WorldWideScience

Sample records for groundwater quality impacts

  1. Impacts of swine manure pits on groundwater quality

    International Nuclear Information System (INIS)

    Krapac, I.G.; Dey, W.S.; Roy, W.R.; Smyth, C.A.; Storment, E.; Sargent, S.L.; Steele, J.D.

    2002-01-01

    New information is presented on impacts on groundwater by manure storage in deep ground pits. - Manure deep-pits are commonly used to store manure at confined animal feeding operations. However, previous to this study little information had been collected on the impacts of deep-pits on groundwater quality to provide science-based guidance in formulating regulations and waste management strategies that address risks to human health and the environment. Groundwater quality has been monitored since January 1999 at two hog finishing facilities in Illinois that use deep-pit systems for manure storage. Groundwater samples were collected on a monthly basis and analyzed for inorganic and bacteriological constituent concentrations. The two sites are located in areas with geologic environments representing different vulnerabilities for local groundwater contamination. One site is underlain by more than 6 m of clayey silt, and 7-36 m of shale. Concentrations of chloride, ammonium, phosphate, and potassium indicated that local groundwater quality had not been significantly impacted by pit leakage from this facility. Nitrate concentrations were elevated near the pit, often exceeding the 10 mg N/l drinking water standard. Isotopic nitrate signatures suggested that the nitrate was likely derived from soil organic matter and fertilizer applied to adjacent crop fields. At the other site, sandstone is located 4.6-6.1 m below land surface. Chloride concentrations and δ 15 N and δ 18 O values of dissolved nitrate indicated that this facility may have limited and localized impacts on groundwater. Other constituents, including ammonia, potassium, phosphate, and sodium were generally at or less than background concentrations. Trace- and heavy-metal concentrations in groundwater samples collected from both facilities were at concentrations less than drinking water standards. The concentration of inorganic constituents in the groundwater would not likely impact human health. Fecal

  2. Impacts of swine manure pits on groundwater quality

    Science.gov (United States)

    Krapac, I.G.; Dey, W.S.; Roy, W.R.; Smyth, C.A.; Storment, E.; Sargent, S.L.; Steele, J.D.

    2002-01-01

    Manure deep-pits are commonly used to store manure at confined animal feeding operations. However, previous to this study little information had been collected on the impacts of deep-pits on groundwater quality to provide science-based guidance in formulating regulations and waste management strategies that address risks to human health and the environment. Groundwater quality has been monitored since January 1999 at two hog finishing facilities in Illinois that use deep-pit systems for manure storage. Groundwater samples were collected on a monthly basis and analyzed for inorganic and bacteriological constituent concentrations. The two sites are located in areas with geologic environments representing different vulnerabilities for local groundwater contamination. One site is underlain by more than 6 m of clayey silt, and 7-36 m of shale. Concentrations of chloride, ammonium, phosphate, and potassium indicated that local groundwater quality had not been significantly impacted by pit leakage from this facility. Nitrate concentrations were elevated near the pit, often exceeding the 10 mg N/l drinking water standard. Isotopic nitrate signatures suggested that the nitrate was likely derived from soil organic matter and fertilizer applied to adjacent crop fields. At the other site, sandstone is located 4.6-6.1 m below land surface. Chloride concentrations and ??15N and ??18O values of dissolved nitrate indicated that this facility may have limited and localized impacts on groundwater. Other constituents, including ammonia, potassium, phosphate, and sodium were generally at or less than background concentrations. Trace- and heavy-metal concentrations in groundwater samples collected from both facilities were at concentrations less than drinking water standards. The concentration of inorganic constituents in the groundwater would not likely impact human health. Fecal streptococcus bacteria were detected at least once in groundwater from all monitoring wells at both sites

  3. Land-use impacts on the quality of groundwater in Bulawayo ...

    African Journals Online (AJOL)

    Land-use impacts on the quality of groundwater in Bulawayo. ... The impacts of land use from commercial, industrial and domestic activities in the second largest city (Bulawayo) in Zimbabwe on groundwater quality are investigated in this paper. ... Key Words: Groundwater, Water quality, Land use, Environmental impact

  4. Montana groundwater quality impact of rainfall, land use, and geology

    International Nuclear Information System (INIS)

    Bauder, J.W.

    1991-01-01

    The significance of climatic change on groundwater quality in the Northern Plains is discussed. In some parts of Montana, particularly west of the Continental Divide, relatively high rainfall has contributed to the annual flushing, dilution and mixing of nitrates, and use of annual cropping practices. Consequently, nitrate-nitrogen levels in groundwater seldom exceed established standards. However, such intensive farming, coupled with high rainfall during critical times of the year, could contribute to movement of pesticides and other contaminants to groundwater. East of the Continental Divide, relatively low annual rainfall has contributed to the concentration of soluble salts in both shallow and deep groundwater. In addition, limited rainfall has promoted the use of summer fallowing as the predominant agricultural land use practice in the cropped areas. Summer fallowing has likely led to increases in nitrate-nitrogen concentration in some geographic regions. Climatic change leading to less rainfall could potentially impact the use of additional summer fallowing practices, while climatic change leading to greater rainfall amounts in this region might contribute to additional nitrate leaching in areas where nitrates have accumulated below the root zone as a result of long-term alternate crop fallowing practices. 2 refs,

  5. Estimating impacts of land use on groundwater quality using trilinear analysis

    Science.gov (United States)

    Ying Ouyang; Jia-En Zhang; Lihua. Cui

    2014-01-01

    Groundwater is connected to the landscape above and is thus affected by the overlaying land uses. This study evaluated the impacts of land uses upon groundwater quality using trilinear analysis. Trilinear analysis is a display of experimental data in a triangular graph. Groundwater quality data collected from agricultural, septic tank, forest, and wastewater land uses...

  6. Impacts of afforestation on groundwater resources and quality

    Science.gov (United States)

    Allen, Alistair; Chapman, Deborah

    2001-07-01

    Plans to double the proportion of land under forest cover in Ireland by the year 2035 have been initiated. The plan, primarily financially driven, ignores potential environmental impacts of forestry, particularly impacts on groundwater resources and quality. Since groundwater supplies almost 25% of Ireland's total potable water, these impacts are important. Field investigations indicate that afforestation leads to a reduction in runoff by as much as 20%, mainly due to interception of rainfall by forest canopies. Clearfelling has the opposite impact. Implications are that uncoordinated forestry practices can potentially exacerbate flooding. Groundwater recharge is affected by forestry, largely due to greater uptake of soil water by trees and to increased water-holding capacity of forest soils, arising from higher organic contents. Recharge rates under forests can be reduced to one tenth that under grass or heathland. Groundwater quality may be affected by enhanced acidification and nitrification under forests, due partly to scavenging of atmospheric pollutants by forest canopies, and partly to greater deposition of highly acid leaf litter. The slower recharge rates of groundwater under forests lead to significant delays in manifestation of deterioration in groundwater quality. Résumé. Des plans sont à l'étude pour doubler la proportion du couvert forestier en Irlande d'ici à 2035. Le plan, primitivement déterminé sur une base financière, ignore les impacts environnementaux potentiels de la foresterie, et particulièrement les impacts sur les ressources en eau souterraine et leur qualité. Du fait que les eaux souterraines satisfont presque 25% du total de l'eau potable de l'Irlande, ces impacts sont importants. Les études de terrain montrent que le reboisement conduit à une réduction du ruissellement d'au moins 20%, principalement à cause d'une interception de la pluie par le couvert forestier. Les coupes ont un impact contraire. Les implications sont

  7. Impact of Coastal Development and Marsh Width Variability on Groundwater Quality in Estuarine Tidal Creeks

    Science.gov (United States)

    Shanahan, M.; Wilson, A. M.; Smith, E. M.

    2017-12-01

    Coastal upland development has been shown to negatively impact surface water quality in tidal creeks in the southeastern US, but less is known about its impact on groundwater. We sampled groundwater in the upland and along the marsh perimeter of tidal creeks located within developed and undeveloped watersheds. Samples were analyzed for salinity, dissolved organic carbon, nitrogen and phosphorus concentrations. Groundwater samples collected from the upland in developed and undeveloped watersheds were compared to study the impact of development on groundwater entering the marsh. Groundwater samples collected along the marsh perimeter were analyzed to study the impact of marsh width variability on groundwater quality within each creek. Preliminary results suggest a positive correlation between salinity and marsh width in undeveloped watersheds, and a higher concentration of nutrients in developed versus undeveloped watersheds.

  8. Understanding Land Use Impacts on Groundwater Quality Using Chemical Analysis

    Science.gov (United States)

    Nitka, A.; Masarik, K.; Masterpole, D.; Johnson, B.; Piette, S.

    2017-12-01

    Chippewa County, in western Wisconsin, has a unique historical set of groundwater quality data. The county conducted extensive groundwater sampling of private wells in 1985 (715 wells) and 2007 (800 wells). In 2016, they collaborated with UW-Extension and UW-Stevens Point to evaluate the current status of groundwater quality in Chippewa County by sampling of as many of the previously studied wells as possible. Nitrate was a primary focus of this groundwater quality inventory. Of the 744 samples collected, 60 were further analyzed for chemical indicators of agricultural and septic waste, two major sources of nitrate contamination. Wells for nitrate source analysis were selected from the 2016 participants based upon certain criteria. Only wells with a Wisconsin Unique Well Number were considered to ensure well construction information was available. Next, an Inverse Distance Weighting tool in ESRI ArcMap was used to assign values categorizing septic density. Two-thirds of the wells were selected in higher density areas and one-third in lower density areas. Equally prioritized was an even distribution of nitrate - N concentrations, with 28 of the wells having nitrate - N concentrations higher than the drinking water standard of 10 mg/L and 32 wells with concentrations between 2 and 10 mg/L. All wells with WUWN and nitrate - N concentrations greater than 20 mg/L were selected. The results of the nitrate source analyses will aid in determining temporal changes and spatial relationships of groundwater quality to soils, geology and land use in Chippewa County.

  9. Examining the impacts of increased corn production on groundwater quality using a coupled modeling system

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset was used to create graphics associated with manuscript: Garcia et al., Examining the impacts of increased corn production on groundwater quality using a...

  10. Impacts of a rural subdivision on groundwater quality: results of long-term monitoring.

    Science.gov (United States)

    Rayne, Todd W; Bradbury, Kenneth R; Krause, Jacob J

    2018-03-30

    A rural subdivision in south central Wisconsin was instrumented with monitoring wells and lysimeters before, during, and after its construction to examine the impacts of the unsewered subdivision on groundwater quality and quantity. Prior to construction, the 78-acre (32 hectare) site was farmland. Sixteen homes were constructed beginning in 2003. Initial monitoring from 2002-2005 showed that groundwater beneath the site had been impacted by previous agricultural use, with nitrate-N values as high as 30 mg/l and some detections of the herbicide atrazine. Our twelve-year study shows that the transition from agricultural to residential land use has changed groundwater quality in both negative and positive ways. Although groundwater elevations showed typical seasonal fluctuations each year, there were no measurable changes in groundwater levels or general flow directions during the twelve-year study period. Chloride values increased in many wells, possibly as a result of road salting or water softener discharge. Nitrate concentrations varied spatially and temporally over the study period, with some initial concentrations substantially above the drinking water standard. In some wells, nitrate and atrazine levels have declined substantially since agriculture ceased. However, atrazine was still present at trace concentrations throughout the site in 2014. Wastewater tracers show there are small but detectable impacts from septic effluent on groundwater quality. Particle traces based on a groundwater flow model are consistent with the hypothesis that septic leachate has impacted groundwater quality. This article is protected by copyright. All rights reserved.

  11. Impact of point source pollution on groundwater quality

    International Nuclear Information System (INIS)

    Gill, M.A.; Solehria, B.A.; Rai, N.I.

    2005-01-01

    The management of point source pollution (municipal and industrial waste water) is an important item on Brown Agenda confronting urban planners and policy makers. The industrial concerns and households produce enormous amount of waste water, which has to be disposed of through the municipal sewage system. Generally, municipal wastewater management is done on non-scientific lines, resulting in considerable social and economic loss and gradual degradation of the natural resources. The present study highlights that how the poor management practices, lack of infrastructure, and poor disposal system-comprising of mostly open, un-walled or partially lined drains, affect the groundwater quality and render it unfit for human consumption. Satiana Road sludge carrier at Faisalabad city, receiving effluents of about 67 textile units, 4 oil mills, 2 ice factories, 3 laundris and domestic waste water of Peoples Colony No.1, Maqbool Road and Ghulam Rasool Nagar was selected to derive quantitative and qualitative estimates of TDS, Na, Cl and heavy metals namely Fe, Cu and Pb of the waste water and their leaching around the sludge carrier. The measurement of leaching of TDS, Na/sup +/, and Cl/sup -1/ per 1000 m basis in lined section was 818, 550 and 228 tons, respectively. Where as in the unlined section, annual increase of TDS, Na/sup /+, and Cl/sup -/ was 2404,1615 and 669 tons per 1000 m respectively. In case of leaching of metals through the sludge carrier, Cu was at the top with 8.4 tons per annum per 1000 m followed by Fe and Pb with 6.66 and 1.2 tons per annum per 1000 m respectively. The concentration of all the salts/metals studied were higher in groundwater near the sludge carrier which decreased with increase in distance. The groundwater contamination in unlined portions is greater than lined portions, which might be due to higher seepage losses in unlined portions of the sludge carrier (4.9 % per 1000 m) as compared to relatively low seepage losses in lined portion of

  12. Zonal management of multi-purposes groundwater utilization based on water quality and impact on the aquifer.

    Science.gov (United States)

    Liang, Ching-Ping; Jang, Cheng-Shin; Chen, Ching-Fang; Chen, Jui-Sheng

    2016-07-01

    Groundwater is widely used for drinking, irrigation, and aquaculture in the Pingtung Plain, Southwestern Taiwan. The overexploitation and poor quality of groundwater in some areas of the Pingtung Plain pose great challenges for the safe use and sustainable management of groundwater resources. Thus, establishing an effective management plan for multi-purpose groundwater utilization in the Pingtung Plain is imperative. Considerations of the quality of the groundwater and potential impact on the aquifer of groundwater exploitation are paramount to multi-purpose groundwater utilization management. This study proposes a zonal management plan for the multi-purpose use of groundwater in the Pingtung Plain. The zonal management plan is developed by considering the spatial variability of the groundwater quality and the impact on the aquifer, which is defined as the ratio of the actual groundwater extraction rate to transmissivity. A geostatistical Kriging approach is used to spatially delineate the safe zones based on the water quality standards applied in the three groundwater utilization sectors. Suitable zones for the impact on the aquifer are then spatially determined. The evaluation results showing the safe water quality zones for the three types of utilization demands and suitable zones for the impact on aquifer are integrated to create a zonal management map for multi-purpose groundwater utilization which can help government administrators to establish a water resource management strategy for safe and sustainable use of groundwater to meet multi-purpose groundwater utilization requirements in the Pingtung Plain.

  13. Assessment of shrimp farming impact on groundwater quality using analytical hierarchy process

    Science.gov (United States)

    Anggie, Bernadietta; Subiyanto, Arief, Ulfah Mediaty; Djuniadi

    2018-03-01

    Improved shrimp farming affects the groundwater quality conditions. Assessment of shrimp farming impact on groundwater quality conventionally has less accuracy. This paper presents the implementation of Analytical Hierarchy Process (AHP) method for assessing shrimp farming impact on groundwater quality. The data used is the impact data of shrimp farming in one of the regions in Indonesia from 2006-2016. Criteria used in this study were 8 criteria and divided into 49 sub-criteria. The weighting by AHP performed to determine the importance level of criteria and sub-criteria. Final priority class of shrimp farming impact were obtained from the calculation of criteria's and sub-criteria's weights. The validation was done by comparing priority class of shrimp farming impact and water quality conditions. The result show that 50% of the total area was moderate priority class, 37% was low priority class and 13% was high priority class. From the validation result impact assessment for shrimp farming has been high accuracy to the groundwater quality conditions. This study shows that assessment based on AHP has a higher accuracy to shrimp farming impact and can be used as the basic fisheries planning to deal with impacts that have been generated.

  14. Groundwater quality across scales: impact on nutrient transport to large water bodies

    Science.gov (United States)

    Dürr, Hans; Moosdorf, Nils; Mallast, Ulf

    2017-04-01

    High concentrations of dissolved nutrients such as nitrogen (N) and phosphorus (P) in groundwater are an increasing concern in many areas of the world. Especially regions with high agriculture impact see widespread declining groundwater quality, with considerable uncertainty mainly regarding the impact of phosphorus (P). Implications reach from direct impacts on different water users to discharge of nutrient-rich groundwater to rivers, lakes and coastal areas, where it can contribute to eutrophication, hypoxia or harmful algal blooms. While local-scale studies are abundant and management options exist, quantitative approaches at regional to continental scales are scarce and frequently have to deal with data inconsistencies or are temporally sparse. Here, we present the research framework to combine large databases of local groundwater quality to data sets of climatical, hydrological, geological or landuse parameters. Pooling of such information, together with robust methods such as water balances and groundwater models, can provide constraints such as upper boundaries and likely ranges of nutrient composition in various settings, or for the nutrient transport to large water bodies. Remote Sensing can provide spatial information on the location of groundwater seepage. Results will eventually help to identify focus areas and lead to improved understanding of the role of groundwater in the context of global biogeochemical cycles.

  15. Determination of trigger levels for groundwater quality in landfills located in historically human-impacted areas.

    Science.gov (United States)

    Stefania, Gennaro A; Zanotti, Chiara; Bonomi, Tullia; Fumagalli, Letizia; Rotiroti, Marco

    2018-02-03

    Landfills are one of the most recurrent sources of groundwater contamination worldwide. In order to limit their impacts on groundwater resources, current environmental regulations impose the adoption of proper measures for the protection of groundwater quality. For instance, in the EU member countries, the calculation of trigger levels for identifying significant adverse environmental effects on groundwater generated by landfills is required by the Landfill Directive 99/31/EC. Although the derivation of trigger levels could be relatively easy when groundwater quality data prior to the construction of a landfill are available, it becomes challenging when these data are missing and landfills are located in areas that are already impacted by historical contamination. This work presents a methodology for calculating trigger levels for groundwater quality in landfills located in areas where historical contaminations have deteriorated groundwater quality prior to their construction. This method is based on multivariate statistical analysis and involves 4 steps: (a) implementation of the conceptual model, (b) landfill monitoring data collection, (c) hydrochemical data clustering and (d) calculation of the trigger levels. The proposed methodology was applied on a case study in northern Italy, where a currently used lined landfill is located downstream of an old unlined landfill and others old unmapped waste deposits. The developed conceptual model stated that groundwater quality deterioration observed downstream of the lined landfill is due to a degrading leachate plume fed by the upgradient unlined landfill. The methodology led to the determination of two trigger levels for COD and NH 4 -N, the former for a zone representing the background hydrochemistry (28 and 9 mg/L for COD and NH 4 -N, respectively), the latter for the zone impacted by the degrading leachate plume from the upgradient unlined landfill (89 and 83 mg/L for COD and NH 4 -N, respectively). Copyright

  16. Elucidating hydraulic fracturing impacts on groundwater quality using a regional geospatial statistical modeling approach.

    Science.gov (United States)

    Burton, Taylour G; Rifai, Hanadi S; Hildenbrand, Zacariah L; Carlton, Doug D; Fontenot, Brian E; Schug, Kevin A

    2016-03-01

    Hydraulic fracturing operations have been viewed as the cause of certain environmental issues including groundwater contamination. The potential for hydraulic fracturing to induce contaminant pathways in groundwater is not well understood since gas wells are completed while isolating the water table and the gas-bearing reservoirs lay thousands of feet below the water table. Recent studies have attributed ground water contamination to poor well construction and leaks in the wellbore annulus due to ruptured wellbore casings. In this paper, a geospatial model of the Barnett Shale region was created using ArcGIS. The model was used for spatial analysis of groundwater quality data in order to determine if regional variations in groundwater quality, as indicated by various groundwater constituent concentrations, may be associated with the presence of hydraulically fractured gas wells in the region. The Barnett Shale reservoir pressure, completions data, and fracture treatment data were evaluated as predictors of groundwater quality change. Results indicated that elevated concentrations of certain groundwater constituents are likely related to natural gas production in the study area and that beryllium, in this formation, could be used as an indicator variable for evaluating fracturing impacts on regional groundwater quality. Results also indicated that gas well density and formation pressures correlate to change in regional water quality whereas proximity to gas wells, by itself, does not. The results also provided indirect evidence supporting the possibility that micro annular fissures serve as a pathway transporting fluids and chemicals from the fractured wellbore to the overlying groundwater aquifers. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Impacts of the 2013 Extreme Flood in Northeast China on Regional Groundwater Depth and Quality

    Directory of Open Access Journals (Sweden)

    Xihua Wang

    2015-08-01

    Full Text Available Flooding’s impact on shallow groundwater is not well investigated. In this study, we analyzed changes in the depth and quality of a regional shallow aquifer in the 10.9 × 104 km2 Sanjiang Plain, Northeast China, following a large flood in the summer of 2013. Pre- (2008–2012 and post-flood records on groundwater table depth and groundwater chemistry were gathered from 20 wells across the region. Spatial variability of groundwater recharge after the flood was assessed and the changes in groundwater quality in the post-flood period were determined. The study found a considerable increase in the groundwater table after the 2013 summer flood across the region, with the largest (3.20 m and fastest (0.80 m·s−1 rising height occurring in western Sanjiang Plain. The rising height and velocity gradually declined from the west to the east of the plain. For the entire region, we estimated an average recharge height of 1.24 m for the four flood months (June to September of 2013. Furthermore, we found that the extreme flood reduced nitrate (NO3− and chloride (Cl− concentrations and electrical conductivity (EC in shallow groundwater in the areas that were close to rivers, but increased NO3− and Cl− concentrations and EC in the areas that were under intensive agricultural practices. As the region’s groundwater storage and quality have been declining due to the rapidly increasing rice cultivation, this study shows that floods should be managed as water resources to ease the local water shortage as well as shallow groundwater pollution.

  18. Environmental impact of municipal dumpsite leachate on ground-water quality in Jawaharnagar, Rangareddy, Telangana, India

    Science.gov (United States)

    Soujanya Kamble, B.; Saxena, Praveen Raj

    2017-10-01

    The aim of the present work was to study the impact of dumpsite leachate on ground-water quality of Jawaharnagar village. Leachate and ground-water samples were investigated for various physico-chemical parameters viz., pH, total dissolved solids (TDS), total hardness (TH), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), chloride (Cl-), carbonates (CO3 2-), bicarbonates (HCO3 -), nitrates (NO3 -), and sulphates (SO4 2-) during dry and wet seasons in 2015 and were reported. The groundwater was hard to very hard in nature, and the concentrations of total dissolved solids, chlorides, and nitrates were found to be exceeding the permissible levels of WHO drinking water quality standards. Piper plots revealed that the dominant hydrochemical facies of the groundwater were of calcium chloride (CaCl2) type and alkaline earths (Ca2+ and Mg2+) exceed the alkali (Na+ and SO4 2-), while the strong acids (Cl- and SO4 2-) exceed the weak acids (CO3 2- and HCO3 -). According to USSL diagram, all the ground-water samples belong to high salinity and low-sodium type (C3S1). Overall, the ground-water samples collected around the dumpsite were found to be polluted and are unfit for human consumption but can be used for irrigation purpose with heavy drainage and irrigation patterns to control the salinity.

  19. Impact of uranium mines closure and abandonment on groundwater quality.

    Science.gov (United States)

    Rapantova, Nada; Licbinska, Monika; Babka, Ondrej; Grmela, Arnost; Pospisil, Pavel

    2013-11-01

    The aim of the study is to assess the evolving mine water quality of closed uranium mines (abandoned between 1958 and 1992) in the Czech Republic. This paper focuses on the changes in mine water quality over time and spatial variability. In 2010, systematic monitoring of mine water quality was performed at all available locations of previous uranium exploitation. Gravity flow discharges (mine adits, uncontrolled discharges) or shafts (in dynamic state or stagnating) were sampled. Since the quality of mine water results from multiple conditions-geology, type of sample, sampling depth, time since mine flooding, an assessment of mine water quality evolution was done taking into account all these conditions. Multivariate analyses were applied in order to identify the groups of samples based on their similarity. Evaluation of hydrogeochemical equilibrium and evolution of mine waters was done using the Geochemist's Workbench and PHREEQC software. The sampling proved that uranium concentrations in mine waters did not predominantly exceed 0.45 mg/L. In case of discharges from old adits abandoned more than 40 years ago, uranium concentrations were below the MCL of US Environmental Protection Agency for uranium in drinking water (0.03 mg/L). Higher concentrations, up to 1.23 mg/L of U, were found only at active dewatered mines. Activity concentration of 226Ra varied from 0.03 up to 1.85 Bq/L except for two sites with increased background values due to rock formation (granites). Radium has a typically increasing trend after mine abandonment with a large variability. Concerning metals in mine water, Al, Co and Ni exceeded legislative limits on two sites with low pH waters. The mine water quality changes with a focus on uranium mobility were described from recently dewatered mines to shafts with water level maintained in order to prevent outflows to surface water and finally to stagnating shafts and discharges of mine water from old adits. The results were in good agreement

  20. Impact of Submarine Groundwater Discharge on Marine Water Quality and Reef Biota of Maui

    Science.gov (United States)

    Bishop, James M.

    2016-01-01

    Generally unseen and infrequently measured, submarine groundwater discharge (SGD) can transport potentially large loads of nutrients and other land-based contaminants to coastal ecosystems. To examine this linkage we employed algal bioassays, benthic community analysis, and geochemical methods to examine water quality and community parameters of nearshore reefs adjacent to a variety of potential, land-based nutrient sources on Maui. Three common reef algae, Acanthophora spicifera, Hypnea musciformis, and Ulva spp. were collected and/or deployed at six locations with SGD. Algal tissue nitrogen (N) parameters (δ15N, N %, and C:N) were compared with nutrient and δ15N-nitrate values of coastal groundwater and nearshore surface water at all locations. Benthic community composition was estimated for ten 10-m transects per location. Reefs adjacent to sugarcane farms had the greatest abundance of macroalgae, low species diversity, and the highest concentrations of N in algal tissues, coastal groundwater, and marine surface waters compared to locations with low anthropogenic impact. Based on δ15N values of algal tissues, we estimate ca. 0.31 km2 of Kahului Bay is impacted by effluent injected underground at the Kahului Wastewater Reclamation Facility (WRF); this region is barren of corals and almost entirely dominated by colonial zoanthids. Significant correlations among parameters of algal tissue N with adjacent surface and coastal groundwater N indicate that these bioassays provided a useful measure of nutrient source and loading. A conceptual model that uses Ulva spp. tissue δ15N and N % to identify potential N source(s) and relative N loading is proposed for Hawaiʻi. These results indicate that SGD can be a significant transport pathway for land-based nutrients with important biogeochemical and ecological implications in tropical, oceanic islands. PMID:27812171

  1. Impact of Submarine Groundwater Discharge on Marine Water Quality and Reef Biota of Maui.

    Directory of Open Access Journals (Sweden)

    Daniel W Amato

    Full Text Available Generally unseen and infrequently measured, submarine groundwater discharge (SGD can transport potentially large loads of nutrients and other land-based contaminants to coastal ecosystems. To examine this linkage we employed algal bioassays, benthic community analysis, and geochemical methods to examine water quality and community parameters of nearshore reefs adjacent to a variety of potential, land-based nutrient sources on Maui. Three common reef algae, Acanthophora spicifera, Hypnea musciformis, and Ulva spp. were collected and/or deployed at six locations with SGD. Algal tissue nitrogen (N parameters (δ15N, N %, and C:N were compared with nutrient and δ15N-nitrate values of coastal groundwater and nearshore surface water at all locations. Benthic community composition was estimated for ten 10-m transects per location. Reefs adjacent to sugarcane farms had the greatest abundance of macroalgae, low species diversity, and the highest concentrations of N in algal tissues, coastal groundwater, and marine surface waters compared to locations with low anthropogenic impact. Based on δ15N values of algal tissues, we estimate ca. 0.31 km2 of Kahului Bay is impacted by effluent injected underground at the Kahului Wastewater Reclamation Facility (WRF; this region is barren of corals and almost entirely dominated by colonial zoanthids. Significant correlations among parameters of algal tissue N with adjacent surface and coastal groundwater N indicate that these bioassays provided a useful measure of nutrient source and loading. A conceptual model that uses Ulva spp. tissue δ15N and N % to identify potential N source(s and relative N loading is proposed for Hawai'i. These results indicate that SGD can be a significant transport pathway for land-based nutrients with important biogeochemical and ecological implications in tropical, oceanic islands.

  2. Impact of Submarine Groundwater Discharge on Marine Water Quality and Reef Biota of Maui.

    Science.gov (United States)

    Amato, Daniel W; Bishop, James M; Glenn, Craig R; Dulai, Henrietta; Smith, Celia M

    2016-01-01

    Generally unseen and infrequently measured, submarine groundwater discharge (SGD) can transport potentially large loads of nutrients and other land-based contaminants to coastal ecosystems. To examine this linkage we employed algal bioassays, benthic community analysis, and geochemical methods to examine water quality and community parameters of nearshore reefs adjacent to a variety of potential, land-based nutrient sources on Maui. Three common reef algae, Acanthophora spicifera, Hypnea musciformis, and Ulva spp. were collected and/or deployed at six locations with SGD. Algal tissue nitrogen (N) parameters (δ15N, N %, and C:N) were compared with nutrient and δ15N-nitrate values of coastal groundwater and nearshore surface water at all locations. Benthic community composition was estimated for ten 10-m transects per location. Reefs adjacent to sugarcane farms had the greatest abundance of macroalgae, low species diversity, and the highest concentrations of N in algal tissues, coastal groundwater, and marine surface waters compared to locations with low anthropogenic impact. Based on δ15N values of algal tissues, we estimate ca. 0.31 km2 of Kahului Bay is impacted by effluent injected underground at the Kahului Wastewater Reclamation Facility (WRF); this region is barren of corals and almost entirely dominated by colonial zoanthids. Significant correlations among parameters of algal tissue N with adjacent surface and coastal groundwater N indicate that these bioassays provided a useful measure of nutrient source and loading. A conceptual model that uses Ulva spp. tissue δ15N and N % to identify potential N source(s) and relative N loading is proposed for Hawai'i. These results indicate that SGD can be a significant transport pathway for land-based nutrients with important biogeochemical and ecological implications in tropical, oceanic islands.

  3. Impact of landfill leachate on the groundwater quality: A case study in Egypt

    Directory of Open Access Journals (Sweden)

    Magda M. Abd El-Salam

    2015-07-01

    Full Text Available Alexandria Governorate contracted an international company in the field of municipal solid waste management for the collection, transport and disposal of municipal solid waste. Construction and operation of the sanitary landfill sites were also included in the contract for the safe final disposal of solid waste. To evaluate the environmental impacts associated with solid waste landfilling, leachate and groundwater quality near the landfills were analyzed. The results of physico-chemical analyses of leachate confirmed that its characteristics were highly variable with severe contamination of organics, salts and heavy metals. The BOD5/COD ratio (0.69 indicated that the leachate was biodegradable and un-stabilized. It was also found that groundwater in the vicinity of the landfills did not have severe contamination, although certain parameters exceeded the WHO and EPA limits. These parameters included conductivity, total dissolved solids, chlorides, sulfates, Mn and Fe. The results suggested the need for adjusting factors enhancing anaerobic biodegradation that lead to leachate stabilization in addition to continuous monitoring of the groundwater and leachate treatment processes.

  4. Impacts of groundwater metal loads from bedrock fractures on water quality of a mountain stream.

    Science.gov (United States)

    Caruso, Brian S; Dawson, Helen E

    2009-06-01

    Acid mine drainage and metal loads from hardrock mines to surface waters is a significant problem in the western USA and many parts of the world. Mines often occur in mountain environments with fractured bedrock aquifers that serve as pathways for metals transport to streams. This study evaluates impacts from current and potential future groundwater metal (Cd, Cu, and Zn) loads from fractures underlying the Gilt Edge Mine, South Dakota, on concentrations in Strawberry Creek using existing flow and water quality data and simple mixing/dilution mass balance models. Results showed that metal loads from bedrock fractures to the creek currently contribute water quality is achieved upstream in Strawberry Creek, fracture metal loads would be water quality standards exceedances once groundwater with elevated metals concentrations in the aquifer matrix migrates to the fractures and discharges to the stream. Potential future metal loads from an upstream fracture would contribute a small proportion of the total load relative to current loads in the stream. Cd has the highest stream concentrations relative to standards. Even if all stream water was treated to remove 90% of the Cd, the standard would still not be achieved. At a fracture farther downstream, the Cd standard can only be met if the upstream water is treated achieving a 90% reduction in Cd concentrations and the median stream flow is maintained.

  5. Review of the impacts of leaking CO 2 gas and brine on groundwater quality

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla P.; Lawter, Amanda R.; Bacon, Diana H.; Zheng, Liange; Kyle, Jennifer; Brown, Christopher F.

    2017-06-01

    This review paper provides a synthetic view of the existing knowledge and summarizes data and findings of the recent literature on the subject of the potential leaking of CO2 from the deep subsurface storage reservoirs and the effects on aquifer quality. New ideas and concepts are developed and insights are also provided. The objectives of this paper are to: 1) present and discuss potential risks for groundwater degradation due to CO2 gas and brine exposure; 2) identify the set of geochemical data required to assess and predict aquifer responses to CO2 and brine leakage. Specifically, this paper will discuss the following issues: 1) Aquifer responses (such as changes in aqueous phase/groundwater chemical composition; changes in solid phase chemistry and mineralogy; changes in the extent and rate of reactions and processes and possible establishment of a new network of reactions and processes affecting or controlling overall mobility of major, minor, and trace elements; development of conceptual and reduced order models (ROMs) to describe and predict aquifer responses); 2) The degree of impact such as significant or insignificant changes in pH and major, minor, and trace element release that depend on the following controlling variables; the effect of leaking plume characteristics (gas composition, pure CO2 and/or CO2 -CH4 -H2S mixtures and brine concentration and composition (trace metals); aquifer properties [such as initial aqueous phase conditions and mineralogy: minerals controlling sediments’ response (e.g., calcite, Si bearing minerals, etc.)]; overview of relevant hydrogeological and geochemical processes related to the impact of CO2 gas and brine on groundwater quality; the fate of the elements released from sediments or transported with brine (such as precipitation/incorporation into minerals (calcite and other minerals), adsorption, electron transfer reactions, the role of natural attenuation; whether or not the release of metals following exposure to

  6. Impact of over-exploitation on groundwater quality: A case study ...

    Indian Academy of Sciences (India)

    Pandian K and Sankar K 2007 Hydrogeochemistry and groundwater quality in the Vaippar river basin, Tamil- nadu; J. Geol. Soc. India 69 970–982. Pawar N J 1993 Geochemistry of carbonate precipitation from the groundwaters in the basaltic aquifers: An equi- librium thermo-dynamic approach; J. Geol. Soc. India 41.

  7. Impact of over-exploitation on groundwater quality: A case study ...

    Indian Academy of Sciences (India)

    Moreover, the water quality studies reveal that groundwater from more than 50% of the dug wells of the WR-2 watershed is not suitable for drinking purpose. The groundwater, though mostly suitable for irrigation purpose, is corrosive and saturated with respect to mineral equilibrium and shows a tendency towards chemical ...

  8. Examining the impacts of increased corn production on groundwater quality using a coupled modeling system

    Science.gov (United States)

    This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirect...

  9. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Science.gov (United States)

    Yu, Liang; Rozemeijer, Joachim; van Breukelen, Boris M.; Ouboter, Maarten; van der Vlugt, Corné; Broers, Hans Peter

    2018-01-01

    The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN), total phosphorus (TP), NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type) for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban-agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs) in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88) between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate from the decomposition of

  10. Progress, opportunities, and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China.

    Science.gov (United States)

    Li, Peiyue; Tian, Rui; Xue, Chenyang; Wu, Jianhua

    2017-05-01

    Groundwater quality research is extremely important for supporting the safety of the water supply and human health in arid and semi-arid areas of China. This review article was constructed to report the latest research progress of groundwater quality in western China where groundwater quality is undergoing fast deterioration because of fast economic development and extensive anthropogenic activities. The opportunities brought by increasing public awareness of groundwater quality protection were also highlighted and discussed. To guide and promote further development of groundwater quality research in China, especially in western China, ten key groundwater quality research fields were proposed. The review shows that the intensification of human activities and the associated impacts on groundwater quality in China, especially in western China, has made groundwater quality research increasingly important, and has caught the attention of local, national, and international agencies and scholars. China has achieved some progress in groundwater quality research in terms of national and regional laws, regulations, and financial supports. The future of groundwater quality research in China, especially in western China, is promising reflected by the opportunities highlighted. The key research fields proposed in this article may also inform groundwater quality protection and management at the national and international level.

  11. Water management of the uranium production facility in Brazil (Caetite, BA): potential impacts over groundwater quality

    International Nuclear Information System (INIS)

    Lamego, Fernando; Santos, Robson Rodger; Silva, L. Ferreira da; Fernandes, Horst Monken

    2008-01-01

    The uranium unit of Caetite - in charge of all the 'yellow cake' produced in Brazil - is located in the semi-arid Northeast region at Bahia State. The geological uranium content of the ore is 3000 ppm, which is mainly associated with albite (NaAlSi 8 O 8 ), and its extraction is achieved by means of a Heap-Leach process. This process has a low water demand, which is supplied by a network of wells, but can contribute to change the groundwater quality and in some cases the extinguishing of wells was observed. The managing of liquid mining wastes formed by drainage waters from mine pit and solid waste piles is not enough to avoid unwarranted releases in the environment, which turn necessary the waste treatment through passing them into the industrial plant in order to reduce radionuclide concentrations. The groundwater is Na-HCO 3 type water and relative high concentration of Cl are observed in some groundwater. It seems that levels of uranium in groundwaters are mainly a consequence of the complexation of the metal by carbonates (or other anions) and not by any sort of the contamination of these waters by the drainage accumulated in the open pit. The speciation modelling allows identifying some areas where the replenishment of the aquifer is more active, but in general the recharge is a fast process run by direct infiltration. The stable isotope data (δ 2 H and δ 18 O) showed that evaporation plays a role during the infiltration, causing the groundwater salinization. These data discard the possibility that groundwater salinization was caused by discharge of deeper saline groundwater through faults associated to a regional groundwater flow system. The presence of an active shallow groundwater flow system offers better possibility for sustainable use of the groundwater resources in this semi-arid region of Brazil. (author)

  12. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Directory of Open Access Journals (Sweden)

    L. Yu

    2018-01-01

    Full Text Available The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN, total phosphorus (TP, NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban–agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88 between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate

  13. Reactive Transport Modeling of Thermal Column Experiments to Investigate the Impacts of Aquifer Thermal Energy Storage on Groundwater Quality

    NARCIS (Netherlands)

    Bonte, M.; Stuijfzand, P.J.; van Breukelen, B.M.

    2014-01-01

    Aquifer thermal energy storage (ATES) systems are increasingly being used to acclimatize buildings and are often constructed in aquifers used for drinking water supply. This raises the question of potential groundwater quality impact. Here, we use laboratory column experiments to develop and

  14. Impact of leachable sulfate on the quality of groundwater in the Pocatello aquifer

    International Nuclear Information System (INIS)

    Meehan, C.; Welhan, J.

    1994-01-01

    During the summer of 1993, groundwaters and surface waters were found to have anomalous sulfate concentrations in the Southern Pocatello municipal aquifer in an area known as the Highway Ponds. Leach tests performed on a large pile of road aggregate stockpiled near the Highway Ponds have been identified as the most likely source for the sulfate. Correlating trends of sulfate and chloride concentrations can be found both in the main Pocatello aquifer and in Pocatello Creek groundwaters. The chloride contamination at Pocatello Creek has previously been suggested to be derived from road salt. It is hypothesized that aggregate used in roadbed construction may be responsible for elevated sulfate in the areas groundwater. Chemical modeling has eliminated carbonate precipitation/dissolution reactions in buffering the chemistry of sulfate-impacted groundwater. Ion-exchange with clays is hypothesized to be a more significant process and is being investigated further. 12 refs., 3 figs

  15. Assessing the impact of dairy waste lagoons on groundwater quality using a spatial analysis of vadose zone and groundwater information in a coastal phreatic aquifer.

    Science.gov (United States)

    Baram, S; Kurtzman, D; Ronen, Z; Peeters, A; Dahan, O

    2014-01-01

    Dairy waste lagoons are considered to be point sources of groundwater contamination by chloride (Cl(-)), different nitrogen-species and pathogens/microorganisms. The objective of this work is to introduce a methodology to assess the past and future impacts of such lagoons on regional groundwater quality. The method is based on a spatial statistical analysis of Cl(-) and total nitrogen (TN) concentration distributions in the saturated and the vadose (unsaturated) zones. The method provides quantitative data on the relation between the locations of dairy lagoons and the spatial variability in Cl(-) and TN concentrations in groundwater. The method was applied to the Beer-Tuvia region, Israel, where intensive dairy farming has been practiced for over 50 years above the local phreatic aquifer. Mass balance calculations accounted for the various groundwater recharge and abstraction sources and sinks in the entire region. The mass balances showed that despite the small surface area covered by the dairy lagoons in this region (0.8%), leachates from lagoons have contributed 6.0% and 12.6% of the total mass of Cl(-) and TN (mainly as NO3(-)-N) added to the aquifer. The chemical composition of the aquifer and vadose zone water suggested that irrigated agricultural activity in the region is the main contributor of Cl(-) and TN to the groundwater. A low spatial correlation between the Cl(-) and NO3(-)-N concentrations in the groundwater and the on-land location of the dairy farms strengthened this assumption, despite the dairy waste lagoon being a point source for groundwater contamination by Cl(-) and NO3(-)-N. Mass balance calculations, for the vadose zone of the entire region, indicated that drying of the lagoons would decrease the regional groundwater salinization process (11% of the total Cl(-) load is stored under lagoons). A more considerable reduction in the groundwater contamination by NO3(-)-N is expected (25% of the NO3(-)-N load is stored under lagoons). Results

  16. Impact of storm water on groundwater quality below retention/detention basins.

    Science.gov (United States)

    Zubair, Arif; Hussain, Asif; Farooq, Mohammed A; Abbasi, Haq Nawaz

    2010-03-01

    Groundwater from 33 monitoring of peripheral wells of Karachi, Pakistan were evaluated in terms of pre- and post-monsoon seasons to find out the impact of storm water infiltration, as storm water infiltration by retention basin receives urban runoff water from the nearby areas. This may increase the risk of groundwater contamination for heavy metals, where the soil is sandy and water table is shallow. Concentration of dissolved oxygen is significantly low in groundwater beneath detention basin during pre-monsoon season, which effected the concentration of zinc and iron. The models of trace metals shown in basin groundwater reflect the land use served by the basins, while it differed from background concentration as storm water releases high concentration of certain trace metals such as copper and cadmium. Recharge by storm water infiltration decreases the concentration and detection frequency of iron, lead, and zinc in background groundwater; however, the study does not point a considerable risk for groundwater contamination due to storm water infiltration.

  17. Integrated assessment of the impact of climate and land use changes on groundwater quantity and quality in Mancha Oriental (Spain)

    Science.gov (United States)

    Pulido-Velazquez, M.; Peña-Haro, S.; Garcia-Prats, A.; Mocholi-Almudever, A. F.; Henriquez-Dole, L.; Macian-Sorribes, H.; Lopez-Nicolas, A.

    2014-09-01

    Climate and land use change (global change) impacts on groundwater systems cannot be studied in isolation, as various and complex interactions in the hydrological cycle take part. Land-use and land-cover (LULC) changes have a great impact on the water cycle and contaminant production and transport. Groundwater flow and storage are changing in response not only to climatic changes but also to human impacts on land uses and demands (global change). Changes in future climate and land uses will alter the hydrologic cycles and subsequently impact the quantity and quality of regional water systems. Predicting the behavior of recharge and discharge conditions under future climatic and land use changes is essential for integrated water management and adaptation. In the Mancha Oriental system in Spain, in the last decades the transformation from dry to irrigated lands has led to a significant drop of the groundwater table in one of the largest groundwater bodies in Spain, with the consequent effect on stream-aquifer interaction in the connected Jucar River. Streamflow depletion is compromising the related ecosystems and the supply to the downstream demands, provoking a complex management issue. The intense use of fertilizer in agriculture is also leading to locally high groundwater nitrate concentrations. Understanding the spatial and temporal distribution of water availability and water quality is essential for a proper management of the system. In this paper we analyze the potential impact of climate and land use change in the system by using an integrated modelling framework consisting of the sequentially coupling of a watershed agriculturally-based hydrological model (SWAT) with the ground-water model MODFLOW and mass-transport model MT3D. SWAT model outputs (mainly groundwater recharge and pumping, considering new irrigation needs under changing ET and precipitation) are used as MODFLOW inputs to simulate changes in groundwater flow and storage and impacts on stream

  18. Groundwater quality: Ghana

    OpenAIRE

    Smedley, Pauline

    2000-01-01

    This is one of a series of information sheets prepared for each country in which WaterAid works. The sheetsaim to identify inorganic constituents of significant risk to health that may occur in groundwater in thecountry in question. The purpose of the sheets is to provide guidance to WaterAid Country Office staff ontargeting efforts on water-quality testing and to encourage further thinking in the organisation on waterqualityissues.

  19. Assessment of the impacts of pit latrines on groundwater quality in rural areas: A case study from Marondera district, Zimbabwe

    Science.gov (United States)

    Dzwairo, Bloodless; Hoko, Zvikomborero; Love, David; Guzha, Edward

    In resource-poor and low-population-density areas, on-site sanitation is preferred to off-site sanitation and groundwater is the main source of water for domestic uses. Groundwater pollution potential from on-site sanitation in such areas conflicts with Integrated Water Resources Management (IWRM) principles that advocate for sustainable use of water resources. Given the widespread use of groundwater for domestic purposes in rural areas, maintaining groundwater quality is a critical livelihood intervention. This study assessed impacts of pit latrines on groundwater quality in Kamangira village, Marondera district, Zimbabwe. Groundwater samples from 14 monitoring boreholes and 3 shallow wells were analysed during 6 sampling campaigns, from February 2005 to May 2005. Parameters analysed were total and faecal coliforms, NH4+-N, NO3--N, conductivity, turbidity and pH, both for boreholes and shallow wells. Total and faecal coliforms both ranged 0-TNTC (too-numerous-to-count), 78% of results meeting the 0 CFU/100 ml WHO guidelines value. NH4+-N range was 0-2.0 mg/l, with 99% of results falling below the 1.5 mg/l WHO recommended value. NO3--N range was 0.0-6.7 mg/l, within 10 mg/l WHO guidelines value. The range for conductivity values was 46-370 μS/cm while the pH range was 6.8-7.9. There are no WHO guideline values for these two parameters. Turbidity ranged from 1 NTU to 45 NTU, 59% of results meeting the 5 NTU WHO guidelines limit. Depth from the ground surface to the water table for the period February 2005 to May 2005 was determined for all sampling points using a tape measure. The drop in water table averaged from 1.1 m to 1.9 m and these values were obtained by subtracting water table elevations from absolute ground surface elevation. Soil from the monitoring boreholes was classified as sandy. The soil infiltration layer was taken as the layer between the pit latrine bottom and the water table. It averaged from 1.3 m to 1.7 m above the water table for two latrines

  20. Land application of domestic wastewater in Florida--statewide assessment of impact on ground-water quality

    Science.gov (United States)

    Franks, Bernard J.

    1981-01-01

    In Florida domestic waste water is being applied to the land for disposal and reuse. State and Federal regulations favor land-application methods over other advanced waste water treatment practices. Despite the increasing use of this alternative technology, little is known about localized effects on groundwater quality. This report documents the extent of land-application practices in Florida and summarizes case study information on some of the more adequately monitored site throughout the State. More than 2,500 sites in Florida are permitted by the Department of Environmental Regulation for applying domestic waste water to the land. The majority (more than 1,700 sites), classified as infiltration ponds, are concentrated in central and southern Florida. More than 560 sites classified as drainfields, and more than 250 sites classified as irrigation sites, are located primarily in central Florida. An estimated 150 million gallons per day of domestic waste water, after required secondary treatment, are applied to Florida soils. Despite the large numbers of sites and the considerable volume of waste water utilized, little is known about potential impact on groundwater quality. At the few sites where observation wells have been drilled and local groundwater quality monitored, no significant deterioration of water quality has been detected. (USGS)

  1. IMPACT OF THE JAKUŠEVEC-PRUDINEC WASTE DISPOSAL SITE ON GROUNDWATER QUALITY

    Directory of Open Access Journals (Sweden)

    Zoran Nakić

    2007-12-01

    Full Text Available The main goal of the research shown in this paper is to investigate the cause and effect relation of the Jakuševec-Prudinec waste disposal site and the groundwater pollution. The recovery of the Jakuševec-Prudinec waste disposal site by the end of 2003 did not have any significant impact on the pollution reduction in groundwater. Very high values of the pollution index defined in the area southeastern from the waste disposal site show spreading of the pollution toward Mičevec village. The analysis of the hydrogeochemical characteristics showed that in the waste disposal site area the local geochemical anomalies of the partial CO2 pressure exist, indicating that the intensive carbonate dissolution processes and HCO3- enrichment dominate in this area. Near the border of the waste disposal site groundwater with high ammonium ion (NH4+ and chloride ion (Cl- dominates. The high concentrations of the heavy metals and very strong geochemical bonds determined from the correlation coefficients show that in the reductive aquifer conditions heavy metals strongly release (the paper is published in Croatian.

  2. Assessing the impact of groundwater contamination on stream water quality by multiple approaches at the groundwater-surface water interface (Invited Presentation)

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Rønde, Vinni Kampman; Balbarini, Nicola

    Contaminants such as chlorinated solvents and pesticides, as well as new classes of compounds or emerging micropollutants are extensively produced, utilized and then discarded in society and subsequently released to streams from multiple point and diffuse sources. Sustainable management of water...... resources requires assessment of multiple contamination sources within a watershed in order to assess their direct impact on water quality. Determination of flow paths and groundwater fluxes are essential for evaluating the transport, fate and potential impact of contaminant plumes discharging to streams...... of the Grindsted stream area including geology, hydrogeology, geophysics, environmental chemistry, ecology and environmental engineering was carried out in 2012-2017, to develop the scientific basis for conducting risk assessments for contaminated sites impacting surface waters. The Grindsted stream area is a well...

  3. Decadal variations in groundwater quality

    DEFF Research Database (Denmark)

    Jessen, Søren; Postma, Dieke; Thorling, Lærke

    2017-01-01

    Twenty-five years of groundwater quality monitoring in a sandy aquifer beneath agricultural fields showed large temporal and spatial variations in major ion groundwater chemistry, which were linked closely to the nitrate (NO3) content of agricultural recharge. Between 1988 and 2013, the NO3 content...... loading. Agriculture thus is an important determinant of major ion groundwater chemistry. Temporal and spatial variations in the groundwater quality were simulated using a 2D reactive transport model, which combined effects of the historical NO3 leaching and denitrification, with dispersive mixing...

  4. Seawater Intrusion Impacts on the Water Quality of the Groundwater on theNorthwest Coast of Oman.

    Science.gov (United States)

    Ahmed, Abdelkader T; Askri, Brahim

    2016-08-01

    The groundwater aquifer in the coastal region of the northwest of Oman has been used extensively since the early 1980s for agricultural, industrial and municipal purposes. The over pumping of this reservoir has led to the intrusion of seawater and therefore to the deterioration of the groundwater quality. In this study, an investigation was carried out in the southern part of this region to identify the quality of groundwater, to understand the main sources of groundwater mineralisation, and to check the suitability of groundwater for drinking and irrigation. The spatial distributions and temporal variations of groundwater level and electrical conductivity were studied for the period from 1982 to 2005 using data collected from 225 wells. In addition, groundwater samples were collected recently in 2012 from eight wells and analysed for pH, EC, and major ions to understand the sources of dissolved ions and assess the chemical quality of the groundwater. The study area was divided into two strips parallel to the coastline, A and B, located in the discharge and recharge parts of the aquifer, respectively. Results showed a significant increase in the degree of water mineralisation in the direction of south to north following the regional flow direction. Results showed also that the groundwater in the last area could be used for irrigation with little danger of exchangeable sodium while this aquifer is unsuitable for irrigation in the discharge area because it presents a very high salinity hazard.

  5. Integrated assessment of the impact of climate and land use changes on groundwater quantity and quality in Mancha Oriental (Spain)

    OpenAIRE

    M. Pulido-Velazquez; S. Peña-Haro; A. Garcia-Prats; A. F. Mocholi-Almudever; L. Henriquez-Dole; H. Macian-Sorribes; A. Lopez-Nicolas

    2014-01-01

    Climate and land use change (global change) impacts on groundwater systems cannot be studied in isolation, as various and complex interactions in the hydrological cycle take part. Land-use and land-cover (LULC) changes have a great impact on the water cycle and contaminant production and transport. Groundwater flow and storage are changing in response not only to climatic changes but also to human impacts on land uses and demands (global change). Changes in future climate an...

  6. Trends in groundwater quality in relation to groundwater age

    NARCIS (Netherlands)

    Visser, A.|info:eu-repo/dai/nl/318725371

    2009-01-01

    Groundwater is a valuable natural resource and as such should be protected from chemical pollution. Because of the long travel times of pollutants through groundwater bodies, early detection of groundwater quality deterioration is necessary to efficiently protect groundwater bodies. The aim of this

  7. Reactive transport modeling of thermal column experiments to investigate the impacts of aquifer thermal energy storage on groundwater quality.

    Science.gov (United States)

    Bonte, Matthijs; Stuyfzand, Pieter J; Breukelen, Boris M van

    2014-10-21

    Aquifer thermal energy storage (ATES) systems are increasingly being used to acclimatize buildings and are often constructed in aquifers used for drinking water supply. This raises the question of potential groundwater quality impact. Here, we use laboratory column experiments to develop and calibrate a reactive transport model (PHREEQC) simulating the thermally induced (5-60 °C) water quality changes in anoxic sandy sediments. Temperature-dependent surface complexation, cation-exchange, and kinetic dissolution of K-feldspar were included in the model. Optimization results combined with an extensive literature survey showed surface complexation of (oxy)anions (As, B, and PO4) is consistently exothermic, whereas surface complexation of cations (Ca and Mg) and cationic heavy metals (Cd, Pb, and Zn) is endothermic. The calibrated model was applied to simulate arsenic mobility in an ATES system using a simple yet powerful mirrored axi-symmetrical grid. Results showed that ATES mobilizes arsenic toward the fringe of the warm water bubble and the center of the cold water bubble. This transient redistribution of arsenic causes its aqueous concentrations in the cold and warm groundwater bubbles to become similar through multiple heating cycles, with a final concentration depending on the average injection temperature of the warm and cold ATES wells.

  8. Impacts of land-use and soil properties on groundwater quality in the hard rock aquifer of an irrigated catchment: the Berambadi (Southern India)

    Science.gov (United States)

    Buvaneshwari, Sriramulu; Riotte, Jean; Ruiz, Laurent; Sekhar, Muddu; Sharma, Amit Kumar; Duprey, Jean Louis; Audry, Stephane; Braun, Jean Jacques; Mohan Kumar, Mandalagiri S.

    2017-04-01

    Irrigated agriculture has large impacts on groundwater resources, both in terms of quantity and quality: when combined with intensive chemical fertilizer application, it can lead to progressive groundwater salinization. Mapping the spatial heterogeneity of groundwater quality is not only essential for assessing the impacts of different types of agricultural systems but also for identifying hotspots of water quality degradation that are posing a risk to human and ecosystem health. In peninsular India the development of minor irrigation led to high density of borewells which constitute an ideal situation for studying the heterogeneity of groundwater quality. The annual groundwater abstraction reaches 400 km3, which leads to depletion of the resource and degradation of water quality. In the agricultural Berambadi catchment (84km2, Southern India, part of the environmental observatory BVET/ Kabini CZO) the groundwater table level and chemistry are monitored in 200 tube wells. We recently demonstrated that in this watershed, irrigation history and groundwater depletion can lead to hot spots of NO3 concentration in groundwater, up to 360 ppm (Buvaneshwari et al., 2017). Here we focus on the respective roles of evapotranspiration, groundwater recycling and chemical fertilizer application on chlorine concentration [Cl] in groundwater. Groundwater [Cl] in Berambadi spans over two orders of magnitude with hotspots up to 380 ppm. Increase in groundwater [Cl] results from evapotranspiration and recycling, that concentrates the rain Cl inputs ("Natural [Cl]") and/or from KCl fertilization ("Anthropogenic [Cl]"). To quantify the origin of Cl in each tube well, we used a novel method based on (1) a reference element, sodium, originating only from atmosphere and Na-plagioclase weathering and (2) data from a nearby pristine site, the Mule Hole forested watershed (Riotte et al., 2014). In the forested watershed, the ranges of Cl concentration and Na/Cl molar ratio are 9-23 ppm and 2

  9. SEASONAL VARIATIONS IN GROUNDWATER QUALITY OF ...

    African Journals Online (AJOL)

    2015-02-05

    Feb 5, 2015 ... investigation is focused on seasonal variation in groundwater quality of Valsad district of south Gujarat (India). Groundwater ... natural resource that has to be conserved and preserved for sustenance of life in future [1]. Groundwater was ... The groundwater quality may also vary with seasonal changes [2].

  10. Impact of over-exploitation on groundwater quality: A case study ...

    Indian Academy of Sciences (India)

    The WR-2 watershed is located in the Deccan trap basaltic terrain of Maharashtra State, India. The watershed area incorporates a rich orange orchard belt that requires a huge quantity of water for irrigation. This requirement is mostly met through groundwater, extracted from the shallow aquifers of the WR-2 watershed.

  11. Groundwater quality mapping in urban groundwater using GIS.

    Science.gov (United States)

    Nas, Bilgehan; Berktay, Ali

    2010-01-01

    Konya City, located in the central part of Turkey, has grown and urbanized rapidly. A large amount of the water requirement of Konya City is supplied from groundwater. The quality of this groundwater was determined by taking samples from 177 of the wells within the study area. The purposes of this investigation were (1) to provide an overview of present groundwater quality and (2) to determine spatial distribution of groundwater quality parameters such as pH, electrical conductivity, Cl-, SO4(-2), hardness, and NO3- concentrations, and (3) to map groundwater quality in the study area by using GIS and Geostatistics techniques. ArcGIS 9.0 and ArcGIS Geostatistical Analyst were used for generation of various thematic maps and ArcGIS Spatial Analyst to produce the final groundwater quality map. An interpolation technique, ordinary kriging, was used to obtain the spatial distribution of groundwater quality parameters. The final map shows that the southwest of the city has optimum groundwater quality, and, in general, the groundwater quality decreases south to north of the city; 5.03% (21.51 km2) of the total study area is classified to be at the optimum groundwater quality level.

  12. Integrated assessment of the impact of climate and land use changes on groundwater quantity and quality in the Mancha Oriental system (Spain)

    Science.gov (United States)

    Pulido-Velazquez, M.; Peña-Haro, S.; García-Prats, A.; Mocholi-Almudever, A. F.; Henriquez-Dole, L.; Macian-Sorribes, H.; Lopez-Nicolas, A.

    2015-04-01

    Climate and land use change (global change) impacts on groundwater systems cannot be studied in isolation. Land use and land cover (LULC) changes have a great impact on the water cycle and contaminant production and transport. Groundwater flow and storage are changing in response not only to climatic changes but also to human impacts on land uses and demands, which will alter the hydrologic cycle and subsequently impact the quantity and quality of regional water systems. Predicting groundwater recharge and discharge conditions under future climate and land use changes is essential for integrated water management and adaptation. In the Mancha Oriental system (MOS), one of the largest groundwater bodies in Spain, the transformation from dry to irrigated lands during the last decades has led to a significant drop of the groundwater table, with the consequent effect on stream-aquifer interaction in the connected Jucar River. Understanding the spatial and temporal distribution of water quantity and water quality is essential for a proper management of the system. On the one hand, streamflow depletion is compromising the dependent ecosystems and the supply to the downstream demands, provoking a complex management issue. On the other hand, the intense use of fertilizer in agriculture is leading to locally high groundwater nitrate concentrations. In this paper we analyze the potential impacts of climate and land use change in the system by using an integrated modeling framework that consists in sequentially coupling a watershed agriculturally based hydrological model (Soil and Water Assessment Tool, SWAT) with a groundwater flow model developed in MODFLOW, and with a nitrate mass-transport model in MT3DMS. SWAT model outputs (mainly groundwater recharge and pumping, considering new irrigation needs under changing evapotranspiration (ET) and precipitation) are used as MODFLOW inputs to simulate changes in groundwater flow and storage and impacts on stream

  13. Assessment of groundwater quality impacts due to use of coal combustion byproducts to control subsidence from underground mines.

    Science.gov (United States)

    Singh, G; Paul, B C

    2001-06-01

    Coal combustion byproducts are to be placed in an underground coal mine to control subsidence. The materials were characterized to determine potential groundwater impacts. No problems were found with respect to heavy or toxic metals. Coal combustion byproduct leachates are high in dissolved solids and sulfates. Chloride and boron from fly ash may also leach in initially high concentrations. Because the demonstration site is located beneath deep tight brine-bearing aquifers, no problems are anticipated at the demonstration site.

  14. Modeling groundwater flow and quality

    Science.gov (United States)

    Konikow, Leonard F.; Glynn, Pierre D.; Selinus, Olle

    2013-01-01

    In most areas, rocks in the subsurface are saturated with water at relatively shallow depths. The top of the saturated zone—the water table—typically occurs anywhere from just below land surface to hundreds of feet below the land surface. Groundwater generally fills all pore spaces below the water table and is part of a continuous dynamic flow system, in which the fluid is moving at velocities ranging from feet per millennia to feet per day (Fig. 33.1). While the water is in close contact with the surfaces of various minerals in the rock material, geochemical interactions between the water and the rock can affect the chemical quality of the water, including pH, dissolved solids composition, and trace-elements content. Thus, flowing groundwater is a major mechanism for the transport of chemicals from buried rocks to the accessible environment, as well as a major pathway from rocks to human exposure and consumption. Because the mineral composition of rocks is highly variable, as is the solubility of various minerals, the human-health effects of groundwater consumption will be highly variable.

  15. Does Disposing of Construction and Demolition Debris in Unlined Landfills Impact Groundwater Quality? Evidence from 91 Landfill Sites in Florida.

