive groundwater pumping based on Hardin’s seminal work, the “tragedy of the commons.” In contrast, this paper is concerned with groundwater quality control for which policy studies are very limited. This paper not only clarifies institutional challenges specific to groundwater contamination, but also demonstrates how government and industry could solve them using a case study of Hadano, Kanagawa Prefecture, Japan, which has pioneered countermeasures for groundwater pollution in Japan. Hadano solved the challenges by enacting an innovative local ordinance with three pillars: Proxy purification by the city government, fundraising for purification activities and a retroactive system. Lessons learnt from the Hadano case will be very useful to policy makers because these problems already occur in other urban areas, or are likely to occur in the near future.

  10. Interactions of water quality and integrated groundwater management: Examples from the United States and Europe: Chapter 14

    Science.gov (United States)

    Warner, Kelly L.; Barataud, Fabienne; Hunt, Randall J.; Benoit, Marc; Anglade, Juliette; Borchardt, Mark A.

    2015-01-01

    Groundwater is available in many parts of the world, but the quality of the water may limit its use. Contaminants can limit the use of groundwater through concerns associated with human health, aquatic health, economic costs, or even societal perception. Given this broad range of concerns, this chapter focuses on examples of how water quality issues influence integrated groundwater management. One example evaluates the importance of a naturally occurring contaminant Arsenic (As) for drinking water supply, one explores issues resulting from agricultural activities on the land surface and factors that influence related groundwater management, and the last examines unique issues that result from human-introduced viral pathogens for groundwater-derived drinking water vulnerability. The examples underscore how integrated groundwater management lies at the intersections of environmental characterization, engineering constraints, societal needs, and human perception of acceptable water quality. As such, water quality factors can be a key driver for societal decision making.

  11. Characteristics and quality assessment of groundwater in parts of Akure, South-Western Nigeria

    Directory of Open Access Journals (Sweden)

    H.O Nwankwoala

    2012-05-01

    Full Text Available Groundwater samples were collected from different parts of Akure town and analysed for various physico-chemical parameters using conventional field and laboratory techniques. The essence of the study is to evaluate the characteristics and quality assessment of groundwater in the area. The pH values falls between 7.1 to 7.7, indicating that the ground water is neutral. The range of conductivity for the area is between 116 to 1000µS/cm with an average of 365µS/cm which met the WHO (2006 standard of 1000µS/cm for drinking water. The low levels of turbidity ranging from 1 to 2 NTU were obtained. The TDS concentrations range between 81 to 700 mg/l. The total hardness of water sampled range from 20.2 to 345.6mg/l. Sulphate ion concentration is between 2.5 to 23.2mg/l. Phosphate values ranges from 0.05 to 0.07mg/l in all locations, and average value of 0.12mg/l which are within the WHO (2006 standards for drinking water. Nitrate levels ranged from 1.13 to 2.91mg/l. The values of bicarbonates range from 28 to 88mg/l with a mean value of 43.9mg/l, as all locations are far below the W.H.O (2006 limit of 600mg/l. The concentration of calcium ranged from 12.3 to 92.2mg/l while the concentrations of magnesium ion ranged from 0.9 to 32.6mg/l with an average of 7.3gm/l and this is below the WHO limit for drinking water (150mg/l. The concentration of sodium ion (Na+ ranged from 1.067 to 8.696mg/l. The concentration of potassium also ranged from 7.537 to 51.881mg/l with a mean value of 19.098mg/l. Although there is no reference to WHO standards for the parameter, the relatively low values of potassium suggest the suitability of the analysed groundwater samples for drinking. The common form of iron in groundwater is the soluble ferrous ion Fe2+. The concentration of iron in the water samples ranged from <0.001 to 0.001mg/l showing a very low value of iron in all boreholes. Generally, results compare favourably with the WHO (2006 standards for drinking water

  12. 3-D VARIABLE PARAMETER NUMERICAL MODEL FOR EVALUATION OF THE PLANNED EXPLOITABLE GROUNDWATER RESOURCE IN REGIONAL UNCONSOLIDATED SEDIMENTS

    Institute of Scientific and Technical Information of China (English)

    LUO Zu-jiang; WANG Yan

    2012-01-01

    In order to correctly evaluate the exploitable groundwater resource in regional complex,thick Quaternary unconsolidated sediments,the whole Quaternary unconsolidated sediments are considered as a unified hydrogeological unit and a 3-D unsteady groundwater flow numerical model is adopted.Meanwhile,with the consideration of the dynamic changes of the porosity,the hydraulic conductivity and the specific storage with the groundwater level dropping during the exploitation process,an improved composite element seepage matrix adjustment method is applied to solve the unsteady flow problem of free surface.In order to evaluate the exploitable groundwater resource in Cangzhou,Hebei Province,the hydrogeological conceptual model of Cangzhou is generalized to establish,a 3-D variable parameter numerical model of Cangzhou.Based on the prediction of the present groundwater exploitation,and by adjusting the groundwater exploitation layout,the exploitable groundwater resource is predicted.The model enjoys features like good convergence,good stability and high precision.

  13. Combined Use of Multivariate Statistical Analysis and Hydrochemical Analysis for Groundwater Quality Evolution:A Case Study in North Chain Plain

    Institute of Scientific and Technical Information of China (English)

    Rong Ma; Jiansheng Shi; Jichao Liu; Chunlei Gui

    2014-01-01

    Understanding the controlling factor of groundwater quality can enhance promoting sustaina-ble development of groundwater resources. To this end, multivariate statistical analysis (MA) and hydrochemical analysis were introduced in this work. The results indicate that the canonical discriminant function with 7 parameters was established using the discriminant analysis (DA) method, which can afford 100%correct assignation according to the 3 different clusters (good water (GW), poor water (PW), and very poor water (VPW)) obtained from cluster analysis (CA). According to factor analysis (FA), 8 factors were ex-tracted from 25 hydrochemical elements and account for 80.897%of the total data variance, suggesting that groundwater with higher concentrations of sodium, calcium, magnesium, chloride, and sulfate in southeastern study area are mainly affected by the natural process;the higher level of arsenic and chromium in ground-water extracted from northwestern part of study area are derived by industrial activities;domestic and agri-culture sewage have important contribution to copper, iron, iodine, and phosphate in the northern study area. Therefore, this work can help identify the main controlling factor of groundwater quality in North China plain so as to make better and more informed decisions about how to achieve groundwater resources sustain-able development.

  14. [Groundwater].

    Science.gov (United States)

    González De Posada, Francisco

    2012-01-01

    From the perspective of Hydrogeology, the concept and an introductory general typology of groundwater are established. From the perspective of Geotechnical Engineering works, the physical and mathematical equations of the hydraulics of permeable materials, which are implemented, by electric analogical simulation, to two unique cases of global importance, are considered: the bailing during the construction of the dry dock of the "new shipyard of the Bahia de Cádiz" and the waterproofing of the "Hatillo dam" in the Dominican Republic. From a physical fundamental perspective, the theories which are the subset of "analogical physical theories of Fourier type transport" are related, among which the one constituted by the laws of Adolf Fick in physiology occupies a historic role of some relevance. And finally, as a philosophical abstraction of so much useful mathematical process, the one which is called "the Galilean principle of the mathematical design of the Nature" is dealt with.

  15. Groundwater quality in the Northern Atlantic Coastal Plain aquifer system, eastern United States

    Science.gov (United States)

    Lindsey, Bruce; Belitz, Kenneth

    2017-01-19

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Northern Atlantic Coastal Plain aquifer system constitutes one of the important areas being evaluated. One or more inorganic constituents with human-health benchmarks were detected at high concentrations in about 15 percent of the study area and at moderate concentrations in about 17 percent. Organic constituents were not detected at high concentrations in the study area.

  16. Assessment of groundwater quality for irrigation: a case study from Bandalamottu lead mining area, Guntur District, Andhra Pradesh, South India

    Science.gov (United States)

    Nagaraju, A.; Sunil Kumar, K.; Thejaswi, A.

    2014-12-01

    Quality of water resources in the Bandalamottu area of Guntur District of Andhra Pradesh in South India is facing a serious challenge due to Pb mining. Therefore, 40 groundwater samples were collected from this area to assess their hydrogeochemistry and suitability for irrigation purposes. The groundwater samples were analyzed for distribution of chemical elements Ca2+, Mg2+, Na+, K+, HCO3 -, CO3 2-, F-, Cl-, and SO4 2-. It also includes pH, electrical conductivity, total hardness, non-carbonate hardness and total alkalinity. The parameters, such as sodium absorption ratio (SAR), adjusted SAR, sodium percentage, potential salinity, residual sodium carbonate, non-carbonate hardness, Kelly's ratio, magnesium ratio, permeability index, indices of base exchange (IBE) and Gibbs ratio were also calculated. The major hydrochemical facieses were Ca-HCO3, Ca-Na-HCO3 and Ca-Mg-Cl types. The result of saturation index calculated by Visual MINTEQ software combined with Gibbs diagram and IBE findings indicate that, dolomite and calcite dissolution and reverse ion exchange can be a major process controlling the water chemistry in the study area. The results also showed that the salinity (85 %, C3 class) and alkalinity due to high concentration of HCO3 - and CO3 - and low Ca:Mg molar ratio (97.5 %, <1), are the major problems with water for irrigation usage. As a result, the quality of the groundwater is not suitable for sustainable crop production and soil health without appropriate remediation.

  17. Groundwater quality assessment using chemometric analysis in the Adyar River, South India.

    Science.gov (United States)

    Venugopal, T; Giridharan, L; Jayaprakash, M

    2008-08-01

    A multivariate statistical technique has been used to assess the factors responsible for the chemical composition of the groundwater near the highly polluted Adyar River. Basic chemical parameters of the groundwater have been pooled together for evaluating and interpreting a few empirical factors controlling the chemical nature of the water. Twenty-three groundwater samples were collected in the vicinity of the Adyar River. Box-whisker plots were drawn to evaluate the chemical variation and the seasonal effect on the variables. R-mode factor analysis and cluster analysis were applied to the geochemical parameters of the water to identify the factors affecting the chemical composition of the groundwater. Dendograms of both the seasons gives two major clusters reflecting the groups of polluted and unpolluted stations. The other two minor clusters and the movement of stations from one cluster to another clearly bring out the seasonal variation in the chemical composition of the groundwater. The results of the R-mode factor analysis reveal that the groundwater chemistry of the study area reflects the influence of anthropogenic activities, rock-water interactions, saline water intrusion into the river water, and subsequent percolation into the groundwater. The complex geochemical data of the groundwater were interpreted by reducing them to seven major factors, and the seasonal variation in the chemistry of water was clearly brought out by these factors. The higher concentration of heavy metals such as Fe and Cr is attributed to the rock-water interaction and effluents from industries such as tanning, chrome-plating, and dyeing. In the urban area, the Pb concentration is high due to industrial as well as urban runoff of the atmospheric deposition from automobile pollution. Factor score analysis was used successfully to delineate the stations under study with the contributing factors, and the seasonal effect on the sample stations was identified and evaluated.

  18. [Assessment of groundwater quality of different aquifers in Tongzhou area in Beijing Plain and its chemical characteristics analysis].

    Science.gov (United States)

    Guo, Gao-Xuan; Ju, Yi-Wen; Zhai, Hang; Xu, Liang; Shen, Yuan-Yuan; Ji, Yi-Qun

    2014-06-01

    In order to evaluate the groundwater quality of Tongzhou area in Beijing Plain and to discuss the characteristics of its distribution by the view of hydrochemistry, a total of 151 groundwater samples, collected within study area in the dry period of 2008 according to the geological and hydrogeololgical condition of Tongzhou area, were classified as shallow, middle and deep groundwater, respectively. Based on the data, the groundwater quality was evaluated by the method of F value. The mean and variance of main chemical constituents of groundwater samples were presented. Almost all the quaternary groundwater of Chaobai river pluvial fan belonged to the alkaline water type. The evaluation results based on the analysis results showed that from shallow to deep, the quality of groundwater in Beijing became better. The total areas of groundwater belonging to class IV and V area were 884 km2, 599 km2 and 94 km2 respectively for shallow, middle and deep groundwater. The evaluation results showed that the main exceeding chemical constituents were TDS, hardness, NH4(+), F(-) and total Fe. Most exceeding samples belonged to middle and deep aquifers. The main types of shallow groundwater were HCO2-Ca x Mg- and HCO3 x Cl-Ca x Na x Mg, while the chemical types of mid-deep groundwater were mostly HCO3-Na x Ca- and HCO3 x SO4(2-) -Na x Ca type due to the increased Na(+), SO4(2-) and Cl(-) concentration. Study results showed that the quality of shallow groundwater became worse mainly due to human activities. The deterioration of groundwater quality in mid-deep aquifers was due to both human activities and natural occurrence of poor-quality water.

  19. Assessment of groundwater quality using DEA and AHP: a case study in the Sereflikochisar region in Turkey.

    Science.gov (United States)

    Kavurmaci, Murat; Üstün, A Korkut

    2016-04-01

    This study investigated the spatial distribution of groundwater quality in Sereflikochisar Basin, in the Central Anatolian region of Turkey using different hydrochemical, statistical, and geostatistical methods. A total of 51 groundwater samples were collected from the observation wells in the study area to evaluate the characteristics of the groundwater quality. As a relatively simple and practical method, a groundwater quality index (GWQI) was developed to evaluate the overall groundwater quality. In this process, complex decision-making techniques such as analytic hierarchy process (AHP) and data envelopment analysis (DEA) were used. Based on these models, two new indices (A-GWQI and D-GWQI) were proposed. According to the D-GWQI score (from 0.6 to 1), water quality was classified in four categories as unsuitable (0.6–0.7), permissible (0.7–0.8), good (0.8–0.9), and excellent (0.9–1). The spatial distribution maps of the groundwater quality were created using the Kriging method. For each map, seven different semivariogram models were tested and the best-fitted model was chosen based on their root mean square standardized error. These maps showed that the areas with high groundwater quality were in the eastern and southern parts of the study area where the D-GWQI scores were greater than 0.8. Depending on the distance from the Salt Lake, the characteristics of groundwater changed from NaCl to NaHCO3 and CaHCO3 facies. This study shows how to determine the spatial distribution of the groundwater quality and identify the impact of salt lakes on the groundwater quality in inland aquifers. The findings of this study can be applied to ensure the quality of groundwater used for drinking and irrigation purposes in the study area.

  20. Spatial and temporal variation of groundwater quality and its suitability for irrigation and drinking purpose using GIS and WQI in an urban fringe

    Science.gov (United States)

    Dhanasekarapandian, M.; Chandran, S.; Devi, D. Saranya; Kumar, V.

    2016-12-01

    This study is aimed at evaluating the groundwater quality within the urban reach of Gridhumal river sub-basin. 29 groundwater samples were collected with different categorization during post-monsoon (POM) and summer (SUM) seasons respectively. Various physical and chemical parameters viz., pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Total Hardness (TH), Total Alkalinity, cations such as, Ca2+, Mg2+, Na+, anions such as NO3-, SO42-, F-, Cl- were analyzed and were compared with the standard guidelines recommended by WHO, ICMR, BIS. GIS techniques were used to find out the distribution of groundwater quality on land use pattern. Results indicated that the EC, TDS, TH, Na+, Cl-, NO3- level in groundwater samples was above critical limits, and it was found to be very high in wastewater irrigated areas in the urban reach of Gridhumal river sub-basin. Geochemical analysis of groundwater samples shows the predominance of Na-Cl and NaHCO3 types. The geochemical data was interpreted using WQI for drinking water quality and were found not suitable for drinking purposes. With Wilcox diagram, only 30% and 21% groundwater samples show suitability for irrigation for post monsoon and summer season. The US Salinity Laboratory Staff plot depicted that all the post monsoon groundwater sources are C3-S3, C4-S4 type and C4-S4 for the summer season. 17% samples show C3-S1 type for both the season. From the HC analysis in the groundwater samples have been classified into two groups, one is ionic and another metals group. PCA results revealed the existence of seven significant principal components indicating how processes like rock-water interaction and anthropogenic activities influence groundwater quality. Seven factors which together explain 83.33% and 77.85% of the total variance in the post monsoon and summer season respectively. In comparing heavy metal contents present in water samples with BIS/WHO standards, Pb, Cr and Cd concentrations were found to be present

  1. Groundwater-quality data and regional trends in the Virginia Coastal Plain, 1906-2007

    Science.gov (United States)

    McFarland, E. Randolph

    2010-01-01

    A newly developed regional perspective of the hydrogeology of the Virginia Coastal Plain incorporates updated information on groundwater quality in the area. Local-scale groundwater-quality information is provided by a comprehensive dataset compiled from multiple Federal and State agency databases. Groundwater-sample chemical-constituent values and related data are presented in tables, summaries, location maps, and discussions of data quality and limitations. Spatial trends in groundwater quality and related processes at the regional scale are determined from interpretive analyses of the sample data. Major ions that dominate the chemical composition of groundwater in the deep Piney Point, Aquia, and Potomac aquifers evolve eastward and with depth from (1) 'hard' water, dominated by calcium and magnesium cations and bicarbonate and carbonate anions, to (2) 'soft' water, dominated by sodium and potassium cations and bicarbonate and carbonate anions, and lastly to (3) 'salty' water, dominated by sodium and potassium cations and chloride anions. Chemical weathering of subsurface sediments is followed by ion exchange by clay and glauconite, and subsequently by mixing with seawater along the saltwater-transition zone. The chemical composition of groundwater in the shallower surficial and Yorktown-Eastover aquifers, and in basement bedrock along the Fall Zone, is more variable as a result of short flow paths between closely located recharge and discharge areas and possibly some solutes originating from human sources. The saltwater-transition zone is generally broad and landward-dipping, based on groundwater chloride concentrations that increase eastward and with depth. The configuration is convoluted across the Chesapeake Bay impact crater, however, where it is warped and mounded along zones having vertically inverted chloride concentrations that decrease with depth. Fresh groundwater has flushed seawater from subsurface sediments preferentially around the impact crater

  2. Groundwater-quality and quality-control data for two monitoring wells near Pavillion, Wyoming, April and May 2012

    Science.gov (United States)

    Wright, Peter R.; McMahon, Peter B.; Mueller, David K.; Clark, Melanie L.

    2012-01-01

    In June 2010, the U.S. Environmental Protection Agency installed two deep monitoring wells (MW01 and MW02) near Pavillion, Wyoming, to study groundwater quality. During April and May 2012, the U.S Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, collected groundwater-quality data and quality-control data from monitoring well MW01 and, following well redevelopment, quality-control data for monitoring well MW02. Two groundwater-quality samples were collected from well MW01—one sample was collected after purging about 1.5 borehole volumes, and a second sample was collected after purging 3 borehole volumes. Both samples were collected and processed using methods designed to minimize atmospheric contamination or changes to water chemistry. Groundwater-quality samples were analyzed for field water-quality properties (water temperature, pH, specific conductance, dissolved oxygen, oxidation potential); inorganic constituents including naturally occurring radioactive compounds (radon, radium-226 and radium-228); organic constituents; dissolved gasses; stable isotopes of methane, water, and dissolved inorganic carbon; and environmental tracers (carbon-14, chlorofluorocarbons, sulfur hexafluoride, tritium, helium, neon, argon, krypton, xenon, and the ratio of helium-3 to helium-4). Quality-control sample results associated with well MW01 were evaluated to determine the extent to which environmental sample analytical results were affected by bias and to evaluate the variability inherent to sample collection and laboratory analyses. Field documentation, environmental data, and quality-control data for activities that occurred at the two monitoring wells during April and May 2012 are presented.