    Science.gov (United States)

    Powell, Jon T; Jain, Pradeep; Smith, Justin; Townsend, Timothy G; Tolaymat, Thabet M

    2015-08-04

    More than 1,500 construction and demolition debris (CDD) landfills operate in the United States (U.S.), and U.S. federal regulations do not require containment features such as low-permeability liners and leachate collection systems for these facilities. Here we evaluate groundwater quality from samples collected in groundwater monitoring networks at 91 unlined, permitted CDD landfills in Florida, U.S. A total of 460,504 groundwater sample results were analyzed, with a median of 10 years of quarterly or semiannual monitoring data per site including more than 400 different chemical constituents. Downgradient concentrations of total dissolved solids, sulfate, chloride, iron, ammonia-nitrogen, and aluminum were greater than upgradient concentrations (p < 0.05). At downgradient wells where sulfate concentrations were greater than 150 mg/L (approximately 10% of the maximum dissolved sulfate concentration in water, which suggests the presence of leachate from the landfill), iron and arsenic were detected in 91% and 43% of samples, with median concentrations of 1,900 μg/L and 11 μg/L, respectively. These results show that although health-based standards can be exceeded at unlined CDD landfills, the magnitude of detected chemical concentrations is generally small and reflective of leached minerals from components (wood, concrete, and gypsum drywall) that comprise the bulk of discarded CDD by mass.

  16. Does leaching of naturally occurring radionuclides from roadway pavements stabilised with coal fly ash have negative impacts on groundwater quality and human health?

    Science.gov (United States)

    Almahayni, T; Vanhoudt, N

    2018-05-05

    We assessed the potential impact of using coal fly ash to stabilise roadway pavements on groundwater quality and human health. The leaching potential of naturally occurring radionuclides (NORs) typically present in the fly ash was assessed with the HYDRUS-1D code and data representative of a segment of the Wisconsin State Trunk Highway 60 as a case study. Our assessment suggests that the impact would be mainly from the chemical toxicity of uranium (U). In our particular case study, U concentration in the leachate exceeded the maximum contaminant level for this element (MCL = 30 μg L -1 ) in almost all the scenarios. In the groundwater, the MCL was only exceeded under conditions of high leaching and low dilution in the aquifer. The radiological toxicity from the consumption of the contaminated groundwater by a hypothetical adult, however, was at maximum 43% of the individual dose criterion (IDC = 0.1 mSv y -1 ). The results also highlight the need to consider site-specific conditions such as climate and hydrogeology when assessing the environmental impacts of utilising fly ash in roadway construction applications since they could have profound effects on the assessment findings. There is also a pressing need for reliable and representative data to support realistic assessments. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Predicted impacts of land use change on groundwater recharge of ...

    African Journals Online (AJOL)

    2012-04-13

    Apr 13, 2012 ... images from 1984, 1992, 2002, and 2008, and to predict the impact of these land use changes on groundwater recharge. For ... Policy intention is to maintain a balance between demand, quantity and quality of groundwater. Land use change is a major factor affecting the .... tion in the channel network.

  18. Assessment of Groundwater Quality in Shallow

    African Journals Online (AJOL)

    This paper investigates the aquifer system and groundwater quality of Okrika Island using lithological logs, static ... quantity is as important as its quality. This is ..... Ibadan, Evans. Brothers Nigeria Limited. Olobaniyi, S.B. and Owoyemi, F.B. 2006. Characterization by factor analysis of the chemical facies of groundwater in the.

  19. ASSESSMENT OF WATER QUALITY INDEX FOR GROUNDWATER ...

    African Journals Online (AJOL)

    2013-12-31

    COD) and metals like Copper (Cu), Lead (Pb) and Manganese (Mn). The WQI for Valsad district suggests that the groundwater quality is marginal. Key Words: Ground Water, Water quality index, Valsad District, Gujarat. 1.

  20. Effects Of Leaky Sewers On Groundwater Quality

    Science.gov (United States)

    Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Oswald, S. E.; Schirmer, M.

    2007-12-01

    The impact of urban areas on groundwater quality has become an emerging research field in hydrogeology. Urban subsurface infrastructures like sewer networks are often leaky, so untreated wastewater may enter the urban aquifer. The transport of wastewater into the groundwater is still not well understood under field conditions. In the research platform WASSER Leipzig (Water And Sewershed Study of Environmental Risk in Leipzig- Germany) the effects of leaky sewers on the groundwater quality are investigated. The research is focused on the occurrence and transport of so-called "xenobiotics" such as pharmaceuticals and personal care product additives. Xenobiotics may pose a threat on human health, but can also be considered a marker for an urban impact on water resources. A new test site was established in Leipzig to quantify mass fluxes of xenobiotics into the groundwater from a leaky sewer. Corresponding to the leaks which were detected by closed circuit television inspections, monitoring wells were installed up- and downstream of the sewer. Concentrations of eight xenobiotics (technical-nonylphenol, bisphenol-a, caffeine, galaxolide, tonalide, carbamazepine, phenazone, ethinylestradiol) obtained from first sampling programmes were found to be highly heterogeneous, but a relation between the position of the sampling points and the sewer could not be clearly identified. However, concentrations of sodium, chloride, potassium and nitrate increased significantly downstream of the sewer which may be due to wastewater exfiltration, since no other source is known on the water flowpath from the upstream to the downstream wells. Because of the highly heterogeneous spatial distribution of xenobiotics at the test site, a monitoring concept was developed comprising both high-resolution sampling and an integral approach to obtain representative average concentrations. Direct-push techniques were used to gain insight into the fine-scale spatial distribution of the target compounds

  1. Hydrogeochemistry and groundwater quality assessment of Ranipet ...

    Indian Academy of Sciences (India)

    This poses a problem of supply of safe drinking water in the rural parts of the country. A study was carried out to assess the groundwater pollution and identify major variables affecting the groundwater quality in Ranipet industrial area. Twenty five wells were monitored during pre- and post-monsoon in 2008 and analyzed for ...

  2. Deciphering groundwater quality for irrigation and domestic ...

    Indian Academy of Sciences (India)

    For determination of the drinking suitability standard of groundwater, three parameters have been considered – total hardness (TH), Piper's trilinear diagram and water quality index study. Groundwater of the present study area has been found to be moderately-hard to hard during both sampling sessions and hence poses ...

  3. Implications of groundwater quality to corrosion problem and urban ...

    African Journals Online (AJOL)

    Bheema

    Implications of groundwater quality to corrosion problem and urban planning in. Mekelle area, Northern ... Describing the overall water quality and its impact on water pipes in the Mekelle area is complicated due to the spatial ...... Cities of theFuture:Towards Integrated Sustainable Water and Landscape. Management.

  4. Hydrogeochemical analysis and evaluation of groundwater quality ...

    Indian Academy of Sciences (India)

    ical parameters of groundwater such as pH, electrical conductivity (EC), total dissolved solids. (TDS), Sodium (Na+) ... of the aquatic systems of the Gadilam river basin show that the groundwater is near-acidic to alkaline and ... leaching of secondary salts and anthropogenic impact by industry and salt water intrusion. Spatial.

  5. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  6. Impact of hydrological alterations on river-groundwater exchange and water quality in a semi-arid area: Nueces River, Texas.

    Science.gov (United States)

    Murgulet, Dorina; Murgulet, Valeriu; Spalt, Nicholas; Douglas, Audrey; Hay, Richard G

    2016-12-01

    There is a lack of understanding and methods for assessing the effects of anthropogenic disruptions, (i.e. river fragmentation due to dam construction) on the extent and degree of groundwater-surface water interaction and geochemical processes affecting the quality of water in semi-arid, coastal catchments. This study applied a novel combination of electrical resistivity tomography (ERT) and elemental and isotope geochemistry in a coastal river disturbed by extended drought and periodic flooding due to the operation of multiple dams. Geochemical analyses show that the saltwater barrier causes an increase in salinity in surface water in the downstream river as a result of limited freshwater inflows, strong evaporation effects on shallow groundwater and mostly stagnant river water, and is not due to saltwater intrusion by tidal flooding. Discharge from bank storage is dominant (~84%) in the downstream fragment and its contribution could increase salinity levels within the hyporheic zone and surface water. When surface water levels go up due to upstream freshwater releases the river temporarily displaces high salinity water trapped in the hyporheic zone to the underlying aquifer. Geochemical modeling shows a higher contribution of distant and deeper groundwater (~40%) in the upstream river and lower discharge from bank storage (~13%) through the hyporheic zone. Recharge from bank storage is a source of high salt to both upstream and downstream portions of the river but its contribution is higher below the dam. Continuous ERT imaging of the river bed complements geochemistry findings and indicate that while lithologically similar, downstream of the dam, the shallow aquifer is affected by salinization while fresher water saturates the aquifer in the upstream fragment. The relative contribution of flows (i.e. surface water releases or groundwater discharge) as related to the river fragmentation control changes of streamwater chemistry and likely impact the interpretation

  7. Study of the impact of land use and hydrogeological settings on the shallow groundwater quality in a peri-urban area of Kampala, Uganda.

    Science.gov (United States)

    Kulabako, N R; Nalubega, M; Thunvik, R

    2007-08-01

    A study to assess the impacts of land use and hydrogeological characteristics on the shallow groundwater in one of Kampala's peri-urban areas (Bwaise III Parish) was undertaken for a period of 19 months. Water quality monitoring was carried out for 16 installed wells and one operational protected spring to ascertain the seasonal variation. The aspects of hydrogeological setting investigated in the study were the subsurface unconsolidated material characteristics (stratigraphy, lithology, hydraulic conductivity, porosity and chemical content), seasonal groundwater depths and spring discharge, topography and rainfall of the area. Both laboratory and field measurements were carried out to determine the soil and water characteristics. Field surveys were also undertaken to identify and locate the various land use activities that may potentially pollute. The results demonstrate that the water table in the area responds rapidly to short rains (48 h) due to the pervious (10(-5)-10(-3) ms(-1)) and shallow (water quality deterioration following the rains. There is widespread contamination of the groundwater with high organic (up to 370 mgTKN/l and 779 mgNO-3/l), thermotolerant coliforms (TTCs) and faecal streptococci (FS) (median values as high as 126E3 cfu/100 ml and 154E3 cfu/100 ml respectively) and total phosphorus (up to 13 mg/l) levels originating from multiple sources of contamination. These include animal rearing, solid waste dumping, pit latrine construction and greywater/stormwater disposal in unlined channels leading to increased localised microbial (faecal) and organic (TKN/NO-3) contamination during the rains. The spring discharge (range 1.22-1.48 m3/h) with high nitrate levels (median values of 117 and 129 mg/l in the wet and dry seasons) did not vary significantly with season (p=0.087) suggesting that this source is fed by regional base flow. However, the microbial quality deterioration observed in the spring discharge after a rain event (median values of 815

  8. Assessing Potential Impacts of CO2 Leakage on Shallow Groundwater Quality in the SECARB Phase III Early Test site Using Single-well Push-Pull Tests

    Science.gov (United States)

    Yang, C.; Mickler, P. J.; Reedy, R. C.; Scanlon, B. R.

    2012-12-01

    A single-well push-pull test was conducted in the Cranfield shallow aquifer, the SECARB Phase III early test site, for assessing potential impacts of CO2 leakage on groundwater quality. A total of 3800 liter of groundwater equilibrated with CO2 gas at a partial pressure of 1.105 Pa was injected into a confined sand interval at ~ 70 m depth. NaBr solution was added to the injected solution as tracer. The injected groundwater incubated within the interval for about two days. Chemical parameters (pH, temperature, alkalinity, and electric conductivity) were measured on-site and water samples were collected for chemical (major ions, trace elements, and dissolved inorganic carbon, DIC) as well as for stable carbon isotopic analyses. Mineralogical analyses using XR-D and SEM techniques indicate that aquifer sediments are dominated by silicates. Concentrations of the Br tracer in the recovered samples show mixing of background water with the injected solution. Major ions, especially, Ca, Mg, K, and Si show obvious enrichment, indicating that mobilization of these ions occurred from aquifer sediments to groundwater and may be dominated by dissolution of silicates and possible carbonate minerals. δ13C of DIC of the recovered samples may also suggest potential dissolution of carbonates. Concentrations of trace elements show mobilization after injection of CO2 enriched groundwater. Mobilization of trace elements could be due to co-dissolution of silicates and carbonates and desorption from the surface of aquifer sediments. However, mass balance calculations suggest that ion mobilization is limited and; therefore, potential risks of CO2 are low, especially for arsenic and lead with concentrations in the recovered samples ~30 times less than the EPA maximum contamination level. Results of the single-well push-pull test were also compared to a laboratory batch experiment of water-rock-CO2 interactions. Overall reaction rates of most ions estimated are higher in the batch

  9. Summary of Groundwater Quality Impacts of Uranium Mining and Milling Activities in the Grants Mining District, New Mexico

    Science.gov (United States)

    Sample groundwater collection began in late February 1975 in the Ambrosia Lake-Bluewater area. It proceeded to Paguate Jackpile and was finally completed in the Gallup-Churchrock area in early March 1975.

  10. Assessment of the Impact of Industrial Effluents on Groundwater Quality in Okhla Industrial Area, New Delhi, India

    Directory of Open Access Journals (Sweden)

    Wequar Ahmad Siddiqui

    2009-01-01

    Full Text Available In the present study physicochemical parameters like pH, hardness, TDS, chloride, sulphate, nitrate, fluoride, DO, COD and conductivity of some important heavy metals such as iron, cobalt, cadmium, lead, mercury, chromium, selenium and arsenic were first analyzed in effluent water of Okhla industrial area phase-II and then groundwater of near by areas. Obtained values of effluent water were compared with ISI standard for effluent water discharge and groundwater values were compared with ISI and WHO drinking water standards. The result shows that discharge of untreated effluents by the industries is leading to contamination of groundwater of the surrounding areas. Lead, mercury, fluoride, TDS, sulphate was above the desirable limit in effluent water (ISI standard for effluent water discharge. Subsequent analysis of groundwater of nearby areas was rated as unacceptable for drinking because of presence of fluoride in all the samples above the desirable limit. Lead, mercury, cadmium, chloride was also detected in many samples.

  11. Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production.

    Science.gov (United States)

    Bonte, Matthijs; van Breukelen, Boris M; Stuyfzand, Pieter J

    2013-09-15

    Aquifers used for the production of drinking water are increasingly being used for the generation of shallow geothermal energy. This causes temperature perturbations far beyond the natural variations in aquifers and the effects of these temperature variations on groundwater quality, in particular trace elements, have not been investigated. Here, we report the results of column experiments to assess the impacts of temperature variations (5°C, 11°C, 25°C and 60°C) on groundwater quality in anoxic reactive unconsolidated sandy sediments derived from an aquifer system widely used for drinking water production in the Netherlands. Our results showed that at 5 °C no effects on water quality were observed compared to the reference of 11°C (in situ temperature). At 25°C, As concentrations were significantly increased and at 60 °C, significant increases were observed pH and DOC, P, K, Si, As, Mo, V, B, and F concentrations. These elements should therefore be considered for water quality monitoring programs of shallow geothermal energy projects. No consistent temperature effects were observed on Na, Ca, Mg, Sr, Fe, Mn, Al, Ba, Co, Cu, Ni, Pb, Zn, Eu, Ho, Sb, Sc, Yb, Ga, La, and Th concentrations, all of which were present in the sediment. The temperature-induced chemical effects were probably caused by (incongruent) dissolution of silicate minerals (K and Si), desorption from, and potentially reductive dissolution of, iron oxides (As, B, Mo, V, and possibly P and DOC), and mineralisation of sedimentary organic matter (DOC and P). Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Impact of land-use on groundwater quality: GIS-based study from an alluvial aquifer in the western Ganges basin

    Science.gov (United States)

    Khan, Arina; Khan, Haris Hasan; Umar, Rashid

    2017-12-01

    In this study, groundwater quality of an alluvial aquifer in the western Ganges basin is assessed using a GIS-based groundwater quality index (GQI) concept that uses groundwater quality data from field survey and laboratory analysis. Groundwater samples were collected from 42 wells during pre-monsoon and post-monsoon periods of 2012 and analysed for pH, EC, TDS, Anions (Cl, SO4, NO3), and Cations (Ca, Mg, Na). To generate the index, several parameters were selected based on WHO recommendations. The spatially variable grids of each parameter were modified by normalizing with the WHO standards and finally integrated into a GQI grid. The mean GQI values for both the season suggest good groundwater quality. However, spatial variations exist and are represented by GQI map of both seasons. This spatial variability was compared with the existing land-use, prepared using high-resolution satellite imagery available in Google earth. The GQI grids were compared to the land-use map using an innovative GIS-based method. Results indicate that the spatial variability of groundwater quality in the region is not fully controlled by the land-use pattern. This probably reflects the diffuse nature of land-use classes, especially settlements and plantations.

  13. Groundwater quality impacts from the land application of treated municipal wastewater in a large karstic spring basin: Chemical and microbiological indicators

    Science.gov (United States)

    Katz, B.G.; Griffin, Dale W.; Davis, J.H.

    2009-01-01

    Geochemical and microbiological techniques were used to assess water-quality impacts from the land application of treated municipal wastewater in the karstic Wakulla Springs basin in northern Florida. Nitrate-N concentrations have increased from about 0.2 to as high as 1.1??mg/L (milligrams per liter) during the past 30??years in Wakulla Springs, a regional discharge point for groundwater (mean flow about 11.3??m3/s) from the Upper Floridan aquifer (UFA). A major source of nitrate to the UFA is the approximately 64??million L/d (liters per day) of treated municipal wastewater applied at a 774??ha (hectare) sprayfield farming operation. About 260 chemical and microbiological indicators were analyzed in water samples from the sprayfield effluent reservoir, wells upgradient from the sprayfield, and from 21 downgradient wells and springs to assess the movement of contaminants into the UFA. Concentrations of nitrate-N, boron, chloride, were elevated in water samples from the sprayfield effluent reservoir and in monitoring wells at the sprayfield boundary. Mixing of sprayfield effluent water was indicated by a systematic decrease in concentrations of these constituents with distance downgradient from the sprayfield, with about a 10-fold dilution at Wakulla Springs, about 15??km (kilometers) downgradient from the sprayfield. Groundwater with elevated chloride and boron concentrations in wells downgradient from the sprayfield and in Wakulla Springs had similar nitrate isotopic signatures, whereas the nitrate isotopic composition of water from other sites was consistent with inorganic fertilizers or denitrification. The sprayfield operation was highly effective in removing most studied organic wastewater and pharmaceutical compounds and microbial indicators. Carbamazepine (an anti-convulsant drug) was the only pharmaceutical compound detected in groundwater from two sprayfield monitoring wells (1-2??ppt). One other detection of carbamazepine was found in a distant well

  14. Using chemical and microbiological indicators to track the impacts from the land application of treated municipal wastewater and other sources on groundwater quality in a karstic springs basin

    Science.gov (United States)

    Katz, B.G.; Griffin, Dale W.

    2008-01-01

    Multiple chemical constituents (nutrients; N, O, H, C stable isotopes; 64 organic wastewater compounds, 16 pharmaceutical compounds) and microbiological indicators were used to assess the impact on groundwater quality from the land application of approximately 9.5 million liters per day of treated municipal sewage effluent to a sprayfield in the 960-km2 Ichetucknee Springs basin, northern Florida. Enriched stable isotope signatures (?? 18O and ??2H) were found in water from the effluent reservoir and a sprayfield monitoring well (MW-7) due to evaporation; however, groundwater samples downgradient from the sprayfield have ??18O and ??2H concentrations that represented recharge of meteoric water. Boron and chloride concentrations also were elevated in water from the sprayfield effluent reservoir and MW-7, but concentrations in groundwater decreased substantially with distance downgradient to background levels in the springs (about 12 km) and indicated at least a tenfold dilution factor. Nitrate-nitrogen isotope (??15N-NO3) values above 10 ??? in most water samples were indicative of organic nitrogen sources except Blue Hole Spring (??15N-NO3 = 4.6-4.9 ???), which indicated an inorganic source of nitrogen (fertilizers). The detection of low concentrations the insect repellent N,N-diethyl-metatoluamide (DEET), and other organic compounds associated with domestic wastewater in Devil's Eye Spring indicated that leakage from a nearby septic tank drainfield likely has occurred. Elevated levels of fecal coliforms and enterococci were found in Blue Hole Spring during higher flow conditions, which likely resulted from hydraulic connections to upgradient sinkholes and are consistent with previoius dye-trace studies. Enteroviruses were not detected in the sprayfield effluent reservoir, but were found in low concentrations in water samples from a downgradient well and Blue Hole Spring during high-flow conditions indicating a human wastewater source. The Upper Floridan aquifer in

  15. Using chemical and microbiological indicators to track the impacts from the land application of treated municipal wastewater and other sources on groundwater quality in a karstic springs basin

    Science.gov (United States)

    Katz, Brian G.; Griffin, Dale W.

    2008-08-01

    Multiple chemical constituents (nutrients; N, O, H, C stable isotopes; 64 organic wastewater compounds, 16 pharmaceutical compounds) and microbiological indicators were used to assess the impact on groundwater quality from the land application of approximately 9.5 million liters per day of treated municipal sewage effluent to a sprayfield in the 960-km2 Ichetucknee Springs basin, northern Florida. Enriched stable isotope signatures (δ18O and δ2H) were found in water from the effluent reservoir and a sprayfield monitoring well (MW-7) due to evaporation; however, groundwater samples downgradient from the sprayfield have δ18O and δ2H concentrations that represented recharge of meteoric water. Boron and chloride concentrations also were elevated in water from the sprayfield effluent reservoir and MW-7, but concentrations in groundwater decreased substantially with distance downgradient to background levels in the springs (about 12 km) and indicated at least a tenfold dilution factor. Nitrate-nitrogen isotope (δ15N NO3) values above 10 ‰ in most water samples were indicative of organic nitrogen sources except Blue Hole Spring (δ15N NO3 = 4.6 4.9 ‰), which indicated an inorganic source of nitrogen (fertilizers). The detection of low concentrations the insect repellent N, N-diethyl-metatoluamide (DEET), and other organic compounds associated with domestic wastewater in Devil’s Eye Spring indicated that leakage from a nearby septic tank drainfield likely has occurred. Elevated levels of fecal coliforms and enterococci were found in Blue Hole Spring during higher flow conditions, which likely resulted from hydraulic connections to upgradient sinkholes and are consistent with previoius dye-trace studies. Enteroviruses were not detected in the sprayfield effluent reservoir, but were found in low concentrations in water samples from a downgradient well and Blue Hole Spring during high-flow conditions indicating a human wastewater source. The Upper Floridan aquifer

  16. Physicochemical Characteristics of groundwater quality from Yola ...

    African Journals Online (AJOL)

    MICHAEL

    ABSTRACT: Some physicochemical parameters related to groundwater quality obtained from Yola Area of. Northeastern Nigeria was investigated for the purpose of drinking and irrigation. An attempt was also made to develop linear regression equations to predict the concentration of water quality having significant ...

  17. Public policy perspective on groundwater quality

    International Nuclear Information System (INIS)

    Libby, L.W.

    1990-01-01

    Groundwater pollution problems are fundamentally institutional problems. The means for reducing contamination are institutional: the mix of incentives, rights and obligations confronting resource users. Only changes in the rights and obligations of users or the economic and social cost of water use options will reduce groundwater pollution. Policy is the process by which those changes are made. The essential purpose of groundwater quality policy is to change water use behavior. For the most part, people do respond to evidence that a failure to change could be painful. New information can produce the support necessary for regulation or other policy change. It is essential to maintain healthy respect for the rights and intentions of individuals. Improved understanding of human behavior is essential to success in groundwater policy

  18. Groundwater impacts of solution mining

    International Nuclear Information System (INIS)

    Peters, J.L.; Charbeneau, R.J.

    1985-01-01

    In some cases the mining of certain minerals can be achieved without the large-scale excavations involved in open pit or shaft mining. Instead, water is used to liquify the desired mineral so that it can be readily removed without disturbing the host medium or intervening deposits. In Texas this solution mining technique is used in the mining of brines, sodium sulfate, sulfur, and uranium. The advantages stem from the nondisturbing nature of the method that leaves the surface and subsurface physically intact. This is advantageous not only during mining, but also upon its termination when there is a minimum restoration requirement of the terrain. However, in some cases these advantages may be somewhat offset when a considerable chemical restoration of a host aquifer is required. The situation is considerably different with the solution (in situ) mining of uranium since these deposits often occur in usable quality groundwater aquifers. There are twenty-eight permitted sites in Texas. Eight have not yet been mined. This paper discusses the solution mining of uranium in Texas

  19. Groundwater impact on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    NARCIS (Netherlands)

    Yu, L.; Rozemeijer, J.; Breukelen, B.M. van; Ouboter, M.; Vlugt, C. van der; Broers, H.P.

    2018-01-01

    The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and

  20. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments : Monitoring the greater Amsterdam area

    NARCIS (Netherlands)

    Yu, Liang; Rozemeijer, Joachim; van Breukelen, B.M.; Ouboter, Maarten; Van Der Vlugt, Corné; Broers, Hans Peter

    2018-01-01

    The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage,

  1. Legacy Nitrate Impacts on Groundwater and Streams

    Science.gov (United States)

    Tesoriero, A. J.; Juckem, P. F.; Miller, M. P.

    2017-12-01

    Decades of recharge of high-nitrate groundwater have created a legacy—a mass of high-nitrate groundwater—that has implications for future nitrate concentrations in groundwater and in streams. In the United States, inorganic nitrogen fertilizer applications to the land surface have increased ten-fold since 1950, resulting in sharp increases in nitrate concentrations in recharging groundwater, which pose a risk to deeper groundwater and streams. This study assesses the factors that control time lags and eventual concentrations of legacy nitrate in groundwater and streams. Results from the USGS National Water-Quality Assessment Project are presented which elucidate nitrate trends in recharging groundwater, delineate redox zones and assess groundwater and stream vulnerability to legacy nitrate sources on a regional scale. This study evaluated trends and transformations of agricultural chemicals based on groundwater age and water chemistry data along flow paths from recharge areas to streams at 20 study sites across the United States. Median nitrate recharge concentrations in these agricultural areas have increased markedly over the last 50 years, from 4 to 7.5 mg N/L. The effect that nitrate accumulation in shallow aquifers will have on drinking water quality and stream ecosystems is dependent on the redox zones encountered along flow paths and on the age distribution of nitrate discharging to supply wells and streams. Delineating redox zones on a regional scale is complicated by the spatial variability of reaction rates. To overcome this limitation, we applied logistic regression and machine learning techniques to predict the probability of a specific redox condition in groundwater in the Chesapeake Bay watershed and the Fox-Wolf-Peshtigo study area in Wisconsin. By relating redox-active constituent concentrations in groundwater samples to indicators of residence time and/or electron donor availability, we were able to delineate redox zones on a regional scale

  2. Quality of groundwater resources in Afghanistan.

    Science.gov (United States)

    Hayat, Ehsanullah; Baba, Alper

    2017-07-01

    Water is the main source of energy production and economy in Afghanistan where agriculture accounts for more than 50% of the country's gross domestic product (GDP). Access to safe drinking water is still a problem in the country, which has caused different health issues and even child mortality especially in rural areas. Groundwater is the main source of drinking water in the country. However, little knowledge is available about the quality of groundwater throughout the entire country, and its quality has not been investigated extensively yet like in other countries in the world. While most people think that consuming groundwater is a reliable and safe source of drinking water for health, the United Nations (UN) agencies report various kinds of waterborne diseases and even child mortalities due to drinking water quality in the country. In this article, significant geogenic and anthropogenic factors that play a vital role in groundwater contamination of the country are identified and explained. Different geogenic contaminations such as arsenic, fluoride, sulfate, and boron occur in several areas of Afghanistan that have a direct effect on human health. The water quality mapping for Afghanistan is completed for half of the country, which shows that groundwater is plagued by high levels of fluoride and arsenic in some areas. The water quality mapping of the other half of the country cannot be completed due to security concerns currently. Also, there are different kinds of waterborne diseases such as diarrhea, cholera, and dysentery that can be seen in different parts of the country because of anthropogenic activities which continuously deteriorate groundwater.

  3. Groundwater quality in Coachella Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Coachella Valley is one of the study areas being evaluated. The Coachella study area is approximately 820 square miles (2,124 square kilometers) and includes the Coachella Valley groundwater basin (California Department of Water Resources, 2003). Coachella Valley has an arid climate, with average annual rainfall of about 6 inches (15 centimeters). The runoff from the surrounding mountains drains to rivers that flow east and south out of the study area to the Salton Sea. Land use in the study area is approximately 67 percent (%) natural, 21% agricultural, and 12% urban. The primary natural land cover is shrubland. The largest urban areas are the cities of Indio and Palm Springs (2010 populations of 76,000 and 44,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Coachella Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Coachella Valley are completed to depths between 490 and 900 feet (149 to 274 meters), consist of solid casing from the land surface to a depth of 260 to 510 feet (79 to 155 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to

  4. Seasonal evaluation of groundwater quality around Igando ...

    African Journals Online (AJOL)

    Correlation and Multiple linear regression analysis was used to establish the degree of relationship and variability of groundwater quality parameters around Solous 1 and 2 Dumpsites, in Igando, Lagos, for the wet and the dry seasons. The correlation between TDS and other hydrochemical parameters which constituted ...

  5. Principal component analysis of groundwater quality data ...

    African Journals Online (AJOL)

    The physico-chemical quality data of groundwater extracted from 36 boreholes in Ho Municipality indicated that 11 sources recorded pH values outside WHO guideline range, while 5 recorded turbidity levels above WHO guideline limits. Sodium levels ranged from 1.80 to 544 mg/L with a mean of 111 ± 132 mg/l; chloride ...

  6. Assessing potential impacts of a wastewater rapid infiltration basin system on groundwater quality: a delaware case study.

    Science.gov (United States)

    Andres, A S; Sims, J Thomas

    2013-01-01

    Rapid infiltration basin systems (RIBS) are receiving increased interest for domestic wastewater disposal in rural areas. They rely on natural treatment processes to filter pollutants and use extremely high effluent loading rates, much greater than natural precipitation, applied to a small geographic area instead of disposal to surface water. Concerns exist today that adopting RIBS in areas with shallow groundwater and sandy soils may increase ground and surface water pollution. We conducted a field study of RIBS effects on N and P concentrations in soils and groundwater at Cape Henlopen State Park, Delaware, where a RIBS designed and operated following USEPA guidance has been used for >25 yr. Site and wastewater characteristics (water table of 8 m, Fe- and Al-oxide coatings on soils, organic-rich effluent) were favorable for denitrification and P sorption; however, we found high P saturation, reduced soil P sorption capacity, and significant total P accumulation at depths >1.5 m, factors that could lead to dissolved P leaching. Very low soil inorganic N levels suggest that wastewater N was converted rapidly to NO-N and leached from the RIBS. Extensive groundwater monitoring supported these concerns and showed rapid offsite transport of N and P at concentrations similar to the effluent. Results suggest that high hydraulic loads and preferential flow led to flow velocities that were too large, and contact times between effluent and soils that were too short, for effective N and P attenuation processes. These findings indicate the need for better site characterization and facility designs to reduce and monitor contaminant loss from RIBS in similar settings. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Digging navigable waterways through lagoon tidal flats: which short and long-term impacts on groundwater dynamics and quality?

    Science.gov (United States)

    Teatini, Pietro; Isotton, Giovanni; Nardean, Stefano; Ferronato, Massimiliano; Tosi, Luigi; Da Lio, Cristina; Zaggia, Luca; Bellafiore, Debora; Zecchin, Massimo; Baradello, Luca; Corami, Fabiana; Libralato, Giovanni; Morabito, Elisa; Broglia, Riccardo; Zaghi, Stefano

    2017-04-01

    Coastal lagoons are highly valued ephemeral habitats that have experienced in many cases the pressure of human activities since the development of urbanisation and economic activities within or around their boundaries. One typical intervention is dredging of canals to increase the exchange of water with the sea or for navigation purposes. In order to divert the route of large cruise liners from the historic center of Venice, Italy, the Venice Port Authority has recently proposed a project for the dredging of a new 3-km long and 10-m deep navigation canal (called Marghera-Venice Canal, MVC, in the sequel) through the shallows of the Venice Lagoon. The MVC will connect the passenger terminal located in the southwestern part of the historic center to a main channel that reaches the industrial area on the western lagoon margin. Can the new MVC facilitate saltwater intrusion below the lagoon bottom? Can the release into the lagoon of the chemicals detected in the groundwater around the industrial site be favoured by the MVC excavation? Can the depression waves generated by the ship transit (known as ship-wakes) along the MVC affect the flow and contaminant exchange between the subsurface and surficial systems? A response to these questions has been provided by the use of uncoupled and coupled density-dependent groundwater flow and transport simulators. The hydrogeological modelling has been supported by an in-depth characterization of the Venice lagoon subsurface along the MVC. Geophysical surveys, laboratory analyses on groundwater and sediment samples, in-situ measurements through piezometers and pressure sensors, and the outcome of 3D hydrodynamic and computational fluid dynamic (CFD) models have been used to set-up and calibrate the subsurface multi-model approach. The modelling results can be summarized as follows: i) the MVC has a negligible effect in relation to the propagation of the tidal regime into the subsoil; ii) the depression caused by the ship transit

  8. Impact of radionuclide spatial variability on groundwater quality downstream from a shallow waste burial in the Chernobyl Exclusion Zone

    Science.gov (United States)

    Nguyen, H. L.; de Fouquet, C.; Courbet, C.; Simonucci, C. A.

    2016-12-01

    The effects of spatial variability of hydraulic parameters and initial groundwater plume localization on the possible extent of groundwater pollution plumes have already been broadly studied. However, only a few studies, such as Kjeldsen et al. (1995), take into account the effect of source term spatial variability. We explore this question with the 90Sr migration modeling from a shallow waste burial located in the Chernobyl Exclusion Zone to the underlying sand aquifer. Our work is based upon groundwater sampled once or twice a year since 1995 until 2015 from about 60 piezometers and more than 3,000 137Cs soil activity measurements. These measurements were taken in 1999 from one of the trenches dug after the explosion of the Chernobyl nuclear power plant, the so-called "T22 Trench", where radioactive waste was buried in 1987. The geostatistical analysis of 137Cs activity data in soils from Bugai et al. (2005) is first reconsidered to delimit the trench borders using georadar data as a covariable and to perform geostatistical simulations in order to evaluate the uncertainties of this inventory. 90Sr activity in soils is derived from 137Cs/154Eu and 90Sr/154Eu activity ratios in Chernobyl hot fuel particles (Bugai et al., 2003). Meanwhile, a coupled 1D non saturated/3D saturated transient transport model is constructed under the MELODIE software (IRSN, 2009). The previous 90Sr transport model developed by Bugai et al. (2012) did not take into account the effect of water table fluctuations highlighted by Van Meir et al. (2007) which may cause some discrepancies between model predictions and field observations. They are thus reproduced on a 1D vertical non saturated model. The equiprobable radionuclide localization maps produced by the geostatistical simulations are selected to illustrate different heterogeneities in the radionuclide inventory and are implemented in the 1D model. The obtained activity fluxes from all the 1D vertical models are then injected in a 3D

  9. Hydrogeochemical analysis and evaluation of groundwater quality ...

    Indian Academy of Sciences (India)

    of the aquatic systems of the Gadilam river basin show that the groundwater is near-acidic to alkaline and mostly oxidizing in nature. Higher concentration of Sodium and Chloride indicates leaching of secondary salts and anthropogenic impact by industry and salt water intrusion. Spatial distribution of EC indicates ...

  10. A Critical Review of the Impacts of Leaking CO2 Gas and Brine on Groundwater Quality

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zheng, Liange [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bacon, Diana H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawter, Amanda R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brown, Christopher F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-30

    Geological carbon sequestration (GCS) is a global carbon emission reduction strategy involving the capture of CO2 emitted from fossil fuel burning power plants, as well as the subsequent injection of the captured CO2 gas into deep saline aquifers or depleted oil and gas reservoirs. A critical question that arises from the proposed GCS is the potential impacts of CO2 injection on the quality of drinking-water systems overlying CO2 sequestration storage sites. Although storage reservoirs are evaluated and selected based on their ability to safely and securely store emplaced fluids, leakage of CO2 from storage reservoirs is a primary risk factor and potential barrier to the widespread acceptance of geologic CO2 sequestration (OR Harvey et al. 2013; Y-S Jun et al. 2013; DOE 2007). Therefore, a systematic understanding of how CO2 leakage would affect the geochemistry of potable aquifers, and subsequently control or affect elemental and contaminant release via sequential and/or simultaneous abiotic and biotic processes and reactions is vital.

  11. Groundwater impact assessment report for the 284-WB Powerplant Ponds

    International Nuclear Information System (INIS)

    Alexander, D.J.; Johnson, V.G.; Lindsey, K.A.

    1993-09-01

    As required by the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement Milestone M-17-00A), this report assesses the impact of wastewater discharged to the 284-WB Powerplant Ponds on groundwater quality. The assessment reported herein expands upon the initial analysis conducted between 1989 and 1990 for the Liquid Effluent Study Final Project Plan

  12. Groundwater quality in the Mojave area, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Mojave River make up one of the study areas being evaluated. The Mojave study area is approximately 1,500 square miles (3,885 square kilometers) and includes four contiguous groundwater basins: Upper, Middle, and Lower Mojave River Groundwater Basins, and the El Mirage Valley (California Department of Water Resources, 2003). The Mojave study area has an arid climate, and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). Land use in the study area is approximately 82 percent (%) natural (mostly shrubland), 4% agricultural, and 14% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Victorville, Hesperia, and Apple Valley (2010 populations of 116,000, 90,000 and 69,000, respectively). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in the Mojave study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Mojave study area are completed to depths between 200 and 600 feet (18 to 61 meters), consist of solid casing from the land surface to a depth of 130 to 420 feet (40 to 128 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the mountains to the south, mostly through the Mojave River channel. The primary sources

  13. Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production

    NARCIS (Netherlands)

    Bonte, M.; van Breukelen, B.M.; Stuijfzand, P.J.

    2013-01-01

    Aquifers used for the production of drinking water are increasingly being used for the generation of shallow geothermal energy. This causes temperature perturbations far beyond the natural variations in aquifers and the effects of these temperature variations on groundwater quality, in particular

  14. Impact of Spatial Pumping Patterns on Groundwater Management

    Science.gov (United States)

    Yin, J.; Tsai, F. T. C.

    2017-12-01

    Challenges exist to manage groundwater resources while maintaining a balance between groundwater quantity and quality because of anthropogenic pumping activities as well as complex subsurface environment. In this study, to address the impact of spatial pumping pattern on groundwater management, a mixed integer nonlinear multi-objective model is formulated by integrating three objectives within a management framework to: (i) maximize total groundwater withdrawal from potential wells; (ii) minimize total electricity cost for well pumps; and (iii) attain groundwater level at selected monitoring locations as close as possible to the target level. Binary variables are used in the groundwater management model to control the operative status of pumping wells. The NSGA-II is linked with MODFLOW to solve the multi-objective problem. The proposed method is applied to a groundwater management problem in the complex Baton Rouge aquifer system, southeastern Louisiana. Results show that (a) non-dominated trade-off solutions under various spatial distributions of active pumping wells can be achieved. Each solution is optimal with regard to its corresponding objectives; (b) operative status, locations and pumping rates of pumping wells are significant to influence the distribution of hydraulic head, which in turn influence the optimization results; (c) A wide range of optimal solutions is obtained such that decision makers can select the most appropriate solution through negotiation with different stakeholders. This technique is beneficial to finding out the optimal extent to which three objectives including water supply concern, energy concern and subsidence concern can be balanced.

  15. Seasonal variations in groundwater quality of Valsad District of ...

    African Journals Online (AJOL)

    Groundwater is an important precious natural resource. For optimum utilization of water resources, it is necessary to know both the quality as well as quantity of water. The present investigation is focused on seasonal variation in groundwater quality of Valsad district of south Gujarat (India). Groundwater samples from fifteen ...

  16. Groundwater Quality in the Wassa West District of the Western ...

    African Journals Online (AJOL)

    B. K. Kortatsi

    Abstract. Reconnaissance hydrochemical survey of 56 wells was conducted in the Wassa West District with the objective of providing baseline data for the establishment of groundwater quality monitoring stations. The data acquired is used in this paper to assess the quality of groundwater in the District. Groundwaters are ...

  17. Groundwater quality in the Wassa West District of the Western ...

    African Journals Online (AJOL)

    Reconnaissance hydrochemical survey of 56 wells was conducted in the Wassa West District with the objective of providing baseline data for the establishment of groundwater quality monitoring stations. The data acquired is used in this paper to assess the quality of groundwater in the District. Groundwaters are mainly ...

  18. Groundwater quality in the Antelope Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic

  19. Groundwater quality in the Owens Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Owens Valley is one of the study areas being evaluated. The Owens study area is approximately 1,030 square miles (2,668 square kilometers) and includes the Owens Valley groundwater basin (California Department of Water Resources, 2003). Owens Valley has a semiarid to arid climate, with average annual rainfall of about 6 inches (15 centimeters). The study area has internal drainage, with runoff primarily from the Sierra Nevada draining east to the Owens River, which flows south to Owens Lake dry lakebed at the southern end of the valley. Beginning in the early 1900s, the City of Los Angeles began diverting the flow of the Owens River to the Los Angeles Aqueduct, resulting in the evaporation of Owens Lake and the formation of the current Owens Lake dry lakebed. Land use in the study area is approximately 94 percent (%) natural, 5% agricultural, and 1% urban. The primary natural land cover is shrubland. The largest urban area is the city of Bishop (2010 population of 4,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to the Owens Lake dry lakebed. The primary aquifers in Owens Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database

  20. Groundwater quality in the western San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.

    2017-06-09

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Western San Joaquin Valley is one of the study units being evaluated. 

  1. Identifying and assessing human activity impacts on groundwater quality through hydrogeochemical anomalies and NO3-, NH4+, and COD contamination: a case study of the Liujiang River Basin, Hebei Province, P.R. China.

    Science.gov (United States)

    Peng, Cong; He, Jiang-Tao; Wang, Man-Li; Zhang, Zhen-Guo; Wang, Lei

    2018-02-01

    In the face of rapid economic development and increasing human activity, the deterioration of groundwater quality has seriously affected the safety of the groundwater supply in eastern China. Identifying and assessing the impact of human activities is key to finding solutions to this problem. This study is an effort to scientifically and systematically identify and assess the influence of human activities on groundwater based on irregularities in hydrochemical properties and water contamination, which are considered to directly result from anthropogenic activity. The combination of the hydrochemical anomaly identification (HAI) and the contaminant identification (CI) was proposed to identify the influence of human activities on groundwater quality. And the degree of abnormality was quantified by the background threshold value. The principal component analysis (PCA) and land use map were used to verify the reliability of the identification result. The final result show that the strong influence areas mainly distributed in the south of the basin and the affected indicators contained the major elements and NO 3 - , NH 4 + , COD. Impacts from anthropogenic activities can be divided into two types: mine drainage that disrupts natural water-rock interaction processes, agricultural cultivation, and sewage emissions that contribute to nitrate pollution.

  2. Groundwater Quality Assessment Based on Geographical Information System and Groundwater Quality Index

    Directory of Open Access Journals (Sweden)

    Zahra Derakhshan

    2015-06-01

    Full Text Available Iran is located in an arid and semi-arid part of the world. Accordingly, the management of the water resources in the country is a priority. In this regard, determining the quality and pollution of surface water and groundwater is very important, especially in areas where groundwater resources are used for drinking. Groundwater quality index (GQI checks the components of the available water with various quality levels. To assess the quality of drinking groundwater of Yazd-Ardakan plain according to GQI in geographical information system (GIS environment, the electrical conductivity, sodium, calcium, magnesium, chlorine, pH, sodium adsorption ratio, bicarbonate, sulfate, potassium, water hardness, and all substances dissolved in the waters of 80 wells were determined. The samples were obtained from Yazd Regional Water Organization from 2005 to 2014. Using this data, the map components were plotted by Kriging geostatistical method. Then, the map of GQI was prepared after normalizing each map component, switching to a rating map, and extracting the weight of each component from the rating map. Based on the GQI index map, the index point which was 87 in 2005 has increased to 81 in 2014. These maps show a decline in groundwater quality from west to the east region. This decline in groundwater quality is due to the existence of Neogene Organizations in the east and geomorphologic unit of the bare epandage pediment in the west. The map removal and single-parameter sensitivity analysis showed that GQI index in Yazd-Ardakan plain is more sensitive to the components of electrical conductivity (EC, total dissolved solids (TDS, and total hardness (TH. Therefore, these components should be monitored more carefully and repeatedly.

  3. Innovative technique for assessment of groundwater quality

    International Nuclear Information System (INIS)

    Ahmad, N.; Ahmad, M.; Sajjad, M.I.

    2001-07-01

    Groundwater quality of a part of Chaj Doab has been assessed with innovative techniques which are not reported in literature. The concept of triangular coordinates is modified by multi-rectangular ones for the classification of major cations and anions analysed in the ground water. A Multi-Rectangular Diagram (MRD) has been developed with the combination of rectangular coordinates by virtue of which milli-equivalent per liter percentages (meq/1%) of major cations and anions could be classified into different categories more efficiently as compared to classical trilinear diagrams. Both Piper diagram and MRD are used for the assessment of 259 data sets analysed from ground water of Chaj Doab area, Pakistan. The differentiated ground water types with MRD in the study area are calcium bicarbonate, magnesium bicarbonate, sodium bicarbonate and sodium sulfate. Sodium bicarbonate type emerges as the most abundant type of ground water in the study area. A map showing spatial variation of groundwater quality has been constructed with the help of MRD. This map shows that, in the vicinity of rivers Chenab and Jhelum, calcium bicarbonate type of waters occur while the central area is mainly covered by sodium bicarbonate dominant waters. Groundwaters near the upper Jhelum canal are dominant in sodium sulfate. An important relation between calcium and sodium is proposed which explains the movement history of groundwater in the aquifer. Hydrogeochemical processes have been evaluated with new methods. Ion exchange between calcium and sodium, precipitation of calcium bicarbonate and dissolution of rock forming minerals are the major delineated hydrogeochemical processes. (author)

  4. Chemical quality of groundwater in chaj doab

    International Nuclear Information System (INIS)

    Akram, W.; Ahmad, M.; Sajjad, M.I.

    2002-01-01

    This paper addresses the chemical quality of groundwater in Chaj Doab, an inter fluvial area of the Punjab, where it is the primary source of drinking water. Therefore, its quality must meet certain standards, because elevated levels of different elements in drinking water have significant hazard for health. For this purpose, 83 shallow and 53 deep ground water samples were collected from different sampling stations, spread over the entire study-area, on quarterly basis. These were analyzed for their dissolved chemical constituents by atomic absorption spectrophotometry, UV-visible spectrophotometry and Ion-selective electrodes. Quality of groundwater is evaluated, with respect to bicarbonate (HCO/sub 3/), chloride (Cl), nitrate (NO/sub 3/), sulfate (SO/sub 4/) sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg), by comparing observed values with WHO and EEC drinking-water standards. This comparison indicates that norms of good-quality drinking water are exceeded for EC, Na, K, Mg, Cl and SO/sub 4/ at several locations. Concentrations of some parameters even more than the Maximum Admissible concentration have been observed. This study clearly indicates an increasing trend of nitrate concentrations. (author)

  5. Classification management plan of groundwater quality in Taiwan

    Science.gov (United States)

    Chen, Chun Ming; Chen, Yu Ying; Pan, Shih Cheng; Li, Hui Jun; Hsiao, Fang Ke

    2017-04-01

    Taiwan Environmental Protection Administration has been monitoring regional water quality for 14 years. Since the beginning of 2002 till now, there are 453 regional groundwater monitoring wells in ten groundwater subregions in Taiwan, and the monitoring of groundwater quality has been carried out for a long time. Currently, water quality monitoring project has reached 50 items, while the number of water quality monitoring data has reached more than 20,000. In order to use the monitoring data efficiently, this study constructed the localized groundwater quality indicators of Taiwan. This indicator takes into account the different users' point of view, incorporating the Taiwan groundwater pollution monitoring standards (Category II), irrigation water quality standard and drinking water source water quality standard. 50 items of water quality monitoring projects were simplified and classified. The groundwater quality parameters were divided into five items, such as potability for drinking water, salting, external influence, health influences and toxicity hazard. The weight of the five items of groundwater was calculated comprehensively, and the groundwater quality of each monitoring well was evaluated with three grades of good, ordinary, and poor. According to the monitoring results of the groundwater monitoring wells in October to December of 2016, about 70% of groundwater quality in Taiwan is in good to ordinary grades. The areas with poor groundwater quality were mostly distributed in coastal, agriculture and part of the urban areas. The conductivity or ammonia nitrogen concentration was higher in those regions, showing that groundwater may be salinized or affected by external influences. Groundwater quality indicators can clearly show the current comprehensive situation of the groundwater environment in Taiwan and can be used as a tool for groundwater quality classification management. The indicators can coordinate with the Taiwan land planning policy in the

  6. Effects of geological structures on groundwater flow and quality in ...

    Indian Academy of Sciences (India)

    Analysis and field observations revealed that the north–south dykes act as a barrier of groundwater while the west–east oriented structures behave as a carrier of groundwater. Both quality and quantity of groundwater is different on the upstream and downstream sides of the dyke. Hence, it is conclusive that the west–east ...

  7. Deciphering groundwater quality for irrigation and domestic purposes

    Indian Academy of Sciences (India)

    for groundwater planning and management in the study area. It is not only the basic ... standard of groundwater, three parameters have been considered – total hardness (TH), Piper's trilinear diagram and ... Groundwater quality; irrigation and domestic suitability; ionic balance, Suri I and II blocks; Birbhum. District. J. Earth ...

  8. Geochemical processes controlling the groundwater quality in lower ...

    Indian Academy of Sciences (India)

    Hydrogeochemical study of groundwater was carried out in a part of the lower Palar river basin, southern India to determine the geochemical processes controlling the groundwater quality. Thirty-nine groundwater samples were collected from the study area and analysed for pH, Eh, EC, Ca, Mg, Na, K, HCO3, CO3, Cl and ...

  9. Coastal Water Quality Modeling in Tidal Lake: Revisited with Groundwater Intrusion

    Science.gov (United States)

    Kim, C.

    2016-12-01

    A new method for predicting the temporal and spatial variation of water quality, with accounting for a groundwater effect, has been proposed and applied to a water body partially connected to macro-tidal coastal waters in Korea. The method consists of direct measurement of environmental parameters, and it indirectly incorporates a nutrients budget analysis to estimate the submarine groundwater fluxes. Three-dimensional numerical modeling of water quality has been used with the directly collected data and the indirectly estimated groundwater fluxes. The applied area is Saemangeum tidal lake that is enclosed by 33km-long sea dyke with tidal openings at two water gates. Many investigations of groundwater impact reveal that 10 50% of nutrient loading in coastal waters comes from submarine groundwater, particularly in the macro-tidal flat, as in the west coast of Korea. Long-term monitoring of coastal water quality signals the possibility of groundwater influence on salinity reversal and on the excess mass outbalancing the normal budget in Saemangeum tidal lake. In the present study, we analyze the observed data to examine the influence of submarine groundwater, and then a box model is demonstrated for quantifying the influx and efflux. A three-dimensional numerical model has been applied to reproduce the process of groundwater dispersal and its effect on the water quality of Saemangeum tidal lake. The results show that groundwater influx during the summer monsoon then contributes significantly, 20% more than during dry season, to water quality in the tidal lake.

  10. A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices.

    Science.gov (United States)

    Vadiati, M; Asghari-Moghaddam, A; Nakhaei, M; Adamowski, J; Akbarzadeh, A H

    2016-12-15

    Due to inherent uncertainties in measurement and analysis, groundwater quality assessment is a difficult task. Artificial intelligence techniques, specifically fuzzy inference systems, have proven useful in evaluating groundwater quality in uncertain and complex hydrogeological systems. In the present study, a Mamdani fuzzy-logic-based decision-making approach was developed to assess groundwater quality based on relevant indices. In an effort to develop a set of new hybrid fuzzy indices for groundwater quality assessment, a Mamdani fuzzy inference model was developed with widely-accepted groundwater quality indices: the Groundwater Quality Index (GQI), the Water Quality Index (WQI), and the Ground Water Quality Index (GWQI). In an effort to present generalized hybrid fuzzy indices a significant effort was made to employ well-known groundwater quality index acceptability ranges as fuzzy model output ranges rather than employing expert knowledge in the fuzzification of output parameters. The proposed approach was evaluated for its ability to assess the drinking water quality of 49 samples collected seasonally from groundwater resources in Iran's Sarab Plain during 2013-2014. Input membership functions were defined as "desirable", "acceptable" and "unacceptable" based on expert knowledge and the standard and permissible limits prescribed by the World Health Organization. Output data were categorized into multiple categories based on the GQI (5 categories), WQI (5 categories), and GWQI (3 categories). Given the potential of fuzzy models to minimize uncertainties, hybrid fuzzy-based indices produce significantly more accurate assessments of groundwater quality than traditional indices. The developed models' accuracy was assessed and a comparison of the performance indices demonstrated the Fuzzy Groundwater Quality Index model to be more accurate than both the Fuzzy Water Quality Index and Fuzzy Ground Water Quality Index models. This suggests that the new hybrid fuzzy

  11. Use of the landfill water pollution index (LWPI) for groundwater quality assessment near the landfill sites.

    Science.gov (United States)

    Talalaj, Izabela A; Biedka, Pawel

    2016-12-01

    The purpose of the paper is to assess the groundwater quality near the landfill sites using landfill water pollution index (LWPI). In order to investigate the scale of groundwater contamination, three landfills (E, H and S) in different stages of their operation were taken into analysis. Samples of groundwater in the vicinity of studied landfills were collected four times each year in the period from 2004 to 2014. A total of over 300 groundwater samples were analysed for pH, EC, PAH, TOC, Cr, Hg, Zn, Pb, Cd, Cu, as required by the UE legal acts for landfill monitoring system. The calculated values of the LWPI allowed the quantification of the overall water quality near the landfill sites. The obtained results indicated that the most negative impact on groundwater quality is observed near the old Landfill H. Improper location of piezometer at the Landfill S favoured infiltration of run-off from road pavement into the soil-water environment. Deep deposition of the groundwater level at Landfill S area reduced the landfill impact on the water quality. Conducted analyses revealed that the LWPI can be used for evaluation of water pollution near a landfill, for assessment of the variability of water pollution with time and for comparison of water quality from different piezometers, landfills or time periods. The applied WQI (Water Quality Index) can also be an important information tool for landfill policy makers and the public about the groundwater pollution threat from landfill.

  12. Groundwater quality in western New York, 2011

    Science.gov (United States)

    Reddy, James E.

    2013-01-01

    Water samples collected from 16 production wells and 15 private residential wells in western New York from July through November 2011 were analyzed to characterize the groundwater quality. Fifteen of the wells were finished in sand and gravel aquifers, and 16 were finished in bedrock aquifers. Six of the 31 wells were sampled in a previous western New York study, which was conducted in 2006. Water samples from the 2011 study were analyzed for 147 physiochemical properties and constituents that included major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater generally is of acceptable quality, although at 30 of the 31 wells sampled, at least one of the following constituents was detected at a concentration that exceeded current or proposed Federal or New York State drinking-water standards: pH (two samples), sodium (eight samples), sulfate (three samples), total dissolved solids (nine samples), aluminum (two samples), arsenic (one sample), iron (ten samples), manganese (twelve samples), radon-222 (sixteen samples), benzene (one sample), and total coliform bacteria (nine samples). Existing drinking-water standards for color, chloride, fluoride, nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, Escherichia coli, and heterotrophic bacteria were not exceeded in any of the samples collected. None of the pesticides analyzed exceeded existing drinking-water standards.

  13. Quality assessment of groundwater from shallow aquifers in Hong ...

    African Journals Online (AJOL)

    Quality assessment of groundwater from shallow aquifers in Hong area, Adamawa state, northeastern Nigeria. ... The high content of fluoride and iron in the groundwater may have contributed to the high EC and TDS especially during the rainy season when the rate of leaching and infiltration is high. Keywords: Quality ...

  14. Groundwater quality in the glacial aquifer system, United States

    Science.gov (United States)

    Stackelberg, Paul E.

    2017-12-07

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water (Burow and Belitz, 2014). The glacial aquifer system constitutes one of the important areas being evaluated.

  15. Resource impact evaluation of in-situ uranium groundwater restoration

    International Nuclear Information System (INIS)

    Charbeneau, R.J.; Rohlich, G.A.

    1981-11-01

    The purpose of this study was to determine the impact of restoration on the groundwater following in-situ uranium solution mining in South Texas. Restoration is necessary in order to reduce the amounts of undesired chemical constituents left in solution after mining operations have ceased, and thus return the groundwater to a quality consistent with pre-mining use and potential use. Various restoration strategies have been proposed and are discussed. Of interest are the hydrologic, environmental, social, and economic impacts of these restoration alternatives. Much of the discussion concerning groundwater restoration is based on the use of an ammonium carbonate-bicarbonate leach solution in the mining process. This has been the principal leach solution used during the early period of mining in South Texas. Recently, because of apparent difficulties in restoring ammonium to proposed or required levels, many of the companies have changed to the use of other leach solutions. Because little is known about restoration with these other leach solutions they have not been specifically addressed in this report. Likewise, we have not addressed the question of the fate of heavy metals. Following a summary of the development of South Texas in-situ mining in Chapter Two, Chapter Three describes the surface and groundwater resources of the uranium mining district. Chapter Four addresses the economics of water use, and Chapter Five is concerned with regulation of the in-situ uranium industry in Texas. A discussion of groundwater restoration alternatives and impacts is presented in Chapter Six. Chapter Seven contains a summary and a discussion, and conclusions derived from this study. Two case histories are presented in Appendices A and B

  16. Impacts of Groundwater Pumping on Regional and Global Water Resources

    Science.gov (United States)

    Wada, Yoshihide

    2016-01-01

    Except frozen water in ice and glaciers (68%), groundwater is the world's largest distributed store of freshwater (30%), and has strategic importance to global food and water security. In this chapter, the most recent advances assessing human impact on regional and global groundwater resources are reviewed. This chapter critically evaluates the recently advanced modeling approaches quantifying the effect of groundwater pumping in regional and global groundwater resources and the evidence of feedback to the Earth system including sea-level rise associated with groundwater use. At last, critical challenges and opportunities are identified in the use of groundwater to adapt to growing food demand and uncertain climate.

  17. Groundwater Impacts of Radioactive Wastes and Associated Environmental Modeling Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan

    2012-11-01

    This article provides a review of the major sources of radioactive wastes and their impacts on groundwater contamination. The review discusses the major biogeochemical processes that control the transport and fate of radionuclide contaminants in groundwater, and describe the evolution of mathematical models designed to simulate and assess the transport and transformation of radionuclides in groundwater.

  18. Groundwater quality and hydrogeological characteristics of Malacca state in Malaysia

    Directory of Open Access Journals (Sweden)

    Shirazi Sharif Moniruzzaman

    2015-03-01

    Full Text Available Groundwater quality and aquifer productivity of Malacca catchment in Peninsular Malaysia are presented in this article. Pumping test data were collected from 210 shallow and 17 deep boreholes to get well inventory information. Data analysis confirmed that the aquifers consisting of schist, sand, limestone and volcanic rocks were the most productive aquifers for groundwater in Malacca state. GIS-based aquifer productivity map was generated based on bedrock and discharge capacity of the aquifers. Aquifer productivity map is classified into three classes, namely high, moderate and low based on discharge capacity. Groundwater potential of the study area is 35, 57 and 8% of low, moderate and high class respectively. Fifty two shallow and 14 deep aquifer groundwater samples were analyzed for water quality. In some cases, groundwater quality analysis indicated that the turbidity, total dissolved solids, iron, chloride and cadmium concentrations exceeded the limit of drinking water quality standards.

  19. Salinity of deep groundwater in California: Water quantity, quality, and protection.

    Science.gov (United States)

    Kang, Mary; Jackson, Robert B

    2016-07-12

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California's Central Valley, an important agricultural region with growing groundwater demands, fresh [groundwater volume is almost tripled to 2,700 km(3), most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km(3) of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; groundwater, especially USDWs. Our findings indicate that California's Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond.

  20. Groundwater quality in central New York, 2012

    Science.gov (United States)

    Reddy, James E.

    2014-01-01

    Water samples were collected from 14 production wells and 15 private wells in central New York from August through December 2012 in a study conducted by the U.S. Geological Survey in cooperation with the New York State Department of Environmental Conservation. The samples were analyzed to characterize the groundwater quality in unconsolidated and bedrock aquifers in this area. Fifteen of the wells are finished in sand-and-gravel aquifers, and 14 are finished in bedrock aquifers. Six of the 29 wells were sampled in a previous central New York study, which was conducted in 2007. Water samples from the 2012 study were analyzed for 147 physiochemical properties and constituents, including major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds, dissolved gases (argon, carbon dioxide, methane, nitrogen, oxygen), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that the groundwater generally is of acceptable quality, although for all of the wells sampled, at least one of the following constituents was detected at a concentration that exceeded current or proposed Federal or New York State drinking-water standards: color (2 samples), pH (7 samples), sodium (9 samples), chloride (2 samples), fluoride (2 samples), sulfate (2 samples), dissolved solids (8 samples), aluminum (4 samples), arsenic (1 sample), iron (9 samples), manganese (13 samples), radon-222 (13 samples), total coliform bacteria (6 samples), and heterotrophic bacteria (2 samples). Drinking-water standards for nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, and

  1. Time-dependent methods to evaluate the effects of urban sprawl on groundwater quality: a synthesis

    Directory of Open Access Journals (Sweden)

    Stefania Stevenazzi

    2017-12-01

    Full Text Available Freshwater resources are threatened worldwide with unknown and unpredictable fate, due to non-stationarity and change of water cycle dynamics, and increasing demand resulting from population growth and economic expansion. Thus, practical actions, strategies and solutions are necessary to ensure the short-term and long-term provision of adequate, affordable, accessible and safe freshwater supply to meet the needs of the growing human population and ecosystems. Since the mid-1950s, Europe is experiencing the phenomenon of urban sprawl, characterized by an unplanned incremental urban development, no more tied with population growth (EEA 2006. Impacts of urban sprawl threaten both the natural and rural environments and the quality of life for people living in cities, with worsening of air quality, and surface- and groundwater quality and quantity. For the protection of groundwater, the European Union issued a series of Directives (Water Framework Directive, 2000/60/EC; Groundwater Directive, 2006/118/EC that require member states to achieve a good chemical status of their groundwater bodies and the identification of areas where groundwater suffers increasing trends in contaminant concentrations. In order to cope with EU Directives, a time-dependent approach for groundwater vulnerability assessment is developed to account for both the recent status of groundwater contamination and its evolution in the Po Plain area of Lombardy Region (northern Italy. Such approach takes the advantages of a Bayesian spatial statistical method to assess groundwater vulnerability and satellite scatterometer data to delineate urban areas and monitor their evolution. The proposed approach can determine potential impacts of contamination events on groundwater quality, if policies are maintained at the status quo or if new measures are implemented for safeguarding groundwater resources.

  2. Groundwater quality from a part of Prakasam District, Andhra Pradesh, India

    Science.gov (United States)

    Subba Rao, N.