  3. Groundwater quality sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of energy and managed by martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling.

  4. Groundwater Quality Sampling and Analysis Plan for Environmental Monitoring Waste Area Grouping 6 at Oak Ridge National Laboratory. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling.

  5. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

    Science.gov (United States)

    Christenson, S.C.; Parkhurst, D.L.

    1987-01-01

    In April 1986, the U.S. Geological Survey began a pilot program to assess the quality of the Nation's surface-water and ground-water resources. The program, known as the National Water-Quality Assessment (NAWQA) program, is designed to acquire and interpret information about a variety of water-quality issues. The Central Oklahoma aquifer project is one of three ground-water pilot projects that have been started. The NAWQA program also incudes four surface-water pilot projects. The Central Oklahoma aquifer project, as part of the pilot NAWQA program, will develop and test methods for performing assessments of ground-water quality. The objectives of the Central Oklahoma aquifer assessment are: (1) To investigate regional ground-water quality throughout the aquifer in the manner consistent with the other pilot ground-water projects, emphasizing the occurrence and distribution of potentially toxic substances in ground water, including trace elements, organic compounds, and radioactive constituents; (2) to describe relations between ground-water quality, land use, hydrogeology, and other pertinent factors; and (3) to provide a general description of the location, nature, and possible causes of selected prevalent water-quality problems within the study unit; and (4) to describe the potential for water-quality degradation of ground-water zones within the study unit. The Central Oklahoma aquifer, which includes in descending order the Garber Sandstone and Wellington Formation, the Chase Group, the Council Grove Group, the Admire Group, and overlying alluvium and terrace deposits, underlies about 3,000 square miles of central Oklahoma and is used extensively for municipal, industrial, commercial, and domestic water supplies. The aquifer was selected for study by the NAWQA program because it is a major source for water supplies in central Oklahoma and because it has several known or suspected water-quality problems. Known problems include concentrations of arsenic, chromium

  6. Groundwater Quality Data for the Northern Sacramento Valley, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Bennett, Peter A.; Bennett, George L.; Belitz, Kenneth

    2009-01-01

    Groundwater quality in the approximately 1,180-square-mile Northern Sacramento Valley study unit (REDSAC) was investigated in October 2007 through January 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within REDSAC and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 66 wells in Shasta and Tehama Counties. Forty-three of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 23 were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial constituents. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of nitrogen and oxygen in nitrate, stable isotopes of hydrogen and oxygen of water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. In total, over 275 constituents and field water-quality indicators were investigated. Three types of quality-control samples (blanks, replicates, and sampmatrix spikes) were collected at approximately 8

  7. Impacts of a large Sahelian city on groundwater hydrodynamics and quality: example of Niamey (Niger)

    Science.gov (United States)

    Hassane, Aïssata B.; Leduc, Christian; Favreau, Guillaume; Bekins, Barbara A.; Margueron, Thomas

    2016-03-01

    The management of groundwater resources is very important in the semiarid Sahel region, which is experiencing rapid urban development. Impacts of urbanization on groundwater resources were investigated in the unconfined aquifer of the Continental Terminal beneath the city of Niamey, Niger, using water level and chemical data. Hydrodynamic and chemical changes are best described by a combination of factors including the historical development of the city, current land use, water-table depth and topography. Seasonal groundwater recharge occurs with high spatial variability, as indicated by water-level monitoring in all wells, but there was no interannual trend over the 5-year study period. Groundwater salinity shows high spatial variability and a minor rising trend. The highest salinity is in the old city centre, with Na-NO3 dominant, and it increases seasonally with recharge. Salinity is much lower and more variable in the suburbs (Ca-HCO3, Ca-NO3, and Na-NO3 dominant). Nitrate is the main ionic contaminant and is seasonally or permanently above the international guidelines for drinking water quality in 36 % of sampled wells, with a peak value of 112 mg L-1 NO3-N (8 meq L-1). Comparison of urban and rural sites indicates a long-term increase in groundwater recharge and nitrate enrichment in the urban area with serious implications for groundwater management in the region.

  8. Geohydrology, simulation of ground-water flow, and ground-water quality at two landfills, Marion County, Indiana. Water Resources Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Duwelius, R.F.; Greeman, T.K.

    1989-01-01

    The report presents the results of a study to provide a quantitative evaluation of the ground-water flow system at the Julietta and Tibbs-Banta landfills and provide a general description of the ground-water quality beneath and near the two landfills. These objectives provide the information necessary to evaluate the effects of the landfills on ground-water quality. Geologic, hydrologic, and water-quality data were collected in 1985 and 1986 at the Julietta and Tibbs-Banta landfills to fulfill the study objectives. Ground-water models were used to investigate the flow systems and estimate the volume of flow at the landfills. The report includes descriptions of the data collection, geologic and hydrologic descriptions of the two landfills, and brief histories of trash and sludge disposal. Ground-water-flow models are described and estimates of the volume of flow are discussed. A description of the quality-assurance plan used in conjunction with the water-quality data collection and analysis is included. Water-quality data are presented with statistical summaries of ground-water quality related to well depth and position in the flow system.

  9. Temporal variation in groundwater quality in the Permian Basin of Texas, a region of increasing unconventional oil and gas development.

    Science.gov (United States)

    Hildenbrand, Zacariah L; Carlton, Doug D; Fontenot, Brian E; Meik, Jesse M; Walton, Jayme L; Thacker, Jonathan B; Korlie, Stephanie; Shelor, C Phillip; Kadjo, Akinde F; Clark, Adelaide; Usenko, Sascha; Hamilton, Jason S; Mach, Phillip M; Verbeck, Guido F; Hudak, Paul; Schug, Kevin A

    2016-08-15

    The recent expansion of natural gas and oil extraction using unconventional oil and gas development (UD) practices such as horizontal drilling and hydraulic fracturing has raised questions about the potential for environmental impacts. Prior research has focused on evaluations of air and water quality in particular regions without explicitly considering temporal variation; thus, little is known about the potential effects of UD activity on the environment over longer periods of time. Here, we present an assessment of private well water quality in an area of increasing UD activity over a period of 13months. We analyzed samples from 42 private water wells located in three contiguous counties on the Eastern Shelf of the Permian Basin in Texas. This area has experienced a rise in UD activity in the last few years, and we analyzed samples in four separate time points to assess variation in groundwater quality over time as UD activities increased. We monitored general water quality parameters as well as several compounds used in UD activities. We found that some constituents remained stable over time, but others experienced significant variation over the period of study. Notable findings include significant changes in total organic carbon and pH along with ephemeral detections of ethanol, bromide, and dichloromethane after the initial sampling phase. These data provide insight into the potentially transient nature of compounds associated with groundwater contamination in areas experiencing UD activity.

  10. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce.

    Science.gov (United States)

    Alsalah, Dhafer; Al-Jassim, Nada; Timraz, Kenda; Hong, Pei-Ying

    2015-10-05

    This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10(-4). However, the annual risk arising from P. aeruginosa was 9.55 × 10(-4), slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better

  11. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce

    Science.gov (United States)

    Alsalah, Dhafer; Al-Jassim, Nada; Timraz, Kenda; Hong, Pei-Ying

    2015-01-01

    This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10−4. However, the annual risk arising from P. aeruginosa was 9.55 × 10−4, slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better

  12. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce

    KAUST Repository

    Alsalah, Dhafer

    2015-10-05

    This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10−4. However, the annual risk arising from P. aeruginosa was 9.55 × 10−4, slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better

  13. [Relationship between groundwater quality index of nutrition element and organic matter in riparian zone and water quality in river].

    Science.gov (United States)

    Hua-Shan, Xu; Tong-Qian, Zhao; Hong-Q, Meng; Zong-Xue, Xu; Chao-Hon, Ma

    2011-04-01

    Riparian zone hydrology is dominated by shallow groundwater with complex interactions between groundwater and surface water. There are obvious relations of discharge and recharge between groundwater and surface water. Flood is an important hydrological incident that affects groundwater quality in riparian zone. By observing variations of physical and chemical groundwater indicators in riparian zone at the Kouma section of the Yellow River Wetland, especially those took place in the period of regulation for water and sediment at the Xiaolangdi Reservoir, relationship between the groundwater quality in riparian zone and the flood water quality in the river is studied. Results show that there will be great risk of nitrogen, phosphorus, nitrate nitrogen and organic matter permeating into the groundwater if floodplain changes into farmland. As the special control unit of nitrogen pollution between rivers and artificial wetlands, dry fanning areas near the river play a very important role in nitrogen migration between river and groundwater. Farm manure as base fertilizer may he an important source of phosphorus leak and loss at the artificial wetlands. Phosphorus leaks into the groundwater and is transferred along the hydraulic gradient, especially during the period of regulation for water and sediment at the Xiaolangdi Reservoir. The land use types and farming systems of the riparian floodplain have a major impact on the nitrate nitrogen contents of the groundwater. Nitrogen can infiltrate and accumulate quickly at anaerobic conditions in the fish pond area, and the annual nitrogen achieves a relatively balanced state in lotus area. In those areas, the soil is flooded and at anaerobic condition in spring and summer, nitrogen infiltrates and denitrification significantly, but soil is not flooded and at aerobic condition in the autumn and winter, and during these time, a significant nitrogen nitrification process occurs. In the area between 50 m and 200 m from the river

  14. Beef quality parameters estimation using ultrasound and color images

    OpenAIRE

    Nunes, Jose Luis; Piquerez, Martín; Pujadas, Leonardo; Armstrong,Eileen; Alicia FERNÁNDEZ; Lecumberry, Federico

    2015-01-01

    Background Beef quality measurement is a complex task with high economic impact. There is high interest in obtaining an automatic quality parameters estimation in live cattle or post mortem. In this paper we set out to obtain beef quality estimates from the analysis of ultrasound (in vivo) and color images (post mortem), with the measurement of various parameters related to tenderness and amount of meat: rib eye area, percentage of intramuscular fat and backfat thickness or subcutaneous fat. ...

  15. Beef quality parameters estimation using ultrasound and color images

    OpenAIRE

    Nunes, Jose Luis; Piquerez, Mart?n; Pujadas, Leonardo; Armstrong,Eileen; Fern?ndez, Alicia; Lecumberry, Federico

    2015-01-01

    Background Beef quality measurement is a complex task with high economic impact. There is high interest in obtaining an automatic quality parameters estimation in live cattle or post mortem. In this paper we set out to obtain beef quality estimates from the analysis of ultrasound (in vivo) and color images (post mortem), with the measurement of various parameters related to tenderness and amount of meat: rib eye area, percentage of intramuscular fat and backfat thickness or subcutaneous fat. ...

  16. Groundwater quality in Imphal West district, Manipur, India, with multivariate statistical analysis of data.

    Science.gov (United States)

    Singh, Elangbam J K; Gupta, Abhik; Singh, N R

    2013-04-01

    The aim of this paper was to analyze the groundwater quality of Imphal West district, Manipur, India, and assess its suitability for drinking, domestic, and agricultural use. Eighteen physico-chemical variables were analyzed in groundwater from 30 different hand-operated tube wells in urban, suburban, and rural areas in two seasons. The data were subjected to uni-, bi-, and multivariate statistical analysis, the latter comprising cluster analysis (CA), principal component analysis (PCA), and factor analysis (FA). Arsenic concentrations exceed the Indian standard in 23.3% and the WHO limit in 73.3% of the groundwater sources with only 26.7% in the acceptable range. Several variables like iron, chloride, sodium, sulfate, total dissolved solids, and turbidity are also beyond their desirable limits for drinking water in a number of sites. Sodium concentrations and sodium absorption ratio (SAR) are both high to render the water from the majority of the sources unsuitable for agricultural use. Multivariate statistical techniques, especially varimax rotation of PCA data helped to bring to focus the hidden yet important variables and understand their roles in influencing groundwater quality. Widespread arsenic contamination and high sodium concentration of groundwater pose formidable constraints towards its exploitation for drinking and other domestic and agricultural use in the study area, although urban anthropogenic impacts are not yet pronounced.

  17. The effects of urbanization on groundwater quantity and quality in the Zahedan aquifer, southeast Iran

    Science.gov (United States)

    Khazaei, E.; Mackay, R.; Warner, J.W.

    2004-01-01

    This paper investigates the impacts of urban growth on groundwater quality and quantity in the Zahedan aquifer, which is the sole source of water supply for the city of Zahedan, Iran. The investigation is based on the collection of available historical data, supplemented by field and laboratory investigations. Groundwater levels in 40 wells were measured in December 2000. In addition, 102 water samples were taken in two periods during November and December 2000. Of these, 43 samples were analyzed for major ions, 32 samples were analyzed for nitrogen and phosphorus and the remainder for bacteriological contamination. The water level data show that there has been a general decline since 1977 due to over-abstraction. The magnitude of this decline has reached about 20 m in some places. However, in one area over the same period, a rise of about 3 m has been observed. This occurs as a result of the local hydrogeological conditions of shallow bedrock and relatively low permeability materials down stream of this area that limits the flow of groundwater towards the northeastern part of the aquifer. The general fall in groundwater levels has been accompanied by a change in the direction of the groundwater flow and an overall reduction of the areal extent of the saturated region of the aquifer. The city now has a serious problem such that even if the abstracted groundwater is rationed, water is not available for long periods because the demand far exceeds the supply. The heavy impact of urbanization on the groundwater quality is shown through the observed high nitrate (up to 295 mg/l as nitrate) and high phosphorus values (about 0.1 mg/l as P). Significant changes in the chloride concentration are also observed in two areas: increasing from 100 mg/l to 1,600 mg/l and from 2,000 mg/l to 4,000 mg/l, respectively. Furthermore, the bacteriological investigations show that 33 percent of the 27 collected groundwater samples are positive for total coliform and 11 percent of the

  18. Relationship of Shallow Groundwater Quality to Hydraulic Fracturing Activities in Antrim and Kalkaska Counties, MI

    Science.gov (United States)

    Stefansky, J. N.; Robertson, W. M.; Chappaz, A.; Babos, H.; Israel, S.; Groskreutz, L. M.

    2015-12-01

    Hydraulic fracturing (fracking) of oil and natural gas (O&G) wells is a widely applied technology that can increase yields from tight geologic formations. However, it is unclear how fracking may impact shallow groundwater; previous research into its effects has produced conflicting results. Much of the worry over potential impacts to water quality arises from concerns about the produced water. The water produced from O&G formations is often salty, contains toxic dissolved elements, and can be radioactive. If fracking activities cause or increase connectivity between O&G formations and overlying groundwater, there may be risks to aquifers. As one part of a groundwater quality study in Antrim and Kalkaska Counties, MI, samples were collected from the unconfined glacial aquifer (3-300 m thick) and produced water from the underlying Antrim formation, a shallow (180-670 m deep) natural gas producing black shale. Groundwater samples were collected between 200 to 10,000 m distance from producing Antrim gas wells and from a range of screened intervals (15-95 m). Samples were analyzed for major constituents (e.g., Br, Cl), pH, conductivity, and dissolved oxygen (DO). The specific conductance of groundwater samples ranged from 230-1020 μS/cm; DO ranged from 0.4-100% saturation. Preliminary results show a slight inverse correlation between specific conductance and proximity to producing Antrim wells. The observed range of DO saturation in glacial aquifer groundwater appears to be related to both screened depth of the water wells and proximity to Antrim wells. During sampling, some well owners expressed concerns about the effects of fracking on groundwater quality and reported odd smells and tastes in their water after O&G drilling occurred near their homes. The results of this study and reported observations provide evidence to suggest a potential hydrogeological connection between the Antrim formation and the overlying glacial aquifer in some locations; it also raises

  19. Spatial variability and long-term analysis of groundwater quality of Faisalabad industrial zone

    National Research Council Canada - National Science Library

    Nasir, Muhammad Salman; Nasir, Abdul; Rashid, Haroon; Shah, Syed Hamid Hussain

    ... v9.3, and IDW was used for raster interpolation. The long-term analysis of these parameters has been carried out using the ‘R Statistical’ software. It was concluded that water is partially not fit for drinking, and direct use of this groundwater may cause health issues.

  20. A critical study of quality parameters in health care establishment: developing an integrated quality model

    NARCIS (Netherlands)

    Azam, M.; Rahman, Z.; Talib, F.; Singh, K.J.

    2012-01-01

    PURPOSE: The purpose of this article is to identify and critically analyze healthcare establishment (HCE) quality parameters described in the literature. It aims to propose an integrated quality model that includes technical quality and associated supportive quality parameters to achieve optimum

  1. Surface and Groundwater Quality in Some Oil Field Communities in the Niger Delta: Implications for Domestic Use and Building Construction

    Directory of Open Access Journals (Sweden)

    E.R. Daka

    2014-02-01

    Full Text Available The aim of this study was to determine surface and groundwater quality in some communities in the Niger Delta and to evaluate the implications for domestic use and building construction. Surface water samples were collected along the Nun River and Taylor creek in the greater Gbaran area; groundwater samples were collected from seven communities in that Gbarain and Ekpetiama kingdoms of Bayelsa State, Nigeria. The surface water turbidity values (24.18 to 130.42 NTU were above the Nigerian drinking water limits. TDS values were low (27-32 mg/L; pH (7.0 to 7.5, conductivity (54.00 to 63.00 &muS/cm, nitrate (0.09-0.61 mg/L. The measured values of conductivity, pH and TDS and nitrate fell within the NIS limits for drinking water in Nigeria. About 50% of the surface water samples had values of iron higher than the Nigerian standard for drinking water. Most of the samples gave values of chromium within the limit for drinking, with a few exceptions. pH of groundwater (6.3-7.8 mostly fell within the Nigerian drinking water limits (6.5-8.5. Mean electrical conductivity values of groundwater was 129.67 µS/cm, the TDS values (51.00 to 81.00 mg/L. The turbidity values ranged from <0.01 NTU to 38.11 NTU. Heavy metals concentrations were generally low; copper values ranged from <0.001 to 0.407 mg/L, chromium (0.020-0.059 mg/L, iron (0. 162 to 0.558 mg/L. The measured physicochemical variables of surface water and groundwater from the study area showed water quality values that were generally within the Nigerian standards for drinking water, apart from turbidity, iron and chromium in both surface and groundwater. However, all the measured parameters showed valued that are within acceptable limits for construction.

  2. Groundwater quality assessment in parts of Eastern Niger Delta, Nigeria

    Science.gov (United States)

    Edet, A. E.

    1993-09-01

    Hydrogeochemical analyses were carried out on groundwater samples collected from 20 producing wells in different parts of the Eastern Niger Delta. Results show that the concentrations of the major cations (Na+, K+, Ca2+, Mg2+) and anions (Cl-, SO{4/2-}, HCO{3/-}) are below the World Health Organization (WHO) standards set for domestic purposes. The occurrence of slightly saline water in certain areas is attributed to local hydrogeological processes occurring in the area. On the basis of the analytical results, two hydrogeochemical facies are delineated. These are calcium-magnesium-chloride-sulfate-bicarbonate (Ca-Mg-Cl-SO4-HCO3) and calcium-sodium-chloride-sulfatebicarbonate (Ca-Na-Cl-SO4-HCO3) to the west and east of the study area, respectively.

  3. Impact of agricultural practices on groundwater quality in intensive irrigated area of Chtouka-Massa, Morocco.

    Science.gov (United States)

    Malki, Mouna; Bouchaou, Lhoussaine; Hirich, Abdelaziz; Ait Brahim, Yassine; Choukr-Allah, Redouane

    2017-01-01

    The Plio-Quaternary aquifer of Chtouka is located in Southwestern of Morocco. The intensive agricultural activity in Chtouka basin requires the mobilization of 94% of fresh water resources for irrigation. This overexploitation, along with the succession of drought years, sea water intrusion and various sources of pollution, affected the quality and availability of groundwater resources. Several sampling campaigns were carried out in different sites of the study area in order to investigate the spatial variation of groundwater quality. The temporal evolution of groundwater level shows that the water table was subjected to a gradual decline during the last decade, indicating an intensive exploitation mainly in irrigated areas. In the Southern part around Belfaa and the irrigated area along Massa River, nitrate concentrations exceed 50mg/L, which is the threshold set by the World Health Organization, while in the northern part around Biougra and Ait Amira, the nitrate concentration is mostly below 50mg/L indicating a relative good groundwater quality. This finding can be explained by the improvement of agricultural practices, particularly the conversion of flood and sprinkler irrigation to drip irrigation (80% of the total irrigated area) in most of the developed farms in this part of the study area. Moreover, the exploitation of groundwater from the deep aquifer, due to the increasing water demand in the region, can also explain the low chemical concentrations since the deep aquifer is not affected by anthropogenic pollutants or marine intrusion. Stable isotopes ((18)O and (2)H) highlight the different origins of groundwater, indicating the complexity of the aquifer system path flows, which is attributable to the intensive exploitation and irrigation water return. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Questa baseline and pre-mining ground-water quality investigation. 3. Historical ground-water quality for the Red River Valley, New Mexico

    Science.gov (United States)

    LoVetere, Sara H.; Nordstrom, D. Kirk; Maest, Ann S.; Naus, Cheryl A.

    2003-01-01

    Historical ground-water quality data for 100 wells in the Red River Valley between the U.S. Geological Survey streamflow-gaging station (08265000), near Questa, and Placer Creek east of the town of Red River, New Mexico, were compiled and reviewed. The tabulation included 608 water-quality records from 23 sources entered into an electronic database. Groundwater quality data were first collected at the Red River wastewater-treatment facility in 1982. Most analyses, however, were obtained between 1994 and 2002, even though the first wells were developed in 1962. The data were evaluated by considering (a) temporal consistency, (b) quality of sampling methods, (c) charge imbalance, and (d) replicate analyses. Analyses that qualified on the basis of these criteria were modeled to obtain saturation indices for gypsum, calcite, fluorite, gibbsite, manganite, and rhodocrosite. Plots created from the data illustrate that water chemistry in the Red River Valley is predominantly controlled by calcite dissolution, congruent gypsum dissolution, and pyrite oxidation.

  5. Exploring parameter effects on the economic outcomes of groundwater-based developments in remote, low-resource settings

    Science.gov (United States)

    Abramson, Adam; Adar, Eilon; Lazarovitch, Naftali

    2014-06-01

    Groundwater is often the most or only feasible safe drinking water source in remote, low-resource areas, yet the economics of its development have not been systematically outlined. We applied AWARE (Assessing Water Alternatives in Remote Economies), a recently developed Decision Support System, to investigate the costs and benefits of groundwater access and abstraction for non-networked, rural supplies. Synthetic profiles of community water services (n = 17,962), defined across 13 parameters' values and ranges relevant to remote areas, were applied to the decision framework, and the parameter effects on economic outcomes were investigated. Regressions and analysis of output distributions indicate that the most important factors determining the cost of water improvements include the technological approach, the water service target, hydrological parameters, and population density. New source construction is less cost-effective than the use or improvement of existing wells, but necessary for expanding access to isolated households. We also explored three financing approaches - willingness-to-pay, -borrow, and -work - and found that they significantly impact the prospects of achieving demand-driven cost recovery. The net benefit under willingness to work, in which water infrastructure is coupled to community irrigation and cash payments replaced by labor commitments, is impacted most strongly by groundwater yield and managerial factors. These findings suggest that the cost-benefit dynamics of groundwater-based water supply improvements vary considerably by many parameters, and that the relative strengths of different development strategies may be leveraged for achieving optimal outcomes.

  6. A method of groundwater quality assessment based on fuzzy network-CANFIS and geographic information system (GIS)

    Science.gov (United States)

    Gholami, V.; Khaleghi, M. R.; Sebghati, M.

    2016-12-01

    The process of water quality testing is money/time-consuming, quite important and difficult stage for routine measurements. Therefore, use of models has become commonplace in simulating water quality. In this study, the coactive neuro-fuzzy inference system (CANFIS) was used to simulate groundwater quality. Further, geographic information system (GIS) was used as the pre-processor and post-processor tool to demonstrate spatial variation of groundwater quality. All important factors were quantified and groundwater quality index (GWQI) was developed. The proposed model was trained and validated by taking a case study of Mazandaran Plain located in northern part of Iran. The factors affecting groundwater quality were the input variables for the simulation, whereas GWQI index was the output. The developed model was validated to simulate groundwater quality. Network validation was performed via comparison between the estimated and actual GWQI values. In GIS, the study area was separated to raster format in the pixel dimensions of 1 km and also by incorporation of input data layers of the Fuzzy Network-CANFIS model; the geo-referenced layers of the effective factors in groundwater quality were earned. Therefore, numeric values of each pixel with geographical coordinates were entered to the Fuzzy Network-CANFIS model and thus simulation of groundwater quality was accessed in the study area. Finally, the simulated GWQI indices using the Fuzzy Network-CANFIS model were entered into GIS, and hence groundwater quality map (raster layer) based on the results of the network simulation was earned. The study's results confirm the high efficiency of incorporation of neuro-fuzzy techniques and GIS. It is also worth noting that the general quality of the groundwater in the most studied plain is fairly low.

  7. Application of water quality index to evaluate groundwater quality (temporal and spatial variation) of an intensively exploited aquifer (Puebla valley, Mexico).

    Science.gov (United States)

    Salcedo-Sánchez, Edith R; Garrido Hoyos, Sofía E; Esteller Alberich, Ma Vicenta; Martínez Morales, Manuel

    2016-10-01

    The spatial and temporal variation of water quality in the urban area of the Puebla Valley aquifer was evaluated using historical and present data obtained during this investigation. The current study assessed water quality based on the Water Quality Index developed by the Canadian Council of Ministers of the Environment (CCME-WQI), which provides a mathematical framework to evaluate the quality of water in combination with a set of conditions representing quality criteria, or limits. This index is flexible regarding the type and number of variables used by the evaluation given that the variables of interest are selected according to the characteristics and objectives of development, conservation and compliance with regulations. The CCME-WQI was calculated using several variables that assess the main use of the wells in the urban area that is public supply, according to criteria for human use and consumption established by Mexican law and international standards proposed by the World Health Organization. The assessment of the index shows a gradual deterioration in the quality of the aquifer over time, as the amount of wells with excellent quality have decreased and those with lower index values (poor quality) have increased throughout the urban area of the Puebla Valley aquifer. The parameters affecting groundwater quality are: total dissolved solids, sulfate, calcium, magnesium and total hardness.

  8. Validation of Student Generated Data for Assessment of Groundwater Quality

    Science.gov (United States)

    Peckenham, John M.; Thornton, Teresa; Peckenham, Phoebe

    2012-01-01

    As part of a research project to evaluate the effects of sand and gravel mining on water quality, students were trained to analyze their own drinking water for simple quality indicators. Indicators analyzed were pH, conductivity, hardness, nitrate, chloride, and dissolved iron. Approximately 523 analyses were completed by students between 2006 and…

  9. Validation of Student Generated Data for Assessment of Groundwater Quality

    Science.gov (United States)

    Peckenham, John M.; Thornton, Teresa; Peckenham, Phoebe

    2012-01-01

    As part of a research project to evaluate the effects of sand and gravel mining on water quality, students were trained to analyze their own drinking water for simple quality indicators. Indicators analyzed were pH, conductivity, hardness, nitrate, chloride, and dissolved iron. Approximately 523 analyses were completed by students between 2006 and…

  10. Identification and description of potential ground-water quality monitoring wells in Florida

    Science.gov (United States)

    Seaber, P.R.; Thagard, M.E.

    1986-01-01

    The results of a survey of existing wells in Florida that meet the following criteria are presented: (1) well location is known , (2) principal aquifer is known, (3) depth of well is known, (4) well casing depth is known, (5) well water had been analyzed between 1970 and 1982, and (6) well data are stored in the U.S. Geological Survey 's (USGS) computer files. Information for more than 20,000 wells in Florida were stored in the USGS Master Water Data Index of the National Water Data Exchange and in the National Water Data Storage and Retrieval System 's Groundwater Site Inventory computerized files in 1982. Wells in these computer files that had been sampled for groundwater quality before November 1982 in Florida number 13,739; 1,846 of these wells met the above criteria and are the potential (or candidate) groundwater quality monitoring wells included in this report. The distribution by principal aquifer of the 1,846 wells identified as potential groundwater quality monitoring wells is as follows: 1,022 tap the Floridan aquifer system, 114 tap the intermediate aquifers, 232 tap the surficial aquifers, 246 tap the Biscayne aquifer, and 232 tap the sand-and-gravel aquifer. These wells are located in 59 of Florida 's 67 counties. This report presents the station descriptions, which include location , site characteristics, period of record, and the type and frequency of chemical water quality data collected for each well. The 1,846 well locations are plotted on 14 USGS 1:250,000 scale, 1 degree by 2 degree, quadrangle maps. This relatively large number of potential (or candidate) monitoring wells, geographically and geohydrologically dispersed, provides a basis for a future groundwater quality monitoring network and computerized data base for Florida. There is a large variety of water quality determinations available from these wells, both areally and temporally. Future sampling of these wells would permit analyses of time and areal trends for selected water quality

  11. The impact of climatic change on groundwater quality; De invloed van klimaatverandering op de grondwaterkwaliteit

    Energy Technology Data Exchange (ETDEWEB)

    Hooijboer, A.E.J.; De Nijs, A.C.M.

    2011-08-15

    There is a possibility that climate change will affect the quality of groundwater because many processes that influence the groundwater quality depend on temperature and humidity. If the groundwater quality will be affected by a changing climate, and to what extent is unclear because unequivocal scientific evidence is lacking on this. This is the result of a literature review of the RIVM, which contains a list of available scientific knowledge on the impact of climate change on groundwater quality. Groundwater is important for water supply and for the environment. It is therefore important to know the impacts of climate change in an early stage so that measures can be taken to counteract these influences, if these changes represent a worsening. In the literature review, the impact of climate change on soil quality, groundwater recharge and surface water quality are included. There are currently still too few articles that describe specifically the impact of climate change on groundwater quality. On the basis of this three aspects the impacts on salinity, nutrients, pesticides and heavy metals is examined. The available scientific articles on climate change impacts on soil and groundwater are conflicting. For example, according to some studies, a higher temperature can lower water table, because the evaporation is higher. According, due to elevated CO2 concentrations, plants will evaporate less water so that the groundwater will increase. The study also shows that models that simulate the change of groundwater quality due to climate change are not available or not accurate enough. RIVM recommends to extend the research and to improve the existing models. [Dutch] Het is mogelijk dat klimaatverandering van invloed is op de kwaliteit van het grondwater omdat veel processen die de grondwaterkwaliteit beinvloeden afhangen van temperatuur en vochtigheid. Of de grondwaterkwaliteit zal veranderen bij een veranderend klimaat en in welke mate is onduidelijk omdat eenduidig

  12. Groundwater quality assessment and its correlation with gastroenteritis using GIS: a case study of Rawal Town, Rawalpindi, Pakistan.

    Science.gov (United States)

    Shahid, Syed Umair; Iqbal, Javed; Hasnain, Ghalib

    2014-11-01

    Majority of the people of Pakistan get drinking water from groundwater source. Nearly 40 % of the total ailments reported in Pakistan are the result of dirty drinking water. Every summer, thousands of patients suffer from acute gastroenteritis in the Rawal Town. Therefore, a study was designed to generate a water quality index map of the Rawal Town and identify the relationship between bacteriological water quality and socio-economic indicators with gastroenteritis in the study area. Water quality and gastroenteritis patient data were collected by surveying the 262 tubewells and the major hospitals in the Rawal Town. The collected spatial data was analyzed by using ArcGIS spatial analyst (Moran's I spatial autocorrelation) and geostatistical analysis tools (inverse distance weighted, radial basis function, kriging, and cokriging). The water quality index (WQI) for the study area was computed using pH, turbidity, total dissolved solids, calcium, hardness, alkalinity, and chloride values of the 262 tubewells. The results of Moran's I spatial autocorrelation showed that the groundwater physicochemical parameters were clustered. Among IDW, radial basis function, and kriging and cokriging interpolation techniques, cokriging showed the lowest root mean square error. Cokriging was used to make the spatial distribution maps of water quality parameters. The WQI results showed that more than half of the tubewells in the Rawal Town were providing "poor" to "unfit" drinking water. The Pearson's coefficient of correlation for gastroenteritis with fecal coliform was found significant (P < 0.05) in Water and Sanitation Agency (WASA) zone 2, and with shortage of toilets, it was significant (P < 0.05) in WASA zones 1 and 3. However, it was significantly (P < 0.01) inversely related with literacy rate in WASA zones 1, 2, and 3.

  13. Calendar year 1995 groundwater quality report for the Chestnut Ridge Hydrogeological Regime, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. 1995 Groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    This annual groundwater quality report (GWQR) contains groundwater quality data obtained during the 1995 calendar year (CY) at several hazardous and nonhazardous waste management facilities associated with the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The U.S. Environmental Protection Agency (EPA) identification number for the Y-12 Plant is TN.

  14. A Comprehensive Analysis of Groundwater Quality in The Barnett Shale Region.

    Science.gov (United States)

    Hildenbrand, Zacariah L; Carlton, Doug D; Fontenot, Brian E; Meik, Jesse M; Walton, Jayme L; Taylor, Josh T; Thacker, Jonathan B; Korlie, Stephanie; Shelor, C Phillip; Henderson, Drew; Kadjo, Akinde F; Roelke, Corey E; Hudak, Paul F; Burton, Taylour; Rifai, Hanadi S; Schug, Kevin A

    2015-07-07

    The exploration of unconventional shale energy reserves and the extensive use of hydraulic fracturing during well stimulation have raised concerns about the potential effects of unconventional oil and gas extraction (UOG) on the environment. Most accounts of groundwater contamination have focused primarily on the compositional analysis of dissolved gases to address whether UOG activities have had deleterious effects on overlying aquifers. Here, we present an analysis of 550 groundwater samples collected from private and public supply water wells drawing from aquifers overlying the Barnett shale formation of Texas. We detected multiple volatile organic carbon compounds throughout the region, including various alcohols, the BTEX family of compounds, and several chlorinated compounds. These data do not necessarily identify UOG activities as the source of contamination; however, they do provide a strong impetus for further monitoring and analysis of groundwater quality in this region as many of the compounds we detected are known to be associated with UOG techniques.

  15. Factors controlling groundwater quality in the Yeonjegu District of Busan City, Korea, using the hydrogeochemical processes and fuzzy GIS.

    Science.gov (United States)

    Venkatramanan, Senapathi; Chung, Sang Yong; Selvam, Sekar; Lee, Seung Yeop; Elzain, Hussam Eldin

    2017-08-31

    The hydrogeochemical processes and fuzzy GIS techniques were used to evaluate the groundwater quality in the Yeonjegu district of Busan Metropolitan City, Korea. The highest concentrations of major ions were mainly related to the local geology. The seawater intrusion into the river water and municipal contaminants were secondary contamination sources of groundwater in the study area. Factor analysis represented the contamination sources of the mineral dissolution of the host rocks and domestic influences. The Gibbs plot exhibited that the major ions were derived from the rock weathering condition. Piper's trilinear diagram showed that the groundwater quality was classified into five types of CaHCO3, NaHCO3, NaCl, CaCl2, and CaSO4 types in that order. The ionic relationship and the saturation mineral index of the ions indicated that the evaporation, dissolution, and precipitation processes controlled the groundwater chemistry. The fuzzy GIS map showed that highly contaminated groundwater occurred in the northeastern and the central parts and that the groundwater of medium quality appeared in most parts of the study area. It suggested that the groundwater quality of the study area was influenced by local geology, seawater intrusion, and municipal contaminants. This research clearly demonstrated that the geochemical analyses and fuzzy GIS method were very useful to identify the contaminant sources and the location of good groundwater quality.

  16. Groundwater quality for irrigation of deep aquifer in southwestern zone of Bangladesh

    Directory of Open Access Journals (Sweden)

    Mirza A.T.M. Tanvir Rahman

    2012-07-01

    Full Text Available In coastal regions of Bangladesh, sources of irrigation are rain, surface and groundwater. Due to rainfall anomaly andsaline contamination, it is important to identify deep groundwater that is eligible for irrigation. The main goal of the study wasto identify deep groundwater which is suitable for irrigation. Satkhira Sadar Upazila, at the southwestern coastal zone ofBangladesh, was the study area, which was divided into North, Center and South zones. Twenty samples of groundwaterwere analyzed for salinity (0.65-4.79 ppt, sodium absorption ratio (1.14-11.62, soluble sodium percentage (32.95-82.21, electricalconductivity (614-2082.11 μS/cm, magnesium adsorption ratio (21.96-26.97, Kelly’s ratio (0.48-4.62, total hardness(150.76-313.33 mg/l, permeability index (68.02-94.16 and residual sodium bi-carbonate (79.68-230.72 mg/l. Chemical constituentsand values were compared with national and international standards. Northern deep groundwater has the highest salinityand chemical concentrations. Salinity and other chemical concentrations show a decreasing trend towards the south. Lowchemical concentrations in the southern region indicate the best quality groundwater for irrigation.

  17. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1993 groundwater quality data and calculated rate of contaminant migration, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This annual groundwater report contains groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the Chestnut Ridge Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.

  18. Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA

    Directory of Open Access Journals (Sweden)

    John Luczaj

    2015-06-01

    Full Text Available The State of Wisconsin is located in an unusually water-rich portion of the world in the western part of the Great Lakes region of North America. This article presents an overview of the major groundwater quantity and quality concerns for this region in a geologic context. The water quantity concerns are most prominent in the central sand plain region and portions of a Paleozoic confined sandstone aquifer in eastern Wisconsin. Water quality concerns are more varied, with significant impacts from both naturally occurring inorganic contaminants and anthropogenic sources. Naturally occurring contaminants include radium, arsenic and associated heavy metals, fluoride, strontium, and others. Anthropogenic contaminants include nitrate, bacteria, viruses, as well as endocrine disrupting compounds. Groundwater quality in the region is highly dependent upon local geology and land use, but water bearing geologic units of all ages, Precambrian through Quaternary, are impacted by at least one kind of contaminant.