    2018-03-01

    Quality of groundwater is assessed from a part of Prakasam district, Andhra Pradesh, India. Groundwater samples collected from thirty locations from the study area were analysed for pH, electrical conductivity (EC), total dissolved solids (TDS), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), bicarbonate ( {HCO}3^{ - } ), chloride (Cl-), sulphate ( {SO}4^{2 - } ), nitrate ( {NO}3^{ - } ) and fluoride (F-). The results of the chemical analysis indicate that the groundwater is alkaline in nature and are mainly characterized by Na+- {HCO}3^{ - } and Na+-Cl- facies. Groundwater chemistry reflects the dominance of rock weathering and is subsequently modified by human activities, which are supported by genetic geochemical evolution and hydrogeochemical relations. Further, the chemical parameters (pH, TDS, Ca2+, Mg2+, Na+, {HCO}3^{ - } , Cl-, {SO}4^{2 - } , {NO}3^{ - } and F-) were compared with the drinking water quality standards. The sodium adsorption ratio, percent sodium, permeability index, residual sodium carbonate, magnesium ratio and Kelly's ratio were computed and USSL, Wilcox and Doneen's diagrams were also used for evaluation of groundwater quality for irrigation. For industrial purpose, the pH, TDS, {HCO}3^{ - } , Cl- and {SO}4^{2 - } were used to assess the impact of incrustation and corrosion activities on metal surfaces. As a whole, it is observed that the groundwater quality is not suitable for drinking, irrigation and industrial purposes due to one or more chemical parameters exceeding their standard limits. Therefore, groundwater management measures were suggested to improve the water quality.

  3. Assessment of Groundwater Quality of Ilorin Metropolis using Water ...

    African Journals Online (AJOL)

    Akorede

    Naturally, surface water is highly susceptible to contamination, but groundwater is less susceptible. However, once groundwater is polluted, remediation is usually very difficult and expensive to undertake. Also, its quality cannot ... problem of inadequacy of potable water supply from the public water works. This is invariably ...

  4. Groundwater quality monitoring around Bass Lake, Betty's Bay ...

    African Journals Online (AJOL)

    The study suggests that water monitoring methodology used in this study should yield better results during the drier summer period when there is decrease in the rate of groundwater flow and a lower water table. Monitoring throughout the year is recommended. Keywords: groundwater quality; septic tanks; sewage pollution

  5. Geochemical processes controlling the groundwater quality in lower ...

    Indian Academy of Sciences (India)

    Hydrogeochemical study of groundwater was carried out in a part of the lower Palar river basin, southern. India to determine the geochemical processes controlling the groundwater quality. Thirty-nine ground- water samples were collected from the study area and analysed for pH, Eh, EC, Ca, Mg, Na, K, HCO3,. CO3, Cl and ...

  6. Effects of geological structures on groundwater flow and quality in ...

    Indian Academy of Sciences (India)

    Geological and structural influences on groundwater flow and quality were evaluated in the present study in the hardrock regions of Tirunelveli District, southern India. Groundwater is a major source of freshwater in this region to cater to the requirements of domestic and agricultural activity, as there are no surface water ...

  7. Groundwater quality on dairy farms in central South Africa ...

    African Journals Online (AJOL)

    Dairy farms in central South Africa depend mostly on groundwater for domestic needs and dairy activities. Groundwater samples were collected from 37 dairy farms during 2009 and 2013. Sixteen water quality parameters were tested and compared to the standard. Four parameters in 2009 and six in 2013 exhibited 100% ...

  8. Approaches to hazard-oriented groundwater management based on multivariate analysis of groundwater quality

    OpenAIRE

    Page, Rebecca Mary

    2011-01-01

    Drinking water extracted near rivers in alluvial aquifers is subject to potential microbial contamination due to rapidly infiltrating river water during high discharge events. The heterogeneity of river-groundwater interaction and hydrogeological characteristics of the aquifer renders a complex pattern of groundwater quality. The quality of the extracted drinking water can be managed using decision support and HACCP (Hazard Analysis and Critical Control Point) systems, but the detection of po...

  9. Groundwater Quality in Central New York, 2007

    Science.gov (United States)

    Eckhardt, David A.V.; Reddy, J.E.; Shaw, Stephen B.

    2009-01-01

    Water samples were collected from 7 production wells and 28 private residential wells in central New York from August through December 2007 and analyzed to characterize the chemical quality of groundwater. Seventeen wells are screened in sand and gravel aquifers, and 18 are finished in bedrock aquifers. The wells were selected to represent areas of greatest groundwater use and to provide a geographical sampling from the 5,799-square-mile study area. Samples were analyzed for 6 physical properties and 216 constituents, including nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, phenolic compounds, organic carbon, and 4 types of bacteria. Results indicate that groundwater used for drinking supply is generally of acceptable quality, although concentrations of some constituents or bacteria exceeded at least one drinking-water standard at several wells. The cations detected in the highest concentrations were calcium, magnesium, and sodium; anions detected in the highest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrients were nitrate and ammonia, but no nutrients exceeded Maximum Contaminant Levels (MCLs). The trace elements barium, boron, lithium, and strontium were detected in every sample; the trace elements present in the highest concentrations were barium, boron, iron, lithium, manganese, and strontium. Fifteen pesticides, including seven pesticide degradates, were detected in water from 17 of the 35 wells, but none of the concentrations exceeded State or Federal MCLs. Sixteen volatile organic compounds were detected in water from 15 of the 35 wells. Nine analytes and three types of bacteria were detected in concentrations that exceeded Federal and State drinking-water standards, which typically are identical. One sample had a water color that exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) and the New York State MCL of 10 color

  10. Monitoring and Assessing Groundwater Impacts on Vegetation Health in Groundwater Dependent Ecosystems

    Science.gov (United States)

    Rohde, M. M.; Ulrich, C.; Howard, J.; Sweet, S.

    2017-12-01

    Sustainable groundwater management is important for preserving our economy, society, and environment. Groundwater supports important habitat throughout California, by providing a reliable source of water for these Groundwater Dependent Ecosystems (GDEs). Groundwater is particularly important in California since it supplies an additional source of water during the dry summer months and periods of drought. The drought and unsustainable pumping practices have, in some areas, lowered groundwater levels causing undesirable results to ecosystems. The Sustainable Groundwater Management Act requires local agencies to avoid undesirable results in the future, but the location and vulnerabilities of the ecosystems that depend on groundwater and interconnected surface water is often poorly understood. This presentation will feature results from a research study conducted by The Nature Conservancy and Lawrence Berkeley National Laboratory that investigated how changes in groundwater availability along an interconnected surface water body can impact the overall health of GDEs. This study was conducted in California's Central Valley along the Cosumnes River, and situated at the boundary of a high and a medium groundwater basin: South American Basin (Sacramento Hydrologic Region) and Cosumnes Basin (San Joaquin Hydrologic Region). By employing geophysical methodology (electrical resistivity tomography) in this study, spatial changes in groundwater availability were determined under groundwater-dependent vegetation. Vegetation survey data were also applied to this study to develop ecosystem health indicators for groundwater-dependent vegetation. Health indicators for groundwater-dependent vegetation were found to directly correlate with groundwater availability, such that greater availability to groundwater resulted in healthier vegetation. This study provides a case study example on how to use hydrological and biological data for setting appropriate minimum thresholds and

  11. Isotopic and Hydrogeochemical Assessment of Groundwater quality of Punjab and Haryana, India.

    Science.gov (United States)

    Jyoti, V.; Douglas, E. M.; Hannigan, R.; Schaaf, C.; Moore, J.

    2016-12-01

    Punjab and Haryana lie in the semi-arid region of northwestern India and are characterized by a limited access to freshwater resources and an increasing dependence on groundwater resources to meet human demand, resulting in overexploitation. The objectives of the present study was to characterize groundwater recharge sources using stable isotopes of (δ2H) and (δ18O) and to trace geochemical evolution of groundwater using rare earth elements (REEs). Samples were collected from 30 different locations including shallow domestic handpumps, deep irrigation wells, surface water and rainwater. Samples were analyzed for stable isotopes of (δ2H) and (δ18O) using Isotope Ratio Mass Spectrometry (IRMS) and trace elements using Inductively Coupled Plasma Mass Spectrometry (ICPMS) at University of Massachusetts Boston. Precipitation, surface water and irrigation return flow were identified as the primary sources of recharge to groundwater. Sustainability of recharge sources is highly dependent on the glacier-fed rivers from the Himalayas that are already experiencing impacts from climate change. Geochemistry of REEs revealed geochemically evolved groundwater system with carbonate subsurface weathering as major hydrological processes. Enhanced dissolution of carbonates in the future can be a serious issue with extremely hard groundwater leaving scaly deposits inside pipes and wells. This would not only worsen the groundwater quality but would impose financial implications on the groundwater users in the community. If irrigated culture is to survive as an economically viable and environmentally sustainable activity in the region, groundwater management activities have to be planned at the regional scale.

  12. hydrochemical assessment of groundwater quality in sagamu area ...

    African Journals Online (AJOL)

    ABDULRASHEED

    alkaline indices (CAI), were calculated for irrigation purposes. The results were presented as spatial distribution maps for interpretation and further inferences. Comparison of the groundwater quality in the area with local and international ...

  13. Potential impacts of climate change and variability on groundwater ...

    African Journals Online (AJOL)

    Aizebeokhai

    This paper attempts to assess the potential impacts of climate change and variability on groundwater resources availability and sustainability in Nigeria. Key words: Climate change, climate variability, hydrological systems, groundwater resources, potential impacts, vulnerability. INTRODUCTION. All life on Earth, water and ...

  14. Modeling the impact of the nitrate contamination on groundwater at the groundwater body scale : The Geer basin case study (Invited)

    Science.gov (United States)

    Brouyere, S.; Orban, P.; Hérivaux, C.

    2009-12-01

    In the next decades, groundwater managers will have to face regional degradation of the quantity and quality of groundwater under pressure of land-use and socio-economic changes. In this context, the objectives of the European Water Framework Directive require that groundwater be managed at the scale of the groundwater body, taking into account not only all components of the water cycle but also the socio-economic impact of these changes. One of the main challenges remains to develop robust and efficient numerical modeling applications at such a scale and to couple them with economic models, as a support for decision support in groundwater management. An integrated approach between hydrogeologists and economists has been developed by coupling the hydrogeological model SUFT3D and a cost-benefit economic analysis to study the impact of agricultural practices on groundwater quality and to design cost-effective mitigation measures to decrease nitrate pressure on groundwater so as to ensure the highest benefit to the society. A new modeling technique, the ‘Hybrid Finite Element Mixing Cell’ approach has been developed for large scale modeling purposes. The principle of this method is to fully couple different mathematical and numerical approaches to solve groundwater flow and solute transport problems. The mathematical and numerical approaches proposed allows an adaptation to the level of local hydrogeological knowledge and the amount of available data. In combination with long time series of nitrate concentrations and tritium data, the regional scale modelling approach has been used to develop a 3D spatially distributed groundwater flow and solute transport model for the Geer basin (Belgium) of about 480 km2. The model is able to reproduce the spatial patterns of nitrate concentrations together nitrate trends with time. The model has then been used to predict the future evolution of nitrate trends for two types of scenarios: (i) a “business as usual scenario

  15. Unconfined Groundwater Quality based on the Settlement Unit in Surakarta City

    Directory of Open Access Journals (Sweden)

    Munawar Cholil

    2004-01-01

    Full Text Available The quality of groundwater of unonfined aquifer with growing population density is endangered by population. This may cause serious problem as greatest portion of the population utility groundwater of unconfined aquifer as their drinking water. This research is aim at studying the difference in quality of groundwater of unonfined aquifer in Surakarta Munipicality by settlement units, and studying the impact settlement factors and groundwater depth on the quality of groundwater of unonfined aquifer. The research was executed by a survey methhod, taking 44 units of groundwater of unonfined aquifer samples at stratified proportional random from 44 villages. The samples were analyzed at the laboratory of Local Drinking Water Company (PDAM of Surakarta. Data were analyzed using by stiff diagram, variance analysis, and multiple regression. The research reveals that there is very little differences in the quality of free groundwater in Surakarta, as it is shown by same chemical properties. Several chemical properties were found very high in concentration, but the rest were simultaniously low. On the basis of minimum quality of drinking water coli content have exeeded the allowed limit for drinking water. Among the settlement units observed, there were no significant differences in the physical, chemical (except pH, bacteriological factors. This means that differences among various depth of water. Electrical onductivity (EC, Na, Mg, H2CO3, H2SO4, and NH3 were found different among various depth of water table. Major chemical conentration were significant with geology formation. Population density, built up areas, size of settlement, building density, and the condition of drainage simultaniously affect the quality of free ground water. No differences among settlement units was observed the most important fators determining the free groundwater quality was population density.

  16. Deep groundwater quantity and quality in the southwestern US

    Science.gov (United States)

    Kang, M.; Ayars, J. E.; Jackson, R. B.

    2017-12-01

    Groundwater demands are growing in many arid regions and adaptation through the use of non-traditional resources during extreme droughts is increasingly common. One such resource is deep groundwater, which we define as deeper than 300 m and up to several kilometer-depths. Although deep groundwater has been studied in the context of oil and gas, geothermal, waste disposal, and other uses, it remains poorly characterized, especially for the purposes of human consumption and irrigation uses. Therefore, we evaluate deep groundwater quantity and quality within these contexts. We compile and analyze data from water management agencies and oil and gas-based sources for the southwestern US, with a detailed look at California's Central Valley. We also use crop tolerance thresholds to evaluate deep groundwater quality for irrigation purposes. We find fresh and usable groundwater volume estimates in California's Central Valley to increase by three- and four-fold respectively when depths of up to 3 km are considered. Of the ten basins in the southwestern US with the most data, we find that the Great Basin has the greatest proportions of fresh and usable deep groundwater. Given the potentially large deep groundwater volumes, it is important to characterize the resource, guard against subsidence where extracted, and protect it for use in decades and centuries to come.

  17. Groundwater Impact Assessment of Tailings Storage Facility, Western Turkey

    Science.gov (United States)

    Peksezer-Sayit, A.; Yazicigil, H.

    2015-12-01

    A tailings storage facility (TSF) is a fundamental part of the mining process and should be carefully designed and managed to prevent any adverse environmental effects. TSF is site-specific and its design criteria are determined by regulations. The new mine waste regulation for the deposition of hazardous waste in a tailings storage facility in Turkey enforces, from bottom to top, 0.5 m thick compacted clay layer with K less than or equal to 1X10-9 m/s , 2 mm thick HDPE geomembrane, and a protective natural material or geotextile. Although these criteria seem to be enough to prevent leakage from the base, in practice, manufacturing and application errors may cause leakage and subsequent contamination of groundwater. The purpose of this study is to assess potential impacts of leakage from the base of TSF on groundwater quality both in operational and post-closure period of a mine site in western Turkey. For this purpose, analytical and 2-D and 3-D numerical models are used together. The potential leakage rate of sulphate-bearing solution from the base of TSF is determined from analytical model. 2-D finite element models (SEEP/W and CTRAN/W) are used to simulate unsaturated flow conditions and advective-dispersive contaminant transport below the TSF under steady-state and transient conditions for the operating period. The long-term impacts of leakage from the base of TSF on groundwater resources are evaluated by 3-D numerical groundwater flow (MODFLOW) and contaminant transport models (MT3DMS). The model results suggest that sulphate-bearing solution leaking from the base of TSF can reach water table in about 290 years. Hence, during the operational period (i.e. 21 years), no interaction is expected between the solution and groundwater. Moreover, long-term simulation results show that about 500 years later, the sulphate concentration in groundwater will be below the maximum allowable limits (i.e. 250 mg/L).

  18. Results of phase 1 groundwater quality assessment for Single-Shell Tank Waste Management Areas B-BX-BY at the Hanford Site

    International Nuclear Information System (INIS)

    Narbutovskih, S.M.

    1998-02-01

    Pacific Northwest National Laboratory conducted a Phase 1 (or first determination) groundwater quality assessment for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement. The purpose of the assessment was to determine if the Single-Shell Tank Waste Management Area (WMA) B-BX-BY has impacted groundwater quality. This report will document the evidence demonstrating that the WMA has impacted groundwater quality

  19. Results of phase 1 groundwater quality assessment for Single-Shell Tank Waste Management Areas B-BX-BY at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Narbutovskih, S.M.

    1998-02-01

    Pacific Northwest National Laboratory conducted a Phase 1 (or first determination) groundwater quality assessment for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement. The purpose of the assessment was to determine if the Single-Shell Tank Waste Management Area (WMA) B-BX-BY has impacted groundwater quality. This report will document the evidence demonstrating that the WMA has impacted groundwater quality.

  20. Cl/Br Ratio to Determine Groundwater Quality

    Science.gov (United States)

    Naily, W.; Sudaryanto

    2018-02-01

    Groundwater has different characteristics in each location influenced by mineral content in rocks that dissolves as water travels through the pores of rocks or soil or when stored in the soil (aquifer). Different minerals dissolving in rocks will lead to differences in anion content in groundwater. Chloride and bromide are the major ions that can be found in groundwater. The concentration of chloride is 500 times greater than the concentration of bromide. In addition, the high chloride concentration is a tracer for the influence of sea water. The ratio between chloride and bromide (Cl/Br ratio) can be used as a determinant of groundwater quality, as well as a determinant of groundwater contamination, sea water intrusion and the origin of sea water intrusion.

  1. Impact of urbanization on the groundwater regime in a fast growing city in central India.

    Science.gov (United States)

    Naik, Pradeep K; Tambe, Jivesh A; Dehury, Biranchi N; Tiwari, Arun N

    2008-11-01

    This paper describes the impact of urbanization on the groundwater regime in a fast growing city, Solapur, in central India, giving special emphasis on the management of the present and ultimate demand of water in 2,020 AD. The objective is to apprise the city planners and administrators of the effects of urbanization on the groundwater regime in a fast growing medium-sized city in a developing country where the infrastructure developments are not in conformity with the rapid growth in population. Solapur city with an area of 178.57 km2 receives a recharge of about 24 million m3 of groundwater from various sources annually. Reduction in recharge, as conventionally assumed due to the impact of urbanization, could not, however, be well established. Instead, there was a rise in recharge as water use in the city grew from time to time and more and more water was supplied to satisfy the human needs. Compared to mid-1970s, groundwater levels have increased within the main city area due to increased recharge and decreased groundwater abstraction. However, outside the main city area, there is a general decline in groundwater levels due to increased groundwater utilization for irrigation purposes. Groundwater quality deterioration has been highly localized. Water quality has deteriorated during the last 10 years, especially in dugwells, mainly due to misuse and disuse of these structures and poor circulation of groundwater. However, in case of borewells, comparison of the present water quality with that in mid-1970s and early 1980s does not show any perceptible change. Deeper groundwater tapped by borewells can still be used for drinking purposes with caution.

  2. Assessment of groundwater quality using DEA and AHP: a case study in the Sereflikochisar region in Turkey.

    Science.gov (United States)

    Kavurmaci, Murat; Üstün, A Korkut

    2016-04-01

    This study investigated the spatial distribution of groundwater quality in Sereflikochisar Basin, in the Central Anatolian region of Turkey using different hydrochemical, statistical, and geostatistical methods. A total of 51 groundwater samples were collected from the observation wells in the study area to evaluate the characteristics of the groundwater quality. As a relatively simple and practical method, a groundwater quality index (GWQI) was developed to evaluate the overall groundwater quality. In this process, complex decision-making techniques such as analytic hierarchy process (AHP) and data envelopment analysis (DEA) were used. Based on these models, two new indices (A-GWQI and D-GWQI) were proposed. According to the D-GWQI score (from 0.6 to 1), water quality was classified in four categories as unsuitable (0.6–0.7), permissible (0.7–0.8), good (0.8–0.9), and excellent (0.9–1). The spatial distribution maps of the groundwater quality were created using the Kriging method. For each map, seven different semivariogram models were tested and the best-fitted model was chosen based on their root mean square standardized error. These maps showed that the areas with high groundwater quality were in the eastern and southern parts of the study area where the D-GWQI scores were greater than 0.8. Depending on the distance from the Salt Lake, the characteristics of groundwater changed from NaCl to NaHCO3 and CaHCO3 facies. This study shows how to determine the spatial distribution of the groundwater quality and identify the impact of salt lakes on the groundwater quality in inland aquifers. The findings of this study can be applied to ensure the quality of groundwater used for drinking and irrigation purposes in the study area.

  3. Predicted impacts of land use change on groundwater recharge of ...

    African Journals Online (AJOL)

    The objectives of this study were to determine land use changes in upper Berg catchment using multi-temporal Landsat images from 1984, 1992, 2002, and 2008, and to predict the impact of these land use changes on groundwater recharge. For the simulation of groundwater recharge the distributed hydrological model ...

  4. Snow impact on groundwater recharge in Table Mountain Group ...

    African Journals Online (AJOL)

    Snowmelt in the mountainous areas of the Table Mountain Group (TMG) in South Africa is believed to be one of sources of groundwater recharge in some winter seasons. This paper provides a scientific assessment of snow impact on groundwater recharge in Table Mountain Group Aquifer Systems for the first time.

  5. Groundwater Quality Assessment and Monitoring Using Geographic ...

    African Journals Online (AJOL)

    The study evaluated the spatial variation of groundwater parameters in Port Harcourt metropolis using GIS. Thirty two (32) water samples were collected from boreholes from different parts of the study area into a treated and well labeled 1.5 litres plastic bootle. The water samples were then subjected to laboratory analysis ...

  6. Hydrogeochemistry and groundwater quality assessment of Ranipet ...

    Indian Academy of Sciences (India)

    ous chemicals like lime, sodium-carbonate, sodium- bi-carbonate, common salt, sodium-sulphate and chrome-sulphate. It is established .... method (Cole-Parmer iodine electrode, model no. 27502-13). Bicarbonate (HCO. −. 3 ) concentrations of the groundwater were determined by potentio- metric titration method. SO2−. 4.

  7. Groundwater Quality Studies: A Case Study of the Densu Basin ...

    African Journals Online (AJOL)

    komla

    farming) within the Densu basin culminated in a public outcry over the quality of water supplied from the Weija ... It is, therefore, imperative to carry out an extensive groundwater quality assess-ment of the basin, as well as water types of ...... environment (Evans et al., 1977) and often occurs with iron (Fe). Its concentrations in ...

  8. Appraisal of long term groundwater quality of peninsular India using ...

    Indian Academy of Sciences (India)

    63

    solids, hardness, fluorides, bicarbonate and manganese in the groundwater. Table 4a Yearly (2005-2013) value of pre monsoon water quality index. Table 4b Yearly (2006-2013) value of post monsoon water quality index. Calcium (Ca). Silicate weathering is the dominant process for supply of the calcium ions to the.

  9. Appraisal of long term groundwater quality of peninsular India using ...

    Indian Academy of Sciences (India)

    Abstract. A review has been made to understand the hydrogeochemical behaviour of groundwater through statistical analysis of long term water quality data (year 2005–2013). Water Quality Index (WQI), descriptive statistics, Hurst exponent, fractal dimension and predictability index were estimated for each water parameter.

  10. Water Balance and Groundwater Quality of Koraro Area, Tigray ...

    African Journals Online (AJOL)

    This paper focuses Koraro Tabia (or Station), one of the millennium villages where shortage and bad quality water is a challenge. Water balance and the hydro chemical characteristics of groundwater have been investigated in order to assess the water potential and quality in the area. Hydrometeorological information has ...

  11. Assessment of groundwater quality at a MSW landfill site using standard and AHP based water quality index: a case study from Ranchi, Jharkhand, India.

    Science.gov (United States)

    Chakraborty, Shubhrasekhar; Kumar, R Naresh

    2016-06-01

    Landfill leachate generated from open MSW dumpsite can cause groundwater contamination. The impact of open dumping of MSW on the groundwater of adjacent area was studied. To assess the spatial and temporal variations in groundwater quality, samples were collected around an open MSW dumping site in Ranchi city, Jharkhand, India. Groundwater samples were analysed for various physicochemical and bacteriological parameters for 1 year. Results indicated that the groundwater is getting contaminated due to vertical and horizontal migration of landfill leachate. Extent of contamination was higher in areas closer to the landfill as indicated by high alkalinity, total dissolved solids and ammonia concentration. Metals such as lead, iron, and manganese were present at concentrations of 0.097, 0.97 and 0.36 mg/L, respectively exceeding the Bureau of Indian Standards (BIS) 10,500 for drinking water. Enterobacteriaceae were also detected in several groundwater samples and highest coliform count of 2.1×10(4) CFU/mL was recorded from a dug well. In order to determine the overall groundwater quality, water quality index (WQI) was calculated using weighted arithmetic index method and this index was further modified by coupling with the analytical hierarchy process (AHP) to get specific information. WQI values indicated that the overall groundwater quality of the region came under "poor" category while zone wise classification indicated the extent of impact of landfill leachate on groundwater.

  12. Impact of drilled shaft synthetic slurries on groundwater.

    Science.gov (United States)

    2011-06-01

    The overall objective of this project is to evaluate the effect of the aforementioned synthetic slurries on groundwater quality. The objective of Phase I (this report), however, was to conduct a comprehensive literature survey to gather data to evalu...

  13. Modeling Effects of Groundwater Basin Closure, and Reversal of Closure, on Groundwater Quality

    Science.gov (United States)

    Pauloo, R.; Guo, Z.; Fogg, G. E.

    2017-12-01

    Population growth, the expansion of agriculture, and climate uncertainties have accelerated groundwater pumping and overdraft in aquifers worldwide. In many agricultural basins, a water budget may be stable or not in overdraft, yet disconnected ground and surface water bodies can contribute to the formation of a "closed" basin, where water principally exits the basin as evapotranspiration. Although decreasing water quality associated with increases in Total Dissolved Solids (TDS) have been documented in aquifers across the United States in the past half century, connections between water quality declines and significant changes in hydrologic budgets leading to closed basin formation remain poorly understood. Preliminary results from an analysis with a regional-scale mixing model of the Tulare Lake Basin in California indicate that groundwater salinization resulting from open to closed basin conversion can operate on a decades-to-century long time scale. The only way to reverse groundwater salinization caused by basin closure is to refill the basin and change the hydrologic budget sufficiently for natural groundwater discharge to resume. 3D flow and transport modeling, including the effects of heterogeneity based on a hydrostratigraphic facies model, is used to explore rates and time scales of groundwater salinization and its reversal under different water and land management scenarios. The modeling is also used to ascertain the extent to which local and regional heterogeneity need to be included in order to appropriately upscale the advection-dispersion equation in a basin scale groundwater quality management model. Results imply that persistent managed aquifer recharge may slow groundwater salinization, and complete reversal may be possible at sufficiently high water tables.

  14. An assessment of groundwater quality using water quality index in Chennai, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    I Nanda Balan

    2012-01-01

    Full Text Available Context : Water, the elixir of life, is a prime natural resource. Due to rapid urbanization in India, the availability and quality of groundwater have been affected. According to the Central Groundwater Board, 80% of Chennai′s groundwater has been depleted and any further exploration could lead to salt water ingression. Hence, this study was done to assess the groundwater quality in Chennai city. Aim : To assess the groundwater quality using water quality index in Chennai city. Materials and Methods: Chennai city was divided into three zones based on the legislative constituency and from these three zones three locations were randomly selected and nine groundwater samples were collected and analyzed for physiochemical properties. Results: With the exception of few parameters, most of the water quality assessment parameters showed parameters within the accepted standard values of Bureau of Indian Standards (BIS. Except for pH in a single location of zone 1, none of the parameters exceeded the permissible values for water quality assessment as prescribed by the BIS. Conclusion: This study demonstrated that in general the groundwater quality status of Chennai city ranged from excellent to good and the groundwater is fit for human consumption based on all the nine parameters of water quality index and fluoride content.

  15. Hydrogeochemistry and groundwater quality assessment of Ranipet ...

    Indian Academy of Sciences (India)

    (Cole-Parmer iodine electrode, model no. 27502-. 19). Total hardness (TH) of the groundwater was calculated using the formula given by Sawyer et al. (2003):. TH (as CaCO3) mg/L = (. Ca2+ + Mg2+). × 50 where the concentrations of Ca2+ and Mg2+ are represented in meq/l. The Cr+6 and Fe2+ concentrations in samples.

  16. Groundwater Quality Assessment for Waste Management Area U: First Determination

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, Floyd N.; Chou, Charissa J.

    2000-08-04

    As a result of the most recent recalculation one of the indicator parameters, specific conductance, exceeded its background value in downgradient well 299-W19-41, triggering a change from detection monitoring to groundwater quality assessment program. The major contributors to the higher specific conductance are nonhazardous constituents (i.e., sodium, calcium, magnesium, chloride, sulfate, and bicarbonate). Nitrate, chromium, and technetium-99 are present and are increasing; however, they are significantly below their drinking waster standards. Interpretation of groundwater monitoring data indicates that both the nonhazardous constituents causing elevated specific conductance in groundwater and the tank waste constituents present in groundwater at the waste management area are a result of surface water infiltration in the southern portion of the facility. There is evidence for both upgradient and waste management area sources for observed nitrate concentrations. There is no indication of an upgradient source for the observed chromium and technetium-99.

  17. Climate impact on groundwater systems: the past is the key to the future

    Science.gov (United States)

    van der Ploeg, Martine; Cendón, Dioni; Haldorsen, Sylvi; Chen, Jinyao; Gurdak, Jason; Tujchneider, Ofelia; Vaikmäe, Rein; Purtschert, Roland; Chkir Ben Jemâa, Najiba

    2013-04-01

    Groundwater is a significant part of the global hydrological cycle and supplies fresh drinking water to almost half of the world's population. While groundwater supplies are buffered against short-term effects of climate variability, they can be impacted over longer time scales through changes in precipitation, ,evaporation, recharge rate, melting of glaciers or permafrost, vegetation, and land-use. Moreover, uncontrolled groundwater extraction has and will lead to irreversible depletion of fresh water resources in many areas. The impact of climate variability and groundwater extraction on the resilience of groundwater systems is still not fully understood (Green et al. 2011). Groundwater stores environmental and climatic information acquired during the recharge process, which integrates different signals, like recharge temperature, origin of precipitation, and dissolved constituents. This information can be used to estimate palaeo recharge temperatures, palaeo atmospheric dynamics and residence time of groundwater within the aquifer (Stute et al. 1995, Clark and Fritz 1997, Collon et al. 2000, Edmunds et al. 2003, Cartwright et al. 2007, Kreuzer et al. 2009, Currell et al. 2010, Raidla et al. 2012, Salem et al. 2012). The climatic signals incorporated by groundwater during recharge have the potential to provide a regionally integrated proxy of climatic variations at the time of recharge. Groundwater palaeoclimate information is affected by diffusion-dispersion processes (Davison and Airey, 1982) and/or water-rock interaction (Clark and Fritz, 1997), making palaeoclimate information deduced from groundwater inherently a low resolution record. While the signal resolution can be limited, recharge follows major climatic events, and more importantly, shows how those aquifers and their associated recharge varies under climatic forcing. While the characterization of groundwater resources, surface-groundwater interactions and their link to the global water cycle are an

  18. Groundwater quality assessment of urban Bengaluru using multivariate statistical techniques

    Science.gov (United States)

    Gulgundi, Mohammad Shahid; Shetty, Amba

    2018-03-01

    Groundwater quality deterioration due to anthropogenic activities has become a subject of prime concern. The objective of the study was to assess the spatial and temporal variations in groundwater quality and to identify the sources in the western half of the Bengaluru city using multivariate statistical techniques. Water quality index rating was calculated for pre and post monsoon seasons to quantify overall water quality for human consumption. The post-monsoon samples show signs of poor quality in drinking purpose compared to pre-monsoon. Cluster analysis (CA), principal component analysis (PCA) and discriminant analysis (DA) were applied to the groundwater quality data measured on 14 parameters from 67 sites distributed across the city. Hierarchical cluster analysis (CA) grouped the 67 sampling stations into two groups, cluster 1 having high pollution and cluster 2 having lesser pollution. Discriminant analysis (DA) was applied to delineate the most meaningful parameters accounting for temporal and spatial variations in groundwater quality of the study area. Temporal DA identified pH as the most important parameter, which discriminates between water quality in the pre-monsoon and post-monsoon seasons and accounts for 72% seasonal assignation of cases. Spatial DA identified Mg, Cl and NO3 as the three most important parameters discriminating between two clusters and accounting for 89% spatial assignation of cases. Principal component analysis was applied to the dataset obtained from the two clusters, which evolved three factors in each cluster, explaining 85.4 and 84% of the total variance, respectively. Varifactors obtained from principal component analysis showed that groundwater quality variation is mainly explained by dissolution of minerals from rock water interactions in the aquifer, effect of anthropogenic activities and ion exchange processes in water.

  19. Characterization of shallow groundwater quality in the Lower St. Johns River Basin: a case study

    Science.gov (United States)

    Ying Ouyang; Jia-En Zhang; Prem. Parajuli

    2013-01-01

    Characterization of groundwater quality allows the evaluation of groundwater pollution and provides information for better management of groundwater resources. This study characterized the shallow groundwater quality and its spatial and seasonal variations in the Lower St. Johns River Basin, Florida, USA, under agricultural, forest, wastewater, and residential land...

  20. Groundwater-quality data and regional trends in the Virginia Coastal Plain, 1906-2007

    Science.gov (United States)

    McFarland, Randolph E.

    2010-01-01

    A newly developed regional perspective of the hydrogeology of the Virginia Coastal Plain incorporates updated information on groundwater quality in the area. Local-scale groundwater-quality information is provided by a comprehensive dataset compiled from multiple Federal and State agency databases. Groundwater-sample chemical-constituent values and related data are presented in tables, summaries, location maps, and discussions of data quality and limitations. Spatial trends in groundwater quality and related processes at the regional scale are determined from interpretive analyses of the sample data. Major ions that dominate the chemical composition of groundwater in the deep Piney Point, Aquia, and Potomac aquifers evolve eastward and with depth from (1) 'hard' water, dominated by calcium and magnesium cations and bicarbonate and carbonate anions, to (2) 'soft' water, dominated by sodium and potassium cations and bicarbonate and carbonate anions, and lastly to (3) 'salty' water, dominated by sodium and potassium cations and chloride anions. Chemical weathering of subsurface sediments is followed by ion exchange by clay and glauconite, and subsequently by mixing with seawater along the saltwater-transition zone. The chemical composition of groundwater in the shallower surficial and Yorktown-Eastover aquifers, and in basement bedrock along the Fall Zone, is more variable as a result of short flow paths between closely located recharge and discharge areas and possibly some solutes originating from human sources. The saltwater-transition zone is generally broad and landward-dipping, based on groundwater chloride concentrations that increase eastward and with depth. The configuration is convoluted across the Chesapeake Bay impact crater, however, where it is warped and mounded along zones having vertically inverted chloride concentrations that decrease with depth. Fresh groundwater has flushed seawater from subsurface sediments preferentially around the impact crater

  1. Impact of wastewater treatment plant discharge of lidocaine, tramadol, venlafaxine and their metabolites on the quality of surface waters and groundwater.

    Science.gov (United States)

    Rúa-Gómez, Paola C; Püttmann, Wilhelm

    2012-05-01

    The presence of the anesthetic lidocaine (LDC), the analgesic tramadol (TRA), the antidepressant venlafaxine (VEN) and the metabolites O-desmethyltramadol (ODT) and O-desmethylvenlafaxine (ODV) was investigated in wastewater treatment plant (WWTP) effluents, in surface waters and in groundwater. The analytes were detected in all effluent samples and in only 64% of the surface water samples. The mean concentrations of the analytes in effluent samples from WWTPs with wastewater from only households and hospitals were 107 (LDC), 757 (TRA), 122 (ODT), 160 (VEN) and 637 ng L(-1) (ODV), while the mean concentrations in effluents from WWTPs treating additionally wastewater from pharmaceutical industries as indirect dischargers were for some pharmaceuticals clearly higher. WWTP effluents were identified as important sources of the analyzed pharmaceuticals and their metabolites in surface waters. The concentrations of the compounds found in surface waters ranged from Infiltration of the target analytes into groundwater was not observed.

  2. Factors influencing groundwater quality: towards an integrated management approach.

    Science.gov (United States)

    De Giglio, O; Quaranta, A; Barbuti, G; Napoli, C; Caggiano, G; Montagna, M T

    2015-01-01

    The safety of groundwater resources is a serious issue, particularly when these resources are the main source of water for drinking, irrigation and industrial use in coastal areas. In Italy, 85% of the water used by the public is of underground origin. The aim of this report is to analyze the main factors that make groundwater vulnerable. Soil characteristics and filtration capacity can promote or hinder the diffusion of environmental contaminants. Global climate change influences the prevalence and degree of groundwater contamination. Anthropic pressure causes considerable exploitation of water resources, leading to reduced water availability and the progressive deterioration of water quality. Management of water quality will require a multidisciplinary, dynamic and practical approach focused on identifying the measures necessary to reduce contamination and mitigate the risks associated with the use of contaminated water resources.

  3. Assessment and Monitoring of Nutrient Management in Irrigated Agriculture for Groundwater Quality Protection

    Science.gov (United States)

    Harter, T.; Davis, R.; Smart, D. R.; Brown, P. H.; Dzurella, K.; Bell, A.; Kourakos, G.

    2017-12-01

    Nutrient fluxes to groundwater have been subject to regulatory assessment and control only in a limited number of countries, including those in the European Union, where the Water Framework Directive requires member countries to manage groundwater basis toward achieving "good status", and California, where irrigated lands will be subject to permitting, stringent nutrient monitoring requirements, and development of practices that are protective of groundwater. However, research activities to rigorously assess agricultural practices for their impact on groundwater have been limited and instead focused on surface water protection. For groundwater-related assessment of agricultural practices, a wide range of modeling tools has been employed: vulnerability studies, nitrogen mass balance assessments, crop-soil-system models, and various statistical tools. These tools are predominantly used to identify high risk regions, practices, or crops. Here we present the development of a field site for rigorous in-situ evaluation of water and nutrient management practices in an irrigated agricultural setting. Integrating groundwater monitoring into agricultural practice assessment requires large research plots (on the order of 10s to 100s of hectares) and multi-year research time-frames - much larger than typical agricultural field research plots. Almonds are among the most common crops in California with intensive use of nitrogen fertilizer and were selected for their high water quality improvement potential. Availability of an orchard site with relatively vulnerable groundwater conditions (sandy soils, water table depth less than 10 m) was also important in site selection. Initial results show that shallow groundwater concentrations are commensurate with nitrogen leaching estimates obtained by considering historical, long-term field nitrogen mass balance and groundwater dynamics.

  4. Aspect of Groundwater Quality Evaluation in Itapa Ekiti ...

    African Journals Online (AJOL)

    Aspect of Groundwater Quality Evaluation in Itapa Ekiti, Southwestern Nigeria. OO Ige, LA Korode. Abstract. No abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/ejesm.v8i2.8S · AJOL African Journals Online. HOW TO USE ...

  5. Assessment of groundwater quality of Benin City, Edo state, Nigeria ...

    African Journals Online (AJOL)

    The quality of groundwater of Benin City, Edo State, Nigeria was investigated between February and July 2008. Water samples were collected from functional bore holes from five locations (stations 1 – 5) and analyzed for physico-chemical parameters including heavy metals. Data obtained were compared with World ...

  6. Effects of geological structures on groundwater flow and quality in ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 2. Effects of geological structures on groundwater flow and quality in hardrock regions of northern Tirunelveli district, southern India. M Senthilkumar R Arumugam D Gnanasundar D S C Thambi E Sampath Kumar. Volume 124 Issue 2 March 2015 pp ...

  7. Groundwater quality in arid regions: The case of Hassi Messaoud ...

    African Journals Online (AJOL)

    After chemical quality study, it has been realized that the groundwater of Hassi Messaoud region isn't drinking one according to WHO and Algerian standards for drinking water. This water is highly mineralized and very hard and its major concentrations are often higher than recommended standards, so it requires treatment ...

  8. Status and understanding of groundwater quality in the North San Francisco Bay groundwater basins, 2004

    Science.gov (United States)

    Kulongoski, Justin T.; Belitz, Kenneth; Landon, Matthew K.; Farrar, Christopher

    2010-01-01

    Groundwater quality in the approximately 1,000-square-mile (2,590-square-kilometer) North San Francisco Bay study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in northern California in Marin, Napa, and Sonoma Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA North San Francisco Bay study was designed to provide a spatially unbiased assessment of untreated groundwater quality in the primary aquifer systems. The assessment is based on water-quality and ancillary data collected by the USGS from 89 wells in 2004 and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter referred to as primary aquifers) were defined by the depth interval of the wells listed in the CDPH database for the North San Francisco Bay study unit. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallower groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifers of the North San Francisco Bay study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or

  9. Groundwater quality characterization around Jawaharnagar open dumpsite, Telangana State

    Science.gov (United States)

    Unnisa, Syeda Azeem; Zainab Bi, Shaik

    2017-11-01

    In the present work groundwater samples were collected from ten different data points in and around Jawaharnagar municipal dumpsite, Telangana State Hyderabad city from May 2015 to May 2016 on monthly basis for groundwater quality characterization. Pearson's correlation coefficient ( r) value was determined using correlation matrix to identify the highly correlated and interrelated water quality standards issued by Bureau of Indian Standard (IS-10500:2012). It is found that most of the groundwater samples are above acceptable limits and are not potable. The chemical analysis results revealed that pH range from 7.2 to 7.8, TA 222 to 427 mg/l, TDS 512 to 854 mg/l, TH 420 to 584 mg/l, Calcium 115 to 140 mg/l, Magnesium 55 to 115 mg/l, Chlorides 202 to 290 mg/l, Sulphates 170 to 250 mg/l, Nitrates 6.5 to 11.3 mg/l, and Fluoride 0.9 to 1.7 mg/l. All samples showed higher range of physicochemical parameters except nitrate content which was lower than permissible limit. Highly positive correlation was observed between pH-TH ( r = 0.5063), TA-Cl- ( r = 0.5896), TDS-SO4 - ( r = 0.5125), Mg2+-NO3 - ( r = 0.5543) and Cl--F- ( r = 0.7786). The groundwater samples in and around Jawaharnagar municipal dumpsite implies that groundwater samples were contaminated by municipal leachate migration from open dumpsite. The results revealed that the systematic calculations of correlation coefficient between water parameters and regression analysis provide qualitative and rapid monitoring of groundwater quality.

  10. Mapping groundwater quality distinguishing geogenic and anthropogenic contribution using NBL

    Science.gov (United States)

    Preziosi, Elisabetta; Ducci, Daniela; Condesso de Melo, Maria Teresa; Parrone, Daniele; Sellerino, Mariangela; Ghergo, Stefano; Oliveira, Joana; Ribeiro, Luis

    2015-04-01

    Groundwaters are threatened by anthropic activities and pollution is interesting a large number of aquifers worldwide. Qualitative and quantitative monitoring is required to assess the status and track its evolution in time and space especially where anthropic pressures are stronger. Up to now, groundwater quality mapping has been performed separately from the assessment of its natural status, i.e. the definition of the natural background level of a particular element in a particular area or groundwater body. The natural background level (NBL) of a substance or element allows to distinguish anthropogenic pollution from contamination of natural origin in a population of groundwater samples. NBLs are the result of different atmospheric, geological, chemical and biological interaction processes during groundwater infiltration and circulation. There is an increasing need for the water managers to have sound indications on good quality groundwater exploitation. Indeed the extension of a groundwater body is often very large, in the order of tens or hundreds of square km. How to select a proper location for good quality groundwater abstraction is often limited to a question of facility for drilling (access, roads, authorizations, etc.) or at the most related to quantitative aspects driven by geophysical exploration (the most promising from a transmissibility point of view). So how to give indications to the administrators and water managers about the exploitation of good quality drinking water? In the case of anthropic contamination, how to define which area is to be restored and to which threshold (e.g. background level) should the concentration be lowered through the restoration measures? In the framework of a common project between research institutions in Italy (funded by CNR) and Portugal (funded by FCT), our objective is to establish a methodology aiming at merging together 1) the evaluation of NBL and 2) the need to take into account the drinking water standards

  11. Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA

    Directory of Open Access Journals (Sweden)

    John Luczaj

    2015-06-01

    Full Text Available The State of Wisconsin is located in an unusually water-rich portion of the world in the western part of the Great Lakes region of North America. This article presents an overview of the major groundwater quantity and quality concerns for this region in a geologic context. The water quantity concerns are most prominent in the central sand plain region and portions of a Paleozoic confined sandstone aquifer in eastern Wisconsin. Water quality concerns are more varied, with significant impacts from both naturally occurring inorganic contaminants and anthropogenic sources. Naturally occurring contaminants include radium, arsenic and associated heavy metals, fluoride, strontium, and others. Anthropogenic contaminants include nitrate, bacteria, viruses, as well as endocrine disrupting compounds. Groundwater quality in the region is highly dependent upon local geology and land use, but water bearing geologic units of all ages, Precambrian through Quaternary, are impacted by at least one kind of contaminant.

  12. Groundwater impact assessment report for the 216-S-26 Crib, 200 West Area

    International Nuclear Information System (INIS)

    Lindberg, J.W.; Evelo, S.D.; Alexander, D.J.

    1993-11-01

    This report assesses the impact of wastewater discharged to the 216-S-26 Crib on groundwater quality. The 216-S-26 Crib, located in the southern 200 West Area, has been in use since 1984 to dispose of liquid effluents from the 222-S Laboratory Complex. The 222-S Laboratory Complex effluent stream includes wastewater from four sources: the 222-S Laboratory, the 219-S Waste Storage Facility, the 222-SA Chemical Standards Laboratory, and the 291-S Exhaust Fan Control House and Stack. Based on assessment of groundwater chemistry and flow data, contaminant transport predictions, and groundwater chemistry data, the 216-S-26 Crib has minimal influence on groundwater contamination in the southern 200 West Area

  13. Groundwater impact assessment report for the 216-S-26 Crib, 200 West Area

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, J.W.; Evelo, S.D.; Alexander, D.J.

    1993-11-01

    This report assesses the impact of wastewater discharged to the 216-S-26 Crib on groundwater quality. The 216-S-26 Crib, located in the southern 200 West Area, has been in use since 1984 to dispose of liquid effluents from the 222-S Laboratory Complex. The 222-S Laboratory Complex effluent stream includes wastewater from four sources: the 222-S Laboratory, the 219-S Waste Storage Facility, the 222-SA Chemical Standards Laboratory, and the 291-S Exhaust Fan Control House and Stack. Based on assessment of groundwater chemistry and flow data, contaminant transport predictions, and groundwater chemistry data, the 216-S-26 Crib has minimal influence on groundwater contamination in the southern 200 West Area.

  14. Spatial and temporal variations in shallow wetland groundwater quality

    Science.gov (United States)

    Schot, Paul P.; Pieber, Simone M.

    2012-02-01

    SummaryWetlands worldwide are threatened by environmental change. Differences in groundwater composition is one of the factors affecting wetland terrestrial floristic biodiversity. However, few studies discuss variations in wetland groundwater composition. This study presents an analysis of local-scale spatial and short-term temporal variations in 15 groundwater composition parameters of the 7 km2 Naardermeer wetland nature reserve in The Netherlands. Data is available from a network of 35 groundwater wells with 2-4 filters each, at depths between 50 and 800 cm, which were sampled about monthly over a 1-year period, totalling 1042 chemical analysis from 103 filter screens. Relative standard deviations indicate large differences in variation between parameters. Largest spatial and temporal variations were found for nutrients (NO3-, PO43-, NH4+) and redox sensitive parameters (Fe, Mn), and lowest variations for macroions and SiO2. A horizontal zonation in groundwater concentrations has been found related to soil type and soil wetness, with largest horizontal decrease in NO3- and SO42-, and largest increase in Fe and SiO2, going in the groundwater flow direction from dry sandy soils to wet peat/clay soils. No clear horizontal patterns have been found for the macroions. Spatial zonations in the north-south direction and with depth are absent for all parameters. Spatial and temporal variations were found to be related. 3D-maps indicate highest temporal fluctuations at filter screens with lowest median concentrations for NO3-, SO42- and Fe, but the reverse pattern for SiO2. High temporal variations of nutrients and redox sensitive parameters could not be traced back to a seasonal trend. The spatial and temporal variability of groundwater quality parameters as presented in this study, together with their reported effects on different vegetation types, may be used to design efficient monitoring schemes by nature managers having set specific vegetation development targets

  15. Groundwater Quality Assessment for Waste Management Area U: First Determination

    Energy Technology Data Exchange (ETDEWEB)

    FN Hodges; CJ Chou

    2000-08-04

    Waste Management Area U (TWA U) is located in the 200 West Area of the Hanford Site. The area includes the U Tank Farm, which contains 16 single-shell tanks and their ancillary equipment and waste systems. WMA U is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) as stipulated in 40 CFR Part 265, Subpart F, which is incorporated into the Washington State dangerous waste regulations (WAC 173-303400) by reference. Groundwater monitoring at WMA U has been guided by an interim status indicator evaluation program. As a result of changes in the direction of groundwater flow, background values for the WMA have been recalculated several times during its monitoring history. The most recent recalculation revealed that one of the indicator parameters, specific conductance, exceeded its background value in downgradient well 299-W19-41. This triggered a change from detection monitoring to a groundwater quality assessment program. The major contributors to the higher specific conductance are nonhazardous constituents, such as bicarbonate, calcium, chloride, magnesium, sodium and sulfate. Chromium, nitrate, and technetium-99 are present and are increasing; however, they are significantly below their drinking water standards. The objective of this study is to determine whether the increased concentrations of chromium, nitrate, and technetium-99 in groundwater are from WMA U or from an upgradient source. Interpretation of groundwater monitoring data indicates that both the nonhazardous constituents causing elevated specific conductance in groundwater and the tank waste constituents present in groundwater at the WMA are a result of surface water infiltration in the southern portion of the WMA. There is evidence that both upgradient and WMA sources contribute to the nitrate concentrations that were detected. There is no indication of an upgradient source for the chromium and technetium-99 that was detected. Therefore, a source of contamination appears to

  16. Groundwater Quality Assessment for Waste Management Area U: First Determination

    International Nuclear Information System (INIS)

    FN Hodges; CJ Chou

    2000-01-01

    Waste Management Area U (TWA U) is located in the 200 West Area of the Hanford Site. The area includes the U Tank Farm, which contains 16 single-shell tanks and their ancillary equipment and waste systems. WMA U is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) as stipulated in 40 CFR Part 265, Subpart F, which is incorporated into the Washington State dangerous waste regulations (WAC 173-303400) by reference. Groundwater monitoring at WMA U has been guided by an interim status indicator evaluation program. As a result of changes in the direction of groundwater flow, background values for the WMA have been recalculated several times during its monitoring history. The most recent recalculation revealed that one of the indicator parameters, specific conductance, exceeded its background value in downgradient well 299-W19-41. This triggered a change from detection monitoring to a groundwater quality assessment program. The major contributors to the higher specific conductance are nonhazardous constituents, such as bicarbonate, calcium, chloride, magnesium, sodium and sulfate. Chromium, nitrate, and technetium-99 are present and are increasing; however, they are significantly below their drinking water standards. The objective of this study is to determine whether the increased concentrations of chromium, nitrate, and technetium-99 in groundwater are from WMA U or from an upgradient source. Interpretation of groundwater monitoring data indicates that both the nonhazardous constituents causing elevated specific conductance in groundwater and the tank waste constituents present in groundwater at the WMA are a result of surface water infiltration in the southern portion of the WMA. There is evidence that both upgradient and WMA sources contribute to the nitrate concentrations that were detected. There is no indication of an upgradient source for the chromium and technetium-99 that was detected. Therefore, a source of contamination appears to

  17. Technical summary of groundwater quality protection program at Savannah River Plant. Volume 1. Site geohydrology, and solid and hazardous wastes

    International Nuclear Information System (INIS)

    Christensen, E.J.; Gordon, D.E.

    1983-12-01

    The program for protecting the quality of groundwater underlying the Savannah River Plant (SRP) is described in this technical summary report. The report is divided into two volumes. Volume I contains a discussion of the general site geohydrology and of both active and inactive sites used for disposal of solid and hazardous wastes. Volume II includes a discussion of radioactive waste disposal. Most information contained in these two volumes is current as of December 1983. The groundwater quality protection program has several elements which, taken collectively, are designed to achieve three major goals. These goals are to evaluate the impact on groundwater quality as a result of SRP operations, to restore or protect groundwater quality by taking corrective action as necessary, and to ensure disposal of waste materials in accordance with regulatory guidelines

  18. Quality Measurement Impact Reports

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Secretary of the Department of Health and Human Services is required to assess the impact of consensus-endorsed quality and efficiency measures used in federal...

  19. Hydrogeochemical analysis and evaluation of groundwater quality ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Higher concentration of Sodium and Chloride indicates leaching of secondary salts and anthropogenic impact by industry and salt water intrusion. Spatial distribution of EC indicates anthropogenic impact in the downstream side of the basin. The concentration levels of trace metals such as Iron (Fe), Lead ...

  20. Risk Communication of Groundwater Quality in Northern Malawi, Africa

    Science.gov (United States)

    Holm, R.

    2011-12-01

    Malawi lies in Africa's Great Rift Valley. Its western border is defined by Lake Malawi, the third largest lake in Africa. Over 80% of Malawians live in rural areas and 90% of the labor force is associated with agriculture. More than half of the population lives below the poverty line. Area characteristics indicate a high likelihood of nitrate and total coliform in community drinking water. Infants exposed to high nitrate are at risk of developing methemoglobinemia. In addition, diarrheal diseases from unsafe drinking water are one of the top causes of mortality in children under five. Without sufficient and sustainable supplies of clean water, these challenges will continue to threaten Malawi's ability to overcome the devastating impact of diarrheal diseases on its population. Therefore, Malawi remains highly dependent on outside assistance and influence to reduce or eliminate the threat posed by unsafe drinking water. This research presents a literature review of nitrate and total coliform groundwater quality and a proposed risk communication plan for drinking water in northern Malawi.

  1. impact on embryo quality

    Directory of Open Access Journals (Sweden)

    Marijan Tandara

    2013-05-01

    Conclusions: In men with poorer semen quality, evaluated by standard semen parameters, a higher proportion of sperm with damaged DNA can also be expected. Higher sperm DNA damage, established by Halosperm test, also had an impact on embryo quality in this group of patients.

  2. The effects of urbanization on groundwater quantity and quality in the Zahedan aquifer, southeast Iran

    Science.gov (United States)

    Khazaei, E.; Mackay, R.; Warner, J.W.

    2004-01-01

    This paper investigates the impacts of urban growth on groundwater quality and quantity in the Zahedan aquifer, which is the sole source of water supply for the city of Zahedan, Iran. The investigation is based on the collection of available historical data, supplemented by field and laboratory investigations. Groundwater levels in 40 wells were measured in December 2000. In addition, 102 water samples were taken in two periods during November and December 2000. Of these, 43 samples were analyzed for major ions, 32 samples were analyzed for nitrogen and phosphorus and the remainder for bacteriological contamination. The water level data show that there has been a general decline since 1977 due to over-abstraction. The magnitude of this decline has reached about 20 m in some places. However, in one area over the same period, a rise of about 3 m has been observed. This occurs as a result of the local hydrogeological conditions of shallow bedrock and relatively low permeability materials down stream of this area that limits the flow of groundwater towards the northeastern part of the aquifer. The general fall in groundwater levels has been accompanied by a change in the direction of the groundwater flow and an overall reduction of the areal extent of the saturated region of the aquifer. The city now has a serious problem such that even if the abstracted groundwater is rationed, water is not available for long periods because the demand far exceeds the supply. The heavy impact of urbanization on the groundwater quality is shown through the observed high nitrate (up to 295 mg/l as nitrate) and high phosphorus values (about 0.1 mg/l as P). Significant changes in the chloride concentration are also observed in two areas: increasing from 100 mg/l to 1,600 mg/l and from 2,000 mg/l to 4,000 mg/l, respectively. Furthermore, the bacteriological investigations show that 33 percent of the 27 collected groundwater samples are positive for total coliform and 11 percent of the

  3. Groundwater science relevant to the Great Lakes Water Quality Agreement: A status report

    Science.gov (United States)

    Grannemann, Norman G.; Van Stempvoort, Dale

    2016-01-01

    When the Great Lakes Water Quality Agreement (GLWQA) was signed in 1972 by the Governments of Canada and the United States (the “Parties”) (Environment Canada, 2013a), groundwater was not recognized as important to the water quality of the Lakes. At that time, groundwater and surface water were still considered as two separate systems, with almost no appreciation for their interaction. When the GLWQA was revised in 1978 (US Environmental Protection Agency (USEPA), 2012), groundwater contamination, such as that reported at legacy industrial sites such as those at Love Canal near the Niagara River, was squarely in the news. Consequently, the potential impacts of contaminated groundwater from such sites on Great Lakes water quality became a concern (Beck, 1979), and Annex 16 was added to the agreement, to address “pollution from contaminated groundwater” (Francis, 1989). However, no formal process for reporting under this annex was provided. The GLWQA Protocol in 1987 modified Annex 16 and called for progress reports beginning in 1988 (USEPA, 1988). The Protocol in 2012 provided a new Annex 8 to address groundwater more holistically (Environment 2 Canada, 2013b). Annex 8 (Environment Canada, 2013b) commits the Parties to coordinate groundwater science and management actions; as a first step, to “publish a report on the relevant and available groundwater science” by February 2015 (this report); and to “identify priorities for science activities and actions for groundwater management, protection, and remediation…” The broader mandate of Annex 8 is to (1) “identify groundwater impacts on the chemical, physical and biological integrity of the Waters of the Great Lakes;” (2) “analyze contaminants, including nutrients in groundwater, derived from both point and non-point sources impacting the Waters of the Great Lakes;” (3) “assess information gaps and science needs related to groundwater to protect the quality of the Waters of the Great Lakes

  4. Groundwater-Quality Assessment, Pike County, Pennsylvania, 2007

    Science.gov (United States)

    Senior, Lisa A.

    2009-01-01

    Pike County, a 545 square-mile area in northeastern Pennsylvania, has experienced the largest relative population growth of any county in the state from 1990 to 2000 and its population is projected to grow substantially through 2025. This growing population may result in added dependence and stresses on water resources, including the potential to reduce the quantity and degrade the quality of groundwater and associated stream base flow with changing land use. Groundwater is the main source of drinking water in the county and is derived primarily from fractured-rock aquifers (shales, siltstones, and sandstones) and some unconsolidated glacial deposits that are recharged locally from precipitation. The principal land uses in the county as of 2005 were public, residential, agricultural, hunt club/private recreational, roads, and commercial. The public lands cover a third of the county and include national park, state park, and other state lands, much of which are forested. Individual on-site wells and wastewater disposal are common in many residential areas. In 2007, the U.S. Geological Survey, in cooperation with the Pike County Conservation District, began a study to provide current information on groundwater quality throughout the county that will be helpful for water-resource planning. The countywide reconnaissance assessment of groundwater quality documents current conditions with existing land uses and may serve as a baseline of groundwater quality for future comparison. Twenty wells were sampled in 2007 throughout Pike County to represent groundwater quality in the principal land uses (commercial, high-density and moderate-density residential with on-site wastewater disposal, residential in a sewered area, pre-development, and undeveloped) and geologic units (five fractured-rock aquifers and one glacial unconsolidated aquifer). Analyses selected for the groundwater samples were intended to identify naturally occurring constituents from the aquifer or

  5. Groundwater Quality and the Settlements Condition in

    Directory of Open Access Journals (Sweden)

    Munawar Cholil

    2004-01-01

    Full Text Available To comprehend the factors which influence on the juvenile water, it needs paying attention to the rocks permeability, the thickness of the aeration zone, the type of the material composition and the depth of the ground water. The grade of the ground water quality, both ground water in general and juvenile water in the urban, is dependent upon the natural physical, man made physical, and the condition of the local inhabitant besides the another factors. The influence grade of the factors are undersirable yet because among of them there are cross-linkages. The linkage of the ground water quality condition, besides another factor, inconfirmed by the inhabitant and the settelement. The aspect of the man made physical, both sanitation condition and the population density with their activity effect i.e. sewage by product, should fully determine the ground water quality. There is a closed connection between the juvenile water quality and the settlement condition, mainly, in the case is the domestic sewage disposal. It is estimated that the unit of settlement associates with the grade of the juvenile water quality. Some of the variabilities which are desirable to sustain the settlement condition and constitutes the influence variability i.e. the density of the population and buildings, and the condition of the drainage system for sewage.

  6. Key Factors for Determining Risk of Groundwater Impacts Due to Leakage from Geologic Carbon Sequestration Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Susan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Keating, Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mansoor, Kayyum [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dai, Zhenue [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sun, Yunwei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Trainor-Guitton, Whitney [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brown, Chris [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bacon, Diana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-01-06

    The National Risk Assessment Partnership (NRAP) is developing a science-based toolset for the analysis of potential impacts to groundwater chemistry from CO2 injection (www.netldoe.gov/nrap). The toolset adopts a stochastic approach in which predictions address uncertainties in shallow underwater and leakage scenarios. It is derived from detailed physics and chemistry simulation results that are used to train more computationally efficient models,l referred to here as reduced-order models (ROMs), for each component system. In particular, these tools can be used to help regulators and operators understand the expected sizes and longevity of plumes in pH, TDS, and dissolved metals that could result from a leakage of brine and/or CO2 from a storage reservoir into aquifers. This information can inform, for example, decisions on monitoring strategies that are both effective and efficient. We have used this approach to develop predictive reduced-order models for two common types of reservoirs, but the approach could be used to develop a model for a specific aquifer or other common types of aquifers. In this paper we describe potential impacts to groundwater quality due to CO2 and brine leakage, discuss an approach to calculate thresholds under which "no impact" to groundwater occurs, describe the time scale for impact on groundwater, and discuss the probability of detecting a groundwater plume should leakage occur.

  7. Groundwater quality in the Indian Wells Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Indian Wells Valley is one of the study areas being evaluated. The Indian Wells study area is approximately 600 square miles (1,554 square kilometers) and includes the Indian Wells Valley groundwater basin (California Department of Water Resources, 2003). Indian Wells Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lake beds in the lower parts of the valley. Land use in the study area is approximately 97.0 percent (%) natural, 0.4% agricultural, and 2.6% urban. The primary natural land cover is shrubland. The largest urban area is the city of Ridgecrest (2010 population of 28,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from the Sierra Nevada to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and direct infiltration from irrigation and septic systems. The primary sources of discharge are pumping wells and evapotranspiration near the dry lakebeds. The primary aquifers in the Indian Wells study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in

  8. Groundwater quality mapping using geographic information system ...

    African Journals Online (AJOL)

    Spatial variations in ground water quality in the corporation area of Gulbarga City located in the northern part of Karnataka State, India, have been studied using geographic information system (GIS) technique. GIS, a tool which is used for storing, analyzing and displaying spatial data is also used for investigating ground ...