  19. Parameter analysis for feasibility evaluation of shallow groundwater cooling of power plants

    Science.gov (United States)

    Dirix, Katrijn; Harcouët-Menou, Virginie; Van Bael, Johan; Laenen, Ben

    2017-04-01

    This paper presents the first results of a finite difference-based numerical model, aiming to evaluate the potential of a new cooling concept that is based on the use of closed loop groundwater cooling integrated in a binary cycle. The new concept includes the seasonal combination of air cooling and shallow groundwater cooling and is part of the H2020 MATChING project. The proposed cooling system under investigation will be compared with dry type cooler condenser (e.g. air cooled condenser systems) and aims to reduce overall water withdrawal without compromising the energy efficiency of the system. The pilot site for this evaluation is the geothermal Balmatt site in Mol-Dessel, Belgium. When operating at its full potential, this site could produce up to 27 MW of heat. To (partly) cool this heat, water from the permeable Miocene 'Diest formation' could be used in a closed loop, i.e. without consuming water. This aquifer is located at a depth of 35 to 151 m bgl, consists of glauconitic coarse sands and has an average permeability of 10 m/day. The water has a temperature of ca. 12°C. In the design under evaluation, this water will be heated up to a maximum of 22°C after passing through the condenser. During summer months, the water will be injected directly back into the aquifer, while in winter, additional cooling will be realised using an air cooler before injecting the water (at ca. 6 °C). By adding this extra cooling step, the lifetime of the system will increase significantly. To cool the large amount of rejected heat, over 2000 m3/h of water needs to be extracted from the aquifer, requiring the installation of several doublet systems. The feasibility of such an installation depends on several interdependent factors, such as temperature, pressure, well distance, distance between the doublets, permeability and natural flow conditions. Since no exact values of most of these factors are available, a large uncertainty exists for feasibility predictions. To assess

  20. Seawater Intrusion Impacts on the Water Quality of the Groundwater on theNorthwest Coast of Oman.

    Science.gov (United States)

    Ahmed, Abdelkader T; Askri, Brahim

    2016-08-01

    The groundwater aquifer in the coastal region of the northwest of Oman has been used extensively since the early 1980s for agricultural, industrial and municipal purposes. The over pumping of this reservoir has led to the intrusion of seawater and therefore to the deterioration of the groundwater quality. In this study, an investigation was carried out in the southern part of this region to identify the quality of groundwater, to understand the main sources of groundwater mineralisation, and to check the suitability of groundwater for drinking and irrigation. The spatial distributions and temporal variations of groundwater level and electrical conductivity were studied for the period from 1982 to 2005 using data collected from 225 wells. In addition, groundwater samples were collected recently in 2012 from eight wells and analysed for pH, EC, and major ions to understand the sources of dissolved ions and assess the chemical quality of the groundwater. The study area was divided into two strips parallel to the coastline, A and B, located in the discharge and recharge parts of the aquifer, respectively. Results showed a significant increase in the degree of water mineralisation in the direction of south to north following the regional flow direction. Results showed also that the groundwater in the last area could be used for irrigation with little danger of exchangeable sodium while this aquifer is unsuitable for irrigation in the discharge area because it presents a very high salinity hazard.

  1. Assessment of groundwater quality for drinking and irrigation: the case study of Teiman-Oyarifa Community, Ga East Municipality, Ghana

    Directory of Open Access Journals (Sweden)

    M. Ackah

    2011-12-01

    Full Text Available The suitability of groundwater quality for drinking and agricultural purposes was assessed in a predominantly farming and sprawling settlement in the Ga East Municipality (Ghana. Various water quality parameters were determined to assess groundwater quality of 16 wells in Teiman-Oyarifa community. Standard methods for physicochemical determinations were employed. Hand-dug wells, boreholes and pipe borne water samples were collected within the locality and analysed. Results showed the temperature range of 19.5 oC-26.7 oC, pH range of 4-7.4, conductivity range of 214-2830 uS/cm, total dissolved solids, 110-1384 mg/L, bicarbonate, 8.53-287.7mg/L, chloride, 28.41-813.8 mg/L, Flouride, below detection limit -0.4667mg/L, Nitrate 1.9-4625 mg/L, sulphate, 16.35-149.88mg/L. Results of analysis carried out using Atomic Absorption Spectrophotometry showed metal concentrations of Fe ranging from 0.212-3.396 mg/L, Mn 0.01-0.1 mg/L, Ca 0.39-9.97 mg/L. The ionic dominance for the major cations and the anions respectively were in these order; Na+ >K+ >Mg+ >Ca+ and Cl- >HCO3- >SO4- >NO3 -. Most of the samples analyzed were within the Guidelines set by both national and international bodies for drinking water. Most of the groundwater samples fell in the US Salinity Laboratory Classification of C2-S1(medium salinity-low SAR.

  2. Detecting and predicting the impact of land use changes on groundwater quality, a case study in Northern Kelantan, Malaysia.

    Science.gov (United States)

    Sheikhy Narany, Tahoora; Aris, Ahmad Zaharin; Sefie, Anuar; Keesstra, Saskia

    2017-12-01

    The conversions of forests and grass land to urban and farmland has exerted significant changes on terrestrial ecosystems. However, quantifying how these changes can affect the quality of water resources is still a challenge for hydrologists. Nitrate concentrations can be applied as an indicator to trace the link between land use changes and groundwater quality due to their solubility and easy transport from their source to the groundwater. In this study, 25year records (from 1989 to 2014) of nitrate concentrations are applied to show the impact of land use changes on the quality of groundwater in Northern Kelantan, Malaysia, where large scale deforestation in recent decades has occurred. The results from the integration of time series analysis and geospatial modelling revealed that nitrate (NO3-N) concentrations significantly increased with approximately 8.1% and 3.89% annually in agricultural and residential wells, respectively, over 25years. In 1989 only 1% of the total area had a nitrate value greater than 10mg/L; and this value increased sharply to 48% by 2014. The significant increase in nitrate was only observed in a shallow aquifer with a 3.74% annual nitrate increase. Based on the result of the Autoregressive Integrated Moving Average (ARIMA) model the nitrate contamination is expected to continue to rise by about 2.64% and 3.9% annually until 2030 in agricultural and residential areas. The present study develops techniques for detecting and predicting the impact of land use changes on environmental parameters as an essential step in land and water resource management strategy development. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Assessing the Effect of a Dumpsite to Groundwater Quality in Payatas, Philippines

    Directory of Open Access Journals (Sweden)

    Glenn L.S. Su

    2008-01-01

    Full Text Available The study assessed and compared the groundwater quality of 14 selected wells continuously used in the with (Payatas and without dumpsite (Holy Spirit areas at the Payatas estate, Philippines. Water quality monitoring and analyses of the bio-physico-chemical variables (pH, Total Suspended Solids (TSS, Total Dissolved Solids (TDS, total coliform, conductivity, salinity, nitrate-nitrogen, sulfate, color, total chromium, total lead and total cadmium were carried out for six consecutive months, from April to September 2003, covering both dry and wet seasons. Results showed most of the groundwater quality variables in both the with and without dumpsite areas of the Payatas estate were within the normal Philippine water quality standards except for the observed high levels of TDS, TSS and total coliform and low pH levels. No significant differences were observed for nitrate-nitrogen, total cadmium, total lead, total chromium and total coliform in both the with and without dumpsite areas. TDS, conductivity, salinity and sulfate concentrations in the with dumpsite groundwater sources were significantly different compared to those in the without dumpsite areas. Continuous water quality monitoring is encouraged to effectively analyze the impact of dumpsites on the environment and human health.

  4. Analysis of groundwater discharge with a lumped-parameter model, using a case study from Tajikistan

    Science.gov (United States)

    Pozdniakov, S. P.; Shestakov, V. M.

    A lumped-parameter model of groundwater balance is proposed that permits an estimate of discharge variability in comparison with the variability of recharge, by taking into account the influence of aquifer parameters. Recharge-discharge relationships are analysed with the model for cases of deterministic and stochastic recharge time-series variations. The model is applied to study the temporal variability of groundwater discharge in a river valley in the territory of Tajikistan, an independent republic in Central Asia. Résumé Un modèle global de bilan d'eau souterraine a été développé pour estimer la variabilité de l'écoulement par rapport à celle de la recharge, en prenant en compte l'influence des paramètres de l'aquifère. Les relations entre recharge et écoulement sont analysées à l'aide du modèle pour des variations des chroniques de recharge soit déterministes, soit stochastiques. Le modèle est appliquéà l'étude de la variabilité temporelle de l'écoulement souterrain vers une rivière, dans le Tadjikistan, une république indépendante d'Asie centrale. Resumen Se propone un modelo de parámetros concentrados para realizar el balance de aguas subterráneas, el cual permite estimar la variabilidad en la descarga con respecto a la variabilidad en la recarga, en función de los parámetros que caracterizan el acuífero. Las relaciones entre recarga y descarga se analizan con el modelo para distintos casos de series temporales de recarga, tanto deterministas como estocásticas. El modelo se aplica al estudio de la variabilidad temporal de la descarga en un valle aluvial de Tadyikistán, una república independiente del Asia Central.

  5. A time-series analysis framework for the flood-wave method to estimate groundwater model parameters

    Science.gov (United States)

    Obergfell, Christophe; Bakker, Mark; Maas, Kees

    2016-11-01

    The flood-wave method is implemented within the framework of time-series analysis to estimate aquifer parameters for use in a groundwater model. The resulting extended flood-wave method is applicable to situations where groundwater fluctuations are affected significantly by time-varying precipitation and evaporation. Response functions for time-series analysis are generated with an analytic groundwater model describing stream-aquifer interaction. Analytical response functions play the same role as the well function in a pumping test, which is to translate observed head variations into groundwater model parameters by means of a parsimonious model equation. An important difference as compared to the traditional flood-wave method and pumping tests is that aquifer parameters are inferred from the combined effects of precipitation, evaporation, and stream stage fluctuations. Naturally occurring fluctuations are separated in contributions from different stresses. The proposed method is illustrated with data collected near a lowland river in the Netherlands. Special emphasis is put on the interpretation of the streambed resistance. The resistance of the streambed is the result of stream-line contraction instead of a semi-pervious streambed, which is concluded through comparison with the head loss calculated with an analytical two-dimensional cross-section model.

  6. Quality-assurance and data management plan for groundwater activities by the U.S. Geological Survey in Kansas, 2014

    Science.gov (United States)

    Putnam, James E.; Hansen, Cristi V.

    2014-01-01

    As the Nation’s principle earth-science information agency, the U.S. Geological Survey (USGS) is depended on to collect data of the highest quality. This document is a quality-assurance plan for groundwater activities (GWQAP) of the Kansas Water Science Center. The purpose of this GWQAP is to establish a minimum set of guidelines and practices to be used by the Kansas Water Science Center to ensure quality in groundwater activities. Included within these practices are the assignment of responsibilities for implementing quality-assurance activities in the Kansas Water Science Center and establishment of review procedures needed to ensure the technical quality and reliability of the groundwater products. In addition, this GWQAP is intended to complement quality-assurance plans for surface-water and water-quality activities and similar plans for the Kansas Water Science Center and general project activities throughout the USGS. This document provides the framework for collecting, analyzing, and reporting groundwater data that are quality assured and quality controlled. This GWQAP presents policies directing the collection, processing, analysis, storage, review, and publication of groundwater data. In addition, policies related to organizational responsibilities, training, project planning, and safety are presented. These policies and practices pertain to all groundwater activities conducted by the Kansas Water Science Center, including data-collection programs, interpretive and research projects. This report also includes the data management plan that describes the progression of data management from data collection to archiving and publication.

  7. An Assessment of Peri-Urban Groundwater Quality from Shallow Dug Wells, Mzuzu, Malawi

    Science.gov (United States)

    Holm, R.; Felsot, A.

    2012-12-01

    Throughout Malawi, governmental, non-governmental, religious and civic organizations are targeting the human need for water. Diarrheal diseases, often associated with unsafe drinking water, are a leading cause of mortality in children under five in Malawi with over 6,000 deaths per year (World Health Organization, 2010). From January to March 2012, a field study was undertaken in Malawi to study water quality and develop a public health risk communication strategy. The region studied, Area 1B, represents a comparatively new peri-urban area on the edge of Mzuzu city. Area 1B is serviced by a piped municipal water supply, but many shallow dug wells are also used for household water. Groundwater samples were collected from 30 shallow dug well sites and analyzed for nitrate, total coliform, Escherichia coli, total hardness, total alkalinity and pH. In addition to water quality analyses, a structured household questionnaire was administered to address water use, sanitation, health, consumption patterns, and socioeconomics. Results showed that more than half of the groundwater samples would be considered of unacceptable quality based on World Health Organization (WHO) standards for E. coli contamination. Low levels of nitrate were found in groundwater, but only one well exceeded WHO standards. The structured questionnaire revealed that some residents were still consuming groundwater despite the access to safer municipal water. In general, the widespread E. coli contamination was not statistically correlated with well depth, latrine proximity, or surface features. Similarly, nitrate concentrations were not significantly correlated with proximity to latrines. On the other hand, nitrate was correlated with well depth, which is expected given the high potential for leaching of anionic highly water soluble compounds. E. coli was significantly correlated with nitrate concentration. Projects targeting the need for clean water need to recognize that households with access to a

  8. Estimation of coal quality parameters using disjunctive kriging

    Energy Technology Data Exchange (ETDEWEB)

    Tercan, A.E. [Hacettepe University, Department of Mining Engineering, Beytepe (Turkey)

    1998-07-01

    Disjunctive kriging is a nonlinear estimation technique that allows the conditional probability that the value of coal quality parameter is greater than a cutoff value. The method can be used in management decision making to help control blending and make coal quality sampling. The use of disjunctive kriging is illustrated using the data from Kangal coal deposit. 7 refs.

  9. Evaluation of groundwater and stream quality characteristics in the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... However, the well waters were poor in quality in terms of the levels of pH, Fe, Cu, Ni, Pb and Cd recorded. The ... dissolved oxygen content of the receiving water body ..... fish population was observed at upstream location.

  10. Ground-water and surface-water quality data for the West Branch Canal Creek area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Spencer, Tracey A.; Phelan, Daniel J.; Olsen, Lisa D.; Lorah, Michelle M.

    2001-01-01

    This report presents ground-water and surface-water quality data from samples collected by the U.S. Geological Survey from November 1999 through May 2001 at West Branch Canal Creek, Aberdeen Proving Ground, Maryland. The report also provides a description of the sampling and analytical methods that were used to collect and analyze the samples, and includes an evaluation of the quality-assurance data. The ground-water sampling network included two 4-inch wells, two 2-inch wells, sixteen 1-inch piezometers, one hundred thirteen 0.75-inch piezometers, two 0.25-inch flexible-tubing piezo-meters, twenty-seven 0.25-inch piezometers, and forty-two multi-level monitoring system depths at six sites. Ground-water profiler samples were collected from nine sites at 34 depths. In addition, passive-diffusion-bag samplers were deployed at four sites, and porous-membrane sampling devices were installed in the upper sediment at five sites. Surface-water samples were collected from 20 sites. Samples were collected from wells and 0.75-inch piezometers for measurement of field parameters and reduction-oxidation constituents, and analysis of inorganic and organic constituents, during three sampling events in March?April and June?August 2000, and May 2001. Surface-water samples were collected from November 1999 through September 2000 during five sampling events for analysis of organic constituents. Ground-water profiler samples were collected in April?May 2000, and analyzed for field measure-ments, reduction-oxidation constituents, and inorganic constituents and organic constituents. Passive-diffusion-bag samplers were installed in September 2000, and samples were analyzed for organic constituents. Multi-level monitoring system samples were collected and analyzed for field measurements and reduction-oxidation con-stituents, inorganic constituents, and organic con-stituents in March?April and June?August 2000. Field measurements and organic constituents were collected from 0.25-inch

  11. Social Perception of Public Water Supply Network and Groundwater Quality in an Urban Setting Facing Saltwater Intrusion and Water Shortages.

    Science.gov (United States)

    Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem

    2017-04-01

    Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.

  12. Social Perception of Public Water Supply Network and Groundwater Quality in an Urban Setting Facing Saltwater Intrusion and Water Shortages

    Science.gov (United States)

    Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem

    2017-04-01

    Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.

  13. Progress, opportunities, and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China.

    Science.gov (United States)

    Li, Peiyue; Tian, Rui; Xue, Chenyang; Wu, Jianhua

    2017-05-01

    Groundwater quality research is extremely important for supporting the safety of the water supply and human health in arid and semi-arid areas of China. This review article was constructed to report the latest research progress of groundwater quality in western China where groundwater quality is undergoing fast deterioration because of fast economic development and extensive anthropogenic activities. The opportunities brought by increasing public awareness of groundwater quality protection were also highlighted and discussed. To guide and promote further development of groundwater quality research in China, especially in western China, ten key groundwater quality research fields were proposed. The review shows that the intensification of human activities and the associated impacts on groundwater quality in China, especially in western China, has made groundwater quality research increasingly important, and has caught the attention of local, national, and international agencies and scholars. China has achieved some progress in groundwater quality research in terms of national and regional laws, regulations, and financial supports. The future of groundwater quality research in China, especially in western China, is promising reflected by the opportunities highlighted. The key research fields proposed in this article may also inform groundwater quality protection and management at the national and international level.

  14. Application of Multivariate Statistical Techniques for Characterization of Groundwater Quality in the Coastal Aquifer of Nador, Tipaza (Algeria)

    Science.gov (United States)

    Bouderbala, Abdelkader; Remini, Boualem; Saaed Hamoudi, Abdelamir; Pulido-Bosch, Antonio

    2016-06-01

    The study focuses on the characterization of the groundwater salinity on the Nador coastal aquifer (Algeria). The groundwater quality has undergone serious deterioration due to overexploitation. Groundwater samplings were carried out in high and low waters in 2013, in order to study the evolution of groundwater hydrochemistry from the recharge to the coastal area. Different kinds of statistical analysis were made in order to identify the main hydrogeochemical processes occurring in the aquifer and to discriminate between different groups of groundwater. These statistical methods provide a better understanding of the aquifer hydrochem-istry, and put in evidence a hydrochemical classification of wells, showing that the area with higher salinity is located close to the coast, in the first two kilometers, where the salinity gradually increases as one approaches the seaside and suggests the groundwater salinization by sea-water intrusion.

  15. Application of multivariate statistical techniques for characterization of groundwater quality in the coastal aquifer of Nador, Tipaza (Algeria

    Directory of Open Access Journals (Sweden)

    Bouderbala Abdelkader

    2016-06-01

    Full Text Available The study focuses on the characterization of the groundwater salinity on the Nador coastal aquifer (Algeria. The groundwater quality has undergone serious deterioration due to overexploitation. Groundwater samplings were carried out in high and low waters in 2013, in order to study the evolution of groundwater hydrochemistry from the recharge to the coastal area. Different kinds of statistical analysis were made in order to identify the main hydrogeochemical processes occurring in the aquifer and to discriminate between different groups of groundwater. These statistical methods provide a better understanding of the aquifer hydrochemistry, and put in evidence a hydrochemical classification of wells, showing that the area with higher salinity is located close to the coast, in the first two kilometers, where the salinity gradually increases as one approaches the seaside and suggests the groundwater salinization by seawater intrusion.

  16. Study on the mechanisms making the deep groundwater quality. Part 3

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, Kin-ichi [CHISHITSU-KISO-KOGYO Co., Ltd. (Japan)

    1997-03-01

    We compiled geological data and chemical data of deep groundwater in the Joban Coal Field, and examined the qualities and the changes of groundwater by geochemical analysis and numerical simulation. On the chemical analysis, we classified the chemical type of the water which gathered in the coal mine tunnels, and clarified their distributions. Moreover we analyzed isotopes in the water which picked up from wells under running. As a consequence of these analysis, the origin of the groundwater character in the Joban Coal Field is inferred to be mostly mixed water with present sea water and fresh water. We detected some groundwater were mixed with fresh water in some ten years, while we recognized that some groundwater which were mixed clearly with fossilized sea water also exist. Concerning the numerical simulation, we set up the 3 dimensional model in this field which roughly represents the geological structures and physical conditions, and collected the data to inspect the analytical results. We simulated hydraulic conditions of this model for 100 years including three phases; those are the model with no tunnels, the model at mining, and abandoned mine model with re-submergence. In consequence, volume of influx water to the tunnels and restoration of water level after re-submergence are nearly represented, and we recognized the availability of this large-scale analysis. Moreover, we tried to simulate the very large 2 dimensional water system including the boundary of fresh water and sea water, and analyzed very long time change of the deep groundwater which was caused by sea level change. (author). 63 refs.

  17. Effect of the decommissioned Roger open dump, João Pessoa, Brazil, on local groundwater quality

    Directory of Open Access Journals (Sweden)

    Giulliano de Souza Fagundes

    2009-04-01

    Full Text Available Throughout 45 years (1958-2003 the solid wastes from João Pessoa were disposed off in the former Roger’s open dump, which is situated adjacent to the mangrove at the sides of Sanhauá river, intensifying environmental problems and threatening the health of people living nearby. Between 1999 and 2003 the decommissioned open dump received wastes from the cities of Cabedelo and Bayeux. Several environmental impacts result from this inadequate disposal of solid wastes, including the pollution of groundwater nearby the former Roger´s open dump, which is the major point of investigation of this paper. The water quality of 6 wells situated in the region of influence of the open dump were monitored. Results have shown that the groundwater near the open dump cannot be drunk by the population without previous treatment, since it has some parameters of water quality in discordance with Brazilian legislation concerned with drinking water. Results have also shown that the level of pollution is higher in the wells closer to the open dump.

  18. Groundwater quality, age, and susceptibility and vulnerability to nitrate contamination with linkages to land use and groundwater flow, Upper Black Squirrel Creek Basin, Colorado, 2013

    Science.gov (United States)

    Wellman, Tristan P.; Rupert, Michael G.

    2016-03-03

    The Upper Black Squirrel Creek Basin is located about 25 kilometers east of Colorado Springs, Colorado. The primary aquifer is a productive section of unconsolidated deposits that overlies bedrock units of the Denver Basin and is a critical resource for local water needs, including irrigation, domestic, and commercial use. The primary aquifer also serves an important regional role by the export of water to nearby communities in the Colorado Springs area. Changes in land use and development over the last decade, which includes substantial growth of subdivisions in the Upper Black Squirrel Creek Basin, have led to uncertainty regarding the potential effects to water quality throughout the basin. In response, the U.S. Geological Survey, in cooperation with Cherokee Metropolitan District, El Paso County, Meridian Service Metropolitan District, Mountain View Electric Association, Upper Black Squirrel Creek Groundwater Management District, Woodmen Hills Metropolitan District, Colorado State Land Board, and Colorado Water Conservation Board, and the stakeholders represented in the Groundwater Quality Study Committee of El Paso County conducted an assessment of groundwater quality and groundwater age with an emphasis on characterizing nitrate in the groundwater.

  19. An attribute recognition model based on entropy weight for evaluating the quality of groundwater sources

    Institute of Scientific and Technical Information of China (English)

    CHEN Suo-zhong; WANG Xiao-jing; ZHAO Xiu-jun

    2008-01-01

    In our study, entropy weight coefficients, based on Shannon entropy, were determined for an attribute recognition model to model the quality of groundwater sources. The model follows the theory previously proposed by Chen Q S. In the model, firstly, the author establishes the attribute space matrix and determines the weight based on Shannon entropy theory; secondly, calculates attribute measure; thirdly, evaluates that with confidence criterion and score criterion; finally, an application example is given. The results show that the water quality of the groundwater sources for the city comes up to the grade II or III standard. There is no pollution that obviously exceeds the standard and the water can meet people's needs .The results from an evaluation of this model are in basic agreement with the observed situation and with a set pair analysis (SPA) model.

  20. Groundwater quality in the Basin and Range Basin-Fill Aquifers, southwestern United States

    Science.gov (United States)

    Musgrove, MaryLynn; Belitz, Kenneth

    2017-01-19

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Basin and Range basin-fill aquifers constitute one of the important areas being evaluated. One or more inorganic constituents with human-health benchmarks were detected at high concentrations in about 20 percent of the study area and at moderate concentrations in about 49 percent. Organic constituents were not detected at high concentrations in the study area. One or more organic constituents with human-health benchmarks were detected at moderate concentrations in about 3 percent of the study area.

  1. Groundwater quality in the Southeastern Coastal Plain aquifer system, southeastern United States

    Science.gov (United States)

    Barlow, Jeannie; Lindsey, Bruce; Belitz, Kenneth

    2017-01-19

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Southeastern Coastal Plain aquifer system constitutes one of the important areas being evaluated. One or more inorganic constituents with human-health benchmarks were detected at high concentrations in about 6 percent of the study area and at moderate concentrations in about 13 percent. One or more organic constituents with human-health benchmarks were detected at moderate concentrations in about 3 percent of the study area.

  2. Groundwater quality in the Coastal Lowlands aquifer system, south-central United States

    Science.gov (United States)

    Barlow, Jeannie R.B.; Belitz, Kenneth

    2017-01-19

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Coastal Lowlands aquifer system constitutes one of the important areas being evaluated. One or more inorganic constituents with human-health benchmarks were detected at high concentrations in about 12 percent of the study area and at moderate concentrations in about 18 percent. Organic constituents were not detected at high or moderate concentrations in the study area.

  3. Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India

    Directory of Open Access Journals (Sweden)

    K. Srinivasamoorthy

    2014-01-01

    Full Text Available The Pungar sub basin is located in the central part of South India. The geology is mainly composed of Archean crystalline metamorphic complexes. Increased population and intensive agricultural activity make it imperative to assess the quality of the groundwater system to ensure long-term sustainability of the resources. A total of 87 groundwater samples were collected from bore wells for two different seasons, viz., Pre monsoon and Post monsoon and analyzed for major cations and anions. Semi-arid climate, high evaporation rate and nutrient enrichment are the key features for EC enrichment. HigherNO3- and Cl− were observed in groundwater samples. The sources of Ca2+, Mg2+, Na+ and K+ are from silicate weathering process. The facies demarcation suggests base exchanged hardened water. Gibbs plot suggests chemical weathering of rock forming minerals along with evaporation. The plot of (Ca2+ + Mg2+ versus (SO42-+HCO3- suggests both ion exchange and reverse exchange processes. The plot of (Na++K+ versus TZ+ shows higher cations via silicate weathering, alkaline/saline soils and residence time. The disequilibrium index for carbonate minerals point out influence of evaporation and silicate minerals favor incongruent dissolution. Mineral stability diagrams signify groundwater equilibrium with Kaolinite, Muscovite and Chlorite minerals. Comparison of groundwater quality with drinking standards and irrigation suitability standards proves that majority of water samples are suitable for drinking purpose. In general, water chemistry is guided by complex weathering process, ion exchange and influence of agricultural and sewage impact.

  4. [Impacts of reclaimed water irrigation of urban lawn on groundwater quality].

    Science.gov (United States)

    Wang, Qiao-Huan; Chen, Wei-Ping; Wang, Xiao-Ke; Ren, Yu-Fen; Zhang, Ye

    2012-12-01

    Based on long-term monitoring of groundwater and irrigation water quality, the dynamics of the main physicochemical property and pollutant concentration of groundwater influenced by reclaimed water irrigation were examined in this study. The results of our five-year continuous study showed that the ammonium nitrogen concentration in reclaimed water ranged 0.05-65.4 mg x L(-1) with an average of 12.0 mg x L(-1), which exceeded the urban miscellaneous water quality standards for urban greening (GB/T 18920-2002). The total nitrogen in reclaimed water averaged at 28.3 mg x L(-1), ranging from 2.56 mg x L(-1) to 78.0 mg x L(-1), which was also relatively high. The groundwater quality indexes were normal with small fluctuations under tap-water irrigation. The influence of lawn irrigation with reclaimed water on the groundwater water quality was significant in the shallow well with a depth of 6 m, but not obvious in the deep well with a depth of 20 m. The greatest change was found in the enhanced value of nitrate concentration. The nitrate nitrogen concentration in shallow underground water had significantly positive correlation but lagging with the concentration of dissolved nitrogen in the irrigation reclaimed water, which indicated that lawn irrigation with reclaimed water might cause nitrate nitrogen pollution in shallow underground water. Therefore, considering the huge water consumption for the urban greening, it is suggested that the criteria of reclaimed water reuse should be further improved to avoid the risk of environmental pollution.

  5. Technical summary of groundwater quality protection program at Savannah River Plant. Volume 1. Site geohydrology, and solid and hazardous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, E.J.; Gordon, D.E. (eds.)

    1983-12-01

    The program for protecting the quality of groundwater underlying the Savannah River Plant (SRP) is described in this technical summary report. The report is divided into two volumes. Volume I contains a discussion of the general site geohydrology and of both active and inactive sites used for disposal of solid and hazardous wastes. Volume II includes a discussion of radioactive waste disposal. Most information contained in these two volumes is current as of December 1983. The groundwater quality protection program has several elements which, taken collectively, are designed to achieve three major goals. These goals are to evaluate the impact on groundwater quality as a result of SRP operations, to restore or protect groundwater quality by taking corrective action as necessary, and to ensure disposal of waste materials in accordance with regulatory guidelines.

  6. Appraisal of ground-water quality in the Bunker Hill Basin of San Bernardino Valley, California

    Science.gov (United States)

    Duell, L.F.; Schroeder, R.A.

    1989-01-01

    Water samples were collected from 47 wells and analyzed for concentration of major inorganic ions, nitrogen species, and volatile (purgeable) organic priority pollutants to assess groundwater quality in the Bunker Hill basin, California. Data were supplemented with additional analysis of nitrate, tetrachloroethylene, and trichloroethylene made by other agencies. The organic quality of groundwater in the basin generally is suitable for most uses, although fluoride concentration exceeded the California public drinking water standard of 1.4 mg/L in water from 5 of 47 wells. Nitrate (as nitrogen) concentration equaled or exceeded the public drinking water standard of 10 mg/L in water from 13 of 47 wells sampled for this study and in an additional 19 of 120 samples analyzed by other agencies. Concentration generally decreased with increasing depth below land surface. Twenty-four of the 33 volatile organic priority pollutants were detected in water from wells sampled during this study. When supplemental data from other agencies are included, tetrachloroethylene concentration exceeded the standard of 5 micrograms/L in water from 49 of 128 wells. No basinwide relation between contamination by these two chemicals and well depth or land use was discerned. A network of 11 observation wells that could be sampled twice a year would enhance the monitoring of changes groundwater quality in the Bunker Hill basin. (USGS)

  7. Groundwater quality in the Madera and Chowchilla subbasins of the San Joaquin Valley, California

    Science.gov (United States)

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2013-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The Madera and Chowchilla subbasins of the San Joaquin Valley constitute one of the study units being evaluated. The Madera-Chowchilla study unit is about 860 square miles and consists of the Madera and Chowchilla groundwater subbasins of the San Joaquin Valley Basin (California Department of Water Resources, 2003; Shelton and others, 2009). The study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 11 to 15 inches, most of which occurs between November and February. The main surface-water features in the study unit are the San Joaquin, Fresno, and Chowchilla Rivers, and the Madera and Chowchilla canals. Land use in the study unit is about 69 percent (%) agricultural, 28% natural (mainly grasslands), and 3% urban. The primary crops are orchards and vineyards. The largest urban area is the city of Madera. The primary aquifer system is defined as those parts of the aquifer corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. In the Madera-Chowchilla study unit, these wells typically are drilled to depths between 200 and 800 feet, consist of a solid casing from land surface to a depth of about 140 to 400 feet, and are perforated below the solid casing. Water quality in the primary aquifer system may differ from that in the shallower and deeper parts of the aquifer system. The primary aquifer system in the study unit consists of Quaternary-age alluvial-fan and fluvial deposits that were formed by the rivers draining the Sierra Nevada. Sediments consist of gravels, sands

  8. Application of Integral Pumping Tests to estimate the influence of losing streams on groundwater quality

    Science.gov (United States)

    Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Schirmer, M.

    2009-05-01

    Urban streams receive effluents of wastewater treatment plants and untreated wastewater during combined sewer overflow events. In the case of losing streams substances, which originate from wastewater, can reach the groundwater and deteriorate its quality. The estimation of mass flow rates Mex from losing streams to the groundwater is important to support groundwater management strategies, but is a challenging task. Variable inflow of wastewater with time-dependent concentrations of wastewater constituents causes a variable water composition in urban streams. Heterogeneities in the structure of the streambed and the connected aquifer lead, in combination with this variable water composition, to heterogeneous concentration patterns of wastewater constituents in the vicinity of urban streams. Groundwater investigation methods based on conventional point sampling may yield unreliable results under these conditions. Integral Pumping Tests (IPT) can overcome the problem of heterogeneous concentrations in an aquifer by increasing the sampled volume. Long-time pumping (several days) and simultaneous sampling yields reliable average concentrations Cav and mass flow rates Mcp for virtual control planes perpendicular to the natural flow direction. We applied the IPT method in order to estimate Mex of a stream section in Leipzig (Germany). The investigated stream is strongly influenced by combined sewer overflow events. Four pumping wells were installed up- and downstream of the stream section and operated for a period of five days. The study was focused on four inorganic (potassium, chloride, nitrate and sulfate) and two organic (caffeine and technical-nonylphenol) wastewater constituents with different transport properties. The obtained concentration-time series were used in combination with a numerical flow model to estimate Mcp of the respective wells. The difference of the Mcp's between up- and downstream wells yields Mex of wastewater constituents that increase

  9. Hydrogeochemical characterization and groundwater quality assessment in intruded coastal brine aquifers (Laizhou Bay, China).

    Science.gov (United States)

    Zhang, Xiaoying; Miao, Jinjie; Hu, Bill X; Liu, Hongwei; Zhang, Hanxiong; Ma, Zhen

    2017-07-20

    The aquifer in the coastal area of the Laizhou Bay is affected by salinization processes related to intense groundwater exploitation for brine resource and for agriculture irrigation during the last three decades. As a result, the dynamic balances among freshwater, brine, and seawater have been disturbed and the quality of groundwater has deteriorated. To fully understand the groundwater chemical distribution and evolution in the regional aquifers, hydrogeochemical and isotopic studies have been conducted based on the water samples from 102 observation wells. Groundwater levels and salinities in four monitoring wells are as well measured to inspect the general groundwater flow and chemical patterns and seasonal variations. Chemical components such as Na(+), K(+), Ca(2+), Mg(2+), Sr(2+), Cl(-), SO4(2-), HCO3(-), NO3(-), F(-), and TDS during the same period are analyzed to explore geochemical evolution, water-rock interactions, sources of salt, nitrate, and fluoride pollution in fresh, brackish, saline, and brine waters. The decreased water levels without typical seasonal variation in the southeast of the study area confirm an over-exploitation of groundwater. The hydrogeochemical characteristics indicate fresh-saline-brine-saline transition pattern from inland to coast where evaporation is a vital factor to control the chemical evolution. The cation exchange processes are occurred at fresh-saline interfaces of mixtures along the hydraulic gradient. Meanwhile, isotopic data indicate that the brine in aquifers was either originated from older meteoric water with mineral dissolution and evaporation or repeatedly evaporation of retained seawater with fresher water recharge and mixing in geological time. Groundwater suitability for drinking is further evaluated according to water quality standard of China. Results reveal high risks of nitrate and fluoride contamination. The elevated nitrate concentration of 560 mg/L, which as high as 28 times of the standard content in

  10. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  11. Application of integral pumping tests to investigate the influence of a losing stream on groundwater quality

    Science.gov (United States)

    Leschik, S.; Musolff, A.; Krieg, R.; Martienssen, M.; Bayer-Raich, M.; Reinstorf, F.; Strauch, G.; Schirmer, M.

    2009-10-01

    Losing streams that are influenced by wastewater treatment plant effluents and combined sewer overflows (CSOs) can be a source of groundwater contamination. Released micropollutants such as pharmaceuticals, endocrine disrupters and other ecotoxicologically relevant substances as well as inorganic wastewater constituents can reach the groundwater, where they may deteriorate groundwater quality. This paper presents a method to quantify exfiltration mass flow rates per stream length unit Mex of wastewater constituents from losing streams by the operation of integral pumping tests (IPTs) up- and downstream of a target section. Due to the large sampled water volume during IPTs the results are more reliable than those from conventional point sampling. We applied the method at a test site in Leipzig (Germany). Wastewater constituents K+ and NO3- showed Mex values of 1241 to 4315 and 749 to 924 mg mstream-1 d-1, respectively, while Cl- (16.8 to 47.3 g mstream-1 d-1) and SO42- (20.3 to 32.2 g mstream-1 d-1) revealed the highest observed Mex values at the test site. The micropollutants caffeine and technical-nonylphenol were dominated by elimination processes in the groundwater between upstream and downstream wells. Additional concentration measurements in the stream and a connected sewer at the test site were performed to identify relevant processes that influence the concentrations at the IPT wells.

  12. Physicochemical parameters and their sources in groundwater in the Thirupathur region, Tamil Nadu, South India

    Science.gov (United States)

    Sajil Kumar, P. J.; James, E. J.

    2013-03-01

    This study reports physicochemical characteristics and their sources in groundwater in Thirupathur region in Tamil Nadu, India. For this purpose, groundwater samples were collected and analysed using standard methods. A wide seasonal variation was showed for the majority of the samples; higher concentration was observed in the pre-monsoon season. Concentration of fluoride was quite alarming in many locations. Groundwater is found to be dominated by Na+, Ca+, HCO3 and Cl-. Gibbs plot showed the dominance of rock-water interaction. Geology of the area in comparison with the results obtained in the chemical cross plots showed the dominance of silicate weathering, with a minor contribution from the cation exchange. Other processes such as evaporation dissolution of carbonate and gypsum were proved to be ineffective. However, dissolution of fluoride minerals present in the geological formation is the major source of fluoride in groundwater.

  13. Dimensionless parameters to summarize the influence of microbial growth and inhibition on the bioremediation of groundwater contaminants.