  9. Groundwater quality in West Virginia, 1993-2008

    Science.gov (United States)

    Chambers, Douglas B.; Kozar, Mark D.; White , Jeremy S.; Paybins, Katherine S.

    2012-01-01

    Approximately 42 percent of all West Virginians rely on groundwater for their domestic water supply. However, prior to 2008, the quality of the West Virginia’s groundwater resource was largely unknown. The need for a statewide assessment of groundwater quality prompted the U.S. Geological Survey (USGS), in cooperation with West Virginia Department of Environmental Protection (WVDEP), Division of Water and Waste Management, to develop an ambient groundwater-quality monitoring program. The USGS West Virginia Water Science Center sampled 300 wells, of which 80 percent were public-supply wells, over a 10-year period, 1999–2008. Sites for this statewide ambient groundwater-quality monitoring program were selected to provide wide areal coverage and to represent a variety of environmental settings. The resulting 300 samples were supplemented with data from a related monitoring network of 24 wells and springs. All samples were analyzed for field measurements (water temperature, pH, specific conductance, and dissolved oxygen), major ions, trace elements, nutrients, volatile organic compounds, fecal indicator bacteria, and radon-222. Sub-sets of samples were analyzed for pesticides or semi-volatile organic compounds; site selection was based on local land use. Samples were grouped for comparison by geologic age of the aquifer, Groups included Cambrian, Ordovician, Silurian, Devonian, Pennsylvanian, Permian, and Quaternary aquifers. A comparison of samples indicated that geologic age of the aquifer was the largest contributor to variability in groundwater quality. This study did not attempt to characterize drinking water provided through public water systems. All samples were of raw, untreated groundwater. Drinking-water criteria apply to water that is served to the public, not to raw water. However, drinking water criteria, including U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL), non-enforceable secondary maximum contaminant level (SMCL

  10. Impacts of Future Climate Change and Baltic Sea Level Rise on Groundwater Recharge, Groundwater Levels, and Surface Leakage in the Hanko Aquifer in Southern Finland

    Directory of Open Access Journals (Sweden)

    Samrit Luoma

    2014-11-01

    Full Text Available The impact of climate change and Baltic Sea level rise on groundwater resources in a shallow, unconfined, low-lying coastal aquifer in Hanko, southern Finland, was assessed using the UZF1 model package coupled with the three-dimensional groundwater flow model MODFLOW to simulate flow from the unsaturated zone through the aquifer. The snow and PET models were used to calculate the surface water availability for infiltration from the precipitation data used in UZF1. Infiltration rate, flow in the unsaturated zone and groundwater recharge were then simulated using UZF1. The simulation data from climate and sea level rise scenarios were compared with present data. The results indicated changes in recharge pattern during 2071–2100, with recharge occurring earlier in winter and early spring. The seasonal impacts of climate change on groundwater recharge were more significant, with surface overflow resulting in flooding during winter and early spring and drought during summer. Rising sea level would cause some parts of the aquifer to be under sea level, compromising groundwater quality due to intrusion of sea water. This, together with increased groundwater recharge, would raise groundwater levels and consequently contribute more surface leakage and potential flooding in the low-lying aquifer.

  11. ASSESSMENT OF GROUNDWATER QUALITY IN SUNAMGANJ OF BANGLADESH

    Directory of Open Access Journals (Sweden)

    F. Raihan, J. B. Alam

    2008-07-01

    Full Text Available In this study, groundwater quality in Sunamganj of Bangladesh was studied based on different indices for irrigation and drinking uses. Samples were investigated for sodium absorption ratio, soluble sodium percentage, residual sodium carbonate, electrical conductance, magnesium adsorption ratio, Kelly's ratio, total hardness, permeability index, residual sodium bi-carbonate to investigate the ionic toxicity. From the analytical result, it was revealed that the values of Sodium Adsorption Ratio indicate that ground water of the area falls under the category of low sodium hazard. So, there was neither salinity nor toxicity problem of irrigation water, so that ground water can safely be used for long-term irrigation. Average Total Hardness of the samples in the study area was in the range of between 215 mg/L at Tahirpur and 48250 mg/L at Bishamvarpur. At Bishamvarpur, the water was found very hard. Average total hardness of the samples was in the range of between 215 mg/L at Tahirpur and 48250 mg/L at Bishamvarpur. At Bishamvarpur, the water was found very hard. It was shown based on GIS analysis that the groundwater quality in Zone-1 could be categorized of "excellent" class, supporting the high suitability for irrigation. In Zone-2 and Zone-3, the groundwater quality was categorized as "risky" and "poor" respectively. The study has also made clear that GIS-based methodology can be used effectively for ground water quality mapping even in small catchments.

  12. Calendar year 1994 groundwater quality report for the Bear Creek hydrogeologic regime, Y-12 Plant, Oak Ridge, Tennessee. 1994 Groundwater quality data interpretations and proposed program modifications

    International Nuclear Information System (INIS)

    1995-10-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1994 calendar year (CY) at several hazardous and non-hazardous waste management facilities at the US Department of Energy (DOE) Y-12 Plant. These sites lie in Bear Creek Valley (BCV) west of the Y-12 Plant within the boundaries of the Bear Creek Hydrogeologic Regime which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring. The Environmental Management Department manages the groundwater monitoring activities under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to protect local groundwater resources. The annual GWQR for the Bear Creek Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, summarizes the status and findings of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis activities

  13. Assessment of Groundwater Quality in Zanzibar Municipality

    African Journals Online (AJOL)

    user

    This is a waste of resource that leads to scarcity of water for the people and increased costs for water. ... population and drive for enhanced tourism on the island is forcing more water production from the ... economic activities (especially tourism based activities) thus greatly impacting on the natural resources base among of ...

  14. Potential impact of large scale abstraction on the quality of shallow ...

    African Journals Online (AJOL)

    The potential impact of large-scale groundwater abstraction on the shallow groundwater and crop production within the Keta Strip was examined. The assessment was based on geophysical data, data on groundwater quality, soils, irrigation water requirement and hydrogeology of the Strip. The results indicate that the ...

  15. Relevance of water quality index for groundwater quality evaluation: Thoothukudi District, Tamil Nadu, India

    Science.gov (United States)

    Singaraja, C.

    2017-09-01

    The present hydrogeochemical study was confined to the Thoothukudi District in Tamilnadu, India. A total of 100 representative water samples were collected during pre-monsoon and post-monsoon and analyzed for the major cations (sodium, calcium, magnesium and potassium) and anions (chloride, sulfate, bicarbonate, fluoride and nitrate) along with various physical and chemical parameters (pH, total dissolved salts and electrical conductivity). Water quality index rating was calculated to quantify the overall water quality for human consumption. The PRM samples exhibit poor quality in greater percentage when compared with POM due to dilution of ions and agricultural impact. The overlay of WQI with chloride and EC corresponds to the same locations indicating the poor quality of groundwater in the study area. Sodium (Na %), sodium absorption ratio (SAR), residual sodium carbonate (RSC), residual sodium bicarbonate, permeability index (PI), magnesium hazards (MH), Kelly's ratio (KR), potential salinity (PS) and Puri's salt index (PSI) and domestic quality parameters such as total hardness (TH), temporary, permanent hardness and corrosivity ratio (CR) were calculated. The majority of the samples were not suitable for drinking, irrigation and domestic purposes in the study area. In this study, the analysis of salinization/freshening processes was carried out through binary diagrams such as of mole ratios of {SO}_{ 4}^{ 2- } /Cl- and Cl-/EC that clearly classify the sources of seawater intrusion and saltpan contamination. Spatial diagram BEX was used to find whether the aquifer was in the salinization region or in the freshening encroachment region.

  16. Groundwater quality in the San Diego Drainages Hydrogeologic Province, California

    Science.gov (United States)

    Wright, Michael T.; Belitz, Kenneth

    2011-01-01

    More than 40 percent of California's drinking water is from groundwater. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The San Diego Drainages Hydrogeologic Province (hereinafter referred to as San Diego) is one of the study units being evaluated. The San Diego study unit is approximately 3,900 square miles and consists of the Temecula Valley, Warner Valley, and 12 other alluvial basins (California Department of Water Resources, 2003). The study unit also consists of all areas outside defined groundwater basins that are within 3 kilometers of a public-supply well. The study unit was separated, based primarily on hydrogeologic settings, into four study areas: Temecula Valley, Warner Valley, Alluvial Basins, and Hard Rock (Wright and others, 2005). The sampling density for the Hard Rock study area, which consists of areas outside of groundwater basins, was much lower than for the other study areas. Consequently, aquifer proportions for the Hard Rock study area are not used to calculate the aquifer proportions shown by the pie charts. An assessment of groundwater quality for the Hard Rock study area can be found in Wright and Belitz, 2011. The temperatures in the coastal part of the study unit are mild with dry summers, moist winters, and an average annual rainfall of about 10 inches. The temperatures in the mountainous eastern part of the study unit are cooler than in the coastal part, with an annual precipitation of about 45 inches that occurs mostly in the winter. The primary aquifers consist of Quaternary-age alluvium and weathered bedrock in the Temecula Valley, Warner Valley, and Alluvial Basins study areas, whereas in the Hard Rock study area the primary aquifers consist mainly of fractured and

  17. Groundwater-quality characteristics for the Wyoming Groundwater-Quality Monitoring Network, November 2009 through September 2012

    Science.gov (United States)

    Boughton, Gregory K.

    2014-01-01

    Groundwater samples were collected from 146 shallow (less than or equal to 500 feet deep) wells for the Wyoming Groundwater-Quality Monitoring Network, from November 2009 through September 2012. Groundwater samples were analyzed for physical characteristics, major ions and dissolved solids, trace elements, nutrients and dissolved organic carbon, uranium, stable isotopes of hydrogen and oxygen, volatile organic compounds, and coliform bacteria. Selected samples also were analyzed for gross alpha radioactivity, gross beta radioactivity, radon, tritium, gasoline range organics, diesel range organics, dissolved hydrocarbon gases (methane, ethene, and ethane), and wastewater compounds. Water-quality measurements and concentrations in some samples exceeded numerous U.S. Environmental Protection Agency (EPA) drinking water standards. Physical characteristics and constituents that exceeded EPA Maximum Contaminant Levels (MCLs) in some samples were arsenic, selenium, nitrite, nitrate, gross alpha activity, and uranium. Total coliforms and Escherichia coli in some samples exceeded EPA Maximum Contaminant Level Goals. Measurements of pH and turbidity and concentrations of chloride, sulfate, fluoride, dissolved solids, aluminum, iron, and manganese exceeded EPA Secondary Maximum Contaminant Levels in some samples. Radon concentrations in some samples exceeded the alternative MCL proposed by the EPA. Molybdenum and boron concentrations in some samples exceeded EPA Health Advisory Levels. Water-quality measurements and concentrations also exceeded numerous Wyoming Department of Environmental Quality (WDEQ) groundwater standards. Physical characteristics and constituents that exceeded WDEQ Class I domestic groundwater standards in some samples were measurements of pH and concentrations of chloride, sulfate, dissolved solids, iron, manganese, boron, selenium, nitrite, and nitrate. Measurements of pH and concentrations of chloride, sulfate, dissolved solids, aluminum, iron

  18. Groundwater quality assessment/corrective action feasibility plan

    Energy Technology Data Exchange (ETDEWEB)

    Stejskal, G.F.

    1989-11-15

    The Savannah River Laboratory (SRL) Seepage Basins are located in the northeastern section of the 700 Area at the Savannah River Site. Currently the four basins are out of service and are awaiting closure in accordance with the Consent Decree settled under Civil Act No. 1:85-2583. Groundwater monitoring data from the detection monitoring network around the SRL Basins was recently analyzed using South Carolina Hazardous Waste Management Regulations R.61-79.264.92 methods to determine if groundwater in the immediate vicinity of the SRL Basins had been impacted. Results from the data analysis indicate that the groundwater has been impacted by both volatile organic constituents (VOCs) and inorganic constituents. The VOCs, specifically trichloroethylene and tetrachloroethylene, are currently being addressed under the auspices of the SRS Hazardous Waste Permit Application (Volume III, Section J.6.3). The impacts resulting from elevated levels of inorganic constituent, such as barium, calcium, and zinc in the water table, do not pose a threat to human health and the environment. In order to determine if vertical migration of the inorganic constituents has occurred three detection monitoring wells are proposed for installation in the upper portion of the Congaree Aquifer.

  19. [Relationship between groundwater quality index of nutrition element and organic matter in riparian zone and water quality in river].

    Science.gov (United States)

    Hua-Shan, Xu; Tong-Qian, Zhao; Hong-Q, Meng; Zong-Xue, Xu; Chao-Hon, Ma

    2011-04-01

    Riparian zone hydrology is dominated by shallow groundwater with complex interactions between groundwater and surface water. There are obvious relations of discharge and recharge between groundwater and surface water. Flood is an important hydrological incident that affects groundwater quality in riparian zone. By observing variations of physical and chemical groundwater indicators in riparian zone at the Kouma section of the Yellow River Wetland, especially those took place in the period of regulation for water and sediment at the Xiaolangdi Reservoir, relationship between the groundwater quality in riparian zone and the flood water quality in the river is studied. Results show that there will be great risk of nitrogen, phosphorus, nitrate nitrogen and organic matter permeating into the groundwater if floodplain changes into farmland. As the special control unit of nitrogen pollution between rivers and artificial wetlands, dry fanning areas near the river play a very important role in nitrogen migration between river and groundwater. Farm manure as base fertilizer may he an important source of phosphorus leak and loss at the artificial wetlands. Phosphorus leaks into the groundwater and is transferred along the hydraulic gradient, especially during the period of regulation for water and sediment at the Xiaolangdi Reservoir. The land use types and farming systems of the riparian floodplain have a major impact on the nitrate nitrogen contents of the groundwater. Nitrogen can infiltrate and accumulate quickly at anaerobic conditions in the fish pond area, and the annual nitrogen achieves a relatively balanced state in lotus area. In those areas, the soil is flooded and at anaerobic condition in spring and summer, nitrogen infiltrates and denitrification significantly, but soil is not flooded and at aerobic condition in the autumn and winter, and during these time, a significant nitrogen nitrification process occurs. In the area between 50 m and 200 m from the river

  20. Groundwater quality in the Bear Valley and Lake Arrowhead Watershed, California

    Science.gov (United States)

    Mathany, Timothy; Burton, Carmen; Fram, Miranda S.

    2017-06-20

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Bear Valley and Lake Arrowhead Watershed study areas in southern California compose one of the study units being evaluated.

  1. Groundwater quality in the North San Francisco Bay shallow aquifer, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.

    2018-02-23

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The North San Francisco Bay Shallow Aquifer constitutes one of the study units being evaluated.

  2. Groundwater quality in the Mokelumne, Cosumnes, and American River Watersheds, Sierra Nevada, California

    Science.gov (United States)

    Fram, Miranda S.; Shelton, Jennifer L.

    2018-03-23

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Mokelumne, Cosumnes, and American River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking-water supplies.

  3. Numerical modelling of groundwater flow to understand the impacts ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 2. Numerical modelling of groundwater flow to understand the impacts of pumping on arsenic migration in the aquifer of North Bengal Plain. P K Sikdar Surajit Chakraborty. Volume 126 Issue 2 March 2017 Article ID 29 ...

  4. Numerical modelling of groundwater flow to understand the impacts ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. DOI 10.1007/s12040-017-0799-x. Numerical modelling of groundwater flow to understand the impacts of pumping on arsenic migration in the aquifer of North Bengal Plain. P K Sikdar∗ and Surajit Chakraborty. Department of Environment Management, Indian Institute of Social Welfare and.

  5. Potential impacts of climate change and variability on groundwater ...

    African Journals Online (AJOL)

    Potential impacts of climate change and variability on groundwater resources in Nigeria. ... African Journal of Environmental Science and Technology ... Climate change observed over the past decades has been consistently associated with modifications of components of the hydrological systems such as precipitation ...

  6. Salinity Impacts on Agriculture and Groundwater in Delta Regions

    Science.gov (United States)

    Clarke, D.; Salehin, M.; Jairuddin, M.; Saleh, A. F. M.; Rahman, M. M.; Parks, K. E.; Haque, M. A.; Lázár, A. N.; Payo, A.

    2015-12-01

    Delta regions are attractive for high intensity agriculture due to the availability of rich sedimentary soils and of fresh water. Many of the world's tropical deltas support high population densities which are reliant on irrigated agriculture. However environmental changes such as sea level rise, tidal inundation and reduced river flows have reduced the quantity and quality of water available for successful agriculture. Additionally, anthropogenic influences such as the over abstraction of ground water and the increased use of low quality water from river inlets has resulted in the accumulation of salts in the soils which diminishes crop productivity. Communities based in these regions are usually reliant on the same water for drinking and cooking because surface water is frequently contaminated by commercial and urban pollution. The expansion of shallow tube well systems for drinking water and agricultural use over the last few decades has resulted in mobilisation of salinity in the coastal and estuarine fringes. Sustainable development in delta regions is becoming constrained by water salinity. However salinity is often studied as an independent issue by specialists working in the fields of agriculture, community water supply and groundwater. The lack of interaction between these disciplines often results in corrective actions being applied to one sector without fully assessing the effects of these actions on other sectors. This paper describes a framework for indentifying the causes and impacts of salinity in delta regions based on the source-pathway-receptor framework. It uses examples and scenarios from the Ganges-Brahmaputra-Meghna delta in Bangladesh together with field measurements and observations made in vulnerable coastal communities. The paper demonstrates the importance of creating an holistic understanding of the development and management of water resources to reduce the impact of salinity in fresh water in delta regions.

  7. Impact of Irrigated Agroecosystems on Groundwater Resources in the US High Plains and North China Plain

    Science.gov (United States)

    Scanlon, B. R.; Longuevergne, L.; Cao, G.; Shen, Y.; Gates, J. B.; Reedy, R. W.; Zheng, C.

    2010-12-01

    Overabstraction of groundwater for irrigation in semiarid regions is depleting the worlds’ largest aquifers at much greater rates than these aquifers are being replenished by recharge. This study evaluates groundwater sustainability in the US High Plains (US HP) and North China Plain (NCP) where intensive irrigation has resulted in large water table declines. A variety of approaches were used to evaluate impacts of irrigation on groundwater resources, including GRACE satellite data, unsaturated zone profiling, and groundwater quantity and quality data. Cultivation (40% of area) and irrigation (12%) are less intensive in the US HP than in the NCP (80% cultivated, 50% irrigated). Irrigation is estimated to consume ~97% of groundwater resources in the US HP and ~70% in the NCP. Although only ~10% of groundwater resources has been consumed in the US HP (330 km3 out of 3,900 km3), the problem lies in the uneven spatial distribution. Groundwater depletion is greatest in the Central High Plains (CHP) where water table declines of up to 1.5 m/yr have been recorded in individual wells and regional declines of up to 30 m have been found over a 7,000 km2 area since irrigation began in the 1950s to 1960s. This depletion indicates an irrigation deficit of ~75 mm/yr over 60 yr (specific yield 15%). Recharge rates in the CHP are extremely low (median ~10 mm/yr) with reductions in groundwater storage exceeding recharge by ~10 times. High correlations between GRACE and measured water storage changes (R = 0.7 - 0.8) show that the satellite can accurately track regional changes in water storage. Groundwater in the NCP has declined from a depth of ~1 m in the 1960s to 20 to 40 m in the Piedmont region since expansion of irrigation beginning in the 1970s. Groundwater level declines in individual hydrographs range from 0.5 to 1.0 m/yr, indicating irrigation deficits ranging from 100 to 200 mm/yr (specific yield 20%). Lower groundwater storage changes from GRACE satellites relative to

  8. Surface and groundwater quality assessment of Marikina river

    International Nuclear Information System (INIS)

    Dela Pena, Jowell P.; Pael, Limela G.

    2009-03-01

    The study used the physico-chemical characteristics to determine the degree of pollution in different surface and groundwater sources in Marikina. The hydrogen ion concentration in all the stations for surface water was generally basic ranging from 7.24 to 7.44, while conductivity was observed to be highest in Royal Ville station that has a value of 253 μ/cm. Among the four stations in groundwater which obtained an acidic pH, Brgy. Singkamas deep-well has a neutral value. The conductivity was observed to be highest in Brgy. Conception which has a value of 1026 μ/cm. The major ions result showed that the three stations from Marikina River have conformed to the water quality criteria for fresh waters set by the Department of Environment and Natural Resources, while results from different deep-well stations showed that among four stations, Brgy. Singkamas and Conception deep-well have exceeded the recommended value concentration for drinking water quality standards. The multi-element results were obtained from an Energy-Dispersive X-ray Fluorescence Spectroscopy. Results showed that significant concentrations of metals like Al, Cd, Cr, Fe, and Pb in both surface and groundwater stations have exceeded the maximum concentrations set by both DENR and PNSDW. The significant differences in the concentrations of physico-chemical components facilitate detection of contamination from domestic and industrial wastes. (author)

  9. Impact of pending groundwater issues on coal operations

    International Nuclear Information System (INIS)

    Leavitt, B.R.

    1991-01-01

    The EPA Ground-water Task Force has embraced the concept of pollution prevention. This approach moves away from the historic reliance on water quality standards, which has been a source of contention for both industry and the environmental community, toward a system of state implemented design and operational controls which allow for rational decision making on the part of industry and an improvement in ground-water protection for the environmental community. Most states are in the process of developing their own ground-water protection programs, which will require coal mine operators to participate in pollution prevention just like any other activity in the state. EPA suggests that ground-water protection can be achieved through a variety of means including: pollution prevention programs; source controls; siting controls; the designation of well head protection areas and future public water supply areas; and the protection of aquifer recharge areas. Developing a Ground-water Protection Plan (GPP) at each mine allows the mine operator to retain control of the operation instead of following a rigid regulatory scheme. Changes and improvements can be phased in without the chaos of a regulatory deadline, and environmental clean-up liability can be avoided in a cost effective way

  10. Hydrogeology and groundwater quality of Highlands County, Florida

    Science.gov (United States)

    Spechler, Rick M.

    2010-01-01

    Groundwater is the main source of water supply in Highlands County, Florida. As the demand for water in the county increases, additional information about local groundwater resources is needed to manage and develop the water supply effectively. To address the need for additional data, a study was conducted to evaluate the hydrogeology and groundwater quality of Highlands County. Total groundwater use in Highlands County has increased steadily since 1965. Total groundwater withdrawals increased from about 37 million gallons per day in 1965 to about 107 million gallons per day in 2005. Much of this increase in water use is related to agricultural activities, especially citrus cultivation, which increased more than 300 percent from 1965 to 2005. Highlands County is underlain by three principal hydrogeologic units. The uppermost water-bearing unit is the surficial aquifer, which is underlain by the intermediate aquifer system/intermediate confining unit. The lowermost hydrogeologic unit is the Floridan aquifer system, which consists of the Upper Floridan aquifer, as many as three middle confining units, and the Lower Floridan aquifer. The surficial aquifer consists primarily of fine-to-medium grained quartz sand with varying amounts of clay and silt. The aquifer system is unconfined and underlies the entire county. The thickness of the surficial aquifer is highly variable, ranging from less than 50 to more than 300 feet. Groundwater in the surficial aquifer is recharged primarily by precipitation, but also by septic tanks, irrigation from wells, seepage from lakes and streams, and the lateral groundwater inflow from adjacent areas. The intermediate aquifer system/intermediate confining unit acts as a confining layer (except where breached by sinkholes) that restricts the vertical movement of water between the surficial aquifer and the underlying Upper Floridan aquifer. The sediments have varying degrees of permeability and consist of permeable limestone, dolostone, or

  11. Groundwater quality assessment for the Chestnut Ridge Hydrogeologic Regime at the Y-12 Plant. 1991 groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several hazardous and non-hazardous waste- management facilities associated with the US Department of Energy (DOE) Y-12 Plant (Figure 1). These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (CRHR), which is one of the three regimes defined for the purposes of groundwater quality monitoring and remediation (Figure 2). The Health, Safety, Environment, and Accountability (HSEA) Division of the Y-12 Plant Environmental Management Department manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP).

  12. Groundwater impact assessment report for the 216-U-14 Ditch

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, K.M.; Lindsey, K.A.

    1994-01-01

    Groundwater impact assessments are conducted at liquid effluent receiving sites on the Hanford Site to determine hydrologic and contaminant impacts caused by discharging wastewater to the soil column. The assessments conducted are pursuant to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-17-00A and M-17-00B, as agreed by the US Department of Energy (DOE), Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA) (Ecology et al. 1992). This report assesses impacts on the groundwater and vadose zone from wastewater discharged to the 216-U-14 Ditch. Contemporary effluent waste streams of interest are 242-S Evaporator Steam Condensate and UO{sub 3}/U Plant wastewater.

  13. Hydrochemical Impacts of CO2 Leakage on Fresh Groundwater: a Field Scale Experiment

    Science.gov (United States)

    Lions, J.; Gal, F.; Gombert, P.; Lafortune, S.; Darmoul, Y.; Prevot, F.; Grellier, S.; Squarcioni, P.

    2013-12-01

    One of the questions related to the emerging technology for Carbon Geological Storage concerns the risk of CO2 migration beyond the geological storage formation. In the event of leakage toward the surface, the CO2 might affect resources in neighbouring formations (geothermal or mineral resources, groundwater) or even represent a hazard for human activities at the surface or in the subsurface. In view of the preservation of the groundwater resources mainly for human consumption, this project studies the potential hydrogeochemical impacts of CO2 leakage on fresh groundwater quality. One of the objectives is to characterize the bio-geochemical mechanisms that may impair the quality of fresh groundwater resources in case of CO2 leakage. To reach the above mentioned objectives, this project proposes a field experiment to characterize in situ the mechanisms that could impact the water quality, the CO2-water-rock interactions and also to improve the monitoring methodology by controlled CO2 leakage in shallow aquifer. The tests were carried out in an experimental site in the chalk formation of the Paris Basin. The site is equipped with an appropriate instrumentation and was previously characterized (8 piezometers, 25 m deep and 4 piezairs 11 m deep). The injection test was preceded by 6 months of monitoring in order to characterize hydrodynamics and geochemical baselines of the site (groundwater, vadose and soil). Leakage into groundwater is simulated via the injection of a small quantity of food-grade CO2 (~20 kg dissolved in 10 m3 of water) in the injection well at a depth of about 20 m. A plume of dissolved CO2 is formed and moves downward according to the direction of groundwater flow and probably by degassing in part to the surface. During the injection test, hydrochemical monitoring of the aquifer is done in situ and by sampling. The parameters monitored in the groundwater are the piezometric head, temperature, pH and electrical conductivity. Analysis on water

  14. Derivation of groundwater threshold values for analysis of impacts predicted at potential carbon sequestration sites

    Energy Technology Data Exchange (ETDEWEB)

    Last, G. V.; Murray, C. J.; Bott, Y.

    2016-06-01

    The U.S. Department of Energy’s (DOE’s) National Risk Assessment Partnership (NRAP) Project is developing reduced-order models to evaluate potential impacts to groundwater quality due to carbon dioxide (CO2) or brine leakage, should it occur from deep CO2 storage reservoirs. These efforts targeted two classes of aquifer – an unconfined fractured carbonate aquifer based on the Edwards Aquifer in Texas, and a confined alluvium aquifer based on the High Plains Aquifer in Kansas. Hypothetical leakage scenarios focus on wellbores as the most likely conduits from the storage reservoir to an underground source of drinking water (USDW). To facilitate evaluation of potential degradation of the USDWs, threshold values, below which there would be no predicted impacts, were determined for each of these two aquifer systems. These threshold values were calculated using an interwell approach for determining background groundwater concentrations that is an adaptation of methods described in the U.S. Environmental Protection Agency’s Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities. Results demonstrate the importance of establishing baseline groundwater quality conditions that capture the spatial and temporal variability of the USDWs prior to CO2 injection and storage.

  15. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime Y-12 Plant, Oak Ridge, Tennessee. 1993 Groundwater quality data interpretations and proposed program modifications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste management facilities associated with the US DOE Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. to the Tennessee Department of Environment and Conservation (TDEC) in February 1994. Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management sites located within the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Chestnut Ridge Regime encompasses a section of Chestnut Ridge south of the Y-12 Plant and is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual GWQR for the Chestnut Ridge Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, the Part 1 GWQR is submitted to the TDEC by the RCRA reporting deadline (March 1 of the following CY). Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis activities.

  16. Hydrogeochemistry and Water Quality Index in the Assessment of Groundwater Quality for Drinking Uses.

    Science.gov (United States)

    Batabyal, Asit Kumar; Chakraborty, Surajit

    2015-07-01

    The present investigation is aimed at understanding the hydrogeochemical parameters and development of a water quality index (WQI) to assess groundwater quality of a rural tract in the northwest of Bardhaman district of West Bengal, India. Groundwater occurs at shallow depths with the maximum flow moving southeast during pre-monsoon season and south in post-monsoon period. The physicochemical analysis of groundwater samples shows the major ions in the order of HCO3>Ca>Na>Mg>Cl>SO4 and HCO3>Ca>Mg>Na>Cl>SO4 in pre- and post-monsoon periods, respectively. The groundwater quality is safe for drinking, barring the elevated iron content in certain areas. Based on WQI values, groundwater falls into one of three categories: excellent water, good water, and poor water. The high value of WQI is because of elevated concentration of iron and chloride. The majority of the area is occupied by good water in pre-monsoon and poor water in post-monsoon period.

  17. Baseline assessment of groundwater quality in Wayne County, Pennsylvania, 2014

    Science.gov (United States)

    Senior, Lisa A.; Cravotta, III, Charles A.; Sloto, Ronald A.

    2016-06-30

    The Devonian-age Marcellus Shale and the Ordovician-age Utica Shale, geologic formations which have potential for natural gas development, underlie Wayne County and neighboring counties in northeastern Pennsylvania. In 2014, the U.S. Geological Survey, in cooperation with the Wayne Conservation District, conducted a study to assess baseline shallow groundwater quality in bedrock aquifers in Wayne County prior to potential extensive shale-gas development. The 2014 study expanded on previous, more limited studies that included sampling of groundwater from 2 wells in 2011 and 32 wells in 2013 in Wayne County. Eighty-nine water wells were sampled in summer 2014 to provide data on the presence of methane and other aspects of existing groundwater quality throughout the county, including concentrations of inorganic constituents commonly present at low levels in shallow, fresh groundwater but elevated in brines associated with fluids extracted from geologic formations during shale-gas development. Depths of sampled wells ranged from 85 to 1,300 feet (ft) with a median of 291 ft. All of the groundwater samples collected in 2014 were analyzed for bacteria, major ions, nutrients, selected inorganic trace constituents (including metals and other elements), radon-222, gross alpha- and gross beta-particle activity, selected man-made organic compounds (including volatile organic compounds and glycols), dissolved gases (methane, ethane, and propane), and, if sufficient methane was present, the isotopic composition of methane.Results of the 2014 study show that groundwater quality generally met most drinking-water standards, but some well-water samples had one or more constituents or properties, including arsenic, iron, pH, bacteria, and radon-222, that exceeded primary or secondary maximum contaminant levels (MCLs). Arsenic concentrations were higher than the MCL of 10 micrograms per liter (µg/L) in 4 of 89 samples (4.5 percent) with concentrations as high as 20 µg/L; arsenic

  18. Groundwater Quality Protection in Oakland County: A Sourcebook for Teachers.

    Science.gov (United States)

    East Michigan Environmental Action Council, Troy.

    This sourcebook consists of background information and activities related to groundwater protection. The first section focuses on the characteristics of groundwater, the water cycle, stormwater runoff, and uses of groundwater. The second section addresses household hazardous materials--both from a safety standpoint and a groundwater standpoint.…

  19. Impact of leachate on groundwater pollution due to non-engineered municipal solid waste landfill sites of erode city, Tamil Nadu, India

    OpenAIRE

    Nagarajan, Rajkumar; Thirumalaisamy, Subramani; Lakshumanan, Elango

    2012-01-01

    Abstract Leachate and groundwater samples were collected from Vendipalayam, Semur and Vairapalayam landfill sites in Erode city, Tamil Nadu, India, to study the possible impact of leachate percolation on groundwater quality. Concentrations of various physicochemical parameters including heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Fe and Zn) were determined in leachate samples and are reported. The concentrations of Cl-, NO3-, SO42-, NH4+ were found to be in considerable levels in the groundwater sa...

  20. Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India

    Directory of Open Access Journals (Sweden)

    K. Srinivasamoorthy

    2014-01-01

    Full Text Available The Pungar sub basin is located in the central part of South India. The geology is mainly composed of Archean crystalline metamorphic complexes. Increased population and intensive agricultural activity make it imperative to assess the quality of the groundwater system to ensure long-term sustainability of the resources. A total of 87 groundwater samples were collected from bore wells for two different seasons, viz., Pre monsoon and Post monsoon and analyzed for major cations and anions. Semi-arid climate, high evaporation rate and nutrient enrichment are the key features for EC enrichment. HigherNO3- and Cl− were observed in groundwater samples. The sources of Ca2+, Mg2+, Na+ and K+ are from silicate weathering process. The facies demarcation suggests base exchanged hardened water. Gibbs plot suggests chemical weathering of rock forming minerals along with evaporation. The plot of (Ca2+ + Mg2+ versus (SO42-+HCO3- suggests both ion exchange and reverse exchange processes. The plot of (Na++K+ versus TZ+ shows higher cations via silicate weathering, alkaline/saline soils and residence time. The disequilibrium index for carbonate minerals point out influence of evaporation and silicate minerals favor incongruent dissolution. Mineral stability diagrams signify groundwater equilibrium with Kaolinite, Muscovite and Chlorite minerals. Comparison of groundwater quality with drinking standards and irrigation suitability standards proves that majority of water samples are suitable for drinking purpose. In general, water chemistry is guided by complex weathering process, ion exchange and influence of agricultural and sewage impact.

  1. Groundwater quality assessment for domestic and agriculture purposes in Puducherry region

    Science.gov (United States)

    Sridharan, M.; Senthil Nathan, D.

    2017-11-01

    Totally about 174 groundwater samples have been collected during pre-monsoon and post-monsoon season to study the suitability for domestic and agriculture purposes along the coastal aquifers of Puducherry region. Parameters such as pH, total dissolved solids (TDS), electrical conductivity (EC), sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), bicarbonate (HCO3), chloride (Cl) and sulfate (SO4) were analyzed to assess the suitability of groundwater for domestic purposes. Sodium adsorption ratio (SAR), magnesium adsorption ratio (MAR), residual sodium bicarbonate (RSC), soluble sodium percentage (Na%), permeability index (PI) and chlorinity index were assessed for irrigation purposes. The higher concentration of ions such as Na, Ca, Cl and So4 indicates seawater intrusion, mineral dissolution, intense agricultural practices and improper sewage disposal. The level of EC, TDS and hardness in the water samples indicates that maximum of them are suitable for drinking and domestic purposes. The parameters such as SAR, Na%, PI, MAR and Chlorinity index indicates that majority of water sample are very good to moderately suitable for agriculture. In pre-monsoon, RSC of about 5.7% of samples was higher which when used for a longer time alter the soil properties and reduce crop production. Wilcox diagram suggests that water samples are of medium saline to low sodium type indicating that groundwater is suitable for irrigation. Temporal variation of groundwater quality shows significant increasing trend in EC, TDS and ions like Mg, K and Cl in the last decade, mainly due to anthropogenic activities with little geogenic impact in the quality of groundwater.

  2. Scenarios of bioenergy development impacts on regional groundwater withdrawals

    Science.gov (United States)

    Uden, Daniel R.; Allen, Craig R.; Mitchell, Rob B.; Guan, Qingfeng; McCoy, Tim D.

    2013-01-01

    Irrigation increases agricultural productivity, but it also stresses water resources (Huffaker and Hamilton 2007). Drought and the potential for drier conditions resulting from climate change could strain water supplies in landscapes where human populations rely on finite groundwater resources for drinking, agriculture, energy, and industry (IPCC 2007). For instance, in the North American Great Plains, rowcrops are utilized for livestock feed, food, and bioenergy production (Cassman and Liska 2007), and a large portion is irrigated with groundwater from the High Plains aquifer system (McGuire 2011). Under projected future climatic conditions, greater crop water use requirements and diminished groundwater recharge rates could make rowcrop irrigation less feasible in some areas (Rosenberg et al. 1999; Sophocleous 2005). The Rainwater Basin region of south central Nebraska, United States, is an intensively farmed and irrigated Great Plains landscape dominated by corn (Zea mays L.) and soybean (Glycine max L.) production (Bishop and Vrtiska 2008). Ten starch-based ethanol plants currently service the region, producing ethanol from corn grain (figure 1). In this study, we explore the potential of switchgrass (Panicum virgatum L.), a drought-tolerant alternative bioenergy feedstock, to impact regional annual groundwater withdrawals for irrigation under warmer and drier future conditions. Although our research context is specific to the Rainwater Basin and surrounding North American Great Plains, we believe the broader research question is internationally pertinent and hope that this study simulates similar research in other areas.

  3. Groundwater quality in the Monterey Bay and Salinas Valley groundwater basins, California

    Science.gov (United States)

    Kulongoski, Justin T.; Belitz, Kenneth

    2011-01-01

    The Monterey-Salinas study unit is nearly 1,000 square miles and consists of the Santa Cruz Purisima Formation Highlands, Felton Area, Scotts Valley, Soquel Valley, West Santa Cruz Terrace, Salinas Valley, Pajaro Valley, and Carmel Valley groundwater basins (California Department of Water Resources, 2003; Kulongski and Belitz, 2011). These basins were grouped into four study areas based primarily on geography. Groundwater basins in the north were grouped into the Santa Cruz study area, and those to the south were grouped into the Monterey Bay, the Salinas Valley, and the Paso Robles study areas (Kulongoski and others, 2007). The study unit has warm, dry summers and cool, moist winters. Average annual rainfall ranges from 31 inches in Santa Cruz in the north to 13 inches in Paso Robles in the south. The study areas are drained by several rivers and their principal tributaries: the Salinas, Pajaro, and Carmel Rivers, and San Lorenzo Creek. The Salinas Valley is a large intermontane valley that extends southeastward from Monterey Bay to Paso Robles. It has been filled, up to a thickness of 2,000 feet, with Tertiary and Quaternary marine and terrestrial sediments that overlie granitic basement. The Miocene-age Monterey Formation and Pliocene- to Pleistocene-age Paso Robles Formation, and Pleistocene to Holocene-age alluvium contain freshwater used for supply. The primary aquifers in the study unit are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells are typically drilled to depths of 200 to 650 feet, consist of solid casing from the land surface to depths of about 175 to 500 feet, and are perforated below the solid casing. Water quality in the primary aquifers may differ from that in the shallower and deeper parts of the aquifer system. Groundwater movement is generally from the southern part of the Salinas Valley north towards the Monterey Bay

  4. Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities

    Science.gov (United States)

    Mackie, R.I.; Koike, S.; Krapac, I.; Chee-Sanford, J.; Maxwell, Susan; Aminov, R.I.

    2006-01-01

    Antibiotics are used at therapeutic levels to treat disease; at slightly lower levels as prophylactics; and at low, subtherapeutic levels for growth promotion and improvement of feed efficiency. Over 88% of swine producers in the United States gave antimicrobials to grower/finisher pigs in feed as a growth promoter in 2000. It is estimated that ca. 75% of antibiotics are not absorbed by animals and are excreted in urine and feces. The extensive use of antibiotics in swine production has resulted in antibiotic resistance in many intestinal bacteria, which are also excreted in swine feces, resulting in dissemination of resistance genes into the environment.To assess the impact of manure management on groundwater quality, groundwater samples have been collected near two swine confinement facilities that use lagoons for manure storage and treatment. Several key contaminant indicators-including inorganic ions, antibiotics, and antibiotic resistance genes-were analyzed in groundwater collected from the monitoring wells. Chloride, ammonium, potassium, and sodium were predominant inorganic constituents in the manure samples and served as indicators of groundwater contamination. Based on these analyses, shallow groundwater has been impacted by lagoon seepage at both sites. Liquid chromatography-mass spectroscopy (LC-MS) was used to measure the dissolved concentrations of tetracycline, chlortetracycline, and oxytetracycline in groundwater and manure. Although tetracyclines were regularly used at both facilities, they were infrequently detected in manure samples and then at relatively trace concentrations. Concentrations of all tetracyclines and their breakdown products in the groundwater sampled were generally less than 0.5 ??g/L.Bacterial tetracycline resistance genes served as distinct genotypic markers to indicate the dissemination and mobility of antibiotic resistance genes that originated from the lagoons. Applying PCR to genomic DNA extracted from the lagoon and

  5. Baseline assessment of groundwater quality in Pike County, Pennsylvania, 2015

    Science.gov (United States)

    Senior, Lisa A.; Cravotta, Charles A.

    2017-12-29

    The Devonian-age Marcellus Shale and the Ordovician-age Utica Shale, which have the potential for natural gas development, underlie Pike County and neighboring counties in northeastern Pennsylvania. In 2015, the U.S. Geological Survey, in cooperation with the Pike County Conservation District, conducted a study that expanded on a previous more limited 2012 study to assess baseline shallow groundwater quality in bedrock aquifers in Pike County prior to possible extensive shale-gas development. Seventy-nine water wells ranging in depths from 80 to 610 feet were sampled during June through September 2015 to provide data on the presence of methane and other aspects of existing groundwater quality in the various bedrock geologic units throughout the county, including concentrations of inorganic constituents commonly present at low values in shallow, fresh groundwater but elevated in brines associated with fluids extracted from geologic formations during shale-gas development. All groundwater samples collected in 2015 were analyzed for bacteria, dissolved and total major ions, nutrients, selected dissolved and total inorganic trace constituents (including metals and other elements), radon-222, gross alpha- and gross beta-particle activity, dissolved gases (methane, ethane, and propane), and, if sufficient methane was present, the isotopic composition of methane. Additionally, samples from 20 wells distributed throughout the county were analyzed for selected man-made volatile organic compounds, and samples from 13 wells where waters had detectable gross alpha activity were analyzed for radium-226 on the basis of relatively elevated gross alpha-particle activity.Results of the 2015 study show that groundwater quality generally met most drinking-water standards for constituents and properties included in analyses, but groundwater samples from some wells had one or more constituents or properties, including arsenic, iron, manganese, pH, bacteria, sodium, chloride, sulfate

  6. Impact of the Wisconsinian Glaciation on Canadian Continental Groundwater Flow

    Science.gov (United States)

    Lemieux, J.; Sudicky, E. A.; Peltier, W. R.; Tarasov, L.

    2005-12-01

    During the last glacial period (75 kyr - 10 kyr), the Canadian landscape was almost entirely covered with ice. The Laurentide ice-sheet, the largest of the three North-American ice sheets, reached a thickness of about 4 km and the force exerted by its weight on the earth's crust was sufficient to cause a depression of the surface of about 1 km and an over-pressurization of porewater fluids. These dramatic conditions are suspected to have had a large impact on the groundwater flow system over the whole continent. Although an analysis of the evolution of groundwater flow systems during glacial periods is relevant to a number of problems, such as the long-term stability of high-level spent nuclear-fuel repositories located at depth, very few studies have been conducted to assess the impact of glaciation on deep-seated groundwater flow systems, particularly in a North-American context. A transient, three-dimensional groundwater flow model including the effect of the advective-dispersive redistribution of shield brines was constructed in order to capture the impact of the advance and retreat of the ice sheet over the Canadian landscape. The model is driven by a thermomechanical ice-sheet model of the last glacial cycle [Tarasov and Peltier, 2004] which provides the transient boundary conditions that includes the spatio-temporal distribution of the glacial ice, the elevation of the surface topography, meltwater rates, permafrost thicknesses, as well as temporal changes in sea level along the coastal margins. The evolving surface water drainage patterns and features such as proglacial lakes are also incorporated based on the hydrologic routing calculations performed by Tarasov and Peltier [2005]. The treatment of physical processes related to the influence of the ice sheet on the groundwater flow system such as hydromechanics, isostasy, subglacial melting and permafrost formation are also discussed. Simulation results show that hydraulic heads at depth below the ice sheet

  7. Groundwater Quality Assessment in the Upper East Region of Ghana

    Science.gov (United States)

    Apambire, W. B.

    2001-05-01

    In Ghana, West Africa, fluoride occurs as a natural pollutant in some groundwaters, while the presence of isolated high levels of nitrate and arsenic in groundwater is due to human activities such as poor sanitation, garbage disposal and mining practices. The challenge for Ghana is to ensure that groundwater quality and environmental adversities such as water level decline are not compromised by attempts to increase water quantity. Concentrations of groundwater fluoride in the study area range from 0.11 to 4.60 mg/L, with the highest concentrations found in the fluorine-enriched Bongo granitoids. Eighty-five out of 400 wells sampled have fluoride concentrations above the World Health Organization maximum guideline value of 1.5 mg/L and thus causes dental fluorosis in children drinking from the wells. The distribution of fluoride in groundwater is highly related to the distribution of dental fluorosis in the UER. Nitrate concentrations ranged from 0.03 to 211.00 mg/L and the mean value was 16.11 mg/L. Twenty-one samples had concentrations in excess of the guideline value of 45 mg/L. Consumption of water in excess of the guideline value, by infants, may cause an infantile disease known as methaemoglobinaemia. It is inferred that groundwaters with exceptionally high NO3 values have been contaminated principally through human activities such as farming and waste disposal. This is because wells with high nitrate concentrations are all located in and around towns and sizable villages. Also, there is good correlation between Cl and NO3 (r = +0.74), suggesting that both elements come from the same sources of pollution. Only two well waters had concentrations of iron in excess of the guideline value of 0.3 mg/L. These samples come from shallow hand-dug wells. The maximum concentration of iron in groundwaters is 3.5 mg/L. The recommended guideline limit for Al in drinking water is 0.2 mg/L; two wells had Al concentrations of 12.0 and 4.0 mg/L, respectively. Other high

  8. Surface-Water to Groundwater Transport of Pharmaceuticals in a Wastewater-Impacted Stream in the U.S.

    Science.gov (United States)

    Bradley, P. M.; Barber, L. B.; Duris, J. W.; Foreman, W. T.; Furlong, E. T.; Hubbard, L. E.; Hutchinson, K. J.; Keefe, S. H.; Kolpin, D. W.

    2014-12-01

    Wastewater pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to aqueous mobility and designed bioactivity of pharmaceuticals and due to effluent-driven hydraulic gradients. Improved understanding of the environmental fate and transport of wastewater-derived pharmaceuticals is essential for effective protection of vital aquatic ecosystem services, environmental health, and drinking-water supplies. Substantial longitudinal (downstream) transport of pharmaceutical contaminants has been documented in effluent-impacted streams. The comparative lack of information on vertical and lateral transport (infiltration) of wastewater contaminants from surface-water to hyporheic and shallow groundwater compartments is a critical scientific data gap, given the potential for contamination of groundwater supplies in effluent-impacted systems. Growing dependencies on bank filtration and artificial recharge applications for release of wastewater to the environment and for pretreatment of poor-quality surface-water for drinking water emphasize the critical need to better understand the exchange of wastewater contaminants, like pharmaceuticals, between surface-water and groundwater compartments. The potential transport of effluent-derived pharmaceutical contaminants from surface-water to hyporheic-water and shallow groundwater compartments was examined in a wastewater-treatment-facility (WWTF) impacted stream in Ankeny, Iowa under effluent-dominated (71-99% of downstream flow) conditions. Strong hydraulic gradients and hydrologic connectivity were evident between surface-water and shallow-groundwater compartments in the vicinity of the WWTF outfall. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater 10-20 meters from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed high percentage detections of pharmaceuticals (110 total analytes) in surface-water and groundwater

  9. Changes of Groundwater Quality in the Sorrounding Pollution Sources Due to Earthquake Dissaster

    Directory of Open Access Journals (Sweden)

    Sudarmadji Sudarmadji

    2016-05-01

    Full Text Available Groundwater is the main domestic water supply of the population of the Yogyakarta Special Region, both in the urban and as well as in the rural area due to its quantity and quality advantages. The rapid population growth has caused an increase of groundwater demand, consequently it is facing some problems to the sustainability of groundwater supply. Lowering of groundwater level has been observed in some places, as well as the degradation of groundwater quality. Earthquake which stroke Yogyakarta on 27 May 2006, damaged buildings and other infrastructures in the area, including roads and bridges. It might also damage the underground structures such as septic tanks, and pipes underneath the earth surface. It might cause cracking of the geologic structures. Furthermore, the damage of underneath infrastructures might create groundwater quality changes in the area. Some complains of local community on lowering and increasing groundwater level and groundwater quality changes were noted. Field observation and investigation were conducted, including collection of groundwater samples close to (the pollution sources. Laboratory analyses indicated that some parameters increased to exceed the drinking water quality standards. The high content of Coli form bacteria possibly was caused by contamination of nearby septic tanks or other pollution sources to the observed groundwater in the dug well.

  10. Integrated assessment of sources, chemical stressors and stream quality along a groundwater fed stream system

    Science.gov (United States)

    Løgstrup Bjerg, Poul; Sonne, Anne T.; Rønde, Vinni; McKnight, Ursula S.

    2016-04-01

    Streams are impacted by significant contamination at the catchment scale, as they are often locations of multiple chemical stressor inputs. The European Water Framework Directive requires EU member states to ensure good chemical and ecological status of surface water bodies by 2027. This requires monitoring of stream water quality, comparison with environmental quality standards (EQS) and assessment of ecological status. However, the achievement of good status of stream water also requires a strong focus on contaminant sources, pathways and links to stream water impacts, so source management and remedial measures can be implemented. Fate and impacts of different contaminant groups are governed by different processes and are dependent on the origin (geogenic, anthropogenic), source type (point or diffuse) and pathway of the contaminant. To address this issue, we identified contaminant sources and chemical stressors on a groundwater-fed stream to quantify the contaminant discharges, link the chemical impact and stream water quality and assess the main chemical risk drivers in the stream system potentially driving ecological impact. The study was conducted in the 8 m wide Grindsted stream (Denmark) along a 16 km stream stretch that is potentially impacted by two contaminated sites (Grindsted Factory site, Grindsted Landfill), fish farms, waste water discharges, and diffuse sources from agriculture and urban areas. Water samples from the stream and the hyporheic zone as well as bed sediment samples were collected during three campaigns in 2012 and 2014. Data for xenobiotic organic groundwater contaminants, pesticides, heavy metals, general water chemistry, physical conditions and stream flow were collected. The measured chemical concentrations were converted to toxic units (TU) based on the 48h acute toxicity tests with D. magna. The results show a substantial impact of the Grindsted Factory site at a specific stretch of the stream. The groundwater plume caused

  11. Assessment of Groundwater Chemical Quality, Using Inverse Distance Weighted Method

    Directory of Open Access Journals (Sweden)

    Sh. Ashraf

    2013-04-01

    Full Text Available An interpolation technique, ordinary Inverse Distance Weighted (IDW, was used to obtain the spatial distribution of groundwater quality parameters in Damghan plain of Iran. According to Scofield guidelines for TDS value, 60% of the water samples were harmful for irrigation purposes. Regarding to EC parameter, more than 60% of studied area was laid in bad range for irrigation purposes. The most dominant anion was Cl- and 10% of water samples showed a very hazardous class. According to Doneen guidelines for chloride value, 100% of collected water from the aquifer had slight to moderate problems for irrigation water purposes. The predominant cations in Damghan plain aquifer were according to Na+> Ca++> Mg++> K+. Sodium ion was the dominant cation and regarding to Na+ content guidelines, almost all groundwater samples had problem for foliar application. Calcium ion distribution was within usual range. The magnesium ion concentration is generally lower than sodium and calcium. The majority of the samples showed Mg++amount within usual range. Also K+ value ranged from 0.1 to 0.23 meq/L and all the water samples had potassium values within the permissible limit. Based on SAR criterion 80 % of collected water had slight to moderate problems. The SSP values were found from 2.87 to 6.87%. According to SAR value, thirty percent of ground water samples were doubtful class. The estimated amounts of RSC were ranged from 0.4-2 and based on RSC criterion, twenty percent of groundwater samples had slight to moderate problems.

  12. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-02-20

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  13. Groundwater quality in the Genesee River Basin, New York, 2010

    Science.gov (United States)

    Reddy, James E.

    2012-01-01

    Water samples collected from eight production wells and eight private residential wells in the Genesee River Basin from September through December 2010 were analyzed to characterize the groundwater quality in the basin. Eight of the wells were completed in sand and gravel aquifers, and eight were finished in bedrock aquifers. Three of the 16 wells were sampled in the first Genesee River Basin study during 2005-2006. Water samples from the 2010 study were analyzed for 147 physiochemical properties and constituents that included major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater generally is of acceptable quality, although concentrations of the following constituents exceeded current or proposed Federal or New York State drinking-water standards at each of the 16 wells sampled: color (one sample), sodium (three samples), sulfate (three samples), total dissolved solids (four samples), aluminum (one sample), arsenic (two samples), copper (one sample), iron (nine samples), manganese (eight samples), radon-222 (nine samples), and total coliform bacteria (six samples). Existing drinking-water standards for pH, chloride, fluoride, nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, Escherichia coli, and heterotrophic bacteria were not exceeded in any of the samples collected. None of the pesticides and VOCs analyzed exceeded existing drinking-water standards.

  14. Groundwater quality assessment for the Bear Creek Hydrogeologic Regime at the Y-12 Plant: 1991 groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The report contains groundwater and surface water quality data obtained during the 1991 calendar year at several hazardous and non- hazardous waste management facilities associated with the US Department of Energy (DOE) Y-12 Plant (Figure 1). These sites are southwest of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime (BCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation (Figure 2). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Division manages the monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP).

  15. Groundwater quality assessment for the Bear Creek Hydrogeologic Regime at the Y-12 Plant: 1991 groundwater quality data and calculated rate of contaminant migration

    International Nuclear Information System (INIS)

    1992-02-01

    The report contains groundwater and surface water quality data obtained during the 1991 calendar year at several hazardous and non- hazardous waste management facilities associated with the US Department of Energy (DOE) Y-12 Plant (Figure 1). These sites are southwest of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime (BCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation (Figure 2). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Division manages the monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP)

  16. Groundwater quality in the Cambrian-Ordovician aquifer system, midwestern United States

    Science.gov (United States)

    Stackelberg, Paul E.

    2017-12-07

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water (Burow and Belitz, 2014). The Cambrian-Ordovician aquifer system constitutes one of the important areas being evaluated.

  17. Groundwater quality in the Rio Grande aquifer system, southwestern United States

    Science.gov (United States)

    Musgrove, MaryLynn; Bexfield, Laura M.

    2017-12-07

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water (Burow and Belitz, 2014). The Rio Grande aquifer system constitutes one of the important areas being evaluated.

  18. Resilience of Groundwater Impacted by Land Use and Climate Change in a Karst Aquifer, South China.

    Science.gov (United States)

    Guo, Fang; Jiang, Guanghui; Polk, Jason S; Huang, Xiufeng; Huang, Siyu

    2015-11-01

    Changes of groundwater flow and quality were investigated in a subtropical karst aquifer to determine the driving mechanism. Decreases in groundwater flow are more distinct in discharge zones than those in recharge and runoff zones. Long-term measurement of the represented regional groundwater outlet reveals that groundwater discharge decrease by nearly 50% during the dry season. The hydrochemistry of groundwater in the runoff and discharge zones is of poorer quality than in the recharge zone. Indications of intensive land resource exploitation and changes in land use patterns were attributed to changes in groundwater conditions since 1990, but the influence of climate change was likely from 2001, because the water temperature exhibited increasing trends at a mean rate of 0.02 °C/yr even though groundwater depth was high in the aquifer. These conclusions imply the need for further groundwater monitoring and reevaluation to understand the resilience of aquifer during urbanization and development.

  19. Evaluation of groundwater quality and its suitability for drinking, domestic, and agricultural uses in the Banana Plain (Mbanga, Njombe, Penja) of the Cameroon Volcanic Line.

    Science.gov (United States)

    Ako, Andrew Ako; Shimada, Jun; Hosono, Takahiro; Ichiyanagi, Kimpei; Nkeng, George Elambo; Fantong, Wilson Yetoh; Eyong, Gloria Eneke Takem; Roger, Ntankouo Njila

    2011-12-01

    Groundwater quality of the Banana Plain (Mbanga, Njombe, Penja-Cameroon) was assessed for its suitability for drinking, domestic, and agricultural uses. A total of 67 groundwater samples were collected from open wells, springs, and boreholes. Samples were analyzed for physicochemical properties, major ions, and dissolved silica. In 95% of groundwater samples, calcium is the dominant cation, while sodium dominates in 5% of the samples. Eighty percent of the samples have HCO(3) as major anion, and in 20%, NO(3) is the major anion. Main water types in the study area are CaHCO(3), CaMgHCO(3), CaNaHCO(3), and CaNaNO(3)ClHCO(3). CO(2)-driven weathering of silicate minerals followed by cation exchange seemingly controls largely the concentrations of major ions in the groundwaters of this area. Nitrate, sulfate, and chloride concentrations strongly express the impact of anthropogenic activities (agriculture and domestic activities) on groundwater quality. Sixty-four percent of the waters have nitrate concentrations higher than the drinking water limit. Also limiting groundwater use for potable and domestic purposes are contents of Ca(2+), Mg(2+) and HCO(3) (-) and total hardness (TH) that exceed World Health Organization (WHO) standards. Irrigational suitability of groundwaters in the study area was also evaluated, and results show that all the samples are fit for irrigation. Groundwater quality in the Banana Plain is impeded by natural geology and anthropogenic activities, and proper groundwater management strategies are necessary to protect sustainably this valuable resource.

  20. Quality assessment of groundwater from the south-eastern Arabian Peninsula.

    Science.gov (United States)

    Zhang, H W; Sun, Y Q; Li, Y; Zhou, X D; Tang, X Z; Yi, P; Murad, A; Hussein, S; Alshamsi, D; Aldahan, A; Yu, Z B; Chen, X G; Mugwaneza, V D P

    2017-08-01

    Assessment of groundwater quality plays a significant role in the utilization of the scarce water resources globally and especially in arid regions. The increasing abstraction together with man-made contamination and seawater intrusion have strongly affected groundwater quality in the Arabia Peninsula, exemplified by the investigation given here from the United Arab Emirates, where the groundwater is seldom reviewed and assessed. In the aim of assessing current groundwater quality, we here present a comparison of chemical data linked to aquifers types. The results reveal that most of the investigated groundwater is not suitable for drinking, household, and agricultural purposes following the WHO permissible limits. Aquifer composition and climate have vital control on the water quality, with the carbonate aquifers contain the least potable water compared to the ophiolites and Quaternary clastics. Seawater intrusion along coastal regions has deteriorated the water quality and the phenomenon may become more intensive with future warming climate and rising sea level.

  1. Groundwater quality in the Yuba River and Bear River Watersheds, Sierra Nevada, California

    Science.gov (United States)

    Fram, Miranda S.; Jasper, Monica; Taylor, Kimberly A.

    2017-09-27

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Yuba River and Bear River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking water supplies. 

  2. Groundwater Quality in Jingyuan County, a Semi-Humid Area in Northwest China

    Directory of Open Access Journals (Sweden)

    Wu Jianhua

    2011-01-01

    Full Text Available Groundwater quality assessment is an essential study which plays an important role in the rational development and utilization of groundwater in any part of the world. In the study, groundwater qualities in Jingyuan County, in Ningxia, China were assessed with entropy weighted water quality index method. In the assessment, 12 hydrochemical parameters including chloride, sulphate, sodium, iron, pH, total dissolved solid (TDS, total hardness (TH, nitrate, ammonia, nitrogen, fluoride, iodine and nitrite were selected. The assessment results show that the concentrations of iodine, TH, iron and TDS are the most influencing parameters affecting the groundwater quality. The assessment results are rational and are in consistency with the results of filed investigation of which both indicates the groundwater in Jingyuan County is fit for drinking.

  3. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junxia; Wang, Yanxin, E-mail: yx.wang@cug.edu.cn; Xie, Xianjun

    2016-02-15

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000–10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ{sup 37}Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. - Highlights: • Natural high arsenic, fluoride and iodine groundwater co-occur with saline water.

  4. Assessment of Groundwater Quality of Ilorin Metropolis using Water Quality Index Approach

    Directory of Open Access Journals (Sweden)

    J. A. Olatunji

    2015-06-01

    Full Text Available Groundwater as a source of potable water is becoming more important in Nigeria. Therefore, the need to ascertain the continuing potability of the sources cannot be over emphasised. This study is aimed at assessing the quality of selected groundwater samples from Ilorin metropolis, Nigeria, using the water quality index (WQI method. Twenty two water samples were collected, 10 samples from boreholes and 12 samples from hand dug wells. All these were analysed for their physico – chemical properties. The parameters used for calculating the water quality index include the following: pH, total hardness, total dissolved solid, calcium, fluoride, iron, potassium, sulphate, nitrate and carbonate. The water quality index for the twenty two samples ranged from 0.66 to 756.02 with an average of 80.77. Two of the samples exceeded 100, which is the upper limit for safe drinking water. The high values of WQI from the sampling locations are observed to be due to higher values of iron and fluoride. This study reveals that the investigated groundwaters are mostly potable and can be consumed without treatment. Nonetheless, the sources identified to be unsafe should be treated before consumption.

  5. Groundwater quality in the Chemung River Basin, New York, 2008

    Science.gov (United States)

    Risen, Amy J.; Reddy, James E.

    2011-01-01

    The second groundwater quality study of the Chemung River Basin in south-central New York was conducted as part of the U.S. Geological Survey 305(b) water-quality-monitoring program. Water samples were collected from five production wells and five private residential wells from October through December 2008. The samples were analyzed to characterize the chemical quality of the groundwater. Five of the wells are screened in sand and gravel aquifers, and five are finished in bedrock aquifers. Two of these wells were also sampled for the first Chemung River Basin study of 2003. Samples were analyzed for 6 physical properties and 217 constituents, including nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, phenolic compounds, organic carbon, and four types of bacterial analyses. Results of the water-quality analyses for individual wells are presented in tables, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. Water quality in the study area is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards; these were: sodium (one sample), total dissolved solids (one sample), aluminum (one sample), iron (one sample), manganese (four samples), radon-222 (eight samples), trichloroethene (one sample), and bacteria (four samples). The pH of all samples was typically neutral or slightly basic (median 7.5); the median water temperature was 11.0 degrees Celsius (?C). The ions with the highest median concentrations were bicarbonate (median 202 milligrams per liter [mg/L]) and calcium (median 59.0 mg/L). Groundwater in the study area is moderately hard to very hard, but more samples were hard or very hard (121 mg/L as calcium carbonate (CaCO3) or greater) than were moderately hard (61-120 mg/L as Ca

  6. Calendar year 1995 groundwater quality report for the Beak Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. Part 2: 1995 groundwater quality data interpretations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This annual groundwater quality report (GWQR) contains an evaluation of the groundwater and surface water monitoring data obtained during the 1995 calendar year (CY) for several hazardous and nonhazardous waste management facilities associated with the US DOE Y-12 Plant. The sites addressed by this document are located in Bear Creek Valley (BCV) west of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime. The Bear Creek Regime is one of three hydrogeologic regimes defined for the purposes of groundwater and surface water quality monitoring at the Y-12 Plant. The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements. Each annual Part 2 GWQR addresses RCRA interim status reporting requirements regarding assessment of the horizontal and vertical extent of groundwater contamination. This report includes background information regarding the extent of groundwater and surface water contamination in the Bear Creek Regime based on the conceptual models described in the remedial investigation report (Section 2); a summary of the groundwater and surface water monitoring activities performed during CY 1995 (Section 3.0); analysis and interpretation of the CY 1995 monitoring data for groundwater (Section 4.0) and surface water (Section 5.0); a summary of conclusions and recommendations (Section 6.0); and a list of cited references (Section 7.0). Appendices contain diagrams, graphs, data tables, and summaries and the evaluation and decision criteria for data screening.