    Science.gov (United States)

    Mohamed, M; Hatfield, K

    2011-09-01

    Monod expressions are preferred over zero- and first-order decay expressions in modeling contaminants biotransformation in groundwater because they better represent complex conditions. However, the wide-range of values reported for Monod parameters suggests each case-study is unique. Such uniqueness restricts the usefulness of modeling, complicates an interpretation of natural attenuation and limits the utility of a bioattenuation assessment to a small number of similar cases. In this paper, four Monod-based dimensionless parameters are developed that summarize the effects of microbial growth and inhibition on groundwater contaminants. The four parameters represent the normalized effective microbial growth rate (η), the normalized critical contaminant/substrate concentration (S*), the critical contaminant/substrate inhibition factor (N), and the bioremediation efficacy (η*). These parameters enable contaminated site managers to assess natural attenuation or augmented bioremediation at multiple sites and then draw comparisons between disparate remediation activities, sites and target contaminants. Simulations results are presented that reveal the sensitivity of these dimensionless parameters to Monod parameters and varying electron donor/acceptor loads. These simulations also show the efficacy of attenuation (η*) varying over space and time. Results suggest electron donor/acceptor amendments maintained at relative concentrations S* between 0.5 and 1.5 produce the highest remediation efficiencies. Implementation of the developed parameters in a case study proves their usefulness.

  14. Assessment of groundwater quality with respect to fluoride.

    Science.gov (United States)

    Salve, P R; Maurya, A; Kumbhare, P S; Ramteke, D S; Wate, S R

    2008-09-01

    The study was conducted in the summer season (April-May 2007). The fluoride concentration along with physico-chemical parameters in ground water samples was determined in various villages of Kadi tehsil at Mehsana district of Gujarat state (India), since in most of the villages it is the only source of drinking water. The fluoride concentrations in these villages varied from 0.94 to 2.81 mg/L (1.37+/-0.56) with highest fluoride level at Visalpur (2.08 mg/L) and lowest at Adaraj (0.91 mg/L). There was found a positive correlation of pH with fluoride and a negative relationship of fluoride with bicarbonate which is generally observed in deep ground water.

  15. Assessing the impact of dairy waste lagoons on groundwater quality using a spatial analysis of vadose zone and groundwater information in a coastal phreatic aquifer.

    Science.gov (United States)

    Baram, S; Kurtzman, D; Ronen, Z; Peeters, A; Dahan, O

    2014-01-01

    Dairy waste lagoons are considered to be point sources of groundwater contamination by chloride (Cl(-)), different nitrogen-species and pathogens/microorganisms. The objective of this work is to introduce a methodology to assess the past and future impacts of such lagoons on regional groundwater quality. The method is based on a spatial statistical analysis of Cl(-) and total nitrogen (TN) concentration distributions in the saturated and the vadose (unsaturated) zones. The method provides quantitative data on the relation between the locations of dairy lagoons and the spatial variability in Cl(-) and TN concentrations in groundwater. The method was applied to the Beer-Tuvia region, Israel, where intensive dairy farming has been practiced for over 50 years above the local phreatic aquifer. Mass balance calculations accounted for the various groundwater recharge and abstraction sources and sinks in the entire region. The mass balances showed that despite the small surface area covered by the dairy lagoons in this region (0.8%), leachates from lagoons have contributed 6.0% and 12.6% of the total mass of Cl(-) and TN (mainly as NO3(-)-N) added to the aquifer. The chemical composition of the aquifer and vadose zone water suggested that irrigated agricultural activity in the region is the main contributor of Cl(-) and TN to the groundwater. A low spatial correlation between the Cl(-) and NO3(-)-N concentrations in the groundwater and the on-land location of the dairy farms strengthened this assumption, despite the dairy waste lagoon being a point source for groundwater contamination by Cl(-) and NO3(-)-N. Mass balance calculations, for the vadose zone of the entire region, indicated that drying of the lagoons would decrease the regional groundwater salinization process (11% of the total Cl(-) load is stored under lagoons). A more considerable reduction in the groundwater contamination by NO3(-)-N is expected (25% of the NO3(-)-N load is stored under lagoons). Results

  16. Groundwater-quality data in the Cascade Range and Modoc Plateau study unit, 2010-Results from the California GAMA Program

    Science.gov (United States)

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2013-01-01

    Groundwater quality in the 39,000-square-kilometer Cascade Range and Modoc Plateau (CAMP) study unit was investigated by the U.S. Geological Survey (USGS) from July through October 2010, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project (PBP). The GAMA PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The CAMP study unit is the thirty-second study unit to be sampled as part of the GAMA PBP. The GAMA CAMP study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer system and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The primary aquifer system is defined as that part of the aquifer corresponding to the open or screened intervals of wells listed in the California Department of Public Health (CDPH) database for the CAMP study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from the quality of groundwater in the primary aquifer system; shallow groundwater may be more vulnerable to surficial contamination. In the CAMP study unit, groundwater samples were collected from 90 wells and springs in 6 study areas (Sacramento Valley Eastside, Honey Lake Valley, Cascade Range and Modoc Plateau Low Use Basins, Shasta Valley and Mount Shasta Volcanic Area, Quaternary Volcanic Areas, and Tertiary Volcanic Areas) in Butte, Lassen, Modoc, Plumas, Shasta, Siskiyou, and Tehama Counties. Wells and springs were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Groundwater samples were analyzed for field water-quality indicators, organic constituents, perchlorate, inorganic constituents

  17. A laboratory study on groundwater quality and mass movement occurrence

    Science.gov (United States)

    Fan, Jen-Chen; Liu, Che-Hsin; Yang, Chih-Hsiang; Huang, Hsiao-Yu

    2009-06-01

    In this study, soil samples collected from the sides of two streams with high debris flow potential at Shenmu and Fengchiou village in Nantou County, Taiwan, were used for seepage tank tests in the laboratory. While the tests were being conducted, observations were made to investigate the relationships among displacement of the slope, quality of the seepage water and occurrence of mass movement. The results showed that according to the change rate, displacement could be divided into two stages, namely, the initial failure displacement stage and primary failure displacement stage. While the displacement of the slope was in primary failure displacement stages, the probability of slope failure became much higher. Before general slope failure, electrical conductivity (EC) and sulfate ion (SO4 2-) concentration of the seepage water increased significantly. The time when EC of the seepage water started to increase rapidly was much earlier than that when displacement of the slope started to increase significantly. Therefore, from the hazard mitigation view, there will be a longer time for response if EC of the seepage water was monitored.

  18. Determining Changes in Groundwater Quality during Managed Aquifer Recharge

    Science.gov (United States)

    Gambhir, T.; Houlihan, M.; Fakhreddine, S.; Dadakis, J.; Fendorf, S. E.

    2016-12-01

    Managed aquifer recharge (MAR) is becoming an increasingly prevalent technology for improving the sustainability of freshwater supply. However, recharge water can alter the geochemical conditions of the aquifer, mobilizing contaminants native to the aquifer sediments. Geochemical alterations on deep (>300 m) injection of highly treated recycled wastewater for MAR has received limited attention. We aim to determine how residual disinfectants used in water treatment processes, specifically the strong oxidants chloramine and hydrogen peroxide, affect metal mobilization within deep injection wells of the Orange County Water District. Furthermore, as the treated recharge water has very low ionic strength (44.6 mg L-1 total dissolved solids), we tested how differing concentrations of magnesium chloride and calcium chloride affected metal mobilization within deep aquifers. Continuous flow experiments were conducted on columns dry packed with sediments from a deep injection MAR site in Orange County, CA. The effluent was analyzed for shifts in water quality, including aqueous concentrations of arsenic, uranium, and chromium. Interaction between the sediment and oxic recharge solution causes naturally-occurring arsenopyrite to repartition onto iron oxides. The stability of arsenic on the newly precipitated iron oxides is dependent on pH changes during recharge.

  19. Effects of geological structures on groundwater flow and quality in hardrock regions of northern Tirunelveli district, southern India

    Indian Academy of Sciences (India)

    M Senthilkumar; R Arumugam; D Gnanasundar; D S C Thambi; E Sampath Kumar

    2015-03-01

    Geological and structural influences on groundwater flow and quality were evaluated in the present study in the hardrock regions of Tirunelveli District, southern India. Groundwater is a major source of freshwater in this region to cater to the requirements of domestic and agricultural activity, as there are no surface water resources. Geologically, the area is characterized by charnockites and garnetiferous biotite gneiss. Groundwater in this region is found to occur in the weathered portion under unconfined condition and in fractured/fissured portions under unconfined to semi-confined condition. Existence of deep-seated fractures are minimal. Lineaments/dykes play a major role in the occurrence and movement of groundwater in the region. Lineaments/dykes of the study area can be broadly divided into two types: north–south and west–east oriented structures. Analysis and field observations revealed that the north–south dykes act as a barrier of groundwater while the west–east oriented structures behave as a carrier of groundwater. Both quality and quantity of groundwater is different on the upstream and downstream sides of the dyke. Hence, it is conclusive that the west–east oriented dykes in this region are highly potential and act as a conduit for groundwater movement from recharge areas to the discharge area.

  20. Shallow ground-water quality beneath rice areas in the Sacramento Valley, California, 1997

    Science.gov (United States)

    Dawson, Barbara J.

    2001-01-01

    In 1997, the U.S. Geological Survey installed and sampled 28 wells in rice areas in the Sacramento Valley as part of the National Water-Quality Assessment Program. The purpose of the study was to assess the shallow ground-water quality and to determine whether any effects on water quality could be related to human activities and particularly rice agriculture. The wells installed and sampled were between 8.8 and 15.2 meters deep, and water levels were between 0.4 and 8.0 meters below land surface. Ground-water samples were analyzed for 6 field measurements, 29 inorganic constituents, 6 nutrient constituents, dissolved organic carbon, 86 pesticides, tritium (hydrogen- 3), deuterium (hydrogen-2), and oxygen-18. At least one health-related state or federal drinking-water standard (maximum contaminant or long-term health advisory level) was exceeded in 25 percent of the wells for barium, boron, cadmium, molybdenum, or sulfate. At least one state or federal secondary maximum contaminant level was exceeded in 79 percent of the wells for chloride, iron, manganese, specific conductance, or dissolved solids. Nitrate and nitrite were detected at concentrations below state and federal 2000 drinking-water standards; three wells had nitrate concentrations greater than 3 milligrams per liter, a level that may indicate impact from human activities. Ground-water redox conditions were anoxic in 26 out of 28 wells sampled (93 percent). Eleven pesticides and one pesticide degradation product were detected in ground-water samples. Four of the detected pesticides are or have been used on rice crops in the Sacramento Valley (bentazon, carbofuran, molinate, and thiobencarb). Pesticides were detected in 89 percent of the wells sampled, and rice pesticides were detected in 82 percent of the wells sampled. The most frequently detected pesticide was the rice herbicide bentazon, detected in 20 out of 28 wells (71 percent); the other pesticides detected have been used for rice, agricultural

  1. Hydrochemical characteristics and quality assessment of deep groundwater from the coal-bearing aquifer of the Linhuan coal-mining district, Northern Anhui Province, China.

    Science.gov (United States)

    Lin, Man-Li; Peng, Wei-Hua; Gui, He-Rong

    2016-04-01

    There is little information available about the hydrochemical characteristics of deep groundwater in the Linhuan coal-mining district, Northern Anhui Province, China. In this study, we report information about the physicochemical parameters, major ions, and heavy metals of 17 groundwater samples that were collected from the coal-bearing aquifer. The results show that the concentrations of total dissolved solids, electrical conductivity, and potassium and sodium (K(+) + Na(+)) in most of the groundwater samples exceeded the guidelines of the World Health Organization (WHO) and the Chinese National Standards for Drinking Water Quality (GB 5749-2006). The groundwater from the coal-bearing aquifer was dominated by the HCO3·Cl-K + Na and HCO3·SO4-K + Na types. Analysis with a Gibbs plot suggested that the major ion chemistry of the groundwater was primarily controlled by weathering of rocks and that the coal-bearing aquifer in the Linhuan coal-mining district was a relatively closed system. K(+) and Na(+) originated from halite and silicate weathering reactions, while Ca(2+) and Mg(2+) originated from the dissolution of calcite, dolomite, and gypsum or anhydrite. Ion exchange reactions also had an influence on the formation of major ions in groundwater. The concentrations of selected heavy metals decreased in the order Mn > Zn > Cr > Cu > Ni > Pb. In general, the heavy metal concentrations were low; however, the Cr, Mn, and Ni concentrations in some of the groundwater samples exceeded the standards outlined by the WHO, the GB 5749-2006, and the Chinese National Standards for Groundwater (GB/T 14848-93). Analysis by various indices (% Na, SAR, and EC), a USSL diagram, and a Wilcox diagram showed that both the salinity and alkalinity of the groundwater were high, such that the groundwater could not be used for irrigating agricultural land without treatment. These results will be significant for water resource exploiting and utilization in

  2. Temporal and spatial variation of groundwater in quantity and quality in sand dune at coastal region, Kamisu city, central Japan.

    Science.gov (United States)

    Umei, Yohei; Tsujimura, Maki; Sakakibara, Koichi; Watanabe, Yasuto; Minema, Motomitsu

    2016-04-01

    The role of groundwater in integrated water management has become important in recent 10 years, though the surface water is the major source of drinking water in Japan. Especially, it is remarked that groundwater recharge changed due to land cover change under the anthropogenic and climatic condition factors. Therefore, we need to investigate temporal and spatial variation of groundwater in quantity and quality focusing on the change during recent 10-20 years in specific region. We performed research on groundwater level and quality in sand dune at coastal region facing Pacific Ocean, Kamisu city, Ibaraki Prefecture, which have been facing environmental issues, such as land cover change due to soil mining for construction and urbanization. We compared the present situation of groundwater with that in 2000 using existed data to clarify the change of groundwater from 2000 to 2015. The quality of water is dominantly characterized by Ca2+-HCO3- in both 2000 and 2015, and nitrate was not observed in 2015, though it was detected in some locations in 2000. This may be caused by improvement of the domestic wastewater treatment. The topography of groundwater table was in parallel with that of ground surface in 2015, same as that in 2000. However, a depletion of groundwater table was observed in higher elevation area in 2015 as compared with that in 2000, and this area corresponds to the locations where the land cover has changed due to soil mining and urbanization between 2015 and 2000. In the region of soil mining, the original soil is generally replaced by impermeable soil after mining, and this may cause a decrease of percolation and net groundwater recharge, thus the depletion of groundwater table occurred after the soil mining.

  3. Groundwater and geothermal resources of Eritrea with the emphasis on their chemical quality

    Science.gov (United States)

    Zerai, Habteab

    1996-05-01

    Available chemical analyses have been evaluated and a water quality map prepared using electrical conductivity values. The country has been divided into three water quality regions. The quality of each region is variously a combination of climate, geology, waste disposal and irrigation practices and salt water intrusion. Region 1 has the best water quality, though in the Asmara area the groundwater is polluted by nitrate (50-150 mg l -1 NO 3). The impact on the natural environment due to the salinity hazard created by high evapotranspiration and irrigation practices becomes more pronounced across Region 2 and reaches a peak in the Red Sea catchments (Region 3), where it is supplemented by saline intrusion and mineralized upflows. In this region, soil fertility has been greatly affected and the development of groundwater has been constrained. Fluoride concentrations of 7-17 mg l -1 are common in Regions 2 and 3 and some dental fluorosis has been noted. Upflows of thermal water (34-100°C) exist in the Red Sea coastal zone and provide a potential energy resource. Both these and the factors affecting water resource quality in general require careful investigation and conservation measures.

  4. [Influence of occupational respiratory diseases on life quality parameters].

    Science.gov (United States)

    Roslaia, N A; Khasanova, G N

    2010-01-01

    The article covers results of life quality studies in patients with occupational respiratory diseases and in workers at risk of diseases due to dust. Findings are that occuupational respiratory diseases negatively influence physical and psycho-social status of the patients. The influence degree is connected to smoking intensity, the disease duration and bronchial obstruction grade. Life quality study is an important indicator of the symptoms control, additional parameter to clinical and functional state monitoring.

  5. Groundwater quality assessment plan for single-shell waste management area B-BX-BY at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    SM Narbutovskih

    2000-03-31

    Pacific Northwest National Laboratory conducted a first determination groundwater quality assessment at the Hanford Site. This work was performed for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement during the time period 1996--1998. The purpose of the assessment was to determine if waste from the Single-Shell Tank (SST) Waste Management Area (WMA) B-BX-BY had entered the groundwater at levels above the drinking water standards (DWS). The resulting assessment report documented evidence demonstrating that waste from the WMA has, most likely, impacted groundwater quality. Based on 40 CFR 265.93 [d] paragraph (7), the owner-operator must continue to make the minimum required determinations of contaminant level and of rate/extent of migrations on a quarterly basis until final facility closure. These continued determinations are required because the groundwater quality assessment was implemented prior to final closure of the facility.

  6. Hydrogeological characterization and assessment of groundwater quality in shallow aquifers in vicinity of Najafgarh drain of NCT Delhi

    Indian Academy of Sciences (India)

    Shashank Shekhar; Aditya Sarkar

    2013-02-01

    Najafgarh drain is the biggest drain in Delhi and contributes about 60% of the total wastewater that gets discharged from Delhi into river Yamuna. The drain traverses a length of 51 km before joining river Yamuna, and is unlined for about 31 km along its initial stretch. In recent times, efforts have been made for limited withdrawal of groundwater from shallow aquifers in close vicinity of Najafgarh drain coupled with artificial recharge of groundwater. In this perspective, assessment of groundwater quality in shallow aquifers in vicinity of the Najafgarh drain of Delhi and hydrogeological characterization of adjacent areas were done. The groundwater quality was examined in perspective of Indian as well as World Health Organization’s drinking water standards. The spatial variation in groundwater quality was studied. The linkages between trace element occurrence and hydrochemical facies variation were also established. The shallow groundwater along Najafgarh drain is contaminated in stretches and the area is not suitable for large-scale groundwater development for drinking water purposes.

  7. Baseline groundwater quality from 34 wells in Wayne County, Pennsylvania, 2011 and 2013

    Science.gov (United States)

    Sloto, Ronald A.

    2014-01-01

    Wayne County, Pennsylvania, is underlain by the Marcellus Shale, which currently (2014) is being developed elsewhere in Pennsylvania for natural gas. All residents of largely rural Wayne County rely on groundwater for water supply, primarily from bedrock aquifers (shales and sandstones). This study, conducted by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey (Pennsylvania Geological Survey), provides a groundwater-quality baseline for Wayne County prior to development of the natural gas resource in the Marcellus Shale. Selected wells completed in the Devonian-age Catskill Formation, undifferentiated; the Poplar Gap and Packerton Members of the Catskill Formation, undivided; and the Long Run and Walcksville Members of the Catskill Formation, undivided, were sampled.

  8. Groundwater Quality Assessment for Domestic and Irrigation Purposes in Yola, Adamawa State Northeastern Nigeria

    Directory of Open Access Journals (Sweden)

    Hong, Aliyu Haliru

    2013-01-01

    Full Text Available To assess groundwater quality for domestic and irrigation purposes in Yola Adamawa State during the peak of dry season, groundwater samples were collected for analysis from fifteen boreholes and five hands dug wells that cover twenty wards of the City. The area investigated falls within longitude 12o26' E and Latitude 9o16' N. The groundwater samples collected were analyzed using Atomic Absorption Spectrophotometer (AAS, multi – analyte photometer and flame photometer while interpretation of the results was done by Comparison with the World Health Organization (WHO and the Nigerian Standard for Drinking Water Quality (NSDWQ guidelines for portable water. The pH values ranged from acidic to slightly alkaline 5.5 – 7.4, turbidity recorded 0 – 40NTU with four samples above the limit of 5NTU.TDS and EC recorded values ranged between 17 – 1200mg/l, 129 - 1600µs/cm with two samples each above stipulated limit. The concentrations of the cat ions (Ca, Mg, Na, and K are all found below the guideline of WHO and NSDWQ. Sulphate and bicarbonate recorded value range of 2 – 94.1mg/l and 11 – 630mg/l, which are also below the value of 100mg/l and 1000mg/l set by NSDWQ and WHO standards; however the recorded value of nitrate exceeded the specified limit of 50mg/l in seven water samples. Five water samples are classified as hard water based on the limit of 150mg/l and 500mg/l total hardness classification by the limit under consideration. The concentrations of heavy metals cadmium, lead, chromium, copper, manganese and iron were all found to exceed the WHO and NSDWQ standards. Iron concentration exceeded 0.3mg/l in seventeen water sample, manganese concentration exceeded 0.2mg/l and 0.05mg/l in twelve water samples, lead exceeded the limit of 0.01mg/l in seven water samples, also, chromium and cadmium exceeded limits of 0.05mg/l and 0.003mg/l in four and six water samples, copper exceeded set limit in only one sample while Nickel concentration

  9. Groundwater Impacts on Urban Surface Water Quality in the Lowland Polder Catchments of the Amsterdam City Area

    Science.gov (United States)

    Rozemeijer, J.; Yu, L.; Van Breukelen, B. M.; Broers, H. P.

    2015-12-01

    Surface water quality in the Amsterdam area is suffering from high nutrient levels. The sources and transport mechanisms of these nutrients are unclear due to the complex hydrology of the highly manipulated urban and sub-urban polder catchments. This study aimed at identifying the impact of groundwater on surface water quality in the polder catchments of the greater Amsterdam city area. Therefore, we exploited the dense groundwater and surface water monitoring networks to explain spatial patterns in surface water chemistry and their relations with landscape characteristics and groundwater impact. We selected and statistically analyzed 23 variables for 144 polders, covering a total area of 700 km2. Our dataset includes concentrations of total-N, total-P, ammonium, nitrate, bicarbonate, sulfate, calcium, and chloride in surface water and groundwater, seepage rate, elevation, paved area percentage, surface water area percentage, and soil type (calcite, humus and clay percentages). Our results show that nutrient levels in groundwater were generally much higher than in surface water and often exceeded the surface water Environmental Quality Standards (EQSs). This indicates that groundwater is a large potential source of nutrients in surface water. High correlations (R2 up to 0.88) between solutes in both water compartments and close similarities in their spatial patterns confirmed the large impact of groundwater on surface water quality. Groundwater appeared to be a major source of chloride, bicarbonate and calcium in surface water and for N and P, leading to exceeding of EQSs in surface waters. In dry periods, the artificial redistribution of excess seepage water from deep polders to supply water to infiltrating polders further distributes the N and P loads delivered by groundwater over the area.

  10. Status and understanding of groundwater quality in the San Francisco Bay groundwater basins, 2007—California GAMA Priority Basin Project

    Science.gov (United States)

    Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2013-01-01

    Groundwater quality in the approximately 620-square-mile (1,600-square-kilometer) San Francisco Bay study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in the Southern Coast Ranges of California, in San Francisco, San Mateo, Santa Clara, Alameda, and Contra Costa Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA San Francisco Bay study was designed to provide a spatially unbiased assessment of the quality of untreated groundwater within the primary aquifer system, as well as a statistically consistent basis for comparing water quality throughout the State. The assessment is based on water-quality and ancillary data collected by the USGS from 79 wells in 2007 and is supplemented with water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system is defined by the depth interval of the wells listed in the CDPH database for the San Francisco Bay study unit. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifer system; shallower groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. Water- quality data from the CDPH database also were incorporated for this assessment. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifer system of the San Francisco Bay study unit, not the treated drinking water delivered to consumers by water

  11. Calendar year 1993 groundwater quality report for the Bear Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1993 groundwater and surface water quality data and calculated rate of contaminant migration, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report contains groundwater and surface-water quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located southwest of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime (Bear Creek Regime), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater and surface water report for the Bear Creek Regime is completed in two-parts; Part 1 (this report) containing the groundwater and surface-water quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater and surface-water quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.

  12. Trend in groundwater quality near FMD burials in agricultural region, South Korea

    Science.gov (United States)

    Lim, Jeong-Won; Lee, Kang-Kun

    2015-04-01

    After the nation-wide outbreak of Foot and Mouth Disease (FMD) in winter of 2010-2011, thousands of mass burial site had been built all over the country in Korea. Though the burial pits were partially lined with impermeable material, potential threat of leachate leakage was still in concern. In worry of leachate release from those livestock burials during decomposition of carcasses, groundwater samples from wells near the burials were collected and analyzed in between 2011 and 2013. Among the sample locations, 250 wells with monitoring priorities were chosen and had been watched continuously through the years. For trend analysis of groundwater quality, relations between land use types, distances to burial and nitrate concentrations are studied. Types of land use within 300 m radius of each well were investigated. Nitrate concentrations show proportional relations to the area of agricultural activity and inversely proportional to the area of forest. The proportionality decreased with both agricultural and forest area since 2011. When seasonal variation is concerned, slightly stronger proportionality is shown in dry season for both agricultural and forested area. For a qualitative analysis of the trend, non-parametric Kendall test is applied. Especially, regional Kendall test is implemented to find out spatial feature of nitrate concentration. Nitrate concentrations show slow but statistically significant deceasing trend for every well. When the wells are group according to their distances from the nearest burial pit, decreasing trend of nitrate concentration is shown in all groups. However, there was no consistency in significant factor among the groups. Considering the above mentioned results, the groundwater wells near the burials seem to be influence more from agricultural activities near the wells than from the burial leachate. The slow but significant decreasing trend in nitrate concentration is supposed as the result of an increasing governmental interest in

  13. QUALITY CONTROL PARAMETERS OF BRIHAT DASHAMULA TAILA: A PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Sharma Vinay

    2011-05-01

    Full Text Available Standard analytical parameters of a number of Ayurvedic oils have been described in API. Brihat Dashamula Taila is one of the most commonly used oil by Ayurvedic Physicians. But there no standard analytical parameters are available in any authentic texts. Therefore this study aimed to set the quality control parameters with SOP of Brihat Dashamula Taila and found values like Refractive index (1.47 at 400C, specific gravity (0.923 at 250C Acid value (1.2, Iodine value (92.6 and Saponification value (86.34 may be considered as standard.

  14. Ground-water quality assessment of the central Oklahoma aquifer, Oklahoma; analysis of available water-quality data through 1987

    Science.gov (United States)

    Parkhurst, D.L.; Christenson, S.C.; Schlottmann, J.L.

    1989-01-01

    Beginning in 1986, the Congress annually has appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water-Quality Assessment (NAWQA) Program. The long-term goals of a full-scale program would be to: (1) Provide a nationally consistent description of current water-quality conditions for a large part of the Nation's surface- and ground-water resources; (2) Define long-term trends (or lack of trends) in water quality; and (3) Identify, describe, and explain, as possible, the major factors that affect the observed water-quality conditions and trends. The results of the NAWQA Program will be made available to water managers, policy makers, and the public, and will provide an improved scientific basis for evaluating the effectiveness of water-quality management programs. At present (1988), the assessment program is in a pilot phase in seven project areas throughout the country that represent diverse hydrologic environments and water-quality conditions. The Central Oklahoma aquifer project is one of three pilot ground-water projects. One of the initial activities performed by each pilot project was to compile, screen, and interpret the large amount of water-quality data available within each study area. The purpose of this report is to assess the water quality of the Central Oklahoma aquifer using the information available through 1987. The scope of the work includes compiling data from Federal, State, and local agencies; evaluating the suitability of the information for conducting a regional water-quality assessment; mapping regional variations in major-ion chemistry; calculating summary statistics of the available water-quality data; producing maps to show the location and number of samples that exceeded water-quality standards; and performing contingency-table analyses to determine the relation of geologic unit and depth to the occurrence of chemical constituents that exceed water-quality standards. This report provides an initial

  15. Groundwater-quality data in the Santa Barbara study unit, 2011: results from the California GAMA Program

    Science.gov (United States)

    Davis, Tracy A.; Kulongoski, Justin T.; Belitz, Kenneth

    2013-01-01

    Groundwater quality in the 48-square-mile Santa Barbara study unit was investigated by the U.S. Geological Survey (USGS) from January to February 2011, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The Santa Barbara study unit was the thirty-fourth study unit to be sampled as part of the GAMA-PBP. The GAMA Santa Barbara study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer system, and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The primary aquifer system is defined as those parts of the aquifers corresponding to the perforation intervals of wells listed in the California Department of Public Health (CDPH) database for the Santa Barbara study unit. Groundwater quality in the primary aquifer system may differ from the quality in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. In the Santa Barbara study unit located in Santa Barbara and Ventura Counties, groundwater samples were collected from 24 wells. Eighteen of the wells were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and six wells were selected to aid in evaluation of water-quality issues (understanding wells). The groundwater samples were analyzed for organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, and pharmaceutical compounds); constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]); naturally occurring inorganic constituents (trace

  16. Alpine Groundwater - Pristine Aquifers Under Threat?

    Science.gov (United States)

    Schneider, P.; Lange, A.

    2014-12-01

    Glacier and permafrost retreat are prominent climate change indicators. However, the characteristics of climate and hydrology in mountain areas remain poorly understood relative to lowland areas. Specifically, not much is known about alpine groundwater, its recharge and water quality variations, as these remote reservoirs are rarely monitored. As global temperatures rise, glaciers and permafrost will continue to retreat forming new sediment deposits and changing infiltration conditions in high alpine terrain. Climate change impacts the hydro-chemical composition of alpine waters, accelerates weathering processes, and potentially triggers mobilization of pollutants. Accordingly, we monitored groundwater quantity and quality parameters of an alpine porous aquifer near the Tiefenbach glacier in the Gotthard Massif in Switzerland. The goal of this research was to assess quality and seasonal storage dynamics of groundwater above the timberline (2000 m). To translate hydrological science into an ecosystem service context, we focused on four attributes: Water quantity: observations of groundwater level fluctuations combined with analysis of contributing water sources based on stable isotope analysis to give a quantitative understanding of origin and amount of water, Water quality: groundwater level, groundwater temperature and electrical conductivity were used as proxies for sampling of hydro-chemical parameters with automated water samplers during primary groundwater recharge periods (snowmelt and rainfall events), Location: Alpine terrain above the timberline, especially recharge into/out of an alpine porous aquifer at a pro-glacial floodplain and Date of annual melt (albedo effect) and timing of flow (snow- and icemelt from May to September) and groundwater recharge during the growing season. The study found that the summer groundwater temperatures depend on the date of annual melt and are more sensitive to climate forcing than lowland groundwater temperatures

  17. Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Drici, Warda

    2003-08-01

    This report documents the analysis of the available transport parameter data conducted in support of the development of a Corrective Action Unit (CAU) groundwater flow model for Central and Western Pahute Mesa: CAUs 101 and 102.

  18. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park

    Science.gov (United States)

    Muñoz-Carpena, R.; Ritter, A.; Li, Y. C.

    2005-11-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one of the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the water quality interactions between the shallow aquifer and surface water is a key component in meeting current environmental regulations and fine-tuning ENP wetland restoration while still maintaining flood protection for the adjacent developed areas. Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary time-series, was applied to study fluctuations in groundwater quality in the area. More than two years of hydrological and water quality time series (rainfall; water table depth; and soil, ground and surface water concentrations of N-NO 3-, N-NH 4+, P-PO 43-, Total P, F -and Cl -) from a small agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability required for determining the concentration of each chemical in the 16 wells was greatly reduced by including in the analysis some of the observed time series as explanatory variables (rainfall, water table depth, and soil and canal water chemical concentration). DFA results showed that groundwater concentration of three of the agrochemical species studied (N-NO 3-, P-PO 43-and Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In the case of N-NH 4+, in addition to leaching, groundwater concentration is governed by lateral exchange with canals. F -and Cl - are mainly affected by periods of dilution by rainfall recharge, and by exchange with the canals. The unstructured nature of the common trends found suggests that these are related to the complex spatially and temporally varying

  19. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park.

    Science.gov (United States)

    Muñoz-Carpena, R; Ritter, A; Li, Y C

    2005-11-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one of the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the water quality interactions between the shallow aquifer and surface water is a key component in meeting current environmental regulations and fine-tuning ENP wetland restoration while still maintaining flood protection for the adjacent developed areas. Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary time-series, was applied to study fluctuations in groundwater quality in the area. More than two years of hydrological and water quality time series (rainfall; water table depth; and soil, ground and surface water concentrations of N-NO3-, N-NH4+, P-PO4(3-), Total P, F-and Cl-) from a small agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability required for determining the concentration of each chemical in the 16 wells was greatly reduced by including in the analysis some of the observed time series as explanatory variables (rainfall, water table depth, and soil and canal water chemical concentration). DFA results showed that groundwater concentration of three of the agrochemical species studied (N-NO3-, P-PO4(3-)and Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In the case of N-NH4+, in addition to leaching, groundwater concentration is governed by lateral exchange with canals. F-and Cl- are mainly affected by periods of dilution by rainfall recharge, and by exchange with the canals. The unstructured nature of the common trends found suggests that these are related to the complex spatially and temporally varying land

  20. California GAMA Program: Ground-Water Quality Data in the Northern San Joaquin Basin Study Unit, 2005

    Science.gov (United States)

    Bennett, George L.; Belitz, Kenneth; Milby Dawson, Barbara J.

    2006-01-01

    Growing concern over the closure of public-supply wells because of ground-water contamination has led the State Water Board to establish the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. With the aid of the U.S. Geological Survey (USGS) and Lawrence Livermore National Laboratory, the program goals are to enhance understanding and provide a current assessment of ground-water quality in areas where ground water is an important source of drinking water. The Northern San Joaquin Basin GAMA study unit covers an area of approximately 2,079 square miles (mi2) across four hydrologic study areas in the San Joaquin Valley. The four study areas are the California Department of Water Resources (CADWR) defined Tracy subbasin, the CADWR-defined Eastern San Joaquin subbasin, the CADWR-defined Cosumnes subbasin, and the sedimentologically distinct USGS-defined Uplands study area, which includes portions of both the Cosumnes and Eastern San Joaquin subbasins. Seventy ground-water samples were collected from 64 public-supply, irrigation, domestic, and monitoring wells within the Northern San Joaquin Basin GAMA study unit. Thirty-two of these samples were collected in the Eastern San Joaquin Basin study area, 17 in the Tracy Basin study area, 10 in the Cosumnes Basin study area, and 11 in the Uplands Basin study area. Of the 32 samples collected in the Eastern San Joaquin Basin, 6 were collected using a depth-dependent sampling pump. This pump allows for the collection of samples from discrete depths within the pumping well. Two wells were chosen for depth-dependent sampling and three samples were collected at varying depths within each well. Over 350 water-quality field parameters, chemical constituents, and microbial constituents were analyzed and are reported as concentrations and as detection frequencies, by compound classification as well as for individual constituents, for the Northern San Joaquin Basin study unit as a whole and for each individual study area

  1. Scale Control and Quality Management of Printed Image Parameters

    Science.gov (United States)

    Novoselskaya, O. A.; Kolesnikov, V. L.; Solov'eva, T. V.; Nagornova, I. V.; Babluyk, E. B.; Trapeznikova, O. V.

    2017-06-01

    The article provides a comparison of the main valuation techniques for a regulated parameter of printability of the offset paper by current standards GOST 24356 and ISO 3783: 2006. The results of development and implementation of a complex test scale for management and control the quality of printed production are represented. The estimation scale is introduced. It includes normalized parameters of print optical density, print uniformity, picking out speed, the value of dot gain, print contrast with the added criteria of minimizing microtexts, a paper slip, resolution threshold and effusing ability of paper surface. The results of analysis allow directionally form surface properties of the substrate to facilitate achieving the required quality of the printed image parameters, i. e. optical density of a print at a predetermined level not less than 1.3, the print uniformity with minimal deviation of dot gain about the order of 10 per cents.

  2. Groundwater-Quality Data in the South Coast Range-Coastal Study Unit, 2008: Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Burton, Carmen A.; Land, Michael; Belitz, Kenneth

    2010-01-01

    Groundwater quality in the approximately 766-square-mile South Coast Range-Coastal (SCRC) study unit was investigated from May to December 2008, as part of the Priority Basins Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basins Project was developed in response to legislative mandates (Supplemental Report of the 1999 Budget Act 1999-00 Fiscal Year; and, the Groundwater Quality Monitoring Act of 2001 [Sections 10780-10782.3 of the California Water Code, Assembly Bill 599]) to assess and monitor the quality of groundwater in California, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The SCRC study unit was the 25th study unit to be sampled as part of the GAMA Priority Basins Project. The SCRC study unit was designed to provide a spatially unbiased assessment of untreated groundwater quality in the primary aquifer systems and to facilitate statistically consistent comparisons of untreated groundwater quality throughout California. The primary aquifer systems (hereinafter referred to as primary aquifers) were defined as that part of the aquifer corresponding to the perforation interval of wells listed in the California Department of Public Health (CDPH) database for the SCRC study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from the quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to surficial contamination. In the SCRC study unit, groundwater samples were collected from 70 wells in two study areas (Basins and Uplands) in Santa Barbara and San Luis Obispo Counties. Fifty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and 15 wells were selected to aid in evaluation of specific water-quality issues (understanding wells). In addition to

  3. Combining natural background levels (NBLs) assessment with indicator kriging analysis to improve groundwater quality data interpretation and management.

    Science.gov (United States)

    Ducci, Daniela; de Melo, M Teresa Condesso; Preziosi, Elisabetta; Sellerino, Mariangela; Parrone, Daniele; Ribeiro, Luis

    2016-11-01

    The natural background level (NBL) concept is revisited and combined with indicator kriging method to analyze the spatial distribution of groundwater quality within a groundwater body (GWB). The aim is to provide a methodology to easily identify areas with the same probability of exceeding a given threshold (which may be a groundwater quality criteria, standards, or recommended limits for selected properties and constituents). Three case studies with different hydrogeological settings and located in two countries (Portugal and Italy) are used to derive NBL using the preselection method and validate the proposed methodology illustrating its main advantages over conventional statistical water quality analysis. Indicator kriging analysis was used to create probability maps of the three potential groundwater contaminants. The results clearly indicate the areas within a groundwater body that are potentially contaminated because the concentrations exceed the drinking water standards or even the local NBL, and cannot be justified by geogenic origin. The combined methodology developed facilitates the management of groundwater quality because it allows for the spatial interpretation of NBL values.