  7. Evaluation of the potential impact of climate changes on groundwater recharge in Karkheh river basin (Khuzestan, Iran)

    Science.gov (United States)

    Abrishamchi, A.; Beigi, E.; Tajrishy, M.; Abrishamchi, A.

    2009-12-01

    Groundwater is an important natural resource for human beings and ecosystems, especially in arid semi arid regions with scarce water resources and high climate variability. This vital resource is under stress in terms of both quantity and quality due to increased demands as well as the drought. Wise groundwater management requires vulnerability and susceptibility assessment of groundwater resources to natural and anthropogenic phenomena such as drought, over-abstraction and quality deterioration both in the current climatic situation and in the context of climate change. There is enough evidence that climate change is expected to affect all elements of hydrologic cycle and have negative effects on water resources due to increased variability in extreme hydrologic events of droughts and floods. .In this study impact of climate change on groundwater recharge in Karkheh river basin in province of Khuzestan, Iran, has been investigated using a physically-based methodology that can be used for predicting both temporal and spatial varying groundwater recharge. To ensure the sustainability of the land and water resources developments, assessment of the possible impacts of climate change on hydrology and water resources in the basin is necessary. Quantifying groundwater recharge is essential for management of groundwater resources. Recharge was estimated by using the hydrological evaluation of landfill performance (HELP3) water budget model. Model’s parameters were calibrated and validated using observational data in 1990-1998. The impact of climate change was modeled using downscaled precipitation and temperature from runs of CGCM2 model. These data were derived from two scenarios, A2 and B2 for three periods: 2010-2039, 2040-2069, and 2070-2099. Results of the study indicate that due to global warming evapotranspiration rates will increase and winter-precipitation will fall, spring-snowmelt will shift toward winter and consequently it will cause recharge to increase

  8. Assessment of groundwater quality and hydrogeochemistry of Manimuktha River basin, Tamil Nadu, India.

    Science.gov (United States)

    Kumar, S Krishna; Rammohan, V; Sahayam, J Dajkumar; Jeevanandam, M

    2009-12-01

    Groundwater quality assessment study was carried out around Manimuktha river basin, Tamil Nadu, India. Twenty six bore well samples were analyzed for geochemical variations and quality of groundwater. Four major hydrochemical facies (Ca-HCO(3), Na-Cl, Mixed CaNaHCO(3), and mixed CaMgCl) were identified using a Piper trilinear diagram. Comparison of geochemical results with World Health Organization, United States Environmental Protection Agency, and Indian Standard Institution drinking water standards shows that all groundwater samples except few are suitable for drinking and irrigation purposes. The major groundwater pollutions are nitrate and phosphate ions due to sewage effluents and fertilizer applications. The study reveals that the groundwater quality changed due to anthropogenic and natural influence such as agricultural, natural weathering process.

  9. Groundwater quality in the Mohawk River Basin, New York, 2011

    Science.gov (United States)

    Nystrom, Elizabeth A.; Scott, Tia-Marie

    2013-01-01

    Water samples were collected from 21 production and domestic wells in the Mohawk River Basin in New York in July 2011 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Mohawk River Basin covers 3,500 square miles in New York and is underlain by shale, sandstone, carbonate, and crystalline bedrock. The bedrock is overlain by till in much of the basin, but surficial deposits of saturated sand and gravel are present in some areas. Nine of the wells sampled in the Mohawk River Basin are completed in sand and gravel deposits, and 12 are completed in bedrock. Groundwater in the Mohawk River Basin was typically neutral or slightly basic; the water typically was very hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 15 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Four pesticides, all herbicides or their degradates, were detected in four samples at trace levels; three VOCs, including chloroform and two solvents, were detected in four samples. The greatest radon-222 activity, 2,300 picocuries per liter, was measured in a sample from a bedrock well, but the median radon activity was higher in samples from sand and gravel wells than in samples from bedrock wells. Coliform bacteria were detected in five samples with a maximum of 92 colony-forming units per 100 milliliters. Water quality in the Mohawk River Basin is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards. The standards

  10. Spatial and temporal small-scale variation in groundwater quality of a shallow sandy aquifer

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Christensen, Thomas Højlund

    1992-01-01

    The groundwater quality of a shallow unconfined sandy aquifer has been characterized for pH, alkalinity, chloride, nitrate, sulfate, calcium, magnesium, sodium and potassium in terms of vertical and horizontal variations (350 groundwater samples). The test area is located within a farmland lot...

  11. Groundwater quality studies: A Case study of the Densu Basin, Ghana

    African Journals Online (AJOL)

    Groundwater samples from 68 communities within the Densu basin were sampled and analysed over a period of 1 year for various physico-chemical water quality parameters using appropriate certified and acceptable international procedures, in order to assess the water types as well as the suitability of groundwater within ...

  12. The groundwater quality of Aruba, Bonaire and Curaçao: a hydrogeochemical study

    NARCIS (Netherlands)

    Sambeek, M.H.G. van; Eggenkamp, H.G.M.; Vissers, M.J.M.

    2000-01-01

    Groundwater resources on the Caribbean Islands of Aruba, Bonaire and Curaçao are limited and of poor quality. The groundwater of the islands is brackish, due to both seawater mixing and the semi-arid climate of the islands.Two hundred and thirty water samples were collected to relate chemical

  13. Monitoring groundwater quality in South-Africa: Development of a national strategy

    CSIR Research Space (South Africa)

    Parsons

    1995-04-01

    Full Text Available Little is known about the temporal distribution of groundwater quality on a national scale in South Africa. The effective management of the country's groundwater resources is thus difficult and a need exists for a national network for monitoring...

  14. Groundwater impact assessment report for the 216-Z-20 Crib, 200 West Area

    International Nuclear Information System (INIS)

    Johnson, V.G.

    1993-10-01

    As required by the Hanford Federal Facility Agreement and Consent Order ([Tri-Party Agreement] Milestone M-17-00A), this report assesses the impact of wastewater discharges to the 216-Z-20 Crib on groundwater quality. The assessment reported herein extends the initial analysis conducted from 1989 through 1990 for the Liquid Effluent Study Final Project Report. Three primary issues are addressed in response to regulator concerns with the initial analysis: The magnitude and status of the soil column transuranic inventory. Potential interactions of wastewater with carbon tetrachloride from adjacent facilities. Preferential pathways created by unsealed monitoring wells

  15. Groundwater impact assessment report for the 216-Z-20 Crib, 200 West Area

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, V.G.

    1993-10-01

    As required by the Hanford Federal Facility Agreement and Consent Order ([Tri-Party Agreement] Milestone M-17-00A), this report assesses the impact of wastewater discharges to the 216-Z-20 Crib on groundwater quality. The assessment reported herein extends the initial analysis conducted from 1989 through 1990 for the Liquid Effluent Study Final Project Report. Three primary issues are addressed in response to regulator concerns with the initial analysis: The magnitude and status of the soil column transuranic inventory. Potential interactions of wastewater with carbon tetrachloride from adjacent facilities. Preferential pathways created by unsealed monitoring wells.

  16. An approach to quality classification of deep groundwaters in Sweden and Finland

    International Nuclear Information System (INIS)

    Laaksoharju, M.; Smellie, J.; Ruotsalainen, P.; Snellman, M.

    1993-11-01

    In Sweden and Finland high quality groundwater samples are required in the site characterization programmes relating to safe disposal of spent nuclear fuel. SKB (Swedish Nuclear Fuel and Waste Management Co.) and TVO (Teollisuuden Voima Oy, Finland) initiated a cooperative task to critically evaluate the quality of the earlier sampling programmes and to further develop the understanding of quality or representativeness of the groundwater samples. The major aim in this report has been, therefore, to make an attempt to classify groundwaters from site investigations in Sweden and Finland based on quality. Different classification systems have been tested and developed. These can be divided in two main groups; manual methods and computer-based mathematical methods. Manual, statistical, mixing ratio and scoring systems have all been used to illustrate the difficulty in judging groundwater quality. (28 refs., 19 figs., 11 tabs.)

  17. Status and understanding of groundwater quality in the South Coast Interior groundwater basins, 2008: California GAMA Priority Basin Project

    Science.gov (United States)

    Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the approximately 653-square-mile (1,691-square-kilometer) South Coast Interior Basins (SCI) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The South Coast Interior Basins study unit contains eight priority groundwater basins grouped into three study areas, Livermore, Gilroy, and Cuyama, in the Southern Coast Ranges hydrogeologic province. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA South Coast Interior Basins study was designed to provide a spatially unbiased assessment of untreated (raw) groundwater quality within the primary aquifer system, as well as a statistically consistent basis for comparing water quality between basins. The assessment was based on water-quality and ancillary data collected by the USGS from 50 wells in 2008 and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined by the depth intervals of the wells listed in the CDPH database for the SCI study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as trace elements and minor ions. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifer system of the SCI study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration

  18. hydrochemical assessment of groundwater quality in sagamu area ...

    African Journals Online (AJOL)

    ABDULRASHEED

    Groundwater samples from 39 wells in different geological settings in Sagamu area, Southwestern Nigeria were analysed for their ... 94.9% of the groundwater within the area is generally suitable for domestic and irrigation purposes. KEYWORDS: ... can also be found in ground water near contaminated sources, posing ...

  19. Implications of groundwater quality to corrosion problem and urban ...

    African Journals Online (AJOL)

    Surface and groundwater chemistry being an important factor in urban planning and infrastructure development, present paper tries to present the problems of corrosiveness due to groundwater chemistry in Mekelle city. Iron corrosion in distribution systems and engineering structures are common problems in many urban ...

  20. Quality assessment of groundwater from Hadejia Local Government ...

    African Journals Online (AJOL)

    The physicochemical and trace metal levels of groundwater (borehole) from Hadejia Local Government Area of Jigawa State used for drinking and other domestic purposes were analyzed to assess its equality. A total of 20 sampling points were selected for the study, the groundwater samples were collected and analyzed ...

  1. Groundwater chemistry and quality of Nigeria: A status review | Edet ...

    African Journals Online (AJOL)

    In general, data show that on the average, TDS for the groundwater from the different basins was < 250 mg/l compared to the saline groundwater with average TDS as high as 15700 mg/l. The high salinity was attributed to dissolution of salts and seawater intrusion. Nitrate concentration on the average is high especially, ...

  2. groundwater quality and its suitability for domestic and agricultural ...

    African Journals Online (AJOL)

    PROF EKWUEME

    Southern Nigeria has been carried out in an attempt to assess the suitability of the groundwater for domestic and agricultural purposes in ...... for irrigation purposes. Electrical conductivity (Table 6) is a good measure of the salinity hazard to crops as it reflects the TDS in groundwater. Based on the US salinity diagram (Fig.

  3. Suitability of Groundwater Quality for Irrigation with Reference to ...

    African Journals Online (AJOL)

    Further, the Sodium Adsorption Ratio (SAR) for the both the groundwater and soil samples and Exchangeable Sodium Percentage (ESP) for the soil samples were also computed. Out of the analyzed 20 groundwater samples, 8 show EC values below 0.7 and the remaining between 0.71 and 1.12 dS/m, and pH values from ...

  4. Biosolids and distillery effluent amendment to Irish Miscanthus ×giganteus plantations: impacts on groundwater and soil.

    Science.gov (United States)

    Galbally, P; Fagan, C; Ryan, D; Finnan, J; Grant, J; McDonnell, K

    2012-01-01

    It is necessary to determine the risk of water pollution arising from amendment of organic by-products (OBs) to energy crops under Irish conditions. Therefore, the impact of landspreading two OBs on the quality of groundwater underlying plantations of Miscanthus X giganteus was assessed. Municipal biosolids and distillery effluent (DE) were spread annually (for 4 yr) on six 0.117-ha treatment plots at rates of 100, 50, and 0%. The 100% rate represented a maximum P load of 15 t ha(-1) as per Irish EPA regulation. Groundwater was sampled for 25 mo and tested for pH, electrical conductivity, NO(3)(-), orthophosphate (PO(4)(3-)), total soluble P, K(+), Cu, Cd, Cr, Pb, Ni, and Zn. Assessment of quality was based on comparison with Irish groundwater threshold values (GTVs). The study was limited to within-plot using a "well bottom" approach and did not investigate movement of groundwater plumes or vectors of percolation through the soil profile. Mean groundwater concentrations did not exceed GTVs during the sampling period for any species, with the exception of groundwater PO(4)(3-) in the 100% DE plot, which was almost double the GTV of 0.035 mg L(-1). There was no significant build-up of nutrients or heavy metals in groundwater (or soil) for any plot. Excessive PO(4)(3-) in the 100% DE plot groundwater is likely due to high background soil P, soil characteristics, and the occurrence of macropore/soil pore flow. These factors (particularly background soil P) should be assessed when determining suitable sites for land-spreading OBs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in central Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Bodrud-Doza

    2016-04-01

    Full Text Available This study investigates the groundwater quality in the Faridpur district of central Bangladesh based on preselected 60 sample points. Water evaluation indices and a number of statistical approaches such as multivariate statistics and geostatistics are applied to characterize water quality, which is a major factor for controlling the groundwater quality in term of drinking purposes. The study reveal that EC, TDS, Ca2+, total As and Fe values of groundwater samples exceeded Bangladesh and international standards. Ground water quality index (GWQI exhibited that about 47% of the samples were belonging to good quality water for drinking purposes. The heavy metal pollution index (HPI, degree of contamination (Cd, heavy metal evaluation index (HEI reveal that most of the samples belong to low level of pollution. However, Cd provide better alternative than other indices. Principle component analysis (PCA suggests that groundwater quality is mainly related to geogenic (rock–water interaction and anthropogenic source (agrogenic and domestic sewage in the study area. Subsequently, the findings of cluster analysis (CA and correlation matrix (CM are also consistent with the PCA results. The spatial distributions of groundwater quality parameters are determined by geostatistical modeling. The exponential semivariagram model is validated as the best fitted models for most of the indices values. It is expected that outcomes of the study will provide insights for decision makers taking proper measures for groundwater quality management in central Bangladesh.

  6. Stable groundwater quality in deep aquifers of Southern Bangladesh: The case against sustainable abstraction

    International Nuclear Information System (INIS)

    Ravenscroft, P.; McArthur, J.M.; Hoque, M.A.

    2013-01-01

    In forty six wells > 150 m deep, from across the arsenic-polluted area of south-central Bangladesh, groundwater composition remained unchanged between 1998 and 2011. No evidence of deteriorating water quality was found in terms of arsenic, iron, manganese, boron, barium or salinity over this period of 13 years. These deep tubewells have achieved operating lives of more than 20 years with minimal institutional support. These findings confirm that tubewells tapping the deep aquifers in the Bengal Basin provide a safe, popular, and economic, means of arsenic mitigation and are likely to do so for decades to come. Nevertheless, concerns remain about the sustainability of a resource that could serve as a source of As-safe water to mitigate As-pollution in shallower aquifers in an area where tens of millions of people are exposed to dangerous levels of arsenic in well water. The conjunction of the stable composition in deep groundwater and the severe adverse health effects of arsenic in shallow groundwater lead us to challenge the notion that strong sustainability principles should be applied to the management of deep aquifer abstraction in Bangladesh is, the notion that the deep groundwater resource should be preserved for future generations by protecting it from adverse impacts, probably of a minor nature, that could occur after a long time and might not happen at all. Instead, we advocate an ethical approach to development of the deep aquifer, based on adaptive abstraction management, which allows possibly unsustainable exploitation now in order to alleviate crippling disease and death from arsenic today while also benefiting future generations by improving the health, education and economy of living children. - Highlights: • Tens of millions of people in Bangladesh are affected by arsenic pollution of groundwater. • Deep wells in potentially non-renewable aquifers are the dominant form of mitigation. • Water quality in these aquifers has remained stable for 13

  7. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant. 1991 groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several waste management facilities and petroleum fuel underground storage tank (UST) sites associated with the Y-12 Plant. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation. This report was prepared for informational purposes. Included are the analytical data for groundwater samples collected from selected monitoring wells during 1991 and the results for quality assurance/quality control (QA/QC) samples associated with each groundwater sample. This report also contains summaries of selected data, including ion-charge balances for each groundwater sample, a summary of analytical results for nitrate (a principle contaminant in the UEFPCHR), results of volatile organic compounds (VOCs) analyses validated using the associated QA/QC sample data, a summary of trace metal concentrations which exceeded drinking-water standards, and a summary of radiochemical analyses and associated counting errors.

  8. Groundwater impact assessment for the 216-U-17 Crib, 200 West Area

    International Nuclear Information System (INIS)

    Reidel, S.P.; Johnson, V.G.; Kline, N.W.

    1993-06-01

    As required by the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement milestone M-17-00A), this report assesses the impact to groundwater from discharge of process condensate to the ground at the 216-U-17 Crib. The assessment considers impacts associated with moisture movement through soil beneath the crib and the potential transport of contaminants to the groundwater

  9. Groundwater impact assessment for the 216-U-17 Crib, 200 West Area

    Energy Technology Data Exchange (ETDEWEB)

    Reidel, S.P.; Johnson, V.G.; Kline, N.W.

    1993-06-01

    As required by the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement milestone M-17-00A), this report assesses the impact to groundwater from discharge of process condensate to the ground at the 216-U-17 Crib. The assessment considers impacts associated with moisture movement through soil beneath the crib and the potential transport of contaminants to the groundwater.

  10. Groundwater impact on geothermal systems; Impacto del agua subterranea en los sistemas geotermicos

    Energy Technology Data Exchange (ETDEWEB)

    Katzenbach, R.; Wagner, I. M.

    2009-07-01

    Thermal behavior of geothermal systems is influenced by the presence and the velocity of the groundwater. The impact has to be accounted for during the dimensioning as well as during the construction. it is shown that the impact on the interference with neigh bored installation has to be controlled, especially in case of groundwater flow. (Author) 9 refs.

  11. Factor analysis as a tool in groundwater quality management: two southern African case studies

    Science.gov (United States)

    Love, David; Hallbauer, Dieter; Amos, Amos; Hranova, Roumiana

    Although developed as a tool in the social sciences, R-mode factor analysis, a multivariate statistical tool, has proven highly effective in studies of groundwater quality. The technique examines the relationships between variables (such as chemical parameters in groundwater), which are shown by a number of cases (such as sampling points). In this study, two examples are presented. The first is of groundwater around a southern African iron ore mine and the second is of groundwater in the vicinity of a southern African municipal sewage disposal works. Groundwater samples were collected, their chemistry analysed and factor analysis was performed on each of the chemical datasets. In the first case study, factor analysis successfully separated signatures due to uncontaminated groundwater (calcium, magnesium and bicarbonate), agricultural activities (potassium and ammonium) and mining activities (sodium, chloride and sulphate). In the second case study, factor analysis did identify a chemical signature (nitrate and phosphate; minor iron) related to the sewage works-but since this signature involved parameters that were within regulated limits, the finding was of limited value for management purposes. Thus although R-mode factor analysis can be a valuable tool studies of groundwater quality, this is not always the case. Multivariate statistical techniques like factor analysis should thus be used as supplementary to, but not in replacement of, conventional groundwater quality data treatment methods.

  12. Quality-assurance plan for groundwater activities, U.S. Geological Survey, Washington Water Science Center

    Science.gov (United States)

    Kozar, Mark D.; Kahle, Sue C.

    2013-01-01

    This report documents the standard procedures, policies, and field methods used by the U.S. Geological Survey’s (USGS) Washington Water Science Center staff for activities related to the collection, processing, analysis, storage, and publication of groundwater data. This groundwater quality-assurance plan changes through time to accommodate new methods and requirements developed by the Washington Water Science Center and the USGS Office of Groundwater. The plan is based largely on requirements and guidelines provided by the USGS Office of Groundwater, or the USGS Water Mission Area. Regular updates to this plan represent an integral part of the quality-assurance process. Because numerous policy memoranda have been issued by the Office of Groundwater since the previous groundwater quality assurance plan was written, this report is a substantial revision of the previous report, supplants it, and contains significant additional policies not covered in the previous report. This updated plan includes information related to the organization and responsibilities of USGS Washington Water Science Center staff, training, safety, project proposal development, project review procedures, data collection activities, data processing activities, report review procedures, and archiving of field data and interpretative information pertaining to groundwater flow models, borehole aquifer tests, and aquifer tests. Important updates from the previous groundwater quality assurance plan include: (1) procedures for documenting and archiving of groundwater flow models; (2) revisions to procedures and policies for the creation of sites in the Groundwater Site Inventory database; (3) adoption of new water-level forms to be used within the USGS Washington Water Science Center; (4) procedures for future creation of borehole geophysics, surface geophysics, and aquifer-test archives; and (5) use of the USGS Multi Optional Network Key Entry System software for entry of routine water-level data

  13. Temporal changes in groundwater quality of the Saloum coastal aquifer

    Directory of Open Access Journals (Sweden)

    Ndeye Maguette Dieng

    2017-02-01

    High variation in rainfall between the 2 reference years (2003 and 2012 also changes chemical patterns in the groundwater. Chemical evolution of the groundwater is geographically observed and is due to a combination of dilution by recharge, anthropic contamination and seawater intrusion. The results of environmental isotopes (δ18O, δ2H compared with the local meteoric line indicate that the groundwater has been affected by evaporation processes before and during infiltration. The results also clearly indicate mixing with saltwater and an evolution towards relative freshening between 2003 and 2012 in some wells near the Saloum River.

  14. Groundwater quality in the Northern Coast Ranges Basins, California

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2015-01-01

    The Northern Coast Ranges (NOCO) study unit is 633 square miles and consists of 35 groundwater basins and subbasins (California Department of Water Resources, 2003; Mathany and Belitz, 2015). These basins and subbasins were grouped into two study areas based primarily on locality. The groundwater basins and subbasins located inland, not adjacent to the Pacific Ocean, were aggregated into the Interior Basins (NOCO-IN) study area. The groundwater basins and subbasins adjacent to the Pacific Ocean were aggregated into the Coastal Basins (NOCO-CO) study area (Mathany and others, 2011).

  15. Development of the UMTRA Project Groundwater Environmental Impact Statement

    International Nuclear Information System (INIS)

    Burt, C.; Ulland, L.; Metzler, D.

    1993-01-01

    This paper discusses the development and preparation of the Programmatic Environmental Impact Statement (PEIS) for the Uranium Mill Tailings Remedial Action (UMTRA) Groundwater Restoration Project. The initiation of the scoping process and preparation of the PEIS began when the Notice of Intent (NOI) to prepare the PEIS was published in the Federal Register on November 18, 1992. However, planning for the PEIS began well before the publication of the NOI, with various aspects of the PEIS, such as the initial formulation of the alternatives and the format of the scoping process, being developed early on. During this preliminary planning phase, it became clear that the preparation of this PEIS posed some significant challenges while at the same time provided for significant opportunities. This paper will briefly summarize the UMTRA Project, discuss the major sections in the PEIS, and describe the challenges and opportunities that developed during the preparation of the PEIS

  16. The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-02-11

    The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

  17. Groundwater quality in the Piedmont and Blue Ridge crystalline-rock aquifers, eastern United States

    Science.gov (United States)

    Lindsey, Bruce

    2017-12-07

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water (Burow and Belitz, 2014). The Piedmont and Blue Ridge crystalline-rock aquifers constitute one of the important areas being evaluated.

  18. Re-thinking stressor interactions: The role of groundwater contamination impacting stream ecosystems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Sonne, Anne Thobo; Rønde, Vinni Kampman

    ) to quantify the contaminant discharges, and potentially link the chemical impact and stream water quality. Potential pollution sources include two contaminated sites (Grindstedfactory/landfill), aquaculture, waste water discharges, and diffuse sources from agriculture and urban areas. Datafor xenobiotic...... stressor. Our hypothesis, however, is that this will underestimate the combined impact caused by chemical cocktail effects, and interactions between stressors (e.g. contaminant-effected change in redox conditions releasing heavy metals). Moreover, a stream system impacted by multiple stressors has a high...... chronic stress level, so even small perturbations on top of changes in water flow or additional chemical stressors may be detrimental to the stream health. To address this issue, we identified contaminant sources and chemical stressors along a 16-km groundwater-fedstream stretch (Grindsted, Denmark...

  19. Assessment of groundwater quality by unsaturated zone study due to migration of leachate from Abloradjei waste disposal site, Ghana

    Science.gov (United States)

    Egbi, Courage Davidson; Akiti, Tetteh Thomas; Osae, Shiloh; Dampare, Samuel Boakye; Abass, Gibrilla; Adomako, Dickson

    2017-05-01

    Leachate generated by open solid waste disposal sites contains substances likely to contaminate groundwater. The impact of potential contaminants migrating from leachate on groundwater can be quantified by monitoring their concentration and soil properties at specific points in the unsaturated zone. In this study, physical and chemical analyses were carried out on leachate, soil and water samples within the vicinity of the municipal solid waste disposal site at Abloradjei, a suburb of Accra, Ghana. The area has seen a massive increase in population and the residents depend on groundwater as the main source of water supply. Results obtained indicate alkaline pH for leachate and acidic conditions for unsaturated zone water. High EC values were recorded for leachate and unsaturated zone water. Major ions (Ca2+, Na+, Mg2+, K+, NO3 -, SO4 2-, Cl-, PO4 3- were analysed in leachate, unsaturated zone water, soil solution and groundwater while trace metals (Al, Fe, Cu, Zn, Pb) were analysed in both soil and extracted soil solution. Concentrations of major ions were high in all samples indicating possible anthropogenic origin. Mean % gravel, % sand, % clay, bulk density, volumetric water content and porosity were 28.8, 63.93, 6.6, 1 g cm-3, 35 and 62.7 %, respectively. Distribution of trace elements showed Kd variation of Al > Cu > Fe > Pb > Zn in the order of sequential increasing solubility. It was observed that the quality of groundwater is not suitable for drinking.

  20. Groundwater-quality data from the National Water-Quality Assessment Project, January through December 2014 and select quality-control data from May 2012 through December 2014

    Science.gov (United States)

    Arnold, Terri L.; Bexfield, Laura M.; Musgrove, MaryLynn; Lindsey, Bruce D.; Stackelberg, Paul E.; Barlow, Jeannie R.; DeSimone, Leslie A.; Kulongoski, Justin T.; Kingsbury, James A.; Ayotte, Joseph D.; Fleming, Brandon J.; Belitz, Kenneth

    2017-10-05

    Groundwater-quality data were collected from 559 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from January through December 2014. The data were collected from four types of well networks: principal aquifer study networks, which are used to assess the quality of groundwater used for public water supply; land-use study networks, which are used to assess land-use effects on shallow groundwater quality; major aquifer study networks, which are used to assess the quality of groundwater used for domestic supply; and enhanced trends networks, which are used to evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, radionuclides, and some constituents of special interest (arsenic speciation, chromium [VI] and perchlorate). These groundwater-quality data, along with data from quality-control samples, are tabulated in this report and in an associated data release.

  1. Groundwater salinization in Graciosa and Pico islands (Azores archipelago, Portugal: processes and impacts

    Directory of Open Access Journals (Sweden)

    J.V. Cruz

    2017-08-01

    New hydrological insights for the region: The overall groundwater chemistry is mainly controlled by Cl and Na, which account respectively for 10.4%–46.9% and 16%–39.7% of the relative major-ion content. Mean electrical conductivity (EC in Graciosa is in the range 308 − 3462 μS/cm, while hand-dug wells in Pico are highly mineralized (1758–9732 μS/cm. Drilled wells in Pico are in the range of 186 μS/cm to 5625 μS/cm. Besides mixture with seawater, groundwater chemistry is also influenced by dissolution of silicate minerals which also contributes to water composition. Moreover, 18O and 2H stable isotope data show that a few samples depict an evaporative effect, resulting in heavier isotopic compositions besides mixing with a marine source. About 70% of the wells in Graciosa and Pico exceed the 200 mg Cl/L and the EC Portuguese reference values, severely constraining water supply. The impact on water quality is also shown by exceedances of the groundwater threshold values derived for the Azores River Basin District (89%.

  2. Sources of groundwater salinity and potential impact on arsenic mobility in the western Hetao Basin, Inner Mongolia.

    Science.gov (United States)

    Jia, Yongfeng; Guo, Huaming; Xi, Beidou; Jiang, Yonghai; Zhang, Zhuo; Yuan, Rongxiao; Yi, Weixiong; Xue, Xiaolei

    2017-12-01

    The quality of groundwater used for human consumption and irrigation in the Hetao Basin of Inner Mongolia, China is affected by elevated salinity as well as high arsenic (As) concentrations. However, the origin of high salinity and its potential impact on As mobility in the Basin remain unclear. This study explores both issues using stable isotopic compositions and Cl/Br ratios of groundwater as well as the major ions of both groundwater and leachable salts in aquifer sediments. Limited variations in δ 18 O and δ 2 H (-11.13 to -8.10, -82.23 to -65.67) with the wide range of Total Dissolved Solid (TDS, 351-6734mg/L) suggest less contribution of direct evaporation to major salinity in groundwater. Deuterium excess shows that non-direct evaporation (capillary evaporation, transpiration) and mineral/evaporite dissolution contribute to >60% salinity in groundwater with TDS>1000mg/L. Non-direct evaporation, like capillary evaporation and transpiration, is proposed as important processes contributing to groundwater salinity based on Cl/Br ratio and halite dissolution line. The chemical weathering of Ca, Mg minerals and evaporites (Na 2 SO 4 and CaSO 4 ) input salts into groundwater as well. This is evidenced by the fact that lacustrine environment and the arid climate prevails in Pleistocene period. Dissolution of sulfate salts not only promotes groundwater salinity but affects As mobilization. Due to the dissolution of sulfate salts and non-direct evaporation, groundwater SO 4 2- prevails and its reduction may enhance As enrichment. The higher As concentrations (300-553μg/L) are found at the stronger SO 4 2- reduction stage, indicating that reduction of Fe oxide minerals possibly results from HS - produced by SO 4 2- reduction. This would have a profound impact on As mobilization since sulfate is abundant in groundwater and sediments. The evolution of groundwater As and salinity in the future should be further studied in order to ensure sustainable utilization of

  3. Using a groundwater quality negotiation support system to change land-use management near a drinking-water abstraction in the Netherlands

    Science.gov (United States)

    van den Brink, Cors; Zaadnoordijk, Willem Jan; van der Grift, Bas; de Ruiter, Peter C.; Griffioen, Jasper

    2008-02-01

    SummaryA negotiation support system (NSS) was developed to solve groundwater conflicts that arose during land-use management. It was set up in cooperation with the stakeholders involved to provide information on the impact of land use, e.g., agriculture, nature (forested areas), recreation, and urban areas, on the quality of both infiltrating and abstracted groundwater. This NSS combined simulation programs that calculate (1) the concentrations of nitrate in shallow groundwater for each land-use area and (2) the transport of nitrate in the groundwater-saturated zone. The user interface of the NSS enabled scenario analyses. The NSS was validated at a drinking-water abstraction near Holten (the Netherlands) using a spatial planning process aimed at sustainable land-use and groundwater-resource management. Two land-use scenarios were considered: a base scenario reflecting the autonomous development and an adapted land-use scenario. The calculated results for shallow groundwater provided an explicit spatial overview of the impact of historical land use and N application on the quality of abstracted groundwater as well as insight into the impact of changes in land use and N application. Visualization of the conflicting interests of agriculture and the drinking-water abstraction helped all stakeholders accept the necessary changes in land use identified by the adapted land-use scenario of the NSS. These changes were included in the preferred land-use management option in the regional planning process, which has since been formalized. The NSS provided system insight, scoping analyses, and education, in addition to generating quantitative information on the impact of land-use functions on groundwater quality.

  4. Natural radioactivity and groundwater quality assessment in the northern area of the Western Desert of Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed Yehia

    2017-08-01

    Full Text Available The chemical composition and natural radioactivity of the northern area of the western desert groundwater were determined to evaluate hydrogeochemical facies and assess groundwater quality for different uses. Many the groundwater samples belong to the Na+- Cl−, Na2SO4− type, followed by Ca2+- Mg2+- Cl− type. Only a few samples are of the Na+- HCO3− type. The spatial distributions of the major ions describe similar anomalies, with the highest concentrations found at the extreme northeastern margin of the oasis, as well as in its northern and northwestern parts. Fe is the most abundant toxic metal, followed by Cu and Mn. Anomalies of Cr, Ni and Zn are also detected. Rock/water interactions strongly affect the chemical composition of the groundwater. Dissolution and cation exchange are the main processes controlling the hydrogeochemistry. Most of the irrigation groundwater problems in the study area may be resolved using an effective drainage system. The estimated total annual dose due to ingestion of 238U, 232Th and 40K in groundwater samples reveals that the groundwater is safe for human consumption. However, the toxic metal content of the Bahariya groundwater exceeds the permissible levels for both irrigation and consumption, and the water must be filtered through suitable membranes to exclude these toxic metals. Regular monitoring of the quality of this water for drinking is strictly required.

  5. Hydrochemical characteristics and quality assessment of groundwater along the Manavalakurichi coast, Tamil Nadu, India

    Science.gov (United States)

    Srinivas, Y.; Aghil, T. B.; Hudson Oliver, D.; Nithya Nair, C.; Chandrasekar, N.

    2017-06-01

    The present study was carried out to find the groundwater quality of coastal aquifer along Manavalakurichi coast. For this study, a total of 30 groundwater samples were collected randomly from open wells and borewells. The concentration of major ions and other geochemical parameters in the groundwater were analyzed in the laboratory by adopting standard procedures suggested by the American Public Health Association. The order of the dominant cations in the study area was found to be Na+ > Ca2+ > Mg2+ > K+, whereas the sequence of dominant anions was {{Cl}}^{ - } > {{HCO}}3^{ - } > {{SO}}4^{2 - }. The hydrogeochemical facies of the groundwater samples were studied by constructing piper trilinear diagram which revealed the evidence of saltwater intrusion into the study area. The obtained geochemical parameters were compared with the standard permissible limits suggested by the World Health Organization and Indian Standard Institution to determine the drinking water quality in the study area. The analysis suggests that the groundwater from the wells W25 and W26 is unsuitable for drinking. The suitability of groundwater for irrigation was studied by calculating percent sodium, sodium absorption ratio and residual sodium carbonate values. The Wilcox and USSL plots were also prepared. It was found that the groundwater from the stations W1, W25 and W26 is unfit for irrigation. The Gibbs plots were also sketched to study the mechanisms controlling the geochemical composition of groundwater in the study area.

  6. The Grand Challenge of Basin-Scale Groundwater Quality Management Modelling

    Science.gov (United States)

    Fogg, G. E.

    2017-12-01

    The last 50+ years of agricultural, urban and industrial land and water use practices have accelerated the degradation of groundwater quality in the upper portions of many major aquifer systems upon which much of the world relies for water supply. In the deepest and most extensive systems (e.g., sedimentary basins) that typically have the largest groundwater production rates and hold fresh groundwaters on decadal to millennial time scales, most of the groundwater is not yet contaminated. Predicting the long-term future groundwater quality in such basins is a grand scientific challenge. Moreover, determining what changes in land and water use practices would avert future, irreversible degradation of these massive freshwater stores is a grand challenge both scientifically and societally. It is naïve to think that the problem can be solved by eliminating or reducing enough of the contaminant sources, for human exploitation of land and water resources will likely always result in some contamination. The key lies in both reducing the contaminant sources and more proactively managing recharge in terms of both quantity and quality, such that the net influx of contaminants is sufficiently moderate and appropriately distributed in space and time to reverse ongoing groundwater quality degradation. Just as sustainable groundwater quantity management is greatly facilitated with groundwater flow management models, sustainable groundwater quality management will require the use of groundwater quality management models. This is a new genre of hydrologic models do not yet exist, partly because of the lack of modeling tools and the supporting research to model non-reactive as well as reactive transport on large space and time scales. It is essential that the contaminant hydrogeology community, which has heretofore focused almost entirely on point-source plume-scale problems, direct it's efforts toward the development of process-based transport modeling tools and analyses capable

  7. Impact of Changes in Groundwater Extractions and Climate Change on Groundwater-Dependent Ecosystems in a Complex Hydrogeological Setting

    NARCIS (Netherlands)

    Engelenburg, van Jolijn; Hueting, Rosa; Rijpkema, Sjoerd; Teuling, Adriaan J.; Uijlenhoet, Remko; Ludwig, Fulco

    2018-01-01

    Climate change and other future developments can influence the availability of groundwater resources for drinking water. The uncertainty of the projected impact is a challenge given the urgency to decide on adaptation measures to secure the drinking water supply. Improved understanding on how

  8. Groundwater quality in the Lake Champlain Basin, New York, 2009

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2011-01-01

    Water was sampled from 20 production and domestic wells from August through November 2009 to characterize groundwater quality in the Lake Champlain Basin in New York. Of the 20 wells sampled, 8 were completed in sand and gravel, and 12 were completed in bedrock. The samples were collected and processed by standard U.S. Geological Survey procedures and were analyzed for 147 physiochemical properties and constituents, including major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. Water quality in the study area is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards; these were color (1 sample), pH (3 samples), sodium (3 samples), total dissolved solids (4 samples), iron (4 samples), manganese (3 samples), gross alpha radioactivity (1 sample), radon-222 (10 samples), and bacteria (5 samples). The pH of all samples was typically neutral or slightly basic (median 7.1); the median water temperature was 9.7°C. The ions with the highest median concentrations were bicarbonate [median 158 milligrams per liter (mg/L)] and calcium (median 45.5 mg/L). Groundwater in the study area is soft to very hard, but more samples were hard or very hard (121 mg/L or more as CaCO3) than were moderately hard or soft (120 mg/L or less as CaCO3); the median hardness was 180 mg/L as CaCO3. The maximum concentration of nitrate plus nitrite was 3.79 mg/L as nitrogen, which did not exceed established drinking-water standards for nitrate plus nitrite (10 mg/L as nitrogen). The trace elements with the highest median concentrations were strontium (median 202 micrograms per liter [μg/L]), and iron (median 55 μg/L in unfiltered water). Six pesticides and pesticide degradates, including atrazine, fipronil, disulfoton, prometon, and two pesticide degradates, CIAT and desulfinylfipronil, were detected among five samples at concentrations

  9. Groundwater quality assessment for the Chestnut Ridge Hydrogeologic Regime at the Y-12 Plant

    International Nuclear Information System (INIS)

    1992-08-01

    This report contains an evaluation of groundwater quality data obtained during the 1991 calendar year at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy Y- 12 Plant. These sites are located south of the Y- 12 Plant in the Chestnut Ridge Hydrogeologic Regime (CRHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring. Section 2.0 of this report contains background information regarding groundwater monitoring at the waste-management sites located in the CRHR. An overview of the hydrogeologic system in the CRHR is provided in Section 3.0. A discussion of the interpretive assumptions used in evaluating the 1991 assessment data and detailed descriptions of groundwater quality in the regime are presented

  10. Groundwater quality assessment using the water quality pollution indices in Toyserkan Plain

    OpenAIRE

    Soheil Sobhanardakani; Lobat Taghavi; Behzad Shahmoradi; Amin Jahangard

    2017-01-01

    Background: Iran is located within the dry and semi dry regions, thus almost 90% of the required water is secured via the use of groundwater. Owing to the increasing pollution of water resources, this study was performed to evaluate water quality pollution indices for heavy metals (As, Zn, Pb and Cu) contamination monitoring in Toyserkan Plain during spring and summer in 2012. Methods: A total of 20 ground water wells were chosen randomly. The samples were filtered (0.45 μm) and ...

  11. Major ion chemistry and quality assessment of groundwater in Haripur area

    International Nuclear Information System (INIS)

    Akram, W.; Tariq, J.A.; Ahmad, M.

    2011-07-01

    Study was conducted for investigating chemical composition of groundwater, identifying the compositional types of groundwater, delineating the processes controlling the groundwater chemistry and assessing the groundwater quality for drinking / irrigation uses. Groundwater samples collected from shallow (hand pumps, open well, motor pumps) and deep (tube wells) aquifers were analyzed for major cations (Na/sup +/,K/sup +, Ca/sup 2+/, Mg/sup 2+/) and anions (HCO/sub 3/, Cl/sup '/, SO/sub 4/). The data indicated that Ca/sub 2/ is the dominant cation in most of the samples followed by Mg/sup 2+/ whereas HCO/sub 3/ is the most abundant anion in all samples. Hydrochemistry provides a clear indication of active recharge of shallow and deep aquifers by modern meteoric water. Carbonate dissolution was found to be the prevailing process controlling the groundwater chemistry. Chemical quality was assessed for drinking purpose by comparing with WHO, Indian and national standards, and for irrigation purpose using empirical indices such as SAR and RSC. The results show that groundwater meets the norms of good quality drinking water and can be safely used for irrigation. (author)

  12. Shallow ground-water quality beneath a major urban center: Denver, Colorado, USA

    Science.gov (United States)

    Bruce, B.W.; McMahon, P.B.

    1996-01-01

    ranged from nondetectable to 23 442 ??g l-1. Widespread detections and occasionally high concentrations point to VOCs as the major anthropogenic ground-water impact in this urban environment. Generally, the highest VOC concentrations occurred in samples from the industrial setting. The most frequently detected VOC was the gasoline additive methyl tertbutyl ether (MTBE, in 23 of 29 wells). Results from this study indicate that the quality of shallow ground water in major urban areas can be related to land-use settings. Moreover, some VOCs and pesticides may be widely distributed at low concentrations in shallow ground water throughout major urban areas. As a result, the differentiation between point and non-point sources for these compounds in urban areas may be difficult.

  13. Groundwater quality assessment and pollution source apportionment in an intensely exploited region of northern China.

    Science.gov (United States)

    Zhang, Qianqian; Wang, Huiwei; Wang, Yanchao; Yang, Mingnan; Zhu, Liang

    2017-07-01

    Deterioration in groundwater quality has attracted wide social interest in China. In this study, groundwater quality was monitored during December 2014 at 115 sites in the Hutuo River alluvial-pluvial fan region of northern China. Results showed that 21.7% of NO 3 - and 51.3% of total hardness samples exceeded grade III of the national quality standards for Chinese groundwater. In addition, results of gray relationship analysis (GRA) show that 64.3, 10.4, 21.7, and 3.6% of samples were within the I, II, IV, and V grades of groundwater in the Hutuo River region, respectively. The poor water quality in the study region is due to intense anthropogenic activities as well as aquifer vulnerability to contamination. Results of principal component analysis (PCA) revealed three major factors: (1) domestic wastewater and agricultural runoff pollution (anthropogenic activities), (2) water-rock interactions (natural processes), and (3) industrial wastewater pollution (anthropogenic activities). Using PCA and absolute principal component scores-multivariate linear regression (APCS-MLR), results show that domestic wastewater and agricultural runoff are the main sources of groundwater pollution in the Hutuo River alluvial-pluvial fan area. Thus, the most appropriate methods to prevent groundwater quality degradation are to improve capacities for wastewater treatment and to optimize fertilization strategies.

  14. Groundwater quality in an abandoned metal extraction site: the case study of Campello Monti (NW Italy)

    Science.gov (United States)

    Mehta, Neha; Lasagna, Manuela; Antonella Dino, Giovanna; De Luca, Domenico Antonio

    2017-04-01

    Extractive activities present threat to natural water systems and their effects are observed even after the cessation of activities. The harmful effects of extractive activities such as deterioration of water sources by low quality waters or by allowing leaching of metals into groundwater makes it necessary to carry out careful, scientific and comprehensive studies on this subject. Consequently, the same problem statement was chosen as part of a PhD research Project. The PhD research is part of REMEDIATE project (A Marie Sklodowska-Curie Action Initial Training Network for Improved decision making in contaminated land site investigation and risk assessment, Grant Agreement No. 643087). The current work thus points out on the contamination of groundwater sources due to past mining activities in the area. Contaminated groundwater may act as possible contamination source to surface water also. The impacts on water systems connected to mining activities depend on the ore type, metal being extracted, exploitation method, ore processing, pollution control efforts, geochemical and hydrogeochemical conditions of water and surroundings. To evaluate the effects posed by past metal extracting activities the study was carried out at an abandoned site used for extracting nickel in Campello Monti (Valstrona municipality, Piedmont region, Italy). Campello Monti is located in basement of Southern Italian Alps in the Ivrea Verbano Zone. The area is composed of mafic rocks intruded by mantle periodite. The mafic formation consists of peridotites, pyroxenites, gabbros, anorthosites, gabbro-norite, gabbro-diorite and diorite. Mines were used for nickel exploitation from 9th Century and continued until 1940s. The long history of nickel extraction has left the waste contaminated with Ni and Co in the mountains alongwith tunnels used for carrying out metal extracting activities. The area around the site is used for housing, shows the presence of domestic animals and has Strona creek

  15. Emergency use of groundwater as a backup supply: Quantifying hydraulic impacts and economic benefits

    Science.gov (United States)

    Reichard, Eric G.; Li, Zhen; Hermans, Caroline

    2010-01-01

    Groundwater can play an important role in water-supply emergency planning. A framework is presented for assessing the hydraulic impacts and associated costs of using groundwater as a backup supply when imported-water deliveries are disrupted, and for quantifying the emergency benefits of groundwater management strategies that enable better response to such disruptions. Response functions are derived, which relate additional groundwater pumpage during water-supply emergencies to impacts such as increased pumping costs, subsidence, and seawater intrusion. Monte Carlo analysis is employed to estimate the incremental costs of using groundwater as a backup supply. The emergency benefits of alternative groundwater management strategies are computed for different expected durations of imported water disruption, percentages of imported water replaced by groundwater, and threshold drawdowns for subsidence impacts. The methodology is applied to the coastal Los Angeles Basin. For this case study, emergency benefits of artificial recharge strategies are dominated by reduction of potential subsidence costs. The variance of the results also is primarily due to subsidence effects. Incorporation of probability distributions reflecting a larger expected use of groundwater during the imported-water disruption results in higher estimated emergency benefits of artificial recharge strategies. The framework presented for quantifying incremental costs and economic benefits of using groundwater as a backup supply could be applied to a broad range of water emergency planning decisions.

  16. An estimation of the health impact of groundwater pollution caused by dumping of chlorinated solvents

    International Nuclear Information System (INIS)

    Lee, Lukas Jyuhn-Hsiarn; Chen, Chien-Hung; Chang, Yu-Yin; Liou, Saou-Hsing; Wang, Jung-Der

    2010-01-01

    Background: Hazardous waste sites are major environmental concerns, but few studies have quantified their expected utility loss on health. Objectives: To evaluate the health impact of groundwater pollution by an electronics manufacturing factory, we conducted a health risk assessment based on expected utility loss from liver cancer. Methods: Based on measurements of major pollutants, we estimated the likelihood of developing liver cancer after exposure to groundwater contamination. All patients with liver cancer between 1990 and 2005 in the Taiwan Cancer Registry were followed through 2007 using the National Mortality Registry to obtain survival function. Quality of life was assessed with two cross-sectional surveys, one employing the standard gamble method, and the other using the EQ-5D instrument. Quality-adjusted life expectancy (QALE) was estimated by multiplying the utility values with survival function under the unit of quality-adjusted life year (QALY). The difference of QALE between the cancer cohort and the age- and gender-matched reference population was calculated to represent the utility loss due to liver cancer. Results: A total of 94,144 patients with liver cancer were identified. The average utility loss to development of liver cancer was 17.5 QALYs. Based on toxicological approach, we estimated that groundwater pollution caused 1.7 extra cases of liver cancer, with an overall loss of 29.8 QALYs. Based on epidemiological approach, the expected annual excess number of liver cancer would be 3.65, which would have been accumulated through the years, had the pollution not mitigated. Conclusions: We demonstrated a practical approach for comparative health risk assessment using QALY as the common unit. This approach can be used for policy decisions based on possible health risks.

  17. A stream-based methane monitoring approach for evaluating groundwater impacts associated with unconventional gas development.

    Science.gov (United States)

    Heilweil, Victor M; Stolp, Bert J; Kimball, Briant A; Susong, David D; Marston, Thomas M; Gardner, Philip M

    2013-01-01

    Gaining streams can provide an integrated signal of relatively large groundwater capture areas. In contrast to the point-specific nature of monitoring wells, gaining streams coalesce multiple flow paths. Impacts on groundwater quality from unconventional gas development may be evaluated at the watershed scale by the sampling of dissolved methane (CH4 ) along such streams. This paper describes a method for using stream CH4 concentrations, along with measurements of groundwater inflow and gas transfer velocity interpreted by 1-D stream transport modeling, to determine groundwater methane fluxes. While dissolved ionic tracers remain in the stream for long distances, the persistence of methane is not well documented. To test this method and evaluate CH4 persistence in a stream, a combined bromide (Br) and CH4 tracer injection was conducted on Nine-Mile Creek, a gaining stream in a gas development area in central Utah. A 35% gain in streamflow was determined from dilution of the Br tracer. The injected CH4 resulted in a fivefold increase in stream CH4 immediately below the injection site. CH4 and δ(13) CCH4 sampling showed it was not immediately lost to the atmosphere, but remained in the stream for more than 2000 m. A 1-D stream transport model simulating the decline in CH4 yielded an apparent gas transfer velocity of 4.5 m/d, describing the rate of loss to the atmosphere (possibly including some microbial consumption). The transport model was then calibrated to background stream CH4 in Nine-Mile Creek (prior to CH4 injection) in order to evaluate groundwater CH4 contributions. The total estimated CH4 load discharging to the stream along the study reach was 190 g/d, although using geochemical fingerprinting to determine its source was beyond the scope of the current study. This demonstrates the utility of stream-gas sampling as a reconnaissance tool for evaluating both natural and anthropogenic CH4 leakage from gas reservoirs into groundwater and surface water

  18. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China.

    Science.gov (United States)

    Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2016-02-15

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000-10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ(37)Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. Copyright © 2015. Published by Elsevier B.V.

  19. Groundwater-quality monitoring program in Chester County, Pennsylvania, 1980-2008

    Science.gov (United States)

    Senior, Lisa A.; Sloto, Ronald A.

    2010-01-01

    The U.S. Geological Survey in cooperation with the Chester County Water Resources Authority and the Chester County Health Department began a groundwater-quality monitoring program in 1980 in Chester County, Pa., where a large percentage of the population relies on wells for drinking-water supply. This report documents the program and serves as a reference for data collected through the program from 1980 through 2008. The initial focus of the program was to collect data on groundwater quality near suspected localized sources of contamination, such as uncontrolled landfills and suspected industrial wastes, to determine if contaminants were present that might pose a health risk to those using the groundwater. Subsequently, the program was expanded to address the effects of widely distributed contaminant sources associated with agricultural and residential land uses on groundwater quality and to document naturally occurring constituents, such as radium, radon, and arsenic, that are potential hazards in drinking water. Since 2000, base-flow stream samples have been collected in addition to well-water and spring samples in a few small drainage areas to investigate the relation between groundwater quality measured in well samples and streams. The program has primarily consisted of spatial assessment with limited temporal data collected on groundwater quality. Most data were collected through the monitoring program for reconnaissance purposes to identify and locate groundwater-quality problems and generally were not intended for rigorous statistical analyses that might determine land-use or geochemical factors affecting groundwater quality in space or through time. Results of the program found several contaminants associated with various land uses and human activities in groundwater in Chester County. Volatile organic compounds (such as trichloroethylene) were measured in groundwater near suspected localized contaminant sources in concentrations that exceeded drinking

  20. Geophysical and hydrogeological characterisation of the impacts of on-site wastewater treatment discharge to groundwater in a poorly productive bedrock aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, Shane [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland (United Kingdom); McCarthy, Valerie; Rafferty, Patrick [Department of Applied Sciences, Dundalk Institute of Technology, Dublin Road, Dundalk (Ireland); Orr, Alison; Flynn, Raymond [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland (United Kingdom)

    2015-08-01

    Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100 m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar

  1. Impacts of 25 years of groundwater extraction on subsidence ...

    Science.gov (United States)

    Many major river deltas in the world are subsiding and consequently become increasingly vulnerable to flooding and storm surges, salinization and permanent inundation. For the Mekong Delta, annual subsidence rates up to several centimetres have been reported. Excessive groundwater extraction is suggested as the main driver. As groundwater levels drop, subsidence is induced through aquifer compaction. Over the past 25 years, groundwater exploitation has increased dramatically, transforming the delta from an almost undisturbed hydrogeological state to a situation with increasing aquifer depletion. Yet the exact contribution of groundwater exploitation to subsidence in the Mekong delta has remained unknown. In this study we deployed a delta-wide modelling approach, comprising a 3D hydrogeological model with an integrated subsidence module. This provides a quantitative spatially-explicit assessment of groundwater extraction-induced subsidence for the entire Mekong delta since the start of widespread overexploitation of the groundwater reserves. We find that subsidence related to groundwater extraction has gradually increased in the past decades with highest sinking rates at present. During the past 25 years, the delta sank on average ~18 cm as a consequence of groundwater withdrawal. Current average subsidence rates due to groundwater extraction in our best estimate model amount to 1.1 cm yr−1, with areas subsiding over 2.5 cm yr−1, outpacing global sea level ri

  2. Assessment and modeling of groundwater quality using WQI and GIS in Upper Egypt area.

    Science.gov (United States)

    Rabeiy, Ragab ElSayed

    2017-04-04

    The continuous growth and development of population need more fresh water for drinking, irrigation, and domestic in arid countries like Egypt. Evaluation the quality of groundwater is an essential study to ensure its suitability for different purposes. In this study, 812 groundwater samples were taken within the middle area of Upper Egypt (Sohag Governorate) to assess the quality of groundwater for drinking and irrigation purposes. Eleven water parameters were analyzed at each groundwater sample (Na + , K + , Ca 2+ , Mg 2+ , HCO 3 - SO 4 2- , Fe 2+ , Mn 2+ , Cl - , electrical conductivity, and pH) to exploit them in water quality evaluation. A classical statistics were applied for the raw data to examine the distribution of physicochemical parameters in the investigated area. The relationship between groundwater parameters was tested using the correlation coefficient where a strong relationship was found between several water parameters such as Ca 2+ and Cl - . Water quality index (WQI) is a mathematical model used to transform many water parameters into a single indicator value which represents the water quality level. Results of WQI showed that 20% of groundwater samples are excellent, 75% are good for drinking, and 7% are very poor water while only 1% of samples are unsuitable for drinking. To test the suitability of groundwater for irrigation, three indices are used; they are sodium adsorption ration (SAR), sodium percentage (Na%), and permeability index (PI). For irrigation suitability, the study proved that most sampling sites are suitable while less than 3% are unsuitable for irrigation. The spatial distribution of the estimated values of WQI, SAR, Na%, PI, and each groundwater parameter was spatially modeled using GIS.

  3. Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5

    Science.gov (United States)

    Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.

    2014-01-01

    Groundwater resources from alluvial and bedrock aquifers of the Denver Basin are critical for municipal, domestic, and agricultural uses in Colorado along the eastern front of the Rocky Mountains. Rapid and widespread urban development, primarily along the western boundary of the Denver Basin, has approximately doubled the population since about 1970, and much of the population depends on groundwater for water supply. As part of the National Water-Quality Assessment Program, the U.S. Geological Survey conducted groundwater-quality studies during 2003–5 in the Denver Basin aquifer system to characterize water quality of shallow groundwater at the water table and of the bedrock aquifers, which are important drinking-water resources. For the Denver Basin, water-quality constituents of concern for human health or because they might otherwise limit use of water include total dissolved solids, fluoride, sulfate, nitrate, iron, manganese, selenium, radon, uranium, arsenic, pesticides, and volatile organic compounds. For the water-table studies, two monitoring-well networks were installed and sampled beneath agricultural (31 wells) and urban (29 wells) land uses at or just below the water table in either alluvial material or near-surface bedrock. For the bedrock-aquifer studies, domestic- and municipal-supply wells completed in the bedrock aquifers were sampled. The bedrock aquifers, stratigraphically from youngest (shallowest) to oldest (deepest), are the Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers. The extensive dataset collected from wells completed in the bedrock aquifers (79 samples) provides the opportunity to evaluate factors and processes affecting water quality and to establish a baseline that can be used to characterize future changes in groundwater quality. Groundwater samples were analyzed for inorganic, organic, isotopic, and age-dating constituents and tracers. This report discusses spatial and statistical distributions of chemical constituents

  4. Experiences of Mass Pig Carcass Disposal Related to Groundwater Quality Monitoring in Taiwan

    Directory of Open Access Journals (Sweden)

    Zeng-Yei Hseu

    2016-12-01

    Full Text Available The pig industry is the most crucial animal industry in Taiwan; 10.7 million pigs were reared for consumption in 1996. A foot and mouth disease (FMD epidemic broke out on 19 March 1997, and 3,850,536 pigs were culled before July in the same year. The major disposal method of pig carcasses from the FMD outbreak was burial, followed by burning and incineration. To investigate groundwater quality, environmental monitoring of burial sites was performed from October 1997 to June 1999; groundwater monitoring of 90–777 wells in 20 prefectures was performed wo to six times in 1998. Taiwanese governmental agencies analyzed 3723 groundwater samples using a budget of US $1.5 million. The total bacterial count, fecal coliform, Salmonella spp., nitrite-N, nitrate-N, ammonium-N, sulfate, non-purgeable organic carbon, total oil, and total dissolved solid were recognized as indicators of groundwater contamination resulting from pig carcass burial. Groundwater at the burial sites was considered to be contaminated on the basis of the aforementioned indicators, particularly groundwater at burial sites without an impermeable cloth and those located at a relatively short distance from the monitoring well. The burial sites selected during outbreaks in Taiwan should have a low surrounding population, be away from water preservation areas, and undergo regular monitoring of groundwater quality.

  5. Impact of Preservation of Subsoil Water Act on Groundwater Depletion: The Case of Punjab, India

    Science.gov (United States)

    Tripathi, Amarnath; Mishra, Ashok K.; Verma, Geetanjali

    2016-07-01

    Indian states like Punjab and Haryana, epicenters of the Green Revolution, are facing severe groundwater shortages and falling water tables. Recognizing it as a serious concern, the Government of Punjab enacted the Punjab Preservation of Subsoil Water Act in 2009 (or the 2009 act) to slow groundwater depletion. The objective of this study is to assess the impact of this policy on groundwater depletion, using panel data from 1985 to 2011. Results from this study find a robust effect of the 2009 act on reducing groundwater depletion. Our models for pre-monsoon, post-monsoon, and overall periods of analysis find that since implementation of the 2009 act, groundwater tables have improved significantly. Second, our study reveals that higher shares of tube wells per total cropped area and increased population density have led to a significant decline in the groundwater tables. On the other hand, rainfall and the share of area irrigated by surface water have had an augmenting effect on groundwater resources. In the two models, pre-monsoon and post-monsoon, this study shows that seasonality plays a key role in determining the groundwater table in Punjab. Specifically, monsoon rainfall has a very prominent impact on groundwater.

  6. Impact of Preservation of Subsoil Water Act on Groundwater Depletion: The Case of Punjab, India.

    Science.gov (United States)

    Tripathi, Amarnath; Mishra, Ashok K; Verma, Geetanjali

    2016-07-01

    Indian states like Punjab and Haryana, epicenters of the Green Revolution, are facing severe groundwater shortages and falling water tables. Recognizing it as a serious concern, the Government of Punjab enacted the Punjab Preservation of Subsoil Water Act in 2009 (or the 2009 act) to slow groundwater depletion. The objective of this study is to assess the impact of this policy on groundwater depletion, using panel data from 1985 to 2011. Results from this study find a robust effect of the 2009 act on reducing groundwater depletion. Our models for pre-monsoon, post-monsoon, and overall periods of analysis find that since implementation of the 2009 act, groundwater tables have improved significantly. Second, our study reveals that higher shares of tube wells per total cropped area and increased population density have led to a significant decline in the groundwater tables. On the other hand, rainfall and the share of area irrigated by surface water have had an augmenting effect on groundwater resources. In the two models, pre-monsoon and post-monsoon, this study shows that seasonality plays a key role in determining the groundwater table in Punjab. Specifically, monsoon rainfall has a very prominent impact on groundwater.

  7. The CHPRC Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2009-04-03

    The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.

  8. Influence of a vinasse-distributing lake on water quality of the groundwater

    Directory of Open Access Journals (Sweden)

    Enio Farias de França e Silva

    2013-04-01

    Full Text Available Vinasse is an organic matter and nutrient-rich residue generated during alcohol distillation. However, if applied to crops in excess, it may disturb the complex balance of soil absoption and contaminate groundwater. The goal of this research was to evaluate the effect of a vinasse-distributing pool on the quality of groundwater in a sugarcane field in Pernambuco State, Brazil. Samples were collected from 10 observation wells along three parallel transects around the vinasse-distributing pool. The quality of groundwater as well as the fluvial water of the Ipojuca River was assessed as a control for ocean intrusion. The following parameters were measured: CE, SDT, pH, COD, BOD, NO3-, NO2-, K+, Ca2+, Mg2+, Na+, Cl- and HCO3-. Storing vinasse in the distribution lake disturbed CE, COD and BOD values as well TDS, Cl-, K+, Ca2+ and Mg2+ concentrations in groundwater.

  9. Modeling impacts of change in Landuse/ Landcover on groundwater system in Shiwaliks of Punjab using Remote Sensing and GIS

    Science.gov (United States)

    Singh, C. K.; Mukherjee, S.; Shashtri, S.

    2009-04-01

    increasing influence of green revolution is continuously being manifested in the form of escalating area under salinization; the total increase being registered is around 94%. The areas lying within the vicinity of river have shown concentrations of several heavy metals to be higher than the desirable limits. Impact of agriculture has also shown alarming increase in nitrate concentration in some of the areas. Thematic maps for geology, geomorphology, slope, drainage, lineament density, distance from the lineaments, soil type, were prepared using GIS platform and a suitability analysis was performed for quantitative variation of groundwater in the study area. Several water quality parameters were analyzed and to observe spatial variation of suitability of groundwater in terms of quality a water quality index (WQI) was generated. Parameters such as relative humidity, temperature and rainfall for the last two decades were also analyzed in relation to decline in level of groundwater.

  10. Groundwater Quality Assessment from a Hydrogeochemical Viewpoint A Case Study of Sarab County

    Directory of Open Access Journals (Sweden)

    Mojtaba Pourakbar

    2015-07-01

    Full Text Available Groundwater resources are the most important sources of drinking water in many communities. The direct impact of water quality on public health warrants a thorough investigation of water quality and the factors involved from a hydrogeochemical viewpoint. In the present study, 25 villages of Sarab County in East Azerbayejan Province were selected and the quality of the drinking water supplied in the region was analyzed in terms of its physicochemical parameters along with heavy metals content including 20 different metals. The results were plotted using the Arc GIS for interpretation. The selected villages were subsequently categorized using the Principal Component Analysis (PCA and the Hierarchical Cluster Analysis. Based on the result of study, the EC of the drinking water ranged over 220-2990µs/cm with an average value of 812.  A remarkable finding was the high level of dissolved solids in the Western parts of the study area. Arsenic in two villages and mercury in one village were also high. PCA results showed that the drinking water in the pilot villages could be divided into three categories. Based on certain water quality problems observed ij the region, it is suggested that substitute water supplies should be identified for some of the villages while a comprehensive investigation is also carried out on the arsenic anomaly and its health effects on water consumers in the contaminated villages.

  11. GROUNDWATER QUALITY ASSESSMENT FOR DRINKING PURPOSES USING GIS MODELLING (CASE STUDY: CITY OF TABRIZ

    Directory of Open Access Journals (Sweden)

    M. Jeihouni

    2014-10-01

    Full Text Available Tabriz is the largest industrial city in North West of Iran and it is developing rapidly. A large proportion of water requirements for this city are supplied from dams. In this research, groundwater quality assessed through sampling 70 wells in Tabriz and its rural areas. The purposes of this study are: (1 specifying spatial distribution of groundwater quality parameters such as Chloride, Electrical Conductivity (EC, pH, hardness and sulphate (2 mapping groundwater quality for drinking purpose by employing Analytic Hierarchy Process (AHP method in the study area using GIS and Geosatistics. We utilized an interpolation technique of ordinary kriging for generating thematic map of each parameter. The final map indicates that the groundwater quality esaeicni from North to South and from West to East of the study area. The areas located in Center, South and South West of the study area have the optimum quality for drinking purposes which are the best locations to drill wells for supplying water demands of Tabriz city. In critical conditions, the groundwater quality map as a result of this research can be taken into account by East Azerbaijan Regional Water Company as decision support system to drill new wells or selecting existing wells to supply drinking water to Tabriz city.

  12. Assessment of shallow ground-water quality in recently urbanized areas of Sacramento, California, 1998

    Science.gov (United States)

    Shelton, Jennifer L.

    2005-01-01

    Evidence for anthropogenic impact on shallow ground-water quality beneath recently developed urban areas of Sacramento, California, has been observed in the sampling results from 19 monitoring wells in 1998. Eight volatile organic compounds (VOCs), four pesticides, and one pesticide transformation product were detected in low concentrations, and nitrate, as nitrogen, was detected in elevated concentrations; all of these concentrations were below National and State primary and secondary maximum contaminant levels. VOC results from this study are more consistent with the results from urban areas nationwide than from agricultural areas in the Central Valley, indicating that shallow ground-water quality has been impacted by urbanization. VOCs detected may be attributed to either the chlorination of drinking water, such as trichloromethane (chloroform) detected in 16 samples, or to the use of gasoline additives, such as methyl tert-butyl ether (MTBE), detected in 2 samples. Pesticides detected may be attributed to use on household lawns and gardens and rights-of-way, such as atrazine detected in three samples, or to past agricultural practices, and potentially to ground-water/surface-water interactions, such as bentazon detected in one sample from a well adjacent to the Sacramento River and downstream from where bentazon historically was used on rice. Concentrations of nitrate may be attributed to natural sources, animal waste, old septic tanks, and fertilizers used on lawns and gardens or previously used on agricultural crops. Seven sample concentrations of nitrate, as nitrogen, exceeded 3.0 milligrams per liter, a level that may indicate impact from human activities. Ground-water recharge from rainfall or surface-water runoff also may contribute to the concentrations of VOCs and pesticides observed in ground water. Most VOCs and pesticides detected in ground-water samples also were detected in air and surface-water samples collected at sites within or adjacent to the

  13. Status and understanding of groundwater quality in the Sierra Nevada Regional study unit, 2008: California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the Sierra Nevada Regional (SNR) study unit was investigated as part of the California State Water Resources Control Board’s Groundwater Ambient Monitoring and Assessment Program Priority Basin Project. The study was designed to provide statistically unbiased assessments of the quality of untreated groundwater within the primary aquifer system of the Sierra Nevada. The primary aquifer system for the SNR study unit was delineated by the depth intervals over which wells in the State of California’s database of public drinking-water supply wells are open or screened. Two types of assessments were made: (1) a status assessment that described the current quality of the groundwater resource, and (2) an evaluation of relations between groundwater quality and potential explanatory factors that represent characteristics of the primary aquifer system. The assessments characterize untreated groundwater quality, rather than the quality of treated drinking water delivered to consumers by water distributors.

  14. Demonstrating trend reversal of groundwater quality in relation to time of recharge determined by 3H/3He

    NARCIS (Netherlands)

    Visser, A.; Broers, H.P.; Grift, B. van der; Bierkens, M.F.P.

    2007-01-01

    Recent EU legislation is directed to reverse the upward trends in the concentrations of agricultural pollutants in groundwater. However, uncertainty of the groundwater travel time towards the screens of the groundwater quality monitoring networks complicates the demonstration of trend reversal. We

  15. Groundwater quality in the Western San Joaquin Valley study unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.

    2017-06-09

    Water quality in groundwater resources used for public drinking-water supply in the Western San Joaquin Valley (WSJV) was investigated by the USGS in cooperation with the California State Water Resources Control Board (SWRCB) as part of its Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. The WSJV includes two study areas: the Delta–Mendota and Westside subbasins of the San Joaquin Valley groundwater basin. Study objectives for the WSJV study unit included two assessment types: (1) a status assessment yielding quantitative estimates of the current (2010) status of groundwater quality in the groundwater resources used for public drinking water, and (2) an evaluation of natural and anthropogenic factors that could be affecting the groundwater quality. The assessments characterized the quality of untreated groundwater, not the quality of treated drinking water delivered to consumers by water distributors.The status assessment was based on data collected from 43 wells sampled by the U.S. Geological Survey for the GAMA Priority Basin Project (USGS-GAMA) in 2010 and data compiled in the SWRCB Division of Drinking Water (SWRCB-DDW) database for 74 additional public-supply wells sampled for regulatory compliance purposes between 2007 and 2010. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and SWRCB-DDW regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a spatially weighted, grid-based method to estimate the proportion of the groundwater resources used for public drinking water that has concentrations for particular constituents or class of constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale within the WSJV study unit, and permits comparison of the two study areas to other areas assessed by the GAMA Priority Basin Project

  16. Hydro-geochemical appraisal of groundwater quality from weathered basement aquifers in Northern Malawi

    Science.gov (United States)

    Wanda, Elijah; Monjerezi, Maurice; Mwatseteza, Jonas F.; Kazembe, Lawrence N.

    The obligation to ensure adequate potable water supply to everyone, has necessitated the development of groundwater resources for reliable rural water supply in most developing countries. An understanding of spatial variation and processes affecting water quality is essential in sustaining usable water supplies under changing climate and local environmental pressures. In this study, an assessment of quality and dominant hydro-geochemical processes affecting the quality of groundwater from weathered basement aquifers in Mzimba district, Northern Malawi, has been conducted. Groundwater samples were collected from 172 hand-pumped boreholes, drilled for domestic rural water supply and analysed for major and minor ions, pH and total dissolved solids (TDS). In general, groundwater is of low mineralisation (TDS range: 29-1896 mg L -1 for the dry season), with hydro-geochemical facies dominated by Ca-HCO 3, which evolves to Ca-Cl water type. Multivariate statistical analysis (HCA and PCA) and geochemical interpretation showed that the Ca-HCO 3 groundwater type result from hydrolysis of silicate minerals, which causes the solution to reach equilibrium with kaolinite. The processes of cation exchange of Na + and K + in the groundwater for Ca 2+ and Mg 2+ on clay minerals, carbonate precipitation and evaporation, are shown to modify the chemical composition from Ca-HCO 3 types to Ca-Cl types. Groundwater is generally of good quality in both rainy and dry seasons, with little seasonal changes. The United States Salinity Laboratory Staff and Wilcox diagrams showed that most samples were also suitable for irrigation except for 4% (eight samples) of the groundwater samples (with EC > 2000 μS cm -1). These are located in alluviums and colluviums localised near river banks and in inter hill valleys.

  17. Presenting a conceptual model of data collection to manage the groundwater quality

    Directory of Open Access Journals (Sweden)

    Nourbakhsh Zahra

    2017-12-01

    Full Text Available A conceptual model was proposed in the present study, which highlighted important independent and dependent variables in order to managing the groundwater quality. Furthermore, the methods of selection of variable and collection of related data were explained. The study was carried out in the Tajan Plain, north of Iran; 50 drinking wells were considered as sampling points. In this model the Analytical Hierarchy Process (AHP was proposed to select the indicator water quality parameters. According to expert opinions and characteristics of the study area ten factors were chosen as variables influencing the quality of groundwater (land use types, lithology units, geology units, distance of wells to the outlet, distance to the residential areas, direction toward the residential areas, depth of the groundwater table, the type of aquifer, transmissivity and population. Geographic Information System (AecGIS 9.3 was used to manage the spatial-based variables and the data of non-spatial-based variables were obtained from relevant references. A database, which contains all collected data related to groundwater quality management in the studied area, was created as the output of the model. The output of this conceptual model can be used as an input for quantitative and mathematical models. Results show that 6 parameters (sulphate, iron, nitrate, electrical conductivity, calcium, and total dissolved solids (TDS were the best indicators for groundwater quality analysis in the area. More than 50% of the wells were drilled in the depth of groundwater table about 5 meters, in this low depth pollutants can load into the wells and also 78% of the wells are located within 5 km from the urban area; it can be concluded from this result that the intensive urban activities could affect groundwater quality.

  18. Suitability of Groundwater Quality for Irrigation with Reference to ...

    African Journals Online (AJOL)

    Tadesse

    collected from the command area of the hand dug wells from where the groundwater samples .... and fractured upper parts of the rocks are exploited through these hand dug wells. They supply water daily for domestic, irrigation and livestock consumption. 1.3.6.1. Hand Dug Wells ... (c) Fracture characteristics of bedrock.

  19. Assessment of shallow groundwater quality and its suitability for ...

    African Journals Online (AJOL)

    Furthermore, water for drinking should be treated mildly, due to low pH and high iron content. Polyvinyl chloride materials (PVC) and other non-corrosive materials should be used for the construction of boreholes within the area to reduce damage to plumbing materials. Groundwater monitoring, effective and holistic ...

  20. Implications of groundwater quality to corrosion problem and urban ...

    African Journals Online (AJOL)

    Bheema

    extremely low. Surface water and groundwater system is one of the most important influencing factors in foundation engineering and urban development and is required for design of structures. Hence monitoring and conserving this important resource is essential. (Chatterjee et al., 2010). Understanding the hydrogeology of ...

  1. Hydrochemical assessment of groundwater quality in Sagamu area ...

    African Journals Online (AJOL)

    The samples were subjected to chemical analysis involving the Induced Coupled Plasma Mass Spectrometry (ICPMS) for cation determination, and volumetric analysis to determine the anions. The classification of the groundwater using Piper diagram, Gibbs variation, Wilcox classification and Zhang evolution plot reveals ...

  2. Effect of seasonal drawdown variations on groundwater quality in ...

    African Journals Online (AJOL)

    user

    2013-07-24

    Jul 24, 2013 ... Igbinosa and Okoh (2009) reported the damaging conse- quences of leachate infiltration into groundwater bodies on life expectancy of such water consumers, while Quinn et al. (2006) enumerated its effect and that of delayed drawdown on moist plant productivity and wetland ecology. Several studies have ...

  3. Assessment of groundwater quality at the Nigerian Institute for ...

    African Journals Online (AJOL)

    This study was carried out to ascertain the suitability of the Nigerian Institute for Oceanography and Marine Research's groundwater resources for aquaculture purposes. The samples were subjected to physico-chemical analyses and the parameters analyzed are Iron, pH, Sulphide ion Total Ammonia, Dissolved Oxygen, ...

  4. Geochemical processes controlling the groundwater quality in lower ...

    Indian Academy of Sciences (India)

    for few locations. The results of these analyses were used to identify the geochemical processes that are taking place in this region. Cation exchange and silicate ...... composition of groundwater from alluvial aquifers in the Wanaka and Wakatipu basins, central Otago, New. Zealand; Hydrogeol. J. 6 264–281. Rouxel M ...

  5. Effect of seasonal drawdown variations on groundwater quality in ...

    African Journals Online (AJOL)

    user

    2013-07-24

    Jul 24, 2013 ... sources peculiar to emerging African cities. Key words: Shallow well, pollution, water level, ... groundwater contamination within the region of interest. MATERIALS AND METHODS. Study area ... were covered with cork to prevent spillage and contamination and were kept in the laboratory at 4°C before the ...

  6. Use of natural isotopes and groundwater quality for improved ...

    African Journals Online (AJOL)

    2006-07-21

    Jul 21, 2006 ... lower threshold. Higher dissolution of carbonate resulting from higher partial pressures of CO2. The 14C content of this groundwater is higher than for B. Macro-pore and preferential recharge occurs if rainfall exceeds the higher threshold. Lower dissolution of bicarbonate because of lower partial pressure.

  7. Assessment of Groundwater Quality and its Suitability for Domestic ...

    African Journals Online (AJOL)

    Groundwater in parts of the Central Region of Ghana was assessed to determine its suitability for domestic use and irrigation activities. Stiff and Piper diagrams show that the predominant water type in the area is Na-Cl, which is characterized by relatively high salinities. This water type occurs in aquifers underlying six ...

  8. Groundwater quality degradation due to salt water intrusion in ...

    African Journals Online (AJOL)

    Saltwater intrusion problems are widespread where there are over pumping of groundwater from coastal aquifers. Water samples were collected from production boreholes in Zanzibar municipality and analyzed for salinity indication parameters comprising of chloride, electrical conductivity, total dissolved salts and ...

  9. Investigation of seasonal variation of groundwater quality in Jimeta ...

    African Journals Online (AJOL)

    The contaminants in all the aquifers revealed strong positive correlations in both seasons which are an indication of common source. Factor analysis indicates that groundwater chemistry is controlled by anthropogenic activities, salinity, ammonification and natural mineralization. It is recommended that safe waste disposal ...

  10. Assessment of groundwater quality around a petroleum tank farm, in ...

    African Journals Online (AJOL)

    Investigation of the physical and chemical properties of groundwater around a Petroleum Tank Farm was carried out between January and August, 2015 to assess the suitability of the borehole water for drinking and other domestic uses. The results show that pH of water was acidic with values ranging from 4.62 to 6.87, EC ...

  11. groundwater quality assessment of wells in ifewara, osun state

    African Journals Online (AJOL)

    influences as a result of factors such as overpopulation and activities (including agriculture, indiscriminate refuse disposal and use of septic tanks, soak away and latrines) which are capable of producing run-offs and leachate which could infiltrate into and pollute groundwater formation. Many households depend on wells ...

  12. Impact of leachate on groundwater pollution due to non-engineered municipal solid waste landfill sites of erode city, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    Nagarajan Rajkumar

    2012-12-01

    Full Text Available Abstract Leachate and groundwater samples were collected from Vendipalayam, Semur and Vairapalayam landfill sites in Erode city, Tamil Nadu, India, to study the possible impact of leachate percolation on groundwater quality. Concentrations of various physicochemical parameters including heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Fe and Zn were determined in leachate samples and are reported. The concentrations of Cl-, NO3-, SO42-, NH4+ were found to be in considerable levels in the groundwater samples particularly near to the landfill sites, likely indicating that groundwater quality is being significantly affected by leachate percolation. Further they were proved to be the tracers for groundwater contamination near Semur and Vendipalayam dumpyards. The presence of contaminants in groundwater particularly near the landfill sites warns its quality and thus renders the associated aquifer unreliable for domestic water supply and other uses. Although some remedial measures are suggested to reduce further groundwater contamination via leachate percolation, the present study demands for the proper management of waste in Erode city.

  13. Water Quality Assessment of Groundwater Resources in Nagpur Region (India Based on WQI

    Directory of Open Access Journals (Sweden)

    P. N. Rajankar

    2009-01-01

    Full Text Available Water quality index (WQI has been calculated for different groundwater sources i.e. dug wells, bore wells and tube wells at Khaperkheda region, Maharashtra (India. Twenty two different sites were selected in post monsoon, winter and summer season. And water quality index was calculated using water quality index calculator given by National Sanitation Foundation (NSF information system. The calculated WQI showed fair water quality rating in post monsoon season which then changed to medium in summer and winter seasons for dug wells, but the bore wells and hand pumps showed medium water quality rating in all seasons where the quality was slightly differs in summer and winter season than post monsoon season, so the reasons to import water quality change and measures to be taken up in terms of groundwater quality management are required.

  14. The Heterogeneous Impacts of Groundwater Management Policies in the Republican River Basin of Colorado

    Science.gov (United States)

    Hrozencik, R. A.; Manning, D. T.; Suter, J. F.; Goemans, C.; Bailey, R. T.

    2017-12-01

    Groundwater is a critical input to agricultural production across the globe. Current groundwater pumping rates frequently exceed recharge, often by a substantial amount, leading to groundwater depletion and potential declines in agricultural profits over time. As a result, many regions reliant on irrigated agriculture have proposed policies to manage groundwater use. Even when gains from aquifer management exist, there is little information about how policies affect individual producers sharing the resource. In this paper, we investigate the variability of groundwater management policy impacts across heterogeneous agricultural producers. To measure these impacts, we develop a hydroeconomic model that captures the important role of well capacity, productivity of water, and weather uncertainty. We use the model to simulate the impacts of groundwater management policies on producers in the High Plains aquifer of eastern Colorado and compare outcomes to a no-policy baseline. The management policies considered include a pumping fee, a quantity restriction, and an irrigated acreage fee. We find that well capacity and soil type affect policy impacts but in ways that can qualitatively differ across policy type. Model results have important implications for the distributional impacts and political acceptability of groundwater management policies.

  15. Assessment of groundwater quality using geographical information system (GIS), at north-east Cairo, Egypt.

    Science.gov (United States)

    El-Shahat, M F; Sadek, M A; Mostafa, W M; Hagagg, K H

    2016-04-01

    The present investigation has been conducted to delineate the hydrogeochemical and environmental factors that control the water quality of the groundwater resources in the north-east of Cairo. A complementary approach based on hydrogeochemistry and a geographical information system (GIS) based protectability index has been employed for conducting this work. The results from the chemical analysis revealed that the groundwater of the Quaternary aquifer is less saline than that of the Miocene aquifer and the main factors that control the groundwater salinity in the studied area are primarily related to the genesis of the original recharging water modified after by leaching, dissolution, cation exchange, and fertilizer leachate. The computed groundwater quality index (WQI) falls into two categories: fair for almost all the Miocene groundwater samples, while the Quaternary groundwater samples are all have a good quality. The retarded flow and non-replenishment of the Miocene aquifer compared to the renewable active recharge of the Quaternary aquifer can explain this variation of WQI. The index and overlay approach exemplified by the DUPIT index has been used to investigate the protectability of the study aquifers against diffuse pollutants. Three categories (highly protectable less vulnerable, moderately protectable moderately vulnerable and less protectable highly vulnerable) have been determined and areally mapped.

  16. Modelling the Impact of Human Actors on Groundwater Resources under Conditions of Climate Change

    Science.gov (United States)

    Barthel, R.; Reichenau, T. G.; Krimly, T.; Dabbert, S.; Schneider, K.; Mauser, W.; Hennicker, R.

    2012-12-01

    Water resources, activities of human actors and climate change are related in many different and complex ways because of the existence of and strong interactions between various influencing factors, including those that are natural-environmental and socio-economic. The GLOWA-Danube research cooperation has developed the integrated simulation system DANUBIA to simulate water-related influences of global change in different spatial and temporal contexts. DANUBIA is a modular system comprised of 17 dynamically-coupled, process-based model components and a framework which controls the interaction of these components with respect to space and time. This contribution describes approaches and capabilities of DANUBIA with regard to the simulation of global change effects on human decisions in water related fields with a focus on agriculture and groundwater. In agriculture, market prices and legislation can be equally or even more important than water availability in determining farmers' behavior and thus in determining the agricultural impact on water resources quantity and quality. The DANUBIA simulation framework and the associated DeepActor-framework for simulation of decision-making by human actors are presented together with the model components which are most relevant to the interactions between agriculture and groundwater. The approach for developing combination climate and socio-economic scenarios is explained. Exemplary scenario results are shown for the Upper Danube Catchment in Southern Germany. References Barthel, R., Janisch, S., N. Schwarz, A. Trifkovic, D. Nickel, C. Schulz, W. Mauser (2008): An integrated modelling framework for simulating regional-scale actor responses to global change in the water domain. Environmental Modelling and Software, 23, 1095-1121 (doi:10.1016/j.envsoft.2008.02.004) Barthel, R., Reichenau T., Krimly, T., Dabbert, S., Schneider, K., Mauser, W. (2012) Integrated modeling of climate change impacts on agriculture and groundwater

  17. Climate change impact assessment in Veneto and Friuli Plain groundwater. Part II: a spatially resolved regional risk assessment.

    Science.gov (United States)

    Pasini, S; Torresan, S; Rizzi, J; Zabeo, A; Critto, A; Marcomini, A

    2012-12-01

    outcomes from the described RRA application highlighted that potential climate change impacts will occur with different extension and magnitude in the case study area. Particularly, qualitative and quantitative impacts on groundwater will occur with more severe consequences in the wettest and in the driest scenario (respectively). Moreover, such impacts will likely have little direct effects on related ecosystems - croplands, forests and natural environments - lying along the spring area (about 12% of croplands and 2% of natural environments at risk) while more severe consequences will indirectly occur on natural and anthropic systems through the reduction in quality and quantity of water availability for agricultural and other uses (about 80% of agricultural areas and 27% of groundwater bodies at risk). Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Municipal Landfilling Practice And Its Impact On Groundwater Resources In And Around Urban Toronto, Canada

    Science.gov (United States)

    Howard, K. W. F.; Eyles, N.; Livingstone, S.

    1996-01-01

    The hazardous contents of municipal landfills are rarely documented and problems are usually not recognised until landfill leachate pollutes a well or surface-water body. By this time, the groundwater is often extensively contaminated with little opportunity for redress. Recent studies in southern Ontario have adopted a pro-active stance to this issue. The location, size, design and geologic setting of almost 1,200 active and inactive landfills have been documented; in addition, a contaminant-source audit has been performed for a representative region of urban Toronto, where 82 landfills sites are contained in an area of 700 km2. Groundwater flow modeling reveals that at half the sites groundwater travel time to major urban streams and Lake Ontario is less than 10 years, suggesting that chemically conservative chemicals released at these sites would have a rapid impact on surface-water quality. The sites are as large as 99 ha, and waste thickness normally ranges from 3-30 m. In the audited area, the sites contain an estimated 4.6×107 tons of material, consisting primarily of domestic waste, incinerator ashes, and construction and commercial debris; some sites are believed, however, to have received liquid waste from industrial sources. The chemical audit indicates that more than 1.3 million tons, or approximately 2.9 percent of the landfill waste, will enter the landfill leachate. About 99 percent of the leachable mass is composed of calcium, magnesium, sodium, nitrogen (as ammonia, nitrate, and nitrite), chloride, sulphate, and bicarbonate. However, the real potential damage must be measured by the degree of environmental degradation that would ensue if the leachate is released to the subsurface. Ignoring the possible effects of chemical biodegradation and volatilization within the aquifer, calculations indicate that 17 of the 39 leachate components investigated are individually capable of contaminating at least 2×1012 liters of water in excess of Provincial

  19. Geochemistry and quality of groundwater of the Yarmouk basin aquifer, north Jordan.

    Science.gov (United States)

    Abboud, Iyad Ahmed

    2018-01-04

    Quality of groundwater in the Yarmouk basin, Jordan has been assessed through the study of hydrogeochemical characteristics and the water chemistry as it is considered the main source for drinking and agriculture activities in the region. The results of the relationship between Ca 2+  + Mg 2+ versus HCO 3 -  + CO 3 2- , Ca 2+  + Mg 2+ versus total cations, Na +  + K + versus total cations, Cl -  + SO 4 2- versus Na +  + K + , Na + versus Cl - , Na + versus HCO 3 -  + CO 3 2- , Na + versus Ca 2+ , and Na + : Cl - versus EC describe the mineral dissolution mechanism through the strong relationship between water with rocks in alkaline conditions with the release of Ca 2+ , Mg 2+ , Na + , K + , HCO 3 - , CO 3 2- , SO 4 2- , and F - ions in the groundwater for enrichment. Furthermore, evaporation processes, groundwater depletion, and ion exchange contribute to the increased concentration of Na + and Cl - ions in groundwater. Anthropogenic sources are one of the main reasons for contamination of groundwater in the study area and for increasing the concentration of Mg 2+ , Na + , Cl - , SO 4 2- , and NO 3 - ions. Results show the quality of groundwater in the study area is categorized as follows: HCO 3 -  + CO 3 2-  > Cl -  > SO 4 2-  > NO 3 -  > F - and Na +  > Ca 2+  > Mg 2+  > K + . In conclusion, the results of TDS, TH, and chemical composition showed that 26% of the groundwater samples were unsuitable for drinking. About 28% of groundwater samples in the study area have a high concentration of Mg 2+ , Na + , and NO 3 - above the acceptable limit. Also, based on high SAR, 10% of the groundwater samples were not suitable for irrigation purposes.

  20. Assessment of Groundwater Supply Impacts for a Mine Site in Western Turkey

    Science.gov (United States)

    Agartan, E.; Yazicigil, H.

    2010-12-01

    provide the least impact on existing public and private wells, and that they would be closer to the mine site. For the first scenario, four wells having same discharge rate added to the first layer of the model to supply process water. In the second scenario, it was assumed that half of the required water was extracted from the first layer with two wells and the remaining was supplied from the second layer with two wells. Discharge rate of the wells were assumed as same. Results show that each scenario is applicable to supply required water to the mine site. In both of the scenarios, the pumpage from the scenario wells created a large cone of depression extending several kilometers from the mine water supply wells, and numerous private wells negatively affected by the mine water supply wells. Groundwater is a very vital resource for the people living in and around the study area in meeting their drinking and irrigation water needs due to its good quality. Therefore, to minimize the effects on groundwater, some other alternatives such as use of surface water from Gediz River or reuse of the waste water of the Turgutlu town after treatment are recommended.

  1. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China.

    Science.gov (United States)

    Zhang, Bing; Song, Xianfang; Zhang, Yinghua; Han, Dongmei; Tang, Changyuan; Yu, Yilei; Ma, Ying

    2012-05-15

    Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Songnen plain is one of the grain bases in China, as well as one of the three major distribution regions of soda saline-alkali soil in the world. To assess the water quality, surface water and groundwater were sampled and analyzed by fuzzy membership analysis and multivariate statistics. The surface water were gather into class I, IV and V, while groundwater were grouped as class I, II, III and V by fuzzy membership analysis. The water samples were grouped into four categories according to irrigation water quality assessment diagrams of USDA. Most water samples distributed in category C1-S1, C2-S2 and C3-S3. Three groups were generated from hierarchical cluster analysis. Four principal components were extracted from principal component analysis. The indicators to water quality assessment were Na, HCO(3), NO(3), Fe, Mn and EC from principal component analysis. We conclude that surface water and shallow groundwater are suitable for irrigation, the reservoir and deep groundwater in upstream are the resources for drinking. The water for drinking should remove of the naturally occurring ions of Fe and Mn. The control of sodium and salinity hazard is required for irrigation. The integrated management of surface water and groundwater for drinking and irrigation is to solve the water issues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Water Quality Assessment of Groundwater Resources in Nagpur Region (India) Based on WQI

    OpenAIRE

    Rajankar, P. N.; Gulhane, S. R.; Tambekar, D. H.; Ramteke, D. S.; Wate, S. R.

    2009-01-01

    Water quality index (WQI) has been calculated for different groundwater sources i.e. dug wells, bore wells and tube wells at Khaperkheda region, Maharashtra (India). Twenty two different sites were selected in post monsoon, winter and summer season. And water quality index was calculated using water quality index calculator given by National Sanitation Foundation (NSF) information system. The calculated WQI showed fair water quality rating in post monsoon season which then changed to medium i...

  3. Analysis of sex hormones in groundwater using electron impact ionization

    Energy Technology Data Exchange (ETDEWEB)

    Gonschorowski, Graciele Pereira da Cruz, E-mail: graci_ju@yahoo.com.br [Universidade Estadual do Centro-Oeste (UNICENTRO), Guarapuava, PR (Brazil); Gonschorowski, Juliano dos Santos, E-mail: jgsantosbr@yahoo.com.br [Universidade Federal Tecnologica do Parana (UTFPR), Guarapuava, PR (Brazil); Shihomatsu, Helena M.; Bustillos, Jose Oscar Vega, E-mail: hmatsu@ipen.br, E-mail: ovega@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Limeira, Larissa, E-mail: larissa.limeira07@gmail.com [Centro Universitario FIEO (UNIFIEO), Sao Paulo, SP (Brazil)

    2013-07-01

    A wide range of estrogenic contaminants has been detected in the aquatic environment, both in natural and synthetic forms. Steroid hormones are endocrine-disrupting compounds, which affect the endocrine system at very low concentrations. This work presents the development of an analytical procedure for the determination of five sexual steroid hormones, 17β-estradiol, estrone, progesterone, and the synthetics contraceptives, 17α-ethynylestradiol and norgestrel in groundwater from Sao Paulo University campus, specifically at Institute of Energy and Nuclear Research (IPEN). The analytical procedure starting with the sample pre-treatment, where the samples were first filtered and then extracted through solid-phase extraction, using Strata-X cartridges, and ending with detection. The separation method used was gas chromatography (GC), and the detection method was mass spectrometry (MS). The ion source used was electron impact ionization which produced an electron beam generated by an incandescent tungsten/thorium filament, which collide with molecules of gas sample. This interaction between the electrons and molecules, produce ions of the sample. The detection limits 0.06μg.L{sup -1} for estrone, 0.13 μg. L{sup -1} for 17β-estradiol, 0.13 μg.L{sup -1} for 17α-ethynylestradiol, 0.49 μg.L{sup -1} for norgestrel and 0.02 μg.L{sup -1} for progesterone were detected in assays matrix. Validating tests were also used in this work. (author)

  4. Analysis of sex hormones in groundwater using electron impact ionization

    International Nuclear Information System (INIS)

    Gonschorowski, Graciele Pereira da Cruz; Gonschorowski, Juliano dos Santos; Shihomatsu, Helena M.; Bustillos, Jose Oscar Vega; Limeira, Larissa

    2013-01-01

    A wide range of estrogenic contaminants has been detected in the aquatic environment, both in natural and synthetic forms. Steroid hormones are endocrine-disrupting compounds, which affect the endocrine system at very low concentrations. This work presents the development of an analytical procedure for the determination of five sexual steroid hormones, 17β-estradiol, estrone, progesterone, and the synthetics contraceptives, 17α-ethynylestradiol and norgestrel in groundwater from Sao Paulo University campus, specifically at Institute of Energy and Nuclear Research (IPEN). The analytical procedure starting with the sample pre-treatment, where the samples were first filtered and then extracted through solid-phase extraction, using Strata-X cartridges, and ending with detection. The separation method used was gas chromatography (GC), and the detection method was mass spectrometry (MS). The ion source used was electron impact ionization which produced an electron beam generated by an incandescent tungsten/thorium filament, which collide with molecules of gas sample. This interaction between the electrons and molecules, produce ions of the sample. The detection limits 0.06μg.L -1 for estrone, 0.13 μg. L -1 for 17β-estradiol, 0.13 μg.L -1 for 17α-ethynylestradiol, 0.49 μg.L -1 for norgestrel and 0.02 μg.L -1 for progesterone were detected in assays matrix. Validating tests were also used in this work. (author)

  5. Environmental quality assessment of groundwater resources in Al Jabal Al Akhdar, Sultanate of Oman

    Science.gov (United States)

    Al-Kalbani, Mohammed Saif; Price, Martin F.; Ahmed, Mushtaque; Abahussain, Asma; O'Higgins, Timothy

    2017-11-01

    The research was conducted to assess the quality of groundwater resources of Al Jabal Al Akhdar, Oman. 11 drinking water sources were sampled during summer and winter seasons during 2012-2013 to evaluate their physico-chemical quality indicators; and assess their suitability for drinking and other domestic purposes. Sample collection, handling and processing followed the standard methods recommended by APHA and analyzed in quality assured laboratories using appropriate analytical methods and instrumental techniques. The results show that the quality parameters in all drinking water resources are within the permissible limits set by Omani and WHO standards; and the drinking water quality index is good or medium in quality based on NFS-WQI classification criteria, indicating their suitability for human consumption. There is an indication of the presence of high nitrate concentrations in some groundwater wells, which require more investigations and monitoring program to be conducted on regular basis to ensure good quality water supply for the residents in the mountain. The trilinear Piper diagram shows that most of the drinking water resources of the study area fall in the field of calcium and bicarbonate type with some magnesium bicarbonate type indicating that most of the major ions are natural in origin due to the geology of the region. This study is a first step towards providing indicators on groundwater quality of this fragile mountain ecosystem, which will be the basis for future planning decisions on corrective demand management measures to protect groundwater resources of Al Jabal Al Akhdar.

  6. Appraisal of long term groundwater quality of peninsular India using water quality index and fractal dimension

    Science.gov (United States)

    Rawat, Kishan Singh; Singh, Sudhir Kumar; Jacintha, T. German Amali; Nemčić-Jurec, Jasna; Tripathi, Vinod Kumar

    2017-12-01

    A review has been made to understand the hydrogeochemical behaviour of groundwater through statistical analysis of long term water quality data (year 2005-2013). Water Quality Index ( WQI), descriptive statistics, Hurst exponent, fractal dimension and predictability index were estimated for each water parameter. WQI results showed that majority of samples fall in moderate category during 2005-2013, but monitoring site four falls under severe category (water unfit for domestic use). Brownian time series behaviour (a true random walk nature) exists between calcium (Ca^{2+}) and electric conductivity (EC); magnesium (Mg^{2+}) with EC; sodium (Na+) with EC; sulphate (SO4^{2-}) with EC; total dissolved solids (TDS) with chloride (Cl-) during pre- (2005-2013) and post- (2006-2013) monsoon season. These parameters have a closer value of Hurst exponent ( H) with Brownian time series behaviour condition (H=0.5). The result of times series analysis of water quality data shows a persistent behaviour (a positive autocorrelation) that has played a role between Cl- and Mg^{2+}, Cl- and Ca^{2+}, TDS and Na+, TDS and SO4^{2-}, TDS and Ca^{2+} in pre- and post-monsoon time series because of the higher value of H (>1). Whereas an anti-persistent behaviour (or negative autocorrelation) was found between Cl- and EC, TDS and EC during pre- and post-monsoon due to low value of H. The work outline shows that the groundwater of few areas needs treatment before direct consumption, and it also needs to be protected from contamination.

  7. Appraisal of long term groundwater quality of peninsular India using water quality index and fractal dimension

    Science.gov (United States)

    Rawat, Kishan Singh; Singh, Sudhir Kumar; Jacintha, T. German Amali; Nemčić-Jurec, Jasna; Tripathi, Vinod Kumar

    2018-02-01

    A review has been made to understand the hydrogeochemical behaviour of groundwater through statistical analysis of long term water quality data (year 2005-2013). Water Quality Index ( WQI), descriptive statistics, Hurst exponent, fractal dimension and predictability index were estimated for each water parameter. WQI results showed that majority of samples fall in moderate category during 2005-2013, but monitoring site four falls under severe category (water unfit for domestic use). Brownian time series behaviour (a true random walk nature) exists between calcium (Ca^{2+}) and electric conductivity (EC); magnesium (Mg^{2+}) with EC; sodium (Na+) with EC; sulphate (SO4^{2-}) with EC; total dissolved solids (TDS) with chloride (Cl-) during pre- (2005-2013) and post- (2006-2013) monsoon season. These parameters have a closer value of Hurst exponent ( H) with Brownian time series behaviour condition (H=0.5). The result of times series analysis of water quality data shows a persistent behaviour (a positive autocorrelation) that has played a role between Cl- and Mg^{2+}, Cl- and Ca^{2+}, TDS and Na+, TDS and SO4^{2-}, TDS and Ca^{2+} in pre- and post-monsoon time series because of the higher value of H (>1). Whereas an anti-persistent behaviour (or negative autocorrelation) was found between Cl- and EC, TDS and EC during pre- and post-monsoon due to low value of H. The work outline shows that the groundwater of few areas needs treatment before direct consumption, and it also needs to be protected from contamination.

  8. Assessment of the hydrogeochemistry and groundwater quality of the Tarim River Basin in an extreme arid region, NW China.

    Science.gov (United States)

    Xiao, Jun; Jin, Zhangdong; Wang, Jin

    2014-01-01

    The concentrations of the major and trace elements in the groundwater of the Tarim River Basin (TRB), the largest inland river basin of China, were analyzed before and during rainy seasons to determine the hydrogeochemistry and to assess the groundwater quality for irrigation and drinking purposes. The groundwater within the TRB was slightly alkaline and characterized by high ionic concentrations. The groundwater in the northern sub-basin was fresh water with a Ca(2+)-HCO3(-) water type, whereas the groundwater in the southern and central sub-basins was brackish with a Na(+)-Cl(-) water type. Evaporite dissolution and carbonate weathering were the primary and secondary sources of solutes in the groundwater within the basin, whereas silicate weathering played a minor role. The sodium adsorption ratio (SAR), water quality index (WQI), and sodium percentage (%Na) indicated that the groundwater in the northern sub-basin was suitable for irrigation and drinking, but that in the southern and central sub-basins was not suitable. The groundwater quality was slightly better in the wet season than in the dry season. The groundwater could be used for drinking after treatment for B(3+), F(-), and SO4(2-) and for irrigation after control of the sodium and salinity hazards. Considering the high corrosivity ratio of the groundwater in this area, noncorrosive pipes should be used for the groundwater supply. For sustainable development, integrated management of the surface water and the groundwater is needed in the future.

  9. Groundwater quality and hydrochemical properties of Al-Ula Region, Saudi Arabia.

    Science.gov (United States)

    Toumi, Naji; Hussein, Belal H M; Rafrafi, Sarra; El Kassas, Neama

    2015-03-01

    Groundwater quality monitoring is one of the most important aspects in groundwater studies in arid environments particularly in developing countries, like Saudi Arabia, due to the fast population growth and the expansion of irrigated agriculture and industrial uses. Groundwater samples have been collected from eight locations in Al-Ula in Saudi Arabia during June 2012 and January 2013 in order to investigate the hydrochemical characteristics and the groundwater quality and to understand the sources of dissolved ions. Physicochemical parameters of groundwater such as electrical conductivity, pH, total dissolved solid, and major cations and anions were determined. Chloride was found to be the dominant anion followed by HCO(-) 3 and SO4 (2-). Groundwater of the study area is characterized by the dominance of alkaline earths (Ca(2+) + Mg(2+)) over alkali metals (Na(+) + K(+)). The analytical results show that the groundwater is generally moderately hard and slightly alkaline in nature. The binary relationships of the major ions reveal that water quality of the Al-Ula region is mainly controlled by rock weathering, evaporation, and ion exchange reactions. Piper diagram was constructed to identify hydrochemical facies, and it was found that majority of the samples belong to Ca-Cl and mixed Ca-Mg-Cl facies. Chemical indices like chloro-alkali indices, sodium adsorption ratio, percentage of sodium, residual sodium carbonate, and permeability index were calculated. Also, the results show that the chemical composition of groundwater sources of Al-Ula is strongly influenced by lithology of country rocks rather than anthropogenic activities.

  10. Impacts of Groundwater Recharge from Rubber Dams on the Hydrogeological Environment in Luoyang Basin, China

    Directory of Open Access Journals (Sweden)

    Shaogang Dong

    2014-01-01

    Full Text Available In the rubber dam’s impact area, the groundwater total hardness (TH has declined since 2000, ultimately dropping to 100–300 mg/L in 2012. pH levels have shown no obvious changes. NH4-N concentration in the groundwater remained stable from 2000 to 2006, but it increased from 2007 to 2012, with the largest increase up to 0.2 mg/L. NO3-N concentration in the groundwater generally declined in 2000–2006 and then increased from 2007; the largest increase was to 10 mg/L in 2012. Total dissolved solids (TDS of the groundwater showed a general trend of decline from 2000 to 2009, but levels increased after 2010, especially along the south bank of the Luohe River where the largest increase recorded was approximately 100 mg/L. This study has shown that the increases in the concentrations of NH4-N and NO3-N were probably caused by changes in groundwater levels. Nitrates adsorbed by the silt clay of aeration zone appear to have entered the groundwater through physical and chemical reactions. TDS increased because of groundwater evaporation and some soluble ions entered the groundwater in the unsaturated zone. The distance of the contaminant to the surface of the aquifer became shorter due to the shallow depth of groundwater, resulting in the observed rise in pollutant concentrations more pronounced.

  11. Impact of Climate Change on Soil and Groundwater Chemistry Subject to Process Waste Land Application

    Science.gov (United States)

    McNab, W. W.

    2013-12-01

    Nonhazardous aqueous process waste streams from food and beverage industry operations are often discharged via managed land application in a manner designed to minimize impacts to underlying groundwater. Process waste streams are typically characterized by elevated concentrations of solutes such as ammonium, organic nitrogen, potassium, sodium, and organic acids. Land application involves the mixing of process waste streams with irrigation water which is subsequently applied to crops. The combination of evapotranspiration and crop salt uptake reduces the downward mass fluxes of percolation water and salts. By carefully managing application schedules in the context of annual climatological cycles, growing seasons, and process requirements, potential adverse environmental impacts to groundwater can be mitigated. However, climate change poses challenges to future process waste land application efforts because the key factors that determine loading rates - temperature, evapotranspiration, seasonal changes in the quality and quantity of applied water, and various crop factors - are all likely to deviate from current averages. To assess the potential impact of future climate change on the practice of land application, coupled process modeling entailing transient unsaturated fluid flow, evapotranspiration, crop salt uptake, and multispecies reactive chemical transport was used to predict changes in salt loading if current practices are maintained in a warmer, drier setting. As a first step, a coupled process model (Hydrus-1D, combined with PHREEQC) was calibrated to existing data sets which summarize land application loading rates, soil water chemistry, and crop salt uptake for land disposal of process wastes from a food industry facility in the northern San Joaquin Valley of California. Model results quantify, for example, the impacts of evapotranspiration on both fluid flow and soil water chemistry at shallow depths, with secondary effects including carbonate mineral

  12. Results of RCRA groundwater quality assessment at the 216-B-3 Pond Facility

    International Nuclear Information System (INIS)

    Barnett, D.B.; Teel, S.S.

    1997-06-01

    This document describes a groundwater quality assessment of the 216-B-3 pond system, a Resources Conservation and Recovery act of 1976 (RCRA) waste facility. In 1990, sampling and chemical analysis of groundwater underlying the facility indicated that the contamination indicator parameters, total organic halogens (TOX), and total organic carbon (TOC) had exceeded established limits in two wells. This discovery placed the facility into RCRA groundwater assessment status and subsequently led to a more detailed hydrochemical analysis of groundwater underlying the facility. Comprehensive chemical analyses of groundwater samples from 1994 through 1996 revealed one compound, tris (2-chloroethyl) phosphate (TRIS2CH), that may have contributed to elevated TOX concentrations. No compound was identified as a contributor to TOC. Detailed evaluations of TOX, TOC, and TRIS2CH and comparison of occurrences of these parameters led to conclusions that (1) with few exceptions, these constituents occur at low concentrations below or near limits of quantitation; (2) it is problematic whether the low concentrations of TRIS2CH represent a contaminant originating from the facility or if it is a product of well construction; and (3) given the low and diminishing concentration of TOX, TOC, and TRIS2CH, no further investigation into the occurrent of these constituents is justified. Continued groundwater monitoring should include an immediate recalculation of background critical means of upgradient/downgradient comparisons and a return to seminannual groundwater monitoring under a RCRA indicator parameter evaluation program

  13. Hydrochemical and multivariate analysis of groundwater quality in the northwest of Sinai, Egypt.

    Science.gov (United States)

    El-Shahat, M F; Sadek, M A; Salem, W M; Embaby, A A; Mohamed, F A

    2017-08-01

    The northwestern coast of Sinai is home to many economic activities and development programs, thus evaluation of the potentiality and vulnerability of water resources is important. The present work has been conducted on the groundwater resources of this area for describing the major features of groundwater quality and the principal factors that control salinity evolution. The major ionic content of 39 groundwater samples collected from the Quaternary aquifer shows high coefficients of variation reflecting asymmetry of aquifer recharge. The groundwater samples have been classified into four clusters (using hierarchical cluster analysis), these match the variety of total dissolvable solids, water types and ionic orders. The principal component analysis combined the ionic parameters of the studied groundwater samples into two principal components. The first represents about 56% of the whole sample variance reflecting a salinization due to evaporation, leaching, dissolution of marine salts and/or seawater intrusion. The second represents about 15.8% reflecting dilution with rain water and the El-Salam Canal. Most groundwater samples were not suitable for human consumption and about 41% are suitable for irrigation. However, all groundwater samples are suitable for cattle, about 69% and 15% are suitable for horses and poultry, respectively.

  14. Groundwater Quality Improvement by Using Aeration and Filtration Methods

    OpenAIRE

    Nik N. Nik Daud; Nur H. Izehar; B. Yusuf; Thamer A. Mohamed; A. Ahsan

    2013-01-01

    An experiment was conducted using two aeration methods (water-into-air and air-into-water) and followed by filtration processes using manganese greensand material. The properties of groundwater such as pH, dissolved oxygen, turbidity and heavy metal concentration (iron and manganese) will be assessed. The objectives of this study are i) to determine the effective aeration method and ii) to assess the effectiveness of manganese greensand as filter media in removing iron an...

  15. Quality of our groundwater resources: Arsenic and fluoride

    Science.gov (United States)

    Nordstrom, D. Kirk

    2011-01-01

    Groundwater often contains arsenic or fluoride concentrations too high for drinking or cooking. These constituents, often naturally occurring, are not easy to remove. The right combination of natural or manmade conditions can lead to elevated arsenic or fluoride which includes continental source rocks, high alkalinity and pH, reducing conditions for arsenic, high phosphate, high temperature and high silica. Agencies responsible for safe drinking water should be aware of these conditions, be prepared to monitor, and treat if necessary.

  16. Multivariate analysis of groundwater quality in parts of Lagos - Nigeria

    African Journals Online (AJOL)

    The co-efficient of variation shows that all the groundwater parameters examined are highly variable except pH (10.92%).The factor analysis employed indicates that of the two Factors I and II, Factor I, which explains 62.73% of the total variance, has a strong positive loading on EC, TDS, TH, Na, Cl, Ca, K and SO4 . Factor II ...

  17. The thermal impact of subsurface building structures on urban groundwater resources - A paradigmatic example.

    Science.gov (United States)

    Epting, Jannis; Scheidler, Stefan; Affolter, Annette; Borer, Paul; Mueller, Matthias H; Egli, Lukas; García-Gil, Alejandro; Huggenberger, Peter

    2017-10-15

    Shallow subsurface thermal regimes in urban areas are increasingly impacted by anthropogenic activities, which include infrastructure development like underground traffic lines as well as industrial and residential subsurface buildings. In combination with the progressive use of shallow geothermal energy systems, this results in the so-called subsurface urban heat island effect. This article emphasizes the importance of considering the thermal impact of subsurface structures, which commonly is underestimated due to missing information and of reliable subsurface temperature data. Based on synthetic heat-transport models different settings of the urban environment were investigated, including: (1) hydraulic gradients and conductivities, which result in different groundwater flow velocities; (2) aquifer properties like groundwater thickness to aquitard and depth to water table; and (3) constructional features, such as building depths and thermal properties of building structures. Our results demonstrate that with rising groundwater flow velocities, the heat-load from building structures increase, whereas down-gradient groundwater temperatures decrease. Thermal impacts on subsurface resources therefore have to be related to the permeability of aquifers and hydraulic boundary conditions. In regard to the urban settings of Basel, Switzerland, flow velocities of around 1 md -1 delineate a marker where either down-gradient temperature deviations or heat-loads into the subsurface are more relevant. Furthermore, no direct thermal influence on groundwater resources should be expected for aquifers with groundwater thicknesses larger 10m and when the distance of the building structure to the groundwater table is higher than around 10m. We demonstrate that measuring temperature changes down-gradient of subsurface structures is insufficient overall to assess thermal impacts, particularly in urban areas. Moreover, in areas which are densely urbanized, and where groundwater flow

  18. Effect of Domestic Waste Leachates on Quality Parameters of Groundwater

    Directory of Open Access Journals (Sweden)

    John Jiya MUSA

    2014-02-01

    Full Text Available Water is an elixir of life. Percolating groundwater provides a medium through which wastes particularly organics can undergo degradation into simpler substances through biochemical reactions involving dissolution, hydrolysis, oxidation and reduction processes. Ground water samples in and around dumpsite and landfills located in Kubuwa were studied to assess the effect of wastewater leachates on groundwater resources in the particular area. Groundwater samples were collected from 5 different bore-wells in and around relative distances from dumpsites. EC values ranged between 30 and 138 µS/cm, TDS ranged between 95 mg/L and 120 mg/L, SS ranged between 10 and 23 mg/L while that of the evening ranged between 11 and 15 mg/L, nitrate values ranged between 0.18 to 0.80 mg/L for the early morning samples while the late evening samples which ranged between 0.25 and 0.43 mg/L, while concentration of Sulphate in the morning water sample ranged between 168 and 213 mg/L while that of the evening ranged between 20 and 45 mg/L. The government of the Federal Republic of Nigeria should create landfills and dumpsites far away from residential homes and better still recycling plants should be put in place to recycle the various forms of waste products from homes.

  19. Spatial variability and long-term analysis of groundwater quality of Faisalabad industrial zone

    Science.gov (United States)

    Nasir, Muhammad Salman; Nasir, Abdul; Rashid, Haroon; Shah, Syed Hamid Hussain

    2017-10-01

    Water is the basic necessity of life and is essential for healthy society. In this study, groundwater quality analysis was carried out for the industrial zone of Faisalabad city. Sixty samples of groundwater were collected from the study area. The quality maps of deliberately analyzed results were prepared in GIS. The collected samples were analyzed for chemical parameters and heavy metals, such as total hardness, alkalinity, cadmium, arsenic, nickel, lead, and fluoride, and then, the results were compared with the WHO guidelines. The values of these results were represented by a mapping of quality parameters using the ArcView GIS v9.3, and IDW was used for raster interpolation. The long-term analysis of these parameters has been carried out using the `R Statistical' software. It was concluded that water is partially not fit for drinking, and direct use of this groundwater may cause health issues.

  20. Complex interactions among climate change, sanitation, and groundwater quality: A case study from Ramotswa, Botswana

    Science.gov (United States)

    McGill, B. M.; Altchenko, Y.; Kenabatho, P. K.; Sylvester, S. R.; Villholth, K. G.

    2017-12-01

    With population growth, rapid urbanization, and climate change, groundwater is becoming an increasingly important source of drinking water around the world, including southern Africa. This is an investigation into the coupled human and natural system linking climate change, droughts, sanitation, and groundwater quality in Ramotswa, a town in the semi-arid southeastern Botswana. During the recent drought from 2013-2016, water shortages from reservoirs that supply the larger city of Gaborone resulted in curtailed water supply to Ramotswa, forcing people with flush toilets to use pit latrines. Pit latrines have been suspected as the cause of elevated nitrate in the Ramotswa groundwater, which also contributes to the town's drinking water supply. The groundwater pollution paradoxically makes Ramotswa dependent on Gaborone's water, supplied in large part by surface reservoirs, which are vulnerable to drought. Analysis of long-term rainfall records indicates that droughts like the one in 2013-2016 are increasing in likelihood due to climate change. Because of the drought, many more people used pit latrines than under normal conditions. Analysis of the groundwater for nitrate and using caffeine as an indicator, human waste leaching from pit latrines is implicated as the major culprit for the nitrate pollution. The results indicate a critical indirect linkage between climate change, sanitation, groundwater quality and water security in this area of rapid urbanization and population growth. Recommendations are offered for how Ramotswa's water security could be made less vulnerable to climate change.

  1. Impacts on groundwater recharge areas of megacity pumping: analysis of potential contamination of Kolkata, India, water supply

    Science.gov (United States)

    Sahu, Paulami; Michael, Holly A.; Voss, Clifford I.; Sikdar, Pradip K.

    2013-01-01

    Water supply to the world's megacities is a problem of quantity and quality that will be a priority in the coming decades. Heavy pumping of groundwater beneath these urban centres, particularly in regions with low natural topographic gradients, such as deltas and floodplains, can fundamentally alter the hydrological system. These changes affect recharge area locations, which may shift closer to the city centre than before development, thereby increasing the potential for contamination. Hydrogeological simulation analysis allows evaluation of the impact on past, present and future pumping for the region of Kolkata, India, on recharge area locations in an aquifer that supplies water to over 13 million people. Relocated recharge areas are compared with known surface contamination sources, with a focus on sustainable management of this urban groundwater resource. The study highlights the impacts of pumping on water sources for long-term development of stressed city aquifers and for future water supply in deltaic and floodplain regions of the world.

  2. Interactions of water quality and integrated groundwater management: Examples from the United States and Europe: Chapter 14

    Science.gov (United States)

    Warner, Kelly L.; Barataud, Fabienne; Hunt, Randall J.; Benoit, Marc; Anglade, Juliette; Borchardt, Mark A.

    2015-01-01

    Groundwater is available in many parts of the world, but the quality of the water may limit its use. Contaminants can limit the use of groundwater through concerns associated with human health, aquatic health, economic costs, or even societal perception. Given this broad range of concerns, this chapter focuses on examples of how water quality issues influence integrated groundwater management. One example evaluates the importance of a naturally occurring contaminant Arsenic (As) for drinking water supply, one explores issues resulting from agricultural activities on the land surface and factors that influence related groundwater management, and the last examines unique issues that result from human-introduced viral pathogens for groundwater-derived drinking water vulnerability. The examples underscore how integrated groundwater management lies at the intersections of environmental characterization, engineering constraints, societal needs, and human perception of acceptable water quality. As such, water quality factors can be a key driver for societal decision making.

  3. Hydrogeochemistry and groundwater quality assessment along Wadi Al Showat, Khamis Mushiet District, Southwest Saudi Arabia

    Science.gov (United States)

    Alhumidan, S. M.; Alfaifi, H. J.; Ibrahim, E. K. E.; Abdel Rahman, K.

    2015-12-01

    In the present study, the hydrochemistry and geologic characteristics of the shallow groundwater aquifer along Wadi Al Showat, Khamis Mushiet District, Southwest Saudi Arabia was evaluated and assessed. Along this wadi the fractured/weathered basement rocks house significant quantity of groundwater that usually used by local people for agricultural and domestic purposes. Assessing and evaluation of the quality of the groundwater in such shallow aquifers is very important; especially the groundwater is generally occurred within the fractured basement rocks at shallow depths, thus exposing the groundwater to surface or near-surface contaminants is expected. For this purpose hydrochemical and biological analysis was conducted for 25 water samples collected from the available shallow dug wells along the studied wadi. The study reveals that the groundwater quality changed due to the agriculture and urbanization practices along the wadi. The effect of domestic waste water and septic tanks was obvious. In addition, the field investigation indicates that the basement rocks in the area is dissected by two main sets of fractures that oriented in the west-northwest and east-west directions. In some places, the basement rocks is intruded by coarse-grained, quartz-rich quartzite grained monzogranite, and pegmatite veins that have a coarse-grained weathering product, therefore, they tend to develop and preserve open joint systems between the granitic blocks. These fracturing system are important from the hydrogeological point of view, as they facilitate the storage, water flow movement through them and also facilitate the vertical infiltration of the surface pollutants. These results led to a better understanding of the groundwater characteristics that is important in groundwater management in the study area.

  4. Assessment and modeling of the groundwater hydrogeochemical quality parameters via geostatistical approaches

    Science.gov (United States)

    Karami, Shawgar; Madani, Hassan; Katibeh, Homayoon; Fatehi Marj, Ahmad

    2018-03-01

    Geostatistical methods are one of the advanced techniques used for interpolation of groundwater quality data. The results obtained from geostatistics will be useful for decision makers to adopt suitable remedial measures to protect the quality of groundwater sources. Data used in this study were collected from 78 wells in Varamin plain aquifer located in southeast of Tehran, Iran, in 2013. Ordinary kriging method was used in this study to evaluate groundwater quality parameters. According to what has been mentioned in this paper, seven main quality parameters (i.e. total dissolved solids (TDS), sodium adsorption ratio (SAR), electrical conductivity (EC), sodium (Na+), total hardness (TH), chloride (Cl-) and sulfate (SO4 2-)), have been analyzed and interpreted by statistical and geostatistical methods. After data normalization by Nscore method in WinGslib software, variography as a geostatistical tool to define spatial regression was compiled and experimental variograms were plotted by GS+ software. Then, the best theoretical model was fitted to each variogram based on the minimum RSS. Cross validation method was used to determine the accuracy of the estimated data. Eventually, estimation maps of groundwater quality were prepared in WinGslib software and estimation variance map and estimation error map were presented to evaluate the quality of estimation in each estimated point. Results showed that kriging method is more accurate than the traditional interpolation methods.

  5. Contaminated site risk and uncertainty assessment for impacts on surface and groundwater

    DEFF Research Database (Denmark)

    Thomsen, Nanna Isbak

    A large number of contaminated sites threaten the water resources worldwide. The means available are insufficient to cover the expenses associated with investigation and remediation at all these sites. Site managers are therefore posed with the challenge of distributing the financial resources...... and samples collected in traditional groundwater boreholes. The detailed investigation revealed considerable variation in source composition, source strength and redox parameters. The variation was caused by the complex clay till geology and the heterogeneous nature of the landfill source. The impact on Risby....... The ecological effects of identified anthropogenic stressors were studied in 11 headwater streams. Head water streams are sometimes disregarded for mitigation activities under the European WFD, despite their importance for supporting the ecological quality in higher order streams. The anthropogenic stressors...

  6. Spatial distribution of groundwater quality with special emphasis on fluoride of Mandvi Taluka, Surat, Gujarat, India

    Science.gov (United States)

    Prajapati, Mayuri; Jariwala, Namrata; Agnihotri, Prasit

    2017-12-01

    The present study deals with the groundwater quality with respect to F- in the Mandavi Taluka of Surat city with an objective to analyze the spatial variability of ground water quality parameter. A total 57 representative groundwater samples from different bore wells and hand pumps were collected during pre-monsoon. Samples were analyzed for various physiochemical parameters including fluoride. GIS technique is adopted to prepare DEM and spatial distribution map of fluoride to represent fluoride concentration in the study area. Results obtained from analysis with GIS mapping reveal that fluoride in the study is mainly attributed to geogenic source.

  7. Assessing Risks of Shallow Riparian Groundwater Quality Near an Oil Sands Tailings Pond.

    Science.gov (United States)

    Roy, J W; Bickerton, G; Frank, R A; Grapentine, L; Hewitt, L M

    2016-07-01

    The potential discharge of groundwater contaminated by oil sands process-affected water (OSPW) is a concern for aquatic ecosystems near tailings ponds. Groundwater in the area, but unaffected by OSPW, may contain similar compounds, complicating the assessment of potential ecological impacts. In this study, 177 shallow groundwater samples were collected from riparian areas along the Athabasca River and tributaries proximate to oil sands developments. For "pond-site" samples (71; adjacent to study tailings pond), Canadian aquatic life guidelines were exceeded for 11 of 20 assessed compounds. However, "non-pond" samples (54; not near any tailings pond) provided similar exceedances. Statistical analyses indicate that pond-site and non-pond samples were indistinguishable for all but seven parameters assessed, including salts, many trace metals, and fluorescence profiles of aromatic naphthenic acids (ANA). This suggests that, regarding the tested parameters, groundwater adjacent to the study tailings pond generally poses no greater ecological risk than other nearby groundwaters at this time. Multivariate analyses applied to the groundwater data set separated into 11 smaller zones support this conclusion, but show some variation between zones. Geological and potential OSPW influences could not be distinguished based on major ions and metals concentrations. However, similarities in indicator parameters, namely ANA, F, Mo, Se, and Na-Cl ratio, were noted between a small subset of samples from two pond-site zones and two OSPW samples and two shallow groundwater samples documented as likely OSPW affected. This indicator-based screening suggests that OSPW-affected groundwater may be reaching Athabasca River sediments at a few locations. © 2016 Her Majesty the Queen in Right of Canada. Groundwater © 2016, National Ground Water Association.

  8. 20th Century Groundwater in the Northeast United States: A case study quantifying the impact of groundwater policies in New Jersey

    Science.gov (United States)

    Kanwar, P. S.; Arrigo, J. S.; Thomas, B.; Vogel, R. M.; Hoover, J. H.

    2010-12-01

    Groundwater is a vital resource throughout the Northeast corridor and is an important water source for domestic, industrial and irrigation purposes. During the 20th century, suburban groundwater withdrawals intensified with increasing population growth, the advent of rural electrification and sophisticated pumping technologies, thus, the need for effective groundwater management becomes increasingly important in the region. Data from the Unites States Geological Survey National Water-Use Information Program documents this concentrated use of groundwater in suburban areas, and is particularly prominent across the majority of New Jersey. Focusing on New Jersey as an area of significant groundwater use and increasing demand, this project investigates total groundwater withdrawals in conjunction with a policy-based framework, facilitating an awareness of groundwater impacts as informed through existing policy during the 20th century. The objectives of this study are to identify the relevant federal, statewide and municipal policies that evolved in the state of New Jersey during the 20th century, and examine the groundwater withdrawal trends for the state of New Jersey between 1950 - 2005. Preliminary results revealed that increased restrictions on groundwater policy between 1982 and 1997 had an observable affect on reducing total groundwater withdrawals. Multivariate regression analyses using indicator variables, i.e. mixed effects model, will be used to explore relationships between county specific withdrawals and significant policy that may have influenced groundwater usage. It is anticipated to observe a strong correlation between groundwater withdrawals and the effectiveness of the implemented groundwater policies. Future collaborative work will further investigate the effectiveness of policy as hydrologically evidenced by alterations in baseflow contribution to streamflow, and groundwater persistence.

  9. Conceptual understanding and groundwater quality of selected basin-fill aquifers in the Southwestern United States

    Science.gov (United States)

    Thiros, Susan A.; Bexfield, Laura M.; Anning, David W.; Huntington, Jena M.