  4. Status of groundwater quality in the San Fernando--San Gabriel study unit, 2005--California GAMA Priority Basin Project

    Science.gov (United States)

    Land, Michael; Kulongoski, Justin T.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the approximately 460-square-mile San Fernando--San Gabriel (FG) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study area is in Los Angeles County and includes Tertiary-Quaternary sedimentary basins situated within the Transverse Ranges of southern California. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA FG study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer systems (hereinafter referred to as primary aquifers) throughout California. The assessment is based on water-quality and ancillary data collected in 2005 by the USGS from 35 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifers were defined by the depth interval of the wells listed in the CDPH database for the FG study unit. The quality of groundwater in primary aquifers may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifers of the FG study unit, not the treated drinking water delivered to consumers by water purveyors.

  5. PHYSICO-CHEMICAL ASSESSMENT OF AGRICULTURAL POLLUTION ON GROUNDWATER AND SOIL QUALITY IN AN AGRICULTURAL FARM (NORTH EASTERN MOROCCO

    Directory of Open Access Journals (Sweden)

    S. Fetouani

    2013-11-01

    Full Text Available To ensure sustainable food security, Morocco gives priority to agricultural and rural development by promoting investment in agricultural sector and use of intensification factors to improve incomes in rural areas. The Triffa irrigated perimeter is one of the oldest and the most productive in the country thanks to the Mohammed the V dam activity and the beginning of agricultural development intensification. Although this intensification has a positive effect on agricultural yields, it has negative impacts on soil and generatesgroundwater quality degradation. Indeed, recent studies performed in this area by us and Bendra (Fetouani et al., 2008; Bendra et al, 2012 have mentioned the existence of salinity problems, nitric groundwater pollution and soils salinization. This degradation is caused essentially by intensive use of agrochemicals, including nitrogen fertilizers and pesticides, and non-control of irrigation and cultivated plots drainage. However, a degradation of groundwater and soil quality is not without risk to Human health. Having a global vision about situation of groundwater and soil quality in the Triffa plain we have decided to deepen this theme to a local scale and to study in details the impact of intensive agriculture on groundwater and soil quality in a farm, located in the centre of the Triffa plain.To sum up the results of this study the state of soil quality in the farm is not alarming. However, the groundwater quality is mainly dramatic, because it is a receptacle of all the nutrients applied on the surface, especially nitrates.

  6. Application of nitrate and water isotopes to assessment of groundwater quality beneath dairy farms in California

    Science.gov (United States)

    Young, M. B.; Harter, T.; Kendall, C.; Silva, S. R.

    2009-12-01

    In California’s Central Valley, nitrate contamination of drinking water wells is a significant concern, and there are multiple potential sources of nitrate in this area including septic discharge, synthetic and manure fertilizers, and concentrated animal feeding operations. Dairies represent the majority of animal feeding operations in California, and have been shown to be potential sources of nitrate, salinity, dissolved organic carbon, and pathogens to groundwater. Within individual dairies, different land use areas including barns and freestalls, corrals, liquid waste lagoons, and fields for forage crops (often fertilized with animal waste, synthetic fertilizer, or both), each of which may have different impacts on the groundwater. In this study, groundwater samples were collected from two dairies in the San Joaquin Valley, where the water table is fairly shallow, and from five dairies in the Tulare Lake Basin, where the water table is much deeper. In each dairy, nitrate isotopes, water isotopes, nutrient concentrations, and other chemical and physical parameters were measured in monitoring wells located within different land use areas of the dairies. Across all sampled dairy wells, δ15N-NO3 ranged from +3.2 to +49.4‰, and δ18O-NO3 ranged from -3.1 to +19.2‰. Mean nitrate concentrations, δ15N-NO3, and δ18O-NO3 were significantly higher in the northern (San Joaquin Valley) dairy wells in comparison to the southern (Tulare Lake Basin) dairy wells. No consistent differences in nitrate isotopic compositions were found between the different land use areas, and large spatial variability in both nitrate concentrations and nitrate isotopic composition was observed within most of the individual dairies. These results emphasize the challenges associated with monitoring groundwater beneath dairies due to high spatial heterogeneity in the aquifer and groundwater constituents. At four of the seven dairies, δ18O and δ2H of the ground water in wells located

  7. Status of groundwater quality in the Coastal Los Angeles Basin, 2006-California GAMA Priority Basin Project

    Science.gov (United States)

    Goldrath, Dara; Fram, Miranda S.; Land, Michael; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the approximately 860-square-mile (2,227-square-kilometer) Coastal Los Angeles Basin study unit (CLAB) was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study area is located in southern California in Los Angeles and Orange Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA CLAB study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected in 2006 by the USGS from 69 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined by the depth interval of the wells listed in the CDPH database for the CLAB study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifer system of the CLAB study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or) California regulatory or non-regulatory benchmarks for drinking-water quality. A relative

  8. Hydrogeochemical analysis and evaluation of groundwater quality in the Gadilam river basin, Tamil Nadu, India

    Indian Academy of Sciences (India)

    M V Prasanna; S Chidambaram; A Shahul Hameed; K Srinivasamoorthy

    2011-02-01

    Water samples were collected from different formations of Gadilam river basin and analyzed to assess the major ion chemistry and suitability of water for domestic and drinking purposes. Chemical parameters of groundwater such as pH, electrical conductivity (EC), total dissolved solids (TDS), Sodium (Na+), Potassium (K+), Calcium (Ca+), Magnesium (Mg+), Bicarbonate (HCO$_{3}^{-}$), Sulphate (SO$_{4}^-$), Phosphate (PO$_{4}^{-}$) and Silica (H4SiO4) were determined. The geochemical study of the aquatic systems of the Gadilam river basin show that the groundwater is near-acidic to alkaline and mostly oxidizing in nature. Higher concentration of Sodium and Chloride indicates leaching of secondary salts and anthropogenic impact by industry and salt water intrusion. Spatial distribution of EC indicates anthropogenic impact in the downstream side of the basin. The concentration levels of trace metals such as Iron (Fe), Lead (Pb), Nickel (Ni), Bromide (Br), Iodide (I) and Aluminium (Al) have been compared with the world standard. Interpretation of data shows that some trace metals such as Al, Ni and Pb exceed the acceptable limit of world standard. Geophysical study was carried out to identify the weathered zone in the hard rock and contaminated zone by anthropogenic impact in the downstream of river Gadilam. A few of the groundwater samples in the study area were found to be unsuitable for domestic and drinking purposes.

  9. Reconnaissance of ground-water quality, eastern Snake River basin, Idaho

    Science.gov (United States)

    Parliman, D.J.

    1982-01-01

    Water-quality, geologic, and hydrologic data were collected for 165 wells in the eastern Snake River basin, Idaho. Water-quality characteristics analyzed include specific conductance, pH, water temperature, major dissolved cations and anions, and coliform bacteria. Ground water from aquifers in all rock units is generally composed of calcium, magnesium, and bicarbonate type and contains carbonate ions. Changes in area trends of ground-water composition probably are most directly related to variability in aquifer composition and proximity to varying sources of recharge, especially those related to man 's land- and water-use activities. In the uplands subareas, median values for selected ground-water characteristics from current analyses are 2000 mg/l hardness; 7.6, pH; 200 mg/l alkalinity; 13C; 0.2 mg/l fluoride; 15 mg/l silica; 0.51 mg/l nitrite (as nitrogen); less than 1 colony per 100 milliliters of water coliform bacteria; 0.02 mg/l phosphorus (total); and 25 mg/l hardness; 7.7, pH; 180 mg/l alkalinity; 11C; 0.4 mg/l fluoride; 26 mg/l silica; 1.2 mg/l nitrite plus nitrate; less than 1 colony per 100 milliliters of water coliform bacteria; 0.01 amg/l phosphorus; and 283 mg/l dissolved solids. Ground-water quality in most of the study area meets recommended standards or criteria for most uses. (USGS)

  10. Geochemistry and quality parameters of dug and tube well water of Khipro, District Sanghar, Sindh, Pakistan

    Science.gov (United States)

    Bashir, Erum; Huda, Syed Nawaz-ul; Naseem, Shahid; Hamza, Salma; Kaleem, Maria

    2017-07-01

    Thirty-nine (23 dug and 16 tube well) samples were geochemically evaluated and investigated to ascertain the quality of water in Khipro, Sindh. The analytical results exhibited abundance of major cations and anions in Na+ > Ca2+ > Mg2+ > K+ and Cl- > HCO3 - > SO4 2- sequence. Stiff diagram showed dug well sample have high Na-Cl and moderate Mg-SO4 content as compared to tube well samples. Majority of dug well samples appeared as Na-Cl type on Piper diagram while tube well samples are mixed type. Gibbs diagram reflected evaporation as a dominant phenomenon in dug well; however, tube well samples are declined toward rock dominance. Process of ion exchange was witnessed from Na+ versus Cl- and Ca2+ + Mg2+ versus HCO3 - + SO4 2- plots. Principal component analysis also discriminates dug well and tube well water by means of positive and negative loading based on physical and chemical composition of the groundwater. Studied and computed parameters like pH, EC, TDS, TH, Na+, K+, Ca2+, Mg2+, Cl-, SO4 2-, HCO3 -, sodium adsorption ratio, magnesium adsorption ratio, potential salinity, residual sodium carbonate, Na%, Kelly's ratio, and permeability index were compared with WHO to evaluate studied water for drinking and agricultural purposes. Except Na+ and K+, all chemical constrains are within the allowed limits, set by WHO for drinking water. Similarly, most of the groundwater is moderately suitable for irrigation uses, with few exceptions.

  11. Groundwater quality in the Upper Susquehanna River Basin, New York, 2009

    Science.gov (United States)

    Reddy, James E.; Risen, Amy J.

    2012-01-01

    Water samples were collected from 16 production wells and 14 private residential wells in the Upper Susquehanna River Basin from August through December 2009 and were analyzed to characterize the groundwater quality in the basin. Wells at 16 of the sites were completed in sand and gravel aquifers, and 14 were finished in bedrock aquifers. In 2004–2005, six of these wells were sampled in the first Upper Susquehanna River Basin study. Water samples from the 2009 study were analyzed for 10 physical properties and 137 constituents that included nutrients, organic carbon, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, and 4 types of bacterial analyses. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater genrally is of acceptable quality, although concentrations of some constituents exceeded at least one drinking-water standard at 28 of the 30 wells. These constituents include: pH, sodium, aluminum, manganese, iron, arsenic, radon-222, residue on evaporation, total and fecal coliform including Escherichia coli and heterotrophic plate count.

  12. Stable groundwater quality in deep aquifers of Southern Bangladesh: The case against sustainable abstraction

    Energy Technology Data Exchange (ETDEWEB)

    Ravenscroft, P., E-mail: pravenscroft@unicef.org [UNICEF, BSL Office Complex, Minto Road, Dhaka 1000 (Bangladesh); McArthur, J.M.; Hoque, M.A. [Earth Sciences, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2013-06-01

    In forty six wells > 150 m deep, from across the arsenic-polluted area of south-central Bangladesh, groundwater composition remained unchanged between 1998 and 2011. No evidence of deteriorating water quality was found in terms of arsenic, iron, manganese, boron, barium or salinity over this period of 13 years. These deep tubewells have achieved operating lives of more than 20 years with minimal institutional support. These findings confirm that tubewells tapping the deep aquifers in the Bengal Basin provide a safe, popular, and economic, means of arsenic mitigation and are likely to do so for decades to come. Nevertheless, concerns remain about the sustainability of a resource that could serve as a source of As-safe water to mitigate As-pollution in shallower aquifers in an area where tens of millions of people are exposed to dangerous levels of arsenic in well water. The conjunction of the stable composition in deep groundwater and the severe adverse health effects of arsenic in shallow groundwater lead us to challenge the notion that strong sustainability principles should be applied to the management of deep aquifer abstraction in Bangladesh is, the notion that the deep groundwater resource should be preserved for future generations by protecting it from adverse impacts, probably of a minor nature, that could occur after a long time and might not happen at all. Instead, we advocate an ethical approach to development of the deep aquifer, based on adaptive abstraction management, which allows possibly unsustainable exploitation now in order to alleviate crippling disease and death from arsenic today while also benefiting future generations by improving the health, education and economy of living children. - Highlights: • Tens of millions of people in Bangladesh are affected by arsenic pollution of groundwater. • Deep wells in potentially non-renewable aquifers are the dominant form of mitigation. • Water quality in these aquifers has remained stable for 13

  13. Application of integral pumping tests to investigate the influence of a losing stream on groundwater quality

    Directory of Open Access Journals (Sweden)

    S. Leschik

    2009-06-01

    Full Text Available Losing streams that are influenced by wastewater treatment plant effluents and combined sewer overflows (CSO's can be a source of groundwater contamination. Released micropollutants such as pharmaceuticals, endocrine disrupters and other ecotoxicologically relevant substances as well as inorganic wastewater constituents can reach the groundwater, where they may deteriorate groundwater quality. This paper presents a method to quantify exfiltration mass flow rates Mex of wastewater constituents from losing streams by the operation of integral pumping tests (IPT's up- and downstream of a target section. Due to the large sampled water volume during IPT's the results are more reliable than those from conventional point sampling. We applied the method at a test site in Leipzig (Germany. Wastewater constituents K+ and NO3 showed Mex values of 1241 to 4315 and 749 to 924 mg m−1stream d−1, respectively, while Cl (16.8 to 47.3 g m−1stream d−1 and SO42− (20.3 to 32.2 g m−1stream d−1 revealed the highest observed Mex values at the test site. The micropollutants caffeine and technical-nonylphenol were dominated by elimination processes in the groundwater between upstream and downstream wells. Additional concentration measurements in the stream and a connected sewer at the test site were performed to identify relevant processes that influence the concentrations at the IPT wells.

  14. Stable groundwater quality in deep aquifers of Southern Bangladesh: the case against sustainable abstraction.

    Science.gov (United States)

    Ravenscroft, P; McArthur, J M; Hoque, M A

    2013-06-01

    In forty six wells >150 m deep, from across the arsenic-polluted area of south-central Bangladesh, groundwater composition remained unchanged between 1998 and 2011. No evidence of deteriorating water quality was found in terms of arsenic, iron, manganese, boron, barium or salinity over this period of 13 years. These deep tubewells have achieved operating lives of more than 20 years with minimal institutional support. These findings confirm that tubewells tapping the deep aquifers in the Bengal Basin provide a safe, popular, and economic, means of arsenic mitigation and are likely to do so for decades to come. Nevertheless, concerns remain about the sustainability of a resource that could serve as a source of As-safe water to mitigate As-pollution in shallower aquifers in an area where tens of millions of people are exposed to dangerous levels of arsenic in well water. The conjunction of the stable composition in deep groundwater and the severe adverse health effects of arsenic in shallow groundwater lead us to challenge the notion that strong sustainability principles should be applied to the management of deep aquifer abstraction in Bangladesh is, the notion that the deep groundwater resource should be preserved for future generations by protecting it from adverse impacts, probably of a minor nature, that could occur after a long time and might not happen at all. Instead, we advocate an ethical approach to development of the deep aquifer, based on adaptive abstraction management, which allows possibly unsustainable exploitation now in order to alleviate crippling disease and death from arsenic today while also benefiting future generations by improving the health, education and economy of living children.

  15. Groundwater quality in Ghaziabad district, Uttar Pradesh, India: Multivariate and health risk assessment.

    Science.gov (United States)

    Chabukdhara, Mayuri; Gupta, Sanjay Kumar; Kotecha, Yatharth; Nema, Arvind K

    2017-07-01

    This study aimed to assess the quality of groundwater and potential health risk due to ingestion of heavy metals in the peri-urban and urban-industrial clusters of Ghaziabad district, Uttar Pradesh, India. Furthermore, the study aimed to evaluate heavy metals sources and their pollution level using multivariate analysis and fuzzy comprehensive assessment (FCA), respectively. Multivariate analysis using principle component analysis (PCA) showed mixed origin for Pb, Cd, Zn, Fe, and Ni, natural source for Cu and Mn and anthropogenic source for Cr. Among all the metals, Pb, Cd, Fe and Ni were above the safe limits of Bureau of Indian Standards (BIS) and World Health Organization (WHO) except Ni. Health risk in terms of hazard quotient (HQ) showed that the HQ values for children were higher than the safe level (HQ = 1) for Pb (2.4) and Cd (2.1) in pre-monsoon while in post-monsoon the value exceeded only for Pb (HQ = 1.23). The health risks of heavy metals for the adults were well within safe limits. The finding of this study indicates potential health risks to the children due to chronic exposure to contaminated groundwater in the region. Based on FCA, groundwater pollution could be categorized as quite high in the peri-urban region, and absolutely high in the urban region of Ghaziabad district. This study showed that different approaches are required for the integrated assessment of the groundwater pollution, and provides a scientific basis for the strategic future planning and comprehensive management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Microbiological, physicochemical, and heavy metals assessment of groundwater quality in the Triffa plain (eastern Morocco)

    Science.gov (United States)

    Yahya, Hameed Saleh Ali; Jilali, Abdelhakim; Mostareh, Mohammed Mohammed Mohammed; Chafik, Zouheir; Chafi, Abdelhafid

    2017-07-01

    The focus of this study is the physicochemical and bacteriological characteristics of groundwater in the Triffa plain, Morocco. In total, 34 groundwater samples were analyzed for major elements (Tp, pH, EC, K+, Na+, Ca2+, Mg2+, Cl-, SO4 2-, NO3 -, NO2 -, NH4 +, H2PO4 -, CO3, and HCO3 -) and trace metal (Al, Cd, Cu, Fe, and Zn) content. The results show that the pH values range between 6.7 and 8.9, electrical conductivity ranges between 740 and 7340 µS/cm, and nitrate content ranges between 1.7 and 212 mg/l. Hydrochemical facies represented using a Piper diagram indicate an Na-K-Cl type water. All the trace metal concentrations are within the admissible standard range except for Cd. The bacteriological analysis showed that the majority of groundwater samples are contaminated. Generally, the content of total coliforms, fecal coliforms, and fecal streptococci ranged from 0 to 140, 0 to 125, and 0 to 108 CFU/100 ml, respectively. The samples are grouped according to three factors. Factor 1 shows strong positive loadings of EC, Mg, Cl, Na and K with 51.91% of total variance (TV); factor 2 shows strong negative loadings of NO3, SO4 and Ca with 17.98% of TV; and factor 3 shows strong negative loading of HCO3 with 15.56 of TV. We conclude that the quality of this groundwater is suitable for irrigation and domestic use (cleaning house, ect).

  17. Application of integral pumping tests to investigate the influence of a losing stream on groundwater quality

    Directory of Open Access Journals (Sweden)

    S. Leschik

    2009-10-01

    Full Text Available Losing streams that are influenced by wastewater treatment plant effluents and combined sewer overflows (CSOs can be a source of groundwater contamination. Released micropollutants such as pharmaceuticals, endocrine disrupters and other ecotoxicologically relevant substances as well as inorganic wastewater constituents can reach the groundwater, where they may deteriorate groundwater quality. This paper presents a method to quantify exfiltration mass flow rates per stream length unit Mex of wastewater constituents from losing streams by the operation of integral pumping tests (IPTs up- and downstream of a target section. Due to the large sampled water volume during IPTs the results are more reliable than those from conventional point sampling. We applied the