    2010-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey has been conducting a regional analysis of water quality in the principal aquifer systems in the southwestern United States (hereinafter, “Southwest”) since 2005. Part of the NAWQA Program, the objective of the Southwest Principal Aquifers (SWPA) study is to develop a better understanding of water quality in basin-fill aquifers in the region by synthesizing information from case studies of 15 basins into a common set of important natural and human-related factors found to affect groundwater quality.The synthesis consists of three major components:1. Summary of current knowledge about the groundwater systems, and the status of, changes in, and influential factors affecting quality of groundwater in basin-fill aquifers in 15 basins previously studied by NAWQA (this report).2. Development of a conceptual model of the primary natural and human-related factors commonly affecting groundwater quality, thereby building a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to contaminants.3. Development of statistical models that relate the concentration or occurrence of specific chemical constituents in groundwater to natural and human-related factors linked to the susceptibility and vulnerability of basin-fill aquifers to contamination.Basin-fill aquifers occur in about 200,000 mi2 of the 410,000 mi2 SWPA study area and are the primary source of groundwater supply for cities and agricultural communities. Four of the principal aquifers or aquifer systems of the United States are included in the basin-fill aquifers of the study area: (1) the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; (2) the Rio Grande aquifer system in New Mexico and Colorado; (3) the California Coastal Basin aquifers; and (4) the Central Valley aquifer system in California. Because of the generally limited availability of surface-water supplies in

  10. Regional differences in climate change impacts on groundwater and stream discharge in Denmark

    DEFF Research Database (Denmark)

    Van Roosmalen, Lieke Petronella G; Christensen, Britt S.B.; Sonnenborg, Torben O.

    2007-01-01

    Regional impact studies of the effects of future climate change are necessary because projected changes in meteorological variables vary regionally and different hydrological systems can react in various ways to the same changes. In this study the effects of climate change on groundwater recharge...... of the hydrological response to the simulated climate change is highly dependant on the geological setting of the model area. In the Jylland area, characterized by sandy top soils and large interconnected aquifers, groundwater recharge increases significantly, resulting in higher groundwater levels and increasing...... groundwater-river interaction. On Sjaelland, where the topsoil is dominated by low-permeability soils and the aquifers are protected by thick clay layers of regional extent, only minor changes in groundwater levels are predicted. The primary effect in this area is the change in stream discharge, caused...

  11. Impact of climate change on groundwater point discharge: backflooding of karstic springs (Loiret, France

    Directory of Open Access Journals (Sweden)

    E. Joigneaux

    2011-08-01

    Full Text Available Under certain hydrological conditions it is possible for spring flow in karst systems to be reversed. When this occurs, the resulting invasion by surface water, i.e. the backflooding, represents a serious threat to groundwater quality because the surface water could well be contaminated. Here we examine the possible impact of future climate change on the occurrences of backflooding in a specific karst system, having first established the occurrence of such events in the selected study area over the past 40 years. It would appear that backflooding has been more frequent since the 1980s, and that it is apparently linked to river flow variability on the pluri-annual scale. The avenue that we adopt here for studying recent and future variations of these events is based on a downscaling algorithm relating large-scale atmospheric circulation to local precipitation spatial patterns. The large-scale atmospheric circulation is viewed as a set of quasi-stationary and recurrent states, called weather types, and its variability as the transition between them. Based on a set of climate model projections, simulated changes in weather-type occurrence for the end of the century suggests that backflooding events can be expected to decrease in 2075–2099. If such is the case, then the potential risk for groundwater quality in the area will be greatly reduced compared to the current situation. Finally, our results also show the potential interest of the weather-type based downscaling approach for examining the impact of climate change on hydrological systems.

  12. Spatial assessment of groundwater quality in Mamundiyar basin, Tamil Nadu, India.

    Science.gov (United States)

    Dar, Imran Ahmad; Sankar, K; Dar, Mithas Ahmad

    2011-07-01

    Understanding the groundwater quality is important as it is the main factor determining its suitability for drinking, domestic, agricultural, and industrial purposes. In order to assess the groundwater quality, 30 groundwater samples have been collected in year 2008. The water samples collected in the field were analyzed for electrical conductivity, pH, total dissolved solids (TDS), major cations like calcium, magnesium, sodium, potassium, and anions like bicarbonate, carbonate, chloride, nitrate, and sulfate, in the laboratory using the standard methods given by the American Public Health Association. The groundwater locations were selected to cover the entire study area and attention was been given to the area where contamination is expected. The expected groundwater contaminants were chloride, nitrate, TDS, etc. The results were evaluated in accordance with the drinking water quality standards given by the World Health Organization (WHO 1993). To know the distribution pattern of the concentration of different elements and to demarcate the higher concentration zones, the contour maps for various elements were also generated, discussed, and presented.

  13. Modelling of groundwater quality using bicarbonate chemical parameter in Netravathi and Gurpur river confluence, India

    Science.gov (United States)

    Sylus, K. J.; H., Ramesh

    2018-04-01

    In the coastal aquifer, seawater intrusion considered the major problem which contaminates freshwater and reduces its quality for domestic use. In order to find seawater intrusion, the groundwater quality analysis for the different chemical parameter was considered as the basic method to find out contamination. This analysis was carried out as per Bureau of Indian standards (2012) and World Health Organisations (1996). In this study, Bicarbonate parameter was considered for groundwater quality analysis which ranges the permissible limit in between 200-600 mg/l. The groundwater system was modelled using Groundwater modelling software (GMS) in which the FEMWATER package used for flow and transport. The FEMWATER package works in the principle of finite element method. The base input data of model include elevation, Groundwater head, First bottom and second bottom of the study area. The modelling results show the spatial occurrence of contamination in the study area of Netravathi and Gurpur river confluence at the various time period. Further, the results of the modelling also show that the contamination occurs up to a distance of 519m towards the freshwater zone of the study area.

  14. Impact of excessive groundwater pumping on rejuvenation processes in the Bandung basin (Indonesia) as determined by hydrogeochemistry and modeling

    Science.gov (United States)

    Taufiq, Ahmad; Hosono, Takahiro; Ide, Kiyoshi; Kagabu, Makoto; Iskandar, Irwan; Effendi, Agus J.; Hutasoit, Lambok M.; Shimada, Jun

    2017-12-01

    In the Bandung basin, Indonesia, excessive groundwater pumping caused by rapid increases in industrialization and population growth has caused subsurface environmental problems, such as excessive groundwater drawdown and land subsidence. In this study, multiple hydrogeochemical techniques and numerical modeling have been applied to evaluate the recharge processes and groundwater age (rejuvenation). Although all the groundwater in the Bandung basin is recharged at the same elevation at the periphery of the basin, the water type and residence time of the shallow and deep groundwater could be clearly differentiated. However, there was significant groundwater drawdown in all the depression areas and there is evidence of groundwater mixing between the shallow and deep groundwater. The groundwater mixing was traced from the high dichlorodifluoromethane (CFC-12) concentrations in some deep groundwater samples and by estimating the rejuvenation ratio (R) in some representative observation wells. The magnitude of CFC-12 concentration, as an indicator of young groundwater, showed a good correlation with R, determined using 14C activity in samples taken between 2008 and 2012. These correlations were confirmed with the estimation of vertical downward flux from shallower to deeper aquifers using numerical modeling. Furthermore, the change in vertical flux is affected by the change in groundwater pumping. Since the 1970s, the vertical flux increased significantly and reached approximately 15% of the total pumping amount during the 2000s, as it compensated the groundwater pumping. This study clearly revealed the processes of groundwater impact caused by excessive groundwater pumping using a combination of hydrogeochemical methods and modeling.

  15. Effects of aquifer thermal energy storage on groundwater quality and the consequences for drinking water production: a case study from The Netherlands.

    Science.gov (United States)

    Bonte, M; Stuyfzand, P J; van den Berg, G A; Hijnen, W A M

    2011-01-01

    We used data from an aquifer thermal energy storage (ATES) system located 570 m from a public water supply well field in the south of The Netherlands to investigate the relation between production of renewable energy with an ATES system and the production of drinking water. The data show that the groundwater circulation by the ATES system can impact chemical groundwater quality by introducing shallow groundwater with a different chemical composition at greater depth. However, the observed concentration changes are sufficiently small to keep groundwater suitable for drinking water production. Microbiological results showed that the ATES system introduced faecal bacteria in the groundwater and stimulated the growth of heterotrophic micro-organisms. At the studied site this forms no hygienic risk because of the long distance between the ATES wells and the public supply well field A further degradation of either chemical or microbiological groundwater quality however may necessitate additional water treatment which raises the energy requirements. The additional energy requirements for drinking water treatment may be up the same order of magnitude as the harvested energy by the ATES system.

  16. Calendar year 1995 groundwater quality report for the Bear Creek Hydrogeologic Regime, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    This annual groundwater quality report (GWQR) contains groundwater and surface water quality data obtained during the 1995 calendar year (CY) at several hazardous and nonhazardous waste management facilities associated with the Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The sites addressed by this document are located in Bear Creek Valley (BCV) west of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime. The Bear Creek Regime is one of three hydrogeologic regimes defined for the purposes of groundwater and surface water quality monitoring at the Y-12 Plant. The purpose of the Groundwater Protection Program (GWPP) is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements. Part 1 (this report) consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Part 2 of the report, to be issued mid-year, will contain an evaluation of the data with respect to regime-wide groundwater quality, present the findings and status of ongoing hydrogeologic studies, describe changes in monitoring priorities, and present planned modifications to the groundwater sampling and analysis program for the following CY.

  17. Status and understanding of groundwater quality in the northern San Joaquin Basin, 2005

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth; Jurgens, Bryant C.

    2010-01-01

    Groundwater quality in the 2,079 square mile Northern San Joaquin Basin (Northern San Joaquin) study unit was investigated from December 2004 through February 2005 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 that was passed by the State of California and is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The Northern San Joaquin study unit was the third study unit to be designed and sampled as part of the Priority Basin Project. Results of the study provide a spatially unbiased assessment of the quality of raw (untreated) groundwater, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 61 wells in parts of Alameda, Amador, Calaveras, Contra Costa, San Joaquin, and Stanislaus Counties; 51 of the wells were selected using a spatially distributed, randomized grid-based approach to provide statistical representation of the study area (grid wells), and 10 of the wells were sampled to increase spatial density and provide additional information for the evaluation of water chemistry in the study unit (understanding/flowpath wells). The primary aquifer systems (hereinafter, primary aquifers) assessed in this study are defined by the depth intervals of the wells in the California Department of Public Health database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource; and (2) understanding, identification of the natural and human factors

  18. GIS-based assessment and characterization of groundwater quality in a hard-rock hilly terrain of Western India.

    Science.gov (United States)

    Machiwal, Deepesh; Jha, Madan K; Mal, Bimal C

    2011-03-01

    The growing population, pollution, and misuse of freshwater worldwide necessitate developing innovative methods and efficient strategies to protect vital groundwater resources. This need becomes more critical for arid/semi-arid regions of the world. The present study focuses on a GIS-based assessment and characterization of groundwater quality in a semi-arid hard-rock terrain of Rajasthan, western India using long-term and multi-site post-monsoon groundwater quality data. Spatio-temporal variations of water quality parameters in the study area were analyzed by GIS techniques. Groundwater quality was evaluated based on a GIS-based Groundwater Quality Index (GWQI). A Potential GWQI map was also generated for the study area following the Optimum Index Factor concept. The most-influential water quality parameters were identified by performing a map removal sensitivity analysis among the groundwater quality parameters. Mean annual concentration maps revealed that hardness is the only parameter that exceeds its maximum permissible limit for drinking water. GIS analysis revealed that sulfate and nitrate ions exhibit the highest (CV > 30%) temporal variation, but groundwater pH is stable. Hardness, EC, TDS, and magnesium govern the spatial pattern of the GWQI map. The groundwater quality of the study area is generally suitable for drinking and irrigation (median GWQI > 74). The GWQI map indicated that relatively high-quality groundwater exists in northwest and southeast portions of the study area. The groundwater quality parameter group of Ca, Cl, and pH were found to have the maximum value (6.44) of Optimum Index factor. It is concluded that Ca, Cl, and pH are three prominent parameters for cost-effective and long-term water quality monitoring in the study area. Hardness, Na, and SO(4), being the most-sensitive water quality parameters, need to be monitored regularly and more precisely.

  19. Physicochemical quality evaluation of groundwater and development of drinking water quality index for Araniar River Basin, Tamil Nadu, India.

    Science.gov (United States)

    Jasmin, I; Mallikarjuna, P

    2014-02-01

    Groundwater is the most important natural resource which cannot be optimally used and sustained unless its quality is properly assessed. In the present study, the spatial and temporal variations in physicochemical quality parameters of groundwater of Araniar River Basin, India were analyzed to determine its suitability for drinking purpose through development of drinking water quality index (DWQI) maps of the post- and pre-monsoon periods. The suitability for drinking purpose was evaluated by comparing the physicochemical parameters of groundwater in the study area with drinking water standards prescribed by the World Health Organization (WHO) and Bureau of Indian Standards (BIS). Interpretation of physicochemical data revealed that groundwater in the basin was slightly alkaline. The cations such as sodium (Na(+)) and potassium (K(+)) and anions such as bicarbonate (HCO3 (-)) and chloride (Cl(-)) exceeded the permissible limits of drinking water standards (WHO and BIS) in certain pockets in the northeastern part of the basin during the pre-monsoon period. The higher total dissolved solids (TDS) concentration was observed in the northeastern part of the basin, and the parameters such as calcium (Ca(2+)), magnesium (Mg(2+)), sulfate (SO4 (2-)), nitrate (NO3 (-)), and fluoride (F(-)) were within the limits in both the seasons. The hydrogeochemical evaluation of groundwater of the basin demonstrated with the Piper trilinear diagram indicated that the groundwater samples of the area were of Ca(2+)-Mg(2+)-Cl(-)-SO4 (2-), Ca(2+)-Mg(2+)-HCO3 (-) and Na(+)-K(+)-Cl(-)-SO4 (2-) types during the post-monsoon period and Ca(2+)-Mg(2+)-Cl(-)-SO4 (2-), Na(+)-K(+)-Cl(-)-SO4 (2-) and Ca(2+)-Mg(2+)-HCO3 (-) types during the pre-monsoon period. The DWQI maps for the basin revealed that 90.24 and 73.46% of the basin area possess good quality drinking water during the post- and pre-monsoon seasons, respectively.

  20. Groundwater-quality and quality-control data for two monitoring wells near Pavillion, Wyoming, April and May 2012

    Science.gov (United States)

    Wright, Peter R.; McMahon, Peter B.; Mueller, David K.; Clark, Melanie L.

    2012-01-01

    In June 2010, the U.S. Environmental Protection Agency installed two deep monitoring wells (MW01 and MW02) near Pavillion, Wyoming, to study groundwater quality. During April and May 2012, the U.S Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, collected groundwater-quality data and quality-control data from monitoring well MW01 and, following well redevelopment, quality-control data for monitoring well MW02. Two groundwater-quality samples were collected from well MW01—one sample was collected after purging about 1.5 borehole volumes, and a second sample was collected after purging 3 borehole volumes. Both samples were collected and processed using methods designed to minimize atmospheric contamination or changes to water chemistry. Groundwater-quality samples were analyzed for field water-quality properties (water temperature, pH, specific conductance, dissolved oxygen, oxidation potential); inorganic constituents including naturally occurring radioactive compounds (radon, radium-226 and radium-228); organic constituents; dissolved gasses; stable isotopes of methane, water, and dissolved inorganic carbon; and environmental tracers (carbon-14, chlorofluorocarbons, sulfur hexafluoride, tritium, helium, neon, argon, krypton, xenon, and the ratio of helium-3 to helium-4). Quality-control sample results associated with well MW01 were evaluated to determine the extent to which environmental sample analytical results were affected by bias and to evaluate the variability inherent to sample collection and laboratory analyses. Field documentation, environmental data, and quality-control data for activities that occurred at the two monitoring wells during April and May 2012 are presented.

  1. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

    Science.gov (United States)

    Christenson, S.C.; Parkhurst, D.L.

    1987-01-01

    In April 1986, the U.S. Geological Survey began a pilot program to assess the quality of the Nation's surface-water and ground-water resources. The program, known as the National Water-Quality Assessment (NAWQA) program, is designed to acquire and interpret information about a variety of water-quality issues. The Central Oklahoma aquifer project is one of three ground-water pilot projects that have been started. The NAWQA program also incudes four surface-water pilot projects. The Central Oklahoma aquifer project, as part of the pilot NAWQA program, will develop and test methods for performing assessments of ground-water quality. The objectives of the Central Oklahoma aquifer assessment are: (1) To investigate regional ground-water quality throughout the aquifer in the manner consistent with the other pilot ground-water projects, emphasizing the occurrence and distribution of potentially toxic substances in ground water, including trace elements, organic compounds, and radioactive constituents; (2) to describe relations between ground-water quality, land use, hydrogeology, and other pertinent factors; and (3) to provide a general description of the location, nature, and possible causes of selected prevalent water-quality problems within the study unit; and (4) to describe the potential for water-quality degradation of ground-water zones within the study unit. The Central Oklahoma aquifer, which includes in descending order the Garber Sandstone and Wellington Formation, the Chase Group, the Council Grove Group, the Admire Group, and overlying alluvium and terrace deposits, underlies about 3,000 square miles of central Oklahoma and is used extensively for municipal, industrial, commercial, and domestic water supplies. The aquifer was selected for study by the NAWQA program because it is a major source for water supplies in central Oklahoma and because it has several known or suspected water-quality problems. Known problems include concentrations of arsenic, chromium

  2. Enhancement of Saharan groundwater quality by reducing its fluoride concentration using different materials

    KAUST Repository

    Ramdani, Amina

    2014-04-15

    According to the environmental protection regulations, fluoride concentration is considered as a substance of priority for assessment of drinking water quality to determine their impacts on the environment and public health. Saharan groundwater (Algeria) contains an excess of fluoride ions. Regular consumption of this water by the population of the region may cause endemic fluorosis. To solve this problem, we propose to treat this water by adsorption on different materials, such as activated alumina (AA), sodium clay (SC), and hydroxyapatite (HAP) in order to enhance its quality by reducing its fluoride concentration. The maximum adsorption is achieved with an adsorption capacity of the order of 0.9, 0.667, and 0.370 mg/g and with a percentage of 90, 83.4, and 73.95% for AA, HAP, and SC, respectively. Indeed, the acidity and alkalinity of the medium significantly affect the adsorption of fluoride ions. Results deduced from the curves of adsorption isotherms of fluoride ions showed that the retention is predictable from these isotherms in agreement with the Langmuir model. The low removal of fluoride ions was observed in presence of (Formula presented.), (Formula presented.), and (Formula presented.) ions. Finally, AA material proved to be the best adsorbent for fluoride ions removal. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  3. Effects of stormwater infiltration on quality of groundwater beneath retention and detention basins

    Science.gov (United States)

    Fischer, D.; Charles, E.G.; Baehr, A.L.

    2003-01-01

    Infiltration of storm water through detention and retention basins may increase the risk of groundwater contamination, especially in areas where the soil is sandy and the water table shallow, and contaminants may not have a chance to degrade or sorb onto soil particles before reaching the saturated zone. Groundwater from 16 monitoring wells installed in basins in southern New Jersey was compared to the quality of shallow groundwater from 30 wells in areas of new-urban land use. Basin groundwater contained much lower levels of dissolved oxygen, which affected concentrations of major ions. Patterns of volatile organic compound and pesticide occurrence in basin groundwater reflected the land use in the drainage areas served by the basins, and differed from patterns in background samples, exhibiting a greater occurrence of petroleum hydrocarbons and certain pesticides. Dilution effects and volatilization likely decrease the concentration and detection frequency of certain compounds commonly found in background groundwater. High recharge rates in storm water basins may cause loading factors to be substantial even when constituent concentrations in infiltrating storm water are relatively low.

  4. Groundwater Quality Data for the Northern Sacramento Valley, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Bennett, Peter A.; Bennett, George L.; Belitz, Kenneth

    2009-01-01

    Groundwater quality in the approximately 1,180-square-mile Northern Sacramento Valley study unit (REDSAC) was investigated in October 2007 through January 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within REDSAC and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 66 wells in Shasta and Tehama Counties. Forty-three of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 23 were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial constituents. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of nitrogen and oxygen in nitrate, stable isotopes of hydrogen and oxygen of water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. In total, over 275 constituents and field water-quality indicators were investigated. Three types of quality-control samples (blanks, replicates, and sampmatrix spikes) were collected at approximately 8

  5. Evaluating impacts of recharging partially treated wastewater on groundwater aquifer in semi-arid region by integration of monitoring program and GIS technique.

    Science.gov (United States)

    Alslaibi, Tamer M; Kishawi, Yasser; Abunada, Ziyad

    2017-05-01

    The current study investigates the impact of recharging of partially treated wastewater through an infiltration basin on the groundwater aquifer quality parameters. A monitoring program supported by a geographic information analysis (GIS) tool was used to conduct this study. Groundwater samples from the entire surrounding boreholes located downstream the infiltration basin, in addition to samples from the recharged wastewater coming from the Beit Lahia wastewater treatment (BLWWTP), were monitored and analysed between 2011 and 2014. The analysis was then compared with the available historical data since 2008. Results revealed a groundwater replenishment with the groundwater level increased by 1.0-2.0 m during the study period. It also showed a slight improvement in the groundwater quality parameters, mainly a decrease in TDS, Cl - and NO 3 - levels by 5.5, 17.1 and 20%, respectively, resulting from the relatively better quality of the recharged wastewater. Nevertheless, the level of boron and ammonium in the groundwater wells showed a significant increase over time by 96 and 100%, respectively. Moreover, the infiltration rate was slowed down in time due to the relatively high level of total suspended solid (TSS) in the infiltrated wastewater.

  6. Projected impacts of climate change on farmers' extraction of groundwater from crystalline aquifers in South India.

    Science.gov (United States)

    Ferrant, Sylvain; Caballero, Yvan; Perrin, Jérome; Gascoin, Simon; Dewandel, Benoit; Aulong, Stéphanie; Dazin, Fabrice; Ahmed, Shakeel; Maréchal, Jean-Christophe

    2014-01-15

    Local groundwater levels in South India are falling alarmingly. In the semi-arid crystalline Deccan plateau area, agricultural production relies on groundwater resources. Downscaled Global Climate Model (GCM) data are used to force a spatially distributed agro-hydrological model in order to evaluate Climate Change (CC) effects on local groundwater extraction (GWE). The slight increase of precipitation may alleviate current groundwater depletion on average, despite the increased evaporation due to warming. Nevertheless, projected climatic extremes create worse GWE shortages than for present climate. Local conditions may lead to opposing impacts on GWE, from increases to decreases (+/-20 mm/year), for a given spatially homogeneous CC forcing. Areas vulnerable to CC in terms of irrigation apportionment are thus identified. Our results emphasize the importance of accounting for local characteristics (water harvesting systems and maximal aquifer capacity versus GWE) in developing measures to cope with CC impacts in the South Indian region.

  7. Seasonal and Spatial Variability of Anthropogenic and Natural Factors Influencing Groundwater Quality Based on Source Apportionment.

    Science.gov (United States)

    Guo, Xueru; Zuo, Rui; Meng, Li; Wang, Jinsheng; Teng, Yanguo; Liu, Xin; Chen, Minhua

    2018-02-06

    Globally, groundwater resources are being deteriorated by rapid social development. Thus, there is an urgent need to assess the combined impacts of natural and enhanced anthropogenic sources on groundwater chemistry. The aim of this study was to identify seasonal characteristics and spatial variations in anthropogenic and natural effects, to improve the understanding of major hydrogeochemical processes based on source apportionment. 34 groundwater points located in a riverside groundwater resource area in northeast China were sampled during the wet and dry seasons in 2015. Using principal component analysis and factor analysis, 4 principal components (PCs) were extracted from 16 groundwater parameters. Three of the PCs were water-rock interaction (PC₁), geogenic Fe and Mn (PC₂), and agricultural pollution (PC₃). A remarkable difference (PC₄) was organic pollution originating from negative anthropogenic effects during the wet season, and geogenic F enrichment during the dry season. Groundwater exploitation resulted in dramatic depression cone with higher hydraulic gradient around the water source area. It not only intensified dissolution of calcite, dolomite, gypsum, Fe, Mn and fluorine minerals, but also induced more surface water recharge for the water source area. The spatial distribution of the PCs also suggested the center of the study area was extremely vulnerable to contamination by Fe, Mn, COD, and F - .

  8. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce

    KAUST Repository

    Alsalah, Dhafer

    2015-10-05

    This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10−4. However, the annual risk arising from P. aeruginosa was 9.55 × 10−4, slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better

  9. Spatial and temporal small-scale variation in groundwater quality of a shallow sandy aquifer

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Christensen, Thomas Højlund

    1992-01-01

    The groundwater quality of a shallow unconfined sandy aquifer has been characterized for pH, alkalinity, chloride, nitrate, sulfate, calcium, magnesium, sodium and potassium in terms of vertical and horizontal variations (350 groundwater samples). The test area is located within a farmland lot. T...... limited correlation ranges (less than 10m) and large variations are found over a few metres. The temporal variations observed over a period of 15 months were modest. The observed large variations should be taken into account when designing groundwater sampling and monitoring.......The groundwater quality of a shallow unconfined sandy aquifer has been characterized for pH, alkalinity, chloride, nitrate, sulfate, calcium, magnesium, sodium and potassium in terms of vertical and horizontal variations (350 groundwater samples). The test area is located within a farmland lot....... The geology of the area described on the basis of 31 sediment cores appears relatively homogeneous. Large vertical and horizontal variations were observed. The vertical variations are strongly affected by the deviating composition of the agricultural infiltration water. The horizontal variations show very...

  10. Prospects and quality indices for groundwater development in Ibadan metropolis, southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Ajibade, O.M.

    2013-03-01

    Full Text Available An integrated geophysical and hydrogeochemical studies were conducted in part of Ibadan metropolis, Southwestern Nigeria to investigate the groundwater potential and quality for sustainable development. Interpreted results of vertical electrical sounding data revealed three to four geo-electric layers; top soil (22.1-441.4 Ωm, lateritic horizon (402.1-712.2 Ωm, clayey/sandyclay layer (2.95-66.0 Ωm and weathered/fractured bedrock (66.3-1056.7 Ωm. Stacked overburden isopach and basement isoresitivity maps revealed few areas with thick overburden and fractured basement, hence of apparently high groundwater prospect. Hydrogeochemical study indicates that groundwater in the study area is generally fresh, soft- moderately hard, slightly acidic and dominated by Na, Ca, Mg, Cl and HCO3 ions. The dominant hydrochemical facies is Na-Cl type with minor mixed Ca-Na-Cl and Ca-Cl types. Many of the analyzed parameters fall within recommended limits and thus, most of the groundwater in the study area are chemically suitable for drinking. A few however, recorded TDS, pH, NO3, Al, Mg and Cl concentrations above permissible levels, suggesting some concern in terms of potability. The groundwater quality for agricultural purposes was assessed using Sodium absorption ratio, permeability index and electrical conductivity values along with USSL and Wilcox diagrams, all indicating that most of the samples are excellent to good for irrigation.

  11. Hydrogeochemical investigations and groundwater quality assessment of Torbat-Zaveh plain, Khorasan Razavi, Iran.

    Science.gov (United States)

    Nematollahi, M J; Ebrahimi, P; Razmara, M; Ghasemi, A

    2016-01-01

    Hydrogeochemical investigations of groundwater in Torbat-Zaveh plain have been carried out to assess the water quality for drinking and irrigation purposes. In this study, 190 groundwater samples were collected and analyzed for physicochemical parameters and major ion concentrations. The abundance of major cations and anions was in the following order: Na(+) > Mg(2+) > Ca(2+) > K(+), and Cl(-) > [Formula: see text] > [Formula: see text] > [Formula: see text]. As a result, alkaline element (Na(+)) exceeds alkaline earth elements (Mg(2+) and Ca(2+)), and strong acids (Cl(-) and [Formula: see text]) dominate weak acids ([Formula: see text] and [Formula: see text]) in majority of the groundwater samples. Statistical analyses including Spearman correlation coefficients and factor analysis display good correlation between physicochemical parameters (EC, TDS and TH) and Na(+), Mg(2+), Ca(2+), Cl(-) and [Formula: see text]. The results display that rock-weathering interactions and ion-exchange processes play important role in controlling groundwater chemistry. Saturation index values also indicate that water chemistry is significantly affected by carbonate minerals such as calcite, aragonite and dolomite. US Salinity Laboratory(USSL) and Wilcox diagrams together with permeability index values reveal that most of the groundwater samples are suitable for irrigation purpose. However, in some regions, the water samples do not indicate required irrigational quality.

  12. Assessment of groundwater quality and health risk in drinking water basin using GIS.

    Science.gov (United States)

    Şener, Şehnaz; Şener, Erhan; Davraz, Ayşen

    2017-02-01

    Eğirdir Lake basin was selected as the study area because the lake is the second largest freshwater lake in Turkey and groundwater in the basin is used as drinking water. In the present study, 29 groundwater samples were collected and analyzed for physico-chemical parameters to determine the hydrochemical characteristics, groundwater quality, and human health risk in the study area. The dominant ions are Ca 2+ , Mg 2+ , HCO 3 2- , and SO 4 2 . According to Gibbs plot, the predominant samples fall in the rock-water interaction field. A groundwater quality index (WQI) reveals that the majority of the samples falls under good to excellent category of water, suggesting that the groundwater is suitable for drinking and other domestic uses. The Ca-Mg-HCO 3 , Ca-HCO 3 , Ca-SO 4 -HCO 3 , and Ca-Mg-HCO 3 -SO 4 water types are the dominant water types depending on the water-rock interaction in the investigation area. Risk of metals to human health was then evaluated using hazard quotients (HQ) by ingestion and dermal pathways for adults and children. It was indicated that As with HQ ingestion >1 was the most important pollutant leading to non-carcinogenic concerns. It can be concluded that the highest contributors to chronic risks were As and Cr for both adults and children.

  13. Comprehensive characterisation of groundwater quality in and around a landfill area for agricultural suitability

    Science.gov (United States)

    Hariharan, V.; Chilambarasan, L.; Nandhakumar, G.; Porchelvan, P.

    2017-11-01

    Groundwater contamination has become so alarming that the existing valuable freshwater resources are at stake. Landfilling of solid refuse without pre-emptive measures, over the years, leads to the utter depletion of the groundwater quality in its vicinity. The Kodungaiyur landfill at the Perambur taluk located in the northernmost region of the Chennai metropolitan, is such a poorly managed landfill. This research article is intended to exhibit a detailed study report on the physicochemical and bacteriological parametric analyses of the currently available subsurface water in and around the landfill area. Besides being evident from the faecal coliform test that the water is not potable, the chief objective was to investigate the suitability of groundwater for irrigation. Representative samples of groundwater were collected from inside the landfill site, and the residential areas located within 2 km from the site and analysed using standard methods. The test results were interpreted by employing exhaustive statistical approaches. It is evident to the interpretations that, out of the nine sampled locations, seven were found to be endowed with a groundwater quality fit enough for irrigation.

  14. Effects of an open Waste dump-site on groundwater quality in ...

    African Journals Online (AJOL)

    An assessment of the quality of groundwater around an open dump-site was carried out using borehole water samples collected from two points each, close to the dump-site and a control point outside the vicinity. Analysis showed that with the exception of temperature and salinity, which were not significantly different ...

  15. multivariate analysis of groundwater quality in parts of lagos-nigeria

    African Journals Online (AJOL)

    AKOTEYON

    The quality of twenty-six groundwater sources in Lagos state was evaluated. Data on physico-chemical parameters. (Hydrogen ion, Electrical Conductivity, Total Dissolve Solids, Calcium, Chloride, Total Hardness, Magnesium, Sodium,. Potassium, Bicarbonate and Sulfate) were collated from the database of Lagos Water ...

  16. Groundwater Quality Assessment in Eti-Osa, Lagos-Nigeria using ...

    African Journals Online (AJOL)

    Michael Horsfall

    overall good quality. The contribution from groundwater is vital; because about two billion people depend directly upon aquifers for drinking water, and 40 percent of the world's food is produced by irrigated ... exploitation etc)among others has affected the use of .... digital EC/TDS/Temperature COM-100 respectively.

  17. Assessing variability of water quality in a groundwater-fed perennial ...

    Indian Academy of Sciences (India)

    Assessing variability of water quality in a groundwater-fed perennial lake of Kashmir Himalayas using linear geostatistics. S Sarah1,∗, Gh Jeelani2 and Shakeel Ahmed1. 1IFCGR, National Geophysical Research Institute, CSIR, Hyderabad 500 606, India. 2Department of Geology and Geophysics, University of Kashmir, ...

  18. Impact of urbanization coupled with drought situations on groundwater quality in shallow (basalt) and deeper (granite) aquifers with special reference to fluoride in Nanded-Waghala Municipal Corporation, Nanded District, Maharashtra (India).

    Science.gov (United States)

    Pandith, Madhnure; Kaplay, R D; Potdar, S S; Sangnor, H; Rao, A D

    2017-09-01

    Rapid expansion in urbanization and industrialization coupled with recent drought conditions has triggered unplanned groundwater development leading to severe stress on groundwater resources in many urban cities of India, particularly cities like Nanded, Maharashtra. In the quest of tapping drinking water requirement, due to recent drought conditions, people from the city are piercing through entire thickness of shallow basalt aquifers to reach productive deeper granite aquifers. Earlier reports from Nanded and surrounding districts suggest that deeper granite aquifer is contaminated with fluoride (geogenic). The study aimed to find out variations in fluoride concentration in shallow basalt (10-167 m) and deeper granite aquifers (below 167 m) and to find out the relationship between fluoride and other ions. Study suggests that concentration of fluoride in shallow basalt aquifer is within maximum permissible limits of Bureau of Indian Standards and deeper granite aquifer contains as high as 4.9 mg/l of fluoride and all samples from granite aquifers are unfit for human consumption. The groundwater from basalt aquifer is mainly Ca-HCO 3- Cl type, and from granite aquifer, it is Ca-Na-Cl type. The correlation plot between F - vs. pH, Na + and HCO 3 - shows a positive correlation and an inverse relationship with Ca 2+ in both aquifers. As recommendations, it is suggested that granite aquifers should not be tapped for drinking purposes; however, in drought situations, water from this aquifer should be blended with treated surface water before supplying for drinking purposes. Efforts may be made to utilize 1.35 MCM of rainwater from available rooftop, which is sufficient to cater for the needs of ~40,800 people annually. Most effective defluoridation techniques like electrolytic de-fluoridation (EDF), ion exchange and reverse osmosis may be adopted along with integrated fluorosis mitigation measures.

  19. Impact of Groundwater Flow and Energy Load on Multiple Borehole Heat Exchangers.

    Science.gov (United States)

    Dehkordi, S Emad; Schincariol, Robert A; Olofsson, Bo

    2015-01-01

    The effect of array configuration, that is, number, layout, and spacing, on the performance of multiple borehole heat exchangers (BHEs) is generally known under the assumption of fully conductive transport. The effect of groundwater flow on BHE performance is also well established, but most commonly for single BHEs. In multiple-BHE systems the effect of groundwater advection can be more complicated due to the induced thermal interference between the boreholes. To ascertain the influence of groundwater flow and borehole arrangement, this study investigates single- and multi-BHE systems of various configurations. Moreover, the influence of energy load balance is also examined. The results from corresponding cases with and without groundwater flow as well as balanced and unbalanced energy loads are cross-compared. The groundwater flux value, 10(-7) m/s, is chosen based on the findings of previous studies on groundwater flow interaction with BHEs and thermal response tests. It is observed that multi-BHE systems with balanced loads are less sensitive to array configuration attributes and groundwater flow, in the long-term. Conversely, multi-BHE systems with unbalanced loads are influenced by borehole array configuration as well as groundwater flow; these effects become more pronounced with time, unlike when the load is balanced. Groundwater flow has more influence on stabilizing loop temperatures, compared to array characteristics. Although borehole thermal energy storage (BTES) systems have a balanced energy load function, preliminary investigation on their efficiency shows a negative impact by groundwater which is due to their dependency on high temperature gradients between the boreholes and surroundings. © 2014, National Ground Water Association.

  20. Report on the audit of the Savannah River Site`s quality control program for groundwater sampling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-20

    The Savannah River Site`s groundwater remediation program was managed by the Department of Energy`s (Department) management and operating contractor for the site, Westinghouse Savannah River Company (Westinghouse). One component of the remediation program was the quality control program. The goal of the groundwater quality control program was to ensure that the results of laboratory analyses of groundwater samples were accurate and precise so that they could be relied upon for making remediation decisions. The objective of this audit was to determine whether Westinghouse acquired the minimal number of laboratory analyses required to ensure that groundwater sampling results met this criteria.

  1. Groundwater quality in the shallow aquifers of the Madera–Chowchilla and Kings subbasins, San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.; Shelton, Jennifer L.

    2018-01-08

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking-water supply and increases public access to groundwater-quality information. Many households and small communities in the Madera– Chowchilla and Kings subbasins of the San Joaquin Valley rely on private domestic wells for their drinking-water supplies.

  2. Climate change impact on a groundwater-influenced hillslope ecosystem

    NARCIS (Netherlands)

    Brolsma, R.J.; Vliet, van M.T.H.; Bierkens, M.F.P.

    2010-01-01

    This study investigates the effect of climate change on a groundwater-influenced ecosystem on a hill slope consisting of two vegetation types, one adapted to wet and one adapted to dry soil conditions. The individual effects of changes in precipitation, temperature, and atmospheric CO2 concentration

  3. The impact of groundwater level on soil seed bank survival

    NARCIS (Netherlands)

    Bekker, RM; Oomes, MJM; Bakker, JP

    Seed longevity of plant species is an important topic in restoration management, and little is known about the effects of environmental conditions on seed survival and longevity under natural conditions. Therefore, the effect of groundwater level on the survival of seeds in the soil seed bank of a

  4. Fluoride concentrations in groundwater and impact on human health ...

    African Journals Online (AJOL)

    2010-07-04

    Jul 4, 2010 ... Available on website http://www.wrc.org.za. ISSN 0378-4738 (Print) ... Fluoride concentrations in groundwater samples were found to be higher than the Department of Water Affairs and. World Health Organization .... never warranted a treatment plant and hence the community is left vulnerable to high ...

  5. Numerical modelling of groundwater flow to understand the impacts ...

    Indian Academy of Sciences (India)

    @hotmail.com. In this paper, numerical simulations of regional-scale groundwater flow of North Bengal Plain have been carried out with special emphasis on the arsenic (As)-rich alluvium filled gap between the Rajmahal hills on the west and ...

  6. Climate change impact assessment on Veneto and Friuli plain groundwater. Part I: An integrated modeling approach for hazard scenario construction

    International Nuclear Information System (INIS)

    Baruffi, F.; Cisotto, A.; Cimolino, A.; Ferri, M.; Monego, M.; Norbiato, D.; Cappelletto, M.; Bisaglia, M.; Pretner, A.; Galli, A.; Scarinci, A.; Marsala, V.; Panelli, C.; Gualdi, S.; Bucchignani, E.; Torresan, S.; Pasini, S.; Critto, A.

    2012-01-01

    Climate change impacts on water resources, particularly groundwater, is a highly debated topic worldwide, triggering international attention and interest from both researchers and policy makers due to its relevant link with European water policy directives (e.g. 2000/60/EC and 2007/118/EC) and related environmental objectives. The understanding of long-term impacts of climate variability and change is therefore a key challenge in order to address effective protection measures and to implement sustainable management of water resources. This paper presents the modeling approach adopted within the Life + project TRUST (Tool for Regional-scale assessment of groUndwater Storage improvement in adaptation to climaTe change) in order to provide climate change hazard scenarios for the shallow groundwater of high Veneto and Friuli Plain, Northern Italy. Given the aim to evaluate potential impacts on water quantity and quality (e.g. groundwater level variation, decrease of water availability for irrigation, variations of nitrate infiltration processes), the modeling approach integrated an ensemble of climate, hydrologic and hydrogeologic models running from the global to the regional scale. Global and regional climate models and downscaling techniques were used to make climate simulations for the reference period 1961–1990 and the projection period 2010–2100. The simulation of the recent climate was performed using observed radiative forcings, whereas the projections have been done prescribing the radiative forcings according to the IPCC A1B emission scenario. The climate simulations and the downscaling, then, provided the precipitation, temperatures and evapo-transpiration fields used for the impact analysis. Based on downscaled climate projections, 3 reference scenarios for the period 2071–2100 (i.e. the driest, the wettest and the mild year) were selected and used to run a regional geomorphoclimatic and hydrogeological model. The final output of the model ensemble

  7. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    Science.gov (United States)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  8. Distribution of Redox-Sensitive Groundwater Quality Parameters Downgradient of a Landfill (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Rügge, Kirsten; Pedersen, Jørn K.

    1995-01-01

    The leachate plume stretching 300 m downgradient from the Grindsted Landfill (Denmark) has been characterized in terms of redox-sensitive groundwater quality parameters along two longitudinal transects (285 samples). Variations in the levels of methane, sulfide, iron(ll), manganese(ll), ammonium......, dinitrogen oxide, nitrite, nitrate, and oxygen in the groundwater samples indicate that methane production, sulfate reduction, iron reduction, manganese reduction, and nitrate reduction take place in the plume. Adjacent to the landfill, methanogenic and sulfatereducing zones were identified, while aerobic...

  9. Fuel-grade ethanol transport and impacts to groundwater in a pilot-scale aquifer tank.

    Science.gov (United States)

    Cápiro, Natalie L; Stafford, Brent P; Rixey, William G; Bedient, Philip B; Alvarez, Pedro J J

    2007-02-01

    Fuel-grade ethanol (76L of E95, 95%v/v ethanol, 5%v/v hydrocarbon mixture as a denaturant) was released at the water table in an 8150-L continuous-flow tank packed with fine-grain masonry sand. Ethanol, which is buoyant and hygroscopic, quickly migrated upwards and spread laterally in the capillary zone. Horizontal migration of ethanol occurred through a shallow thin layer with minimal vertical dispersion, and was one order of magnitude slower than the preceding bromide tracer. Dyes, one hydrophobic (Sudan-IV) and one hydrophilic (Fluorescein) provided evidence that the fuel hydrocarbons phase separated from the E95 mixture as ethanol was diluted by pore water and its cosolvent effect was diminished. Most of the added ethanol (98%) was recovered in the effluent wells that captured the flow through the high water content regions above the water table. Complementary bench-scale 2-D visualization experiments with E95 confirmed hydrocarbon phase separation, residual NAPL formation and migration within the capillary fringe. These results corroborate previous bench-scale studies showing that ethanol has high affinity for vadose-zone pore water and can migrate through the capillary zone. The pilot-scale tank experiment provides the first hydrocarbon and ethanol concentration measurements (and thus, quantification of impacts to groundwater quality) from a subsurface spill of E95 in a well-characterized system with a well-defined source. It also provides the first quantitative near-field-scale evidence that capillarity can significantly retard the vertical dispersion and horizontal advection of ethanol. Such effects could be important determinants of the extent of ethanol migration and longevity as well as groundwater impacts.

  10. Impact of fresh tailing deposition on the evolution of groundwater hydrogeochemistry at the abandoned Manitou mine site, Quebec, Canada.

    Science.gov (United States)

    Maqsoud, Abdelkabir; Neculita, Carmen Mihaela; Bussière, Bruno; Benzaazoua, Mostafa; Dionne, Jean

    2016-05-01

    The abandoned Manitou mine site has produced acid mine drainage (AMD) for several decades. In order to limit the detrimental environmental impacts of AMD, different rehabilitation scenarios were proposed and analyzed. The selected rehabilitation scenario was to use fresh tailings from the neighboring Goldex gold mine as monolayer cover and to maintain an elevated water table. In order to assess the impact of the Goldex tailing deposition on the hydrogeochemistry of the Manitou mine site, a network of 30 piezometers was installed. These piezometers were used for continuous measurement of the groundwater level, as well as for water sampling campaigns for chemical quality monitoring, over a 3-year period. Hydrochemical data were analyzed using principal component analysis. Results clearly showed the benefic impact of fresh tailing deposition on the groundwater quality around the contaminated area. These findings were also confirmed by the evolution of electrical conductivity. In addition to the improvement of the physicochemical quality of water on the Manitou mine site, new tailing deposition induced an increase of water table level. However, at this time, the Manitou reactive tailings are not completely submerged and possible oxidation might still occur, especially after ceasing of the fresh tailing deposition. Therefore, complementary rehabilitation scenarios should still be considered.

  11. Impact of Water Resorts Development along Laguna de Bay on Groundwater Resources

    Science.gov (United States)

    Jago-on, K. A. B.; Reyes, Y. K.; Siringan, F. P.; Lloren, R. B.; Balangue, M. I. R. D.; Pena, M. A. Z.; Taniguchi, M.

    2014-12-01

    Rapid urbanization and land use changes in areas along Laguna de Bay, one of the largest freshwater lake in Southeast Asia, have resulted in increased economic activities and demand for groundwater resources from households, commerce and industries. One significant activity that can affect groundwater is the development of the water resorts industry, which includes hot springs spas. This study aims to determine the impact of the proliferation of these water resorts in Calamba and Los Banos, urban areas located at the southern coast of the lake on the groundwater as a resource. Calamba, being the "Hot Spring Capital of the Philippines", presently has more than 300 resorts, while Los Banos has at least 38 resorts. Results from an initial survey of resorts show that the swimming pools are drained/ changed on an average of 2-3 times a week or even daily during peak periods of tourist arrivals. This indicates a large demand on the groundwater. Monitoring of actual groundwater extraction is a challenge however, as most of these resorts operate without water use permits. The unrestrained exploitation of groundwater has resulted to drying up of older wells and decrease in hot spring water temperature. It is necessary to strengthen implementation of laws and policies, and enhance partnerships among government, private sector groups, civil society and communities to promote groundwater sustainability.

  12. A method of groundwater quality assessment based on fuzzy network-CANFIS and geographic information system (GIS)

    Science.gov (United States)

    Gholami, V.; Khaleghi, M. R.; Sebghati, M.

    2017-11-01

    The process of water quality testing is money/time-consuming, quite important and difficult stage for routine measurements. Therefore, use of models has become commonplace in simulating water quality. In this study, the coactive neuro-fuzzy inference system (CANFIS) was used to simulate groundwater quality. Further, geographic information system (GIS) was used as the pre-processor and post-processor tool to demonstrate spatial variation of groundwater quality. All important factors were quantified and groundwater quality index (GWQI) was developed. The proposed model was trained and validated by taking a case study of Mazandaran Plain located in northern part of Iran. The factors affecting groundwater quality were the input variables for the simulation, whereas GWQI index was the output. The developed model was validated to simulate groundwater quality. Network validation was performed via comparison between the estimated and actual GWQI values. In GIS, the study area was separated to raster format in the pixel dimensions of 1 km and also by incorporation of input data layers of the Fuzzy Network-CANFIS model; the geo-referenced layers of the effective factors in groundwater quality were earned. Therefore, numeric values of each pixel with geographical coordinates were entered to the Fuzzy Network-CANFIS model and thus simulation of groundwater quality was accessed in the study area. Finally, the simulated GWQI indices using the Fuzzy Network-CANFIS model were entered into GIS, and hence groundwater quality map (raster layer) based on the results of the network simulation was earned. The study's results confirm the high efficiency of incorporation of neuro-fuzzy techniques and GIS. It is also worth noting that the general quality of the groundwater in the most studied plain is fairly low.

  13. Appraisal of long term groundwater quality of peninsular India using ...

    Indian Academy of Sciences (India)

    63

    Department of Farm Engineering,. Institute of Agricultural Sciences. Banaras Hindu ... needs to be protected from the contamination. Keywords: Fractal dimension; Hurst exponent; Predictability index; Water Quality Index ... 2014) on the quality of drinking water resources (Thakur et al. 2015). The World. Health Organization ...

  14. Assessment of Groundwater Quality of Ilorin Metropolis using Water ...

    African Journals Online (AJOL)

    The parameters used for calculating the water quality index include the following: pH, total hardness, total dissolved solid, calcium, fluoride, iron, potassium, sulphate, nitrate and carbonate. The water quality index for the twenty two samples ranged from 0.66 to 756.02 with an average of 80.77. Two of the samples exceeded ...

  15. Impacts of extreme flooding on riverbank filtration water quality.

    Science.gov (United States)

    Ascott, M J; Lapworth, D J; Gooddy, D C; Sage, R C; Karapanos, I

    2016-06-01

    Riverbank filtration schemes form a significant component of public water treatment processes on a global level. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources management under potential future climate change. This paper assesses the impact of floodplain inundation on the water quality of a shallow aquifer riverbank filtration system and how water quality recovers following an extreme (1 in 17 year, duration >70 days, 7 day inundation) flood event. During the inundation event, riverbank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (high fraction of surface water, dissolved organic carbon (DOC) >140% baseline values, >1 log increase in micro-organic contaminants, microbial detects and turbidity, low specific electrical conductivity (SEC) 400% baseline). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2-3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (lower fraction of surface water, higher SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological site setting, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Flexible operating regimes such as the one implemented at this study site are likely to be required if shallow aquifer riverbank filtration systems are to be resilient to future inundation events. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the suitability of a prospective riverbank filtration

  16. Anthropogenic Influence On Groundwater Quality In Jericho and And Adjoining Wadis (Lower Jordan Valley, Palestine)

    Science.gov (United States)

    Geyer, S.; Khayat, S.; Roediger, T.; Siebert, C.

    2008-12-01

    The Lower Jordan Valley is part of the Jordan-Dead Sea Rift. The graben is filled by sedmiments of limnological and marine origin. Towards the Dead Sea, the occurance of gipseous and salty sediments on the valley floor increase. The southern part of the Lower Jordan Valley, where the city of Jericho is situated, is an arid area (SMART-project, is to understand the vulnerability of the Jericho groundwater aquifers in connection with lowering the groundwater table by overexploitation and the intensively use of pesticides Jericho and its vicinity are of most importance for the Palestinians. However, beside the about 25,000 residents, the tourism industry and the vital agriculture depend on sufficient and expoitable fresh water resources. Because the demand of water is increasing, overexpoitaion takes place. Due to over extraction of groundwater a huge depression cone is evolving during the dry season which is filled up again according to the groundwater recharge in the rainy season. Concomitantly, depression cone in the fresh water aquifers leads to an infiltration of the surrounding saltwater. The amount of saltwater which infiltrates into the freshwater resource was calculated by different stable isotope methods (d2H, d18O) and hydrochemical analyses of wellwater. The agriculture is main consumer of groundwater - over 60% of the pumped water is used for inefficient irrigation. Additionally, an intensive use of pesticides in concentrated liquid and gaseous forms for vegetable gardening hold the danger to pollute the groundwater via irrigation return flow. This return flow most probably endangers the quality of the water resource, because shallow wells nearby extract it directly from the underground. However, one result of the first screening campaign concerning pesticide remnants in the groundwater wells of Jericho, just traces have been detected. Thus, the higher amount of chemicals is retained by the soil during infiltration of irrigated water. The detected low

  17. Pollution sources and groundwater quality in the Coastal region of the Yugoslav part of the Danube

    International Nuclear Information System (INIS)

    Komatina, S.

    1997-01-01

    In order to access the vulnerability and risk of the aquifer system in the Yugoslav part of the Danube, as the primary source of drinking water for a numerically substantial community, industrial purposes and irrigation, as well as a high concentration of civil, industrial and agricultural activities (hence, a potential source of pollution of the groundwater resources through land occupation and use as well as the disposal of solid and liquid wastes), a great hydro-geophysical exploration was performed. Within the lower part of the plain, exploratory test of Salinac field, near Smederevo town, was particularly investigated. The reason why is because that part is also an area of the mouth of the Velika Morava into the Danube, where Derdap reservoir is located. Task of complex exploration was to delineate the aquifer, obtain appropriate parameters (groundwater level, groundwater chemistry, clay content, filtration characteristics and physical parameters of geological functions), as well as to map the aquifer vulnerability, in order to prevent and moderate a harmful influence of the performed reservoir on the environment (increased groundwater infiltration from the reservoir into surrounding rocks, permanent groundwater level raising, etc.). Based on the results, zoning of the study area according to the aquifer vulnerability has been done. Then, land-use planning and development of strategy for groundwater protection and management was possible. In the paper, not only sources of contamination, characteristics of pollutants and their influence on the groundwater quality was presented, but also content of organic matters, phosphates and nitrogen compounds, etc. Further, means of protection and management are discussed, as well as the appropriate legal regulations. (author)

  18. Evaluation of Groundwater Quality in the Eastern District of Abu Dhabi Emirate, UAE.

    Science.gov (United States)

    Mohamed, Mohamed M; Murad, Ahmed; Chowdhury, RezaulKabir

    2017-03-01

    Water samples were collected to evaluate the groundwater quality in the shallow unconfined alluvial aquifer in the eastern part of Abu-Dhabi Emirate, UAE. The chemical monitoring revealed some spatial variability in chemical parameters as influenced by matrix aquifer changes in geological formations. Results show that changes in groundwater chemistry in the aquifer is mainly controlled by evaporation, silicate mineral dissolution, evaporite dissolution, and cation exchange. The concentration increases were accounted for primarily by dissolved sodium, chloride, and sulphate. The high value of total dissolved solids of shallow groundwater is mainly controlled by evaporation. The dominance of sodium ion was evident among the cationic compositions with an average of 2621.1 mg/L, while the chloride ion was the dominant among the anionic constituents with an average of 6249 mg/L. The prevalence of those two elements in most water samples contributes to the existence of saline water occurrence in the study area.

  19. Groundwater quality in a mining activity area (The Bierzo Basin-Leon)

    International Nuclear Information System (INIS)

    Losa, A. de la; Moreno, L.; Nunez, I.

    2010-01-01

    The Bierzo Basin presents large coal mining structures without restore where the air exposition of metallic sulphurs could become a source of heavy metal pollution and acification of waters. This paper presents the results of a research focused on groundwater quality affected by the mining activity. A sampling campaign of both ground and surface waters was carried out. Altogether, 37 sampling points has been selected including 26 springs, 7 shallow wells for agricultural use and 4 river water samples, all of them directly or indirectly connected to groundwater. The interpretation of results is based on the multivariate analysis application. Sulphate is the dominant anion in both water types, and it is related, in most cases, to oxidation of sulphurs, widely represented in the study area. However, the main conclusion is that surface water and groundwater samples have no high abnormal contents of heavy metals due to the induced alteration by mining activity. (Author) 15 refs.

  20. Integrating geochemical investigations and geospatial assessment to understand the evolutionary process of hydrochemistry and groundwater quality in arid areas.

    Science.gov (United States)

    El Alfy, Mohamed; Alharbi, Talal; Mansour, Basma

    2018-04-12

    Groundwater is the key for life in arid areas. Aquifer overexploitation and climatic conditions can significantly deteriorate groundwater quality. The Al-Qassim area in central Saudi Arabia is characterized by dense agricultural use and is irrigated mainly by fossil groundwater from the Saq Aquifer. Understanding the area's hydrochemistry, major factors governing groundwater quality, and alternative uses of the groundwater are the main goals of this study. Groundwater samples were collected and examined for major, minor, and trace elements. Ionic relationships, hydrochemical facies, geospatial distributions, and multivariate analyses were conducted to assess the hydrochemical processes at play. The salinity and nitrate concentrations of the Saq Aquifer's groundwater were found to increase in the outcrop areas more than the confined areas. The spatial distributions were fragmented by three main factors: (i) modern recharge by relatively brackish water, (ii) irrigation return flow in intensive farming areas, and (iii) overexploitation and draining of deep and relatively saline zones of the aquifer. Seven water types were found representing the alkaline water with a predominance of sulfate-chloride ions and earth alkaline water with a predominance of sulfate and chloride. Mixing between fresh and brackish water, dissolution of mineral phases, silicate weathering, and reverse ion exchange were recognized as the evolutionary processes, while evaporation played a minor role. Cluster analyses characterized the fresh groundwater zone, modern groundwater recharge zone, and anthropogenic influence zone. In the confined areas, nearly all the groundwater was appropriate for domestic use and irrigation. In the outcrop areas, some limitations were found due to unsuitable conditions.

  1. Chemometric analysis of groundwater quality data around municipal landfill and paper factory and their potential influence on population's health.

    Science.gov (United States)

    Gvozdić, Vlatka; Cačić, Ljiljana; Brana, Josip; Puntarić, Dinko; Vidosavljević, Domagoj

    2012-02-01

    To assess the level of 15 groundwater quality parameters in groundwater samples collected around municipal landfill and paper factory in order to evaluate usefulness of the groundwater and its possible implication on the human health. Obtained data have been analyzed by principal component analysis (PCA) technique, in order to differentiate the groundwater samples on the basis of their compositional differences and origin. Wastes and effluents from municipal landfill did not contribute significantly to the pollution of the aquatic medium. Groundwater degradation caused by high contents of nitrate, mineral oils, organic and inorganic matters was particularly expressed in the narrow area of the city centre, near the paper factory and most likely it has occurred over a long period of time. The results have shown that the concentrations of the most measured parameters (NO3-N, NH4-N, oils, organic matter, Fe, Pb, Ni and Cr) were above allowed limits for drinking and domestic purposes. This study has provided important information on ecological status of the groundwater systems and for identification of groundwater quality parameters with concentrations above allowable limits for human consumption. The results generally revealed that groundwater assessed in this study mainly does not satisfy safe limits for drinking water and domestic use. As a consequence, contaminated groundwater becomes a large hygienic and toxicological problem, since it considerably impedes groundwater utilization. Even though, all of these contaminants have not yet reached toxic levels, they still represent long term risk for health of the population.

  2. Calendar year 1995 groundwater quality report for the Chestnut Ridge Hydrogeological Regime, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. 1995 Groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    This annual groundwater quality report (GWQR) contains groundwater quality data obtained during the 1995 calendar year (CY) at several hazardous and nonhazardous waste management facilities associated with the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The U.S. Environmental Protection Agency (EPA) identification number for the Y-12 Plant is TN.

  3. Calendar year 1995 groundwater quality report for the Chestnut Ridge Hydrogeological Regime, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. 1995 Groundwater quality data and calculated rate of contaminant migration

    International Nuclear Information System (INIS)

    1996-02-01

    This annual groundwater quality report (GWQR) contains groundwater quality data obtained during the 1995 calendar year (CY) at several hazardous and nonhazardous waste management facilities associated with the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The U.S. Environmental Protection Agency (EPA) identification number for the Y-12 Plant is TN

  4. Groundwater Quality Data in the Mojave Study Unit, 2008: Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2009-01-01

    Groundwater quality in the approximately 1,500 square-mile Mojave (MOJO) study unit was investigated from February to April 2008, as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). MOJO was the 23rd of 37 study units to be sampled as part of the GAMA Priority Basin Project. The MOJO study was designed to provide a spatially unbiased assessment of the quality of untreated ground water used for public water supplies within MOJO, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 59 wells in San Bernardino and Los Angeles Counties. Fifty-two of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and seven were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for a large number of organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, and pharmaceutical compounds], constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]) naturally occurring inorganic constituents (nutrients, dissolved organic carbon [DOC], major and minor ions, silica, total dissolved solids [TDS], and trace elements), and radioactive constituents (gross alpha and gross beta radioactivity, radium isotopes, and radon-222). Naturally occurring isotopes (stable isotopes of hydrogen, oxygen, and carbon, stable isotopes of nitrogen and oxygen in nitrate, and activities of tritium and carbon-14), and dissolved noble gases also were measured to help identify the sources and ages of the sampled

  5. Quality of Mount Etna groundwaters utilized for the potable supply

    International Nuclear Information System (INIS)

    Giammanco, G.; Giammanco, S.; Valenza, M.

    1995-01-01

    The groundwaters of many aquifers of Mt. Etna are naturally enriched in a number of elements that are present in the rocks making up the volcanic edifice. The concentrations of magnesium, iron and manganese in the waters from many wells and springs utilized for the potable supply of Catania and various other villages exceed the maximum admissible concentrations (CMA) fixed by the law n. 236 enacted in 1988. The literal observance of the law in force has led to the prohibition from drinking such waters, although the above-mentioned substances are not prejudicial to the health at the found concentrations. Further problems have arised from the presence of vanadium, even though no CMA has been fixed for this element. All this has provoked serious hardships to the population and risks to the health due to the reduced water delivery. In order to avoid such inconveniences, the revision of the law in force is necessary in all those geographical areas where are naturally rich in non toxic elements. For these elements is opportune that indicative and non prescriptive levels of acceptability were established instead of the CMA

  6. Study of Seasonal Variation in Groundwater Quality of Sagar City (India by Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Hemant Pathak

    2011-01-01

    Full Text Available Groundwater is one of the major resources of the drinking water in Sagar city (India.. In this study 15 sampling station were selected for the investigations on 14 chemical parameters. The work was carried out during different months of the pre-monsoon, monsoon and post-monsoon seasons in June 2009 to June 2010. The multivariate statistics such as principal component and cluster analysis were applied to the datasets to investigate seasonal variations in groundwater quality. Principal axis factoring has been used to observe the mode of association of parameters and their interrelationships, for evaluating water quality. Average value of BOD, COD, ammonia and iron was high during entire study period. Elevated values of BOD and ammonia in monsoon, slightly more value of BOD in post-monsoon, BOD, ammonia and iron in pre-monsoon period reflected contribution on temporal effect on groundwater. Results of principal component analysis evinced that all the parameters equally and significantly contribute to groundwater quality variations. Factor 1 and factor 2 analysis revealed the DO value deteriorate due to organic load (BOD/Ammonia in different seasons. Hierarchical cluster analysis grouped 15 stations into four clusters in monsoon, five clusters in post-monsoon and five clusters in pre-monsoon with similar water quality features. Clustered group at monsoon, post-monsoon and pre-monsoon consisted one station exhibiting significant spatial variation in physicochemical composition. The anthropogenic nitrogenous species, as fallout from modernization activities. The study indicated that the groundwater sufficiently well oxygenated and nutrient-rich in study places.

  7. Groundwater Quality Assessment In Eliozu Community Port Harcourt Niger Delta Nigeria

    Directory of Open Access Journals (Sweden)

    Adesuyi Adeola Alex

    2015-08-01

    Full Text Available Abstract Potable water is an essential ingredient for good health and the socio-economic development of man. Groundwater is an important natural resource for this. The majority of the Nigerian population depends on groundwater for drinking. Thus availability of clean groundwater is of utmost importance. Hence quality assessment was carried out to ascertain the groundwater quality in Eliozu Community in ObioApkor Local Government area of River State Nigeria. The study assessed the level of contamination and quality of the groundwater of randomly selected boreholes. Water quality analysis was performed on samples collected from thirty 30 boreholes within Eliozu community for the following physicochemical parameters pH temperature Electrical conductivity total dissolved solids TDS total hardness salinity dissolved oxygen DO biochemical oxygen demand BOD chemical oxygen demand COD nitrate chloride Cu and Zn using standard methods. The result from the present study showed that the pH of groundwater samples ranges from 5.5 8.0 indicating slight acidity in some of the water samples. The values for electrical conductivity salinity and total hardness were ranged between 10.1 25.4 uScm 0.001 0.45 mgL and 3.59 381.9 mgL respectively and were all within the World health organisation WHO Department of petroleum resources and Federal environmental protection agency FEPA maximum permissible limits. The COD chloride nitrate and heavy metal content of water samples were also within WHO DPR and FEPA permissible limit. This indicates that most of the physicochemical properties of the tested water samples were within the WHO DPR and FEPA permissible limits however water samples from borehole points 5 16 22 25 28 and 30 were slightly acidic those from borehole points 2 17 18 and 30 had DO levels below the WHO recommended limits of 6.0 mgL while BOD was higher than the WHO recommended limits of 5.0 mgL in most of the study locations. It was evident from this study

  8. Factors controlling groundwater quality in the Yeonjegu District of Busan City, Korea, using the hydrogeochemical processes and fuzzy GIS.

    Science.gov (United States)

    Venkatramanan, Senapathi; Chung, Sang Yong; Selvam, Sekar; Lee, Seung Yeop; Elzain, Hussam Eldin

    2017-10-01

    The hydrogeochemical processes and fuzzy GIS techniques were used to evaluate the groundwater quality in the Yeonjegu district of Busan Metropolitan City, Korea. The highest concentrations of major ions were mainly related to the local geology. The seawater intrusion into the river water and municipal contaminants were secondary contamination sources of groundwater in the study area. Factor analysis represented the contamination sources of the mineral dissolution of the host rocks and domestic influences. The Gibbs plot exhibited that the major ions were derived from the rock weathering condition. Piper's trilinear diagram showed that the groundwater quality was classified into five types of CaHCO 3 , NaHCO 3 , NaCl, CaCl 2 , and CaSO 4 types in that order. The ionic relationship and the saturation mineral index of the ions indicated that the evaporation, dissolution, and precipitation processes controlled the groundwater chemistry. The fuzzy GIS map showed that highly contaminated groundwater occurred in the northeastern and the central parts and that the groundwater of medium quality appeared in most parts of the study area. It suggested that the groundwater quality of the study area was influenced by local geology, seawater intrusion, and municipal contaminants. This research clearly demonstrated that the geochemical analyses and fuzzy GIS method were very useful to identify the contaminant sources and the location of good groundwater quality.

  9. Groundwater quality for irrigation of deep aquifer in southwestern zone of Bangladesh

    Directory of Open Access Journals (Sweden)

    Mirza A.T.M. Tanvir Rahman

    2012-07-01

    Full Text Available In coastal regions of Bangladesh, sources of irrigation are rain, surface and groundwater. Due to rainfall anomaly andsaline contamination, it is important to identify deep groundwater that is eligible for irrigation. The main goal of the study wasto identify deep groundwater which is suitable for irrigation. Satkhira Sadar Upazila, at the southwestern coastal zone ofBangladesh, was the study area, which was divided into North, Center and South zones. Twenty samples of groundwaterwere analyzed for salinity (0.65-4.79 ppt, sodium absorption ratio (1.14-11.62, soluble sodium percentage (32.95-82.21, electricalconductivity (614-2082.11 μS/cm, magnesium adsorption ratio (21.96-26.97, Kelly’s ratio (0.48-4.62, total hardness(150.76-313.33 mg/l, permeability index (68.02-94.16 and residual sodium bi-carbonate (79.68-230.72 mg/l. Chemical constituentsand values were compared with national and international standards. Northern deep groundwater has the highest salinityand chemical concentrations. Salinity and other chemical concentrations show a decreasing trend towards the south. Lowchemical concentrations in the southern region indicate the best quality groundwater for irrigation.

  10. Assessment of groundwater quality in Kashipur Block, Purulia district, West Bengal

    Science.gov (United States)

    Kundu, Anindita; Nag, S. K.

    2018-03-01

    Hydrogeochemical investigation of groundwater resources of Kashipur Block, Purulia district, West Bengal has been carried out to assess the water quality for domestic and irrigation uses. Twenty groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, hardness, major anions (CO3 2-, HCO3 -, Cl-, SO4 2-, F-) and cations (Ca2+, Mg2+, Fe2+, Na+, K+). Study results reveal that the groundwater of the area is mostly acidic in nature. The trend amongst average ionic concentrations of cations and anions is Mg2+ > Ca2+ > Na+ > Fe2+ > K+ and Cl- > HCO3 - > CO3 2- > SO4 2- > F- respectively during the post monsoon whereas the trend for cations and anions are Mg2+ > Ca2+> Na+ > K+ > Fe and Cl- > HCO3 - > SO4 2- > F- > CO3 - in pre monsoon session, respectively. To explore the ionic toxicity of the study area, the derived parameters like sodium adsorption ratio, soluble sodium percentage, residual sodium carbonate, magnesium adsorption ratio, Kelly's ratio and permeability index were calculated. The hydro geochemical data suggest that weathering of rock forming minerals along with secondary contributions from agricultural and anthropogenic sources are mainly controlling the groundwater composition of Kashipur Block, Purulia District. According to piper diagram, water samples of most of the area of the block are fresh water and in some areas sulphate rich throughout the year. All samples are distributed to central rock dominance category. Groundwater chemistry of this block is mainly controlled by the interaction existing between the litho units and the percolating water into the subsurface domain. However, the groundwater quality and suitability of this study area can be termed as good to moderate with a few exceptions which have been encountered on a local scale.

  11. Data-Driven Approach for Analyzing Hydrogeology and Groundwater Quality Across Multiple Scales.

    Science.gov (United States)

    Curtis, Zachary K; Li, Shu-Guang; Liao, Hua-Sheng; Lusch, David

    2017-08-29

    Recent trends of assimilating water well records into statewide databases provide a new opportunity for evaluating spatial dynamics of groundwater quality and quantity. However, these datasets are scarcely rigorously analyzed to address larger scientific problems because they are of lower quality and massive. We develop an approach for utilizing well databases to analyze physical and geochemical aspects of groundwater systems, and apply it to a multiscale investigation of the sources and dynamics of chloride (Cl - ) in the near-surface groundwater of the Lower Peninsula of Michigan. Nearly 500,000 static water levels (SWLs) were critically evaluated, extracted, and analyzed to delineate long-term, average groundwater flow patterns using a nonstationary kriging technique at the basin-scale (i.e., across the entire peninsula). Two regions identified as major basin-scale discharge zones-the Michigan and Saginaw Lowlands-were further analyzed with regional- and local-scale SWL models. Groundwater valleys ("discharge" zones) and mounds ("recharge" zones) were identified for all models, and the proportions of wells with elevated Cl - concentrations in each zone were calculated, visualized, and compared. Concentrations in discharge zones, where groundwater is expected to flow primarily upwards, are consistently and significantly higher than those in recharge zones. A synoptic sampling campaign in the Michigan Lowlands revealed concentrations generally increase with depth, a trend noted in previous studies of the Saginaw Lowlands. These strong, consistent SWL and Cl - distribution patterns across multiple scales suggest that a deep source (i.e., Michigan brines) is the primary cause for the elevated chloride concentrations observed in discharge areas across the peninsula. © 2017, National Ground Water Association.

  12. Evaluation of drought impact on groundwater recharge rate using SWAT and Hydrus models on an agricultural island in western Japan

    Directory of Open Access Journals (Sweden)

    G. Jin

    2015-06-01

    Full Text Available Clarifying the variations of groundwater recharge response to a changing non-stationary hydrological process is important for efficiently managing groundwater resources, particularly in regions with limited precipitation that face the risk of water shortage. However, the rate of aquifer recharge is difficult to evaluate in terms of large annual-variations and frequency of flood events. In our research, we attempt to simulate related groundwater recharge processes under variable climate conditions using the SWAT Model, and validate the groundwater recharge using the Hydrus Model. The results show that annual average groundwater recharge comprised approximately 33% of total precipitation, however, larger variation was found for groundwater recharge and surface runoff compared to evapotranspiration, which fluctuated with annual precipitation variations. The annual variation of groundwater resources is shown to be related to precipitation. In spatial variations, the upstream is the main surface water discharge area; the middle and downstream areas are the main groundwater recharge areas. Validation by the Hydrus Model shows that the estimated and simulated groundwater levels are consistent in our research area. The groundwater level shows a quick response to the groundwater recharge rate. The rainfall intensity had a great impact on the changes of the groundwater level. Consequently, it was estimated that large spatial and temporal variation of the groundwater recharge rate would be affected by precipitation uncertainty in future.

  13. Groundwater salinity in a floodplain forest impacted by saltwater intrusion.

    Science.gov (United States)

    Kaplan, David A; Muñoz-Carpena, Rafael

    2014-11-15

    Coastal wetlands occupy a delicate position at the intersection of fresh and saline waters. Changing climate and watershed hydrology can lead to saltwater intrusion into historically freshwater systems, causing plant mortality and loss of freshwater habitat. Understanding the hydrological functioning of tidally influenced floodplain forests is essential for advancing ecosystem protection and restoration goals, however finding direct relationships between hydrological inputs and floodplain hydrology is complicated by interactions between surface water, groundwater, and atmospheric fluxes in variably saturated soils with heterogeneous vegetation and topography. Thus, an alternative method for identifying common trends and causal factors is required. Dynamic factor analysis (DFA), a time series dimension reduction technique, models temporal variation in observed data as linear combinations of common trends, which represent unexplained common variability, and explanatory variables. DFA was applied to model shallow groundwater salinity in the forested floodplain wetlands of the Loxahatchee River (Florida, USA), where altered watershed hydrology has led to changing hydroperiod and salinity regimes and undesired vegetative changes. Long-term, high-resolution groundwater salinity datasets revealed dynamics over seasonal and yearly time periods as well as over tidal cycles and storm events. DFA identified shared trends among salinity time series and a full dynamic factor model simulated observed series well (overall coefficient of efficiency, Ceff=0.85; 0.52≤Ceff≤0.99). A reduced multilinear model based solely on explanatory variables identified in the DFA had fair to good results (Ceff=0.58; 0.38≤Ceff≤0.75) and may be used to assess the effects of restoration and management scenarios on shallow groundwater salinity in the Loxahatchee River floodplain. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Evaluation of groundwater and stream quality characteristics in the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    batteries in Ibadan, ... impairment of water bodies in urban areas has been .... experimentation to ensure acceptable data quality. Procedure for the COD determination was evaluated with potassium hydrogen phthalate standard.

  15. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1993 groundwater quality data and calculated rate of contaminant migration, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This annual groundwater report contains groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the Chestnut Ridge Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.

  16. Comparative metagenomics reveals impact of contaminants on groundwater microbiomes

    Directory of Open Access Journals (Sweden)

    Christopher L Hemme

    2015-10-01

    Full Text Available To understand patterns of geochemical cycling in pristine versus contaminated groundwater ecosystems, pristine shallow groundwater (FW301 and contaminated groundwater (FW106 samples from the Oak Ridge Integrated Field Research Center (OR-IFRC were sequenced and compared to each other to determine phylogenetic and metabolic difference between the communities. Proteobacteria (e.g., Burkholderia, Pseudomonas are the most abundant lineages in the pristine community, though a significant proportion (>55% of the community is composed of poorly characterized low abundance (individually <1% lineages. The phylogenetic diversity of the pristine community contributed to a broader diversity of metabolic networks than the contaminated community. In addition, the pristine community encodes redundant and mostly complete geochemical cycles distributed over multiple lineages and appears capable of a wide range of metabolic activities. In contrast, many geochemical cycles in the contaminated community appear truncated or minimized due to decreased biodiversity and dominance by Rhodanobacter populations capable of surviving the combination of stresses at the site. These results indicate that the pristine site contains more robust and encodes more functional redundancy than the stressed community, which contributes to more efficient nutrient cycling and adaptability than the stressed community.

  17. Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland.

    Science.gov (United States)

    Lawniczak, Agnieszka Ewa; Zbierska, Janina; Nowak, Bogumił; Achtenberg, Krzysztof; Grześkowiak, Artur; Kanas, Krzysztof

    2016-03-01

    Protected areas due to their long-term protection are expected to be characterized by good water quality. However, in catchments where arable fields dominate, the impact of agriculture on water pollution is still problematic. In Poland, recently, the fertilization level has decreased, mostly for economic reasons. However, this applies primarily to phosphorus and potassium. In order to evaluate the impact of agriculture on water quality in a protected area with a high proportion of arable fields in the aspect of level and type of fertilization, complex monitoring has been applied. The present study was carried out in Wielkopolska National Park and its buffer zone, which are protected under Natura 2000 as Special Areas of Conservation and Special Protection Areas. The aim of the study were (1) to assess the impact of agriculture, with special attention on fertilization, on groundwater, and running water quality and (2) to designate priority areas for implementing nitrogen reduction measures in special attention on protected areas. In our study, high nitrogen concentrations in groundwater and surface waters were detected in the agricultural catchments. The results demonstrate that in the watersheds dominated by arable fields, high nitrogen concentrations in groundwater were measured in comparison to forestry catchments, where high ammonium concentrations were observed. The highest nitrogen concentrations were noted in spring after winter freezing, with a small cover of vegetation, and in the areas with a high level of nitrogen application. In the studied areas, both in the park and its buffer zone, unfavorable N:P and N:K ratios in supplied nutrients were detected. Severe shortage of phosphorus and potassium in applied fertilizers is one of the major factors causing leaching of nitrogen due to limited possibilities of its consumption by plants.

  18. CORRELATION STUDY AMONG WATER QUALITY PARAMETERS OF GROUNDWATER OF VALSAD DISTRICT OF SOUTH GUJARAT(INDIA

    Directory of Open Access Journals (Sweden)

    R. T. Vashi

    2015-09-01

    Full Text Available Groundwater samples were collected from five talukas of Valsad district for one year (from August 2008 to July 2009 and were analyzed for their physicochemical characteristics.  The present investigation is focused on  determination of parameters like pH, Colour, Electrical Conductivity (EC, Total Hardness (TH, Calcium (Ca, Magnesium (Mg, Total Alkalinity (TA, Total Dissolved Solids (TDS, Silica, Chloride, Sulphate, Fluoride, Sodium, Chemical Oxygen Demand (COD and metals like Copper (Cu and Manganese (Mn.  Correlation coefficients were determined to identify the highly correlated parameters and interrelated water quality parameters. Correlation matrix of Valsad district suggests that EC of groundwater is found to be significantly correlated with eight out of seventeen water quality parameters studied.  It may be suggested that the quality of Valsad district can be checked very effectively by controlling EC of water.

  19. Water quality concerns due to forest fires: polycyclic aromatic hydrocarbons (PAH) contamination of groundwater from mountain areas.

    Science.gov (United States)

    Mansilha, C; Carvalho, A; Guimarães, P; Espinha Marques, J

    2014-01-01

    Water quality alterations due to forest fires may considerably affect aquatic organisms and water resources. These impacts are cumulative as a result of pollutants mobilized from fires, chemicals used to fight fire, and postfire responses. Few studies have examined postfire transport into water resources of trace elements, including the polycyclic aromatic hydrocarbons (PAH), which are organic pollutants produced during combustion and are considered carcinogenic and harmful to humans. PAH are also known to adversely affect survival, growth, and reproduction of many aquatic species. This study assessed the effects of forest wildfires on groundwater from two mountain regions located in protected areas from north and central Portugal. Two campaigns to collect water samples were performed in order to measure PAH levels. Fifteen of 16 studied PAH were found in groundwater samples collected at burned areas, most of them at concentrations significantly higher than those found in control regions, indicating aquifer contamination. The total sum of PAH in burned areas ranged from 23.1to 95.1 ng/L with a median of 62.9 ng/L, which is one- to sixfold higher than the average level measured in controls (16.2 ng/L). In addition, in control samples, the levels of light PAH with two to four rings were at higher levels than heavy PAH with five or six rings, thus showing a different profile between control and burned sites. The contribution of wildfires to groundwater contamination by PAH was demonstrated, enabling a reliable assessment of the impacts on water quality and preparation of scientifically based decision criteria for postfire forest management practices.

  20. Ground-Water Quality Reconnaissance, Tutuila, American Samoa, 1989

    Science.gov (United States)

    Eyre, Paul R.

    1994-01-01

    In May and July 1989, 19 ground-water samples were collected from 17 of the 35 water-supply wells on the island of Tutuila, American Samoa. Samples were analyzed for temperature, pH, hardness, specific conductance, turbidity, total and fecal coliform bacteria, major ions, major nutrients, 12 common metals, and 66 organic compounds. Chemical analysis of the water samples shows that, after chlorination, sampled ground water was in compliance with U.S. Environmental Protection Agency primary drinking-water regulations. Fourteen of the 19 samples were collected before the water was chlorinated in the water distribution system, and five were collected after chlorination. Seven of the 14 unchlorinated samples contained coliform bacteria and five of the seven contained fecal coliform bacteria, indicating potential contamination from disease-causing pathogens. All five of the chlorinated samples contained trace levels of trihalomethanes, but at concentrations below U.S. Environmental Protection Agency maximum contaminant levels. Trihalomethanes were the only organic constituents detected. Concentrations of total dissolved solids in the 19 samples ranged from about 100 to 2,400 milligrams per liter. Four samples had concentrations of total dissolved solids and chloride that exceeded the U.S. Environmental Protection Agency secondary drinking-water regulations of 500 and 250 milligrams per liter, respectively. For samples with less than 300 milligrams per liter of dissolved solids, sodium, calcium, magnesium, and bicarbonate were the dominant ions, indicating that they were derived from dissolution of minerals and carbon-dioxide enrichment of recharge water. For samples with greater than 300 milligrams per liter of dissolved solids, sodium and chloride were the dominant ions, indicating increased mixing of ground water with seawater.

  1. Impact of mixing chemically heterogeneous groundwaters on the sustainability of an open-loop groundwater heat pump

    Science.gov (United States)

    Burté, L.; Farasin, J.; Cravotta, C., III; Gerard, M. F.; Cotiche Baranger, C.; Aquilina, L.; Le Borgne, T.

    2017-12-01

    Geothermal systems using shallow aquifers are commonly used for heating and cooling. The sustainability of these systems can be severely impacted by the occurrence of clogging process. The geothermal loop operation (including pumping of groundwater, filtering and heat extraction through exchangers and cooled water injection) can lead to an unexpected biogeochemical reactivity and scaling formation that can ultimately lead to the shutdown of the geothermal doublet. Here, we report the results of investigations carried out on a shallow geothermal doublet (dynamic). Hydrochemical data collected at the pumping well showed that groundwater was chemically heterogeneous long the 11 meters well screen. While the aquifer was dominantly oxic, a localized inflow of anoxic water was detected and evaluated to produce about 40% of the total flow . The mixture of chemically heterogeneous water induced by pumping lead to the oxidation of reductive species and thus to the formation of biogenic precipitates responsible for clogging. The impact of pumping waters of different redox potential and chemical characteristics was quantified by numerical modeling using PHREEQC. These results shows that natural chemical heterogeneity can occur at a small scale in heterogeneous aquifers and highlight the importance of their characterization during the production well testing and the geothermal loop operation in order to take preventive measures to avoid clogging.

  2. Transient Inverse Calibration of Hanford Site-Wide Groundwater Model to Hanford Operational Impacts - 1943 to 1996

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Charles R.; Bergeron, Marcel P.; Wurstner, Signe K.; Thorne, Paul D.; Orr, Samuel; Mckinley, Mathew I.

    2001-05-31

    This report describes a new initiative to strengthen the technical defensibility of predictions made with the Hanford site-wide groundwater flow and transport model. The focus is on characterizing major uncertainties in the current model. PNNL will develop and implement a calibration approach and methodology that can be used to evaluate alternative conceptual models of the Hanford aquifer system. The calibration process will involve a three-dimensional transient inverse calibration of each numerical model to historical observations of hydraulic and water quality impacts to the unconfined aquifer system from Hanford operations since the mid-1940s.

  3. Groundwater quality assessment using geoelectrical and geochemical approaches: case study of Abi area, southeastern Nigeria

    Science.gov (United States)

    Ebong, Ebong D.; Akpan, Anthony E.; Emeka, Chimezie N.; Urang, Job G.

    2017-09-01

    The electrical resistivity technique which involved the Schlumberger depth sounding method and geochemical analyses of water samples collected from boreholes was used to investigate the suitability of groundwater aquifers in Abi for drinking and irrigation purposes. Fifty randomly located electrical resistivity data were collected, modeled, and interpreted after calibration with lithologic logs. Ten borehole water samples were collected and analysed to determine anion, cation concentrations and some physical and chemical parameters, such as water colour, temperature, total dissolved solids, and electrical conductivity. The results show that the lithostratigraphy of the study area is composed of sands, sandstones (fractured, consolidated and loosed), siltstones, shales (compacted and fractured) of the Asu River Group, Eze-Aku Formation which comprises the aquifer units, and the Nkporo Shale Formation. The aquifer conduits are known to be rich in silicate minerals, and the groundwater samples in some locations show a significant amount of Ca2+, Mg2+, and Na+. These cations balanced the consumption of H+ during the hydrolytic alteration of silicate minerals. The geochemical analysis of groundwater samples revealed dominant calcium-magnesium-carbonate-bicarbonate water facies. Irrigation water quality parameters, such as sodium absorption ratio, percentage of sodium, and permeability index, were calculated based on the physico-chemical analyses. The groundwater quality was observed to be influenced by the interaction of some geologic processes but was classified to be good to excellent, indicating its suitability for domestic and irrigation purposes.

  4. Technical summary of groundwater quality protection program at the Savannah River Site, 1952--1986

    International Nuclear Information System (INIS)

    Heffner, J.D.

    1991-01-01

    This report provides information regarding the status of and groundwater quality at the waste sites at the Department of Energy's (DOE) Savannah River Site (SRS). Specific information provided for each waste site at SRS includes its location, size, inventory (when known), and history. Many waste sites at SRS are considered to be of little environmental concern because they contain nontoxic or inert material such as construction rubble and debris. Other waste sites, however, either are known to have had an effect on groundwater quality or are suspected of having the potential to affect groundwater. Monitoring wells have been installed at most of these sites; monitoring wells are scheduled for installation at the remaining sites. Results of the groundwater analyses from these monitoring wells, presented in the appendices, are used in the report to help identify potential contaminants of concern, if any, at each waste site. The list of actions proposed for each waste site in Christensen and Gordon's 1983 report are summarized, and an update is provided for each site. Planned actions for the future are also outlined

  5. Tailoring groundwater quality monitoring to vulnerability: a GIS procedure for network design.

    Science.gov (United States)

    Preziosi, E; Petrangeli, A B; Giuliano, G

    2013-05-01

    Monitoring networks aiming to assess the state of groundwater quality and detect or predict changes could increase in efficiency when fitted to vulnerability and pollution risk assessment. The main purpose of this paper is to describe a methodology aiming at integrating aquifers vulnerability and actual levels of groundwater pollution in the monitoring network design. In this study carried out in a pilot area in central Italy, several factors such as hydrogeological setting, groundwater vulnerability, and natural and anthropogenic contamination levels were analyzed and used in designing a network tailored to the monitoring objectives, namely, surveying the evolution of groundwater quality relating to natural conditions as well as to polluting processes active in the area. Due to the absence of an aquifer vulnerability map for the whole area, a proxi evaluation of it was performed through a geographic information system (GIS) methodology, leading to the so called "susceptibility to groundwater quality degradation". The latter was used as a basis for the network density assessment, while water points were ranked by several factors including discharge, actual contamination levels, maintenance conditions, and accessibility for periodical sampling in order to select the most appropriate to the network. Two different GIS procedures were implemented which combine vulnerability conditions and water points suitability, producing two slightly different networks of 50 monitoring points selected out of the 121 candidate wells and springs. The results are compared with a "manual" selection of the points. The applied GIS procedures resulted capable to select the requested number of water points from the initial set, evaluating the most confident ones and an appropriate density. Moreover, it is worth underlining that the second procedure (point distance analysis [PDA]) is technically faster and simpler to be performed than the first one (GRID + PDA).

  6. An Assessment of Peri-Urban Groundwater Quality from Shallow Dug Wells, Mzuzu, Malawi

    Science.gov (United States)

    Holm, R.; Felsot, A.

    2012-12-01

    Throughout Malawi, governmental, non-governmental, religious and civic organizations are targeting the human need for water. Diarrheal diseases, often associated with unsafe drinking water, are a leading cause of mortality in children under five in Malawi with over 6,000 deaths per year (World Health Organization, 2010). From January to March 2012, a field study was undertaken in Malawi to study water quality and develop a public health risk communication strategy. The region studied, Area 1B, represents a comparatively new peri-urban area on the edge of Mzuzu city. Area 1B is serviced by a piped municipal water supply, but many shallow dug wells are also used for household water. Groundwater samples were collected from 30 shallow dug well sites and analyzed for nitrate, total coliform, Escherichia coli, total hardness, total alkalinity and pH. In addition to water quality analyses, a structured household questionnaire was administered to address water use, sanitation, health, consumption patterns, and socioeconomics. Results showed that more than half of the groundwater samples would be considered of unacceptable quality based on World Health Organization (WHO) standards for E. coli contamination. Low levels of nitrate were found in groundwater, but only one well exceeded WHO standards. The structured questionnaire revealed that some residents were still consuming groundwater despite the access to safer municipal water. In general, the widespread E. coli contamination was not statistically correlated with well depth, latrine proximity, or surface features. Similarly, nitrate concentrations were not significantly correlated with proximity to latrines. On the other hand, nitrate was correlated with well depth, which is expected given the high potential for leaching of anionic highly water soluble compounds. E. coli was significantly correlated with nitrate concentration. Projects targeting the need for clean water need to recognize that households with access to a

  7. Using vadose zone data and spatial statistics to assess the impact of cultivated land and dairy waste lagoons on groundwater contamination

    Science.gov (United States)

    Baram, S.; Ronen, Z.; Kurtzman, D.; Peeters, A.; Dahan, O.

    2013-12-01

    Land cultivation and dairy waste lagoons are considered to be nonpoint and point sources of groundwater contamination by chloride (Cl-) and nitrate (NO3-). The objective of this work is to introduce a methodology to assess the past and future impacts of such agricultural activities on regional groundwater quality. The method is based on mass balances and on spatial statistical analysis of Cl- and NO3-concentration distributions in the saturated and unsaturated zones. The method enables quantitative analysis of the relation between the locations of pollution point sources and the spatial variability in Cl- and NO3- concentrations in groundwater. The method was applied to the Beer-Tuvia region, Israel, where intensive dairy farming along with land cultivation has been practiced for over 50 years above the local phreatic aquifer. Mass balance calculations accounted for the various groundwater recharge and abstraction sources and sinks in the entire region. The mass balances showed that leachates from lagoons and the cultivated land have contributed 6.0 and 89.4 % of the total mass of Cl- added to the aquifer and 12.6 and 77.4 % of the total mass of NO3-. The chemical composition of the aquifer and vadose zone water suggested that irrigated agricultural activity in the region is the main contributor of Cl- and NO3- to the groundwater. A low spatial correlation between the Cl- and NO3- concentrations in the groundwater and the on-land location of the dairy farms strengthened this assumption, despite the dairy waste lagoon being a point source for groundwater contamination by Cl- and NO3-. Results demonstrate that analyzing vadose zone and groundwater data by spatial statistical analysis methods can significantly contribute to the understanding of the relations between groundwater contaminating sources, and to assessing appropriate remediation steps.

  8. Quality-assurance and data management plan for groundwater activities by the U.S. Geological Survey in Kansas, 2014

    Science.gov (United States)

    Putnam, James E.; Hansen, Cristi V.

    2014-01-01

    As the Nation’s principle earth-science information agency, the U.S. Geological Survey (USGS) is depended on to collect data of the highest quality. This document is a quality-assurance plan for groundwater activities (GWQAP) of the Kansas Water Science Center. The purpose of this GWQAP is to establish a minimum set of guidelines and practices to be used by the Kansas Water Science Center to ensure quality in groundwater activities. Included within these practices are the assignment of responsibilities for implementing quality-assurance activities in the Kansas Water Science Center and establishment of review procedures needed to ensure the technical quality and reliability of the groundwater products. In addition, this GWQAP is intended to complement quality-assurance plans for surface-water and water-quality activities and similar plans for the Kansas Water Science Center and general project activities throughout the USGS. This document provides the framework for collecting, analyzing, and reporting groundwater data that are quality assured and quality controlled. This GWQAP presents policies directing the collection, processing, analysis, storage, review, and publication of groundwater data. In addition, policies related to organizational responsibilities, training, project planning, and safety are presented. These policies and practices pertain to all groundwater activities conducted by the Kansas Water Science Center, including data-collection programs, interpretive and research projects. This report also includes the data management plan that describes the progression of data management from data collection to archiving and publication.

  9. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-02-01

    This annual groundwater report contains groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the Chestnut Ridge Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline

  10. Weekly variations of discharge and groundwater quality caused by intermittent water supply in an urbanized karst catchment

    Science.gov (United States)

    Grimmeisen, Felix; Zemann, Moritz; Goeppert, Nadine; Goldscheider, Nico

    2016-06-01

    Leaky sewerage and water distribution networks are an enormous problem throughout the world, specifically in developing countries and regions with water scarcity. Especially in many arid and semi-arid regions, intermittent water supply (IWS) is common practice to cope with water shortage. This study investigates the combined influence of urban activities, IWS and water losses on groundwater quality and discusses the implications for water management. In the city of As-Salt (Jordan), local water supply is mostly based on groundwater from the karst aquifer that underlies the city. Water is delivered to different supply zones for 24, 48 or 60 h each week with drinking water losses of around 50-60%. Fecal contamination in groundwater, mostly originating from the likewise leaky sewer system is a severe challenge for the local water supplier. In order to improve understanding of the local water cycle and contamination dynamics in the aquifer beneath the city, a down gradient spring and an observation well were chosen to identify contaminant occurrence and loads. Nitrate, Escherichia coli, spring discharge and the well water level were monitored for 2 years. Autocorrelation analyses of time series recorded during the dry season revealed weekly periodicity of spring discharge (45 ± 3.9 L s-1) and NO3-N concentrations (11.4 ± 0.8 mg L-1) along with weekly varying E. coli levels partly exceeding 2.420 MPN 100 mL-1. Cross-correlation analyses demonstrate a significant and inverse correlation of nitrate and discharge variations which points to a periodic dilution of contaminated groundwater by freshwater from the leaking IWS being the principal cause of the observed fluctuations. Contaminant inputs from leaking sewers appear to be rather constant. The results reveal the distinct impact of leaking clean IWS on the local groundwater and subsequently on the local water supply and therefore demonstrate the need for action regarding the mitigation of groundwater contamination and

  11. Impact of water allocation strategies to manage groundwater resources in Western Australia: Equity and efficiency considerations

    Science.gov (United States)

    Iftekhar, Md Sayed; Fogarty, James

    2017-05-01

    In many parts of the world groundwater is being depleting at an alarming rate. Where groundwater extraction is licenced, regulators often respond to resource depletion by reducing all individual licences by a fixed proportion. This approach can be effective in achieving a reduction in the volume of water extracted, but the approach is not efficient. In water resource management the issue of the equity-efficiency trade-off has been explored in a number of contexts, but not in the context of allocation from a groundwater system. To contribute to this knowledge gap we conduct an empirical case study for Western Australia's most important groundwater system: the Gnangara Groundwater System (GGS). Resource depletion is a serious issue for the GGS, and substantial reductions in groundwater extraction are required to stabilise the system. Using an individual-based farm optimization model we study both the overall impact and the distributional impact of a fixed percentage water allocation cut to horticulture sector licence holders. The model is parameterised using water licence specific data on farm area and water allocation. The modelling shows that much of the impact of water allocation reductions can be mitigated through changing the cropping mix and the irrigation technology used. The modelling also shows that the scope for gains through the aggregation of holdings into larger farms is much greater than the potential losses due to water allocation reductions. The impact of water allocation cuts is also shown to impact large farms more than small farms. For example, the expected loss in net revenue per ha for a 10-ha farm is around three times the expected loss per ha for a 1-ha farm; and the expected loss per ha for a 25-ha farm is around five times the expected loss per ha for a 1-ha farm.

  12. Assessment of groundwater quality in wells within the Bombali ...

    African Journals Online (AJOL)

    Animal Research International ... (temperature, turbidity, conductivity, total dissolved solids and salinity), chemical (pH, nitrate-nitrogen, sulphate, calcium, ammonia, fluoride, aluminium, iron, copper and manganese) parameters using potable water testing kit; and bacteriological (faecal and non-faecal coliforms) qualities.

  13. Investigation of Seasonal Variation of groundwater Quality in Jimeta ...

    African Journals Online (AJOL)

    Sadiq

    GLOBAL JOURNAL OF GEOLOGICAL SCIENCES VOL, 10, NO.1, 2012 15-36 ... chloride exceeded the recommended standards of drinking water quality in the rainy season from the shallow and ... chloride, and decrease in ammonium ion and coliform with water depth in shallow aquifer in the dry season, and COD, nitrate ...

  14. Classification and quality of groundwater supplies in the Lower ...

    African Journals Online (AJOL)

    This paper compares data gathered from a study of the chemical and bacteriological quality of drinking-water from 28 rural borehole supplies in Chikhwawa, Malawi, with a tiered classification scheme (Class 0 being ideal through to Class III being unsuitable for drinking without prior treatment) developed by investigators ...

  15. groundwater quality and its suitability for domestic and agricultural ...

    African Journals Online (AJOL)

    PROF EKWUEME

    boreholes analysed for some physical and chemical constituents including electrical conductance, pH, total dissolved solids (TDS), alkalinity, hardness, ... useful in that it could provide baseline water quality data which could be used to evaluate the ... The low-lying alluvial plains are characterised by vegetation consisting of ...

  16. Ground-water quality beneath an urban residential and commercial area, Montgomery, Alabama, 1999-2000

    Science.gov (United States)

    Robinson, James L.

    2002-01-01

    The Black Warrior River aquifer, which is composed of the Coker, Gordo, and Eutaw Formations, supplies more than 50 percent of the ground water used for public water supply in the Mobile River Basin. The city of Montgomery, Alabama, is partially built upon a recharge area for the Black Warrior River aquifer, and is one of many major population centers that depend on the Black Warrior River aquifer for public water supply. To represent the baseline ground-water quality in the Black Warrior River aquifer, water samples were collected from 30 wells located in a low-density residential or rural setting; 9 wells were completed in the Coker Formation, 9 wells in the Gordo Formation, and 12 wells in the Eutaw Formation. To describe the ground-water quality beneath Montgomery, Alabama, water samples also were collected from 30 wells located in residential and commercial areas of Montgomery, Alabama; 16 wells were completed in the Eutaw Formation, 8 wells in alluvial deposits, and 6 wells in terrace deposits. The alluvial and terrace deposits directly overlie the Eutaw Formation with little or no hydraulic separation. Ground-water samples collected from both the rural and urban wells were analyzed for physical properties, major ions, nutrients, metals, volatile organic compounds, and pesticides. Samples from the urban wells also were analyzed for bacteria, chlorofluorocarbons, dissolved gases, and sulfur hexafluoride. Ground-water quality beneath the urban area was compared to baseline water quality in the Black Warrior River aquifer.Compared to the rural wells, ground-water samples from urban wells contained greater concentrations or more frequent detections of chloride and nitrate, and the trace metals aluminium, chromium, cobalt, copper, nickel, and zinc. Pesticides and volatile organic compounds were detected more frequently and in greater concentrations in ground-water samples collected from urban wells than in ground-water samples from rural wells.The Spearman rho

  17. Quality modeling of drinking groundwater using GIS in rural communities, northwest of Iran.

    Science.gov (United States)

    Mosaferi, Mohammad; Pourakbar, Mojtaba; Shakerkhatibi, Mohammad; Fatehifar, Esmaeil; Belvasi, Mehdi

    2014-01-01

    Given the importance of groundwater resources in water supply, this work aimed to study quality of drinking groundwater in rural areas in Tabriz county, northwest of Iran. Thirty two groundwater samples from different areas were collected and analyzed in terms of general parameters along with 20 heavy metals (e.g. As, Hg and …). The data of the analyses were applied as an attribute database for preparing thematic maps and showing water quality parameters. Multivariate statistical techniques, including principal component analysis (PCA) and hierarchical cluster analysis (CA) were used to compare and evaluate water quality. The findings showed that hydrochemical faces of the groundwater were of calcium-bicarbonate type. EC values were from 110 to 1750 μs/cm, in which concentration of salts was high in the east and a zone in north of the studied area. Hardness was from 52 to 476 mg/l and CaCO3 with average value of 185.88 ± 106.56 mg/L indicated hard water. Dominant cations and anions were Ca(2+) > Na(+) > Mg(2+) > K(+) and HCO3 (-) > Cl(-) > SO4 (2-) > NO3 (2), respectively. In the western areas, arsenic contamination was observed as high as 69 μg/L. Moreover, mercury was above the standard level in one of the villages. Eskandar and Olakandi villages had the lowest quality of drinking water. In terms of CA, sampling sites were classified into four clusters of similar water quality and PCA demonstrated that 3 components could cover 84.3% of the parameters. For investigating arsenic anomaly, conducting a comprehensive study in the western part of studied area is strongly recommended.

  18. Hydrochemical characteristics and spatial analysis of groundwater quality in parts of Bundelkhand Massif, India

    Science.gov (United States)

    Ali, Syed Ahmad; Ali, Umair

    2018-03-01

    The tribulations of water quality have become more serious than the quantity, as the environmental evils are getting more severe day by day in different parts of the world. Large number of components like soil, geology, sewage disposal, effluents and other environmental conditions in which the water tends to reside or move and interact with ground and biological characteristics, greatly persuade the groundwater quality. Therefore, hydrochemical study has been carried out graphically and spatially in GIS environment in part of Bundelkhand Massif. The hydrochemical study exposes the water quality by measuring the concentration of parameters and comparing them with the drinking water and irrigation standards. Groundwater samples have been collected and analysed for physiochemical characteristics in order to understand the hydrochemistry of the water. The results revealed that ground water is alkaline in nature and total hardness observed in all samples falls under moderately hard to very hard category. At some places higher concentration of Cl- could be dangerous from health point of view. Major hydrochemical facies were identified using Piper Trilinear diagram and Durov diagrams, etc. Analysis of different determinations such as sodium adsorption ratio, residual sodium carbonate and per cent sodium revealed that most of the samples are unsuitable for irrigation. It was also observed that the quality of groundwater was not suitable for drinking purpose in industrial and irrigation area. In the area, few sampling sites showed unsuitability because of influences of urban and industrial waste discharge, aquifer material mineralogy, other anthropogenic activities and increased human interventions.

  19. Impact of climate changes during the last 5 million years on groundwater in basement aquifers.

    Science.gov (United States)

    Aquilina, Luc; Vergnaud-Ayraud, Virginie; Les Landes, Antoine Armandine; Pauwels, Hélène; Davy, Philippe; Pételet-Giraud, Emmanuelle; Labasque, Thierry; Roques, Clément; Chatton, Eliot; Bour, Olivier; Ben Maamar, Sarah; Dufresne, Alexis; Khaska, Mahmoud; Le Gal La Salle, Corinne; Barbecot, Florent

    2015-09-22

    Climate change is thought to have major effects on groundwater resources. There is however a limited knowledge of the impacts of past climate changes such as warm or glacial periods on groundwater although marine or glacial fluids may have circulated in basements during these periods. Geochemical investigations of groundwater at shallow depth (80-400 m) in the Armorican basement (western France) revealed three major phases of evolution: (1) Mio-Pliocene transgressions led to marine water introduction in the whole rock porosity through density and then diffusion processes, (2) intensive and rapid recharge after the glacial maximum down to several hundred meters depths, (3) a present-day regime of groundwater circulation limited to shallow depth. This work identifies important constraints regarding the mechanisms responsible for both marine and glacial fluid migrations and their preservation within a basement. It defines the first clear time scales of these processes and thus provides a unique case for understanding the effects of climate changes on hydrogeology in basements. It reveals that glacial water is supplied in significant amounts to deep aquifers even in permafrosted zones. It also emphasizes the vulnerability of modern groundwater hydrosystems to climate change as groundwater active aquifers is restricted to shallow depths.

  20. Importance of Rocks and Their Weathering Products on Groundwater Quality in Central-East Cameroon

    Directory of Open Access Journals (Sweden)

    Merlin Gountié Dedzo

    2017-04-01

    Full Text Available The present work highlights the influence of lithology on water quality in Méiganga and its surroundings. The main geological formations in this region include gneiss, granite and amphibolite. The soils developed on these rocks are of ABC type, which are acidic to slightly acidic. Electrical conductivity (EC, organic matter, total nitrogen, nitrate-nitrogen, sulfate, chloride, phosphorus and exchangeable base values were low to very low in the soil samples. Groundwater samples were investigated for their physicochemical characteristics. The wide ranges of EC values (15.1–436 µS/cm and total dissolved solids (9–249 mg/L revealed the heterogeneous distribution of hydrochemical processes within the groundwater of the area. The relative abundance of major dissolved species (mg/L was Ca2+ > Na+ > Mg2+ > K+ for cations and HCO3− >> NO3− > Cl− > SO42− for anions. All the groundwater samples were soft, with total hardness values (2.54–136.65 mg/L below the maximum permissible limits of the World Health Organization (WHO guideline. The majority of water samples (67% were classified as mixed CaMg-HCO3 type. Alkaline earth metal contents dominated those of alkali metals in 66.66% of samples. Thus, for the studied groundwater, Mg2+ and Ca2+ ion adsorption by clay minerals was almost nonexistent; this implies their release into the solution, which accounts for their high concentrations compared to alkali metals. Ion geochemistry revealed that water-rock interactions (silicate weathering and ion exchange processes regulated the groundwater chemistry. One water sample points towards the evaporation domain of this diagram, indicating that groundwater probably does not originate from a deeper system. Kaolinite is the most stable secondary phase in the waters in the study area, in accordance with the geochemical process of monosiallitization, which predominated in the humid tropical zone.

  1. Groundwater quality, age, and susceptibility and vulnerability to nitrate contamination with linkages to land use and groundwater flow, Upper Black Squirrel Creek Basin, Colorado, 2013

    Science.gov (United States)

    Wellman, Tristan P.; Rupert, Michael G.

    2016-03-03

    The Upper Black Squirrel Creek Basin is located about 25 kilometers east of Colorado Springs, Colorado. The primary aquifer is a productive section of unconsolidated deposits that overlies bedrock units of the Denver Basin and is a critical resource for local water needs, including irrigation, domestic, and commercial use. The primary aquifer also serves an important regional role by the export of water to nearby communities in the Colorado Springs area. Changes in land use and development over the last decade, which includes substantial growth of subdivisions in the Upper Black Squirrel Creek Basin, have led to uncertainty regarding the potential effects to water quality throughout the basin. In response, the U.S. Geological Survey, in cooperation with Cherokee Metropolitan District, El Paso County, Meridian Service Metropolitan District, Mountain View Electric Association, Upper Black Squirrel Creek Groundwater Management District, Woodmen Hills Metropolitan District, Colorado State Land Board, and Colorado Water Conservation Board, and the stakeholders represented in the Groundwater Quality Study Committee of El Paso County conducted an assessment of groundwater quality and groundwater age with an emphasis on characterizing nitrate in the groundwater.

  2. Evaluation of groundwater quality in and around Peenya industrial area of Bangalore, South India using GIS techniques.

    Science.gov (United States)

    Pius, Anitha; Jerome, Charmaine; Sharma, Nagaraja

    2012-07-01

    Groundwater resource forms a significant component of the urban water supply. Declining groundwater levels in Bangalore Urban District is generally due to continuous overexploitation during the last two decades or more. There is a tremendous increase in demand in the city for good quality groundwater resource. The present study monitors the groundwater quality using geographic information system (GIS) techniques for a part of Bangalore metropolis. Thematic maps for the study area are prepared by visual interpretation of SOI toposheets on 1:50,000 scale using MapInfo software. Physicochemical analysis data of the groundwater samples collected at predetermined locations form the attribute database for the study, based on which spatial distribution maps of major water quality parameters are prepared using MapInfo GIS software. Water quality index was then calculated by considering the following water quality parameters--pH, total dissolved solids, total hardness, calcium hardness, magnesium hardness, alkalinity, chloride, nitrate and sulphate to find the suitability of water for drinking purpose. The water quality index for these samples ranged from 49 to 502. The high value of water quality index reveals that most of the study area is highly contaminated due to excessive concentration of one or more water quality parameters and that the groundwater needs pretreatment before consumption.

  3. Social Perception of Public Water Supply Network and Groundwater Quality in an Urban Setting Facing Saltwater Intrusion and Water Shortages.

    Science.gov (United States)

    Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem

    2017-04-01

    Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.

  4. Social Perception of Public Water Supply Network and Groundwater Quality in an Urban Setting Facing Saltwater Intrusion and Water Shortages

    Science.gov (United States)

    Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem

    2017-04-01

    Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.

  5. Groundwater quality assessment using the water quality pollution indices in Toyserkan Plain

    Directory of Open Access Journals (Sweden)

    Soheil Sobhanardakani

    2017-03-01

    Full Text Available Background: Iran is located within the dry and semi dry regions, thus almost 90% of the required water is secured via the use of groundwater. Owing to the increasing pollution of water resources, this study was performed to evaluate water quality pollution indices for heavy metals (As, Zn, Pb and Cu contamination monitoring in Toyserkan Plain during spring and summer in 2012. Methods: A total of 20 ground water wells were chosen randomly. The samples were filtered (0.45 μm and kept cool in polyethylene bottles. Samples were taken for the analysis of metals, the former was acidified with HNO3 to pH lower than 2. Metal concentrations were determined using ICP-OES. Results: The results revealed that the mean values of contamination index (Cd, heavy metal pollution index (HPI and heavy metal evaluation index (HEI in samples for spring season were -2.81, 9.74 and 1.20, respectively and were -2.67, 9.51 and 1.32, respectively in samples for summer season and this indicates low contamination levels. Comparing the mean concentrations of the evaluated metals with WHO permissible limits demonstrated a significant difference (P < 0.05. Thus, the mean concentrations of the metals were significantly lower than the permissible limits. Conclusion: Although the heavy metal pollution of the ground water in Toyserkan Plain is not higher than permissible limits, the irregular and long-term utilization of agricultural inputs, use of wastewater and sewage sludge in agriculture, over utilization of organic fertilizers and establishment of pollutant industries can threaten the ground water, and cause irreversible damages in this area

  6. Water scarcity, groundwater and base flow in Dutch catchments: effects of climate and human impact

    Science.gov (United States)

    Hendriks, D. M. D.; van Ek, R.; Kuijper, M. J. M.

    2012-04-01

    During recent years (2003, 2006 en 2008) water boards in the Netherlands have had to cope with drought and water scarcity. Because of human impacts in the area, like groundwater abstraction and extensive drainage, the upper parts of streams run dry during low precipitation periods. The lack of water is a risk for the environmental flow needs of the streams. In addition, agricultural areas encounter problems due to low groundwater levels and limited availability of water for spray irrigation. Such problems are likely to occur more frequent in the future, because of increasing frequency of dry spells, reduced water intake possibilities from large rivers and a higher demand for water for agriculture and other land use functions. Several studies have been carried out to investigate the possibilities for structural improvement of groundwater and base flow conditions, thereby improving the situation of agriculture and ecology (Hendriks et al., 2010; Kuijper et al., 2012). The effects of both climate change and unsustainable use of water resources on base flow were assessed at various scales. For this purpose, spatially distributed groundwater models with fine meshed grids (25x25 m) were used to simultaneously assess the effects of climate and human impacts on both groundwater conditions and surface water discharge. Climatic effects were assessed by comparison of meteorologically dry and average years, as well as through climate scenarios from the Royal Dutch Weather Service (KNMI). Human impacts were assessed by modeling various scenarios with reduced or increased drainage and groundwater abstraction, including a scenario of the undisturbed situation. Also, the impact of stream morphology was studied. The suitability of a new modeling approach (Van der Velde et al., 2009), allowing a fast assessment of discharge with high accuracy, was tested to improve discharge simulations from groundwater models. Model results show that extensive drainage systems have a large impact

  7. Tailings From Mining Activities, Impact on Groundwater, and Remediation

    Directory of Open Access Journals (Sweden)

    Khalid Al-Rawahy

    2001-12-01

    Full Text Available Effluent wastes from mining operations and beneficiation processes are comprized mostly of the following pollutants: total suspended solids (TTS, alkalinity or acidity (pH, settleable solids, iron in ferrous mining, and dissolved metals in nonferrous mining. Suspended solids consist of small particles of solid pollutants that resist separation by conventional means. A number of dissolved metals are considered toxic pollutants. The major metal pollutants present in ore mining and beneficiation waste waters include arsenic, cadmium, copper, lead, mercury, nickel, and zinc. Tailings ponds are used for both the disposal of solid waste and the treatment of waste-water streams. The supernatant decanted from these ponds contains suspended solids and, at times, process reagents introduced to the water during ore beneficiation. Leakage of material from tailings pond into groundwater is one possible source of water pollution in the mining industry. Percolation of waste-water from impoundment may occur if tailings ponds are not properly designed. This paper addresses potential groundwater pollution due to effluent from mining activities, and the possible remediation options.

  8. Hydrogeology, groundwater flow, and groundwater quality of an abandoned underground coal-mine aquifer, Elkhorn Area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; McCoy, Kurt J.; Britton, James Q.; Blake, B.M.

    2017-01-01

    The Pocahontas No. 3 coal seam in southern West Virginia has been extensively mined by underground methods since the 1880’s. An extensive network of abandoned mine entries in the Pocahontas No. 3 has since filled with good-quality water, which is pumped from wells or springs discharging from mine portals (adits), and used as a source of water for public supplies. This report presents results of a three-year investigation of the geology, hydrology, geochemistry, and groundwater flow processes within abandoned underground coal mines used as a source of water for public supply in the Elkhorn area, McDowell County, West Virginia. This study focused on large (> 500 gallon per minute) discharges from the abandoned mines used as public supplies near Elkhorn, West Virginia. Median recharge calculated from base-flow recession of streamflow at Johns Knob Branch and 12 other streamflow gaging stations in McDowell County was 9.1 inches per year. Using drainage area versus mean streamflow relationships from mined and unmined watersheds in McDowell County, the subsurface area along dip of the Pocahontas No. 3 coal-mine aquifer contributing flow to the Turkey Gap mine discharge was determined to be 7.62 square miles (mi2), almost 10 times larger than the 0.81 mi2 surface watershed. Results of this investigation indicate that groundwater flows down dip beneath surface drainage divides from areas up to six miles east in the adjacent Bluestone River watershed. A conceptual model was developed that consisted of a stacked sequence of perched aquifers, controlled by stress-relief and subsidence fractures, overlying a highly permeable abandoned underground coal-mine aquifer, capable of substantial interbasin transfer of water. Groundwater-flow directions are controlled by the dip of the Pocahontas No. 3 coal seam, the geometry of abandoned mine workings, and location of unmined barriers within that seam, rather than surface topography. Seven boreholes were drilled to intersect

  9. Assessment of hydro-geochemistry and groundwater quality of Rajshahi City in Bangladesh

    Science.gov (United States)

    Mostafa, M. G.; Uddin, S. M. Helal; Haque, A. B. M. H.

    2017-12-01

    The study was carried out to understand the hydro-geochemistry and ground water quality in the Rajshahi City of Bangladesh. A total of 240 groundwater samples were collected in 2 years, i.e., 2009 and 2010 covering the pre-monsoon, monsoon and post-monsoon seasons. Aquifer soil samples were collected from 30 locations during the monsoon in 2000. All the samples were analyzed for various physicochemical parameters according to standard methods of analysis, these includes pH, electrical conductivity, total dissolved solids, total hardness, and total alkalinity, major cations such as Na+, K+, Ca2+, Mg2+, and Fe2+, major anions such as HCO3 -, NO3 -, Cl-, and SO4 2- and heavy metals such as Mn, Zn, Cu, As, Cd and Pb. The results illustrated that the groundwater was slightly acidic to neutral in nature, total hardness observed in all samples fall under the hard to a very hard category. The bicarbonate and calcium concentration in the groundwater exceeded the permissible limits may be due to the dissolution of calcite. The concentration of calcium, iron, manganese, arsenic and lead were far above the permissible limit in most of the shallow tube well samples. The study found that the major hydrochemical facies was identified to be calcium-bicarbonate-type (CaHCO3). A higher concentration of metals including Fe, Mn, As and Pb was found indicating various health hazards. The rock-water interaction was the major geochemical process controlling the chemistry of groundwater in the study area. The study results revealed that the quality of the groundwater in Rajshahi City area was of great concern and not suitable for human consumption without adequate treatment.

  10. Groundwater quality in the Madera and Chowchilla subbasins of the San Joaquin Valley, California

    Science.gov (United States)

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2013-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The Madera and Chowchilla subbasins of the San Joaquin Valley constitute one of the study units being evaluated. The Madera-Chowchilla study unit is about 860 square miles and consists of the Madera and Chowchilla groundwater subbasins of the San Joaquin Valley Basin (California Department of Water Resources, 2003; Shelton and others, 2009). The study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 11 to 15 inches, most of which occurs between November and February. The main surface-water features in the study unit are the San Joaquin, Fresno, and Chowchilla Rivers, and the Madera and Chowchilla canals. Land use in the study unit is about 69 percent (%) agricultural, 28% natural (mainly grasslands), and 3% urban. The primary crops are orchards and vineyards. The largest urban area is the city of Madera. The primary aquifer system is defined as those parts of the aquifer corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. In the Madera-Chowchilla study unit, these wells typically are drilled to depths between 200 and 800 feet, consist of a solid casing from land surface to a depth of about 140 to 400 feet, and are perforated below the solid casing. Water quality in the primary aquifer system may differ from that in the shallower and deeper parts of the aquifer system. The primary aquifer system in the study unit consists of Quaternary-age alluvial-fan and fluvial deposits that were formed by the rivers draining the Sierra Nevada. Sediments consist of gravels, sands

  11. Hydrogeochemical characterization and groundwater quality assessment in intruded coastal brine aquifers (Laizhou Bay, China).

    Science.gov (United States)

    Zhang, Xiaoying; Miao, Jinjie; Hu, Bill X; Liu, Hongwei; Zhang, Hanxiong; Ma, Zhen

    2017-09-01

    The aquifer in the coastal area of the Laizhou Bay is affected by salinization processes related to intense groundwater exploitation for brine resource and for agriculture irrigation during the last three decades. As a result, the dynamic balances among freshwater, brine, and seawater have been disturbed and the quality of groundwater has deteriorated. To fully understand the groundwater chemical distribution and evolution in the regional aquifers, hydrogeochemical and isotopic studies have been conducted based on the water samples from 102 observation wells. Groundwater levels and salinities in four monitoring wells are as well measured to inspect the general groundwater flow and chemical patterns and seasonal variations. Chemical components such as Na + , K + , Ca 2+ , Mg 2+ , Sr 2+ , Cl - , SO 4 2- , HCO 3 - , NO 3 - , F - , and TDS during the same period are analyzed to explore geochemical evolution, water-rock interactions, sources of salt, nitrate, and fluoride pollution in fresh, brackish, saline, and brine waters. The decreased water levels without typical seasonal variation in the southeast of the study area confirm an over-exploitation of groundwater. The hydrogeochemical characteristics indicate fresh-saline-brine-saline transition pattern from inland to coast where evaporation is a vital factor to control the chemical evolution. The cation exchange processes are occurred at fresh-saline interfaces of mixtures along the hydraulic gradient. Meanwhile, isotopic data indicate that the brine in aquifers was either originated from older meteoric water with mineral dissolution and evaporation or repeatedly evaporation of retained seawater with fresher water recharge and mixing in geological time. Groundwater suitability for drinking is further evaluated according to water quality standard of China. Results reveal high risks of nitrate and fluoride contamination. The elevated nitrate concentration of 560 mg/L, which as high as 28 times of the standard content

  12. 78 FR 35314 - Availability of Final Environmental Impact Statement; Bunker Hill Groundwater Basin, Riverside...

    Science.gov (United States)

    2013-06-12

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation [A10-1999-6000-100-00-0-0-3, 3501000] Availability of Final Environmental Impact Statement; Bunker Hill Groundwater Basin, Riverside-Corona Feeder... and distribution of local and imported water supplies, using available capacity in the Bunker Hill...

  13. Well-Construction, Water-Level, and Water-Quality Data for Ground-Water Monitoring Wells for the J4 Hydrogeologic Study, Arnold Air Force Base, Tennessee

    National Research Council Canada - National Science Library

    Haugh, Connor J

    1996-01-01

    ...) in Coffee County, Tennessee. The wells ranged from 28 to 289 feet deep and were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality...

  14. Characterizing groundwater quality ranks for drinking purposes in Sylhet district, Bangladesh, using entropy method, spatial autocorrelation index, and geostatistics.

    Science.gov (United States)

    Islam, Abu Reza Md Towfiqul; Ahmed, Nasir; Bodrud-Doza, Md; Chu, Ronghao

    2017-12-01

    Drinking water is susceptible to the poor quality of contaminated water affecting the health of humans. Thus, it is an essential study to investigate factors affecting groundwater quality and its suitability for drinking uses. In this paper, the entropy theory, multivariate statistics, spatial autocorrelation index, and geostatistics are applied to characterize groundwater quality and its spatial variability in the Sylhet district of Bangladesh. A total of 91samples have been collected from wells (e.g., shallow, intermediate, and deep tube wells at 15-300-m depth) from the study area. The results show that NO 3 - , then SO 4 2- , and As are the most contributed parameters influencing the groundwater quality according to the entropy theory. The principal component analysis (PCA) and correlation coefficient also confirm the results of the entropy theory. However, Na + has the highest spatial autocorrelation and the most entropy, thus affecting the groundwater quality. Based on the entropy-weighted water quality index (EWQI) and groundwater quality index (GWQI) classifications, it is observed that 60.45 and 53.86% of water samples are classified as having an excellent to good qualities, while the remaining samples vary from medium to extremely poor quality domains for drinking purposes. Furthermore, the EWQI classification provides the more reasonable results than GWQIs due to its simplicity, accuracy, and ignoring of artificial weight. A Gaussian semivariogram model has been chosen to the best fit model, and groundwater quality indices have a weak spatial dependence, suggesting that both geogenic and anthropogenic factors play a pivotal role in spatial heterogeneity of groundwater quality oscillations.

  15. Impact of canal water shortages on groundwater in the Lower Bari Doab Canal system in Pakistan

    International Nuclear Information System (INIS)

    Shakir, A.S.; Rehman, H.U.; Khan, N.M.; Qazi, A.U.

    2011-01-01

    This paper presents rigorous analysis of shortage of canal water supplies, crop water requirements, and groundwater use and its quality in the command of Lower Bari Doab Canal, Pakistan. The annual canal water supplies are 36% less than the crop water requirements. This shortage further increases to 56% if actual canal supplies (averaged over last ten years) are compared with the crop water requirement. The groundwater levels are depleting at the rate of 30 to 40 cm per year in most parts of the LBDC command and this tendency of lowering may increase in future due to further increase in crop water requirements. The analysis of data for the last seven years indicate that quality of groundwater in most parts of LBDC command is generally good (64% of the area) or marginally acceptable (28%) for irrigation use. However, declining trends in groundwater quality are visible and can create long term sustain ability problems if proper remedial actions are not taken well in time. (author)

  16. Application of Geospatial Techniques for Groundwater Quality and Availability Assessment: A Case Study in Jaffna Peninsula, Sri Lanka

    Directory of Open Access Journals (Sweden)

    Kuddithamby Gunaalan

    2018-01-01

    Full Text Available Groundwater is one of the most important natural resources in the northern coastal belt of Sri Lanka, as there are no major water supply schemes or perennial rivers. Overexploitation, seawater intrusion and persistent pollution of this vital resource are threatening human health as well as ecosystems in the Jaffna Peninsula. Therefore, the main intent of the present paper is to apply geospatial techniques to assess the spatial variation of groundwater quality and availability for the sustainable management of groundwater in the coastal areas. The electrical conductivity (EC and depth to water (DTW of 41 wells were measured during the period from March to June 2014, which represents the dry period of the study area. Surface interpolation, gradient analysis, a local indicators of spatial autocorrelations (LISA and statistical analysis were used to assess the quality and availability of groundwater. The results revealed that the drinking and irrigation water quality in the study area were poor and further deteriorated with the progression of the dry season. Good quality and availability of groundwater were observed in the western zone compared to other zones of the study area. A negative correlation was identified between depth to water and electrical conductivity in the western zone. Hence, relatively deep wells in the western zone of the study area can be used to utilize the groundwater for drinking, domestic and agricultural purposes. The outcomes of this study can be used to formulate policy decisions for sustainable management of groundwater resources in Jaffna Peninsula.

  17. Groundwater quality assessment/corrective action feasibility plan. Savannah River Laboratory Seepage Basins

    Energy Technology Data Exchange (ETDEWEB)

    Stejskal, G.F.

    1989-11-15

    The Savannah River Laboratory (SRL) Seepage Basins are located in the northeastern section of the 700 Area at the Savannah River Site. Currently the four basins are out of service and are awaiting closure in accordance with the Consent Decree settled under Civil Act No. 1:85-2583. Groundwater monitoring data from the detection monitoring network around the SRL Basins was recently analyzed using South Carolina Hazardous Waste Management Regulations R.61-79.264.92 methods to determine if groundwater in the immediate vicinity of the SRL Basins had been impacted. Results from the data analysis indicate that the groundwater has been impacted by both volatile organic constituents (VOCs) and inorganic constituents. The VOCs, specifically trichloroethylene and tetrachloroethylene, are currently being addressed under the auspices of the SRS Hazardous Waste Permit Application (Volume III, Section J.6.3). The impacts resulting from elevated levels of inorganic constituent, such as barium, calcium, and zinc in the water table, do not pose a threat to human health and the environment. In order to determine if vertical migration of the inorganic constituents has occurred three detection monitoring wells are proposed for installation in the upper portion of the Congaree Aquifer.

  18. Groundwater quality in Taiz City and surrounding area, Yemen Republic

    International Nuclear Information System (INIS)

    Metwali, R.

    2002-01-01

    Fifty one water samples were collected from production wells used for human consumption from Taiz City and its surroundings, Yemen Republic. The water quality was investigated with respect to bacteriological and physico-chemical parameters. The achieved results revealed that most water samples, especially from private wells, contain a high number of total coliforms (TC) which exceed the permissible limit recommended by the World Health Organization, WHO (1996). Also faecal coliforms (FC) were recorded in the majority of polluted samples. A quantitative estimation was done for each of temperature (18-26C), pH (6.12-8.79), total hardness (58-2200 mg/L), electrical conductivity (218-4600 m.Mohs), total dissolved solids (117-3700mg/L), nitrate (10-187mg/L) and type of aquifer (rocky and alluvium). It is worthy to notice that from the total of fifty-one wells, there was pollution in (65%) of them. Recommendations were suggested for the treatmen